Journal of Machine Learning Research 10 (2009) 1387-1390 bm8ted 8/08; Revised 2/09; Published 7/09

Model Monitor (M?): Evaluating, Comparing, and Monitoring Models

Troy Raeder TRAEDER@CSEND.EDU
Nitesh V. Chawla NCHAWLA @CSEND.EDU
Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, IN 46556, USA

Editor: Soeren Sonenberg

Abstract

This paper presents Model Monitavif), a Java toolkit for robustly evaluating machine learning
algorithms in the presence of changing data distributidMfsprovides a simple and intuitive frame-
work in which users can evaluate classifiers under hypatedshifts in distribution and therefore
determine the best model (or models) for their data undemabeun of potential scenarios. Addi-
tionally, M? is fully integrated with the WEKA machine learning environmyeso that a variety of
commodity classifiers can be used if desired.

Keywords: machine learning, open-source software, distributioft, denario analysis

1. Introduction

Most work in machine learning implicitly assumestationary distribution, meaning that the pop-
ulation from which our data is drawn does not change over time. Howavember of real-world
applications present the challenge of a drift in distribution between traimdgesting (Quionero
et al., 2008). At the same time, the prevalent evaluation paradigm doeskadhta account the
effect of changing distributions on the performance of the models beimpaed. We posit that
it is important to effectively evaluate the generalization capacity of modelassitiers on a range
of distribution divergences. We propod#?, a Java toolkit that is designed to help researchers
and practitioners grapple with potential shifts in data distribution. The fundehissues that we
address in this toolkit are: a) which of several competing models is mosstrabuohanging distri-
butions? b) when, why, and how may the learned model fail? Specificalgrries the following
fundamental capabilities.

1. Detection of distribution shiftM? contains methods for isolating features whose distribution
has changed significantly between training and testing sets. This allowsllmwihg: a)
sensitivity/fragility analysis on features with respect to distributional shifisf b testing
set is available, determination of features that change significantly betiveeraining and
testing sets; and c) if an effective model is beginning to degrade in peaifure, problematic
features can be isolated and the model can be updated before its peifergeds worse.

2. Exploration of hypothetical scenarios: If a user is building a modelam data and expects
the distribution to change over time, he or she can inject these changes itg¢sttdata and

(©2009 Troy Raeder and Nitesh V. Chawla.

RAEDER AND CHAWLA

determine which classifiergtrained on current data) perform best on both the current and
hypothetical future distributions.

3. Empirical comparison of classifiers1?> can compare classifiers on performance across sev-
eral data sets and distribution shifts. This capability allows researchebjectioely evalu-
ate the robustness of the classifiers under distribution shift. This can thedselection of
a classifier that is more robust to distributional drifts. Various cross-attid schemes are
available, and we implement statistical tests, so that the user knows whethaysineed
differences are statistically significant.

M?2 is, to our knowledge, the only publicly-available software to tackle the impbptablem
of learning under changing distributions. At present, it is designed mainlo-class problems.
Most of the currently-implemented performance measures will compare tf@mpance of the
positive class (i.e., class 1) against the performance on all other classes

The current version is available ohoss. or g, and its distribution package contains a user’s
guide, developer’s guide, JavaDoc documentation, and examplesfofad #i¢xibility to the user
M? fully integrates with WEKA (Witten et al., 1999), but also provides suppaririterfacing with
arbitrary custom classifiers. Input data can either be in the WEKA formiieocomma-delimited
format of traditional UCI repository data sets (often called C4.5 style).

2. Implementation

M?2 is implemented in Java and is therefore fully cross-platform. It providesiagSyvaphical user
interface, and implements several different distribution shifts, methodsatdiaion such as 10-
fold, 5x2 CV, etc., performance measures, and statistical measures fmrtiparison of classifiers.
Each of these critical components has been validated by a series of awtamattests to insure
correct operation and protect against regression.

2.1 Performance Measures

In addition to the standard performance measukesufacy, AUROC,Precision, Recall, F;-Measure),
we have implemented other performance and loss measures commonly ubathfgrclassifica-
tion tasks, includingrier Score andNegative Cross Entropy. For any of the tasks described above,
M?2 supports all of the standard validation measures includioss-validation (5-by-2 and 10-fold
from the GUI, arbitrary configurations otherwise), splitting a data set iaiaitrg and testing, and
specifying an entirely separate file of test data.

2.2 Distribution Shifts

M? can introduce a number of different changes in distribution, includiisging at random, miss-
ing not at random, random noise, mean shift, variance change, and aprior probability shift. Specific
details on how each of the distribution shifts are implemented is available in tHe gsiele.

