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Abstract

State-of-the-art first- and second-order optimization methods are able to achieve either fast
global linear convergence rates or quadratic convergence, but not both of them. In this
work, we propose an interpolation between first- and second-order methods for regularized
empirical risk minimization that exploits the problem structure to efficiently combine mul-
tiple update directions. Our method attains both optimal global linear convergence rate
for first-order methods, and local quadratic convergence. Experimental results show that
our method outperforms state-of-the-art first- and second-order optimization methods in
terms of the number of data accesses, while is competitive in training time.

1. Introduction

Consider the general problem

min
w∈Rn

f(w), (1)

where f(w) is convex and continuously differentiable. Most iterative optimization methods
generate iterates by using the first- and second-order derivatives. After a new step is
generated, the previous steps and related calculation results are usually considered outdated
and thus discarded. In this work, we show that we can reuse previous descent directions in
later iterations to reduce computation and to achieve both linear and quadratic convergence.

The idea behind our proposed method is simple. We store all previous directions, and
approximately solve the subproblem

min
t∈Rm

f(w + P t), (2)
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where the columns of P = [p1, . . . ,pm] form an orthonormal basis of the span of the previous
update directions. The resulting direction P t is then used to update the current iterate w
for the next iteration. Utilizing all previous directions obtained from the first iteration on
seems to be computationally and spatially expensive, especially in the later stage of this
method. However, we note that for regularized empirical risk minimization (ERM) of linear
models, the method comes with little additional cost by wisely caching the inner products
between these pi and the training data. We will exemplify how to use this caching strategy
to significantly accelerate the computation in our method for ERM. Experimental results
show that our method outperforms state of the art.

There are other optimization methods that also reuse previous update directions. For
example, the heavy-ball method (Polyak, 1964), the (nonlinear) conjugate gradient method
(Fletcher and Reeves, 1964), and Nesterov’s accelerated gradient method (Nesterov, 1983,
2013) reuse the previous direction wk −wk−1 together with the current gradient to decide
the update direction at the k-th iteration. On the other hand, quasi-Newton methods such
as BFGS (Dennis and Moré, 1977) and L-BFGS (Liu and Nocedal, 1989) store previous
gradients to construct an approximation of the Hessian. More details of these methods and
empirical comparisons are provided in later sections.

This paper is organized as follows. We describe the details of our algorithm in Section
2. We prove global linear convergence and local quadratic convergence. Section 3 illustrates
important techniques for accelerating the computation when solving ERM problems. We
then extend the proposed method to a more general framework and obtain a better linear
convergence rate in Section 4. Related works are discussed in Section 5. Experimental
results in Section 6 show that our method outperforms state-of-the-art methods empirically
in terms of the number of data accesses, and is competitive in terms of training time. We
then consider some interesting extensions in Section 7. Section 8 concludes the paper.

Programs used for experiments and a supplementary file including additional results can
be found at http://www.csie.ntu.edu.tw/~cjlin/papers/commdir/.

2. Common-directions Method

Before starting the description of our algorithm, we first specify the type of problems we
consider. For all our theoretical results except Theorem 6, we require that f(w) satisfies
Assumption 1.

Assumption 1 The objective function f(w) is differentiable, ρ Lipschitz smooth and σ
strongly convex with some constants ρ ≥ σ > 0.1 That is,

‖∇f(u)−∇f(v)‖ ≤ ρ‖u− v‖, ∀u,v ∈ Rn, (3)

and

f(u)− f(v)−∇f(v)>(u− v) ≥ σ

2
‖u− v‖2, ∀u,v ∈ Rn. (4)

For some theoretical results, we further need that f(w) satisfies Assumption 2.

1. The requirement ρ ≥ σ comes from the conditions (3) and (4).
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Algorithm 1: A framework for the common-directions method

Given w0, compute ∇f(w0);
P = [∇f(w0)/‖∇f(w0)‖];
for k=0,1,. . . in the outer loop do

if ∇f(wk) = 0, or some stopping condition is satisfied then
stop;

end

Let tk = −(P>∇2f(wk)P )−1P>∇f(wk);
Backtracking line search on f(wk + θP tk) by Algorithm 2 to obtain θk;
wk+1 = wk + θkP tk;
Compute ∇f(wk+1);

Let p = ∇f(wk+1)− P (P>∇f(wk+1));
if p 6= 0 then

P = [P, p/‖p‖];
end

end

Algorithm 2: Backtracking line search

Given β ∈ (0, 1), λ > 0, the current iterate w, a descent direction P t;
Let θ := 1;

while f(w)− f(w + θP t) < λ
2 θ

2‖P t‖2 do
θ := βθ;

end

Assumption 2 The objective function f(w) is twice-differentiable, and the Hessian of
f(w) is M Lipschitz continuous with some constant M > 0. That is,

‖∇2f(u)−∇2f(v)‖ ≤M‖u− v‖, ∀u,v ∈ Rn.

When minimizing a function, we usually only work on derivatives of the current iterate.
For example, a gradient descent step can be derived from searching along the negative
gradient direction, and a Newton step can be expressed by the current gradient and Hessian.
However, after obtaining the update direction, stale derivatives are usually discarded, which
can be inefficient. A simple idea is to store all previous directions pj in P = [p1, . . . ,pm]
and consider working on the linear span of pj . If possible, we search for the best linear
combination P t such that f(w + P t) is the smallest; see the sub-problem (2). However, in
practice (2) may be difficult to be solved, so following past optimization development, we
consider the second-order Taylor approximation of f(w) as

f̃(u | w) ≡ f(w) +∇f(w)>(u−w) +
1

2
(u−w)>∇2f(w)(u−w), (5)
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where ∇2f(w) is the Hessian at w. Then, a descent direction d = P t can be found by
optimizing f̃ along all the directions pj

min
t

f̃(w +
m∑
j=1

tjpj | w) = (P>∇f(w))>t +
1

2
t>(P>∇2f(w)P )t. (6)

Problem (6) can be solved by the following linear system.

(P>∇2f(w)P )t = −P>∇f(w).

Say we have stored m previous directions in P ∈ Rm×n, where m � n. Problem (6) has
m variables but if instead we consider the Newton direction by solving the problem in (5),
the number of variables is n. Therefore, solving (6) should be easier than finding a Newton
direction if the construction of P∇2f(w)P> is not too expensive. In Section 3, we will
show that when the Hessian is structured, the subproblem (6) can be solved easily.

From the above concept, we propose the common-directions method. In each iteration
of this method, given the orthonormal basis P of the span of the past directions, we solve
the subproblem (6) with respect to t to obtain the update direction P t. A line search along
P t is performed to guarantee the strict decrease of the function value. After updating the
iterate w, a new direction −∇f(w) is then taken to enlarge the orthonormal basis P by
Gram-Schmidt orthogonalization. A description of the common-directions method is given
in Algorithm 1, and the line-search sub-routine is described in Algorithm 2. Note that other
choices of the directions being added to P are also possible, but for the ease of description
and analysis, we confine our choice to the current steepest descent direction.

We define the following quantities before stating and proving the theorems. We denote
the condition number of f by

κ ≡ ρ

σ
,

and define an ε-accurate solution of f to be a point w such that

f(w)− f(w∗) ≤ ε,

where w∗ is the optimal solution of f . Note that under Assumption 1, problem (1) pos-
sesses a unique optimal solution. The following theorems present theoretical convergence
of the proposed method. In particular, we show that the line search sub-routine has fi-
nite termination, and our method is globally linearly convergent and locally quadratically
convergent.

Theorem 3 Under Assumption 1, every time being called by Algorithm 1, Algorithm 2
terminates within dlogβ(βσ/(ρ+λ))e steps, and Algorithm 1 converges Q-linearly with iter-
ation complexity O(κ3 log(1/ε)) to achieve an ε-accurate solution. Further, if Algorithm 2
always stops at step size 1, the iteration complexity becomes O(κ log(1/ε)).

