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watershed algorithm. The proposed method treats clusters separately, splitting them
into smaller sub-clusters and conclusively into separate objects, based solely on the
shape feature, making it independent of the pixel intensity. The efficiency of these
algorithms is validated based on the labeled set of images from two datasets:
BBBCO04v1 and breast cancer tissue microarrays. Results of initial nuclei detection were
significantly improved by applying the proposed algorithms. Our approach
outperformed the state-of-the-art techniques based on recall, precision, F1-score, and
Jaccard index. The proposed method achieves very low amount of under-segmented,
as well as over-segmented objects. In summary, we provide novel and efficient method
for dividing the clustered nuclei in digital images of histopathological slides.
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1 Introduction

In recent years, the development of computational pathology has strongly influenced the
progress in quantitative digital pathology [1]. The availability of whole slide image tech-
nology has encouraged the development of many systems that perform computer-aided
diagnosis. However, certain obstacles and limitations still exist in achieving a reliable
result. One of the primary problems is the overlapping of structures, also called clusters
of objects (commonly cell nuclei), that are segmented for quantification. The problem
arises when multiple objects are counted as one due to clustering. Clustering is observed
independently of the applied tissue stains, regardless of the use of hematoxylin and
eosin (H&E) or different types of immunohistochemical (IHC) stains. Because brightfield
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microscopy provides no information about the depth of the sample, it is only possible to
observe the cell nuclei as overlapping flat objects.

In this study, we present a new approach for cluster splitting, which is based on the
distance transform and modified watershed algorithm. There is not only no need for pre-
processing the images but also the method proposed in this study improves by cluster
classification and recurrent approach. We compare our method to the other known meth-
ods and validated the efficiency of our method on two datasets: (1) publically available
benchmark dataset BBBC0004 [2] and (2) manually labeled set of images of breast can-
cer cells with IHC staining against FOXP3 with 3,3’-diaminobenzidine and hematoxylin
(DAB&H) [3]. Figure 1 shows two examples from the latter dataset.

IHC staining is often employed to augment the diagnosis and allow disease discrimina-
tion. The typical examination of the antigen expression is based on the cell’s distribution
and morphology, as well as on the tissue architecture. Quantitative analysis of such
sections can be used to support the diagnosis and evaluation of the disease progression.

The rest of this article is organized as follows. The remaining part of this section
describes the related works and reference methods. Section 2 outlines the proposed
method along with the dataset description. Section 3 describes the results and Section 4
presents the discussion. Finally, Section 5 presents the conclusion.

1.1 Related works

Cluster splitting is still a troublesome and an unsolved problem in digital pathology. There
are many state-of-the-art automated methods for nuclei/cell detection, segmentation, or
classification that are reported in the literature, but unfortunately, they are mostly used
for typical H&E staining and are difficult to adapt to other staining techniques, such as
IHC.

In order to further enhance the capability and accuracy of diagnostic decision, many
image analysis techniques have been developed to minimize the problem of over-
segmentation and under-segmentation. Some of the researchers tackle the problem of
clustering directly, whereas others try to manage it inside their framework. In 2018, Salvi
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Fig. 1 Two examples of images from dataset with annotations by experts. Positive nuclei are marked with
red dots while blue dots represent negative nuclei. The selected nuclei with boundary annotation are shown
with blue and red overlay for each expert’s marking which results with pink intersection
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and Molnari [4] proposed MANA method for nuclei segmentation. Their approach is
quite flexible, which means it processes images of different types of tissues and scales but
is limited to images with H&E staining. Swiderska et al. [5] presented a method for hot-
spot selection where separate nuclei segmentation also played a crucial role. Cheng and
Rajapakse [6] developed a solution to process images with fluorescence microscopy in
which adaptive H-minima transformation cooperates with watershed-like algorithm. Ali
et al. [7] proposed a multilevel set method to solve the problem of clustering. Wienert
et al. [8] proposed contour-based minimum model with minimal a priori information.
Furthermore, Yan et al. [9-11] proposed various solutions for image and video processing.

Moreover, there are new approaches with deep learning (DL) and convolutional neural
networks that not only classify but also localize the nuclei in images [12, 13]. In 2015, Xie
et al. [14] proposed an algorithm called deep voting and achieved state-of-the-art results.
Recently, Cui et al. [15] reported an automatic end-to-end deep neural network for the
segmentation of individual nuclei in high-resolution histopathological images. Unfortu-
nately, it is not available (online) for testing. U-net is a very commonly used baseline
model; therefore, in this study, we compare our method with that of a pretrained modified
solution, as well as with that of a model trained from scratch.

Apart from the aforementioned methods, literature describes some of the state-of-
the-art frameworks for the quantification of nuclei in histopathology. In this study, we
compare our proposed method with three such solutions: Tmarker, IHC toolbox, and
Qupath. Tmarker [16] was introduced in 2013; it uses color deconvolution, as well as a
superpixel-based approach. The Image] plugin named IHC toolbox [17] uses oval-fitted
nuclei segmentation and quantification functions with automatic processing. Qupath is
one of the most popular freeware softwares used in the analysis of whole slide images [18].

1.2 Cluster split methods based on the boundary shape

Within the cluster split methods, we can distinguish the group of methods that are based
on the values of the pixel intensity and those that are solely based on the shape of the
cluster boundary. The advantage of cluster split methods based independently of the pixel
intensity values might be crucial in the case of histopathological images as this type of
biological data vary in contrast, brightness, and color representation.

1.2.1 “Mouelhi”

This algorithm was presented by Mouelhi et al. [19]. It is based on the construction of a
concave vertex graph followed by the selection of the shortest path. They treat the separat-
ing edges of the watershed algorithm as propositions from which they select the best fit.
To do so, they investigated the endpoints of the edges and looked for the points near the
concave points of the outer boundary of the cluster based on the calculated Euclidean dis-
tance. Then, by applying the Djikstra algorithm, they computed the shortest, optimal path
that can separate the clustered nuclei. This method was developed specifically for clus-
tered breast cancer cells and produces very good results without losing any geometrical
cell features.

