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Abstract

In this paper, we consider the `q−regularized kernel regression with 0 < q ≤ 1. In form,
the algorithm minimizes a least-square loss functional adding a coefficient-based `q−penalty
term over a linear span of features generated by a kernel function. We study the asymptotic
behavior of the algorithm under the framework of learning theory. The contribution of this
paper is two-fold. First, we derive a tight bound on the `2−empirical covering numbers of
the related function space involved in the error analysis. Based on this result, we obtain
the convergence rates for the `1−regularized kernel regression which is the best so far.
Second, for the case 0 < q < 1, we show that the regularization parameter plays a role
as a trade-off between sparsity and convergence rates. Under some mild conditions, the
fraction of non-zero coefficients in a local minimizer of the algorithm will tend to 0 at a
polynomial decay rate when the sample size m becomes large. As the concerned algorithm
is non-convex, we also discuss how to generate a minimizing sequence iteratively, which can
help us to search a local minimizer around any initial point.

Keywords: Learning Theory, Kernel Regression, Coefficient-based `q-regularization (0 <
q ≤ 1), Sparsity, `2-empirical Covering Number

1. Introduction and Main Results

The regression problem aims at estimating the function relations from random samples and
occurs in various statistical inference applications. An output estimator of regression algo-
rithms is usually expressed as a linear combination of features, i.e., a collection of candidate
functions. As an important issue in learning theory and methodologies, sparsity focuses
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on studying the sparse representations of such linear combinations resulted from the al-
gorithms. It is widely known that an ideal way to obtain the sparsest representations is
to penalize the combinatorial coefficients by the `0−norm. However, the algorithms based
on `0−norm often lead to an NP-hard discrete optimization problem (see e.g., Natarajan
(1995)), which motives the researchers to consider the `q−norm (0 < q ≤ 1) as the sub-
stitution. In particular, the `1−norm constrained or penalized algorithms have achieved
great success in a wide range of areas from signal recovery (Candès et al. (2006)) to variable
selection in statistics (Tibshirani (1996)). Recently, several theoretical and experimental
results (see e.g., Candès et al. (2008); Chartrand (2007); Fan and Li (2001); Saad and Ö.
Yılmaz (2010); Rakotomamonjy et al. (2011); Xu et al. (2012)) suggest that `q−norm with
q ∈ (0, 1) yields sparser solutions than the `1−norm to produce accurate estimation. Due
to the intensive study on compressed sensing (see e.g., Donoho (2006)), the algorithms in-
volving the `q−norm (0 < q ≤ 1) have drawn much attention in the last few years and
been used for various applications, including image denoising, medical reconstruction and
database updating.

In this paper, we focus on the `q−regularized kernel regression. In form, the algorithms
minimize a least-square loss functional adding a coefficient-based `q−penalty term over
a linear span of features generated by a kernel function. We shall establish a rigorous
mathematical analysis on the asymptotic behavior of the algorithm under the framework
of learning theory.

Let X be a compact subset of Rd and Y ⊂ R, ρ be a Borel probability distribution on
Z = X × Y . For f : X → Y and (x, y) ∈ Z, the least-square loss (f(x)− y)2 gives the error
with f as a model for the process producing y from x. Then the resulting target function
is called regression function and satisfies

fρ = arg min

{∫
Z

(f(x)− y)2dρ

∣∣∣∣f : X → Y,measurable

}
.

From Proposition 1.8 in Cucker and Zhou (2007), the regression function can be explicitly
given by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X, (1)

where ρ(·|x) is the conditional probability measure induced by ρ at x. In the supervised
learning framework, ρ is unknown and one estimates fρ based on a set of observations
z = {(xi, yi)}mi=1 ∈ Zm which is assumed to be drawn independently according to ρ. We
additionally suppose that ρ(·|x) is supported on [−M,M ], for some M ≥ 1 and each x ∈ X.
This uniform boundedness assumption for the output is standard in most literature in
learning theory (see e.g., Zhang (2003); Smale and Zhou (2007); Mendelson and Neeman
(2010); Wu et al. (2006)). Throughout the paper, we will use these assumptions without
any further reference. Usually one may get an estimator of fρ by minimizing the empirical
loss functional 1

m

∑m
i=1(f(xi)− yi)2 over a hypothesis space, i.e., a pre-selected function set

on X.

In kernel regression, the hypothesis space is generated by a kernel function K : X×X →
R. Recall that {xi}mi=1 is the input data of the observations. The hypothesis space considered
here is taken to be the linear span of the set {Kxi}mi=1. For t ∈ X, we denote by Kt the
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function
Kt : X → R

x 7→ K(x, t).

Let 0 < q ≤ 1, the output estimator of `q−regularized kernel regression is given by

f̂q =
∑m

i=1 c
z
q,iKxi , where its coefficient sequence czq = (czq,i)

m
i=1 satisfies

czq = arg min
c∈Rm

 1

m

m∑
j=1

(
yj −

m∑
i=1

ciK(xj , xi)

)2

+ γ‖c‖qq

 . (2)

Here γ > 0 is called a regularization parameter and ‖c‖q denotes the `q−norm of c. Recall
that for any 0 < q ≤ 1 and any sequence w = (wn)∞n=1, the `0−norm and `q−norm are
defined respectively as

‖w‖0 =
∞∑
n=1

I(wn 6= 0) and ‖w‖q =

 ∑
n∈supp(w)

|wn|q
1/q

,

where I(·) is the indicator function and supp(w) := {n ∈ N : wn 6= 0} denotes the support
set of w. Strictly speaking, ‖ · ‖0 is not a real norm and ‖ · ‖q merely defines a quasi-norm
when 0 < q < 1 (e.g., see Conway (2000)).

From an approximation viewpoint, we are in fact seeking for a function to approximate
fρ from the function set spanned by the kernelized dictionary {Kxi}mi=1. The kernelized
dictionary together with its induced learning models has been previously considered in lit-
erature. In a supervised regression setting, to pursue a sparse nonlinear regression machine,
Roth (2004) proposed the `1-norm regularized learning model induced by the kernelized
dictionary, namely, the kernelized Lasso. It is indeed a basis pursuit method, the idea of
which can be dated back to Chen and Donoho (1994); Girosi (1998). It was in Wu and
Zhou (2008) that a framework of analyzing the generalization bounds for learning models
induced by the kernelized dictionary was proposed. The idea behind is controlling the com-
plexity of the hypothesis space and then investigating the approximation ability as well as
the data-fitting risk of functions in this hypothesis space via approximation and concentra-
tion techniques, which is a typical learning theory approach. Following this line, a series of
interesting studies have been expanded for various learning models induced by the kernel-
ized dictionary. For example, probabilistic generalization bounds for different models were
derived in Shi et al. (2011); Wang et al. (2012); Shi (2013); Lin et al. (2014); Feng et al.
(2016) and many others. However, it is worth pointing out that one is not suggested to sim-
ply treat the kernelized dictionary as commonly used dictionaries. This is because learning
models induced by the kernelized dictionary may possess more flexibility. For the kernelized
dictionary, the positive semi-definite constraint on the kernel function is removed. The re-
moving of the positive semi-definite constraints allows us to utilize some specific indefinite
kernels to cope with real-world applications, see e.g., Schleif and Tino (2015). Moreover,
{Kxi}mi=1 is a data-dependent dictionary. In a nonlinear regression setting, comparing with
models induced by basis functions, having seen enough observations, the data-dependent
dictionary can provide adequate information. Consequently, the local information of the
regression function can be captured with this redundant dictionary. An illustrative example
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of this observation can be found in Ando et al. (2008). Recently, learning with indefinite
kernels has drawn much attention. Most of work focused on the algorithmic study, e.g.,
Loosli et al. (2016); Huang et al. (2017). The algorithm under consideration can provide a
simple scenario for regularized indefinite kernel regression. However, the theoretical work
on this aspect is still limited so far.

Compared with the algorithms involving `0−penalty, the `1−regularized algorithms can
be efficiently solved by convex programming methods. When 0 < q < 1, the problem
(2) is a non-convex optimization problem. Many efficient approaches have been developed
to solve the `q−minimization problem of this type, e.g., Candès et al. (2008); Chen et al.
(2010); Huang et al. (2008); Lai and Wang (2011); Xu et al. (2012); but there is no approach
that guarantees to find a global minimizer. Most proposed approaches are descent-iterative
in nature. To illustrate the principle of the minimization process, we define the objective
functional of algorithm (2) as

Tγ,q(c) = ‖y −Kc‖22 + γ‖c‖qq, ∀c ∈ Rm, (3)

where y =
(
y1√
m
, · · · , ym√

m

)
∈ Rm and K ∈ Rm×m with entries Ki,j =

K(xi,xj)√
m

, 1 ≤ i, j ≤ m.

Given γ > 0 and an initial point c0, the descent-iterative minimization approach generates a
minimizing sequence {ck}∞k=1 such that Tγ,q(ck) are strictly decreasing along the sequence.
Thus any local minimizer, including the global minimizer, that a descent approach may
find must be in the level set {c ∈ Rm : Tγ,q(c) < Tγ,q(c0)}. Therefore, in both theory and
practice, one may be only interested in the local minimizer around some pre-given initial
point. Specifically, for our problem, a reasonable choice of the initial point would be the
solution in the case q = 1.

Assumption 1 For γ > 0 and 0 < q < 1, we assume that the coefficient sequence czq of

the estimator f̂q is a local minimizer of the problem (2) and satisfies Tγ,q(c
z
q) < Tγ,q(c

z
1),

where cz1 is the global minimizer of the problem (2) at q = 1.

In Section 2.1, we shall present a scheme for searching a local minimizer of problem (2)
by constructing a descent-iterative minimization process. The previous theoretical analysis
about least-square regression with a coefficient-based penalty term is valid only for a convex
learning model, e.g., the `q−regularized regression with q ≥ 1. To enhance the sparsity,
one expects to use a non-convex `q penalty, i.e., 0 < q < 1, but no optimization approach
guarantees to find a global minimizer of the induced optimization problem. There is still a
gap between the existing theoretical analysis and the optimization process: the estimator
needs to be globally optimal in the theoretical analysis while the optimization method can
not ensure the global optimality of its solutions. Up to our knowledge, due to the non-
convexity of `q term, there still lacks a rigorous theoretical demonstration to support its
efficiency in non-parametric regression. In this paper, we aim to fill this gap by developing
an elegant theoretical analysis on the asymptotic performances of estimators f̂q satisfying
Assumption 1, where these estimators can be generated by the scheme in Section 2.1 or
another descent-iterative minimization process. Here we would like to point out that the
established convergence analysis of f̂q only requires f̂q to be a stationary point around f̂1.

One aim of this work is to discuss the sparseness of the algorithms (2), which is char-
acterized by the upper bounds on the fraction of the non-zero coefficients in the expression
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f̂q =
∑m

i=1 c
z
q,iKxi . In general, the total number of coefficients is as large as the sample size

m. But for some kind of kernels such as polynomial kernels, the representation of f̂q is not
unique whenever the sample size becomes large. For the sake of simplicity, we restrict our
discussion on a special class of kernels.

Definition 1 A function K : X ×X → R is called an admissible kernel if it is continuous
and for any k ∈ N, (c1, · · · , ck) ∈ Rk and distinct set {t1, · · · , tk} ⊂ X,

∑k
j=1 cjKtj = 0 for

all x ∈ X implies cj = 0, j = 1, · · · , k.

It should be noticed that an admissible kernel here is not necessarily symmetric or pos-
itive semi-definite. Several widely used kernel functions from multi-variate approximation
satisfy the condition of the admissible kernels, e.g., exponential kernels, Gaussian kernels,
inverse multi-quadric kernels, B-spline kernels and compact supported radial basis func-
tion kernels including Wu’s functions (Wu (1995)) and Wendland’s functions (Wendland
(1995)). One may see Wendland (2005) and references therein for more details of these
kernels. For the same reason, the kernel function is required to be universal in Steinwart
(2003) when discussing the sparseness of support vector machines. It is noticed that most
universal kernels (see Micchelli et al. (2006)) are also admissible kernels. If K is admissible,
as long as the input data are mutually different, the representation of f̂q is unique and the
number of non-zero coefficients is given by ‖czq‖0. In the followings, when we refer to the
linear combination of {Kxi}mi=1, we always suppose that {xi}mi=1 is pairwise distinct. In our
setting, this assumption can be almost surely satisfied if the data generating distribution ρ
is continuous.

Except sparsity, another purpose of this paper is to investigate how the estimator f̂q
given by (2) approximates the regression function fρ. Let ρX be the marginal distribution
of ρ on X. With a suitable choice of γ depending on the sample size m, we show that
the estimator f̂q (or πM (f̂q) see Definition 2) converges to fρ in the function space L2

ρX
(X)

as m tends to infinity. Here, for a Borel measure Q on X, the space L2
Q(X) consists of

all the square-integrable functions with respect to Q and the norm is given by ‖f‖L2
Q

=(∫
X |f(x)|2dQ

)1/2
.

In order to state our results, we further recall some notations used in this paper. We
say that K is a Mercer kernel if it is continuous, symmetric and positive semi-definite on
X ×X. Such a kernel can generate a reproducing kernel Hilbert space (RKHS) HK (e.g.,
see Aronszajn (1950)). For a continuous kernel function K, define

K̃(u, v) =

∫
X
K(u, x)K(v, x)dρX(x). (4)

Then one can verify that K̃ is a Mercer kernel.
Being an important convex approach for pursuing sparsity, regularizing with `1−norm

deserves special attention in its own right. The following theorem illustrates our general
error analysis for `1−regularized kernel regression. The result is stated in terms of properties
of the input space X, the measure ρ and the kernel K.

Theorem 1 Assume that X is a compact convex subset of Rd with Lipschitz boundary,
K ∈ C s(X × X) with s > 0 is an admissible kernel and fρ ∈ H

K̃
with K̃ defined by (4).
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Let 0 < δ < 1 and

Θ =

{
d+2s
2d+2s , if 0 < s < 1,
d+2bsc
2d+2bsc , otherwise,

(5)

where bsc denotes the integral part of s. Take γ = mε−Θ with 0 < ε ≤ Θ − 1
2 . Then with

confidence 1− δ, there holds

‖f̂1 − fρ‖2L2
ρX
≤ Cε log(6/δ) (log(2/δ) + 1)6mε−Θ, (6)

where Cε > 0 is a constant independent of m or δ.