In practice, we observed that the common-direction method usually accepts step size 1.

Theorem 4 Under Assumptions 1 and 2, Algorithm 1 converges quadratically after certain
iteration.

The proofs are presented in Appendix A.
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3. Application on Regularized Empirical Risk Minimization Problems

For most optimization problems, computing the n × n Hessian matrix, or its inverse,
whose cost is O(n3), is much more expensive than obtaining the function value and the
n-dimensional gradient vector. To tackle this problem, different approaches have been con-
sidered, and in some cases the problem structure can be utilized to reduce the cost. We
are interested in solving machine learning problems, and thus we will focus our discussion
on differentiable regularized ERM problems. More specifically, given training feature-label
pairs (xi, yi), i = 1, . . . , l, with xi ∈ Rn, yi ∈ R, and a parameter C > 0, we consider
L2-regularized ERM problems

min
w∈Rn

f(w), where f(w) ≡ 1

2
w>w + C

l∑
i=1

ξ(yi;w
>xi), (7)

and ξ is a loss function convex in w>xi. The first term in (7) makes f be σ strongly convex
with σ ≥ 1, and the choice of loss functions ensures that ∇f(w) is Lipschitz continuous,
though the corresponding constant ρ may be unknown. Therefore, Assumption 1 is satisfied.

For problem (7), by defining

X ≡

x>1
...

x>l

 ,

we can write the gradient as

∇f(w) = w +X>vw, where (vw)i = C
∂

∂z
ξ(yi; z) |z=w>xi

, i = 1, . . . , l, (8)

and if f(w) is twice-differentiable, the Hessian is

∇2f(w) ≡ I +X>DwX, (9)

where I is the identity matrix and Dw is a diagonal matrix with

(Dw)ii ≡ C
∂2

∂z2
ξ(yi; z) |z=w>xi

, i = 1, . . . , l. (10)

The structure of (9) allows efficient computations to use the Hessian in various ways. Our
method utilizes it to incorporate the Hessian-vector products with low cost as discussed in
the following sections.

Some problems of the form (7), such as logistic regression and ridge regression, also
satisfy Assumption 2. The loss of ridge regression is

ξ(yi;w
>xi) = (yi −w>xi)

2.

It is clearly twice-differentiable with the diagonal matrix Dw defined in (10) being the
identity matrix. Clearly, this loss satisfies Assumption 2 with any M ≥ 0 as the Hessian is
a constant. The loss of logistic regression is

ξ(yi;w
>xi) = log(1 + exp(−yiw>xi)),
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where yi ∈ {−1, 1}. Because its third derivative is upper-bounded, by applying first-order
Taylor expansion on the Hessian, one can see that Assumption 2 holds. On the other hand,
problems that satisfy Assumption 1 only, like squared-hinge loss support vector classifi-
cation/regression (Boser et al., 1992; Vapnik, 1995), can also be solved by our algorithm,
although in this case we can only expect linear convergence.2

3.1. Subproblem of Common Directions

At the k-th iteration, given the matrix Pk = [p1,p2, . . . ,pm] ∈ Rn×m with orthogonal
columns, we consider solving (6) along Pkt

min
t∈Rm

f̃(wk + Pkt | wk). (11)

The gradient and the Hessian of (11) with respect to the variable t at t = 0 are respectively

∇tf̃(wk + Pkt) |t=0 = P>k ∇f(wk) (12)

and

∇2
t,tf̃(wk + Pkt) |t=0 = P>k ∇2f(wk)Pk = P>k (I +X>Dwk

X)Pk = I + P>k X
>Dwk

XPk.
(13)

Observe the term XPk. The trick to make the computation efficient is to store this term
in memory to avoid repetitive computations of Xpj for all previous directions pj . If XPk,
∇f(wk), and Dwk

are available, the construction of (12)-(13) involves the following cost.

• P>k ∇f(wk): O(mn),

• (XPk)
>Dwk

(XPk): O(lm2).

The optimal solution t of (11) can be obtained by solving the following linear system(
I + P>k X

>Dwk
XPk

)
t = −P>k ∇f(wk) (14)

in O(m3) cost. Note that the Hessian with respect to t is always invertible because the
term I in (13) ensures its positive definiteness.

Let tk be the solution of (14). We show that to obtain necessary information for the next
iteration, it is sufficient to maintain XPk+1 and Xwk+1. To have the new function value,
from (7) we mainly need to compute Xwk+1. If Xwk is available and the full direction
(XPk)tk is taken, by

Xwk+1 = Xwk + θ(XPk)tk, (15)

with θ = 1, in O(lm) cost Xwk+1 is obtained. In practice, a step size θ is decided by line
search, which involves some minor cost as shown in Section 3.2. The vector Xwk+1 is also
used to construct vwk+1

needed for gradient calculation. Then from (8),

∇f(wk+1) = wk+1 +X>vwk+1

2. If the objective function is not twice differentiable, we can use the generalized Hessian (Mangasarian,
2002) to replace the Hessian in the Newton step, as Assumption 1 guarantees the existence of generalized
Hessian.
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takes O(#nnz) cost, where #nnz is the number of non-zero elements in X. We then apply
the Gram-Schmidt procedure to check if a new column should be added to Pk+1. In practice
this procedure is computed by

pm+1 = (I − PkP Tk )∇f(wk+1) = ∇f(wk+1)− Pk(P>k ∇f(wk+1)).

The cost is O(mn). If pm+1 6= 0, to maintain XPm+1 after pm+1 is added, we must compute
Xpm+1, which costs O(#nnz). Details of the algorithm is shown in Algorithm 3.

In summary, the cost per iteration is

O(lm2 +mn+m3 + #nnz). (16)

Because usually we have n � m and l � m from the first iteration till reaching a good
enough solution, in general #nnz is still the dominant term in (16). Therefore, each of our
iterations does not cost much more than a typical iteration in an optimization method that
often involves the O(#nnz) cost.

Further, for the same set of directions Pk, we could solve the subproblem (11) and update
wk multiple times in order to approximately solve (2). Note that the update of wk does
not need to go through the data matrix X. The reason is that the Dw matrix and the vw

vector rely on wk only through the inner products w>k xi, and this is a linear combination
of XPk, and thus we can compute it without additional inner product computations with
the data matrix X. This idea of solving (11) multiple times will be exploited in Section 4
to achieve the optimal linear convergence rate for first-order methods.

3.2. Line Search on Common Directions

Once the solution t of (14) has been obtained, in O(mn) cost we get the descent direction

d = Pkt. (17)

Next, we conduct line search in Algorithm 2 for the step size θ in

f(wk + θd) =
1

2
‖wk + θd‖2 + C

l∑
i=1

ξ(yi;w
>
k xi + θd>xi).

The sufficient decrease condition is

C
l∑

i=1

ξ(yi;w
>
k xi)− θw>k d−

θ2

2
‖d‖2 − C

l∑
i=1

ξ(yi;w
>
k xi + θd>xi) ≥

λ

2
θ2‖d‖2.

Because XPk is maintained, after obtaining Xd in O(lm) time by

Xd = (XPk)t, (18)

and calculating w>k d, w>kwk, d
>d in O(n) time, each line search step would only cost O(l)

because w>k xi is already available in our calculation for the gradient and the Hessian. Thus,
we could perform line search in

O(lm+mn+ l ×#(line search steps)) time. (19)

By Theorem 3, #(line search) is bounded by a constant, and thus the complexity does not
grow infinitely. After finishing the line search procedure, we already have w>k xi + θd>xi as
the next w>k+1xi as shown in (15).

