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Abstract

We investigated the feature map inside deep neural networks (DNNs) by tracking the
transport map. We are interested in the role of depth—why do DNNs perform better
than shallow models?—and the interpretation of DNNs—what do intermediate layers do?
Despite the rapid development in their application, DNNs remain analytically unexplained
because the hidden layers are nested and the parameters are not faithful. Inspired by the
integral representation of shallow NNs, which is the continuum limit of the width, or the
hidden unit number, we developed the flow representation and transport analysis of DNNs.
The flow representation is the continuum limit of the depth, or the hidden layer number, and
it is specified by an ordinary differential equation (ODE) with a vector field. We interpret
an ordinary DNN as a transport map or an Euler broken line approximation of the flow.
Technically speaking, a dynamical system is a natural model for the nested feature maps.
In addition, it opens a new way to the coordinate-free treatment of DNNs by avoiding the
redundant parametrization of DNNs. Following Wasserstein geometry, we analyze a flow in
three aspects: dynamical system, continuity equation, and Wasserstein gradient flow. A key
finding is that we specified a series of transport maps of the denoising autoencoder (DAE),
which is a cornerstone for the development of deep learning. Starting from the shallow
DAE, this paper develops three topics: the transport map of the deep DAE, the equivalence
between the stacked DAE and the composition of DAEs, and the development of the double
continuum limit or the integral representation of the flow representation. As partial answers
to the research questions, we found that deeper DAEs converge faster and the extracted
features are better; in addition, a deep Gaussian DAE transports mass to decrease the
Shannon entropy of the data distribution. We expect that further investigations on these
questions lead to the development of an interpretable and principled alternatives to DNNs.

Keywords: representation learning, denoising autoencoder, flow representation, contin-
uum limit, backward heat equation, Wasserstein geometry, ridgelet analysis

1. Introduction

Despite the rapid development in their application, deep neural networks (DNN) remain
analytically unexplained. We are interested in the role of depth—why do DNNs perform
better than shallow models?—and the interpretation of DNNs—what do intermediate layers
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do? To the best of our knowledge, thus far, traditional theories, such as the statistical
learning theory (Vapnik, 1998), have not succeeded in completely answering the above
questions (Zhang et al., 2018). Existing DNNs lack interpretability; hence, a DNN is often
called a blackbox. In this study, we propose the flow representation and transport analysis
of DNNs, which provide us with insights into why DNNs can perform better and facilitate
our understanding of what DNNs do. We expect that these lines of study lead to the
development of an interpretable and principled alternatives to DNNs.

Compared to other shallow models, such as kernel methods (Shawe-Taylor and Cris-
tianini, 2004) and ensemble methods (Schapire and Freund, 2012), DNNs have at least
two specific technical issues: the function composition and the redundant and complicated
parametrization. First, a DNN is formally a composite gL ◦ · · · ◦ g0 of intermediate maps
g` (` = 0, . . . , L). Here, each g` corresponds to the `-th hidden layer. Currently, our un-
derstanding of learning machines is based on linear algebra, i.e., the basis and coefficients
(Vapnik, 1998). Linear algebra is compatible with shallow models because a shallow model
is a linear combination of basis functions. However, it has poor compatibility with deep
models because the function composition (f , g) 7→ f ◦ g is not assumed in the standard
definition of the linear space. Therefore, we should move to spaces where the function
composition is defined, such as monoids, semigroups, and dynamical systems. Second, the
standard parametrization of the NN, such as g`(x) =

∑p
j=1 c

`
jσ(a`j · x − b`j), is redundant

because there exist different sets of parameters that specify the same function, which causes
technical problems, such as local minima. Furthermore, it is complicated because the in-
terpretation of parameters is usually impossible, which results in the blackbox nature of
DNNs. Therefore, we need a new parametrization that is concise in the sense that different
parameters specify different functions and simple in the sense that it is easy to understand.

For shallow NNs, the integral representation theory (Murata, 1996; Candès, 1998; Son-
oda and Murata, 2017a) provides a concise and simple reparametrization. The integral
representation is derived by a continuum limit of the width or the number of hidden units.
Owing to the ridgelet transform or a pseudo-inverse operator of the integral representation
operator, it is concise and simple (see Section 1.3.2 for further details on the ridgelet trans-
form). Furthermore, in the integral representation, we can compute the parameters of the
shallow NN that attains the global minimum of the backpropagation training (Sonoda et al.,
2018). In the integral representation, thus far, the shallow NNs is no longer a blackbox,
and the training is principled. However, the integral representation is again based on linear
algebra, the scope of which does not include DNNs.

Inspired by the integral representation theory, we introduced the flow representation
and developed the transport analysis of DNNs. The flow representation is derived by a
continuum limit of the depth or the number of hidden layers. In the flow representation,
we formulate a DNN as a flow of an ordinary differential equation (ODE) ẋt = vt(xt)
with vector field vt. In addition, we introduced the transport map by which we call a
discretization x 7→ x + ft(x) of the flow. Specifically, we regard the intermediate map
g : Rm → Rn of an ordinary DNN as a transport map that transfers the mass at x ∈ Rm
toward g(x) ∈ Rn. Since the flow and transport map are independent of coordinates,
they enable us the coordinate-free treatment of DNNs. In the transport analysis, following
Wasserstein geometry (Villani, 2009), we track a flow by analyzing the three profiles of the
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Figure 1: Mass transportation in a deep neural network that classifies images of digits. In
the final hidden layer, the feature vectors have to be linearly separable because the output
layer is just a linear classifier. Hence, through the network, the same digits gradually
accumulate and different digits gradually separate.

flow: dynamical system, pushforward measure, and Wasserstein gradient flow (Ambrosio
et al., 2008) (see Section 2 for further details).

We note that when the input and the output differ in dimension, i.e., m 6= n, we sim-
ply consider that both the input space and the output space are embedded in a common
high-dimensional space. As a composite of transport maps leads to another transport map,
the transport map has compatibility with deep structures. In this manner, transportation
is a universal characteristic of DNNs. For example, let us consider a digit recognition prob-
lem with DNNs. We can expect the feature extractor in the DNN to be a transport map
that separates the feature vectors of different digits, similar to the separation of oil and
water (see Figure 1 for example). At the time of the initial submission in 2016, the flow
representation seemed to be a novel viewpoint of DNNs. At present, it is the mainstream
of development. For example, two important DNNs—residual network (ResNet) (He et al.,
2016) and generative adversarial net (GAN) (Goodfellow et al., 2014)—are now considered
to be transport maps (see Section 1.2 for a more detailed survey). Instead of directly investi-
gating DNNs in terms of the redundant and complex parametrization, we perform transport
analysis associated with the flow representation. We consider that the flow representation
is potentially concise and simple because the flow is independent of parametrization, and it
is specified by a single vector field v.

In this study, we demonstrate transport analysis of the denoising autoencoder (DAE).
The DAE was introduced by Vincent et al. (2008) as a heuristic modification to enhance
the robustness of the traditional autoencoder. The traditional autoencoder is an NN that
is trained as an identity map g(x) = x. The hidden layer of the network is used as a
feature map, which is often called the “code” because the activation pattern appears to be
random, but it surely encodes some information about the input data. On the other hand,
the DAE is an NN that is trained as a “denoising” map g(x̃) ≈ x of deliberately corrupted
inputs x̃. The DAE is a cornerstone for the development of deep learning or representation
learning (Bengio et al., 2013a). Although the corrupt and denoise principle is simple, it is
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successful and has inspired many representation learning algorithms (see Section 1.3.1 for
example). Furthermore, we investigate stacking (Bengio et al., 2007) of DAEs. Because
stacked DAE (Vincent et al., 2010) runs DAEs on the codes in the hidden layer, it has been
less investigated, so far.

The key finding is that when the corruption process is additive, i.e., x̃ = x + ε with
some noise ε, then the DAE g is given by the sum of the traditional autoencoder x̃ 7→ x̃
and a certain denoising term x̃ 7→ ft(x̃) parametrized by noise variance t:

gt(x̃) = x̃+ ft(x̃). (1)

From the statistical viewpoint, this equation is reasonable because the DAE amounts to
an estimation problem of the mean parameter. Obviously, (1) is a transport map because
the denoising term ft is a displacement vector from the origin x̃ and the noise variance t
is the transport time. Starting from the shallow DAE, this paper develops three topics:
the transport map of the deep DAE, the equivalence between the stacked DAE and the
composition of DAEs, and the development of the double continuum limit, or the integral
representation of the flow representation.

1.1. Contributions of This Study

In this paper, we introduce the flow representation of DNNs and develop the transport
analysis of DAEs. The contributions of this paper are listed below.

• We introduced the flow representation, which can avoid the redundancy and complex-
ity of the ordinary parametrization of DNNs.

• We specified the transport maps of shallow, deep, and infinitely deep DAEs, and
provided their statistical interpretations. The shallow DAE is an estimator of the
mean, and the deep DAE transports data points to decrease the Shannon entropy of
the data distribution. According to analytic and numerical experiments, we showed
that deep DAEs can extract much more information than shallow DAEs.

• We proved the equivalence between the stacked DAE and the composition of DAEs.
Because of the peculiar construction, it is difficult to formulate and understand stack-
ing. Nevertheless, by tracking the flow, we succeeded in formulating the stacked
DAE. Consequently, we can interpret the effect of the pre-training as a regularization
of hidden layers.

• We provided a new direction for the mathematical modeling of DNNs: the double
continuum limit or the integral representation of the flow representation. We presented
some examples of the double continuum limit of DAEs. In the integral representation,
the shallow NNs is no longer a blackbox, and the training is principled. We consider
that further investigations on the double continuum limit lead to the development of
an interpretable and principled alternatives to DNNs.
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Figure 2: The activation patterns in DeepFace gradually changes (Taigman et al., 2014).

1.2. Related Work

1.2.1. Why Deep?

Before the success of deep learning, traditional theories were skeptical of the depth concept.
According to approximation theory, (not only NNs but also) various shallow models can
approximate any function (Pinkus, 2005). According to estimation theory, various shallow
models can attain the minimax optimal ratio (Tsybakov, 2009). According to optimization
theory, the depth does nothing but increase the complexity of loss surfaces unnecessarily
(Boyd and Vandenberghe, 2004). In reality, of course, DNNs perform overwhelmingly better
than shallow models. Thus far, the learning theory has not succeeded in explaining the gap
between theory and reality (Zhang et al., 2017).

In recent years, these theories have changed drastically. For example, many authors
claim that the depth increases the expressive power in the exponential order while the
width does so in the polynomial order (Telgarsky, 2016; Eldan and Shamir, 2016; Cohen
et al., 2016; Yarotsky, 2017), and that DNNs can attain the minimax optimal ratio in wider
classes of functions (Schmidt-Hieber, 2017; Imaizumi and Fukumizu, 2019). Radical reviews
of the shape of loss surfaces (Dauphin et al., 2014; Choromanska et al., 2015; Kawaguchi,
2016; Soudry and Carmon, 2016), the implicit regularization by stochastic gradient descent
(Neyshabur, 2017), and the acceleration effect by over-parametrization (Nguyen and Hein,
2017; Arora et al., 2018) are ongoing. Besides the recent trends toward the rationalization of
deep learning, neutral yet interesting studies have been published (Ba and Caruana, 2014;
Lin et al., 2017; Poggio et al., 2017). In this study, we found that deep DAEs converge
faster and that the extracted features are different from each other.