We shall prove Theorem 1 in Section 4.3 with the constant Cε given explicitly. The
convergence rate presented here improves the existing ones obtained in Wang et al. (2012);
Shi et al. (2011); Guo and Shi (2012). In particular, for a C∞ kernel (such as Gaussian
kernels), the rate can be arbitrarily close to m−1. To see the improvement, recall that
the best convergence rates so far are given by Guo and Shi (2012). It was proved that if
fρ ∈H

K̃
and K ∈ C∞, then with confidence 1− δ,

‖f̂1 − fρ‖2L2
ρX

= O

((
log(24/δ) + log log2

(
16(1− ε)

ε

)) 8
ε
−7

mε− 1
2

)
.

We improve this result in Theorem 1, as the convergence rate (6) is always faster than
m−1/2 even for Lipschitz continuous kernels. Next, we will further illustrate the optimality
of the convergence rates obtained in Theorem 1 when fρ belongs to some specific function
space. Let X = [0, 1]d, ρX be uniform distribution on [0, 1]d and K ∈ C s(X × X) with
s := s′ − d/2 > 0 being an integer. Then the RKHS H

K̃
⊂ C s([0, 1]d) and the Sobolev

space W s′
2 ([0, 1]d) consists of functions belonging to the Hölder space C s−1,α([0, 1]d) with

an arbitrary α ∈ (0, 1) (see e.g., Adams and Fournier (2003)). If fρ ∈ H
K̃
∩ W s′

2 ([0, 1]d),

the claimed rate in (6) can be arbitrarily close to O(m−2s′/(2s′+d)) which is proven to be
mini-max optimal in Fisher and Steinwart (2017).

Our refined result is mainly due to the following reasons. Firstly, when K ∈ C s with
s ≥ 2 and the input space X satisfies some regularity condition, we obtain a tight upper
bound on the empirical covering numbers of the related hypothesis space (see Theorem 11).
Secondly, we apply the projection operator in the error analysis to get better estimates.

Definition 2 For M ≥ 1, the projection operator πM on R is defined as

πM (t) =

{ −M if t < −M,
t if −M ≤ t ≤M,
M if t > M.

The projection of a function f : X → R is given by πM (f)(x) = πM (f(x)), ∀x ∈ X.

The projection operator was introduced in the literature of Chen et al. (2004); Steinwart
and Christmann (2008). It helps to improve the ‖ · ‖∞−bounds in the convergence analysis,
which is very critical for sharp estimation.

In fact, under the uniform boundedness assumption, the performance of the algorithm
(2) can be measured by the error ‖πM (f̂) − fρ‖L2

ρX
, where f̂ is a resulting estimator. To
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explain the details, we recall the definition of regression function fρ given by (1). As the
conditional distribution ρ(·|x) is supported on [−M,M ] for every x ∈ X, the target function
fρ takes value in [−M,M ] on X. So to see how an estimator f̂ approximates fρ, it is natural

to project values of f̂ onto the same interval by the projection operator πM (·). Due to the
analysis in this paper, one can always expect better estimates by projecting the output
estimator onto the interval [−M,M ]. So if we consider the estimator πM (f̂1) in Theorem 1,
the obtained result can be further improved. However, in order to make comparisons with
previous results, we just give the error analysis for f̂1. But for the case 0 < q < 1, we shall
only consider the error ‖πM (f̂q)− fρ‖L2

ρX
. To illustrate the sparseness of the algorithm, we

also derive an upper bound on the quantity
‖czq‖0
m , where czq denotes the coefficient sequence

of f̂q.

Theorem 3 Assume that X is a compact convex subset of Rd with Lipschitz boundary,
K ∈ C∞(X × X) is an admissible kernel and fρ ∈ H

K̃
with K̃ defined by (4). For

0 < q < 1, the estimator f̂q is given by algorithm (2) and satisfies Assumption 1. Let
0 < δ < 1 and γ = m−τ with 1− q < τ < 1. With confidence 1− δ, there hold

‖πM (f̂q)− fρ‖2L2
ρX
≤ C̃

(
log(18/δ) + log log

8

q(1− τ)

)3

m−(τ−(1−q)), (7)

and
‖czq‖0
m

≤ C̃ ′ (q(1− q))−q/(2−q)
(

log(2/δ) + log log
8

q(1− τ)

)6

m
−q(1− τ

2−q )
, (8)

where C̃ and C̃ ′ are positive constants independent of m or δ.

From Theorem 3, one can see that under the restrictions on τ and q, the quantity
‖czq‖0
m converges to 0 at a polynomial rate when the sample size m becomes large. The

regularization parameter γ plays an important role as a trade-off between sparsity and
convergence rates. Thus one can obtain a sparser solution at the price of lower estimation

accuracy. Due to Theorem 3, when 3−
√

5
2 < q < 1, we may take τ = (2 − q)(1 − q),

then the quantity
‖czq‖0
m behaves like O(m−q

2
) and the corresponding convergence rate is

O(m−(1−q)2
). In our sparsity analysis (see Section 5), the regularization parameter γ also

plays a role as a thresholding for the value of non-zero coefficient in f̂q =
∑m

i=1 c
z
q,iKxi .

Due to our analysis, a lower bound for non-zero coefficients is given by O(γ2/(2−q)), which
implies that a small q will lead to more zero coefficients in the kernel expansion for a fixed
γ < 1. It should be mentioned that our sparsity analysis is only valid for 0 < q < 1.

For the RKHS-based regularization algorithms, it is well known that a classical way to
obtain sparsity is to introduce the ε−insensitive zone in the loss function. A theoretical
result for this approach in Steinwart and Christmann (2009) shows that the fraction of
non-zero coefficients in the kernel expansion is asymptotically lower and upper bounded
by constants. From this point of view, regularizing the combinatorial coefficients by the
`q−norm is a more powerful way to produce sparse solutions. As our theoretical analysis
only gives results for the worst case situations, one can expect better performance of the
`q−regularized kernel regression in practice.
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At the end of this section, we point out that the mathematical analysis for the case
0 < q < 1 is far from optimal. It is mainly because of our analysis is based on Assumption
1. Under this assumption, one needs to bound ‖cz1‖

q
q which is critical in the error analysis,

where cz1 denotes the coefficient sequence of the estimator f̂1. In fact, due to the discussion in
Section 2.1, we can construct a minimizing sequence from any point. Besides the solution of
`1−regularized kernel regression, we may consider some other choices of the starting point,
e.g, the solution of RKHS-based regularized least-square regression. We believe that how
to bound the ‖ · ‖q−norm of these initial vectors is still a problem when one considers other
possible starting points. In this paper, we use the reverse Hölder inequality to handle this
term and the bound is too loose especially when q is small. Actually, even if f̂q is a global
minimizer of problem (2), we can not give an effective approach to conduct the error analysis.
Additionally, we do not assume any sparsity condition on the target function. One possible
condition that one may consider is that the regression function belongs to the closure of
the linear span of {Kx|x ∈ X} under the `q−constraint. Compared with the hard sparsity
introduced by the `0−norm, such kind of sparsity assumption is referred as to soft sparsity
(see Raskutti et al. (2011)), which is based on imposing a certain decay rate on the entries of
the coefficient sequence. Developing the corresponding mathematical analysis under the soft
sparsity assumption will help us to understand the role of the `q−regularization in feature
selections in an infinite-dimensional hypothesis space. We shall consider this topic in future
work. However, the sparsity analysis in this paper is still valid to derive the asymptotical

bound for
‖czq‖0
m and will lead to better estimates if a more elaborate error analysis can be

given.

The paper is organized as follows. The next section presents a descent-iterative min-
imization process for algorithm (2) and establishes the framework of error analysis. In
Section 3, we derive a tight bound on empirical covering numbers of the hypothesis space
under the `1−constraint. In Section 4 and Section 5, we derive the related results on the
error analysis and sparseness of `q−regularized kernel regression.

2. Preliminaries

This section is devoted to generating the minimizing sequences and establishing the frame-
work of mathematical analysis for `q−regularized kernel regression.

2.1. Minimizing sequences for `q−regularized kernel regression

In this part, we present a descent-iterative minimization process for algorithm (2), which
can probably search a local minimizer starting from any initial point. Motivated by recent
work on `1/2−regularization in Xu et al. (2012), we generalize their strategy to the case
0 < q < 1.

Let sgn(x) be given by sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0. Define a
function ψη,q for η > 0 and 0 < q < 1 as

ψη,q(x) =

{
sgn(x)tη,q(|x|), |x| > aqη

1/(2−q),
0, otherwise,

(9)
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where aq = (1− q
2)(1− q)

q−1
2−q and tη,q(|x|) denotes the solution of the equation

2t+ ηqtq−1 − 2|x| = 0 (10)

on the interval [(q(1− q)η/2)1/(2−q),∞) with respect to the variable t. We further define a
map Ψη,q : Rm → Rm, which is given by

Ψη,q(d) = (ψη,q(d1), · · · , ψη,q(dm)), ∀d = (d1, · · · , dm) ∈ Rm. (11)

Then we have the following important lemma.

Lemma 4 For any η > 0, 0 < q < 1 and d = (d1, · · · , dm) ∈ Rm, the map Ψη,q : Rm → Rm
given by (11) is well-defined and Ψη,q(d) is a global minimizer of the problem

min
c∈Rm

{
‖c− d‖22 + η‖c‖qq

}
. (12)

We shall leave the proof to the Appendix. The function ψη,q defines the `q−thresholding
function for 0 < q < 1. According to the proof of Lemma 4, given a x ∈ R and η > 0, the
value of ψη,q(x) in equation (9) is essentially a global minimizer of the problem

min
t∈R

{
|t− x|2 + η|t|q

}
.

When q = 1/2, the function ψη,1/2 is exactly the half thresholding function obtained in Xu
et al. (2012). We also observe that though the analysis in Lemma 4 is based on the fact
0 < q < 1, the expression of ψη,q is coherent for q ∈ [0, 1]. Concretely, as limq→1− aq = 1

2 ,
by letting q → 1− in the definition of ψη,q, one may obtain the soft thresholding function
for `1−regularization, which is given by (e.g., see Daubechies et al. (2004))

ψη,1(x) =

{
x− sgn(x)η/2, |x| > η/2,
0, otherwise.

Similarly, if taking q = 0 in the expression of ψη,q, one may also derive the hard thresholding
function for `0−regularization, which is defined as (e.g., see Blumensath and Davies (2008))

ψη,0(x) =

{
x, |x| > η1/2,
0, otherwise.

The expression of ψη,q is very useful as we can establish a descent-iterative minimization
process for algorithm (2) based on the idea in Daubechies et al. (2004). Recall the definitions
of K and y in the objective functional Tγ,q given by (3). For any (λ, γ) ∈ (0,∞)2 and
c0 ∈ Rm, we iteratively define a sequence {cn}∞n=1 as

cn+1 = Ψλγ,q

(
cn + λKT (y −Kcn)

)
. (13)

Then {cn}∞n=1 is a minimizing sequence with a suitable chosen λ > 0.

Proposition 5 Let 0 < q < 1, γ > 0 and 0 < λ ≤ q
2‖K‖

−2
2 , where ‖ ·‖2 denotes the spectral

norm of the matrix. If the sequence {cn}∞n=0 is generated by the iteration process (13), then
the following statements are true.

9
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(i) If c∗ ∈ Rm is a local minimizer of the objective functional Tγ,q(c), then c∗ is a stationary
point of the iteration process (13), i.e.,

c∗ = Ψλγ,q

(
c∗ + λKT (y −Kc∗)

)
.

(ii) The sequence {cn}∞n=0 is a minimizing sequence such that the sequence {Tγ,q(cn)}∞n=0

is monotonically decreasing.

(iii) The sequence {cn}∞n=0 converges to a stationary point of the iteration process (13)
whenever λ is sufficiently small.

We also prove this proposition in the Appendix. The properties of ψη,q play an important
role in the proof. When q = 1/2 and q = 2/3, the equation 2t + ηqtq−1 − 2|x| = 0 can be
analytically solved, i.e., the corresponding thresholding function can be explicit expressed
as an analytical function. This motivated people to develop efficient algorithms based on
(13) for these two special cases. In particular, the `1/2−regularization problem has been
intensively studied in some literature (see Xu et al. (2012) and references therein). Since a
general formula for `q−thresholding function is given by (9), it is also interesting to develop
corresponding iterative algorithms and compare their empirical performances for different
values of q.

2.2. Framework of error analysis

In this subsection, we establish the framework of convergence analysis. Because of the
least-square nature, one can see Cucker and Zhou (2007) that

‖f − fρ‖2L2
ρX

= E (f)− E (fρ), ∀f : X → R,

where E (f) =
∫
X×Y (f(x) − y)2dρ. Let f̂ be the estimator produced by algorithm (2).

Particularly, the estimator f̂ under our consideration is f̂1 or πM (f̂q) with 0 < q ≤ 1. To

estimate ‖f̂−fρ‖2L2
ρX

, we only need to bound E (f̂)−E (fρ). This will be done by applying the

error decomposition approach which has been developed in the literature for regularization
schemes (e.g., see Cucker and Zhou (2007); Steinwart and Christmann (2008)). In this
paper, we establish the error decomposition formula based on the first author’s previous
work (Guo and Shi (2012)).

To this end, we still need to introduce some notations. For any continuous function
K : X ×X → R, define an integral operator on L2

ρX
(X) as

LKf(x) =

∫
X
K(x, t)f(t)dρX(t), x ∈ X.

Since X is compact and K is continuous, LK and its adjoint L∗K are both compact operators.
If K is a Mercer kernel, the corresponding integral operator LK is a self-adjoint positive
operator on L2

ρX
, and its r−th power LrK is well-defined for any r > 0. From Cucker and

Zhou (2007), we know that the RKHS HK is in the range of L
1
2
K . Recalling the Mercer

kernel K̃ defined as (4) for a continuous kernel K, it is easy to check that L
K̃

= LKL
∗
K .

10
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Following the same idea in Guo and Shi (2012), we use the RKHS H
K̃

with the norm
denoted by ‖ · ‖

K̃
to approximate fρ. The approximation behavior is characterized by the

regularization error

D(γ) = min
f∈H

K̃

{
E (f)− E (fρ) + γ‖f‖2

K̃

}
.

The following assumption is standard in the literature of learning theory (e.g., see Cucker
and Zhou (2007); Steinwart and Christmann (2008)).

