
Journal of Machine Learning Research 12 (2011) 2489-2492 Submitted 4/11; Revised 7/11; Published 8/11

LPmade: Link Prediction Made Easy

Ryan N. Lichtenwalter RLICHTEN@ND.EDU

Nitesh V. Chawla NCHAWLA @ND.EDU

Department of Computer Science
University of Notre Dame
Notre Dame, IN 46556, USA

Editor: Geoff Holmes

Abstract
LPmade is a complete cross-platform software solution for multi-core link prediction and related
tasks and analysis. Its first principal contribution is a scalable network library supporting high-
performance implementations of the most commonly employedunsupervised link prediction meth-
ods. Link prediction in longitudinal data requires a sophisticated and disciplined procedure for
correct results and fair evaluation, so the second principle contribution of LPmade is a sophisti-
cated GNUmake architecture that completely automates link prediction, prediction evaluation, and
network analysis. Finally, LPmade streamlines and automates the procedure for creating multivari-
ate supervised link prediction models with a version of WEKA modified to operate effectively on
extremely large data sets. With mere minutes of manual work,one may start with a raw stream of
records representing a network and progress through hundreds of steps to generate plots, gigabytes
or terabytes of output, and actionable or publishable results.
Keywords: link prediction, network analysis, multicore, GNU make, PropFlow, HPLP

1. Introduction

Link prediction is succinctly stated as the problem of identifying yet-unobserved links in a network.
This task is of increasing interest in both research and corporate contexts. Virtually every major
conference and journal in data mining or machine learning now has a significant network science
component, and these often include treatments of link prediction. Link prediction is of great use in
domains ranging from biology to corporate recruiting, but it is a difficult problem for which to de-
velop models because of extreme class imbalance, the longitudinal nature of the data, the difficulties
inherent in effective evaluation, and other issues raised by Lichtenwalter et al. (2010). Further, even
for standard prediction algorithms, researchers must often write new code or cobble together exist-
ing code fragments. The work flow to achieve predictions and fair evaluation is time-consuming,
challenging, and error-prone. LPmade is the first library to focus on link prediction specifically,
incorporating general and extensible forms of the predictors introducedby Liben-Nowell and Klein-
berg (2007). It also streamlines and parameterizes the complex link prediction work flow so that
researchers can start with source data and achieve predictions in minimal time.

There is no shortage of graph libraries: the Boost Graph Library, SNAP, igraph, JGraphT,
GraphCrunch, GOBLIN, and many others. Some offer extreme generality, some offer extreme
efficiency, some offer modeling utilities, and some have a dizzying array of algorithms. LPmade
is not just yet another graph library. Its software components are, by necessity, designed for high
performance, and it offers a wide array of graph analysis algorithms, but it is first and foremost

c©2011 Ryan N. Lichtenwalter and Nitesh V. Chawla.



L ICHTENWALTER AND CHAWLA

an extensive toolkit for performing link prediction to achieve both research and application goals.
Unlike other options, LPmade provides an organized collection of link prediction algorithms in a
build framework that is accessible to researchers across many disciplines. The software is available
athttp://mloss.org/software/view/307/.

2. The Software Package

The purpose of LPmade is to provide a workbench on which others may conduct link prediction
research and applications. For link prediction tasks in many large networkseven a restricted set of
predictions may involve millions, billions, or even trillions of lines of output. Each unsupervised
link prediction method, the supervised classification framework from Lichtenwalter et al. (2010),
and all the evaluation tools are optimized for just such quantities of data. Nonetheless, the entire
process of starting from raw source data and ending with predictions, evaluations, and plots involves
an extensive series of steps that may each take a long time. The software includes a carefully con-
structed dependency tracking system that minimizes overhead and simplifies themanagement of
correct procedures. Both the build system and the link prediction library are modular and extensi-
ble. Researchers can incorporate their own prediction methods into the library and the automation
framework just by writing a C++ class and changing amake variable.

2.1 Network Library

The LPmade network library is written entirely in scalable, high-performanceC/C++ that minimizes
memory consumption with a compact adjacency list format based on a vector-of-vectors to represent
edges and a translation vector to associate external vertex names to internal identifiers. The library
includes clearly written yet optimized versions of the most common asymptotically optimal network
analysis algorithms for sampling, finding connected components, computing centrality measures,
and calculating useful statistics.

LPmade specializes in link prediction by including commonly used unsupervisedlink predic-
tion methods: Adamic/Adar, common neighbors, Jaccard’s coefficient, Katz, preferential attach-
ment, PropFlow, rooted PageRank, SimRank, and weighted rooted PageRank. The library also has
some simpler methods useful in producing feature vectors for supervisedlearners: clustering coef-
ficient, geodesic distance, degree, PageRank, volume or gregariousness, mutuality, path count, and
shortest path count. These methods may be selectively incorporated as features into the supervised
framework by Lichtenwalter et al. (2010).

Several graph libraries such as the Boost Graph Library are brilliantly designed for maximum
generality and flexibility with template parameters and complex inheritance models. One minor
drawback to such libraries is that the code is complex to read and modify. Thecode base for this
library takes a narrower approach by offering fewer mechanisms for generality, but as a result it has
a much shallower learning curve.