7
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Algorithm 3: The common-directions method for solving the ERM problem (7)

Given w0, compute z = Xw0;
Use z to calculate vw0 and Dw0 in (8) and (10);

Compute ∇f(w0) = w0 +X>vw0 from (8);
P = [∇f(w0)/‖∇f(w0)‖], U = XP ;
for k=0,1,. . . in the oute loop do

if ∇f(wk) = 0, or some stopping condition is satisfied then
stop;

end

Obtain t by solving (14) with t = [I + U>Dwk
U ]−1[−P>∇f(wk)];

Compute ẑ = Ut;
Backtracking line search on f(wk + θP t) by Algorithm 2 to obtain θ using the
values of z and ẑ to compute ξ(yi; z + θẑ);
wk+1 = wk + θP t;
z = z + θẑ;
Use z to calculate vwk+1

and Dwk+1
;

Compute ∇f(wk+1) = wk+1 +X>vwk+1
from (8);

Let p = ∇f(wk+1)− P (P>∇f(wk+1));
if p 6= 0 then

P = [P, p/‖p‖], U = [U, Xp/‖p‖];
end

end

3.3. Total Cost of the Algorithm

Based on the analysis in Sections 3.1 and 3.2, the total cost is

O(lm2 +mn+m3 + #nnz + l ×#(line search steps))× iterations. (20)

In Section 5, we will compare the cost with that of some existing approaches.

4. Common-directions Method with Multiple Inner Iterations

In Section 2, we considered solving the second-order Taylor approximation of f(wk + Pkt)
with respect to the coefficients t to get a good combination along the directions of Pk. Now
we further extend the idea to directly minimize f(wk + Pkt). We first describe the general
framework, and then discuss how it can be applied to the special case of solving regularized
ERM problems.

4.1. General Framework

We can consider the following convex optimization problem

min
t

f(wk + Pkt), (21)

and apply any optimization algorithm to solve it. When applying iterative algorithms,
we terminate the optimization procedure after the solution is considered good enough.

8
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Therefore, usually (21) is only solved approximately. In particular, the method discussed in
Section 2 can be viewed as using only one Newton iteration to loosely solve (21). Because
of two levels of iterations, we refer to the process of approximately solving (21) as an outer
iteration, while each step in the process as an inner iteration.

Among the different methods to solve (21), we apply multiple inner Newton steps on
the variable t. That is, we repeatedly minimize the second-order Taylor expansion of (21).

min
∆t∈Rm

f̃(wk + Pkt + Pk∆t | wk + Pkt).

Because

f̃(wk + Pkt + Pk∆t | wk + Pkt)

= f(wk + Pkt) + (P>k ∇f(wk + Pkt))
>∆t +

1

2
∆t>P>k ∇f(wk + Pkt)Pk∆t,

this amounts to solving the following linear system for ∆t.

(P>k ∇2f(wk + Pkt)Pk)∆t = −P>k ∇f(wk + Pkt). (22)

Each time the solution of the linear system will be our update direction, and then we will
conduct backtracking line search to ensure the sufficient function decrease. The detailed
algorithm is described in Algorithm 4, where we can see that wk+Pkt is the iterate updated
in the inner iterations.

We now show that this general framework has better global convergence rate than the
one discussed in Section 2.

Theorem 5 Under Assumption 1 and a proper inner stopping condition, given any ε >
0, Algorithm 4 converges R-linearly and obtains an ε-accurate solution in O(

√
κ log(1/ε))

iterations.

The proof is in Appendix B.
It has been shown in Nesterov (2003) that O(

√
κ log(1/ε)) is the optimal iteration com-

plexity for methods whose directions are obtained from the span of ∇f(w0),∇f(w1), · · · .
The inner stopping condition used in proving Theorem 5 is not easy to implement in prac-
tice. It is possible to devise a practical one to ensure that this optimal linear convergence
rate can be guaranteed. However, as we will see in the empirical results in Section 6, the
setting of using a single inner iteration in approximately solving (21) tends to outperform
that of using multiple inner iterations in terms of overall training time. In light of this
understanding, we do not further explore practical inner stopping conditions.

Another interesting property of Algorithm 4 is that if the optimal solution of (21) is
obtained at each outer iteration, then the algorithm can reach the optimum of (7) in finite
steps even if neither Assumption 1 nor 2 is satisfied.

Theorem 6 If at each iteration of Algorithm 4, the optimal solution of (21) is obtained,
the optimum of (1) is reached within n iterations.

The proof is in Appendix C.
These two theorems show that our algorithm can be treated as an analogy of the linear

conjugate gradient method to general nonlinear optimization problems. See more details in
Section 5.1
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Algorithm 4: Common-directions method with multiple inner iterations

Given w0, compute ∇f(w0);
P = [∇f(w0)/‖∇f(w0)‖];
for k=0,1,. . . in the outer loop do

if ∇f(wk) = 0, or some stopping condition is satisfied then
stop;

end
w = wk;
while an inner stopping condition is not satisfied do // inner loop

Obtain ∆t by solving (22) with

(P>∇2f(w)P )∆t = −P>∇f(w);

Backtracking line search on f(w + θP∆t) by Algorithm 2 to obtain θ;
w = w + θP∆t;

end
wk+1 = w;
Compute ∇f(wk+1);

Let p = ∇f(wk+1)− P (P>∇f(wk+1));
if p 6= 0 then

P = [P,p/‖p‖];
end

end

4.2. Application on Regularized ERM Problems

For general problems, Algorithm 4 may not be beneficial because the cost of one inner
iteration of solving (21) is similar to that of conducting an outer iteration of Algorithm 1,
while (1) rather than (21) is what we actually would like to solve. However, for solving
the regularized ERM problems (7), we show that one inner iteration of the while-loop in
Algorithm 5 can be significantly cheaper than one outer iteration of Algorithm 3. We
note that in the complexity analysis (16) for Algorithm 3, the dominant term O(#nnz)
is unavoidable for calculating ∇f(wk+1). A crucial difference here is that this O(#nnz)
term is not needed. In Algorithm 3, the whole ∇f(wk+1) vector is used for the Gram-
Schmidt procedure in checking if Pk should be augmented. Instead, here Pk remains the
same throughout inner iterations and all we need is P>k ∇f(wk + Pkt) in (22). When we
apply Algorithm 4 to regularized ERM problems, the linear system (22) has the following
form.

(I + P>k X
>Dwk+PktXPk)∆t = −(P>k (wk + Pkt) + P>k X

>vwk+Pkt). (23)

If

XPk and X(wk + Pkt), (24)

are maintained, the right-hand side can be easily calculated by

• vwk+Pkt : O(l),

10
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• P>k (wk + Pkt) : O(mn),

• (P>k X
>)vwk+Pkt : O(lm).

Interestingly, for other operations in Algorithm 3, it has been shown that the two values in
(24) can be easily maintained. Here we follow the same setting. A detailed procedure is in
Algorithm 5. In summary, the cost per inner iteration is

O(lm2 +mn+m3). (25)

In compared with the cost per outer iteration in Algorithm 3, here we do not have the #nnz
term. The main difference comes from that in (23), we use the available XPk to calculate

(P>k X
>)vwk+Pkt,

but in an outer iteration of Algorithm 3, ∇f(wk+1) is calculated by

X>vwk+1
,

which costs O(#nnz). Therefore, because in general #nnz is larger than (25), an inner
iteration here is cheaper than an outer one in Algorithm 3.

5. Related Works

We compare our algorithm with linear conjugate gradient method for solving a linear system,
as well as popular nonlinear optimization methods. The methods being discussed include
those considering a linear combination of multiple directions to form the update direction,
and those utilizing the Hessian matrix in various ways.

5.1. Linear Conjugate Gradient Method

Linear conjugate gradient (CG) method iteratively solves the following linear system.