Assumption 2 For some 0 < β ≤ 1 and cβ > 0, the regularization error satisfies

D(γ) ≤ cβγβ, ∀γ > 0. (14)

The decay of D(γ) as γ → 0 measures the approximation ability of the function space
H
K̃

. Next, for γ > 0, we define the regularizing function as

fγ = arg min
f∈H

K̃

{
E (f)− E (fρ) + γ‖f‖2

K̃

}
. (15)

The regularizing function uniquely exists and is given by fγ =
(
γI + L

K̃

)−1
L
K̃
fρ (e.g., see

Proposition 8.6 in Cucker and Zhou (2007)), where I denotes the identity operator on H
K̃

.

Now we are in a position to establish the error decomposition for algorithm (2). Re-
call that for 0 < q ≤ 1, czq denotes the coefficient sequence of the estimator f̂q and
z = {(xi, yi)}mi=1 ∈ Zm is the sample set. The empirical loss functional Ez(f) is defined
for f : X → R as

Ez(f) =
1

m

m∑
i=1

(f(xi)− yi)2.

Proposition 6 For γ > 0, the regularization function fγ is given by (15) and fz,γ =
1
m

∑m
i=1Kxigγ(xi) with

gγ = L∗K
(
γI + L

K̃

)−1
fρ.

Let f̂ be an estimator under consideration, we define

S1 = {E (f̂)− Ez(f̂)}+ {Ez(fz,γ)− E (fz,γ)},

S2 = {E (fz,γ)− E (fγ)}+ γ{ 1

m

m∑
i=1

|gγ(xi)| − ‖gγ‖L1
ρX
},

S3 = E (fγ)− E (fρ) + γ‖gγ‖L2
ρX
.

If f̂q satisfies Assumption 1 with 0 < q < 1, for the estimator f̂ = πM (f̂q), there holds

E (f̂)− E (fρ) + γ‖czq‖qq ≤ S1 + S2 + S3 + γm1−q‖cz1‖
q
1. (16)

When q = 1, for f̂ = f̂1 or πM (f̂1), there holds

E (f̂)− E (fρ) + γ‖cz1‖1 ≤ S1 + S2 + S3. (17)

11
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To save space, we shall leave the proof to the Appendix. In fact, Proposition 6 presents
three error decomposition formulas. When f̂ = f̂1, the inequality (17) is exactly the error
decomposition introduced in Guo and Shi (2012) for `1−regularized kernel regression. Note
that the bound (16) involves an additional term γm1−q‖ĉ1‖q1. Therefore, the asymptotic

behavior of the global estimator f̂1 plays a significant part in the convergence analysis of f̂q
with 0 < q < 1.

With the help of Proposition 6, one can estimate the total error by bounding Si (i =
1, 2, 3) and γm1−q‖cz1‖

q
1 respectively. The terms S2 and S3 are well estimated in Guo and

Shi (2012) by fully utilizing the structure of the functions fz,γ and gγ . Here we directly
quote the following bound for S2 + S3. One may see Guo and Shi (2012) for the detailed
proof.

Lemma 7 For any (γ, δ) ∈ (0, 1)2, with confidence 1− δ, there holds

S2 + S3 ≤ 8κ2
(
2κ2 + 1

)
log2(4/δ)

{
D(γ)

γ2m2
+
D(γ)

γm

}
+

(2κ+ 1)
√
D(γ) log (4/δ)

m
+

3

2

√
γD(γ) + 2D(γ), (18)

where κ = ‖K‖C (X×X).

Therefore, our error analysis mainly focuses on bounding S1 and γm1−q‖cz1‖
q
1. The first

term S1 can be estimated by uniform concentration equalities. These inequalities quanti-
tatively characterize the convergence behavior of the empirical processes over a function set
by various capacity measures, such as VC dimension, covering number, entropy integral and
so on. For more details, one may refer to Van der Vaart and Wellner (1996) and references
therein. In this paper, we apply the concentration technique involving the `2−empirical
covering numbers to obtain bounds on S1. The `2−empirical covering number is defined
by means of the normalized `2-metric d2 on the Euclidian space Rl given by

d2(a,b) =

(
1

l

l∑
i=1

|ai − bi|2
)1/2

, a = (ai)
l
i=1,b = (bi)

l
i=1 ∈ Rl.

Definition 8 Let (M, dM) be a pseudo-metric space and S ⊂M a subset. For every ε > 0,
the covering number N (S, ε, dM) of S with respect to ε and the pseudo-metric dM is defined
to be the minimal number of balls of radius ε whose union covers S, that is,

N (S, ε, d) = min

ι ∈ N : S ⊂
ι⋃

j=1

B(sj , ε) for some {sj}ιj=1 ⊂M

 ,

where B(sj , ε) = {s ∈ M : dM(s, sj) ≤ ε} is a ball in M. For a set F of functions on X
and ε > 0, the `2-empirical covering number of F is given by

N2(F , ε) = sup
l∈N

sup
u∈Xl

N (F |u, ε, d2),

where for l ∈ N and u = (ui)
l
i=1 ⊂ X l, we denote the covering number of the subset

F |u = {(f(ui))
l
i=1 : f ∈ F} of the metric space (Rl, d2) as N (F |u, ε, d2).

12
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As for the last term, we will derive a tighter bound for ‖cz1‖1 by an iteration tech-
nique based on the convergence analysis for the estimator πM (f̂1). The application of the
projection operator will lead to better estimates.

3. Capacity of the hypothesis space under `1−constraint

In this section, by means of the `2-empirical covering numbers, we study the capacity of the
hypothesis space generated by the kernel function. For R > 0, define BR to be the linear
combination of functions {Kx|x ∈ X} under the `1−constraint

BR =

{
k∑
i=1

µiKui : k ∈ N, ui ∈ X,µi ∈ R and
k∑
i=1

|µi| ≤ R

}
. (19)

In this paper, we assume that the following capacity assumption for B1 comes into
existence.

Assumption 3 For a kernel function K, there exists an exponent p with 0 < p < 2 and a
constant cK,p > 0 such that

log2 N2(B1, ε) ≤ cK,p
(

1

ε

)p
, ∀0 < ε ≤ 1. (20)

It is strictly proved in Shi et al. (2011) that, for a compact subset X of Rd and K ∈ C s

with some s > 0, the power index p can be given by

p =


2d/(d+ 2s), when 0 < s ≤ 1,
2d/(d+ 2), when 1 < s ≤ 1 + d/2,
d/s, when s > 1 + d/2.

(21)

We will present a much tighter bound on the logarithmic `2-empirical covering numbers
of B1. This bound holds for a general class of input space satisfying an interior cone
condition.

Definition 9 A subset X of Rd is said to satisfy an interior cone condition if there exist
an angle θ ∈ (0, π/2), a radius RX > 0, and a unit vector ξ(x) for every x ∈ X such that
the cone

C(x, ξ(x), θ, RX) =
{
x+ ty : y ∈ Rd, |y| = 1, yT ξ(x) ≥ cos θ, 0 ≤ t ≤ RX

}
is contained in X.

Remark 10 The interior cone condition excludes those sets X with cusps. It is valid for
any convex subset of Rd with Lipschitz boundary (see e.g., Adams and Fournier (2003)).

Now we are in a position to give our refined result on the capacity of B1.

13



Shi, Huang, Feng and Suykens

Theorem 11 Let X be a compact subset of Rd. Suppose that X satisfies an interior cone
condition and K ∈ C s(X × X) with s ≥ 2 is an admissible kernel. Then there exists a
constant CX,K that depends on X and K only, such that

log2 N2(B1, ε) ≤ CX,Kε
− 2d
d+2bsc log2

(
2

ε

)
, ∀ 0 < ε ≤ 1, (22)

where bsc denotes the integral part of s.

Recall the asymptotical bound obtained in Shi et al. (2011) with p given by (21). It
asserts that for K ∈ C s with s ≥ 2, the quantity log2 N2(B1, ε) grows at most of the

order ε−min{ 2d
d+2

, d
s}. Our stated result in Theorem 11 improves the previous bound a lot, as

log2 N2(B1, ε) can be bounded by O (ε−s1) for any s1 >
2d

d+2bsc . Besides the `2−empirical
covering number, another way to measure the capacity is the uniform covering number
N (B1, ε, ‖ ·‖∞) of B1 as a subset of the metric space (C (X), ‖ ·‖∞) of bounded continuous
functions on X. From a classical result in function spaces (see Edmunds and Triebel (1996)),
for X = [0, 1]d and K ∈ C s(X ×X), the unit ball B1 satisfies

cs

(
1

ε

)d/s
≤ log N (B1, ε, ‖ · ‖∞) ≤ c′s

(
1

ε

)d/s
, ∀ε > 0.

When d is large or s is small, this estimate is rough. Moreover, the estimate above is asymp-
totic optimal and cannot be improved, which implies that the uniform covering number is
not a suitable measurement for the capacity of B1. The `2−emprical covering number was
first investigated in the field of empirical process (e.g., see Dudley (1987); Van der Vaart
and Wellner (1996) and references therein). One usually assumes that, there exist 0 < p < 2
and cp > 0 such that

log N2(F , ε) ≤ cpε−p, ∀ε > 0, (23)

which guarantees the convergence of Dudley’s entropy integral, i.e.,
∫ 1

0

√
log N2(F , ε)dε <

∞. This fact is very important, since function class F with bounded entropy integrals satisfy
the uniform central limit Theorem (see Dudley (1987) for more details). The classical result
on `2−empirical covering number only asserts that if N2(F , ε) = O(ε−p

′
) for some p′ > 0,

then the convex hull of F satisfies (23) with p = 2p′

p′+2 < 2. In this paper, we further clarify
the relation between the smoothness of the kernel and the capacity of the hypothesis space.
That is, we establish a more elaborate estimate for the power index p in Assumption 3
by using the prior information on the smoothness of the kernel. It should be pointed out
that, from the relation N2(F , ε) ≤ N (F , ε, ‖ · ‖∞), capacity assumption (23) for an RKHS
generated by a positive semi-definite kernel K can be verified by bounding the uniform
covering number. It is proved in Zhou (2003) that, when F is taken to be the unit ball
in the RKHS HK , there holds log N (F , ε, ‖ · ‖∞) = O(ε−2d/s) provided that X ⊂ Rd and
K ∈ C s(X × X). Therefore, a sufficiently smooth kernel with s > d can guarantee that
capacity assumption (23) comes into existence. When X is a Euclidean ball in Rd, the
Sobolev space W s

2 (X) with s > d/2 is an RKHS. Birman and Solomyak (1967) proved that
log N2(W s

2 (X), ε) is upper and lower bounded by O(ε−p) with p = d/s < 2. However, up to
our best knowledge, how to demonstrate capacity assumption (23) for a general RKHS is
still widely open. From Theorem 11, one can see that even for positive semi-definite kernels,

14



Sparse Kernel Regression

the function space (19) is more suitable to be the hypothesis space than the classical RKHS,
as its capacity can be well-estimated by the `2−empirical covering number.

We will prove Theorem 11 after a few lemmas. The improvement is mainly due to a
local polynomial reproduction formula from the literature of multivariate approximation
(see Wendland (2001); Jetter et al. (1999)). A point set Ω = {ω1, · · · , ωn} ⊂ X is said to
be ∆-dense if

sup
x∈X

min
ωj∈Ω

|x− ωj | ≤ ∆,

where | · | is the standard Euclidean norm on Rd. Denote the space of polynomials of degree
at most s on Rd as Pds . The following lemma is a formula for local polynomial reproduction
(see Theorem 3.10 in Wendland (2001)).

Lemma 12 Suppose X satisfies an interior cone condition with radius RX > 0 and angle
θ ∈ (0, π/2). Fix s ∈ N with s ≥ 2. There exists a constant c0 depending on θ, d and s such
that for any ∆-dense point set Ω = {ω1, · · · , ωn} in X with ∆ ≤ RX

c0
and every u ∈ X, we

can find real numbers bi(u), 1 ≤ i ≤ n, satisfying

(1)
∑n

i=1 bi(u)p(ωi) = p(u) ∀p ∈ Pds ,

(2)
∑n

i=1 |bi(u)| ≤ 2,

(3) bi(u) = 0 provided that |u− ωi| > c0∆.

This formula was first introduced by Wang et al. (2012) to learning theory for investi-
gating the approximation property of the kernel-based hypothesis space. For any function
set F on X, we use absconvF to denote the absolutely convex hull of F , which is given by

absconvF =

{
k∑
i=1

λifi : k ∈ N, fi ∈ F and
k∑
i=1

|λi| ≤ 1

}
.

In order to prove our result, we also need the following lemma.

Lemma 13 Let Q be a probability measure on X and F be a class of n measurable functions
of finite L2

Q−diameter diamF . Then for every ε > 0,

N (absconvF , εdiamF , d2,Q) ≤
(
e+ e(2n+ 1)ε2

)2/ε2
, (24)

where d2,Q is the metric induced by the norm ‖ · ‖L2
Q

.

This lemma can be proved following the same idea of Lemma 2.6.11 in Van der Vaart and
Wellner (1996). Now we can concentrate our efforts on deriving our conclusion in Theorem
11.
Proof [Proof of Theorem 11]. A set is called ∆−separated if the distance between any
two elements of the set is larger than ∆. We take {∆n}∞n=1 to be a positive sequence
decreasing to 0 with ∆n explicitly given later. Let the set Xn =

{
v1, v2, · · · , v|Xn|

}
be

an increasing family of finite sets, where |Xn| denotes the cardinality of Xn. For every
n, Xn is a maximal ∆n−separated set in X with respect to inclusion, i.e., each Xn is
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∆n−separated and if Xn ⊂ W ⊂ X then W is not ∆n−separated. Note that, if Xn

is a maximal ∆n−separated set in X, then it is ∆n−dense in X. Based on {Xn}∞n=1,
we create a family of sets An = {Kv|v ∈ Xn}. Similarly, let A = {Kv|v ∈ X}, then
A1 ⊂ A2 ⊂ · · · ⊂ A .

We first limit our discussion to the case that s ≥ 2 is an integer. Motivated by the proof
of Proposition 1 in Wang et al. (2012), we will show that for any t0 ∈ X, the function Kt0

can be approximated by a linear combination of An whenever ∆n is sufficiently small. For
given x ∈ X, we let gx(t) = K(x, t). Then gx ∈ C s(X). We consider the Taylor expansion
of gx at a fixed point t0 of degree less than s, which is given by

Px(t) = K(x, t0) +
s−1∑
|α|=1

Dαgx(t0)

α!
(t− t0)α.

