Journal of Machine Learning Research 16 (2015) 2853-2858 Submitted 9/14; Revised 2/15; Published 12/15

CEKA: A Tool for Mining the Wisdom of Crowds

Jing Zhang JZHANG@NJUST.EDU.CN
School of Computer Science and Information Engineering

Hefei University of Technology (HFUT), Hefei 230009, China

Department of Software Engineering, School of Computer Science and Engineering

Nanging University of Science and Technology (NJUST), Nanjing 210094, China

Victor S. Sheng SSHENGQ@QUCA.EDU
Bryce A. Nicholson BNICHOLSON1210@HOTMAIL.COM
Department of Computer Science, University of Central Arkansas, Conway, AR 72035, USA

Xindong Wu XWUQUVM.EDU
School of Computer Science and Information Engineering, HFUT, Hefei 230009, China
Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Editor: Mark Reid

Abstract

CEKA is a software package for developers and researchers to mine the wisdom of crowds. It
makes the entire knowledge discovery procedure much easier, including analyzing qualities
of workers, simulating labeling behaviors, inferring true class labels of instances, filtering
and correcting mislabeled instances (noise), building learning models and evaluating them.
It integrates a set of state-of-the-art inference algorithms, a set of general noise handling
algorithms, and abundant functions for model training and evaluation. CEKA is written in
Java with core classes being compatible with the well-known machine learning tool WEKA
which makes the utilization of the functions in WEKA much easier.

Keywords: crowdsourcing, learning from crowds, multiple noisy labeling, inference, noise
handling, repeated labeling simulation

1. Introduction

The emergence of crowdsourcing (Howe, 2006) has changed the way of knowledge acqui-
sition. It has already attracted vast attentions of the machine learning and data mining
research community in the past several years. Researchers show great interests in utilizing
crowdsourcing as a new approach to acquire class labels of objects from common users,
which costs much less than the traditional way—annotating by domain experts. In order to
improve the labeling quality, an object usually obtains multiple labels from different non-
expert annotators. Then, inference algorithms will be introduced to estimate the ground
truths of these objects. Many inference algorithms have been proposed in recent years.
Besides, building learning models from the inferred crowdsourced data is another research
issue with great challenges, which aims at lifting the quality of a learned model to the level
that can be achieved by training with the data labeled by domain experts.

To facilitate the research on mining the wisdom of crowds, we develop a novel software
package named Crowd Environment and its Knowledge Analysis (CEKA). The main contri-

(©2015 Jing Zhang, Victor S. Sheng, Bryce A. Nicholson, and Xindong Wu.

ZHANG, SHENG, NICHOLSON AND WU

bution of CEKA lies on three aspects. (1) It provides comprehensive functions, which not
only includes a great number of ground truth inference algorithms with a uniform easy-to-use
programming interface but also includes a lot of well designed functions for the management
of crowdsourced data. (2) It is seamlessly compatible with the famous machine learning tool
WEKA (Hall et al., 2009), which facilitates the combination of the previous inference and
the subsequent model learning procedures. (3) It is written in Java and completely open
source. Therefore, many new ideas and methods, such as noise correction for crowdsourcing,
are easily integrated. The project CEKA is available at: http://ceka.sourceforge.net/.

2. Design Principles and System Architecture

The design of CEKA follows three basic guidelines. (1) Preferring integration of existing
algorithms rather than implementing them. Unless the original implementations of algo-
rithms are not released, we always try to integrate the original versions rather than re-
implementing them. The work that we have done is to unify the input/output file formats
and wrap the different algorithms into some newly designed java classes with a uniform
easy-to-use member functions. (2) Seamlessly compatible with WEKA. When input files
that contain crowdsourced data are loaded into the memory and form a Dataset object,
this object Dataset and all Examples inside can directly cooperate (e.g. training a model
and conducting a cross-validation) with the related classes in WEKA. (3) Eztendibility.
Because machine learning in crowdsourcing is an emerging research domain, many topics
such as multi-label tasks in crowdsourcing have not been touched yet. In order to integrate
future research easily, when designing the core components of CEKA, we attempt to make
the class structures as extendable as possible.