Ax = b, (26)

where A ∈ Rn×n is symmetric and positive-definite, and b ∈ Rn. Alternatively, CG can be
viewed as an optimization method for the following problem.

min
x

1

2
x>Ax− b>x. (27)

The idea behind linear CG is that at each iteration, we generate a new update direction pk
that is conjugate to the existing ones such that

p>i Apj = 0, ∀i 6= j.

Then an exact line search is conducted to decide the next iterate. At each iteration, a
matrix-vector product Av for some vector v is conducted to generate the desired step,
and this matrix-vector product is the computational dominant part at each CG iteration.

11
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Algorithm 5: Common-directions method with multiple inner iterations for the ERM
problem (7)

Given w0, compute z = Xw0;
Use z to compute vw0 and Dw0 in (8) and (10);

Compute ∇f(w0) = w0 +X>vw0 from (8);
P = [∇f(w0)/‖∇f(w0)‖], U = XP ;
for k=0,1,. . . in the outer loop do

if ∇f(wk) = 0, or some stopping condition is satisfied then
stop;

end
w = wk,vw = vwk

, Dw = Dwk
;

while an inner stopping condition is not satisfied do // inner loop
Obtain ∆t by solving (23) with

∆t = (I + U>DwU)−1(−P>w + U>vw);

Compute ẑ = U∆t;
Backtracking line search on f(w + θP∆t) by Algorithm 2 to obtain θ, using
the values of z and ẑ to compute ξ(yi; z + θẑ);
w = w + θP∆t;
z = z + θ(XP )∆t;
Use z to compute vw and Dw in (8) and (10);

end
wk+1 = w,vwk+1

= vw, Dwk+1
= Dw;

Compute ∇f(wk+1) = wk+1 +X>vwk+1
from (8);

p = ∇f(wk+1)− P (P>∇f(wk+1));
if p 6= 0 then

P = [Pk,p/‖p‖], U = [U,Xp/‖p‖];
end

end

Therefore, the cost per iteration of CG is simply the cost of a matrix-vector product and
several O(n) operations on the vectors.

There are two nice properties of linear CG. First, when viewed as a solver for (26), it
obtains the exact solution in n steps. Second, when viewed as a solver for (27), its iteration
complexity for an ε-accurate solution is O(

√
κ log(1/ε)). See, for example, Chapter 5.1 of

Nocedal and Wright (2006). Because the method proposed in Section 4 possesses the same
two properties in Theorems 5 and 6, it can be viewed as an extension of linear CG to general
nonlinear convex optimization.

5.2. First-order Methods and Momentum

For nonlinear convex optimization, the simplest first-order method is gradient descent. In
gradient descent, the update direction is always the negative gradient −∇f(w). It has been
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shown in many standard convex optimization books such as Boyd and Vandenberghe (2004);
Nocedal and Wright (2006); Nesterov (2003) that with a proper choice of the step size, to
obtain an ε-accurate solution for a given ε > 0, gradient descent requires O(κ log(1/ε)) itera-
tions. However, this is far from the aforementioned optimal convergence rate O(

√
κ log(1/ε))

for methods that have their update directions in the span of all previous gradients.
Methods like the heavy-ball method (Polyak, 1964) and nonlinear CG try to improve

the convergence by using the “momentum.” These methods possess update rules in the
form

wk+1 = wk − αk∇f(wk) + βk(wk −wk−1), (28)

where αk and βk vary in different methods, and the term wk − wk−1 is the so-called
momentum. By induction we can easily see that wk −wk−1 in (28) is a linear combination
of ∇f(w0),∇f(w1), . . . ,∇f(wk−1), and therefore these methods fall in the category of
picking the update direction from the span of the previous gradients. Nonlinear CG has
many different variants that consider different strategies based on wk, wk−1, ∇f(wk),
∇f(wk−1) and even∇2f(wk), and all of them reduce to linear CG when the problem is (27).
Interested readers are referred to Hager and Zhang (2006) and the references therein. When
f is quadratic and strongly convex, it can be shown that both the heavy-ball method with
proper parameters (Lessard et al., 2016) and nonlinear CG methods can achieve the optimal
convergence rate for first-order methods,3 but for non-quadratic functions, the situation is
different. Some variants of nonlinear CG can be shown to converge asymptotically, but the
rate is unclear (Hager and Zhang, 2006, Theorem 5.1). On the other hand, Ghadimi et al.
(2014) showed that for problems satisfying Assumption 1, with properly chosen parameters,
the heavy-ball method converges globally R-linearly. If in addition the problem is twice-
differentiable, Polyak (1987) showed that when the iterate is close enough to the optimum,
the local R-linear convergence rate of the heavy-ball method matches the optimal linear
convergence rate of first-order methods for a specific choice of αk and βk.

Nesterov’s accelerated gradient (Nesterov, 1983) considers two sequences {wk} and {sk}
with the following update rules.

wk+1 ≡ sk −
1

ρ
∇f(sk),

sk+1 = (1 +

√
κ− 1√
κ+ 1

)wk+1 −
√
κ− 1√
κ+ 1

wk.

Interestingly, this method uses only the previous gradients in a deterministic way with κ
to be the only data-dependent value, but it can guarantee the optimal iteration complexity
of first-order methods for problems satisfying Assumption 1. A problem in this method
is that we need to know the values ρ and σ in advance, and these values may not be
available. To solve this problem, a variant of Nesterov’s accelerated gradient is proposed
in Nesterov (2013). This algorithm estimates these parameters at each iteration via an
iterative procedure similar to backtracking line search, and achieves the same iteration
complexity with little additional cost. Note that for all these first-order methods, the main
bottleneck is the computation of the gradients, and the cost is proportional to the number
of different gradients computed per iteration.

3. Section 1 of Hager and Zhang (2006) suggests that nonlinear CG methods reduce to linear CG when f
is quadratic, and the convergence rate follows what we described in Section 5.1.
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Our method can be viewed as a generalization of these approaches, in the sense that
the same search space for the update direction is considered. The major difference is
that these momentum methods are restricted to some deterministic or pre-specified ways
of combination, while our method considers combining multiple directions with adaptive
weights according to the data that can and will change over iterations. Another difference
is that we utilize higher-order derivatives to decide the combination coefficient, so quadratic
convergence in Theorem 4 can be obtained.

5.3. Methods Utilizing Multiple Directions

The cutting plane method (Kelley, 1960) and the bundle method (Teo et al., 2010) use
all gradients obtained from the first iteration on. They differ from our method from using
the previous gradients to construct a piecewise linear function to approximate (the hard-to-
compute part of) the actual function.4 Therefore, the purpose of using previous gradients in
these methods and that of ours are different. An advantage of the cutting plane method and
the bundle method is the ability to deal with nonsmooth problems by using subgradients.
When being applied to problems satisfying Assumption 1, the bundle method converges
linearly (Teo et al., 2010). However, optimizing a piecewise linear function with a growing
number of pieces is more expensive than dealing with one smooth function. Our method
considers easier-to-solve subproblems at each iteration. Moreover, our method converges
quadratically while the bundle method and the cutting plane method do not have this
property.

Quasi-Newton methods also consider previous momentums and gradients, but the pur-
pose is to approximate the real Hessian matrix via these vectors in order to achieve su-
perlinear convergence. Among different quasi-Newton methods, the BFGS method (Dennis
and Moré, 1977) and its limited-memory variant, L-BFGS (Liu and Nocedal, 1989), are
the most widely used ones. It is known that the BFGS method admits local superlinear
convergence and converges globally; see, for example, (Nocedal and Wright, 2006, Chapter
6). By applying a proper line search procedure, L-BFGS has global linear convergence for
problems satisfying Assumption 1.5 Note that because older information are discarded,
L-BFGS does not have superlinear convergence, but it has the advantage of less spatial cost
and is more suitable for large-scale problems.