Here α = (α1, · · · , αd) ∈ Zd+ is a multi-index with |α| =
∑d

j=1 |αj |, α! =
∏d
j=1(αj)!, and

Dαgx(t0) denotes the partial derivatives of gx at the point t0. Due to Lemma 12, if X
satisfies an interior cone condition, we take a constant ∆X,s := RX

c0
depending only on X

and s. Then for any ∆−dense set given by {ω1, · · · , ωn} with ∆ ≤ ∆X,s, we have

Px(t0) =
∑
i∈I(t0)

bi(t0)Px(ωi),

where
∑

i∈I(t0) |bi(t0)| ≤ 2 and I(t0) = {i ∈ {1, · · · , n} : |ωi − t0| ≤ c0∆}. Note that
K(x, t0) = Px(t0) and maxi∈I(t0) |K(x, ωi)− Px(ωi)| ≤ cs0‖K‖C s∆s. It follows that∣∣∣∣∣∣K(x, t0)−

∑
i∈I(t0)

bi(t0)K(x, ωi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈I(t0)

bi(t0) (Px(ωi)−K(x, ωi))

∣∣∣∣∣∣
≤ 2cs0‖K‖C s∆s. (25)

It is important that the right hand side of the above inequality is independent of x or t0.
For any function f belonging to B1, there exist k ∈ N and {ui}ki=1 ⊂ X, such that f(x) =∑k
i=1 µiK(x, ui) with

∑k
i=1 |µi| ≤ 1. Recall that Xn =

{
v1, v2, · · · , v|Xn|

}
is ∆n−dense in

X. If ∆n ≤ ∆X,s, we set

fn(x) =

k∑
i=1

µi
∑

j∈In(ui)

bj(ui)K(x, vj),

where the index set In(u) is defined for any n ∈ N and u ∈ X as

In(u) = {j ∈ {1, · · · , |Xn|} : |vj − u| ≤ c0∆n} .

Hence, we have

‖f − fn‖∞ = sup
x∈X

∣∣∣∣∣∣
k∑
i=1

µi

K(x, ui)−
∑

j∈In(ui)

bj(ui)K(x, vj)

∣∣∣∣∣∣ ≤ 2cs0‖K‖C s∆s
n, (26)
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where the last inequality is from (25). Obviously, we can rewrite fn as fn(x) =
∑|Xn|

j=1 νjK(x, vj)
where

|Xn|∑
j=1

|νj | ≤
k∑
i=1

|µi|
∑

j∈In(ui)

|bj(ui)| ≤ 2.

Therefore, we have fn ∈ 2absconvAn.

For a compact subset X of Rd, there exists a constant cX > 0 depending only on X,
such that

N (X, ε, d̃2) ≤ cX
(

1

ε

)d
, ∀ 0 < ε ≤ 1,

where d̃2 denotes the metric induced by the standard Euclidean norm on Rd (see Theorem

5.3 in Cucker and Zhou (2007)). Now we let ∆n = 2c
1
d
Xn
− 1
d . Recall that |Xn| is the maximal

cardinality of an ∆n−separated set in X. Thus we have |Xn| ≤ N (X,∆n/2, d̃2) ≤ n.

For any given ε > 0, we choose N := N(ε) be to the smallest integer which is larger

than C ′X,K
(

1
ε

) d
s with C ′X,K = 2(s+2)d/scd0‖K‖

d/s
C s cX . Then the set 2absconvAN is ε

2−dense
in B1 due to (26). Recall that for any probability measure Q on X, d2,Q denotes the metric
induced by the norm ‖ · ‖L2

Q
. Therefore, we have

N (B1, ε, d2,Q) ≤ N (2absconvAN , ε/2, d2,Q) = N (absconvAN , ε/4, d2,Q).

To bound the latter, let N1 := N1(ε) be the integer part of ε−
2d
d+2s . We choose a

sufficiently small ε > 0 satisfying

0 < ε ≤ min

{
(C ′X,K)s(d+2s)/d2

,
(

2−1c
−1/d
X ∆X,s

)s+ d
2
,

(
1

2

)(d+2s)/2d
}

:= εX,K , (27)

then XN1 ⊂ XN and ∆N1 ≤ ∆X,s.

For any g ∈ absconvAN , there exists {νi}|XN |i=1 ⊂ R|XN | with
∑|XN |

i=1 |νi| ≤ 1, such that

g(x) =

|XN |∑
i=1

νiK(x, vi) := g1(x) + g2(x),

where

g1(x) =

|XN1
|∑

i=1

νiK(x, vi) +

|XN |∑
i=|XN1

|+1

νi

 ∑
j∈IN1

(vi)

bj(vi)K(x, vj)

 ,

g2(x) =

|XN |∑
i=|XN1

|+1

νi

K(x, vi)−
∑

j∈IN1
(vi)

bj(vi)K(x, vj)

 .

From the expression of g1, we see that it is a linear combination of {K(x, vi)|vi ∈ XN1}.
Similarly, one can check that the summation of the absolute value of the combinational
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coefficients is still bounded by 2. Hence, we have g1 ∈ 2absconvAN1 and g2 ∈ absconvKN1,N

with

KN1,N =

K(x, vi)−
∑

j∈IN1
(vi)

bj(vi)K(x, vj)


|XN |

i=|XN1
|+1

.

Therefore,

absconvAN ⊂ 2absconvAN1 + absconvKN1,N .

And it follows that

N (absconvAN , ε/4, d2,Q)

≤ N (absconvAN1 , ε/16, d2,Q) ·N (absconvKN1,N , ε/8, d2,Q) . (28)

To estimate the first term, we choose some suitable ε1 > 0 and N2 := N2(ε1), such that
the function set {fj}N2

j=1 is the maximal ε1−separated set in absconvAN1 with respect to
the distance d2,Q. Hence, for any f ∈ absconvAN1 , f must belong to one of the N2 balls
of radius ε1 centered at fj . We denote these balls by B(fj , ε1), j = 1, · · · , N2. Moreover, as
K is an admissible kernel, any function in absconvAN1 has an unique expression as f(x) =∑|XN1

|
i=1 νfi K(x, vi) with

∑|XN1
|

i=1 |νfi | ≤ 1. We define a mapping by Φ(f) = (νf1 , · · · , ν
f
|XN1

|) ∈
R|XN1

|. Under this mapping, the image of B(fj , ε1) is given by

Im(B(fj , ε1)) =

{νi}|XN1
|

i=1

∣∣∣∣ |XN1
|∑

i=1

|νi| ≤ 1 and

√√√√|XN1
|∑

i=1

(νi − ν
fj
i )2 ≤ ε1


⊂ B

R|XN1
|(νfj , ε1), (29)

where B
R|XN1

|(νfj , ε1) denotes the ball in R|XN1
| of radius ε1 centered at νfj = (ν

fj
1 , · · · , ν

fj
|XN1

|).

Furthermore, for ∀f, g ∈ absconvAN1 , there holds

‖f − g‖L2
Q
≤ κ

√√√√|XN1
|∑

i=1

(νfi − ν
g
i )2, (30)

where κ = ‖K‖C (X×X).

Next for any ε2 > 0, from (30) and (29), we obtain

N (B(fj , ε1), ε2, d2,Q) ≤ N (Im(B(fj , ε1)), ε2/κ, d̃2)

≤ N (B
R|XN1

|(νfj , ε1), ε2/κ, d̃2)

= N (ε1BR|XN1
| , ε2/κ, d̃2), (31)

where B
R|XN1

| denotes the unit ball in R|XN1
|. Recall that N2 is the cardinality of the

maximal ε1−separated set in absconvAN1 . Then N2 ≤ N (absconvAN1 , ε1/2, d2,Q). Hence,
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for any positive ε1 and ε2, there holds

N (absconvAN1 , ε2, d2,Q)

≤
N2∑
j=1

N (B(fj , ε1), ε2, d2,Q)

≤ N (ε1BR|XN1
| , ε2/κ, d̃2) ·N (absconvAN1 , ε1/2, d2,Q) , (32)

where the second inequality is from (31).
Now we set ε2 = ε/16 and ε1 = 1/(16κ

√
N1), then by equation (32), there holds

N (absconvAN1 , ε/16, d2,Q)

≤ N (B
R|XN1

| , ε
√
N1, d̃2) ·N

(
absconvAN1 , 1/(32κ

√
N1), d2,Q

)
.

And from equation (28), we further find that

N (absconvAN , ε/4, d2,Q) ≤ N (B
R|XN1

| , ε
√
N1, d̃2)

·N
(
absconvAN1 , 1/(32κ

√
N1), d2,Q

)
·N (absconvKN1,N , ε/8, d2,Q) . (33)

It is noticed that R|XN1
| is a finite dimensional space and |XN1 | ≤ N1, then

N (B
R|XN1

| , ε
√
N1, d̃2) ≤ (1 + 2N

−1/2
1 ε−1)|XN1

| ≤ 3N1(N1)−N1/2ε−N1 . (34)

Next, we use Lemma 13 to estimate the rest two terms. For the function set AN1 , it is easy
to check that diamAN1 ≤ 2κ. Then by (24), there holds

N
(
absconvAN1 , 1/(32κ

√
N1), d2,Q

)
≤
(
e+

e

1368κ2

)8192κ2N1

. (35)

Recall that ∆N1 ≤ ∆X,s, then we have DiamKN1,N ≤ 4cs0‖K‖C s∆s
N1

and the cardinality
of KN1,N satisfies that |KN1,N | = |XN | − |XN1 | ≤ N − 1. Also by (24), there holds

N (absconvKN1,N , ε/8, d2,Q) = N

(
absconvKN1,N ,

ε

32cs0‖K‖C s∆s
N1

· 4cs0‖K‖C s∆s
N1
, L2

Q

)

≤

(
e+ e(2N − 1)

ε2

1024c2s
0 ‖K‖2C s∆2s

N1

) 2048c2s0 ‖K‖
2
Cs∆2s

N1
ε2

.

Due to the choice of N1, we have ε−
2d
d+2s − 1 < N1 ≤ ε−

2d
d+2s . Combining the restric-

tion (27) for ε, we have ∆2s
N1

= 22sc
2s
d
X (N1)−

2s
d ≤ 24sc

2s
d
X ε

4s
d+2s . It follows that ∆2s

N1
ε−2 ≤

24sc
2s
d
X ε
− 2d
d+2s . On the other hand, one can bound ε2∆−2s

N1
by 2−2sc

− 2s
d

X ε
2d
d+2s . Recalling that

N ≤ C ′X,K
(

1
ε

) d
s + 1, we then have

N (absconvKN1,N , ε/8, d2,Q)

≤

e+
eC ′X,s

(
1
ε

) d2

s(d+2s)

22s+8c
2s/d
X c2s

0 ‖K‖2C s


24s+11c

2s/d
X c2s0 ‖K‖2Csε

− 2d
d+2s

. (36)
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When 0 < ε ≤ εX,K , substituting the bounds (34), (35) and (36) into the inequality
(33), we obtain

log2 N (B1, ε, d2,Q) ≤ C ′′X,sε
− 2d
d+2s log2

(
1

ε

)
,

where

C ′′X,K = 2 + d−1 + 8192κ2 log2

(
e+

e

1368κ2

)
+24s+11c

2s/d
X ds−1c2s

0 ‖K‖2C s log2

(
e+

eC ′X,s

22s+8c
2s/d
X c2s

0 ‖K‖2C s

)
.

Note that B1 can be considered as a subset of C (X). We use d∞ to denote the metric
induced by ‖ · ‖∞. Then for εX,s < ε ≤ 1, we find that

log2 N (B1, ε, d2,Q) ≤ log2 N (B1, εX,s/κ, d∞) ≤ log2 N (B1, εX,s/κ, d∞)ε−
2d
d+2s log2

(
2

ε

)
.

We take CX,K = max{C ′′X,K , log2 N (B1, εX,s/κ, d∞)}, then

log2 N (B1, ε, d2,Q) ≤ CX,Kε−
2d
d+2s log2

(
2

ε

)
, ∀ 0 < ε ≤ 1.

Notice that the above bound is independent of the distribution Q. Then for any sample x =
{xi}`i=1 ∈ X` with ` ∈ N, the above estimate holds true for Q = 1

`

∑`
i=1 δxi . Consequently,

we prove our conclusion if s is an integer. When s is not an integer, one can check that the
proof is also valid if we replace s by its integral part bsc. Thus we complete the proof of
Theorem 11.

4. Convergence analysis

In this section, we investigate the convergence behavior of `q−kernel regression based on
concentration techniques involving `2−empirical covering numbers. Our error analysis pre-
sented in this part is under the capacity assumption (20). For an admissible kernel K ∈ C s

with s > 0, recall the previous result obtained in Shi et al. (2011) for 0 < s < 2. Then under
the assumption of Theorem 11, one can check that the assumption (20) can be satisfied with
0 < p < 2. Concretely, when 0 < s < 2, p = 2d

d+2 min{1,s} ; when s ≥ 2, p can be chosen to be

any constant satisfying p > 2d
d+2bsc .

4.1. Deriving the estimator for the total error

Recall the quantity S1 defined for an estimator f̂ in Proposition 6, we can rewrite it as

S1 = Sz(f̂)− Sz(fz,γ),

where the quantity Sz is defined for f ∈ C (X) by

Sz(f) = {E (f)− E (fρ)} − {Ez(f)− Ez(fρ)} .

We use the following proposition to estimate S1. Recall that BR is defined as (19).
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Proposition 14 If B1 satisfies the capacity condition (20) with 0 < p < 2, then for any
R ≥ 1 and 0 < δ < 1, with confidence 1− δ, there hold

Sz(πM (f)) ≤ 1

2
{E (πM (f))− E (fρ)}+

176M2 log(1/δ)

m

+c̃K,pM
2m
− 2

2+pR
2p

2+p , ∀f ∈ BR, (37)

and

Sz(f) ≤ 1

2
{E (f)− E (fρ)}+

20(3M + κ)2R2 log(1/δ)

m

+c̃K,p(3M + κ)2m
− 2

2+pR2, ∀f ∈ BR. (38)

Here c̃K,p > 0 is a constant depending only on p and the kernel function K and κ =
‖K‖C (X×X). The above bounds also hold true for −Sz(πM (f)) and −Sz(f).