1.2.2. What Do Deep Layers Do?

Traditionally, DNNs are said to construct the hierarchy of meanings (Hinton, 1989). In
convolutional NNs for image recognition, such hierarchies are empirically observed (Lee,
2010; Krizhevsky et al., 2012; Zeiler and Fergus, 2014). The hierarchy hypothesis seems to
be acceptable, but it lacks explanations as to how the hierarchy is organized.

Taigman et al. (2014) reported an interesting phenomenon whereby the activation pat-
terns in the hidden layers change by gradation from face-like patterns to codes. Inspired
by Figure 2, we came up with the idea of regarding the activation pattern as a coordinate
and the depth as the transport time.
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1.2.3. Flow Inside Neural Networks

At the time of the initial submission in 2016, the flow representation, especially the contin-
uum limit of the depth and collaboration with Wasserstein geometry, seemed to be a novel
viewpoint of DNNs. At present, it is the mainstream of development.

Alain and Bengio (2014) was the first to derive a special case of (1), which motivated
our study. Then, Alain et al. (2016) developed the generative model as a probabilistic
reformulation of DAE. The generative model was a new frontier at that time; now, it is
widely used in variational autoencoders (Kingma and Welling, 2014), generative adversarial
nets (GANs) (Goodfellow et al., 2014), minimum probability flows (Sohl-Dickstein et al.,
2015), and normalizing flows (Rezende and Mohamed, 2015). Generative models have high
compatibility with transport analysis because they are formulated as Markov processes.
In particular, the generator in GANs is exactly a transport map because it is a change-
of-distribution g : M → N from a normal distribution to a data distribution. From this
viewpoint, Arjovsky et al. (2017) succeeded in stabilizing the training process of GANs by
introducing Wasserstein geometry.

The skip connection in the residual network (ResNet) (He et al., 2016) is considered to be
a key structure for training a super-deep network with more than 1, 000 layers. Formally,
the skip connection is a transport map because it has an expression g(x) = x + f(x).
From this viewpoint, Nitanda and Suzuki (2018) reformulated the ResNet as a functional
gradient and estimated the generalization error, and Lu et al. (2018) unified various ResNets
as ODEs. In addition, Chizat and Bach (2018) proved the global convergence of stochastic
gradient descent (SGD) using Wasserstein gradient flow. Novel deep learning methods have
been proposed by controlling the flow (Ioffe and Szegedy, 2015; Gomez et al., 2017; Haber
and Ruthotto, 2018; Li and Hao, 2018; Chen et al., 2018).

We remark that in shrinkage statistics, the expression of the transport map x+ f(x) is
known as Brown’s representation of the posterior mean (George et al., 2006). Liu and Wang
(2016) analyzed it and proposed a Bayesian inference algorithm, apart from deep learning.

1.3. Background

1.3.1. Denoising Autoencoders

The denoising autoencoder (DAE) is a fundamental model for representation learning, the
objective of which is to capture a good representation of the data. Vincent et al. (2008)
introduced it as a heuristic modification of traditional autoencoders for enhancing robust-
ness. In the setting of traditional autoencoders, we train an NN as an identity map x 7→ x
and extract the hidden layer to obtain the so-called “code.” On the other hand, the DAE is
trained as a denoising map x̃ 7→ x of deliberately corrupted inputs x̃. Although the corrupt
and denoise principle is simple, it has inspired many next-generation models. In this study,
we analyze DAE variants such as shallow DAE, deep DAE (or composition of DAEs), in-
finitely deep DAE (or continuous DAE), and stacked DAE. Stacking (Bengio et al., 2007)
was proposed in the early stages of deep learning, and it remains a mysterious treatment
because it runs DAEs on codes in the hidden layer.

The theoretical justifications and extensions follow from at least five standpoints: man-
ifold learning (Rifai et al., 2011; Alain and Bengio, 2014), generative modeling (Vincent
et al., 2010; Bengio et al., 2013b, 2014), infomax principle (Vincent et al., 2010), learning
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dynamics (Erhan et al., 2010), and score matching (Vincent, 2011). The first three stand-
points were already mentioned in the original paper (Vincent et al., 2008). According to
these standpoints, a DAE extracts one of the following from the data set: a manifold on
which the data are arranged (manifold learning); the latent variables, which often behave as
nonlinear coordinates in the feature space, that generate the data (generative modeling); a
transformation of the data distribution that maximizes the mutual information (infomax);
good initial parameters that allow the training to avoid local minima (learning dynamics);
or the data distribution (score matching). A turning point appears to be the finding of the
score matching aspect (Vincent, 2011), which reveals that score matching with a special
form of the energy function coincides with a DAE. Thus, a DAE is a density estimator of
the data distribution µ. In other words, it extracts and stores information as a function
of µ. Since then, many researchers have avoided stacking deterministic autoencoders and
have developed generative density estimators (Bengio et al., 2013b, 2014) instead.

1.3.2. Integral Representation Theory and Ridgelet Analysis

The flow representation is inspired by the integral representation theory (Murata, 1996;
Candès, 1998; Sonoda and Murata, 2017a).

The integral representation

S[γ](x) =

∫
γ(a, b)σ(a · x− b)dλ(a, b) (2)

is a continuum limit of a shallow NN gp(x) =
∑p

j=1 cjσ(aj ·x−bj) as the hidden unit number
p → ∞. In S[γ], every possible nonlinear parameter (a, b) is “integrated out,” and only
linear parameters cj remain as a coefficient function γ(a, b). Therefore, we do not need to
select which (a, b)’s to use, which amounts to a non-convex optimization problem. Instead,
the coefficient function γ(a, b) automatically selects the (a, b)’s by weighting them. Similar
reparametrization techniques have been proposed for Bayesian NNs (Radford M. Neal, 1996)
and convex NNs (Bengio et al., 2006; Bach, 2017a). Once a coefficient function γ is given,
we can obtain an ordinary NN gp that approximates S[γ] by numerical integration. We also
remark that the integral representation S[γp] with a singular coefficient γp :=

∑p
j=1 cjδ(aj ,bj)

leads to an ordinary NN gp.

The advantage of the integral representation is that the solution operator—the ridgelet
transform—to the integral equation S[γ] = f and the optimization problem of L[γ] :=
‖S[γ]−f‖2 +β‖γ‖2 is known. The ridgelet transform with an admissible function ρ is given
by

R[f ](a, b) :=

∫

Rm

f(x)ρ(a · x− b)dx. (3)

The integral equation S[γ] = f is a traditional form of learning, and the ridgelet transform
γ = R[f ] satisfies S[γ] = S[R[f ]] = f (Murata, 1996; Candès, 1998; Sonoda and Murata,
2017a). The optimization problem of L[γ] is a modern form of learning, and a modified
version of the ridgelet transform gives the global optimum (Sonoda et al., 2018). These
studies imply that a shallow NN is no longer a blackbox but a ridgelet transform of the
data set. Traditionally, the integral representation has been developed to estimate the
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approximation and estimation error bounds of shallow NNs gp (Barron, 1993; Kůrková,
2012; Klusowski and Barron, 2017, 2018; Suzuki, 2018). Recently, the numerical integration
methods for R[f ] and S[R[f ]] were developed (Candès, 1998; Sonoda and Murata, 2014;
Bach, 2017b) with various f , including the MNIST classifier. Hence, by computing the
ridgelet transform of the data set, we can obtain the global minimizer without gradient
descent.

Thus far, the integral representation is known as an efficient reparametrization method
to facilitate understanding of the hidden layers, to estimate the approximation and estima-
tion error bounds of shallow NNs, and to calculate the hidden parameters. However, it is
based on linear algebra, i.e., it starts by regarding cj and σ(aj · x− bj) as coefficients and
basis functions, respectively. Therefore, the integral representation for DNNs is not trivial
at all.

1.3.3. Optimal Transport Theory and Wasserstein Geometry

The optimal transport theory (Villani, 2009) originated from the practical requirement in
the 18th century to transport materials at the minimum cost. At the end of the 20th
century, it was transformed into Wasserstein geometry, or the geometry on the space of
probability distributions. Recently, Wasserstein geometry has attracted considerable atten-
tion in statistics and machine learning. One of the reasons for its popularity is that the
Wasserstein distance can capture the difference between two singular measures, whereas the
traditional Kullback-Leibler distance cannot (Arjovsky et al., 2017). Another reason is that
it gives a unified perspective on a series of function inequalities, including the concentration
inequality. Computation methods for the Wasserstein distance and Wasserstein gradient
flow have also been developed (Peyré and Cuturi, 2018; Nitanda and Suzuki, 2018; Zhang
et al., 2018). In this study, we employ Wasserstein gradient flow (Ambrosio et al., 2008)
for the characterization of DNNs.

Given a density µ of materials in Rm, a density ν of final destinations in Rm, and a cost
function c : Rm × Rm → R associated with the transportation, under some regularity con-
ditions, there exist some optimal transport map(s) g : Rm → Rm that attain the minimum
transportation cost. Let W (µ, ν) denote the minimum cost of the transportation problem
from µ to ν. Then, it behaves as the distance between two probability densities µ and ν,
and it is called the Wasserstein distance, which is the start point of Wasserstein geometry.

When the cost function c is given by the `p-distance, i.e., c(x,y) = |x− y|p, the corre-
sponding Wasserstein distance is called the Lp-Wasserstein distance Wp(µ, ν). Let Pp(Rm)
be the space of probability densities on Rm that have at least the p-th moment. The distance
space Pp(Rm) equipped with Lp-Wasserstein distance Wp is called the Lp-Wasserstein space.
Furthermore, the L2-Wasserstein space (P2,W2) admits the Wasserstein metric g2, which
is an infinite-dimensional Riemannian metric that induces the L2-Wasserstein distance as
the geodesic distance. Owing to g2, the L2-Wasserstein space is an infinite-dimensional
manifold. On P2, we can introduce the tangent space TµP2 at µ ∈ P2, and the gradient
operator grad , which are fundamentals to define Wasserstein gradient flow. See Section 2
for more details.
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Figure 3: Three profiles of a flow analyzed in the transport analysis: dynamical system in
Rm described by vector field (or transport map) (left), pushforward measure described by
continuity equation in Rm (center), and Wasserstein gradient flow in P2(Rm) (right).

Organization of This Paper

In Section 2, we describe the framework of transport analysis, which combines a quick intro-
duction to dynamical systems theory, optimal transport theory, and Wasserstein gradient
flow. In Section 3 and 4, we specify the transport maps of shallow, deep, and infinitely
deep DAEs, and we give their statistical interpretations. In Section 5, we present analytic
examples and the results of numerical experiments. In Section 6, we prove the equivalence
between the stacked DAE and the composition of DAEs. In Section 7, we develop the
integral representation of the flow representation.

Remark

After the initial submission of the manuscript in 2016, the present manuscript has been
substantially reorganized and updated. The authors presented the digests of some results
from Section 3, 4 and 7 in two workshops (Sonoda and Murata, 2017b,c).

2. Transport Analysis of Deep Neural Networks

In the transport analysis, we regard a deep neural network as a transport map, and we track
the flow in three scales: microscopic, mesoscopic, and macroscopic. Wasserstein geometry
provides a unified framework for bridging these three scales. In each scale, we analyze three
profiles of the flow: dynamical system, pushforward measure, and Wasserstein gradient flow.

First, on the microscopic scale, we analyze the transport map gt : Rm → Rm, which
simply describes the transportation of every point. In continuum mechanics, this viewpoint
corresponds to the Eulerian description. The transport map gt is often associated with
a velocity field vt that summarizes all the behavior of gt by an ODE or the continuous
dynamical system: ∂tgt(gt(x)) = vt(gt(x)). We note that, as suggested by chaos theory, it
is generally difficult to track a continuous dynamics.