1.2.2 “Kong”
This algorithm for cluster splitting was introduced by Kong et al. [20] which uses an
iterative process. It starts by finding the most likely concave points (mlcp), which are
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midpoints of the detected concave regions. Cluster splitting is related to the two essential
points of the cluster: radial symmetry center and geometrical center. The line between
these two points is the basis for selecting the mlcp as the mlcp should be on either side of
the said line. Then, the cluster is cut with the line between the selected mlcp. This proce-
dure is iteratively applied until the size of the resulting object is satisfactorily small. This
algorithm was a part of the framework that was tested on pathological images of follicular
lymphoma and produced incredible results [21].

1.3 Cluster split methods based on intensity
To prove the efficiency of our approach, we compared our results with those of the state-
of-the-art cluster splitting algorithms that are based on the intensity of the pixel.

1.3.1 Seeded watershed algorithm

This method was applied as presented in MATLAB Marker-Controlled Watershed
Segmentation tutorial [22]. It follows a simple procedure. First, we need to use the
gradient magnitude as the segmentation function. Then, we need to compute the fore-
ground markers by performing a series of morphological operations (opening, erosion,
reconstruction, closing, dilation, reconstruction, and complementing) and finding the
local maxima. Next, we need to estimate the background markers with distance transform
algorithm. With the foreground and background makers, the watershed transformation
needs to be computed on the gradient magnitude with the imposed minima.

1.3.2 “Huang”

The algorithm was presented by Huang et al. [23] and is quite similar to the seeded water-
shed algorithm. However, the difference is in the calculation of the foreground markers.
Instead of using the morphological operations, the foreground markers are estimated by
finding the local maxima with the use of distance transform algorithm (calculated on the
complementary binary image).

1.3.3 H-minima

This method [24] is based on applying the H-minima transform algorithm to the dis-
tance transform algorithm of binary image. We applied a threshold of suppressed minima
relative to the 0.8 of the value in the distance transform algorithm. The H-minima
transformation was followed by the watershed algorithm.

1.4 DL approach to cluster splitting

DL algorithm is a novel diagnostic tool in the automated detection analysis of histological
images; therefore, we compared our method with two methods applying DL algorithms:
a pretrained model proposed by Chen et al. [25] and the U-net model that is trained from
scratch on ScienceBowl2018 dataset [26]. Both these solutions were run in Python (train-
ing and inference performed with Nvidia GeForce GTX 850M) with implementations that
are available online.

1.4.1 “Chen”

Chen et al. [25] proposed a modification in U-net model by applying contour enhance-
ment in loss function. The random clipping and rotation was applied for data augmen-
tation. This is a multi-scale model with variations in the size of the input image during
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training. Since overlapped patch-based strategy was used, the resulting region in the out-
put mask was combined from the inference of multiple patches. We used implementation
available online [27].

1.4.2 U-net

In this study, we used the model of U-net as described in the original paper [28] and
also followed the procedure made available online [29]. This is a very challenging dataset
consisting of nuclei segmented from a large number of images acquired under a variety of
conditions. The nuclei vary in cell type, magnification, and imaging modality (brightfield
and fluorescence).

U-net model has been created in Keras. Adam optimizer, with a mini-batch size of 4,
was used to train the network for 500 epochs. The binary cross-entropy loss function
and dice coefficient metric was evaluated during training. Learning rate was set to le—
5, and the rest of the hyperparameters were left at default values. Since the prediction
maps are outputted as grayscale images, we put a threshold of typical value equal to half
of the maximum intensity value, namely 127, to get the binary output maps used for
evaluation.

2 Materials and methods

All classical image processing approach algorithms were implemented in MATLAB
R2015b and are available at http://ibib.waw.pl/en/scientific-activity/projects/167-umo-
2013-11-n-st7-02797 and on Medical Image Analysis Platform (MIAP) [30] and MAT-
LAB File Exchange.

2.1 Proposed cluster split methods

As cluster split methods cannot be applied to raw images, we first use segmentation to
separate objects of interest from the background. In our previous work [31], we tested
various adaptive threshold methods and concluded that Bradley’s [32] method yields
the most reliable results. Therefore, we used his method in this investigation. Local
threshold value based on the intensity of the pixel and its neighborhood is calculated at
every point of an image with sliding window image processing. Moreover, we use simple
post-processing to remove small artifacts from the output image. The chosen segmen-
tation algorithm yields reasonably smooth boundaries, so no further preprocessing is
performed. We excluded objects consisting of less than 50 pixels and more than 10,000
pixels.

The method presented in this article tackles the difficult problem of distinguishing sep-
arate objects based only on the shape of the clustered structure. It is mainly based on the
distance transform algorithm, cluster classification, and modified watershed algorithm.
Assigning a proper class to the cluster with a particular composition results in increased
robustness of the procedure. We further developed the foreground marker estimation
procedure and used recursive invoking of the algorithm. Figure 2 presents the workflow
of the proposed method.

Our proposed method treats clusters one-by-one, separately. The input for our method
is a cropped binary image containing currently processed cluster. The features of the clus-
ter’s shape are calculated and are categorized according to Table 1. We proceed with the
calculation of the distance transform on the input image, which is a binary mask of cluster.
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Fig. 2 The scheme of processing using our algorithm with miniature images for better understanding.
Cropped binary input contains one cluster. Next, the distance transform (D) is calculated. Foreground
markers (FGM) are established with distance transform thresholded with D_tresh (value based on maximum
value present in distance transform map, parameter 7, and the recurrence index recur_idx). Background
markers (BGM) are obtained by applying watershed algorithm to distance transform. Then, we impose
minima (FGM and BGM) on the gradient magnitude of the input image. If the ridge is present in the result
after applying watershed algorithm, then it is used to split the objects. If the resulting objects (tested in terms
of area, eccentricity, and roundness) are still classified as clusters, then the algorithm starts again with
increased recurrence index
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Table 1 The classification of clusters

Cluster class Criteria Description
I Area >average_Area & Eccentricity > 0.8 Generally two overlapping objects, most common
Il Area >average_Area & Eccentricity > 0.6 Three or more objects, with various overlap

Il Area >average_Area & Perimeter > T_Perimeter Heavily packed objects, with high overlap

% Area >3*average_Area Very big clusters

Where average_Area is estimated for dataset based on nonclustered objects of interest; T_Perimeter is the perimeter of the circle
with average_Area. Examples are presented in Fig. 5