Application Layer

‘ Analyzer ‘ ‘ Simulator ‘ ‘ Explorer ‘ ‘ Utilities
API%
Inference and Learning Layer
Ground Truth Inference Noise Handling Algorithms Learning for Crowdsourcing
Algorithms Noise Filteri
orsettenng Class Active
MV, GLAD, DS, Wrappers for Learning .
RY, ZC, PLAT ... - - Learning with | | Algorithms implemented (also by
Noise Correction WEKA SQUARE and BATC)
Data implemented (only by
Data Layer CEKA)
‘ Data Converter, Laoder and Saver ‘ —
= = = to implement in the
‘ ‘ response file ‘ ‘ gold file ‘ WEKA arff(x) file ‘4- future

Figure 1: The architecture of CEKA

Figure 1 illustrates the hierarchical architecture of CEKA, in which we also compare it
with two other tools for crowdsourcing SQUARE (Sheshadri and Lease, 2013) and BATC
(Nguyen et al., 2013). Generally, SQUARE and BATC only provide some inference algo-
rithms and several simple analysis functions. By contrast, CEKA conceives a more ambi-
tious blueprint. It attempts to support the entire knowledge discovery procedure including
analysis, inference and model learning. In the data layer, CEKA is able to read an arff(x)
file defined by WEKA, which contains features of instances for subsequent model building.
In the inference and learning layer, it provides a large number of inference algorithms. Our

2854

CEKA: A TooL FOR MINING THE WISDOM OF CROWDS

on-going studies find that mislabeled instances after inference can be effectively detected
and corrected, if a noise (mislabeled instance) handling algorithm can take advantage of the
information generated in the previous inference procedure. Thus, CEKA provides a batch
of noise handling algorithms. The core classes in this layer are derived from related classes
in WEKA. In the application layer, CEKA provides a lot of utilities such as calculating
performance evaluation metrics (i.e., accuracy, recall, precision, F source, AUC, M-AUC),
manipulating data (i.e., shuffling, splitting and combining data), etc.

Algo. CEKA SQUARE BATC |Comments Algo. CEKA SQUARE BATC |Comments
MV ° ° ° CF °

DS ° ° ° IPF °

GLAD ° ° e |transplanted to Windows MPF °

KOS ° ° VF °

RY ° ° e |by SQUARE PLC °

ZenCrowd ° ° by SQUARE STC °

PLAT ° for biased binary labeling cCc ° unpublished
AWMV ° unpublished

GTIC ° unpublished

Table 1: Algorithms in CEKA compared with SQUARE and BATC

3. Algorithms

For the anonymous nature of crowdsourcing, CEKA currently only focuses on agnostic in-
ference algorithms, which are independent of any other prior knowledge besides annotations
assigned by non-experts. CEKA includes several novel inference algorithms proposed by
the authors such as ground truth inference using clustering (GTIC) for multi-class label-
ing, adaptive weighted majority Voting (AWMYV) for biased binary labeling as well as the
well-known algorithms majority voting (MV), Dawid & Skene’s algorithm (DS) (Dawid and
Skene, 1979), GLAD (Whitehill et al., 2009), KOS (Karger et al., 2011), RY (Raykar et al.,
2010), ZenCrowd (Demartini et al., 2012), and PLAT (Zhang et al., 2015). To embody
our thought of introducing noise handling to improve the data quality of crowdsourcing,
we have proposed a novel framework and an algorithm adaptive voting noise correction
(AVNC) for crowdsourcing. In this framework, CEKA also includes a batch of noise fil-
tering and correction algorithms, such as classification filtering (CF) (Gamberger et al.,
1999), iterative partition filtering (IPF) (Khoshgoftaar and Rebours, 2007), multiple parti-
tion filtering (MPF) (Khoshgoftaar and Rebours, 2007), voting filtering (VF) (Brodley and
Friedl, 1999), polishing label correction (PLC) (Teng, 1999), self-training correction (STC)
(Triguero et al., 2014) and clustering correction (CC). Table 1 lists all algorithms in its
current version (v1.0), comparing with SQUARE (Sheshadri and Lease, 2013) and BATC
(Nguyen et al., 2013). Although our proposed algorithms GTIC, AWMYV, and CC are under
review, all of them still can be accessed in the source code.

4. Usage Example

CEKA can be easily deployed in both Windows and Linux systems. We have transplanted
some algorithms such as GLAD from Linux to Windows. Figure 2 demonstrates a simple ex-

2855

ZHANG, SHENG, NICHOLSON AND WU

periment including the ground truth inference, noise correction and performance evaluation.
In this sample code, like DS, all inference algorithms provide a uniform interface function
doInference, which assigns every instance an integrated label. The class Dataset is com-
pletely compatible with the class Instances in WEKA, which can be directly accepted by a
WEKA classifier as its parameter to train a model. Simply as the code shows, the statistical
information of the performance will be obtained when the class PerformanceStatistic is
applied to a Dataset object with the ground truth provided.