Second, on the mesoscopic scale, we analyze the pushforward µt or the time evolution
of the data distribution. In continuum mechanics, this viewpoint corresponds to the La-
grangian description. When the transport map is associated with a vector field vt, then the
corresponding distributions evolve according to a partial differential equation (PDE) or the
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continuity equation ∂tµt = −∇ · [vtµt]. We note that, as suggested by fluid dynamics, it is
generally difficult to track a continuity equation.

Finally, on the macroscopic scale, we analyze the Wasserstein gradient flow or the trajec-
tories of time evolution of µt in the space P(Rm) of probability distributions on Rm. When
the transport map is associated with a vector field vt, then there exists a time-independent
potential functional F on P(Rm) such that an evolution equation or the Wasserstein gradi-
ent flow µ̇t = −gradF [µt] coincides with the continuity equation. We remark that tracking
a Wasserstein gradient flow may be easier compared to the two above-mentioned cases,
because the potential functional is independent of time.

2.1. Transport Map and Flow

In the broadest sense, a transport map is simply a measurable map g : M → N between
two probability spaces M and N (see Definition 1.2 in Villani, 2009, for example). In this
study, we use the term as an update rule. Depending on the context, we distinguish the
term “flow” from “transport map.” While a flow is associated with a continuous dynamical
system, a transport map is associated with a discrete dynamical system. We understand
that a transport map arises as a discretization of a flow. An ordinary DNN coincides with
a transport map, and the depth continuum limit coincides with a flow.

Definition 1 A transport map g : Rm → Rm is a measurable map given by

{
gt(x) = x+ ft(x), x ∈ Rm, t > 0

g0(x) = x, x ∈ Rm, t = 0,
(4)

with an update vector ft.

Definition 2 A flow ϕt is given by an ordinary differential equation (ODE),

{
ϕ̇t(x) = vt(ϕt(x)), x ∈ Rm, t > 0

ϕ0(x) = x, x ∈ Rm, t = 0,
(5)

with a velocity field vt.

In particular, we are interested in the case when the update rule (4) is a tangent line
approximation of a flow (5). i.e., gt satisfies

lim
t→0

gt(x)− x
t

= v0(x), x ∈ Rm (6)

for some vt. In this case, the velocity field vt is the only parameter that determines the
transport map.

2.2. Pushforward Measure and Continuity Equation

In association with the mass transportation x 7→ gt(x), the data distribution µ0 itself
changes its shape to, say, µt (see Figure 4, for example). Technically speaking, µt is called
(the density of) the pushforward measure of µ0 by gt, and it is denoted by gt]µ0.
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Definition 3 Let µ be a Borel measure on M and g : M → N be a measurable map. Then,
g]µ denotes the image measure (or pushforward) of µ by g. It is a measure on N , defined
by (g]µ)(B) = µ ◦ g−1(B) for every Borel set B ⊂ N .

The pushforward µt is calculated by the change-of-variables formula. In particular,
the following extended version by Evans and Gariepy (2015, Theorem 3.9) from geometric
measure theory is useful.

Fact 1 Let g : Rm → Rn be Lipschitz continuous, m ≤ n, and µ be a probability density on
Rm. Then, the pushforward g]µ satisfies

g]µ ◦ g(x)[∇g](x) = µ(x), a.e.x. (7)

Here, the Jacobian is defined by

[∇g] =
√

det |(∇g)∗ ◦ (∇g)|. (8)

The continuity equation describes the one-to-one relation between a flow and the push-
forward.

Fact 2 Let ϕt be the flow of an ODE (5) with vector field vt. Then, the pushforward µt of
the initial distribution µ0 evolves according to the continuity equation

∂tµt(x) = −∇ · [µt(x)vt(x)], x ∈ Rm, t ≥ 0. (9)

Here, ∇· denotes the divergence operator in Rm.

The continuity equation is also known as the conservation of mass formula, and this relation
between the partial differential equation (PDE) (9) and the ODE (5) is a well-known fact
in continuum physics (Villani, 2009, pp.19). See Appendix B for a sketch of the proof and
Ambrosio et al. (2008, § 8) for more detailed discussions.

2.3. Wasserstein Gradient Flow Associated with Continuity Equation

In addition to the ODE and PDE in Rm, we introduce the third profile: the Wasserstein
gradient flow or the evolution equation in the space of the probability densities on Rm. The
Wasserstein gradient flow has a distinct advantage that the potential functional F of the
gradient flow is independent of time t; on the other hand, the vector field vt is usually time-
dependent. Furthermore, it often facilitates the understanding of transport maps because
we will see that both the Boltzmann entropy and the Renyi entropy are examples of F .

Let P2(Rm) be the L2-Wasserstein space defined in Section 1.3.3, and let µt ∈ P2(Rm)
be the solution of the continuity equation (9) with initial distribution µ0 ∈ P2(Rm). Then,
the map t 7→ µt plots a curve in P2(Rm). According to the Otto calculus (Villani, 2009,
§ 23), this curve coincides with a functional gradient flow in P2(Rm), called the Wasserstein
gradient flow, with respect to some potential functional F : P2(Rm)→ R.

Specifically, we further assume that the vector field vt is given by the gradient vector
field ∇Vt of a potential function Vt : Rm → R.
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Fact 3 Assume that µt satisfies the continuity equation with the gradient vector field,

∂tµt = −∇ · [µt∇Vt], (10)

and that we have found F that satisfies the following equation:

d

dt
F [µt] =

∫

Rm

∇Vt(x)[∂tµt](x)dx. (11)

Then, the Wasserstein gradient flow

d

dt
µt = −gradF [µt], (12)

coincides with the continuous equation.

Here, grad denotes the gradient operator on L2-Wasserstein space P2(Rm) explained in
Section 1.3.3. While (12) is an evolution equation or an ODE in P2(Rm), (9) is a PDE in
Rm. Hence, we use different notations for the time derivatives, d

dt and ∂t.

3. Denoising Autoencoder

We formulate the denoising autoencoder (DAE) as a variational problem, and we show
that the minimizer g∗ or the training result is a transport map. Even though the term
“DAE” refers to a training procedure of neural networks, we refer to the minimizer of
DAE also as a “DAE.” We further investigate the initial velocity vector field ∂tgt=0 for
mass transportation, and we show that the data distribution µt evolves according to the
continuity equation.

For the sake of simplicity, we assume that the hidden unit number of NNs is sufficiently
large (or infinite), and thus the NNs can always attain the minimum. Furthermore, we
assume the the size of data set is sufficiently large (or infinite). In the case when the hidden
unit number and the size of data set are both finite, we understand the DAE g is composed
of the minimizer g∗ and the residual term h. Namely, g = g∗ + h. However, theoretical
investigations on the approximation and estimation error h remain as our future work.

3.1. Training Procedure of DAE

Let x be an m-dimensional random vector that is distributed according to the data distri-
bution µ0, and let x̃ be its corruption defined by

x̃ = x+ ε, ε ∼ νt

where νt denotes the noise distribution parametrized by variance t ≥ 0. A basic example of
νt is the Gaussian noise with mean 0 and variance t, i.e., νt = N(0, tI).

The DAE is a function that is trained to remove corruption x̃ and restore it to the
original x; this is equivalent to finding a function g that minimizes an objective function,
i.e.,

L[g] := Ex,x̃|g(x̃)− x|2. (13)

12
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Note that as long as g is a universal approximator and can thus attain the minimum, it
need not be a neural network. Specifically, our analysis in this section and the next section
is applicable to a wide range of learning machines. Typical examples of g include neural
networks with a sufficiently large number of hidden units, splines (Wahba, 1990), kernel
machines (Shawe-Taylor and Cristianini, 2004) and ensemble models (Schapire and Freund,
2012).

3.2. Transport Map of DAE

Theorem 4 (Modification of Theorem 1 by Alain and Bengio, 2014). The global minimum
g∗t of L[g] is attained at

g∗t (x̃) =
1

νt ∗ µ0(x̃)

∫

Rm

xνt(x̃− x)µ0(x)dx, (14)

= x̃− 1

νt ∗ µ0(x̃)

∫

Rm

ενt(ε)µ0(x̃− ε)dε
︸ ︷︷ ︸

=:ft(x̃)

, (15)

where ∗ denotes the convolution operator.

Here, the second equation is simply derived by changing the variable x ← x̃ − ε (see
Appendix A for the complete proof, where we used the calculus of variations). Note that
this calculation first appeared in Alain and Bengio (2014, Theorem 1), where the authors
obtained (14).

The DAE g∗t (x) is composed of the identity term x and the denoising term ft(x). If we
assume that νt → δt as t→ 0, then in the limit t→ 0, the denoising term ft(x) vanishes and
DAE reduces to a traditional autoencoder. We reinterpret the DAE g∗t (x) as a transport
map with transport time t that transports the mass at x ∈ Rm toward x+ft(x) ∈ Rm with
displacement vector ft(x).

3.3. Statistical Interpretation of DAE

In statistics, (15) is known as Brown’s representation of the posterior mean (George et al.,
2006). This is not just a coincidence, because the DAE g∗t is an estimator of the mean.
Recall that a DAE is trained to retain the original vector x, given its corruption x̃ = x+ε.
At least in principle, this is nonsense because to retain x from x̃ means to reverse the
random walk x̃ = x + ε (in Figure 4, the multimodal distributions µ0.5 and µ1.0 indicate
its difficulty). Obviously, this is an inverse problem or a statistical estimation problem of
the latent vector x, given the noised observation x̃ with the observation model x̃ = x+ ε.
According to a fundamental fact of estimation theory, the minimum mean squared error
(MMSE) estimator of x given x̃ is given by the posterior mean E[x|x̃]. In our case, the
posterior mean equals g∗t .

E[x|x̃] =

∫
Rm xp(x̃ | x)p(x)dx∫
Rm p(x̃ | x′)p(x′)dx′

=
1

νt ∗ µ0(x̃)

∫

Rm

xνt(x̃− x)µ0(x)dx = g∗t (x̃). (16)

Similarly, we can interpret the denoising term ft(x̃) as the posterior mean E[ε|x̃] of noise
ε given observation x̃.

13
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3.4. Examples: Gaussian DAE

When the noise distribution is Gaussian with mean 0 and covariance tI, i.e.,

νt(ε) =
1

(2πt)m/2
e−|ε|

2/2t,

the transport map is calculated as follows.

Theorem 5 The transport map g∗t of Gaussian DAE is given by

g∗t (x̃) = x̃+ t∇ log[νt ∗ µ0](x̃). (17)

Proof The proof is straightforward by using Stein’s identity,

−t∇νt(ε) = ε νt(ε),

which is known to hold only for Gaussians.

g∗t (x̃) = x̃− 1

νt ∗ µ0(x̃)

∫

Rm

ενt(ε)µ0(x̃− ε)dε

= x̃+
1

νt ∗ µ0(x̃)

∫

Rm

t∇νt(ε)µ0(x̃− ε)dε

= x̃+
t∇νt ∗ µ0(x̃)

νt ∗ µ0(x̃)

= x̃+ t∇ log[νt ∗ µ0(x̃)]. �

Theorem 6 At the initial moment t → 0, the pushforward µt of Gaussian DAE satisfies
the backward heat equation

∂tµt=0(x) = −4µ0(x), x ∈ Rm, (18)

where 4 denotes the Laplacian.