Then, we establish a threshold value (D_tresh) based on the following: maximum value
present in the distance transform map (D), threshold modifier (T'), and the recurrence
index (recur_idx, initially set to 1). The threshold value calculation is correlated with clus-
ter classification as presented in Algorithm 1. The multiplier in the form of the parameter
a allows for the most exhaustive processing of clusters with a vast area. As the thresh-
old increment step is decreased, the separation of clustered objects is more precise. The
values of the threshold modifier (T) and parameter a were experimentally set to opti-
mize the number of recurrent iterations. Then, the evaluated threshold value is used on
the distance transform map creating foreground markers (FGMs). Concurrently, the dis-
tance map is treated with watershed algorithm to obtain background markers (BGMs),
which are in most cases nonexistent. Next, we calculate the gradient magnitude of the
input image, which is a binary map of cluster. Then, we impose minima on the gradi-
ent magnitude so that it has regional minima only at certain desired locations, namely at
FGM:s. Finally, the watershed algorithm is applied. If the ridge is present in the result of
watershed algorithm, then its dilated instance is inserted into the input image to split the
objects. The resulting objects are tested in terms of area, eccentricity, and roundness. If

Algorithm 1 Calculation of the threshold value depending on the cluster classification
1: function CALCULATE D_tresh(D, recurr_idx)

2 if cluster_class == II then > three or more overlapping objects
3: T < 0.55

4 a <02

5: else if cluster_class == III then > heavily packed cluster
6: T < 0.2

7: a<1

8: else if cluster_class == IV then > very big cluster
9: T < 0.2

10: a < 0.2

11: else > most common (two objects overlapping), cluster_class == I
12: T < 0.55

13: a<1

14: end if

15: D _tresh = max(D) * T + (a * (recurr_idx — 1))

16: return D_tresh

17: end function
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they are still classified as clusters, then the algorithm starts again for them with the recur-
rence index set again to 1. Alternatively, if the object was not split, then the algorithm
starts again with an incremented recurrence index.

Because the algorithm is applied recurrently with every cycle, the threshold value is
incremented. This results in more restrictive FGMs at every step thereby allowing to dis-
criminate between closely and loosely clumped objects. The increment is set to 1 as it
permits relatively dynamic calculations with an acceptable time of processing. Figure 3

presents an example of such recurrent execution.

2.2 Datasets

To validate our proposed method, we used two image datasets. Both datasets consisted
of images with objects (nuclei) with sparse and compact arrangement including many
clustered objects. The dataset (BBBC0004) consisting of the synthetic images provides a
more controlled environment, whereas the other dataset (IISPV) allows to test how the
implementation is dealing with the natural assignment.

2.2.1 Dataset BBBC0004

We used image set BBBC004v1 [33] from the Broad Bioimage Benchmark Collection [34].
To help assess the performance of the algorithms with regard to cluster splitting, the syn-
thetic image set with known probability of overlap was used. This image set consists of
five subsets with increasing degree of clustering, with the following overlap probability:
0,0.15,0.30,0.45, and 0.60. From each subset, we randomly selected five images for eval-
uation purposes. Each grayscale image contains 300 objects, but the objects overlap and
cluster with different probabilities in the five subsets. The images were generated with the
SIMCEP simulating platform for fluorescent cell population images [35].

2.2.2 Dataset ISPV

In this study, the images of breast cancer tissue used for the validation of the experiments
were obtained from the Molecular Biology and Research Section, Hospital de Tortosa
Verge de la Cinta, Institut d’'Investigacio Sanitaria Pere Virgili (IISPV), URV, Spain, and
from the Pathology Department of the same hospital. The dataset was formerly acquired
during the project [36], grant number PI111/0488, conducted at the Instituto de Salud Car-
los 111, Spain, approved by the Ethics Committee of the Hospital Joan XXIII de Tarragona

Fig. 3 Example of recurrent call of the proposed method. Example of recurrent call of proposed method
where threshold of distance transform cutoff is increased resulting in cluster separation in second iteration. In
this case, the processing would stop after second iteration, but here, every possible step of recurrent call is
presented. From left to right: binary image of the cluster, contours estimated with all recurrent calls of
proposed method, the same contours shown in 3D
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(reference 22p/2011). The subset used in this study was obtained based on the interna-
tional cooperation within grant number 2013/11/N/ST7/02797 (Polish National Science
Center).

The histological tissue microarrays used for image acquisition were prepared from
formalin-fixed, paraffin-embedded tissue blocks of the breast, and auxiliary node biopsies
coming from the patients with four major molecular subtypes [37]: Luminal A, luminal
B, triple negative, and HER2-enriched. Tissue sample preparation is not crucial for this
investigation and was extensively described before [38].

The digital images were captured under x 40 magnification on an automated whole
slide scanning system (Aperio ScanScope XT). Then, they were split into images of sepa-
rate punches using two designated programs [39, 40]. Although the images are originally
3-channel Red-Green-Blue (RGB) images, we converted them to Hue-Saturaton-Value
color-space and used only value layer for processing, similar to the previous research [41].

All methods presented in this study were applied to the dataset that consisted of a total
of 7557 nuclei within 13 randomly selected regions of interest (ROI) extracted from the
dataset. Images differ in the degree of complexity, architecture compactness, global con-
trast, and brightness, which is typical for this type of biological data. To crop ROI out
of the original tissue punches, we created two virtual circles, centered with tissue punch,
with radius of 500 and 2000 pixels. We randomly draw from the coordinates of the points
of circles’ circumference. This point becomes the upper-left corner of the ROI with size
1000 x 1000 pixels.

For evaluation purposes, based on the manual annotations performed by the two
experts, ground truth templates were generated, see Fig. 1. Each expert marked every
location of the positive and negative nuclei with an indicator for object-wise evalua-
tion. Moreover, for pixel-wise evaluation, in each ROI, every immunopositive and 31
randomly selected immunonegative objects’ boundaries were marked thereby creating
binary mask. The mean of both experts’ annotation was assumed to be the ground
truth, creating a set of 808 manually marked nuclei (405 immunopositive and 403

immunonegative).