At the k-th iteration for any k ≥ 1, given the current iterate wk, BFGS solves the
following quadratic problem.

min
pk

∇f(wk)
>pk +

1

2
(pk)

>Bkpk, (29)

where Bk is a positive definite symmetric approximation of ∇2f(wk) such that

B−1
k = (I − µk−1uk−1s

>
k−1)>B−1

k−1(I − µk−1uk−1s
>
k−1) + µk−1sk−1s

>
k−1, (30)

4. It is known in functional analysis that any convex function can be approximated by piecewise linear
functions to any precision.

5. Note that the proof that L-BFGS converges globally linearly utilized the property of using a bounded
number of historical vectors and thus does not apply to BFGS.
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with

µk−1 ≡
1

u>k−1sk−1
, sk−1 = wk −wk−1, uk−1 = ∇f(wk)−∇f(wk−1).

Note that although B0 can be decided arbitrarily, the most common choice is

B0 = βI (31)

for some β > 0. The solution of (29) is clearly

pk = −B−1
k ∇f(wk). (32)

If (31) is used, this operation can be conducted cheaply with only O(kn) cost by a sequence
of vector-vector operations obtained from expanding (30).6 After deciding pk, a line search
procedure is conducted to find a suitable step size θk to ensure that the sequence {wk}
converges to the optimal solution of f .

With the choice of (31), by induction the vector

sk = αk+1pk (33)

is a linear combination of ∇f(w0), . . . ,∇f(wk) for all k.7 Thus, we can see that pk ∈
span{∇f(w0), . . . , f(wk)} and thus the BFGS algorithm only utilizes the previous gradi-
ents, but is able to achieve superlinear convergence. Interestingly, our algorithm utilizes
the same information as BFGS, but because we also consider the Hessian to search for the
best update direction in span{∇f(w0), . . . ,∇f(wk)}, our method is better than BFGS for
being able to achieve quadratic convergence.

A major drawback of the BFGS algorithm is that it requires storing many vectors (or an
O(n2) dense matrix) in memory. The memory consumption can be prohibitively expensive
after iterations. This issue also happens in our method, but we notice that in practice,
it is not severe. One reason is that the memory capacity is large enough to store the
required information unless the number of iterations is high, and both our method and
BFGS converge fast enough such that the memory capacity is not reached. For extremely
large data, the memory issue may be faced, but this issue is less problematic in our method
than in BFGS. The reason is that at each iteration of BFGS, two new vectors are added to
memory, while in our method, at most one vector is added.

To handle the memory consumption problem of BFGS, its limited-memory variant,
L-BFGS (Liu and Nocedal, 1989), is proposed. L-BFGS uses a different setting of B−1

k .
Given an integer m > 0, at the k-th iteration, L-BFGS only uses si,ui, i = k −m, k −m+
1, . . . , k−1 and ∇f(wk) to construct the approximate Hessian inverse. For L-BFGS, in the
recursive computation of (30), the matrix B−1

k−m can be replaced by any matrix. According

6. If B0 has neither sparsity nor some special structures, the cost of computing (32) at each iteration is
O(n2) by directly maintaining (30), and it does not fall in the category of algorithms that only use
gradients anymore because the vector B−1

0 ∇f(w) is considered.
7. By continually expanding (32) using (31) and (30), we can see that pk is a linear combination of si,ui, i =

1, . . . , k− 1 and ∇f(wk). By induction, if all si are linear combinations of previous gradients, then with
the definition of ui, pk is also a linear combination of previous gradients. The induction is finished by
that sk is a multiple of pk in (33).
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to (Nocedal and Wright, 2006, Chapter 7), a choice that has been shown to be practically
effective is

sTk−1uk−1

‖uk−1‖2
I. (34)

This is also the choice we use in our implementation for empirical comparisons. As men-
tioned earlier, L-BFGS has only linear but not superlinear convergence. Nevertheless, it
might outperform BFGS practically because the computation cost per iteration and the
memory access amount are both lower. Moreover, it is shown in Bubeck et al. (2015) that
L-BFGS outperforms those methods mentioned in Section 5.2 empirically, although the
coefficient of its linear convergence is not clear.

5.4. Newton Method

At each iteration, given the current iterate w, the Newton method obtains the update
direction by solving

min
p∈Rn

p>∇f(w) +
1

2
p>∇2f(w)p. (35)

To obtain the solution of (35), the following n by n linear system is solved.

∇2f(w)p = −∇f(w) ⇒ p = −∇2f(w)−1∇f(w). (36)

Then a line search procedure is conducted to ensure the sufficient function decrease. It is
known that for twice-differentiable functions satisfying Assumption 2, the Newton method
with line search has local quadratic convergence (Boyd and Vandenberghe, 2004; Nocedal
and Wright, 2006). However, The computational cost per Newton iteration for directly
solving the linear system (36) is as expensive as O(n3). Moreover, solving (36) precisely
may not be beneficial when the current iterate is far from optimum. Therefore, truncated
Newton methods that utilize, for example, the iterative linear CG method we discussed in
Section 5.1 to approximately solve (36) is often used. In general, the computational cost
per CG iteration is O(n2) for conducting the Hessian-vector product provided the Hessian
is available. When we only want to solve the problem approximately, usually the required
CG iteration is much smaller than n, making the computation of a truncated Newton step
much cheaper than that of a full Newton step. It is known that truncated Newton steps
combined with a line search procedure or trust region techniques retain local quadratic
convergence for problems satisfying Assumption 2 and have superlinear convergence for
problems satisfying Assumption 1, if the residual of the solution to (36) goes to zero as the
number of truncated Newton iterations goes to infinity. See, for example, Lin and Moré
(1999) and (Nocedal and Wright, 2006, Theorem 7.2).

As mentioned above, the cost of directly computing the Hessian-vector product is O(n2)
both spatially and computationally if we store the Hessian matrix explicitly. However, as
Keerthi and DeCoste (2005); Lin et al. (2008) proposed, for ERM problems in (7), if we
calculate the product between Hessian and a given vector v by

∇2f(w)v = (I +X>DwX)v = v +
(
X> (Dw (Xv))

)
, (37)

this computation costs only O(#nnz + n) per CG iteration, where #nnz is at most ln
but is usually much smaller for sparse data. Further, no storage space is needed for the
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operation in (37). On the other hand, explicitly forming the Hessian matrix in this case costs
O(#nnz2). Therefore, for regularized ERM problems, the CG approach without explicitly
computing the Hessian matrix is more preferable. In this sense, truncated Newton methods
costs

O((#nnz + n)× CG iterations) (38)

per Newton iteration. A comparison between (38) and (20) shows that by a careful uti-
lization of the problem structure of ERM, we have a cheaper cost of running one Newton
iteration to approximately minimize a sub-problem over a subspace. The cost of our Newton
iteration is only about that of one CG iteration here. We will examine the relative training
speed between the truncated Newton method and our algorithm by experiments in Section
6.

6. Experiments

We examine the empirical speed of our algorithm for solving two L2-regularized ERM
problems. The first one is logistic regression, in which ξ(·) in (7) is defined by

ξ(y; z) ≡ log (1 + exp (−yz)) ,

and the second one is the squared-hinge loss problem, where ξ(·) is

ξ(y; z) ≡ max {1− yz, 0}2 .

In both cases, y ∈ {−1, 1}. We first compare the approach of conducting only one inner
iteration discussed in Section 2 with that of conducting multiple inner iterations illustrated
in Section 4 using the logistic regression problems. The relative efficiency between our
methods and the methods reviewed in Section 5 is then examined on both loss functions.