We shall prove Proposition 14 in the Appendix by using the entropy integral based on
`2−empirical covering numbers. Now we can derive the estimator for the total error. For
R ≥ 1 and 0 < q ≤ 1, denote

Wq(R) =
{
z ∈ Zm : ‖czq‖qq ≤ R

}
. (39)

Proposition 15 Assume that approximation assumption (14) with 0 < β ≤ 1 and capacity
condition (20) with 0 < p < 2 are valid, and the estimator f̂q satisfies Assumption 1 with

0 < q < 1. If 0 < γ ≤ 1, 0 < δ < 1 and R ≥ 1, then there is a subset V
(q)
R of Zm with

measure at most δ such that

E (πM (f̂q))− E (fρ) + γ‖czq‖qq

≤ 2c̃K,pM
2m
− 2

2+pR
2p

q(2+p) + C1 log3(18/δ) max
{
γβ−2m−2, γβ−1m

− 2
2+p

}
+(3
√
cβ + 6cβ)γβ + 2γm1−q‖cz1‖

q
1, ∀z ∈ Wq(R)\V (q)

R . (40)

Moreover, when q = 1, there are subsets V
(1)
R and Ṽ

(1)
R of Zm with each measure at most

δ such that

E (πM (f̂1))− E (fρ) + γ‖cz1‖1
≤ 2c̃K,pM

2m
− 2

2+pR
2p

2+p + C1 log3(18/δ) max
{
γβ−2m−2, γβ−1m

− 2
2+p

}
+(3
√
cβ + 6cβ)γβ, ∀z ∈ W1(R)\V (1)

R , (41)

and

E (f̂1)− E (fρ) + γ‖cz1‖1 ≤ 2(20 + c̃K,p)(3M + κ)2 log(3/δ)m
− 2

2+pR2

+C̃1 log3(18/δ) max
{
γβ−2m−2, γβ−1m

− 2
2+p , γβ

}
,∀z ∈ W1(R)\Ṽ (1)

R . (42)

Here C1 and C̃1 are positive constants depending on κ, c̃K,p, M and cβ.
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Proof Let f̂ be the estimator under consideration. We estimate S1 by bounding Sz(f̂)
and −Sz(fz,γ) respectively. Due to Proposition 14, the quantities −Sz(fz,γ) and Sz(fz,γ)
have the same upper bound. We thus turn to estimate Sz(fz,γ). For (γ, δ) ∈ (0, 1)2, let

R(γ, δ) :=
2κ
√
D(γ) log (6/δ)

γm
+

√
2D(γ) log (6/δ)

γm
+

√
D(γ)

γ
.

From the proof of Proposition 5 in Guo and Shi (2012), there exist two subsets of Zm

denoted by U1 and U2 with ρ(Ui) ≤ δ/3, i = 1, 2, such that

fz,γ ∈ BR(γ,δ), ∀ z ∈ Zm\U1, (43)

and

E (fz,γ)− E (fρ) ≤ 8κ2
(
2κ2 + 1

)
log2(6/δ)

{
D(γ)

γ2m2
+
D(γ)

γm

}
+ 2D(γ), ∀ z ∈ Zm\U2. (44)

We use inequality (38) to bound Sz(fz,γ). Now (43) and (44) are both valid for fz,γ with
z ∈ Zm\(U1 ∪ U2). Then there exists a subset U3 of Zm with measure at most δ/3 such
that

Sz(fz,γ) ≤ 4κ2
(
2κ2 + 1

)
log2(6/δ)

{
D(γ)

γ2m2
+
D(γ)

γm

}
+D(γ) +

20(3M + κ)2(R(γ, δ))2 log(3/δ)

m

+c̃K,p(3M + κ)2m
− 2

2+p (R(γ, δ))2,∀z ∈ Zm\(U1 ∪ U2 ∪ U3).

Note that ρ(U1 ∪ U2 ∪ U3) ≤ δ and

(R(γ, δ))2 ≤ (8κ2 + 4) log2(6/δ)

(
D(γ)

γ2m2
+
D(γ)

γm
+
D(γ)

γ

)
.

Therefore, with confidence 1− δ, there holds

Sz(fz,γ) ≤ Cκ log2(6/δ) max

{
D(γ)

γ2m2
,
D(γ)

γm

}
+D(γ)

+(20 + c̃K,p)Cκ,M log3(6/δ)m
− 2

2+p max

{
D(γ)

γ2m2
,
D(γ)

γ

}
, (45)

where Cκ = 8κ2
(
2κ2 + 1

)
and Cκ,M = 3(3M + κ)2(8κ2 + 4).

Next, for f̂ = f̂1 or πM (f̂q) with 0 < q ≤ 1, we consider bounding the quantity Sz(f̂)
with z ∈ W(R). It is easy if we notice that ‖czq‖

q
q ≤ R implies the corresponding estimator

f̂q ∈ BR1/q . Thus we can bound Sz(f̂) by directly applying Proposition 14.

When f̂ = πM (f̂q) with 0 < q < 1, combining the bounds on S1 + S2 given in Lemma
7, we are able to derive the estimator for the total error bound. Due to (37), there exist

subsets V
(q)

1 with measure at most δ/3 such that

Sz(πM (f̂q)) ≤
1

2

{
E (πM (f̂q))− E (fρ)

}
+

176M2 log(3/δ)

m

+c̃K,pM
2m
− 2

2+pR
2p

q(2+p) , ∀z ∈ Wq(R)\V (q)
1 .
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Similarly, from (45) and Lemma 7, we can find subsets V2 and V3 such that

−Sz(fz,γ) ≤ (Cκ + CK,p) log3(18/δ) max

{
D(γ)

γ2m2
,
D(γ)

γm2/(2+p)

}
+D(γ), ∀z ∈ Zm\V2,

and

S2 + S3 ≤ 16κ2
(
2κ2 + 1

)
log2(12/δ) max

{
D(γ)

γ2m2
,
D(γ)

γm

}
+

(2κ+ 1)
√
D(γ) log (12/δ)

m
+

3

2

√
γD(γ) + 2D(γ),∀z ∈ Zm\V3,

where CK,p = (20 + c̃K,p)Cκ,M and ρ(Vi) ≤ δ/3 for i = 2, 3.

Let V
(q)
R = V

(q)
1 ∪ V2 ∪ V3, then ρ(V

(q)
R ) ≤ δ. Recall the error decomposition formula

(16). We combine the above three bounds and obtain

E (πM (f̂q))− E (fρ) + γ‖czq‖qq

≤ 1

2

{
E (πM (f̂q))− E (fρ)

}
+ (176M2 + 16κ2(2κ2 + 1)) log2(12/δ) max

{
1

m
,
D(γ)

γm

}
+c̃K,pM

2m
− 2

2+pR
2p

q(2+p) + (Cκ + CK,p + 16κ2
(
2κ2 + 1

)
) log3(18/δ) max

{
D(γ)

γ2m2
,
D(γ)

γm2/(2+p)

}
+

(2κ+ 1)
√
D(γ) log (12/δ)

m
+

3

2

√
γD(γ) + 3D(γ) + γm1−q‖cz1‖

q
1, ∀z ∈ Wq(R)\V (q)

R .

Due to this inequality, we use Approximation condition (14) and find that the inequality
(40) holds true with

C1 = 2((20 + c̃K,p)Cκ,M + 176M2 + 40κ2
(
2κ2 + 1

)
)cβ + (4κ+ 2)

√
cβ.

Following the same method, when f̂ = πM (f̂1), we can prove inequality (41) by using the
error decomposition formula (17) .

We next focus on the case f̂ = f̂1. Due to inequality (38), for R ≥ 1, with confidence
1− δ/3, there holds

Sz(f̂1) ≤ 1

2

{
E (f̂1)− E (fρ)

}
+ (20 + c̃K,p)(3M + κ)2 log(3/δ)m

− 2
2+pR2, ∀z ∈ W1(R).

Also by the same analysis above, we obtain inequality (42) with

C̃1 = 6((20 + c̃K,p)(3M + κ)2(8κ2 + 4) + 8κ2
(
2κ2 + 1

)
+ 1)cβ + (4κ+ 5)

√
cβ.

Thus we complete our proof.

4.2. Bounding ‖czq‖q by iteration

To apply Proposition 15 for error analysis, we need to determine some R ≥ 1 for the set
Wq(R) given by (39). To this end, we shall apply an iteration technique to obtain a tight
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bound for ‖czq‖
q
q. This technique can be found in Steinwart and Scovel (2007); Wu et al.

(2006). Take the case q = 1 for example. Recall that cz1 is the global minimizer of the
target functional Tγ,1 defined by (3). Hence Tγ,1(cz1) ≤ Tγ,1(0). This inequality leads to a
trivial bound on ‖cz1‖1, which is given by

‖cz1‖1 ≤
M2

γ
, ∀ z ∈ Zm. (46)

By applying inequality (41) iteratively, we are able to improve the above bound to the
order O(γβ−1) with some suitable choice of γ = γ(m). Similarly, when 0 < q < 1, a better
estimates for ‖czq‖

q
q can be derived based on the inequality (40). The following proposition

illustrates the detailed process of iteration.

Proposition 16 Under the assumptions of Proposition 15, let (δ, τ) ∈ (0, 1)2 and J(τ, p, q)
be a constant given by

J(τ, p, q) = max

2,
log (2−(p+2)τ)p

(q−pτ)(p+2)

log 2p
q(p+2)

 . (47)

For q = 1, take γ = m−τ with 0 < τ < 2
2+p . Then with confidence 1− δ, there holds

‖cz1‖1 ≤ C2 (log(1/δ) + log(J(τ, p, 1)))3m(1−β)τ . (48)

For 0 < q < 1 satisfying q > max
{

2p
p+2 ,

p
p+2β

}
, take γ = m−τ with 1−q

1−q(1−β) < τ < 2
2+p .

Then with confidence 1− δ, there holds

‖czq‖qq ≤ C̃2 (log J(τ, p, 1))3q (log(1/δ) + log(J(τ, p, q) + 1))3m1−q+q(1−β)τ . (49)

Here C2 and C̃2 are positive constants depending only on κ, c̃K,p, M and cβ.

Proof Take 0 < δ < 1 and γ = m−τ under the restriction 0 < τ < 2
p+2 . For 0 < q ≤ 1, we

shall verify the following inequality derived from Proposition 15, that is

‖czq‖qq ≤ max{amRθ, bm}, ∀z ∈ Wq(R) \ V (q)
R , (50)

where V
(q)
R is a subset of Zm with measure at most δ, θ = 2

q(p+2) , am = 4c̃K,pM
2m

τ− 2
2+p and

bm will be given explicitly in accordance with specific situations. This inequality ensures
that

Wq(R) ⊂ Wq

(
max{amRθ, bm}

)
∪ V (q)

R (51)

with ρ(V
(q)
R ) ≤ δ. We then apply the inclusion (51) for a sequence of radiuses {R(j)}j∈N

defined by R(0) = Mδm
τ with a suitable chosen Mδ > 0 and

R(j) = max
{
am(R(j−1))θ, bm

}
, j ∈ N. (52)
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Then (51) holds for eachR(j), which impliesWq(R
(j−1)) ⊆ Wq(R

(j))∪V (q)

R(j−1) with ρ(V
(q)

R(j−1)) ≤
δ. Applying this inclusion for j = 1, 2, . . . , J with J to be determined later, we see that

Wq(R
(0)) ⊆ Wq(R

(1)) ∪ V (q)

R(0) ⊆ · · · ⊆ Wq(R
(J)) ∪

(
∪J−1
j=0 V

(q)

R(j)

)
.

By the definition of the sequence {R(j)}j , we thus have

R(J) = max

{
a1+θ+θ2+...+θJ−1

m (R(0))θ
J
, a1+θ+θ2+...+θJ−2

m bθ
J−1

m , . . . , amb
θ
m, bm

}
. (53)

Recall that R(0) = Mδm
τ . When θ 6= 1, the first term on the right-hand side of equation

(53) can be bounded as

a1+θ+θ2+...+θJ−1

m (R(0))θ
J

= a(θJ−1)/(θ−1)
m (R(0))θ

J

≤ (4c̃K,pM
2)(θJ−1)/(θ−1)M θJ

δ m
τ(θJ+1−1)

θ−1
− 2(θJ−1)

(p+2)(θ−1) .

For the remaining terms, we find that

max
{
a1+θ+θ2+...+θJ−2

m bθ
J−1

m , . . . , amb
θ
m, bm

}
= max

{
(am)(θJ−1−1)/(θ−1)(bm)θ

J−1
, . . . , amb

θ
m, bm

}
= max

{
a(θJ−1−1)/(θ−1)
m bθ

J−1

m , bm

}
.

Therefore, we obtain

R(J) ≤ max

{
Aθ,JM

θJ

δ m
τ(θJ+1−1)

θ−1
− 2(θJ−1)

(p+2)(θ−1) ,

Aθ,J−1m
(τ− 2

2+p
)(θJ−1−1)/(θ−1)

bθ
J−1

m , bm

}
, (54)

where Aθ,J is defined as Aθ,J = (4c̃K,pM
2)(θJ−1)/(θ−1) for any J ∈ N and θ 6= 1.

Now we go back to our concrete examples. Due to the above analysis, we need to
determine bm,Mδ and J depending on the concerned cases.

When q = 1, then θ = 2p
p+2 < 1 and we can take bm = C ′1 log3(18/δ)m(1−β)τ with

C ′1 = 2C1 +6
√
cβ +12cβ. One can check that the inequality (50) is valid due to (41). Recall

the trivial bound (46) on ‖cz1‖1, which implies ‖cz1‖1 ≤ M2/γ = M2mτ for ∀z ∈ Zm. We
thus take Mδ = M2 and R(0) = M2mτ . From (54), we further find that

R(J) ≤ max

{(
4c̃K,pM

2
) 2+p

2−p M2, C ′1 log3(18/δ)
(
4c̃K,pM

2
) 2+p

2−p , C ′1 log3(18/δ)

}
mθ1 ,

where the power index θ1 is given by

θ1 = max

{(
2p

p− 2

(
2p

p+ 2

)J
− p+ 2

p− 2

)
τ − 2

p− 2

((
2p

p+ 2

)J
− 1

)
,

(1− β)τ, (1− β)τ +

((
2p

p+ 2

)J−1

− 1

)(
(1− β)τ +

(p+ 2)τ − 2

p− 2

)}
.
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Let J be the smallest integer such that(
2p

p− 2

(
2p

p+ 2

)J
− p+ 2

p− 2

)
τ − 2

p− 2

((
2p

p+ 2

)J
− 1

)
≤ 0

i.e., J is the integer satisfying

max

1,
log 2−(p+2)τ

2−2pτ

log 2p
p+2

 ≤ J < max

2,
log (2−(p+2)τ)p

(1−pτ)(p+2)

log 2p
p+2

 .