2.3 Evaluation

In this study, we conducted three types of evaluation. Our results are compared with
the ground truth and the results of reference methods, both object-wise and pixel-wise.
As there is no database with well-known ground truths (benchmark) that are publicly
available, the method evaluation is performed on the available experimental material with
the ground truth annotated by the experts. Moreover, we compared performance times
of the proposed method with that of the state of the art.

In total, there were 7557 manually marked nuclei in 13 images. For randomly
selected 808 nuclei, the boundary was marked as well. True positive (TP) objects
are those which have one matching object in manually labeled ground truth. A seg-
mented nuclei region is counted as matched if the manual mark is localized within its
area.

For the purposes of evaluation on the level of objects, we used the most common criteria
including precision or positive predictive value (PPV), recall (TPR), and F1 score. PPV is
the ratio of TPs to the number of detected objects (PPV = TP/(TP+FP)). Sensitivity or
true positive rate (TPR) shows what proportion of the objects of interest is found (TPR =
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TP/(TP+EN)). In case of both metrics, values closer to 1 imply better outcome. F1 score is
the harmonic average of precision and recall which ranges between 0 and 1, where higher
values represent better method.

Unfortunately, the metrics described above are not always sufficient to discriminate
between the two methods. We calculated the following additional pixel-wise criteri-
ons introduced by Cui et al. [15]: missing detection rate (MDR), false detection rate
(FDR), under-segmentation rate (USR), and over-segmentation rate (OSR). This approach
divides the cause for false positives into two types of errors: false detections and over-
segmentation. Furthermore, false negatives could be split into two categories: missing
detections and under-segmentation. Figure 4 presents examples of all cases.

In addition, we used the Jaccard index to measure how closely the boundary fits the 808
nuclei reference ground truth.

3 Results

In this study, we measured the performance of the algorithm on microscopic images by
comparing the number of nuclei and their segmentation results (binary images) with the
annotated ground truth. The performance was evaluated using object-wise and pixel-wise
metrics.

The process of cluster splitting was first analyzed by the performance comparison on
BBBC0004 dataset. It consists of synthetic images, which allows for the most controlled
environment for assessing algorithms’ performance. The dataset is divided into five sub-
sets with increasing overlap probability, from 0 to 0.6; examples are presented in Fig. 5.
Based on our analysis, we were able to distinguish strengths and weaknesses of the cluster
splitting methods in relation to increasing clustering. Table 2 presents the comparison.

Furthermore, we evaluated the methods on real images from IISPV dataset. The pro-
cess of cluster splitting was performed on the results of Bradley thresholding algorithm
in 13 ROL The initial detection was performed by applying threshold to value layer of
Hue-Saturation-Value color-space. The mean ratios of possible errors, presented in Fig. 4,
were calculated for each method. To prove the superiority of the proposed method, the
results were compared with those of segmentation without the application of cluster split-
ting method and with the results of the baseline seeded watershed algorithm and other
methods from the literature. Alongside quality metrics, we also compared the time con-
sumption for the evaluated cluster splitting methods. Table 3 presents the comparison.

In the second part of Table 3, we present the comparison of the proposed method
and state-of-the-art frameworks for the quantification in histopathology: Tmarker and
Qupath. We present two versions of results for the latter. First, we used default parameter

0o Le Lo

Fig. 4 All possible cases of segmentation (yellow overlay) and ground truth scoring (red dots). From left to
right: true positive, false negative — under-segmentation, false negative — missed detection, false positive
— over-segmentation, false positive — false detection
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A-a A-b A-c A-d A-f A-g
None Watershed Proposed H- Kong Mouelhi
minima

Fig. 5 Cluster splitting results comparison. Images in the top row A shows two clusters. The top 1 is an
example of class lll—objects are heavily packed with high overlap. The lower one in top row is from class
ll—it is more typical situation, with multiple objects touching and overlapped. In the bottom row B, the
cluster is from class V—numerous objects with various overlap

values (qupath_def). Second, the expert with experience in histopathology and this soft-
ware adjusted manually the processing parameters to achieve best results (qupath_exSep).
We also compared the results with widely available Image/ plugin named ICHtoolbox that
uses oval-fitted nuclei segmentation and nuclei segmentation and quantification func-
tions are automatically processed. Table 3 also presents the results of DL approaches. The
model pretrained by Chen et al. was tested as is. The results of inference were extracted as
binary map. The U-net model achieved the following results: loss: 0.0286 and dice coef-
ficient 0.9393, after 500 epochs, on ScienceBowl2018 dataset. The results of inference on
IISPV dataset were thresholded with typical in this situation value equal to half of the
maximum intensity value, namely 127, to get the binary output maps used for evaluation.

4 Discussion

The performance comparison in controlled environment of the BBBC0004 dataset gave
us much insight in strengths and drawbacks of the proposed method. First, we proved
that all methods have similar results while there is no overlap (ov00) and the objects are
only touching (as presented in Table 2 in section ov00). With increase in the overlap,
the effectiveness diminished in terms of all metrics and all methods. When some of the
objects overlap (ov15 and 0v30), our method achieved best results with TPR, PPV, and F1-
score (over 0.95). For images with more overlapping objects creating complex structures,
the Huang method had best recall (TPR) value. However, our proposed method, with
much better precision, achieved superior F1-score, as presented in Table 2. As the cluster
splitting along with segmentation is usually the preliminary step for object classification, it
is critical to lower the missed detections as much as possible. This is because it is possible
to discriminate the false positive objects during further processing, whereas false negative
(missed) objects will not be further processed.
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Table 2 Comparison of performance of cluster splitting methods on BBBC0004 dataset
(None—images without applied cluster splitting method)

TPR PPV F1 MDR FDR USR OSR

ov00 None 0.968 1.000 0.984 0.00 0.00 0.03 0.00
Watershed 0.978 1.000 0.989 0.00 0.00 0.02 0.00

Proposed method 0.989 1.000 0.995 0.00 0.00 0.01 0.00

H-minima 0.989 1.000 0.995 0.00 0.00 0.01 0.00

Huang 0.989 0.999 0.994 0.00 0.00 0.01 0.00

Kong 0.989 0.999 0.994 0.00 0.00 0.01 0.00

Mouelhi 0.968 1.000 0.984 0.00 0.00 0.03 0.00

ov15 None 0.793 0.997 0.884 0.00 0.00 0.21 0.00
Watershed 0.811 0.997 0.894 0.00 0.00 0.19 0.00