1. Model and classifier will be used inter-changeably in this paper.

1388

MODEL MONITOR

Freature: Average of all.
Bias: MAR

0.0 10.0 200 300 40.0 500
IR 2.6 2.6 2.6 2.6 3.0 3.0
C4.5 1.6 1.4 14 L4 1.2 1.2
Naive Bayes 1.8 2.0 2.0 2.0 18 1.8
Friedman test p-value 0.2465 0.1652 0.1652 0.1652 0.0149 0.0149

Bonferroni-Dunn CD: 1.4175

(a) Detecting distribution shift (b) Plot of classifier sensitivity t¢c) Comparison of classifiers across mul-
MAR bias. tiple data sets.

Figure 1: Types of data presented to the user.

2.3 Statistical Measures

The bulk of the implementation has to do with methods for detecting and evaluatimedfeice of
shifts in distribution. For detecting shifts in distribution, we provide bidttlinger distance and

the Kolmogorov-Smirnov (KS) test. Recent work by Cieslak and Chawla (2007) has shown that
systematic shifts in distribution tend to cause significant changes in Hellingandis The KS
test helps to distinguish between changes caused by random fluctuatiarhamges caused by
systematic bias.

For comparing the performance of multiple classifiers, we have implementeléritéman
test and theBonferroni-Dunn test. The average performance of several classifiers, across multiple
data sets is compared with the Friedman test, as suggested 5abEg006), and if a significant
difference in performance is found, the Bonferroni-Dunn test detarsnihe classifiers or sets of
classifiers between which the significant difference exists.

3. Functionality

Here we provide a quick overview of the toolkit's major functionality. Eachtiiee is described in
greater detail in the user’s guide.

3.1 Detecting Distribution Shift

When a user startd?, he or she can load any data set in either C4.5 names/data format or the WEKA
ARFF format. The user then specifies a test set (either by selecting hibta-oross-validation or
by choosing a separate test file).

At this point, the user can begin evaluating the training and test data setéffeirsdistribution.
Each attribute in the data set is automatically displayed, and selecting it will ge@distogram of
both distributions so that any differences can be visually inspected. AdalityoV? automatically
calculates the Hellinger distance for each feature between the trainingsirsgte If a feature’s
distribution fails the KS test (at ttee= 0.05 confidence level), the Hellinger distance for that feature
is highlighted. In this way, users can quickly locate features whose distribonay have changed.

A simple example appears in Figure 1(a).

1389

RAEDER AND CHAWLA

3.2 Exploration of Hypothetical Scenarios

After loading a data set, the user has the opportunity to introduce any ohbamwf distribution
shifts into the test data. Upon doing so, the histograms displayed on the sdhdee updated, and
new Hellinger distances and KS-test p-values are calculated. The arseéhen quickly evaluate
any classifier on both the original and new (“biased”) test sets to contpareesults. WEKA
classifiers can be chosen from a GUI chooser, whereas for getessifiers, a commandline must
be specified.

For more sophisticated sensitivity analysis, the user may specify a ramtjgtridfution shifts.
In this case, he or she provides a set of increasingly severe biaseten the tool evaluates the
classifier's performance under each one. The results are predentieel user both graphically
(plotting classifier preformance against severity of shift) and in tabulan,féo facilitate further
offline processing.

3.3 Empirical Comparison of Classifiers

Finally, users may test any one classifier against several others awuitiple data sets and distri-
bution shifts. For each specified distribution shift, the software will evaleath classifier on all
the data sets. It ranks the classifiers on each data set, calculates tgeaegik for each classifier,
and then performs the Friedman test for analysis of variance on the rgdaltile of ranks. If the
Friedman test determines (again at the 0.05 level) that there is a signifidan¢life between the
classifiers, we run the Bonferroni-Dunn test to determine exactly whiskifilers are different from
the specified reference classifier.

In addition to producing an annotated table of ranks containing the statisstahfiermation,
this step produces all the same output that the other portions of the prpgrdoce. Taken together,
these results provide a complete picture of the classifiers’ relative pefare in the relevant sce-
narios.

Acknowledgments

The authors would like to acknowledge Ryan Lichtenwalter, Dave Cieslad,Karsten Stein-
haeuser for helpful discussions on both implementation and user intesfaes.

References

D.A. Cieslak and N.V. Chawla. Detecting Fractures in Classifier Perforemd@®M 2007, pages
123-132, 2007.

J. Densar. Statistical Comparisons of Classifiers over Multiple Data SMER, 7:1-30, 2006.

J. Quiionero, M. Sugiama, A. Schwaighofer, and N. D. Lawrence, edilakaset Shiftin Machine
Learning. MIT Press, 2008.

I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S.J. Cunninghamk&V@&ractical Machine
Learning Tools and Techniques with Java Implementatid@ONIP/ANZIISANNES, 99:192—
196, 1999.

1390