String respPath=D:/adult.response.txt; // labels obtained from crowd
String arffPath=D:/adult.arffx; /7 ground truth and features
Dataset data = loadFile(respPath, null, arffPath);

// infer the ground truth by Dawid & Skene’s algorithm

DawidSkene dsAlgo = new DawidSkene(50);
dsAlgo.dolnference(data);

// noise filtering with the CF algorithm

Classifier [] classifiers = new Classifier[1];

Classifiers[0] = new SMOQ); // SMO Classifier in WEKA
ClassificationFilter noiseFilter = new ClassificationFilter(10);
Dataset[] subData = null; // cleansed and noise data sets

cf.FilterNoise(data, classifiers[0]); // conduct noise filtering

subData[0] = noiseFilter. getCleansedDataset();

subData[1] = noiseFilter. getNoiseDataset();

// noise correction with STC algorithm

SelfTrainCorrection stc = new SelfTrainCorrection(subData[0], subData[1], 1.0);
stc.correction(classifiers[0]); // correct mislabeled data

// combining two data sets and then evaluate performance

DatasetManipulator.addAl lExamples(subData[0], subData[1]);

PerformanceStatistic perfStat = new PerformanceStatistic();
perfStat.stat(subData[0]);

Figure 2: A sample code for a basic usage

5. Conclusion and Future Work

CEKA is an easy-to-use open-source package for inference and machine learning tasks in
crowdsourcing. The current version of CEKA includes a large number of ground truth
inference algorithms, noise handling algorithms and useful functions supporting different
learning tasks. That CEKA is designed to cooperate with WEKA definitely facilitates and
accelerates the research progress in this field. CEKA is still growing. The future work
includes introducing crowdsourcing-specific active learning strategies, developing several
GUI tools (analyzer, simulator, and explorer) as well as integrating more inference, noise
handling and learning algorithms proposed either by the authors or other researchers.

Acknowledgments

This research has been supported by the Program for Changjiang Scholars and Innovative
Research Team in University (PCSIRT) of the Ministry of Education, China, under grant
IRT13059, the National 973 Program of China under grant 2013CB329604, the National

2856

CEKA: A TooL FOR MINING THE WISDOM OF CROWDS

Natural Science Foundation of China under grant 61229301, and the US National Science
Foundation under grant 11S-1115417.

References

Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of
Artificial Intelligence Research, 11:131-161, 1999.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Applied Statistics, pages 20—28, 1979.

Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zencrowd:
leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity link-
ing. In World Wide Web, pages 469-478. ACM, 2012.

Dragan Gamberger, Nada Lavrac, and Ciril Groselj. Experiments with noise filtering in a
medical domain. In ICML, pages 143-151, 1999.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The weka data mining software: an update. ACM SIGKDD Ezxplorations
Newsletter, 11(1):10-18, 20009.

Jeff Howe. The rise of crowdsourcing. Wired Magazine, 14(6):1-4, 2006.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowd-
sourcing systems. In NIPS, pages 1953-1961, 2011.

Taghi M Khoshgoftaar and Pierre Rebours. Improving software quality prediction by noise
filtering techniques. Journal of Computer Science and Technology, 22(3):387-396, 2007.

Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Ngoc Tran Lam, and Karl Aberer. Batc:
a benchmark for aggregation techniques in crowdsourcing. In ACM SIGIR, pages 1079—
1080. ACM, 2013.

Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles Florin,
Luca Bogoni, and Linda Moy. Learning from crowds. Journal of Machine Learning
Research, 11:1297-1322, 2010.

Aashish Sheshadri and Matthew Lease. Square:. In The First AAAI Conference on Human
Computation and Crowdsourcing, pages 156-164, 2013.

Choh-Man Teng. Correcting noisy data. In ICML, pages 239-248, 1999.

Isaac Triguero, José A Sdez, Julidan Luengo, Salvador Garcia, and Francisco Herrera. On
the characterization of noise filters for self-training semi-supervised in nearest neighbor
classification. Neurocomputing, 132:30-41, 2014.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L. Ruvolo.
Whose vote should count more: Optimal integration of labels from labelers of unknown
expertise. In NIPS, pages 2035-2043, 2009.

2857

ZHANG, SHENG, NICHOLSON AND WU

Jing Zhang, Xindong Wu, and Victor S Sheng. Imbalanced multiple noisy labeling. IEEE
Transaction on Kownledge and Data Engineering, 27(2):489-503, 2015.

2858

	Introduction
	Design Principles and System Architecture
	Algorithms
	Usage Example
	Conclusion and Future Work