Proof The initial velocity vector is given by the Fisher score

∂tg
∗
t=0(x) = lim

t→0

g∗t (x)− x
t

= ∇ logµ0(x). (19)

Hence, by substituting the score (19) in the continuity equation (9), we have

∂tµt=0(x) = −∇ · [µ0(x)∇ logµ0(x)] = −∇ · [∇µ0(x)] = −4µ0(x). �

The backward heat equation (BHE) rarely appears in nature. However, of course, the
present result is not an error. As mentioned in Section 3.3, the DAE solves an estimation
problem. Therefore, in the sense of the mean, the DAE behaves as time reversal. We remark
that, as shown by Figure 4, a training result of a DAE with a real NN on a finite data set
does not converge to a perfect time reversal of a diffusion process.
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Figure 4: Shallow Gaussian DAE, which is one of the most fundamental versions of DNNs,
transports mass, from the left to the right, to decrease the Shannon entropy of data. The
x-axis represents the 1-dimensional input/output space, the t-axis represents the variance
of the Gaussian noise, and t is the transport time. The leftmost distribution depicts the
original data distribution µ0 = N(0, 1). The middle and rightmost distributions depict
the pushforward µt = gt]µ0, associated with the transportation by two DAEs with noise
variance t = 0.5 and t = 1.0, respectively. As t increases, the variance of the pushforward
decreases.

4. Deep DAEs

We introduce the composition gL ◦ · · · ◦ g0 of DAEs g` : Rm → Rm and its continuum limit:
the continuous DAE ϕt : Rm → Rm. We can understand the composition of DAEs as the
Euler scheme or the broken line approximation of a continuous DAE.

For the sake of simplicity, we assume that the hidden unit number of NNs is infinite,
and that the size of data set is infinite.

4.1. Composition of DAEs

We write 0 = t0 < t1 < · · · < tL+1 = t. We assume that the input vector x0 ∈ Rm is subject
to a data distribution µ0. Let g0 : Rm → Rm be a DAE that is trained on µ0 with noise
variance t1 − t0. Then, let x1 := g0(x0), which is a random vector in Rm that is subject
to the pushforward µ1 := g0]µ0. We train another DAE g1 : Rm → Rm on µ1 with noise
variance t2− t1. By repeating the procedure, we obtain g`(x`) from x`−1 that is subject to
µ` := g(`−1)]µ`−1.

For the sake of generality, we assume that each component DAE is given by

g`(x) = x+ (t`+1 − t`)∇Vt`(x), (` = 0, . . . , L) (20)
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M M M M M M
g`=0 g`=1 g`=2 g`=3 g`=4

Figure 5: Composition of DAEs gt0:4 : M → M , or the composite of five shallow DAEs
M →M , where M = R3

where Vt` denotes a certain potential function. For example, the Gaussian DAE satisfies
the requirement because Vt` = log[νt` ∗ µt` ].

We abbreviate the composition of DAEs by

gt0:L(x) := gL ◦ · · · ◦ g0(x). (21)

By definition, the “velocity” of a composition of DAEs coincides with the vector field

g
t`+1

0:` (x)− gt`0:(`−1)(x)

t`+1 − t`
= ∇Vt`(x). (22)

4.2. Continuous DAE

We fix the total time t, take the limit L → ∞ of the layer number L, and introduce the
continuous DAE as the limit of the “infinite composition of DAEs” limL→∞ g

t
0:L.

Definition 4 We call the solution operator or flow ϕt : Rm → Rm of the following dynam-
ical systems as the continuous DAE associated with vector field ∇Vt.

d

dt
x(t) = ∇Vt(x(t)), t ≥ 0. (23)

Proof According to the Cauchy-Lipschitz theorem or the Picard-Lindelöf theorem, when
the vector field ∇Vt is continuous in t and Lipschitz in x, the limit limL→∞ g0:L converges
to a continuous DAE (23) because the trajectory t 7→ g0:L(x0) corresponds to a broken line
approximation of the integral curve t 7→ ϕt(x).

The following properties are immediate from Fact 2 and Fact 3. Let ϕt : Rm → Rm be
the continuous DAE associated with vector field ∇Vt. Given the data distribution µ0, the
pushforward µt := (ϕt)]µ0 evolves according to the continuity equation

∂tµt(x) = −∇ · [µt(x)∇Vt(x)], t ≥ 0 (24)
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and the Wasserstein gradient flow

d

dt
µt = −gradF [µt], t ≥ 0 (25)

where F is given by (11).

4.3. Example: Gaussian DAE

We consider a continuous Gaussian DAE ϕt trained on µ0 ∈ P2(Rm). Specifically, it satisfies

d

dt
x(t) = ∇ log[µt(x(t))], t ≥ 0 (26)

with µt := ϕt]µ0.

Theorem 7 The pushforward µt := ϕt]µ0 of the continuous Gaussian DAE ϕt is the so-
lution to the initial value problem of the backward heat equation (BHE)

∂tµt(x) = −4µt(x), µt=0(x) = µ0(x). (27)

The proof is immediate from Theorem 6.

As mentioned after Theorem 6, the BHE appears because the DAE solves an estimation
problem. We remark that the BHE is equivalent to the following final value problem for the
ordinary heat equation:

∂tut(x) = 4ut(x), ut=T (x) = µ0(x) for some T

where ut denotes a probability measure on Rm. Indeed, µt(x) = uT−t(x) solves (27). In
other words, the backward heat equation describes the time reversal of an ordinary diffusion
process.

According to Wasserstein geometry, an ordinary heat equation corresponds to a Wasser-
stein gradient flow that increases the Shannon entropy functionalH[µ] := −

∫
µ(x) logµ(x)dx

(Villani, 2009, Th. 23.19). Consequently, we can conclude that the continuous Gaussian
DAE is a transport map that decreases the Shannon entropy of the data distribution.

Theorem 8 The pushforward µt := ϕt]µ0 evolves according to the Wasserstein gradient
flow with respect to the Shannon entropy

d

dt
µt = −gradH[µt], µt=0 = µ0. (28)

Proof When F = H, then Vt = − logµt; thus,

gradH[µt] = ∇ · [µt∇ logµt] = ∇ · [∇µt] = 4µt,

which means that the continuity equation reduces to the backward heat equation.
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4.4. Example: Renyi Entropy

Similarly, when F is the Renyi entropy

Hα[µ] :=

∫

Rm

µα(x)− µ(x)

α− 1
dx,

then gradHα[µt] = 4µαt (see Ex. 15.6 in Villani, 2009, for the proof) and thus the continuity
equation reduces to the backward porous medium equation

∂tµt(x) = −4µαt (x). (29)

5. Further Investigations on Shallow and Deep DAEs through Examples

5.1. Analytic Examples

We list analytic examples of shallow and continuous DAEs (see Appendix D for further
details, including proofs). In all the settings, the continuous DAEs attain a singular measure
at some finite t > 0 with various singular supports that reflect the initial data distribution
µ0, while the shallow DAEs accept any t > 0 and degenerate to a point mass as t→∞.

5.1.1. Univariate Normal Distribution

When the data distribution is a univariate normal distribution N(m0, σ0), the transport
map and pushforward for the shallow DAE are given by

gt(x) =
σ2

0

σ2
0 + t

x+
t

σ2
0 + t

m0, (30)

µt = N

(
m0,

σ2
0

(1 + t/σ2
0)2

)
, (31)

and those of the continuous DAE are given by

gt(x) =
√

1− 2t/σ2
0(x−m0) +m0, (32)

µt = N(m0, σ
2
0 − 2t). (33)

5.1.2. Multivariate Normal Distribution

When the data distribution is a multivariate normal distribution N(m0,Σ0), the transport
map and pushforward for the shallow DAE are given by

gt(x) = (I + tΣ−1
0 )−1x+ (I + t−1Σ0)−1m0, (34)

µt = N(m0,Σ0(I + tΣ−1
0 )−2), (35)

and those of the continuous DAE are given by

gt(x) =

√
I − 2tΣ−1

0 (x−m0) +m0, (36)

µt = N(m0,Σ0 − 2tI). (37)
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5.1.3. Mixture of Multivariate Normal Distributions

When the data distribution is a mixture of multivariate normal distributions
∑K

k=1wkN(mk,Σk)
with the assumption that it is well separated, the transport map and pushforward for the
shallow DAE are given by

gt(x) =
K∑

k=1

γkt(x)
{

(I + tΣ−1
k )−1x+ (I + t−1Σk)

−1mk

}
, (38)

µt ≈
K∑

k=1

wkN(mk,Σk(I + tΣ−1
k )−2), (39)

with responsibility function

γkt(x) :=
wkN(x;mk,Σk + tI)

∑K
k=1wkN(x;mk,Σk + tI)

, (40)

and those of the continuous DAE are given by

gt(x) ≈
√
I − 2tΣ−1

k (x−mk) +mk, (41)

µt =
K∑

k=1

wkN(mk,Σk − 2tI), (42)

with responsibility function

γkt(x) :=
wkN(x;mk,Σk − 2tI)

∑K
k=1wkN(x;mk,Σk − 2tI)

. (43)

Here, we say that the mixture
∑K

k=1wkN(mk,Σk) is well separated when for every cluster
center mk, there exists a neighborhood Ωk of mk such that N(Ωk;mk,Σk) ≈ 1 and γkt ≈
1Ωk

.

5.2. Numerical Example of Trajectories

We employed 2-dimensional examples, in order to visualize the difference of vector fields be-
tween the shallow and deep DAEs. In the examples below, every trajectories are drawn into
attractors, however the shape of the attractors and the speed of trajectories are significantly
different between shallow and deep.

5.2.1. Bivariate Normal Distribution

Figure 6 compares the trajectories of four DAEs trained on the common data distribution

µ0 = N

(
[0, 0],

[
2 0
0 1

])
. (44)

The transport maps for computing the trajectories are given by (34) for the shallow DAE
and composition of DAEs, and by (36) for the continuous DAE. Here, we applied (34)
multiple times for the composition of DAEs.
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The continuous DAE converges to an attractor lying on the x-axis at t = 1/2. By
contrast, the shallow DAE slows down as t→∞ and never attains the singularity in finite
time. As L tends to infinity, gt0:L plots a trajectory similar to that of the continuous DAE
ϕt; the curvature of the trajectory changes according to ∆t.

5.2.2. Mixture of Bivariate Normal Distributions

Figure 7, 8, and 9 compare the trajectories of four DAEs trained on the three common data
distributions

µ0 = 0.5N

(
[−1, 0],

[
1 0
0 1

])
+ 0.5N

(
[1, 0],

[
1 0
0 1

])
, (45)

µ0 = 0.2N

(
[−1, 0],

[
1 0
0 1

])
+ 0.8N

(
[1, 0],

[
1 0
0 1

])
, (46)

µ0 = 0.2N

(
[−1, 0],

[
1 0
0 1

])
+ 0.8N

(
[1, 0],

[
2 0
0 1

])
. (47)

respectively.
The transport maps for computing the trajectories are given by (38) for the shallow

DAE and composition of DAEs. For the continuous DAE, we compute the trajectories by
numerically solving the definition of the continuous Gaussian DAE: ẋ = ∇ logµt(x).