6.1. Experiment Settings

We consider the data sets listed in Table 1 with three different choices of parameters
C = {10−3, 1, 103} to examine the situation of different condition numbers. All data sets
except yahoo-japan and yahoo-korea are publicly available.8 We use the relative distance
to the optimal objective value, which is defined below, to compare different optimization
approaches. ∣∣∣∣f(w)− f(w∗)

f(w∗)

∣∣∣∣ ,
where w∗ is the optimal solution obtained by running our algorithm long enough. All
experiments are conducted on a 64-bit machine with Intel Xeon 2.0 GHz CPU (E5504),
4MB cache, and 32GB memory.

We consider two different criteria for comparison. The first one is the empirical training
time. This is the most important criterion in single-machine training for most users. We also
consider the number of data passes, which is proportional to the number of iterations9 and

8. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
9. For the Newton method, this is the number of inner iterations in CG plus the number of Newton

iterations.
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Data Training size (l) Features (n) Density (#nnz/(ln))

a9a 32,561 123 11.2757%
covtype 581,012 54 21.9979%
news20 19,996 1,355,191 0.0336%
url 2,396,130 3,231,961 0.0036%
epsilon 400,000 2000 100.0000%
webspam 350,000 16,609,143 0.0224%
yahoo-japan 140,963 832,026 0.0160%
yahoo-korea 368,444 3,053,939 0.0111%
rcv1t 677,399 47,236 0.1549%
KDD2010-b 19,264,097 29,890,095 0.0001%

Table 1: Statistics of data sets.

is thus an indicator of iteration complexity. This criterion can also serve as a training time
estimate for scenarios that the cost is highly dependent to the number of passes through
the data, such as distributed machine learning, or disk-level classification (Yu et al., 2012).
In addition, this criterion excludes the effect of implementation differences.

6.2. Using Single or Multiple Inner Iterations

We compare on logistic regression problems the performance of the two variants of our
algorithms, namely the approach of using only a single inner iteration and the variant of
using multiple inner iterations, in Figures 1-6. Note that the result of KDD2010-b with
C = 103 is not shown because the training time is too long. For the backtracking line
search procedure in Algorithm 2, we set β = 0.4, λ = 0.25. The solution to the linear
system (14) is obtained by a Cholesky factorization with partial pivoting. For the multiple
inner iteration variant, we use the following heuristic stopping condition for the inner loop
in Algorithm 4.

‖Pk∇f(w)‖ ≤ min(0.1‖∇f(wk)‖, ‖∇f(wk)‖2).

We can see that the two approaches perform quite similarly in both criteria, while
the single inner iteration approach is slightly better in the training time. The figures of
data passes indicate that using a single inner iteration has similar function value decrease
per iteration to using multiple inner iterations, so the additional cost of multiple inner
iterations sometimes results in slightly longer training time. Therefore, we use the single
iteration variant in later experiments of comparing with existing algorithms.

6.3. Comparison Between Different Methods

We compare the following different algorithms for training L2-regularized smooth empirical
risk minimization problems.

• CommDir: our common-directions method with single inner iteration.
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• Line search truncated Newton method (NEWTON): at each Newton iteration, (35) is
approximately solved by linear CG, until CG generates an approximate solution p of
(35) that satisfies

‖∇f(w)−∇2f(w)p‖ ≤ 0.1‖∇f(w)‖.

We follow the discussion in Section 5 to efficiently compute the Hessian-vector prod-
ucts in O(n+ #nnz) time. The implementation is modified from that in LIBLINEAR
(Fan et al., 2008).

• L-BFGS: We implement the L-BFGS algorithm by considering different numbers of
history states m = 5, 10, 15, 20, 30.10 For the first step, where no historical information
is available, we follow the implementation by the authors of Liu and Nocedal (1989) to
take the initial step size for the gradient direction as 1/‖∇f(w0)‖. For later iterations,
we take the matrix defined in (34) as B−1

k−m. In general m = 30 performs the best, so
we report results of using this number of states.

• BFGS: we use our L-BFGS implementation and set m to infinity to obtain a BFGS
solver.

• Nesterov’s accelerated gradient (AG): we consider the approach proposed by Nesterov
(2013) that adaptively estimates the parameters σ and ρ by a procedure similar to
backtracking line search. We take the initial estimation to be σ = 1 and ρ = 1/Cl.

For NEWTON, L-BFGS and BFGS that require a line search procedure to ensure the con-
vergence, we follow our method to apply Algorithm 2 with the same parameters β = 0.4
and λ = 0.25 used in Section 6.2. We exploit the trick discussed in Section 3.2 to efficiently
conduct this line search procedure. Note that for all methods except AG, evaluating XTvw

in (8) for gradient at each iteration requires one data pass, and the line search procedure
requires another one to maintain Xw. For NEWTON, each CG iteration requires one data
pass. For AG, each inner iteration for adaptively estimating σ and ρ requires two data
passes to compute related values. All algorithms are implemented in C++.

The results on logistic regression problems are shown in Figures 7-9 for running time
and Figures 10-12 for number of data passes. Note that the result of KDD2010-b with
C = 103 is not shown because the training time is too long. We can see that our method
has the fewest data passes in all settings and all data sets. This observation suggests the
usefulness of our method in the scenario that the data passes are expensive. The number of
data passes is significantly reduced because we use the ideas in Section 3 to store the inner
products XPk to avoid redundant data accesses. In terms of training time, our method is
among the fastest. The exceptions are a9a and rcv1t whose l are much larger than n, and
the largest data set KDD2010-b, which from Table 1 is highly sparse. From the result of
data passes, we see that our method requires fewer iterations than other methods, in the
cost of the O(lm2 +mn) operations per iteration in addition to the O(#nnz) cost required
by all methods to conduct one data pass; see (20). When O(lm2 + mn) � O(#nnz),
this additional cost is negligible and hence the advantage of fewer iterations dominates.

10. We also tried the implementation by the authors of Liu and Nocedal (1989) at http://users.iems.

northwestern.edu/~nocedal/lbfgs.html, but found that it is not as efficient as ours. Note that their
implementation does not utilize the efficient line search procedure discussed in Section 3.2.
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However, when n is relatively small, or when the data set is highly sparse, the O(lm2 +mn)
cost is significant in compared with O(#nnz), so our method may be slower for these data
sets.

We then show results on squared-hinge loss problems in Figures 13-15 for running time
and in Figures 16-18 for data passes. Similar trends of superiority of our method in data
passes are still observed in squared-hinge loss problems, but in general the squared-hinge
loss problems are harder to optimize for all methods. A possible reason is that logistic
loss is infinitely continuously differentiable but squared-hinge loss is only once continuously
differentiable. This difficulty in optimization of squared-hinge loss problems is reflected in
running time as well. Since our common-directions method has cost that grows superlinearly
with the number of iterations passed, its relative running time performance is also worse
on squared-hinge loss problems than that on logistic regression problems.

The comparison here between NEWTON and L-BFGS is inconsistent with that in Lin
et al. (2008). A further investigation showed that the major difference is from the choice
of m. In Lin et al. (2008), m = 5 is used, while we observe that setting larger m like 30
here in most cases leads to faster convergence in terms of time, as long as the memory
capacity is not an issue. Another minor difference is that each line search iteration of L-
BFGS in the experiments of Lin et al. (2008) requires one data pass while we use the idea
of caching inner products to accelerate the line search in our experiments. Moreover, in Lin
et al. (2008), instead of line search, a trust region approach is considered for the truncated
Newton method.

An interesting observation in our experimental results is the impressive performance of
BFGS. Although BFGS has better theoretical convergence than L-BFGS, in practice people
tend to use L-BFGS because BFGS consumes too much memory. Our experiments indicate
that with larger memory and better computation power nowadays, BFGS becomes feasible
and can outperform L-BFGS in some cases. However, it is also observed that when both
the number of iterations to converge and n are large, such as the cases of webspam and url
with C = 1000, BFGS still suffers from the memory problem.

