Journal of Machine Learning Research 18 (2018) 1-6 Submitted 2/18; Revised 6/18; Published 8/18

OpenEnsembles: A Python Resource for Ensemble

Clustering
Tom Ronan TOM_RONAN@QHOTMAIL.COM
Shawn Anastasio SHAWN.ANASTASIOQWUSTL.EDU
Zhijie Qi QIZHIJIEQWUSTL.EDU
Roman Sloutsky SLOUTSKY@WUSTL.EDU
Kristen M. Naegle KNAEGLEQWUSTL.EDU

Department of Biomedical Engineering and the Center for Biological Systems Engineering
Washington University in St. Louis
St. Louis, MO 63122, USA

Pedro Henrique S. Vieira Tavares PEDROHSVT@QGMAIL.COM
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

Editor: Antti Honkela

Abstract

In this paper we introduce OpenEnsembles, a Python toolkit for performing and analyzing
ensemble clustering. Ensemble clustering is the process of creating many clustering solu-
tions for a given dataset and utilizing the relationships observed across the ensemble to
identify final solutions, which are more robust, stable or better than the individual solutions
within the ensemble. The OpenEnsembles library provides a unified interface for applying
transformations to data, clustering data, visualizing individual clustering solutions, visual-
izing and finishing the ensemble, and calculating validation metrics for a clustering solution
for any given partitioning of the data. We have documented examples of using OpenEnsem-
bles to create, analyze, and visualize a number of different types of ensemble approaches
on toy and example datasets. OpenEnsembles is released under the GNU General Public
License version 3, can be installed via Conda or the Python Package Index (pip), and is
available at https://github.com/NaegleLab/OpenEnsembles.

Keywords: Unsupervised Learning, Ensembles, Clustering, Ensemble Clustering, Fin-
ishing Techniques

1. Introduction

Clustering, a type of unsupervised learning, has been instrumental in a large number of
fields for reducing data dimensionality, identifying important features, and uncovering the
underlying structure of relationships that give rise to the sampled data under consideration.
However, a single clustering result may represent a spurious solution (such as when an algo-
rithm is stuck in a local minima) or instead represent just one of many possible structures
within of complex data (such as when partitioning of an image identifies underlying shapes
but fails to find differences in lighting). Ensemble clustering can be used to overcome the
limitations of a single clustering solution by clustering repeatedly, each time making some

(©2018 Tom Ronan, Shawn Anastasio, Zhijie Qi, Pedro Henrique S. Vieira Tavares, Roman Sloutsky, and Kristen M.
Naegle.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/18-100.html.

https://github.com/NaegleLab/OpenEnsembles
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/18-100.html

RONAN, ANASTASIO, QI, TAVARES, SLOUTSKY, AND NAEGLE

perturbation to either the data or the approach to clustering. The ensemble of clustering
results provides more information about the structure of the underlying data, and how
likely any particular grouping of objects is across the ensemble. There are several aspects
to performing ensemble clustering, which include: (i) determining and implementing the
appropriate perturbations, (ii) deriving a single clustering result that is representative of
all the clustering solutions in the ensemble (finishing), and (iii) assessing the results of the
finished ensemble, in comparison to the results of an individual solution, to understand the
structure and quality of solutions (validation metrics). Our previous review on clustering
in biological data covers the types of ensemble clustering and its applications (Ronan et al.,
2016) in detail, where Figure 1 contains a table of example ensemble approaches and their
motivations. Here, we describe the open source Python toolkit for easily implementing,
visualizing, and analyzing ensemble clustering.

2. Architecture

There are three main OpenEnsembles classes that pair with the main aspects of ensemble
clustering: data (storing and manipulating data), cluster (clustering data), and validation
(assessing the degree of success of a clustering solution according to an objective such as
compactness or connectedness). A common feature across these classes is that they are
container objects for housing data, either data matrices (data class), clustering solutions
(cluster class), or validation metric results of a clustering solution (validation class). Ad-
ditionally, each class has a primary function (to transform, cluster, or calculate), where
the classes create a common interface for interacting with a variety of transformations,
clustering algorithms, and validation metrics. Interacting with any specific transformation
of data, retrieving a specific clustering solution or validation metric is done by using the
user-defined dictionary key that describes the specific instance. Here we will demonstrate
many of the OpenEnsembles features by recreating the first publication of the use of ensem-
ble clustering — Ana Fred’s use of ensembles to form a final solution through the majority
vote across many non-deterministic k-means solutions (Fred, 2001). OpenEnsembles is built
using many open source Python projects, including: scikit-learn (Pedregosa et al., 2012),
Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), NetworkX (Hagberg et al., 2008),
and NumPy (Walt et al., 2011).