In any case, the continuous DAE converges to an attractor at some t > 0, but the
shape of the attractors and the basins of attraction change according to the initial data
distribution. The shallow DAE converges to the origin as t → ∞, and the composition of
DAEs plots a curve similar to that of the continuous DAE as L tends to infinity, gt0:L. In
particular, in Figure 8, some trajectories of the continuous DAE intersect, which implies
that the velocity vector field vt is time-dependent.
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Comp. DAE gt0:L (∆t = 0.05)
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Figure 6: Trajectories of DAEs trained on the common data distribution (44) (µ0 =
N([0, 0], diag [2, 1])). The gray lines start from the regular grid. The colored lines start
from the samples drawn from µ0. The midpoints are plotted every ∆t = 0.2. Every lines
are drawn into attractors.
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Figure 7: Trajectories of DAEs trained on the common data distribution (45) (a GMM with
uniform weight and covariance). The gray lines start from the regular grid. The colored
lines start from the samples drawn from µ0. Every lines are drawn into attractors.
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Figure 8: Trajectories of DAEs trained on the common data distribution (46) (a GMM
with non-uniform weight and uniform covariance). The gray lines start from the regular
grid. The colored lines start from the samples drawn from µ0. Every lines are drawn into
attractors.
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Figure 9: Trajectories of DAEs trained on the common data distribution (47) (a GMM
with non-uniform weight and covariance). The gray lines start from the regular grid. The
colored lines start from the samples drawn from µ0. Every lines are drawn into attractors.
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5.3. Numerical Example of Trajectories in Wasserstein Space

We consider the space Q of bivariate Gaussians:

Q :=

{
N

(
[0, 0],

[
σ2

1 0
0 σ2

2

]) ∣∣∣∣∣σ1, σ2 > 0

}
. (48)

Obviously, Q is a 2-dimensional subspace of L2-Wasserstein space, and it is closed in the
actions of the continuous DAE and shallow DAE because the pushforwards are given by
(37) and (35), respectively.

We employ (σ1, σ2) as the coordinate ofQ. This is reasonable because, in this coordinate,
the L2-Wasserstein distance W2(µ, ν) between two points µ = (σ1, σ2) and ν = (τ1, τ2) is
simply given by the “Euclidean distance”W2(µ, ν) =

√
(σ1 − τ1)2 + (σ2 − τ2)2 (see Takatsu,

2011, for the proof). The Shannon entropy is given by

H(σ1, σ2) = (1/2) log |diag [σ2
1, σ

2
2]|+ const. = log σ1 + log σ2 + const. (49)

Figure 10 compares the trajectories of the pushforward by DAEs in Q. In the left,
we calculated the theoretical trajectories according to the analytic formulas (37) and (35).
In the right, we trained real NNs as the composition of DAEs according to the training
procedure described in Section 4.1. Even though we always assumed the infinite number of
hidden units and the infinite size of data set, the results suggest that our calculus is a good
approximation to finite settings.

σ
2

1 2 3 4 5

1

2

3

4

σ1

0 1 2 3 4 5

0
1

2
3

4

σ1

σ 2

●

Figure 10: Trajectories of pushforward measures in a space Q of bivariate Gaussians
N([0, 0], diag [σ2

1, σ
2
2]). In both sides, the blue lines represent the Wasserstein gradient

flow with respect to the Shannon entropy. The continuous Gaussian DAE t 7→ ϕt]µ0 always
coincides with the blue lines. In the left-hand side, the dashed green lines represent
theoretical trajectories of the shallow DAE t 7→ gt]µ0 and the solid green line represents
a theoretical trajectory of the composition of DAEs t 7→ gt0:L]µ0. Both the green lines
gradually leave the gradient flow. In the right-hand side, the solid green lines represent
the trajectories of the composition of DAEs calculated by training real NNs (10 trials). In
particular, in the early stage, the trajectories are parallel to the gradient flow.
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6. Equivalence between Stacked DAE and Compositions of DAEs

As an application of transport analysis, we shed light on the equivalence of the stacked DAE
(SDAE) and the composition of DAEs (CDAE), provided that the definition of DAEs is
generalized to L-DAE, which is defined below. In SDAE, we apply the DAE to the features
vectors obtained from the hidden layer of an NN to obtain higher-order feature vectors.
Therefore, the feature vectors obtained from the SDAE and CDAE are different from each
other. Nevertheless, we can prove that the trajectories generated by the SDAE and CDAE
are topologically conjugate, which means that there exists a homeomorphism between the
trajectories. Moreover, we can transform the trajectory of an SDAE into that of a CDAE
by using a linear map, which is obtained from the decoder of the SDAE. Thus, we can
synthesize the feature vectors of the SDAE by using CDAEs.

6.1. Definitions

To begin with, we introduce a generalized version of shallow DAE.

Definition 5 (L-DAE) Let L be an elliptic operator on the domain Ω in Rm, µ be a
probability density on Ω, and D be a positive definite matrix. The L-DAE with diffusion
coefficient D and initial data µ is defined by

id + tD∇ log etLµ, t > 0. (50)

Here, etL is the semigroup generated by the elliptic operator L. Specifically, let µt :=
etLµ; then, µt satisfies the parabolic equation ∂tµt = Lµt. The original Gaussian DAE
corresponds to a special case when D ≡ I and L = 4.

By dae, we denote a DAE realized by a shallow NN (Figure 11). Specifically,

dae(x) =

p∑

j=1

cjσ(aj · x− bj). (51)

By enc and dec, we denote the encoder and decoder of dae, respectively. Specifically,

encj(x) = σ(aj · x− bj), j = 1, . . . , p (52)

dec(z) =

p∑

j=1

cjzj , (53)

M H M
enc dec

M M

H

enc

dae

dec

Figure 11: enc and dec correspond to the hidden layer and output layer, respectively.
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where zj denotes the j-th element of z = enc(x). Obviously, dae = dec ◦ enc.
For the sake of simipicity, even though we introduced the finite number p of hidden

units, we assume that p is large, and thus dae approximately equals L-DAE for some L.

6.2. Training Procedure of Stacked DAE (SDAE)

Let M := Rm be the space of input vectors with probability density µ, and let dae : M →M
be a shallow NN with p hidden units. We assume that dae is trained as the Gaussian DAE
with µ, and it thus approximates the DAE id + t∇ log[et4µ]. Let H := Rp. Then, the
encoder and decoder of dae are the maps enc : M → H and dec : H →M , respectively.

In the SDAE, we apply the DAE to z. Specifically, let µ̃ be the density of hidden feature
vectors z = enc(x), and let d̃ae : H → H be a shallow NN with p̃ hidden units,

d̃ae(z) :=

p̃∑

̃=1

c̃̃σ(ã̃ · z − b̃̃).

We train d̃ae by using the Gaussian DAE with µ̃, where the network is decomposed as
d̃ae = d̃ec ◦ ẽnc with ẽnc : H → H̃ and d̃ec : H̃ → H, and we obtain the feature vectors
z̃ := ẽnc(z) ∈ H̃ = Rp̃. By iterating the stacking procedure, we can obtain more abstract
feature vectors (Figure 12).

H H̃ H
ẽnc d̃ec

M M

H H

H̃

enc

dae

dec

ẽnc

d̃ae

d̃ec

Figure 12: The (feature map of) SDAE ẽnc ◦ enc is built on the hidden layer.

Technically speaking, µ̃ is (the density of) the pushforward dae]µ, and its support is

contained in the image M̃ := enc(M). In general, we assume that dim M̃(= dimM) ≤
dimH; thus, the support of µ̃ is singular (i.e., the density vanishes outside M̃) (see Fact 1
for further details).

6.3. Topological Conjugacy

The transport map of the feature vector ẽnc ◦ enc : M → H → H̃ is somewhat unclear.
According to Theorem 9 and 10, the transport map of ẽnc ◦ enc can be transformed or
projected to the ground space M by applying dec◦ d̃ec (Figure 13). Specifically, there exists
an L-DAE dae′ : M →M such that

dec ◦ d̃ec ◦ ẽnc ◦ enc = dae′ ◦ dae. (54)
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M H Ĥ H M
enc ẽnc d̃ec dec

M M

H

M

H

H̃

enc

dae

dec

ẽnc

d̃ae

d̃ec

dec

∃dae′

Figure 13: By reusing dec, we can transform the SDAE ẽnc ◦ enc into a CDAE dae′ ◦ dae.

Theorem 9 Let H and H̃ be vector spaces, dimH ≥ dim H̃, let M0 be an m-dimensional
smooth Riemannian manifold embedded in H, and let µ0 be a C2 probability density on M0.
Let f : H → H be an Lt-DAE:

f := idH + tD∇ log etLtµ0,

with diffusion coefficient D and time-dependent elliptic operator Lt on H, where ∇ is the
gradient operator in H.

Let T : H → H̃ be a linear map. If T |M is injective, then there exists an L̃t-DAE
f̃ : H̃ → H̃ with diffusion coefficient D̃ such that

T ◦ f |M = f̃ ◦ T |M . (55)

In other words, the following diagram commutes. Here we denoted M1 := f(M0) and

H

H̃

(M0, µ0)

(M̃0, µ̃0)

(M1, µ1)

(M̃1, µ̃1)

T T

f

∃f̃

µ1 := f]µ0. See Appendix C for the proof. The statement is general in that the choice of a
linear map T is independent of the DAEs, as long as it is injective.

We note that the trajectory of the equivalent DAE f̃ may be complicated, because
the “equivalence” we mean here is simply the topological conjugacy. Actually, as the proof
suggests, D̃ and L̃t contain the non-linearity of activation functions via the pseudo-inverse T †

of T . Nevertheless, f̃ may not be much complicated because it is simply a linear projection
of the high-dimensional trajectory of Lt-DAE. According to Theorem 6, a Gaussian DAE
solves backward heat equation (at least when t→ 0). Hence, its projection to low dimension
should also solve backward heat equation in low dimension spaces.
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6.4. Equivalence between SDAE and CDAE

To clarify the statement, we prepare the notation. Figure 14 summarizes the symbols and
procedures.

First, we rewrite the input vector as z0 instead of x, the input space as H0 = M0
0 (=

Rm) instead of M , and the density as µ0
0 instead of µ. We iteratively train the `-th NN

dae`` : H` → H` with a data distribution µ``, obtain the encoder enc` : H` → H`+1 and
decoder dec` : H`+1 → H`, and update the feature z`+1 := enc`(z`), the image M `+1

`+1 :=

enc`(M `
` ) ⊂ H`+1, and the distribution µ`+1

`+1 := (enc`)]µ
`
µ.

For simplicity, we abbreviate

enc`:n := encn ◦ · · · ◦ enc`,
decn:` := dec` ◦ · · · ◦ decn.

In addition, we introduce auxiliary objects.

Mn
`+1 := dec`:n(M `+1

`+1 ), n = 0, · · · , `
µn`+1 := dec`:n] µ`+1

`+1, n = 0, · · · , `.

By construction, M `
n is an at most m-dimensional submanifold in H`, and the support of

µ`n is in M `
n.

Finally, we denote the map dae`n : M `
n → M `

n+1 that is (not “trained by DAE” but)
defined by

dae`n := (decn:` ◦ enc0:n) ◦ (dec(n−1):` ◦ enc0:(n−1))−1 : M `
n →M `

n+1.

By Theorem 9, if dae`+1
n is an L`+1

n -DAE, then dae`n exists and it is an L`n-DAE.