Then θ1 = (1− β)τ and

R(J) ≤
((

4c̃K,pM
2
) 2+p

2−p M2 + C ′1

)
log3(18/δ)m(1−β)τ .

Since Zm =W1(R(0)) and ρ
(
∪J−1
j=0 V

(1)

R(j)

)
≤ Jδ, the measure of the set W1(R(J)) is at least

1− Jδ. By scaling Jδ to δ, we derive the bound (48) with

C2 = 64

((
4c̃K,pM

2
) 2+p

2−p M2 + C ′1

)
.

Next we turn to the case 0 < q < 1 with q > max
{

2p
p+2 ,

p
p+2β

}
. The estimation in this

case is more involved. In order to determine bm and R(0) in this case, we need to use the
result just obtained for ‖cz1‖1. In fact, for any 0 < δ < 1 and 0 < τ < 2

p+2 , with confidence
1− δ/2 there holds

‖cz1‖1 ≤ C2 (log J(τ, p, 1) + log(2/δ))3m(1−β)τ , (55)

where J(τ, p, 1) is given by (47) at q = 1. The inequality (40) asserts that, with confidence
1− δ/2, there holds

E (πM (f̂q))− E (fρ) + γ‖czq‖qq ≤ 2c̃K,pM
2m
− 2

2+pR
2p

q(2+p)

+
1

2
C ′1 log3(36/δ)γβ + 2γm1−q‖cz1‖

q
1, ∀z ∈ Wq(R). (56)

It is easy to check under the restriction q > max
{

2p
p+2 ,

p
p+2β

}
, there holds 1−q

1−q(1−β) <
2

2+p

and 2p
q(2+p) < 1. Then we can take γ = m−τ with 1−q

1−q(1−β) < τ < 2
2+p . Combining (55) and

(56), we find that (50) is satisfied with bm = Bδm
α̃, where

Bδ =
(
C ′1 + 4Cq2

)
(log J(τ, p, 1))3q log3(36/δ) and α̃ = 1− q + q(1− β)τ.

We further define

R(0) = Mδm
τ and Mδ = M2 + Cq2 (log J(τ, p, 1) + log(1/δ))3q . (57)

Recall that the estimator f̂q satisfies Assumption 1. Then we have

γ‖czq‖qq ≤ Tγ,q(c
z
q) ≤ Tγ,q(c

z
1) ≤ Tγ,1(cz1) + γm1−q‖cz1‖

q
1 ≤ Tγ,1(0) + γm1−q‖cz1‖

q
1.
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Due to this inequality and the bound on ‖cz1‖1, one can easily check that with confidence
1− δ, there holds

‖czq‖qq ≤M2mτ +m1−q‖cz1‖
q
1 ≤Mδm

τ ,

where the last inequality is due to τ > 1−q
1−q(1−β) . Hence the measure of the set Wq(R

(0)) is

at least 1− δ. We thus can iteratively define R(j) as (52) with R(0) given by (57). Now we
can follow the same fashion to derive our desire bounds.

Since θ = 2p
q(p+2) < 1, due to the inequality (54), we have

R(J) ≤ max

{
Aθ,JM

θJ

δ , Aθ,J−1B
θJ−1

δ , Bδ

}
mθ2 ,

where θ2 is given by

max

{(
2p

2p− q(p+ 2)

(
2p

q(p+ 2)

)J
− q(p+ 2)

2p− q(p+ 2)

)
τ − 2q

2p− q(p+ 2)

((
2p

q(p+ 2)

)J
− 1

)
,

α̃, α̃+

((
2p

q(p+ 2)

)J−1

− 1

)(
α̃+

q(p+ 2)

2p− q(p+ 2)
τ − 2q

2p− q(p+ 2)

)}
.

We chose J to be the smallest integer such that

max

1,
log 2q−q(p+2)τ

2q−2pτ

log 2p
q(p+2)

 ≤ J < max

2,
log (2−(p+2)τ)p

(q−pτ)(p+2)

log 2p
q(p+2)

 .

Under the choice of J , we have θ2 = α̃,

R(J) ≤ (M2 + C ′1 + 4Cq2)
(
4c̃K,pM

2
) 2+p

2−p (log J(τ, p, 1))3q log3(36/δ)mα̃

and the measure of the set W1(R(J)) is at least 1 − (J + 1)δ. We thus can derive the
inequality (49) with

C̃2 = 64(M2 + C ′1 + 4Cq2)
(
4c̃K,pM

2
) 2+p

2−p

by scaling (J + 1)δ to δ.

4.3. Deriving the convergence rates

In this subsection, we estimate the total error for algorithm (2) and derive the explicit
convergence rates. Recall that for 0 < q ≤ 1, f̂q denotes the estimator given by the
algorithm (2).

Theorem 17 Assume that approximation assumption (14) with 0 < β ≤ 1 and capacity
condition (20) with 0 < p < 2 are valid. Let (δ, τ, q) ∈ (0, 1]3 and J(τ, p, q) be a constant
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given by (47). When q = 1, take γ = m−τ with 0 < τ < 2
2+p . Then with confidence 1 − δ,

there holds

‖f̂1 − fρ‖2L2
ρX
≤ C3 log(6/δ) (log(2/δ) + log(J(τ, p, 1)))6m−Θ̃, (58)

where

Θ̃ = min

{
2

2 + p
− 2(1− β)τ, βτ

}
. (59)

Additionally, if an estimator f̂q satisfies Assumption 1 with max
{

2p
p+2 ,

p
p+2β

}
< q < 1. Take

γ = m−τ with 1−q
1−q(1−β) < τ < 2

2+p . Then with confidence 1− δ, there holds

‖πM (f̂q)− fρ‖2L2
ρX
≤ C̃3 (log(9/δ) + log(J(τ, p, 1)) + log(J(τ, p, q) + 1))3m−(τ−α̃), (60)

where α̃ = 1− q+ q(1−β)τ . Here C3 and C̃3 are positive constants independent of m or δ.

Proof Recall that for any estimator f̂ under consideration, there holds

‖f̂ − fρ‖2L2
ρX

= E (f̂)− E (fρ).

Therefore, due to inequality (42) in Proposition 15, there is a subset ṼR of Zm with measure
at most δ such that

‖f̂ − fρ‖2L2
ρX
≤ 2(20 + c̃K,p)(3M + κ)2 log(3/δ)m

− 2
2+pR2

+C̃1 log3(18/δ) max
{
γβ−2m−2, γβ−1m

− 2
2+p , γβ

}
, ∀z ∈ W1(R)\ṼR.

Now we choose R to be the right-hand side of inequality (48), i.e.,

R = C2 (log(1/δ) + log(J(τ, p, 1)))3m(1−β)τ .

Then the measure of the setW1(R)\ ṼR is at least 1−2δ. So with confidence at least 1−2δ,
there holds

‖f̂1 − fρ‖2L2
ρX
≤ C3 max

{
log3(3/δ), log(3/δ) (log(1/δ) + log(J(τ, p, 1)))6

}
m−Θ̃,

where Θ̃ is given by (59) and

C3 = 54(20 + c̃K,p)(3M + κ)2C2
2 + 27C̃1.

Then we obtain the error bound (58) by scaling 2δ to δ.
Next we prove the error bound (60). Recalling the total error bound (40), for some

R ≥ 1, there is a subset V
(q)
R with measure at most δ such that

‖πM (f̂q)− fρ‖2L2
ρX
≤ 2c̃K,pM

2m
− 2

2+pR
2p

q(2+p)

+C̃ ′1 log3(18/δ) max
{
γβ−2m−2, γβ−1m

− 2
2+p , γβ

}
+ 2γm1−q‖cz1‖

q
1, ∀z ∈ Wq(R)\V (q)

R ,
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where C̃ ′1 = C1 + 3
√
cβ + 6cβ. Using the same argument, the inequality (48) ensures the

existence of a subset V ′1 with measure at most δ such that

‖cz1‖1 ≤ C2 (log(1/δ) + log(J(τ, p, 1)))3m(1−β)τ , ∀z ∈ Zm\V ′1 .

If we take R to be the right-hand side of the inequality (49), i.e.,

R = C̃2 (log J(τ, p, 1))3q (log(1/δ) + log(1 + J(τ, p, q)))3mα̃

with α̃ = 1− q+ q(1−β)τ . Then the measure of the setWq(R) is at least 1− δ. Combining

these bounds, for ∀z ∈ Wq(R)\(V (q)
R ∪ V ′1), there holds

‖πM (f̂q)− fρ‖2L2
ρX

≤ C̃3 log3(18/δ) (log(1/δ) + log(J(τ, p, 1)) + log(1 + J(τ, p, q)))
max

{
6p

q(2+p)
,3q
}
m−Θ̃1 ,

where C̃3 = 2c̃K,pM
2C̃

2p
q(2+p)

2 + C̃ ′1 + 2Cq2 and

Θ̃1 = min

{
2

2 + p
− 2p

q(p+ 2)
α̃,

2

2 + p
− (1− β)τ, βτ, τ − α̃

}
Note that the measure of the set Wq(R)\(V (q)

R ∪ V ′1) is at least 1 − 3δ. And under the

restrictions on τ , p and q, we have Θ̃1 = τ − α̃ and max
{

6p
q(2+p) , 3q

}
≤ 3. Then the error

bound (60) follows by scaling 3δ to δ. Thus we complete the proof.

Now we can prove Theorem 1 based on the error bound (58).
Proof [Proof of Theorem 1]. Recall that the function space H

K̃
is in the range of the integral

operator L
1/2

K̃
. Hence the assumption fρ ∈H

K̃
implies the approximation condition (14) is

valid with β = 1 (see Proposition 8.5 in Cucker and Zhou (2007)). The assumption on the
input space X ensures that X satisfies an interior cone condition (see Definition 9). Then
for an admissible kernel K ∈ C s with s > 0, due to the previous result obtained in Shi et
al. (2011) and Theorem 11, one can check that the capacity assumption (20) is achieved.
Concretely, when 0 < s < 2, p = 2d

d+2 min{1,s} ; when s ≥ 2, p can be chosen to be any

constant satisfying p > 2d
d+2bsc .

We just focus on the case s ≥ 2. For any 0 < ε ≤ Θ− 1
2 with Θ given by (5), the capacity

assumption is achieved for p > 2d
d+2bsc satisfying 2

2+p = Θ− ε
2 . We thus set τ = Θ− ε. Next

we need to bound the quantity J(τ, p, 1). In fact, as (2−(p+2)τ)p
(1−pτ)(p+2) =

1− p+2
2
τ

1−pτ ·
2p
p+2 , we further

have

log (2−(p+2)τ)p
(1−pτ)(p+2)

log 2p
p+2

=
log 1−pτ

1− p+2
2
τ

log p+2
2p

+ 1.

Then we substitute p = 2
Θ−ε/2 − 2 and τ = Θ− ε into the above equation. Combining the

restrictions for Θ and ε, we obtain

log (2−(p+2)τ)p
(1−pτ)(p+2)

log 2p
p+2

≤
log 4

ε(1−ε)

log 1
1−ε
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and

J(τ, p, 1) = max

2,
log (2−(p+2)τ)p

(1−pτ)(p+2)

log 2p
p+2

 ≤ log 4
ε(1−ε)

log 1
1−ε

:= Jε.

Now recall the general bound (58). Since β = 1, one can check that Θ̃ = τ = Θ− ε and the
bound (6) is valid with Cε = C3(Jε + 1)6. As the error bound for the case 0 < s < 2 can be
derived following the same way, we thus complete the proof of Theorem 1.

5. Sparsity analysis

In this section, we shall derive an asymptotical upper bound on
‖czq‖0
m , where czq denotes

the coefficient sequence of the estimator f̂q with 0 < q < 1. In order to do so, we need
a lower bound on the value of the non-zero elements in czq . Recall that for any vector
c = (c1, · · · , cm) ∈ Rm, the support set of c is given by supp(c) := {j ∈ {1, · · · ,m} : cj 6= 0}.

Proposition 18 Let I ⊆ {1, 2, · · · ,m} be a non-empty index set, 0 < q < 1 and c∗q =
(c∗q,1, · · · , c∗q,m) be a local minimizer of the following optimization problem

min
c∈Rm,supp(c)⊆I

 1

m

m∑
j=1

(
yj −

m∑
i=1

ciK(xj , xi)

)2

+ γ‖c‖qq

 . (61)

Then for i ∈ supp(c∗q), there holds

|c∗q,i| >
(
q(1− q)

2κ2

)1/(2−q)
γ1/(2−q), (62)

where κ = ‖K‖C (X×X). Moreover, if c∗q is a global minimizer of the optimization problem
(61), the above bound can be improved to

|c∗q,i| ≥
(

1− q
κ2

)1/(2−q)
γ1/(2−q). (63)

Proof Recall the target functional (3) to be optimized with c = (c1, · · · , cm) ∈ Rm, which
can be expressed as

Tγ,q(c) =
1

m

m∑
j=1

(
yj −

m∑
i=1

ciK(xj , xi)

)2

+ γ

m∑
i=1

|ci|q.

For i ∈ supp(c∗q), we define an univariate function as

hi(t) = Tγ,q(c
∗\i
q (t)), ∀t ∈ R,

where c
∗\i
q (t) = (c∗q,1, · · · , c∗q,i−1, t, c

∗
q,i+1, · · · , c∗q,m). As c∗q is a local minimizer of the opti-

mization problem (61), thus c∗q,i is a local minimizer of hi(t). We compute the first and the
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second derivative of hi(t) on the interval (c∗q,i−%, c∗q,i+%) for some % > 0. Since c∗q,i 6= 0, we
can choose a sufficiently small % such that 0 is not contained in the interval (ĉi − %, ĉi + %).
Then we obtain

h
′
i(t) =

2

m

m∑
j=1

∑
k 6=i

c∗q,kK(xj , xk) + tK(xj , xi)− yj

K(xj , xi) + γqsgn(t)|t|q−1

and

h
′′
i (t) =

2

m

m∑
j=1

K2(xi, xj)− γq(1− q)|t|q−2.

Recall that c∗q,i is a local minimizer of hi(t). Due to the optimality condition, we must

have h
′
i(c
∗
q,i) = 0 and h

′′
i (c∗q,i) > 0, i.e.,

2

m

m∑
j=1

(
m∑
k=1

c∗q,kK(xj , xk)− yj

)
K(xj , xi) + γqsgn(c∗q,i)|c∗q,i|q−1 = 0 (64)

and

2

m

m∑
j=1

K2(xj , xi)− γq(1− q)|c∗q,i|q−2 > 0. (65)

From the inequality (65), we have

γq(1− q)|c∗q,i|q−2 <
2

m

m∑
j=1

K2(xj , xi) ≤ 2κ2,

which leads to bound (62).