Data

Data is instantiated using a pandas DataFrame object, therefore all the flexibility of load-
ing data from different file formats can be used to coerce the data of interest into an
OpenEnsembles data object and metadata can be retained for future analysis. Once in-
stantiated, data can be transformed or used as the basis for clustering or plotting. The data
container class keeps track of new transformations of the ‘parent’ data with user-defined
keys. Figure 1 shows the instantiation of an OpenEnsembles data object with 200 samples
making two half-moon structures. Available transformations currently include: log, princi-
pal component analysis (PCA), range scaling, z-score, and internal normalization (such as
normalizing to a specific data feature).

OPENENSEMBLES: ENSEMBLE CLUSTERING

import pandas as pd
from sklearn import datasets
import openensembles as oe

K-means Solution (K=2)

0.8

#Set up a dataset and put in pandas DataFrame. 0.6

x, y = datasets.make_moons (=200, =True, =0.02, =None) 0.4
df = pd.DataFrame(x) 0.2
#instantiate the oe data object 00 ‘
dataObj = oe.data(df, [1,2])

#instantiate an oe clustering object 02 ‘
c = oe.cluster(dataObj) —0.4
c_MV_arr = [] -0.6

val_arr = []
for i in range(0,39):

-0.8

-15 -1.0 -0.5 00 05 10 15
add a new clustering solution, with a unique name

name = 'kmeans_' + str(i) Maiority Ve .2 Juti
c.cluster('parent', 'kmeans', name, K=16, init = 'random', n_init = 1) ajorlty ote: 2 solutions
calculate a new majority vote solution, where c has one more solution on each iteration 0.8
c_MV_arr.append(c.finish majority_ vote(threshold=0.5)) 0.6 o \
#calculate the determinant ratio metric for each majority vote solution 0.4
v = oe.validation(dataObj, c_MV_arr[i]) 02 []
val_name = v.calculate('det_ratio', 'majority vote', 'parent')
val_arr.append(v.validation[val_name]) 00 §

#calculate the co-occurrence matrix -0.2

coMat = c.co_occurrence_matrix() —0.4

Co-Occurrence Matrix (40 Solutions)

-0.6 ‘ é

-0.8

Validation Metric

-15 -1.0 =05 0.0 05 10 15

Majority Vote: 10 solutions

o
5000 o8
0.6
0.4
01 T T T T T T T T
0 5 10 15 20 25 30 35 40 “‘ t ’

0.0

Majority Vote identified K

-0.2

-0.4

-0.6

-0.8

-15 -1.0 -0.5 0.0 05 1.0 15

——————————————————— | Majority Vote: 25 solutions
0 5 10 15 20 25 30 35 40

Number of solutions in Majority Vote 0.8
0.00 0.25 0.50 0.75 1.00 0.6
0.4
Class Perturbation Goal of Perturbation . \

Data Noise (resample data) Identify relationships that are robust to noise in data 0.0
Data Projections into lower dimensions Avoid the curse of high dimensionality in clustering results |-o2
Cluster K Identify optimum number of clusters 04
Cluster Starting Point For non-deterministic algorithms: identify global minimima oe
Cluster Parameters of Clustering Explore a range of clustering relationships ot 15 10 05 0o o5 1o 15

Figure 1: Code and outputs of OpenEnsembles. An ensemble approach (Fred, 2001) to find stable
and optimal solutions from the combination of many solutions of the non-deterministic k-means
algorithm with majority vote. Code for plotting figure panels is not included (for brevity). K-
means can only find clusters that are spheroidally shaped, but as an ensemble, it can identify
alternate structures. DRI stands for determinant ratio index — a measure of connectedness in
clusters

Cluster

The cluster class is instantiated based on an OpenEnsembles data object, on which all
clustering will be performed. OpenEnsembles provides a common interface to clustering,
currently providing an interface to all available scikit-learn clustering algorithms. For ex-
ample, code line 16 (Figure 1) shows how OpenEnsembles is used to call k-means clustering,
with K=16 clusters, on the ‘parent’ data source. Any algorithmic parameters desired are
then passed as a dictionary of variable parameters. For example, here, in order to reproduce
Ana Fred’s original study, we have to overwrite the default arguments of scikit-learn’s k-
means algorithm, which has ensemble clustering baked into it to lend increased determinism.
By looping around OpenEnsembles clustering with random initializations, we are producing

RONAN, ANASTASIO, QI, TAVARES, SLOUTSKY, AND NAEGLE

a new clustering solution each time, which is added to the clustering object container and
is accessed using the unique key (here it is k-means_(number)).