Theorem 10 If every enc`|M`
`

is a continuous injection and every dec`|M`+1
n

is an injection,

then

decL:0 ◦ enc0:L = dae0
L ◦ · · · ◦ dae0

0. (56)

Proof By repeatedly applying the topological conjugacy in Theorem 9,

dec` ◦ dae`+1
n = dae`n ◦ dec`,

we have

decL:0 ◦ enc0:L

= dec(L−2):0 ◦ decL−1 ◦ daeLL ◦ encL−1 ◦ enc0:(L−2)

= dec(L−2):0 ◦ daeL−1
L ◦ decL−1 ◦ encL−1 ◦ enc0:(L−2)

= dec(L−2):0 ◦ daeL−1
L ◦ daeL−1

L−1 ◦ enc0:(L−2)

· · ·
= dae0

L ◦ dae0
L−1 ◦ · · · ◦ dae0

0. �
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H0 = M

H1

H2

HL

HL+1

(M0
0 , µ

0
0) (M0

1 , µ
0
1)

(M1
1 , µ

1
1)

(M0
2 , µ

0
2)

(M1
2 , µ

1
2)

(M2
2 , µ

2
2)

(M0
3 , µ

0
3)

(M1
3 , µ

1
3)

(M2
3 , µ

2
3)

(ML
L , µ

L
L)

(M0
L+1, µ

0
L+1)

(M1
L+1, µ

1
L+1)

(M2
L+1, µ

2
L+1)

(ML
L+1, µ

L
L+1)

(ML+1
L+1 , µ

L+1
L+1)

(ML
L , µ

L
L)

enc0 dec0

dae00

enc1 dec1

dae11

dae22

encL decL

daeLL

‖

dec0

dae01

dec0

dae02

dec0

dae0L

dec1

dae12

dec1

dae1L

dae2L
‖‖

‖

‖

‖

Figure 14: By using decoders, an SDAE is transformed or projected into a CDAE. The
leftmost arrows correspond to the SDAE enc0:L, the rightmost arrows correspond to the
decoders decL:0, and the bottom arrows correspond to the CDAE dae0

L ◦ · · · ◦ dae0
0.

6.5. Numerical Example

Figure 15 compares the transportation results of the 2-dimensional swissroll data by the
DAEs. In both the cases, the swissroll becomes thinner by the action of transportation. We
remark that to test the topological conjugacy by numerical experiments is difficult. Here,
we display Figure 15 to see typical trajectories by an SDAE and a CDAE.

In the left-hand side, we trained an SDAE enc1 ◦enc0 by using real NNs. Specifically, we
first trained a shallow DAE dae0

0 on the swissroll data x0. Second, writing dae0
0 = dec0◦enc0

and letting z1 := enc0(x0), we trained a shallow DAE dae1
1 on the feature vectors z1. Then,

writing dae1
1 = dec1 ◦ enc1, we obtained x1 := dae0

0(x0) and x2 := dec0 ◦ dec1 ◦ enc1 ◦ enc0.
The black points represent the input vectors x0, and the red and blue points represent
the first and second transportation results x1 and x2, respectively. In other words, the
distribution of x0,x1 and x2 correspond to µ0

0, µ
0
1 and µ0

2 in Figure 14, respectively.

In the right-hand side, we trained a CDAE dae1
0◦dae0

0 by using real NNs. Specifically, we
first trained a shallow DAE dae0

0 on the swissroll data x0. Second, writing x1 := dae0
0(x0),

we trained a shallow DAE dae0
1 on the transported vectors x0

1. Then, we obtained x2 :=
dae1

0(x1) = dae1
0 ◦ dae0

0(x0). The black points represent the input vectors x0, and the red
and blue points represent the first and second transportation results x1 and x2, respectively.
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Figure 15: Typical transportation results of the 2-dimensional swissroll data by an SDAE
(left) and a CDAE (right). In both the sides, the black points represent the input vectors
x0 ∈ R2, and the red and blue points represent the first and second transportation results
x1 and x2, respectively.

7. Integral Representation of the Flow Representation

In this section, we aim to develop the double continuum limit: a combination of the depth
continuum limit, or the flow representation, and the width continuum limit, or the integral
representation.

To facilitate visualization, we write the hidden parameters as θ instead of (a, b), the
k-th element of the coefficient function as γ(θ, k) or γk(θ) instead of the boldface γ(θ), and
the integral representation as

S[γk](x) =

∫
γ(θ, k)σ(x;θ)dθ. (57)

Furthermore, by using a singular measure γpk(θ) :=
∑p

j=1 cjkδθj (θ), we write an ordinary
shallow NN as

S[γpk ](x) =

∫
γp(θ, k)σ(x;θ)dθ =

p∑

j=1

cjkσ(x;θj). (58)

If there is no risk of confusion, we omit writing the superscript p. Specifically, we write
“S[γk]” without distinction between an infinite NN (57) and a finite NN (58).
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7.1. Encoder and Decoder in the Integral Representation

First, we consider a finite case. Suppose that a shallow DAE is realized by a finite NN∑p
j=1 cjkσ(x;θj). Then, the encoder is given by

z(θj) = enc(x,θj) = σ(x;θj), j = 1, . . . , p;

and the decoder is given by

dec(z, k) =

p∑

j=1

cjkz(θj).

Therefore, supposing that a shallow DAE is realized by S[γ], the encoder and decoder
in the integral representation are given by

enc(x,θ) := σ(x;θ), (59)

dec(z, k) :=

∫
γ(θ, k)z(θ)dθ, (60)

where “the θ-th element” of z is given by z(θ).
Next, we consider the stacked DAE built on z. Suppose that the stacked DAE is realized

by S[γ̃θ](z) =
∫
γ̃(ω,θ)σ(z;ω)dω; then, the encoder and decoder are given by

ẽnc(z,ω) := σ(z;ω), (61)

d̃ec(u,θ) :=

∫
γ̃(ω,θ)u(ω)dω, (62)

where the ω-th element of u is given by u(ω), and the θ-th element of ω is given by ω(θ).
In this notation, for example, the topological conjugacy (55) claims that there exists γ′

such that
∫
γ(θ, k)

∫
γ̃(ω,θ)σ(σ(x; ·);ω)dωdθ =

∫
γ′(θ′, k)σ

(∫
γ(θ, ·)σ(x;θ)dθ;θ′

)
dθ′. (63)

7.2. Ridgelet Transform of Flows

Let ϕt : Rm → Rm be a flow that satisfies ϕt ◦ ϕs = ϕt+s. Then, the following formula
holds:

∫
R[ϕt](θ, k)σ

(∫
R[ϕs](θ, ·)σ(x;θ′)dθ′

)
dθ =

∫
R[ϕt+s](θ, k)σ(x;θ)dθ. (64)

In other words, S[R[ϕt]] ◦ S[R[ϕs]] = S[R[ϕt+s]]. According to Barron’s bound (Kůrková,
2012, Cor.5.4), the discretization error ‖S[γ]− S[γp]‖2 between S[γ] and S[γp] is bounded
by ‖γ‖1/√p. Hence, ‖R[ϕt]‖1 + ‖R[ϕs]‖1 ≤ ‖R[ϕt+s]‖1 for some t and s, which implies the
expressive efficiency of the DNN.

Consider a special case when ϕ : Rm → Rm is given by the gradient of a potential
function V . Specifically, ϕ = ∇V . We note that according to the polar decomposition
theorem by Brenier (1991), any optimal transport map ϕt : [0, 1] × Rm → Rm can be
written as ϕt = id+ t∇U with some potential function U . Hence, by letting V = | · |2/2+U ,
we can understand ϕ := ϕ1 = ∇V as an optimal transport map.

Then, we have an integration-by-parts formula for the vector ridgelet transform.
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Theorem 11 Let K ⊂ Rm be a compact set with smooth boundary ∂K. Given that a
smooth scalar potential V is supported in K, the ridgelet transform of the potential vector
field ∇V is calculated by

Rρ[∇V ](a, b) = −aRρ′ [V ](a, b). (65)

Here, Rρ and Rρ′ denote the ridgelet transform with respect to ρ and ρ′, respectively.

Proof

Rρ[∇V ](a, b) =

∫

K
∇V (x)ρ(a · x− b)dx

=

[∫

∂K
V (x)ρ(a · x− b)n(x)dS − a

∫

K
V (x)ρ′(a · x− b)dx

]

= 0− aRρ′ [V ](a, b). �

The left-hand side (LHS) of (65) denotes a vector ridgelet transform defined by element-wise
mapping, whereas the right-hand side (RHS) consists of a scalar ridgelet transform. We can
understand the RHS given that the network shares common knowledge among element-wise
tasks.

7.3. Example: Autoencoder

As the most fundamental transport map, we consider a smooth “truncated” autoencoder
idr,δ. We denote by Bm(z; r) a closed ball in Rm with center z and radius r. We assume
that idr,δ is (1) smooth, (2) equal to the identity map id when it is restricted to Bm(r), and
(3) truncated to be supported in Bm(r + δ) with a small positive number δ > 0. Let ∇Vr,δ
be a smooth function that satisfies

Vr,δ(x) :=





1
2 |x|2 x ∈ Bm(0; r),

(smooth map) x ∈ B(0; r + δ) \ B(0; r),

0 x /∈ Bm(0; r + δ),

and let

idr,δ := ∇Vr,δ.

Note that we can construct idr,δ and ∇Vr,δ by using mollifiers; thus, such maps exist.
The ridgelet transform of the truncated autoencoder is given by

Rρ[idr,δ](a, b) ≈ −Kaρ′(−b) as δ → 0 (66)

with a certain constant K (see Appendix E for the proof).
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8. Discussion

We performed transport analysis of denoising autoencoders by introducing the flow repre-
sentation. The flow representation ϕt is the depth continuum limit of a DNN, specified
by an ODE with vector field vt. We interpreted an ordinary DNN gt as a transport map
or an Euler broken line approximation of ϕt. The advantages of the flow representation
are that it provides the coordinate-free treatment of DNNs, avoiding the redundancy of
the ordinary parametrization of DNNs, and that it facilitates our understanding of what
DNNs do—it is the mass transportation controlled by vt. In addition, the advantage of the
interpretation as mass transportation is that it can handle function composition. In the
transport analysis, we analyzed a flow in three aspects: a dynamical system described by a
transport map or vector field, a pushforward measure described by a continuity equation,
and Wasserstein gradient flow. From the results in Wasserstein geometry, these aspects
are closely connected, and the hyperparameter vt plays a central role as an intermediary.
For example, in the transport analysis of continuous DAEs, the potential functional of the
Wasserstein gradient flow often facilitates our understanding of the flow because it is the
Shannon entropy, which is a fundamental quantity in statistics and machine learning.

In Section 3 and 4, we specified the transport maps of shallow, deep, and infinitely deep
DAEs, and we gave their statistical interpretations. The shallow DAE is an estimator of the
mean, while the deep DAE transports data points to decrease the Shannon entropy of the
data distribution, which gives a partial answer to our research question “what do hidden
layers do?” In Section 5, according to analytic and numerical experiments, we showed that
deep DAEs converge faster and that the extracted features are different from each other,
which gives a partial answer to the other question “why do DNNs perform better?” In
Section 6, we proved the equivalence between the stacked DAE and the composition of
DAEs. Because of the peculiar construction, it is difficult to formulate and understand
stacking. Nevertheless, by tracking the flow, we succeeded in formulating the stacked DAE.
In Section 7, we developed the double continuum limits, or the width continuum limit of
the depth continuum limit. We presented some examples of the integral representation of
the flow, such as encoder, decoder, and traditional autoencoder.