If c∗q is the global minimizer of the optimization problem (61), the global optimality of

c∗q implies c∗q,i is a global minimizer of hi(t). We thus have h
′
i(c
∗
q,i) = 0. Due to equation

(64), there holds

2

m

m∑
j=1

(
yj −

m∑
k=1

c∗q,kK(xj , xk)

)
K(xj , xi) = γqsgn(c∗q,i)|c∗q,i|q−1.

We multiply both sides of the above equation by c∗q,i and find that

2

m

m∑
j=1

(
yj −

m∑
k=1

c∗q,kK(xj , xk)

)
K(xj , xi)c

∗
q,i = γq|c∗q,i|q. (66)

Now we consider a new vector given by

c∗\iq (0) = (c∗q,1, · · · , c∗q,i−1, 0, c
∗
q,i+1, · · · , c∗q,m).
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We compare Tγ,q(c
∗\i
q (0)) with Tγ,q(c

∗
q) and find that

Tγ,q(c
∗
q)−Tγ,q(c

∗\i
q (0))

= − 1

m

m∑
j=1

{
2yj − 2

m∑
k=1

c∗q,kK(xj , xk) + c∗q,iK(xj , xi)

}
c∗q,iK(xj , xi) + γ|c∗q,i|q

=
2

m

m∑
j=1

{
m∑
k=1

c∗q,kK(xj , xk)− yj

}
K(xj , xi)c

∗
q,i −

1

m

m∑
j=1

K2(xj , xi)(c
∗
q,i)

2 + γ|c∗q,i|q.

From the equality (66), it follows that

Tγ,q(c
∗
q)−Tγ,q(c

∗\i
q (0)) = −γq|c∗q,i|q −

1

m

m∑
j=1

K2(xj , xi)(c
∗
q,i)

2 + γ|c∗q,i|q

≥ γ(1− q)|c∗q,i|q − κ2(c∗q,i)
2.

Recall that c∗q is a global minimizer of problem (61). The above inequality implies γ(1 −
q)|c∗q,i|q−κ2(c∗q,i)

2 ≤ 0, which leads to the lower bound (63). Thus we complete our proof.

Remark 19 We use the second order optimality condition to derive the lower bound on the
non-zero coefficients of a local minimizer in (61). Based on the same idea, a lower bound
estimation which is similar to (62) has been derived in Chen et al. (2010). However, our
analysis gives another lower bound when the solution is a global minimizer, which indicates
that the global optimality will help to improve the sparseness of the solutions.

It should be noticed that for a given kernel function K, the lower bounds presented in
Proposition 18 only depend on γ and q. Thus we can use these bounds to obtain some
universal results. When czq is a local minimizer of optimization problem (2) satisfying
Assumption 1, which implies that czq satisfies the condition of Proposition 18 for I =

{1, · · · ,m}. We can derive the upper bound on
‖czq‖0
m based on the lower bound (62).

Theorem 20 Assume that approximation assumption (14) with 0 < β ≤ 1 and capacity
condition (20) with 0 < p < 2 are valid, and the estimator f̂q satisfies Assumption 1 with

max

{
2p

p+ 2
,

p

p+ 2β

}
< q < 1.

Let (δ, τ) ∈ (0, 1)2 and J(τ, p, q) be a constant given by (47). Take γ = m−τ with 1−q
1−q(1−β) <

τ < 2
2+p . Then with confidence 1− δ, there holds

‖czq‖0
m

≤ Cq (log J(τ, p, 1))3q (log(1/δ) + log(1 + J(τ, p, q)))3m
q
(

τ
2−q−1+(1−β)τ

)
, (67)

where czq denotes the coefficient sequence of the estimator f̂q and Cq is a constant positive
constants depending on q, κ, c̃K,p, M and cβ.
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Proof From Proposition 18, if czq is a local minimizer of problem (2), then for i ∈ supp(czq),
there holds

|czq,i| >
(
q(1− q)

2κ2

)1/(2−q)
γ1/(2−q).

Equivalently, we have

1 <

(
q(1− q)

2κ2

)−q/(2−q)
γ−q/(2−q)|czq,i|q.

Note that the above inequality holds true for every czq,i with i ∈ supp(czq). Therefore, we
take a summation on both sides of the inequality according to i ∈ supp(czq) and find that

‖czq‖0 <
(
q(1− q)

2κ2

)−q/(2−q)
γ−q/(2−q)‖czq‖qq.

Now taking γ = m−τ with 1−q
1−q(1−β) < τ < 2

2+p and recalling the bound on ‖czq‖
q
q given by

(49), then the desired result is obtained with Cq = C̃2

(
q(1−q)

2κ2

)−q/(2−q)
. Thus we complete

the proof.

If czq is a global minimizer of algorithm (2), one can derive an upper bound on
‖czq‖0
m

from (63) following the same method. From the upper bound (67), we can see that if

τ < 2−q
1+(2−q)(1−β) , the quantity

‖czq‖0
m converges to 0 at a rate of polynomial decay as m

tends to infinity. At the end of this section, we give the proof of Theorem 3.
Proof [Proof of Theorem 3]. From the proof of Theorem 1, we know that under the
assumption of Theorem 3, the approximation condition (14) is valid with β = 1 and the
capacity assumption (20) can be satisfied with an arbitrarily small p > 0. We derive our
conclusions based on Theorem 17 and Theorem 20. We first check the restrictions for q
and τ . As β = 1, we thus find 1 − q < τ < 2

p+2 and 2p
2+p < q < 1. Note that p can be

arbitrarily closed to 0. Therefore, we can take τ and q to be any value in the interval (0, 1)
by choosing a small enough p. By the same argument, we can bound J(τ, p, q) by log 4

q(1−τ)

for 1 − q < τ < 1 and 0 < q ≤ 1. Therefore, from bound (60), the inequality (7) holds
with confidence 1− δ and C̃ = 8C̃3. Similarly, as a direct corollary of the bound (67), the
inequality (8) holds with confidence 1− δ and C̃ ′ = C̃2(1 + 2κ2). Finally, if the two bounds
hold together, we need to scale 2δ to δ. Thus we complete the proof.

6. Conclusion

In this paper, we investigate the sparse kernel regression with `q−regularization, where
0 < q ≤ 1. The data dependence nature of the kernel-based hypothesis space provides
flexibility for this algorithm. The regularization scheme is essentially different from the
standard one in an RKHS: the kernel is not necessarily symmetric or positive semi-definite
and the regularizer is the `q-norm of a function expansion involving samples. When the
underlying hypothesis space is finite-dimensional, the `q−regularization with 0 < q ≤ 1 is
well understood in theory and widely used in various applications such as compressed sensing
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and sparse recovery. However, its role in the non-parametric regression within an infinite-
dimensional hypothesis space has not been fully understood yet. In this paper, we develop
the mathematical analysis for the asymptotic convergence and sparseness of `q−regularized
kernel regression. We first present a tight bound on the `2−empirical covering numbers
of the kernel-based hypothesis space under `1−constrain, which is interesting on its own
right. We thus demonstrate that, compared with classical RKHS, the hypothesis space
involved in the error analysis induced by the non-symmetric kernel has nice behaviors in
terms of the `2-empirical covering numbers of its unit ball. Moreover, the empirical covering
number estimates developed in this paper can also be applied to obtain distribution-free
error analysis for other sparse approximation schemes, for example Guo, Fan and Zhou
(2016); Guo et al. (2017). Our theoretical analysis is based on the concentration estimates
with `2-empirical covering numbers, a refined iteration technique for `q−regularization and
a descent-iterative minimization process which can be realized by the `q−threshholding
function. Based on our analysis, we show that the `q−regularization term plays a role
as a trade-off between sparsity and convergence rates. We also prove that regularizing
the combinatorial coefficients by the `q−norm can produce strong sparse solutions, i.e.,
the fraction of non-zero coefficients converges to 0 at a polynomial rate when the sample
size m becomes large. Our mathematical analysis established in this paper can shed some
lights on understanding the role of the `q−regularization in feature selections in an infinite-
dimensional hypothesis space.
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Appendix A.

This appendix includes some detailed proofs.

A.1. Proof of Lemma 4

In this subsection, we shall prove Lemma 4.

Proof [Proof of Lemma 4]. It is easy to verify that the vector Ψη,q(d) is a global minimizer of
the problem (12) if and only if (Ψη,q(d))i is a global minimizer of minc∈R

{
|c− di|2 + η|c|q

}
,

where (Ψη,q(d))i denotes the i−th coordinate value of the vector Ψη,q(d). In the following
proof, we shall use x to denote a given constant. In order to prove our conclusion, we need to
find the global minimizer of the univariate function h(t) = t2− 2xt+ η|t|q, i.e., the solution
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of the minimization problem mint∈R
{
|t− x|2 + η|t|q

}
. Additionally, to ensure the well-

definedness of the map Ψη,q, we also need to show that under the restriction |x| > aqη
1/(2−q),

the equation (10) has only one solution on the interval [(q(1− q)η/2)1/(2−q),∞).

When x = 0, as η > 0, the function h(t) achieves its minimum at t = 0.

We first limit our discussion to the case x > 0. In this case, the function h is strictly
decreasing on (−∞, 0], hence all its possible minimizers are achieved on [0,∞). Let us
consider the difference between h(t) and h(0) for t > 0, i.e., h(t)− h(0) = t(t− 2x+ ηtq−1).
It is noticed that the function g(t) = t−2x+ηtq−1 is continuously differentiable on (0,∞) and
limt→0+ g(t) = limt→∞ g(t) =∞. So we take its derivative on (0,∞) and find that its unique

minimizer is given by t1 = ((1− q)η)1/(2−q). It follows that g(t) ≥ g(t1) = 2aqη
1

2−q − 2x for
all t > 0.

When 0 < x ≤ aqη
1/(2−q), then mint>0 g(t) = g(t1) ≥ 0 which implies h(t) − h(0) =

tg(t) ≥ 0 for t > 0. Hence, t = 0 is a global minimizer of h in this case.

And then we consider the case x > aqη
1/(2−q). One may see that t = 0 is not a global

minimizer of h, because g(t1) < 0 in this case, which implies h(t1) < h(0). In addition,
we have limt→∞ h(t) = ∞, thus the function h(t) achieves its minimum on the interval
(0,∞). We claim that this minimizer is given by t2, where t2 is the solution of the equation
h
′
(t) = 0 on the interval [(q(1 − q)η/2)1/(2−q),∞). It should be noticed that h

′
(t) = 0 is

exactly the equation given by (10) with x > 0. We thus consider the second derivative of h
given by h

′′
(t) = 2 + ηq(q − 1)tq−2. We first prove the existence and uniqueness of t2. In

fact, a direct computation shows that

h
′
((q(1− q)η/2)1/(2−q)) = 2(ηq)

1
2−q

(
1− q

2

) 1
2−q

+ (ηq)
1

2−q

(
1− q

2

) q−1
2−q
− 2x

= (2− q)
(

1− q
2

) q−1
2−q

(ηq)
1

2−q − 2x

≤ (2− q)
(

1− q
2

) q−1
2−q

q
1

2−q a−1
q x− 2x

=
(

2
3−2q
2−q q

1
2−q − 2

)
x < 0,

the first inequality is from x > aqη
1/(2−q) and the last inequality holds as q < 2q−1 for

0 < q < 1. We also observe that h
′′
(t) ≥ 0 on [(q(1−q)η/2)1/(2−q),∞), which implies h

′
(t) is

strictly increasing on this interval. Since h
′
(t) is continuous on (0,∞) and limt→∞ h

′
(t) =∞,

the equation h
′
(t) = 0 has a unique solution t2 on [(q(1 − q)η/2)1/(2−q),∞). Because

h
′
(t2) = 0 and h

′′
(t2) > 0, we also conclude that t2 is the only minimizer of h(t) on

[(q(1 − q)η/2)1/(2−q),∞). We further prove that t2 is actually the minimizer of h(t) on
(0,∞). We just need to show h(t) has no local minimizer on (0, (q(1− q)η/2)1/(2−q)). This
conclusion can be easily drawn from the fact that h

′′
(t) < 0 on (0, (q(1− q)η/2)1/(2−q)).

When x < 0, one can easily find that h(t) achieves its minimum on (−∞, 0]. Then for
t ∈ (−∞, 0], we can rewrite the function h(t) as (−t)2 + 2x(−t) + η(−t)q. Due to the same
analysis as above, we find that, when −aqη1/(2−q) ≤ x < 0, the global minimizer of h(t) is
t = 0; when x < −aqη1/(2−q), the minimizer of h(t) is given by the unique solution of the
equation 2(−t) + ηq(−t)q−1 + 2x = 0 on the interval (−∞,−(q(1− q)η/2)1/(2−q)].
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Finally, we combine all the cases together and find that for a given x ∈ R, a global
minimizer of h(t) is ψη,q(x) given by (9). Hence according to our analysis, if we evaluate
(Ψη,q(d))i as (11), the vector Ψη,q(d) is a global minimizer of the optimization problem
(12).

It is also easy to check that when |x| = aqη
1/(2−q), the univariate function h(t) has two

global minimizers given by 0 and 2−2q
2−q |x| respectively. Thus the vector Ψη,q(d) indeed gives

one global minimizer of problem (12). Finally we complete the proof.

Remark 21 A similar discussion about the global minimizer of h(t) can be found in Knight
and Fu (2000).

A.2. Proof of Proposition 5

In this subsection, we shall prove Proposition 5.
Proof [Proof of Proposition 5]. We first prove conclusion (i). Recall that c∗ = (c∗1, · · · , c∗m) ∈
Rm is a local minimizer of the objective functional Tγ,q(c) defined by (3) and 0 < λ ≤
q
2‖K‖

−2
2 . It is sufficient to prove that for i ∈ supp(c∗), i.e., c∗i 6= 0, there holds∣∣(c∗ + λKT (y −Kc∗)

)
i

∣∣ > aq(λγ)1/(2−q)

and c∗i = sgn
((

c∗ + λKT (y −Kc∗)
)
i

)
t∗i , where t∗i is the solution of the equation

2t+ λγqtq−1 − 2
∣∣(c∗ + λKT (y −Kc∗)

)
i

∣∣ = 0

on the interval [(q(1− q)λγ/2)1/(2−q),∞). Here (·)i denotes the i−th coordinate value of a
vector.