Proposed method 0.9707 0.970 0.9707 0.01 0.00 0.02 0.02

H-minima 0.934 0.991 0.961 0.00 0.00 0.06 0.01

Huang 0.963 0.955 0.959 0.02 0.00 0.01 0.04

Kong 0.955 0.972 0.963 0.01 0.00 0.04 0.03

Mouelhi 0.826 0.995 0.902 0.00 0.00 0.17 0.00

ov30 None 0.723 1.000 0.839 0.00 0.00 0.28 0.00
Watershed 0.739 1.000 0.850 0.00 0.00 0.26 0.00

Proposed method 0.9597 0.986 0.9727 0.01 0.00 0.03 0.01

H-minima 0.890 0.999 0.941 0.00 0.00 0.1 0.00

Huang 0.950 0.963 0.956 0.04 0.01 0.02 0.03

Kong 0.926 0.982 0.953 0.00 0.00 0.07 0.02

Mouelhi 0.774 0.996 0.871 0.00 0.00 0.22 0.00

ov45 None 0.700 1.000 0.824 0.00 0.00 0.30 0.00
Watershed 0.716 1.000 0.834 0.00 0.00 0.28 0.00

Proposed method 0.942 0.993 0.967 0.01 0.00 0.05 0.01

H-minima 0.873 0.999 0.932 0.00 0.00 0.13 0.00

Huang 0.946F 0.981 0.963 0.03 0.00 0.02 0.02

Kong 0.930 0.992 0.960 0.00 0.00 0.07 0.01

Mouelhi 0.756 0.999 0.861 0.00 0.00 0.24 0.00

ov60 None 0610 1.000 0.757 0.00 0.00 0.39 0.00
Watershed 0.626 1.000 0.770 0.00 0.00 037 0.00

Proposed method 0.909 0.983 0.9457 0.01 0.00 0.08 0.02

H-minima 0.809 0.993 0.891 0.00 0.00 0.19 0.01

Huang 0.921¢ 0.973 0.945¢ 0.05 0.00 0.03 0.03

Kong 0.893 0.964 0.927 0.01 0.00 0.09 0.04

Mouelhi 0.696 0.993 0.818 0.00 0.00 0.30 0.01

Best values are marked with T

Moving on from synthetic to real images, we validated the superiority of our proposed
method on IISPV dataset. Based on the comparison of the performance on IISPV dataset,
it was established that the proposed method outperforms other method, both those based
on boundary shape and those incorporating the intensity values. We can assume that
nuclei detection was best because of the highest F1 score (0.734).

Page 12 of 16
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Table 3 Performance of the proposed method in comparison to the state-of-the-art frameworks

Methods TPR PPV F1 MDR  FDR  USR  OSR  Jaccard  Time
None 0647 0766 0686 0.03 015 033 008 072
Watershed 0723 0754 0727 004 014 025 009 072 155
Proposed method 0839 0667 0734 0.06 013 011 018 071 105
Classical H-minima 0738 0729 0724 005 014 023 012 071 129
Huang 0676 0513 0576 031 025 002 019 052 77
Kong 0785 0611 0672 006 011 017 025 070 277
Mouelhi 0778 0587 0652 007 012 016 026 070 292
1J_IHCtoolbox 0.541 0848 0643 043 003 005 012 063
Frameworks Qupath_def 0796 0510 0612 016 025 005 020 066
Qupath_exSep 0869 0576 0682 008 021 006 018 074
Tmarker 0265 0587 0334 072 037 005 003 043
oL Chen 0776 0700 0724 020 025 004 004 055
U-net 0459 0724 0555 050 020 009 007 064

To differentiate the methods even more precisely, we compared metrics focused on
cluster splitting. They rely on object numbers, yet they inform about pixel-level statis-
tics. As presented in Table 3, the use of our proposed method significantly lowers the
value of USR. The slight increase in the value of OSR could be remedied by introducing
subsequent post-processing step. In general, improvement in terms of under-
segmentation is always at the cost of deterioration in terms of over-segmentation. The
boundary fitting assessed by Jaccard index stays on the similar level for all methods
(except “Huang”). In summary, even though reference methods have better values of OSR
and USR, the proposed method is the most balanced solution as proved by superior F1
score results.

According to time evaluation, our proposed method is only outperformed by “Huang”
method. Because time evaluation is based on a batch of images with size 1000 x 1000
pixels, “Kong” and “Mouelhi” methods take longer times, which is discouraging. Apart
from these two, the other methods have comparable time of processing.

To prove the reliability of the proposed method in this study, we also compared it to
the known state-of-the-art frameworks that are capable of producing quantification and
objects’ boundary mask for digital histopathology. In this comparison, only Qupath with
extensive expert’s manual parameter tuning was able to outperform the proposed method
according to some metrics, as presented in Table 3. Tmarker’s results were drastically
low in all metrics. The Image] plugin has rather satisfactory results in terms of over- and
under-segmentation, but on the downside, there are a lot of missed detections. Over-
all, our approach has best F1 score and MDR with very good results in terms of false
detections.

Nowadays, DL is applied to a variety of computer vision problems, among which is
nuclei detection and segmentation. We acknowledge the fact that it is a very powerful
tool with vast capabilities, but what we tried to show is that it is not a simple task to adapt
DL to a new or even a modified problem. Herein, we performed inference with network
pretrained on H&E tissue images (Chen). The results are relatively good but do not out-
perform the proposed method in this study. However, tackling the problem entirely from
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the starting point and training the deep network from scratch requires a vast amount of
resources and labeled data. With limited access to these resources, the results are quite
poor. In summary, establishing a DL model with good performance is not a simple solu-
tion while tackling the problem with limited data, such as tissue sections stained with
DAB&H from IISPV dataset.

Finally, based on our results, we can say that the proposed method in this study
outperforms other methods from literature and state-of-the-art frameworks.

5 Conclusion

The accuracy of the employed automated nuclei segmentation technique is critical in
obtaining high-quality and efficient diagnostic performance. Unfortunately, algorithms
based on thresholding produce results that almost never perfectly fit to real object’s
boundary. In addition, the situation where multiple objects are connected (clustered) and
counted as one is frequently observed. Therefore, we proposed novel cluster splitting
method.