2.2 GNUmake Script and Supporting Tools

Although it can be used and extended as such, LPmade is not just a libraryof C++ code for network
analysis and link prediction. It is additionally an extensive set of scripts designed for sophisti-
cated automation and dependency resolution. These scripts are all incorporated into a set of 2
co-dependent Makefiles: task-specific and common. Each new raw dataset requires its own task-

2490



LPMADE

Raw Source 
Data

Event Data 
Streams/

Edge Lists

User 
Defined

Networks

Statistics

Generic
Growth 

Visualizations

Unsupervised 
Link 

Predictions
Evaluations

Data Sets

Supervised 
Link 

Predictions

Comparative 
Plots

Figure 1: A simplified depiction of some of the build paths in the automation script. Only the first
transition is user-defined. Each step involves multiple invocations of many programs to
properly assemble data and perform fair evaluation.

specific Makefile, which generally requires less than 20 lines of user code. This Makefile is where
users specify the manner in which raw source data is converted to the initial data stream required by
subsequent steps in the pipeline. It is also where rules from the common Makefile can be overridden
for task-specific reasons. The common Makefile, Makefile.common, includes all the general rules
that apply to any network analysis or link prediction task once the task-specific Makefile is written
to enable proper handling of raw input. The common Makefile script is designed with advanced
template features that allowmake to modify original Makefile rules in accordance with user require-
ments. Logical tasks are aggressively provided with their own rules so that the multi-core features
of GNU make are of optimal benefit. In general, users need not be familiar with writing Makefiles.
The important options for the behavior of the automatic build system are presented at the top of the
common Makefile along with documentation. For instance, to predict within the 2nd and 3rd degree
neighborhoods, setNEIGHBORHOOD := 2 3.

Figure 1 illustrates some simplified build paths, and the sample calls below demonstrate several
targets with their corresponding actions:

make -j 28 sm # using 28 cores, build a data stream from source, generate required networks, run predictors, and perform evaluations
make -j 8 stats # using 8 cores, compute several network statistics on the complete network represented by the entire data set
make classify # construct data sets then use parameters specified in Makefile to train, test, and evaluate
make -j 6 growth # using 6 cores, generate growth information and plots to describe network saturation

Parallelism in these cases is all coarse-grained. Each rule in the Makefile script with no out-
standing prerequisites is handled by a separate process to make use of additional cores.

For many large networks, link prediction and supporting analysis yields very large output files.
When this prolific output is further combined into data sets, both the I/O capacityand bandwidth
requirements may be problematic. To combat this, most steps in the work flow create, accept, and
outputgzip-compressed results. Especially on multi-core systems, this results in a hefty decrease in
I/O capacity and bandwidth requirements with a minimal impact on performance. In most cases, the
output fromgunzip is produced faster than the consuming process can accept it. Where necessary,
named pipes are used to ameliorate potentially large temporary storage requirements.

2.3 WEKA Modifications

LPmade includes a modified version of WEKA 3.5.8 (Witten and Frank, 2005).It is not meant for
direct user invocation. Instead the build system uses WEKA classifier implementations to construct

2491



L ICHTENWALTER AND CHAWLA

supervised models for link prediction. Unmodified, WEKA has several limitations that make even
its command-line mode problematic for operation on enormous link prediction testingsets. These
include processing overhead for unwanted computations, Java string overflow and potential thrash-
ing from in-memory result concatenation, and inability to handle compressed C4.5 format input.
Alternatives such as MOA solve some but not all of these problems, and WEKA internal classes
such as AbstractOutput are unavailable at the command line. We have chosen to modify the WEKA
command-line evaluation path to compute only the necessary information and to output directly to
standard output for LPmade scripted downstream processing. We haveintegrated support for pro-
cessinggzip-compressed C4.5 input and use this support in the build system to take advantage of
significant space savings on disk.

3. Documentation and Requirements

LPmade comes withman pages and a PDF user manual that describes all aspects of the software,
most notably describing the setup process, how to use or extend the raw network library, and how to
leverage the existing build system to complete many complex steps with short commands. The net-
work library includes an easily extended testing architecture for testing andverification of individual
binaries.

The C++ library is written in platform-independent C++ code using only STL extensions. The
library may thus be built on any architecture and any operating system that provides a C++ compiler.
An included set of high-speed evaluation tools is written in C99 and builds on any system with
such a compiler. The bundled distribution of WEKA is cross-platform but requires version 1.5
or higher of the JRE. The automated build system requires GNUmake. The common Makefile
additionally employs many standard tools such ascut, paste, sed, awk, perl, sort, gzip, and
bundledgnuplot 4.4.3.

Acknowledgments

Research was sponsored in part by the Army Research Laboratory under Cooperative Agreement
Number W911NF-09-2-0053 and in part by the National Science Foundation Grant BCS-0826958.

References

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.Journal
of the American Society for Inf. Science and Tech., 58(7):1019–1031, 2007.

Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New perspectives and methods in
link prediction. InProc. of the 16th ACM SIGKDD Intl. Conf. on Knowledge Disc. and Data
Mining, pages 243–252, 2010.

Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco, California, USA, second edition, 2005.

2492