By the same argument in the proof of Proposition 18, for i ∈ supp(c∗), we have

2
(
KT (Kc∗ − y)

)
i
+ γqsgn(c∗i )|c∗i |q−1 = 0 (68)

and

2

m∑
j=1

K2
j,i > γq(1− q)|c∗i |q−2, (69)

where Kj,i denotes the (j, i)−th entry of the matrix K. We multiply both sides of the
inequality (69) by a positive λ. Since λ ≤ q

2‖K‖
−2
2 , we obtain

λγq(1− q)|c∗i |q−2 < 2λ
m∑
j=1

K2
j,i ≤ q,

which implies |c∗i | > ((1− q)λγ)1/(2−q).
We consider the case c∗i > 0. By equation (68), for c∗i > 0, there holds

2c∗i + λγq(c∗i )
q−1 = 2

(
c∗ + λKT (y −Kc∗)

)
i
,

which verifies that
(
c∗ + λKT (y −Kc∗)

)
i

is positive and c∗i is the zero point of

f(t) = 2t+ λγqtq−1 − 2
(
c∗ + λKT (y −Kc∗)

)
i
.
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Note that c∗i > ((1− q)λγ)1/(2−q) > (q(1− q)λγ/2)1/(2−q). Recalling the analysis in Lemma
4, we know that f(t) is monotonically increasing on the interval [(q(1− q)λγ/2)1/(2−q),∞).
We thus have f((λγ(1− q))1/(2−q)) < 0 which implies(

c∗ + λKT (y −Kc∗)
)
i
> aq(λγ)1/(2−q).

Therefore, we verify conclusion (i) for c∗i > 0. When c∗i < 0, we can prove it following the
same method.

Next, we shall prove the function ψη,q(x) defined by (9) is Lipschitz continuous and
strictly increasing for any |x| > aqη

1/(2−q). Then one can check that the proof of the rest two
conclusions are almost the same as the proof of Theorem 3 in Xu et al. (2012). Since ψη,q(x)
is an odd function, we only need to prove our desired result for x > aqη

1/(2−q). From (9),
when x > aqη

1/(2−q), ψη,q(x) is defined to be the solution of the equation 2t+ηqtq−1−2x = 0
on the interval [(q(1−q)η/2)1/(2−q),∞). Since the bivariate function F (t, x) = 2t+ηqtq−1−
2x is continuously differentiable inside [(q(1− q)η/2)1/(2−q),∞)× (aqη

1/(2−q),∞), we have
ψ
′
η,q(x) = 2

2−ηq(1−q)(ψη,q(x))q−2 due to the implicit function theorem. Obviously ψ
′
η,q(x) > 1

which implies ψη,q(x) is strictly increasing. In order to verify the Lipschitz continuity, we
still need an upper bound for ψ

′
η,q(x). To this end, we show that ψη,q(x) > (q(1−q)η)1/(2−q)

for x > aqη
1/(2−q). Also following the analysis of Lemma 4, it is equivalent to check that

when x > aqη
1/(2−q), there holds 2 (q(1− q)η)

1
2−q + ηq (q(1− q)η)

q−1
2−q − 2x < 0. Since when

x > aqη
1/(2−q), a simple calculation show that

2 (q(1− q)η)
1

2−q + ηq (q(1− q)η)
q−1
2−q − 2x < 2aqη

1/(2−q)
(

3− 2q

2− q
q1/(2−q) − 1

)
.

The left hand side of the above inequality can be further bounded by 0 as 3−2q
2−q q

1/(2−q) < 1

for 0 < q < 1. Hence ψη,q(x) > (q(1 − q)η)1/(2−q) for x > aqη
1/(2−q), which implies

ψ
′
η,q(x) < 2. We thus verify the Lipschitz continuity of ψη,q(x) for x > aqη

1/(2−q) and the
proof is completed.

A.3. Proof of Proposition 6

In this subsection, we shall prove Proposition 6.
Proof [Proof of Proposition 6]. We just prove the inequality (16), the bound (17) can be
derived by the same approach. Recall the definition of the projection operator πM (see
Definition 2). As ρ(·|x) is supported on [−M,M ] at every x ∈ X, it obviously implies
|yi| ≤M for i = 1, · · · ,m and Ez(πM (f̂q)) ≤ Ez(f̂q).

When 0 < q < 1, since the estimator f̂q satisfies Assumption 1, we have

Ez(f̂q) + γ‖czq‖qq ≤ Ez(f̂1) + γ‖cz1‖qq.

Therefore,

Ez(πM (f̂q)) + γ‖czq‖qq ≤ Ez(f̂q) + γ‖czq‖qq
≤ Ez(f̂1) + γ‖cz1‖qq
≤ Ez(f̂1) + γ‖cz1‖1 + γ‖cz1‖qq. (70)
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Note that the coefficient sequence of fz,γ is given by { 1
mgγ(xi)}mi=1 and f̂1 is the global

minimizer of problem (2) at q = 1. Hence, there holds

Ez(f̂1) + γ‖cz1‖1 ≤ Ez(fz,γ) + γm−1
m∑
i=1

|gγ(xi)|. (71)

A direct computation shows that

E (πM (f̂q))− E (fρ) + γ‖czq‖qq

= {E (πM (f̂q))− Ez(πM (f̂q))}+ {Ez(πM (f̂q)) + γ‖czq‖qq − Ez(fz,γ)− γm−1
m∑
i=1

|gγ(xi)|}

+{Ez(fz,γ)− E (fz,γ)}+ {γm−1
m∑
i=1

|gγ(xi)| − γ‖gγ‖L1
ρX
}+ {γ‖gγ‖L1

ρX
− γ‖gγ‖L2

ρX
}

+{E (fz,γ)− E (fγ)}+ {E (fγ)− E (fρ) + γ‖gγ‖L2
ρX
}.

From inequalities (70) and (71), the second term on the right hand side of the above equation
is at most γ‖cz1‖

q
q, which can be further bounded by γm1−q‖cz1‖

q
1 due to the reverse Hölder

inequality. The inequality ‖gγ‖L1
ρX
≤ ‖gγ‖L2

ρX
implies the fifth term is at most zero, thus

we obtain bound (16). Then the proof is completed.

A.4. Proof of Proposition 14

Now we concentrate our efforts on the proof of Proposition 14.

Definition 22 A function ψ : R+ → R+ is sub-root if it is non-negative, non-decreasing,
and if ψ(r)/

√
r is non-increasing.

It is easy to see for a sub-root function ψ and any D > 0, the equation ψ(r) = r/D
has unique positive solution. Proposition 14 can be proved based on the following lemma,
which is given in Blanchard et al. (2008).

Lemma 23 Let F be a class of measurable, square-integrable functions such that E(f)−f ≤
b for all f ∈ F . Let ψ be a sub-root function, D be some positive constant and r∗ be the
unique positive solution of ψ(r) = r/D. Assume that

∀r ≥ r∗, E

[
max

{
0, sup
f∈F ,Ef2≤r

(
E(f)− 1

m

m∑
i=1

f(zi)

)}]
≤ ψ(r). (72)

Then for all x > 0 and all T > D/7, with probability at least 1− e−x there holds

Ef − 1

m

n∑
i=1

f(Xi) ≤
Ef2

D
+

50T

D2
r∗ +

(T + 9b)x

m
, ∀f ∈ F . (73)

Proof [Proof of Proposition 14]. We assume that the function g in the concerned function
set satisfies ‖g‖∞ ≤ B and Eg2 ≤ cEg for some c,B > 0. In order to prove the conclusion,
we define the function set for R ≥ 1 as

GR =
{
g(z) = (πM (f)(x)− y)2 − (fρ(x)− y)2 : f ∈ BR

}
.
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We will apply Lemma 23 to GR and find the sub-root function ψ in our setting. To this
end, let σ1, · · · , σn be the independent Rademacher random variables, that is, independent
random variables for which Prob(σi = 1) = Prob(σi = −1) = 1/2. One can see Van der
Vaart and Wellner (1996) that

E

[
sup

g∈GR,Eg2≤r

∣∣∣∣∣Eg − 1

m

m∑
i=1

g(zi)

∣∣∣∣∣
]
≤ 2E

[
sup

g∈GR,Eg2≤r

∣∣∣∣∣ 1

m

m∑
i=1

σig(zi)

∣∣∣∣∣
]
. (74)

Next, we will bound the right-hand side of the above inequality by using the `2−empirical
covering numbers and entropy integral. Due to Van der Vaart and Wellner (1996), there is
an universal absolute constant C such that

1√
m
Eσ sup

g∈GR,Eg2≤r

∣∣∣∣∣
m∑
i=1

σig(zi)

∣∣∣∣∣ ≤ C
∫ √V

0
log

1
2
2 N2(GR, ν)dν, (75)

where V = supg∈GR,Eg2≤r
1
m

∑m
i=1 g

2(zi) and Eσ denotes the expectation with respect to the
random variables {σ1, · · · , σm} conditioned on all of the other random variables. Now we
use the capacity condition (20) for B1. It asserts that

log2 N2(B1, ε) ≤ cK,pε−p, ∀ 0 < ε ≤ 1.

For g1, g2 ∈ GR, we have

|g1(z)− g2(z)| = | (y − πM (f1)(x))2 − (y − πM (f2)(x))2 | ≤ 4M |f1(x)− f2(x)|.

Therefore, it follows that

N2 (GR, ε) ≤ N2

(
BR,

ε

4M

)
≤ N2

(
B1,

ε

4MR

)
≤ N2

(
B1,

ε

R1

)
where R1 = max{B, 4MR}. Then

log2 N2 (GR, ε) ≤ cK,pRp1ε
−p, ∀ 0 < ε ≤ R1.

Using equation (75), since V = supg∈GR,Eg2≤r
1
m

∑m
i=1 g

2(zi) and
√
V ≤ B ≤ R1, one easily

gets

1√
m
Eσ sup

g∈GR,Eg2≤r

∣∣∣∣∣
m∑
i=1

σig(zi)

∣∣∣∣∣ ≤ Cc1/2
K,pR

p/2
1

∫ √V
0

ν−p/2dν

= c̃K,pR
p/2
1

(
sup

g∈GR,Eg2≤r

1

m

m∑
i=1

g2(zi)

) 1
2
− p

4

, (76)

where c̃K,p = 2Cc
1/2
K,p(2−p)−1 depending on p and the kernel function K. For simplicity, the

constant c̃K,p may change from line to line in the following derivations. Due to Talagrand
(1994), one see that

E sup
g∈GR,Eg2≤r

1

m

m∑
i=1

g2(zi) ≤
8B

m
EEσ sup

g∈GR,Eg2≤r

∣∣∣∣∣
m∑
i=1

σig(zi)

∣∣∣∣∣+ r. (77)

39



Shi, Huang, Feng and Suykens

Therefore, from (76) and (77), we have

Rm :=
1√
m
EEσ sup

g∈GR,Eg2≤r

∣∣∣∣∣
m∑
i=1

σig(zi)

∣∣∣∣∣ ≤ c̃K,p
(
RmB√
m

+ r

) 1
2
− p

4

R
p/2
1 .

Solving the above inequality for Rm and substituting it to the equation (74), we have

E

[
sup

g∈GR,Eg2≤r

∣∣∣∣∣Eg − 1

m

m∑
i=1

g(zi)

∣∣∣∣∣
]
≤ c̃K,p max

{
B

2−p
2+pm

− 2
2+pR

2p
2+p

1 , r
1
2
− p

4m−
1
2R

p
2
1

}
≤ c̃K,pR

2p
2+p

1 max
{
B

2−p
2+pm

− 2
2+p , r

1
2
− p

4m−
1
2

}
,

where the last inequality is due to R1 ≥ 1 and 0 < p < 2. According to Lemma 23, one
may take ψ(r) to be the right-hand side of the above inequality. Then the solution r∗ to
the equation ψ(r) = r/D satisfies

r∗ ≤ c̃K,p max
{
D

4
2+p , DB

2−p
2+p

}
m
− 2

2+pR
2p

2+p

1 .

Recalling that Eg2 ≤ cEg, now we apply Lemma 23 to the function set GR by let T = D = 2c,
then with probability 1− e−x, there holds

Eg − 1

m

m∑
i=1

g(zi) ≤
1

2
Eg +

(2c+ 9b)x

m

+c̃K,p max
{
c

2−p
2+p , B

2−p
2+p

}
m
− 2

2+pR
2p

2+p

1 , ∀g ∈ GR.

For g ∈ GR, it is easy to verify that b = c = 16M2, B = 8M2 and R1 = max{4MR, 8M2} ≤
8M2R. From the above inequality, we obtain

Eg − 1

m

m∑
i=1

g(zi) ≤
1

2
Eg +

176M2x

m
+ c̃K,pM

2m
− 2

2+pR
2p

2+p ,∀g ∈ GR,

which is the exactly the inequality given by (37).
Next, we consider the function set defined as

G′R =
{
g(z) = (f(x)− y)2 − (fρ(x)− y)2 : f ∈ BR

}
.

Note that BR is a subset of C (X) and

‖f‖C (X) ≤ κR, ∀f ∈ BR,

where κ = ‖K‖C (X×X). Therefore, we have B = c = (3M + κR)2 and b = 2B for g ∈ G′R.
Moreover, ∀g1, g2 ∈ G′R, there holds

|g1(z)− g2(z)| = | (y − f1(x))2 − (y − f2(x))2 |
≤ |2y − f1(x)− f2(x)||f1(x)− f2(x)|
≤ 2(M + κR)|f1(x)− f2(x)|.
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Following the same analysis as above, we find that with probability 1− e−x,

Eg − 1

m

m∑
i=1

g(zi) ≤
1

2
Eg +

20(3M + κR)2x

m

+c̃K,p(3M + κ)
4−2p
2+p R

4−2p
2+p m

− 2
2+pR

2p
2+p

2 , ∀g ∈ G′R,

where R2 = max
{

(3M + κR)2, 2(M + κR)R
}
≤ (3M + κ)2R2. Hence, we obtain

Eg − 1

m

m∑
i=1

g(zi) ≤
1

2
Eg +

20(3M + κR)2x

m

+c̃K,p(3M + κ)2m
− 2

2+pR2, ∀g ∈ G′R,

which leads to the inequality (38).
Finally, we can derive the same bounds for −S(πM (f)) and −S(f) by considering the

function set −GR and −G′R. Thus we complete the proof.
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