We provide the efficient method for dividing the clustered nuclei in digital images of
histopathological slides where results of initial nuclei detection are improved by applying
cluster splitting methods. The proposed method in this study achieved better results in
terms of average F1 score (0.734) than that of all other referenced methods: seeded water-
shed, “Huang’, H-minima, “Mouelhi’; and “Kong.” We managed to keep very low both USR
and OSR.

Moreover, the established state-of-the-art frameworks also did not outperform our
proposed method while automatically processing the data. Only Qupath with manual
parameter tuning was able to achieve superior results. Using the DL technique for the
instance segmentation of overlapping cell nuclei is not a simple task and requires vast
amount of resources and labeled data. Simply using the available solutions results in
mediocre performance, especially with even slightly different data (H&E vs. DAB&H
staining) as proved in this study.

The primary disadvantage of the proposed method is the strict categorization of the
clusters. It is based on the time-consuming statistical analysis of the processed database.
In future, we plan to omit this problem with automatic parameter setting. We also plan to
test the algorithm on other datasets consisting of different types of cells.

In summary, the primary achievement of this study is the establishment of the pro-
cessing step that could be incorporated into image processing framework to improve the
results of segmentation .

Abbreviations
H&E: Hematoxylin&eosin; DAB&H: 3,3"-diaminobenzidine and hematoxylin; IHC: Immunohistochemistry; FOXP3: Forkhead
box P3 (scurfin); ROI: Region of interest; MIAP: Medical image analysis platform; TPR: True positive ratio (recall); PPV

Positive predictive value (precision); MDR: Missed detection rate; FDR: False detection rate; USR: Under-segmentation
rate; OSR: Over-segmentation rate

Acknowledgements

We would like to thank the Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, Institut
d'Investigaci Sanitria Pere Virgili (IISPV), URV, Spain, and Pathology Department of the same hospital for their cooperation
and generous sharing of samples.

Authors’ contributions

Conceptualization, L.R. and AK; methodology, LR, software, LR, validation, LR, formal analysis, LR. and AK;
investigation, LR, resources, C.L, M.L, and RB,; data curation, C.L, M.L, and R.B,; writing—original draft preparation, L.R;
writing—review and editing, L.R. and AK. and D.P,; visualization, L.R; supervision, D.P.; project administration, L.R. and
D.P.; funding acquisition, L.R. and AK.and D.P. The authors read and approved the final manuscript.



Roszkowiak et al. EURASIP Journal on Image and Video Processing (2020) 2020:26 Page 15 0of 16

Funding
We acknowledge the financial support of the Polish National Science Center grant, PRELUDIUM, 2013/11/N/ST7/02797.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The dataset BBBC0004 [2] analyzed during the current study is available in the Broad Bioimage Benchmark Collection
repository, https://data.broadinstitute.org/bbbc/BBBC004/. The dataset lISPV used during the current study is available
from the corresponding author on reasonable request. Both datasets and the data that support the findings of this study
will be available via MIAP platform [30] upon publication of the manuscript.

Competing interests
The authors declare that they have no competing interests. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Author details

Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4 Str,, 02-109
Warsaw, Poland. 2Pathology Department, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain. >Molecular Biology and
Research Section, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.

Received: 19 August 2019 Accepted: 8 June 2020
Published online: 01 July 2020

References

1. S.Nam, Y. Chong, C. K. Jung, T.-Y. Kwak, J. Y. Lee, J. Park, M. J. Rho, H. Go, Introduction to digital pathology and
computer-aided pathology. J. Pathol. Transl. Med. 54(2), 125-134 (2020). https://doi.org/10.4132/jptm.2019.12.31

2. B.Institute, Synthetic cells. https://data.broadinstitute.org/bbbc/BBBCO04/. Accession number BBBC004 -Version 1

3. M.Takenaka, N. Seki, U. Toh, S. Hattori, A. Kawahara, T. Yamaguchi, K. Koura, R. Takahashi, H. Otsuka, H. Takahashi, N.
lwakuma, S. Nakagawa, T. Fujii, T. Sasada, R. Yamaguchi, H. Yano, K. Shirouzu, M. Kage, FOXP3 expression in tumor
cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol. Clin. Oncol. 1(4), 625-632
(2013). https://doi.org/10.3892/mco.2013.107

4. M. Salvi, F. Molinari, Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images. BioMed.
Eng. OnLine. 17(1) (2018). https://doi.org/10.1186/512938-018-0518-0

5. Z Swiderska-Chadaj, T. Markiewicz, B. Grala, M. Lorent, Content-based analysis of Ki-67 stained meningioma
specimens for automatic hot-spot selection. Diagn. Pathol. 11(1) (2016). https://doi.org/10.1186/513000-016-0546-7

6. J.Cheng, J. C. Rajapakse, Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans.
Biomed. Eng. 56(3), 741-748 (2009). https://doi.org/10.1109/tbme.2008.2008635

7. S.Ali,R. Veltri, J. 1. Epstein, C. Christudass, A. Madabhushi, in Lecture Notes in Computer Science, Adaptive energy
selective active contour with shape priors for nuclear segmentation and Gleason grading of prostate cancer
(Springer, Berlin Heidelberg, 2011), pp. 661-669. https://doi.org/10.1007/978-3-642-23623-5_83

8. S.Wienert, D. Heim, K. Saeger, A. Stenzinger, M. Beil, P. Hufnagl, M. Dietel, C. Denkert, F. Klauschen, Detection and
segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2(1) (2012). https://
doi.org/10.1038/srep00503

9. C.Yan, H.Xie, J.Chen, Z. Zha, X. Hao, Y. Zhang, Q. Dai, A fast Uyghur text detector for complex background images.
IEEE Trans. Multimed. 20(12), 3389-3398 (2018). https://doi.org/10.1109/tmm.2018.2838320

10. C.Yan, L. Li,C. Zhang, B. Liu, Y. Zhang, Q. Dai, Cross-modality bridging and knowledge transferring for image
understanding. IEEE Trans. Multimed. 21(10), 2675-2685 (2019). https://doi.org/10.1109/tmm.2019.2903448