7. Discussion

As shown in our experiments, our method has a smaller number of data passes than all other
methods. This property implies that our method has at least two potential applications for
solving extremely large-scale ERM problems. The first one is disk-level classification when
the data cannot fit into memory, and the second one is distributed machine learning. In
both tasks, each data pass involves expensive operations like intensive disk I/O or between-
machine communication. With fewer data passes, our method is suitable for these tasks to
tackle the bottleneck.

Each data pass in disk-level classification requires expensive disk I/O to access data
because we cannot store all of them in memory. Existing methods for disk-level classification
(Yu et al., 2012; Chang and Roth, 2011) consider solving the dual problem with techniques
involving shuffling and partitioning data into blocks. Each block can be fully loaded into
memory and these methods work on one block at a time. The random shuffling step gives
better convergence, but requires lengthy pre-processing time because of heavy disk I/O. In
contrast, our method does not require the random shuffling of data.
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To reduce the number of data passes, Chang and Roth (2011) considered caching im-
portant instances in memory. Our method also uses ideas similar to caching, while the
information being kept in memory is not some training instances, but the inner products
XPk. The number of these inner products is roughly the same as the number of iterations,
which is usually not too large. Therefore, the memory consumption of our method tends
to be smaller, and hence our method can cache more important information to reduce the
data I/O.

For distributed machine learning that uses multiple machines, each data pass requires an
expensive communication of a vector proportional to the data size to synchronize informa-
tion among machines. Usually this step is the bottleneck of distributed machine learning.
With fewer data passes and thus fewer rounds of communication, our method can be ex-
pected to have shorter training time than other algorithms in distributed environments.

8. Conclusions

In this paper, we propose a new optimization algorithm that utilizes the Hessian informa-
tion to combine different update directions. Theoretically, our method has global linear and
local quadratic convergence, while the cost per iteration is not expensive for solving ERM
problems. Empirically, extensive experimental results show that for solving ERM problems,
our method is competitive with state-of-the-art methods in terms of training time, but out-
performs them in terms of data passes. After the first version of this paper, we have studied
possible choices of common directions other than the gradients for distributed training in
Lee et al. (2017).
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Appendix A. Analysis of Common-directions Method with Single Inner
Iteration

We will show that under Assumptions 1, Algorithm 1 converges linearly by Theorem 3. If
in addition Assumption 2 is satisfied, Algorithm 1 converges quadratically by Theorem 4.

Lemma 7 Let P be an n by m real matrix such that P>P = I. Then

‖P>v‖ ≤ ‖v‖, ∀v ∈ Rn.

Further, equality holds if and only if

v ∈ span(P ) ≡ {P t | ∀t ∈ Rm}.

Proof Note that v can be decomposed as

v = PP>v + (I − PP>)v. (39)

Taking norm at both sides and applying P>P = I, there is

‖v‖2 = ‖P>v‖2 + ‖(I − PP>)v‖2 ≥ ‖P>v‖2. (40)
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Thus, the first result follows. For the second result, we know that v is in the span of P if
and only if its orthogonal projection to the span of P is itself. Therefore,

v ∈ span(P ) ⇐⇒ v = PP>v.

Combining this with (39), we obtain

v ∈ span(P ) =⇒ (I − PP>)v = 0 =⇒ ‖P>v‖ = ‖v‖.

Similarly, with (40), we have

‖P>v‖ = ‖v‖ =⇒ ‖(I − PP>)v‖ = 0 =⇒ v ∈ span(P ).

Thus, the second result follows from the above two statements.

Lemma 8 For every iteration k of Algorithm 1, we have

P>k Pk = I, (41)

and
‖P>k ∇f(wk)‖ = ‖∇f(wk)‖. (42)

Proof The augmenting of P in Algorithm 1 is simply the Gram-Schmidt process, and thus
(41) holds. Further, from the fact that (I − Pk−1P

>
k−1)∇f(wk) is used to generate Pk, we

have that ∇f(wk) ∈ span(Pk), so (42) follows from Lemma 7.

Lemma 9 Under Assumption 1,

σI � P>k ∇2f(wk)Pk � ρI. (43)

Proof Assumption 1 indicates that

σI � ∇2f(w) � ρI, ∀w. (44)

Combining (44) and (41) in Lemma 8, one has that for any t,

t>P>k ∇2f(wk)Pkt ≥ σ‖Pkt‖2 = σ‖t‖2, (45)

t>P>k ∇2f(wk)Pkt ≤ ρ‖Pkt‖2 = ρ‖t‖2,

which then imply (43).

Lemma 10 Under Assumption 1,

1

2ρ
‖∇f(w)‖2 ≤ f(w)− f∗ ≤ 1

2σ
‖∇f(w)‖2, (46)

where f∗ is the optimal objective value.
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Proof The first inequality is from Nesterov (2003, Theorem 2.1.5) together with that

∇f(w∗) = 0,

where w∗ is the optimal solution. The second inequality follows from Nesterov (2003, The-
orem 2.1.10).

Proof of Theorem 3

We will show that the update direction does not deviate from the steepest descent
direction too much, and the line search procedure will then ensure the sufficient decrease of
the function value for linear convergence. Let

t = −(P>k ∇2f(wk)Pk)
−1P>k ∇f(wk). (47)

Note that (P>k ∇2f(wk)Pk) is invertible because of Lemma 9.

We first show that the step size produced in the line search procedure in Algorithm 2 is
lower-bounded. From (44) via Assumption 1, for any θ̄ > 0, we have

f(wk + θ̄Pkt) ≤ f(wk) + θ̄∇f(wk)
>Pkt +

ρ

2
θ̄2‖Pkt‖2. (48)

If

−θ̄∇f(wk)
>Pkt−

ρ

2
θ̄2‖Pkt‖2 ≥

λ

2
θ̄2‖Pkt‖2, (49)

then with (48) the stopping condition of Algorithm 2 is satisfied. For θ̄ > 0, (49) is equivalent
to

θ̄ ≤ −∇f(wk)
>Pkt

‖Pkt‖2
2

ρ+ λ
. (50)

From (41) of Lemma 8,

‖Pkt‖ = ‖t‖. (51)

Thus, by the definition of t in (47) and Lemma 9,

−∇f(wk)
>Pkt

‖Pkt‖2
=

t>(P>k ∇2f(wk)Pk)t

‖t‖2
≥ σ, (52)

whenever ∇f(wk) 6= 0. Then we have that (49), or equivalently (50), holds whenever

θ̄ ≤ 2σ

ρ+ λ
.

This ensures the finite termination of Algorithm 2 and guarantees that the generated step
size θk satisfies

θk ≥ min(1,
2βσ

ρ+ λ
) ≥ βσ

ρ+ λ
, (53)

where the second inequality is from β < 1, λ > 0, and σ ≤ ρ. Therefore, the line-search
procedure terminates after at most dlogβ(βσ/(ρ+ λ))e steps.
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Next we prove the linear convergence. By (51), the definition of t in (47), Lemma 9,
and (42) of Lemmas 8, we have

‖Pkt‖2 = ‖t‖2

= ∇f(wk)
>Pk(P

>
k ∇2f(wk)Pk)

−2P>k ∇f(wk)

≥ 1

ρ2
‖P>k ∇f(wk)‖ =

1

ρ2
‖∇f(wk)‖2.

With this inequality and Lemma 10, the line search stopping condition implies

f(wk+1)− f∗ ≤ f(wk)− f∗ −
λθ2

k

2
‖Pkt‖2

≤ f(wk)− f∗ −
λθ2

k

2ρ2
‖∇f(wk)‖2 ≤ (1−

λθ2
kσ

ρ2
)(f(wk)− f∗). (54)

Plugging in the lower bound (53) of the step-size θk to (54), we have the linear convergence

f(wk+1)− f∗ ≤ (1− λβ2σ3

(ρ+ λ)2ρ2
)(f(wk)− f∗).