As a consequence of the equivalence, we can understand the so-called pre-training and
fine-tuning strategy (Bengio et al., 2007; Erhan et al., 2010) as an optimal control problem.
Namely, write a DNN as a composite ψ ◦ ϕt of classifier ψ : Rm → [0, 1]n and flow ϕt :
Rm → Rm. If ϕt stays closer to the identity, ψ has to be more complex—and vice versa.
The pre-training regularizes the behavior of hidden layers by

d

dt
ϕt(x) = vt(ϕt(x)), x ∈ Rm, t > 0 (67)

and the fine-tuning specifies the relation between input and output by

Minimize EX,Y |Y −ψ ◦ϕt=1(X)|2 w.r.t NN ψ ◦ϕt=1. (68)

Overall, we can understand the strategy as the control problem of system (67) under re-
striction (68). Owing to ridgelet transform, shallow NNs are interpretable and principled.
Development of a “solution operator” to the control problem in the flow representation
would open the way to the interpretable and principled alternative to DNNs.
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Appendix A. Proof of Theorem 4

By L1
loc(Rm) and C∞c (Rm), we denote the spaces of locally integrable functions and com-

pactly supported smooth functions, respectively. We assume that g : Rm → Rm is locally
integrable (L1

loc).
Proof The proof follows from the calculus of variations. Let

L[g] =

∫

Rm

Eε|g(x+ ε)− x|2µ0(x)dx

=

∫

Rm

Eε[|g(x′)− x′ + ε|2µ0(x′ − ε)]dx′, x′ ← x+ ε.

Here, L[g] always exists because g ∈ L1
loc(Rm) ⊂ L2(µ ∗ ν). Then, for an arbitrary function

h ∈ C∞c (Rm), the first variation δL[h] is given by

δL[h] =
d

ds
L[g + sh]

∣∣∣
s=0

=

∫

Rm

∂

∂s
Eε[|g(x) + sh(x)− x+ ε|2µ0(x− ε)]dx

∣∣∣
s=0

= 2

∫

Rm

Eε[(g(x)− x+ ε)µ0(x− ε)]h(x)dx.

At a critical point g∗ of L, δL[h] ≡ 0 for every h. Hence,

Eε[(g∗(x)− x+ ε)µ0(x− ε)] = 0, a.e.x,

by the fundamental lemma of calculus of variations for integrable functions, and we have

g∗(x) =
Eε[(x− ε)µ0(x− ε)]

Eε[µ0(x− ε)] = (14)

= x− Eε[εµ0(x− ε)]
Eε[µ0(x− ε)] = (15).

Note that g∗ attains the global minimum, because, for every function h,

L[g∗ + h] =

∫

Rm

Eε[|ε− Et[ε|x] + h(x)|2µ0(x− ε)]dx

=

∫

Rm

Eε[|ε− Et[ε|x]|2µ0(x− ε)]dx+

∫

Rm

Eε[|h(x)|2µ0(x− ε)]dx

+ 2

∫

Rm

Eε[(ε− Et[ε|x])µ0(x− ε)]h(x)dx

= L[g∗] + L[h] + 2 · 0 ≥ L[g∗]. �
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Appendix B. Proof of Fact 2

For simplicity, we assume that g,v, and µ are smooth. See Ambrosio et al. (2008, § 8.1) for
more generalized conditions on the continuity equation.
Proof To facilitate visualization, we write g(x, t),v(x, t), and µ(x, t) instead of gt(x),vt(x),
and µt(x), respectively.

By definition,

{
∂tg(g(x, t), t) = v(g(x, t), t), x ∈ Rm, t > 0

g(x, 0) = 0, x ∈ Rm.

In particular,

∇g(x, 0) = I.

According to the change-of-variables formula, for any x ∈ Rm and t > s > 0,

µ(g(x, t), t) · |∇g(x, t)| = µ(x, s),

where | · | denotes the determinant.
Take the logarithm on both sides and then differentiate with respect to t. Then, the

RHS vanishes and the LHS is calculated as follows:

∂t log[µ(g(x, t), t) · |∇g(x, t)|] =
∂t[µ(g(x, t), t)]

µ(g(x, t), t)
+ ∂t log |∇g(x, t)|

=
(∇µ)(g(x, t), t) · ∂tg(x, t) + (∂tµ)(g(x, t), t)

µ(g(x, t), t)

+ tr [(∇g(x, t))−1∇∂tg(x, t)],

where the second term follows a differentiation formula by Petersen and Pedersen (2012,
Eq. 43)

∂ log |J | = tr [J−1∂J ].

By letting t→ s+ 0,

∇µ(x, t) · v(x, t) + (∂tµ)(x, t)

µ(x, t)
+ tr [∇v(x, t)] = 0,

which gives

∂tµ(x, t) = −∇ · [µ(x, t)v(x, t)]. �

Appendix C. Proof of Theorem 9

We show that the diagram commutes. Observe that f = id + tD∇ log etLtµ is the sum of
the present position id and the gradient ∇V of potential V = log etLtµ. We calculate the
pushforward ∇̃Ṽ and show that it coincides with L̃t-DAE.
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H

H̃

(M0, µ0)

(M̃0, µ̃0)

(M1, µ1)

(M̃1, µ̃1)

T T † T

f

∃f̃

Proof We suppose that Lt is expressed as

Ltu := a>t (∇2u)at + b>t ∇u+ ctu, u ∈ C2(H) (69)

and T is expressed as

T (z) = Az (70)

with a matrix A.
By the assumption that the restriction T |M0 is injective, it has a left inverse T † such

that T † ◦ T |M0 = idM0 . Note that it is not a linear map but an abstract nonlinear map,
which means that there is no matrix A that realizes T †.

Step. 1

We show that

T ◦ f ◦ T † = id + tD̃∇̃Ṽ in M̃0 (71)

where D̃ = ADA> and Ṽ = V ◦ T †.
For an arbitrary U ∈ C2(M0), write T∗U := U ◦ T † ∈ C2(M̃0), and

∇U(T †(x)) = A>∇̃T∗U(x), x ∈ M̃0 (72)

because the i-th element of ∇̃T∗U is given by

∂U ◦ T †
∂xi

(x) =
∑

p

∂U

∂zp
(T †(x))

∂T †p
∂xi

(x).

Thus, the q-th element of A>∇̃T∗U is given by

∑

i

Aiq
∂U ◦ T †
∂xi

(x) =
∑

p

∂U

∂zp
(T †(x))

∑

i

Aiq
∂T †p
∂xi

(x)

=
∑

p

∂U

∂zp
(T †(x))δpq

=
∂U

∂zq
(T †(x)).
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Therefore, by substituting U with V = log etLtµ0,

T ◦ f ◦ T †(x) = x+A(tD∇V (T †(x)))

= x+ tADA>∇̃T∗V (x))

= x+ tD̃∇̃Ṽ (x).

Step. 2

We show that

Ṽ = log etL̃t µ̃0 + (const.), in M0 (73)

where

L̃tũ := ã>t (∇̃2ũ)ãt + b̃>t ∇̃ũ+ c̃tũ, ũ ∈ C2(H̃) (74)

with ãt = Aat ◦ T †, b̃t = Abt ◦ T †, and c̃t = ct ◦ T †.
Let

ut := etLtµ0. (75)

By the definition of semigroup etLt , u0 = µ0 and ∂tut = Ltut (however, u1 is different from
µ1).

Given ut, let

ũt := T]ut. (76)

According to the change-of-variables formula (7),

ũt = [A]−1T∗ut, (77)

where [A] :=
√

det |A>A| and T∗ut := ut ◦ T †. In particular, ũ0 = µ̃0 and log ũt = Ṽ .
Furthermore,

∂tũt = L̃tũt, in M̃0, (78)

because

∂tũt(x) = [A]−1∂t[ut(T
†(x))]

= [A]−1Lt[ut](T
†(x)),

and

[A]−1at(T
†(x))>(∇2ut(T

†(x)))at(T
†(x))

= at(T
†(x))>(A>∇̃2[[A]−1T∗ut](x)A)at(T

†(x))

= ãt(x)>(∇̃2[ũt](x))ãt(x),

[A]−1bt(T
†(x))>∇ut(T †(x))

= bt(T
†(x))>A>∇̃[[A]−1T∗ut](x)

= b̃t(x)>∇̃ũt(x),

[A]−1ct(T
†(x))ut(T

†(x))

= c̃t(x)ũt(x).
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Thus,

∂tũt(x) = [A]−1Lt[ut](T
†(x)) = L̃tũt(x).

Hence, ũt is the solution of the initial value problem ∂tũt = L̃tũt with ũ0 = µ̃0. By

the uniqueness of the solution, ũt = etL̃t µ̃0. On the other hand, log ũt = Ṽ . Therefore,

Ṽ = log ũt = etL̃t µ̃0.
To sum up the two steps,

T ◦ f ◦ T † = id + tD̃∇̃ log etL̃t µ̃0 =: f̃ ,

and we have the topological conjugacy

T ◦ f = f̃ ◦ T. �

Appendix D. Proofs for Analytic Examples

D.1. Univariate Normal Distribution

We calculate the case for a univariate normal distribution N(m0, σ
2
0).

D.1.1. Shallow DAE

We show that

gt(x) =
σ2

0

σ2
0 + t

x+
t

σ2
0 + t

m0, (30)

µt = N

(
m0,

σ2
0

(1 + t/σ2
0)2

)
. (31)

Proof The proof is immediate from (17). First, write φt(x, y) = (4πt)−1/2 exp(−|x−y|2/4t),

φt/2 ∗N(m0, σ
2
0) = N(m0, σ

2
0 + t).

Hence,

gt(x) = x+ t∇ log[N(m0, σ
2
0 + t)] =

σ2
0

σ2
0 + t

x+
t

σ2
0 + t

m0.

As gt is affine, the pushforward is immediate.

D.1.2. Continuous DAE

We show that

gt(x) =
√

1− 2t/σ2
0(x−m0) +m0, (32)

µt = N(m0, σ
2
0 − 2t), 0 ≤ t < σ2

0/2. (33)
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Proof [µt] Write the pushforward as N(mt, σ
2
t ). By using the heat kernel φt(x,y) =

(4πt)−m/2 exp(−|x− y|2/4t), for some T > 0,

N(mt, σ
2
t ) = φT−t ∗N(mT , σ

2
T )

= N(mT , σ
2
T + 2(T − t)).

By eliminating T by the initial conditions, we have

N(mt, σ
2
t ) = N(m0, σ

2
0 − 2t).

By the positivity of σ2
t , we can determine the largest possible T as T = σ2

0/2.

Proof [gt] Fix an arbitrary point x0. Write xt := gt(x0) and ẋt := ∂tgt(x0). Recall that
ṁt ≡ 0, because mt is a constant. According to (24),

ẋt = −xt −mt

σ2
t

.

By dividing both sides by xt and integrating them,

log
∣∣∣ xt −mt

x0 −m0

∣∣∣ = −
∫ t

0

ds

σ2
s

=
1

2

∫ t

0

ds

s− T

=
1

2
log
∣∣∣T − t
T

∣∣∣,

which concludes the proof.

D.2. Multivariate Normal Distribution

We calculate the case for a multivariate normal distribution N(m0,Σ0).

D.2.1. Shallow DAE

We show that

gt(x) = (I + tΣ−1
0 )−1x+ (I + t−1Σ0)−1m0, (34)

µt = N(m0,Σ0(I + tΣ−1
0 )−2). (35)

Proof Calculate (17) directly as in the univariate case. First, by writing φt(x,y) =
(4πt)−m/2 exp(−|x− y|2/4t),

φt/2 ∗ N(m0,Σ0) = N(m0,Σ0 + tI).
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Hence,

gt(x) = x+ t∇ log[N(m0,Σ0 + tI)]

= x+ t∇
[
−1

2
(x−m0)>(Σ0 + tI)−1(x−m0)

]

= (I + tΣ−1
0 )−1x+ (I + t−1Σ0)−1m0.