11. C.Yan,Y.Tu, X. Wang, Y. Zhang, X. Hao, Y. Zhang, Q. Dai, STAT: spatial-temporal attention mechanism for video
captioning. IEEE Trans. Multimed. 22(1), 229-241 (2020). https://doi.org/10.1109/tmm.2019.2924576

12. H.lrshad, A. Veillard, L. Roux, D. Racoceanu, Methods for nuclei detection, segmentation, and classification in digital
histopathology: a review—current status and future potential. IEEE Rev. Biomed. Eng. 7, 97-114 (2014). https://doi.
0rg/10.1109/rbme.2013.2295804

13. D.C. Ciresan, A. Giusti, L. M. Gambardella, J. Schmidhuber, in Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2013. ed. by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Mitosis detection in breast
cancer histology images with deep neural networks (Springer, Berlin, Heidelberg, 2013), pp. 411-418

14. Y. Xie, X.Kong, F. Xing, F. Liu, H. Su, L. Yang, in Lecture Notes in Computer Science, Deep voting: a robust approach
toward nucleus localization in microscopy images (Springer, International Publishing, 2015), pp. 374-382. https.//
doi.org/10.1007/978-3-319-24574-4_45

15. Y. Cui, G. Zhang, Z. Liu, Z. Xiong, J. Hu, A deep learning algorithm for one-step contour aware nuclei segmentation of
histopathological images. arXiv (2018). 1803.02786v1

16. P.Wild, N. Rupp, J. Buhmann, P. Schiffler, T. Fuchs, C. Ong, TMARKER: a free software toolkit for histopathological cell
counting and staining estimation. J. Pathol. Inform. 4(2), 2 (2013). https://doi.org/10.4103/2153-3539.109804

17. J.Shu, H. Fu, G. Qiu, P. Kaye, M. llyas, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Segmenting overlapping cell nuclei in digital histopathology images (IEEE, Osaka, 2013).
https://doi.org/10.1109/embc.2013.6610781

18. P.Bankhead, M. B. Loughrey, J. A. Ferndndez, Y. Dombrowski, D. G. McArt, P. D. Dunne, S. McQuaid, R. T. Gray, L. J.
Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, P. W. Hamilton, QuPath: open source software for digital
pathology image analysis. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-17204-5

19. A Mouelhi, M. Sayadi, F. Fnaiech, in 2011 International Conference on Communications, Computing and Control
Applications (CCCA), Automatic segmentation of clustered breast cancer cells using watershed and concave vertex
graph (IEEE, 2011). https://doi.org/10.1109/ccca.2011.6031229


https://data.broadinstitute.org/bbbc/BBBC004/
https://doi.org/10.4132/jptm.2019.12.31
https://data.broadinstitute.org/bbbc/BBBC004/
https://doi.org/10.3892/mco.2013.107
https://doi.org/10.1186/s12938-018-0518-0
https://doi.org/10.1186/s13000-016-0546-7
https://doi.org/10.1109/tbme.2008.2008635
https://doi.org/10.1007/978-3-642-23623-5_83
https://doi.org/10.1038/srep00503
https://doi.org/10.1038/srep00503
https://doi.org/10.1109/tmm.2018.2838320
https://doi.org/10.1109/tmm.2019.2903448
https://doi.org/10.1109/tmm.2019.2924576
https://doi.org/10.1109/rbme.2013.2295804
https://doi.org/10.1109/rbme.2013.2295804
https://doi.org/10.1007/978-3-319-24574-4_45
https://doi.org/10.1007/978-3-319-24574-4_45
http://arxiv.org/abs/1803.02786v1
https://doi.org/10.4103/2153-3539.109804
https://doi.org/10.1109/embc.2013.6610781
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1109/ccca.2011.6031229

Roszkowiak et al. EURASIP Journal on Image and Video Processing (2020) 2020:26 Page 16 of 16

20. H.Kong, M. Gurcan, K. Belkacem-Boussaid, in 2011 [EEE International Symposium on Biomedical Imaging: From Nano to
Macro, Splitting touching-cell clusters on histopathological images (IEEE, 2011). https://doi.org/10.1109/isbi.2011.
5872389

21. H.Kong, M. Gurcan, K. Belkacem-Boussaid, Partitioning histopathological images: an integrated framework for
supervised color-texture segmentation and cell splitting. IEEE Trans. Med. Imaging. 30(9), 1661-1677 (2011). https://
doi.org/10.1109/tmi.2011.2141674

22. 1. The MathWorks, Marker-controlled watershed segmentation (2019). https://www.mathworks.com/help/images/
marker-controlled-watershed-segmentation.html. Online accessed 08 Mar 2020

23. P-W.Huang, Y.-H. Lai, Effective segmentation and classification for HCC biopsy images. Pattern Recogn. 43(4),
1550-1563 (2010). https://doi.org/10.1016/j.patcog.2009.10.014

24. C.Jung, C.Kim, Segmenting clustered nuclei using h-minima transform-based marker extraction and contour
parameterization. IEEE Trans. Biomed. Eng. 57(10), 2600-2604 (2010). https.//doi.org/10.1109/tbme.2010.2060336

25. K. Chen, N. Zhang, L. Powers, J. Roveda, in 2019 Spring Simulation Conference (SpringSim), Cell nuclei detection and
segmentation for computational pathology using deep learning (IEEE, 2019). https://doi.org/10.23919/springsim.
2019.8732905

26. B.A.Hamilton, Dataset: Science Bowl 2018 (2018). https://www.kaggle.com/c/data-science-bowl-2018/data.
Accessed 28 Feb 2019

27. KChen89, Cell-nuclei-detection-and-segmentation. https://github.com/KChen89/Cell-Nuclei-Detection-and-
Segmentation. Accessed 28 Feb 2019

28. O.Ronneberger, P. Fischer, T. Brox, in Lecture Notes in Computer Science, U-net: convolutional networks for
biomedical image segmentation (Springer, International Publishing, 2015), pp. 234-241. https://doi.org/10.1007/
978-3-319-24574-4_28

29. kamalkraj, DATA-SCIENCE-BOWL-2018 (2018). https://github.com/kamalkraj/DATA-SCIENCE-BOWL-2018