Often, one wants to produce a final partition derived from consensus across the ensemble
of solutions — i.e. ‘finish’ the ensemble by building a final, single partitioning of the data.
In the current version of OpenEnsembles, we have implemented majority vote as proposed
by Ana Fred (Fred, 2001) and mixture models as proposed by Topchy et al. (Topchy et al.,
2005). Additionally, there are two finishing techniques that operate on the co-occurrence
matrix, as we have proposed previously (Schaberg et al., 2017) (Naegle et al., 2012). An
entry in the co-occurrence matrix is the number of times a pair of objects cluster across
the ensemble. One method treats the co-occurrence matrix as a similarity matrix and
uses linkage clustering to identify clusters (Figure 1). The second method treats the co-
occurrence matrix as an adjacency matrix and then finds complete subgraphs within the
thresholded co-occurrence matrix via k-cliques and percolation Palla et al. (2005). Final
partitions are returned as clustering objects and can be plotted and evaluated like any other
clustering solution (Figure 1).

Validation

Quantitative evaluation of how well data is clustered, according to a particular objective
function, is called a validation metric. Different validation metrics prioritize different aspects
of clustering outcomes such as connectivity, compactness, or separation. We have written a
Python package of 28 validation metrics, covering the breadth of the clValid R package of
validation metrics (Brock et al., 2008). These validation metrics are available for direct use,
or through the OpenEnsembles validation class, which wraps calls to validation metrics for
a unified interface with other OpenEnsembles classes. As one can see from the determinant
ratio index plot in Figure 1, as the number of clustering solutions in the ensemble increases,
the solution both (a) stabilizes and (b) correctly identifies the number of inherent, connected
clusters within the data.

Conclusion

Implementation and analysis of ensemble clustering may now be done within in succinct
and readable Python code (here, roughly 20 lines of code to reproduce an entire paper of
results, Figure 1). Beyond the main functionality of OpenEnsembles, to perform, finish, and
validate clustering solutions on data, OpenEnsembles also contains features for calculating
co-occurrence, mutual information (overlap/similarity between clustering solutions), and
plotting of data and matrices generated. Future work will ideally incorporate expanded
selections of algorithms and fuzzy partitioning of data, which is especially amenable to
ensemble clustering.

Acknowledgments

We wish to thank the developers of the open source Python scientific and machine learning
community. Pedro Henrique S. Vieira Tavares was supported by the Coordination for the

OPENENSEMBLES: ENSEMBLE CLUSTERING

Improvement of Higher Education Personnel (CAPES) and the Brazil Scientific Mobility
Program.

RONAN, ANASTASIO, QI, TAVARES, SLOUTSKY, AND NAEGLE

References

Guy Brock, Vasyl Pihur, Susmita Datta, and Somnath Datta. clValid : An R Package for
Cluster Validation. J. Stat. Softw., 25(4):1-22, 2008.

Ana Fred. Finding consistent clusters in data partitions. In Josef Kittler and Fabio Roli,
editors, Mult. Classif. Syst., pages 309-318. Springer, Incs 2096 edition, 2001.

Aric A Hagberg, Los Alamos National, and Los Alamos. Exploring Network Structure,
Dynamics, and Function using NetworkX. In Proc. 7th Python Sci. Conf. (SciPy 2008),
number SciPy 2008, pages 11-15, 2008.

John D. Hunter. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng., (9):90-95,
2007.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proc. 9th Python Sci. Conf., pages 51-56, 2010.

Kristen M Naegle, Forest M White, Douglas A Lauffenburger, and Michael B Yaffe. Robust
co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interac-
tions. Mol. Biosyst., 8(10):2771-2782, Aug 2012.

Gergely Palla, Imre Derényi, Illés Farkas, and Tama&s Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435(7043):
814-8, 2005.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Mastthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res., 12:2825-2830, 2012.

Tom Ronan, Zhijie Qi, and Kristen M. Naegle. Avoiding common pitfalls when clustering
biological data. Sci. Signal, 9(432):re6, 2016.

Katherine E. Schaberg, Venktesh S Shirure, Elizabeth A Worley, Steven C George, and
Kristen M Naegle. Ensemble clustering of phosphoproteomic data identifies differences in

protein interactions and cell-cell junction integrity of HER2-overexpressing cells. Integr.
Biol., 9:539-547, 2017.

Alexander Topchy, Anil K Jain, and William Punch. Clustering ensembles: models of
consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell., 27(12):1866—
81, Dec 2005.

S. V. D. Walt, S. C. Colbert, and G. Varoquaux. The NumPy Array: A structure for
efficient numerical computation. Comput. Sci. Eng., 13(2):22-30, 2011.

	Introduction
	Architecture