As gt is affine, the pushforward is immediate.

D.2.2. Continuous DAE

We show that

gt(x) =

√
I − 2tΣ−1

0 (x−m0) +m0, (36)

µt = N(m0,Σ0 − 2tI). (37)

Proof Write φt(x,y) = (4πt)−m/2 exp(−|x − y|2/4t), and recall that φt ∗ N(m,Σ) =
N(m,Σ + 2tI). Thus, the pushforward N(mt,Σt) is obtained as follows in a manner
similar to the univariate case.

N(mt,Σt) = N (m0,Σ0 − 2tI) .

Suppose that gt(x) is an affine transform At(x−m0) +m0 analogous to the univariate
case. Recall that, if X ∼ N(m,Σ), then AX+ b ∼ N(Am+ b, AΣA>). Hence, for our case,
Σt = AtΣ0A

>
t and we can determine

At =

√
ΣtΣ

−1
0 =

√
I − 2tΣ−1

0 .

Finally, we check whether gt satisfies (24). As Σ0 is symmetric, we can always diagonalize
Σ0 = UD0U

> with an orthogonal matrix U and a diagonal matrix D0. Observe that with
the same U , we can simultaneously diagonalize Σt and At as

Σt = UDtU
>, Dt := D0 − 2tI

At = UD
1/2
t D

−1/2
0 U>.

Without loss of generality, we can assume that U = I; therefore, Σt and At are diagonal
and mt ≡ 0. Fix an index j and denote the j-th diagonal element of Σt and At by σ2

t and
at, respectively. Then, our goal is reduced to showing that ∂t[atx] = ∇ logµt(atx) for every
fixed x ∈ R.

By definition,

σ2
t = σ2

0 − 2t,

at = σtσ
−1
0 =

√
1− 2tσ−2

0 .
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Thus, the LHS is

∂t[atx] = − 1

σ0

√
σ2

0 − 2t
x = −σ−1

0 σ−1
t x,

and the RHS is

∇ logµt(atx) = −atx
σ2
t

= −σ−1
0 σ−1

t x.

Hence, the LHS equals the RHS.

D.3. Mixture of Multivariate Normal Distributions

We calculate the case for the mixture of multivariate normal distributions
∑K

k=1wkN (mk,Σk),
with the assumption that it is well separated (see Section 5.1.3 for the definition).

D.3.1. Shallow DAE

We show that

gt(x) =

K∑

k=1

γkt(x)
{

(I + tΣ−1
k )−1x+ (I + t−1Σk)

−1mk

}
, (38)

µt ≈
K∑

k=1

wkN(mk,Σk(I + tΣ−1
k )−2), if well separated (39)

with the responsibility function

γkt(x) :=
wkN(x;mk,Σk + tI)

∑K
k=1wkN(x;mk,Σk + tI)

. (40)

Proof Directly calculate (17). By the linearity of the heat kernel,

gt := id + t
K∑

k=1

wk∇N(mk,Σk + tI)
∑K

k=1wkN(mk,Σk + tI)
,

= id +

K∑

k=1

wkN(mk,Σk + tI)
∑K

k=1wkN(mk,Σk + tI)
· t∇ logN(mk,Σk + tI),

= id +
K∑

k=1

γkt(gkt − id),

=

K∑

k=1

γktgkt,

where gkt exactly coincides with the flow induced by the individual k-th component.
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To calculate the pushforward, we introduce some auxiliary variables. Write w(k) :=
wk, γ(k | ·) := γkt(·) and

µt(· | k) := N(mk,Σk + tI),

µt :=
∑

k

w(k)µt(· | k).

Let τk(· | x) be a probability measure that satisfies
∫

M
τk(y | x)µ0(x | k)dx = µt(y | k).

Note that τk is not unique. Recall that by definition, if X ∼ µ0(· | k), then Y = gkt(X) ∼
µt(· | k). Hence, τk is a stochastic alternative to gkt.

Consider a probability measure

σ(· | x) :=
K∑

k=1

γ(k | x)τk(· | x).

Clearly, this is a stochastic alternative to gt. We show that
∫

M
σ(y | x)µ0(x)dx ≈ µt(y).

The LHS is reduced to
∫

M
σ(y | x)µ0(x)dx =

∫

M

K∑

k=1

γ(k | x)τk(y | x)
∑

`

w(`)µ0(x | `)dx

=
∑

`

w(`)
K∑

k=1

∫

M
γ(k | x)τk(y | x)µ0(x | `)dx. (79)

Suppose that γ(k | x) is an indicator function of a domain Ωk, where
∫

Ωk
µ0(· | k) ≈ 1.

Then,

(79) ≈
∑

`

w(`)

∫

Ω`

τk(y | x)µ0(x | `)dx

≈
∑

`

w(`)µt(y | `) = µt(y).

This concludes the claim.

D.3.2. Continuous DAE

We show that

gt(x) ≈
√
I − 2tΣ−1

k (x−mk) +mk, x ∈ Ωk, if well separated (41)

µt =

K∑

k=1

wkN (mk,Σk − 2tI) , (42)
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with the responsibility function

γkt(x) :=
wkN(x;mk,Σk − 2tI)

∑K
k=1wkN(x;mk,Σk − 2tI)

. (43)

Proof The pushforward is immediate by the linearity of the heat kernel. The dynamical
system (24) for our case is reduced to

∂tgt(x) = −
K∑

k=1

γkt ◦ gt(x)(Σk − 2tI)−1(gt(x)−mk).

By the assumption that µ0 is well separated, we can take an open neighborhood Ωk ofmk

and an open time interval I that contains t such that γkt◦gt(x) ≡ 1 for every (x, t) ∈ Ωk×I.
In this restricted domain, the dynamical system is reduced to a single-component version:

∂tgt(x) = −(Σk − 2tI)−1(gt(x)−mk), (x, t) ∈ Ωk × I.

According to the previous results, we have exactly

gt(x) =
√
I − 2tΣ−1

k (x−mk) +mk, (x, t) ∈ Ωk × I. �

Appendix E. Proof of (66)

Let δ → 0. Then, the ridgelet transform of the truncated autoencoder idr,δ is given by

Rρ[idr,0](a, b) = − Am−1

2(m+ 1)

∫

|p|<r
(r2 − p2)

m−1
2

{
2

m− 1
p2 + r2

}
ρ′(|a|p− b)adp (80)

≈ −Kaρ′(−b), (81)

where Am−1 := 2π
m−1

2

Γ(m−1
2 )

is the surface area of Sm−1, and K is given by (87).

Proof Let δ → 0. Then, the connecting annulus B(0; r + δ) \ B(0; r) vanishes as follows:

Rρ[idr,δ](a, b) = −aRρ′ [Vr,δ](a, b)

→ −a
∫

Bm(r)

1

2
|x|2ρ′(a · x− b)dx

= −aRρ′ [Vr,0](a, b).

Hence, we omit considering the annulus.

In the following, we use a spherical coordinate defined by

u := a/|a|, α := 1/|a|, β := b/|a|,

where u ∈ Sm−1 denotes the direction, α ∈ R+ denotes the scale, and β ∈ R denotes the
(scaled) shift parameters.
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The ridgelet transform in the spherical coordinate (Sonoda and Murata, 2017a) is given
by

Rρf(u/α, β/α) =

∫

R
Rad[f ](u, p)ρα(p− β)dp,

where Rad[f ](u, p) denotes the Radon transform

Rad[f ](u, p) :=

∫

(Ru)⊥
f(pu+ y)dy

of the function f ∈ L1(Rm) at direction u ∈ Sm−1 and position p ∈ R, and

ρα(p) := ρ(p/α).

The Radon transform Rad[Vr,0](u, p) for |p| < r is calculated as follows. Because Vr,δ is
a radial function, Rad[Vr,0](u, p) does not depend on the direction u. Hence, it is sufficient
to consider a special case when (Ru)⊥ = Rm−1. Therefore,

Rad[Vr,0](u, p) =

∫

Rm−1

Vr,0(pu+ y)dy, u ⊥ y

=

∫

Rm−1

1

2
|pu+ y|21Bm(0;r)(pu+ y)dy

=
1

2

∫

Bm−1
(

0;
√
r2−p2

) {p2 + |y|2
}

dy, (82)

where the third equation follows by the orthogonality |pu + y|2m = p2 + |y|2m−1 and a
geometric consideration as follows:

∫

Rm−1

[ · ]1Bm(0;r)(pu+ y)dy =

∫

Rm−1

[ · ]1Bm(−pu;r)(y)dy

=

∫

Rm−1∩Bm(−pu;r)
[ · ]dy

=

∫

Bm−1(0;
√
r2−p2)

[ · ]dy.

The first integral in (82) is calculated as follows:

∫

Bm−1
(

0;
√
r2−p2

) p2dy = p2 vol
[
Bm−1(0;

√
r2 − p2)

]

=
π

m−1
2

2Γ
(
m−1

2 + 1
)p2(r2 − p2)

m−1
2 . (83)
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The second integral in (82) is calculated as follows:

∫

Bm−1
(

0;
√
r2−p2

) |y|2dy =

∫

Sm−2

∫ √r2−p2

0
|ρω|2ρm−2dρdω

=

∫

Sm−2

dω

∫ √r2−p2

0
ρmdρ

=
π

m−1
2

(m+ 1)Γ
(
m−1

2

)(r2 − p2)
m+1

2 . (84)

Hence, by combining the first and second integrals, we have

Rad[Vr,0](u, p) =

{
Am−1

2(m+1)(r2 − p2)
m−1

2

{
2

m−1p
2 + r2

}
|p| < r

0 |p| ≥ r.
(85)

The ridgelet transform Rρ′ [Vr,0] is given by

Rρ′ [Vr,0](u/α, β/α) =

∫

|p|<r
k(p)ρ′α(p− β)dp, (86)

where we define

k(p) := Rad[Vr,0](u, p).

Recall that Rad[Vr,0](u, p) does not depend on the direction u; thus, the definition of k is
reasonable. According to (85), k is a compactly supported bump function. Consequently,
k is summable; thus, the integral

K :=

∫

R
k(p)dp (87)

always exists. Recall that the convolution results in smoothing, i.e.,

∫

|p|<r
k(p)ρ′α(p− β)dp ≈ Kρ′α(−β). (88)

In summary, we have presented the following:

Rρ[idr,0](a, b) = −aRρ′ [Vr,0](a, b) ≈ −Kaρ′(−b). �
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in the Space of Probability Measures. Birkhäuser, 2008.
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Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
29th Annual Conference on Learning Theory, volume 49, pages 1–34, 2016.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,
and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of
Machine Learning Research, 11(Feb):625–660, 2010.

Lawrence C. Evans and Ronald F. Gariepy. Measure Theory and Fine Properties of Func-
tions. CRC Press, revised edition, 2015.

Edward I. George, Feng Liang, and Xinyi Xu. Improved minimax predictive densities under
Kullback-Leibler loss. Annals of Statistics, 34(1):78–91, 2006.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible
residual network: Backpropagation without storing activations. In Advances in Neural
Information Processing Systems 30, pages 2214–2224, Long Beach, USA, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems 27, pages 2672–2680, Montréal, BC, 2014.
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