30. T.Markiewicz, A. Korzynska, A. Kowalski, Z. Swiderska-Chadaj, P. Murawski, B. Grala, M. Lorent, M. Wdowiak, J. Zak, L.
Roszkowiak, W. Kozlowski, D. Pijanowska, MIAP — web-based platform for the computer analysis of microscopic
images to support the pathological diagnosis. Biocybernetics Biomed. Eng. 36(4), 597-609 (2016). https://doi.org/
10.1016/j.bbe.2016.06.006

31. J. Lukasz Roszkowiak, K. Zak, D. Siemion, A. Pijanowska, Korzynska in Computer Vision and Graphics: Proc. ICCVG 2020,
Nuclei detection with local threshold processing in DAB&H stained breast cancer biopsy images. (L. J. Chmielewski, R.
Kozera, A. Orfowski, eds.) (Springer International Publishing, 2020)

32. D.Bradley, G. Roth, Adaptive thresholding using the integral image. J. Graph. Tools. 12(2), 13-21 (2007). https://doi.
0rg/10.1080/2151237X.2007.10129236. https://doi.org/10.1080/2151237X.2007.10129236

33. P.Ruusuvuori, A. Lehmussola, J. Selinummi, T. Rajala, H. Huttunen, O. Yli-Harja, in 2008 16th European Signal
Processing Conference, Benchmark set of synthetic images for validating cell image analysis algorithms (IEEE,
Lausanne, 2008), pp. 1-5. https:/ieeexplore.ieee.org/abstract/document/7080746

34. V. ljosa, K. L. Sokolnicki, A. E. Carpenter, Annotated high-throughput microscopy image sets for validation. Nat.
Methods. 9, 637 (2012)

35. A.Lehmussola, P. Ruusuvuori, J. Selinummi, T. Rajala, O. Yli-Harja, Synthetic images of high-throughput microscopy
for validation of image analysis methods. Proc. IEEE. 96(8), 1348-1360 (2008). https://doi.org/10.1109/JPROC.2008.
925490

36. C. Lopez C.Callau, R. Bosch, A. Korzynska, J. Jaen, M. Garcia-Rojo, G. Bueno, M. T. Salvado, T. Alvaro, M. Onos, M. d. M.
Fernandez-Carrobles, M. Llobera, J. Baucells, G. Orero, M. Lejeune, Development of automated quantification
methodologies of immunohistochemical markers to determine patterns of immune response in breast cancer: a
retrospective cohort study. BMJ Open. 4(8), 005643-005643 (2014). https://doi.org/10.1136/bmjopen-2014-005643

37. N.Snoj, P. Dinh, P. Bedard, C. Sotiriou, Molecular Biology of Breast Cancer. (W. Coleman, G. Tsongalis, eds.),
vol. 9780123744180. (Academic Press, Cambridge, 2010), pp. 341-349. https://doi.org/10.1016/B978-0-12-374418-0.
00026-8

38. A.Korzynska, L. Roszkowiak, C. Lopez, R. Bosch, L. Witkowski, M. Lejeune, Validation of various adaptive threshold
methods of segmentation applied to follicular lymphoma digital images stained with
3,3"-diaminobenzidine&haematoxylin. Diagn. Pathol. 8(1), 1-21 (2013). https://doi.org/10.1186/1746-1596-8-48

39. M. Milagro Fernandez-Carrobles, G. Bueno, O. Deniz, J. Salido, M. Garcia-Rojo, L. Gonzalez-Lopez, A cad system for
the acquisition and classification of breast TMA in pathology. Stud. Health Technol. Informat. 210, 756-760 (2015).
https://doi.org/10.3233/978-1-61499-512-8-756

40. L. Roszkowiak, C. Lopez, PATMA: parser of archival tissue microarray. PeerJ. 4, 2741 (2016). https://doi.org/10.7717/
peerj.2741

41. L. Roszkowiak, A. Korzynska, D. Pijanowska, in Proceedings of the 2015 Federated Conference on Computer Science and
Information Systems, Short survey: adaptive threshold methods used to segment immunonegative cells from
simulated images of follicular lymphoma stained with 3,3"-diaminobenzidine&haematoxylin (IEEE, Lodz, 2015),
pp. 291-296. https://doi.org/10.15439/2015f263

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1109/isbi.2011.5872389
https://doi.org/10.1109/isbi.2011.5872389
https://doi.org/10.1109/tmi.2011.2141674
https://doi.org/10.1109/tmi.2011.2141674
https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html
https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html
https://doi.org/10.1016/j.patcog.2009.10.014
https://doi.org/10.1109/tbme.2010.2060336
https://doi.org/10.23919/springsim.2019.8732905
https://doi.org/10.23919/springsim.2019.8732905
https://www.kaggle.com/c/data-science-bowl-2018/data
https://github.com/KChen89/Cell-Nuclei-Detection-and-Segmentation
https://github.com/KChen89/Cell-Nuclei-Detection-and-Segmentation
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://github.com/kamalkraj/DATA-SCIENCE-BOWL-2018
https://doi.org/10.1016/j.bbe.2016.06.006
https://doi.org/10.1016/j.bbe.2016.06.006
https://doi.org/10.1080/2151237X.2007.10129236
https://doi.org/10.1080/2151237X.2007.10129236
http://arxiv.org/abs/https://doi.org/10.1080/2151237X.2007.10129236
https://ieeexplore.ieee.org/abstract/document/7080746
https://doi.org/10.1109/JPROC.2008.925490
https://doi.org/10.1109/JPROC.2008.925490
https://doi.org/10.1136/bmjopen-2014-005643
https://doi.org/10.1016/B978-0-12-374418-0.00026-8
https://doi.org/10.1016/B978-0-12-374418-0.00026-8
https://doi.org/10.1186/1746-1596-8-48
https://doi.org/10.3233/978-1-61499-512-8-756
https://doi.org/10.7717/peerj.2741
https://doi.org/10.7717/peerj.2741
https://doi.org/10.15439/2015f263

	Abstract
	Keywords

	Introduction
	Related works
	Cluster split methods based on the boundary shape
	``Mouelhi''
	``Kong''

	Cluster split methods based on intensity
	Seeded watershed algorithm
	``Huang''
	H-minima

	DL approach to cluster splitting
	``Chen''
	U-net


	Materials and methods
	Proposed cluster split methods
	Datasets
	Dataset BBBC0004
	Dataset IISPV

	Evaluation

	Results
	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