This non-asymptotic linear convergence holds for any λ. Specifically, if we take λ = ρ, then
we have the iteration complexity

O(
ρ3

σ3
log(

1

ε
)),

Further, if Algorithm 2 always stops at step size θk = 1, the rate (54) becomes

f(wk+1)− f∗ ≤ (1− λσ

ρ2
)(f(wk)− f∗).

In this case, picking λ = ρ recovers the iteration complexity of gradient descent methods
(Nesterov, 2003)

O

(
ρ

σ
log

(
1

ε

))
.

Thus, all the results are established.

Proof of Theorem 4

If ∇f(w0) = 0, then the initial point is the optimal solution, and there is nothing to
prove. Therefore, because ∇f(w0)/‖∇f(w0)‖ 6= 0 is included in P0, we start our discussion
with rank(Pk) ≥ 1. The procedure of adding columns to Pk in Algorithm 1 ensures that
rank(Pk) is a monotonically increasing and bounded sequence with

1 ≤ rank(Pk) ≤ n, ∀k ∈ N.

Thus, there exists a k0 such that

rank(Pk) = rank(Pk0), ∀k ≥ k0.
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Together with wk+1 = wk + θkPktk in Algorithm 1, this implies

wk −w0 ∈ span(Pk0), ∀k ≥ 0.

From Theorem 3, we know that f(wk) converges to f(w∗). This property and the strong
convexity of f imply that wk also converges to w∗ globally because

f(wk)− f(w∗) ≥ σ

2
‖wk −w∗‖2.

Therefore, we have w∗ − w0 ∈ span(Pk0). This means that the minimization procedure
takes update directions wholly in the space span(Pk0), and each step in the algorithm is
equivalent to applying the Newton method with line search in the subspace. Consider the
following equivalent reformulation

wk = w0 + Pk0 t̂k,w
∗ = w0 + Pk0 t̂

∗
,∀k ≥ k0.

Our method after the k0-th iteration is equivalent to applying the Newton method over the
variables t̂. That is, the following optimization problem is solved

min
t̂

f(w0 + Pk0 t̂). (55)

From Lemma 9, (55) possesses a unique optimal solution t̂
∗
. See also (47), which has the

form of the Newton direction of (55). Note that for g(t) ≡ f(w0 + Pk0t), Assumption 2 is
still satisfied because with ‖Pk0‖ = 1,

‖∇2g(t1)−∇2g(t2)‖ = ‖P>k0(∇2f(w0 + Pk0t1)−∇2f(w0 + Pk0t2))Pk0‖
≤ ‖Pk0‖2M‖Pk0(t1 − t2)‖ ≤M‖t1 − t2‖.

Further, the line search process is scale-invariant because the columns in Pk0 are orthogonal
due to the Schmidt process. Thus, the quadratic convergence of t̂k follows from that of the
Newton method for problems satisfying Assumption 2 (Nocedal and Wright, 2006, Theorem
3.5).

‖t̂k+1 − t̂
∗‖ = O(‖t̂k − t̂

∗‖2).

Because columns in Pk0 are orthogonal to each other, we have that

‖Pk0(t̂k+1 − t̂
∗
)‖ = ‖(t̂k+1 − t̂

∗
)‖ = O(‖t̂k − t̂

∗‖2) = O(‖Pk0(t̂k − t̂
∗
)‖2).

Therefore, quadratic convergence for the original variables wk holds.

Appendix B. Proof of Theorem 5

We first prove that, if every iteration of Algorithm 4 reaches the optimal solution of (21),
then the optimal convergence rate is guaranteed. The main idea of this proof follows from
the convergence rate proof of Nesterov’s accelerated gradient (Nesterov, 1983) in Bubeck
(2015, Theorem 3.17).
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Let wk be the iterate obtained from Algorithm 4 at the k-th iteration. Define

φk+1(w) ≡ (1− α)φk (w) + α
(
f (wk) +∇f (wk)

> (w −wk) +
σ

2
‖w −wk‖2

)
, k ≥ 0,

(56)

with α ≡
√
σ

ρ
∈ (0, 1], and φ0(w) ≡ σ

2
‖w −w0‖2 + f(w0). (57)

We will first show that, by induction,

∇2φk(w) = σI, ∀k. (58)

The claim holds trivially at k = 0 from (57). Now suppose the claim (58) holds for some
k ≥ 0. For the (k + 1)-th iteration, by (56) we have

∇2φk+1(w) = (1− α)∇2φk(w) + ασI = σI.

Thus, the induction on (58) is established.

Now we examine the recurrence relation in φk. Because φ0(w) and the recurrence (56)
are all strongly convex quadratic, we have φk(w) is also a strongly convex quadratic by
induction. Let vk be a constant that minimizes φk, which implies ∇φk(vk) = 0. By (58)
and the Taylor expansion, we obtain

φk(w) = φk(vk) +∇φk(vk)>(w − vk) +
σ

2
‖w − vk‖2

= φk(vk) +
σ

2
‖w − vk‖2, ∀w. (59)

Further, let vk+1 be the minimizer of φk+1. Using the derivative of (56) together with (59),
we have

∇φk+1(vk+1)

= (1− α)∇φk(vk+1) + α(∇f(wk) + σ(vk+1 −wk))

= (1− α)σ(vk+1 − vk) + α(∇f(wk) + σ(vk+1 −wk)) = 0.

Thus, we obtain a recurrent definition of vk+1:

v0 = w0,

vk+1 = (1− α)vk + αwk −
α

σ
∇f(wk). (60)

From (60), we have

vk+1 − vk = −α(vk −wk)−
α

σ
∇f(wk), (61)

vk+1 −wk = (1− α)(vk −wk)−
α

σ
∇f(wk). (62)
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Next, we obtain a recurrent relation of φk+1(vk+1).

φk+1(vk+1) = (1− α)
(
φk(vk) +

σ

2
‖vk+1 − vk‖2

)
+ α

(
f(wk) +∇f(wk)

>(vk+1 −wk) +
σ

2
‖vk+1 −wk‖2

)
(63)

= (1− α)φk(vk) + αf(wk)

+ α(1− α)
(
∇f(wk)

>(vk −wk) +
σ

2
‖vk −wk‖2

)
− 1

2ρ
‖∇f(wk)‖2, (64)

where (63) is by (56) and (59), and (64) is by (61), (62), and applying the definition
α =

√
σ/ρ to the coefficient of ‖∇f(wk)‖2. Note that {φk} is called the estimation sequence

in Nesterov (1983).
Now we show by induction that, for wk minimizing (21) exactly,

min
w∈Rn

φk(w) = φk(vk) ≥ f(wk), ∀k ≥ 0. (65)

First, (65) holds trivially at k = 0 from the definition (57). Assume (65) holds at the k-th
iteration. At the (k + 1)-th iteration, (64) and (65) imply

φk+1(vk+1) ≥ f(wk) + α(1− α)
(
∇f(wk)

>(vk −wk) +
σ

2
‖vk −wk‖2

)
− 1

2ρ
‖∇f(wk)‖2.

(66)
By the definition of Pk and induction on (60), both vk and wk belong to w0 + span(Pk−1).
Thus, the optimality of wk on

min
t

f(wk−1 + Pk−1t)

implies that
P>k−1∇f(wk) = 0. (67)

Thus
∇f(wk)

>(vk −wk) = 0. (68)

This result, (66), and α ∈ (0, 1] from (57) then lead to

φk+1(vk+1) ≥ f(wk)−
1

2ρ
‖∇f(wk)‖2. (69)

Further,

f(wk)−
1

2ρ
‖∇f(wk)‖2 = f(wk)−

1

ρ
‖∇f(wk)‖2 +

ρ

2

1

ρ2
‖∇f(wk)‖2

≥ f(wk −
1

ρ
∇f(wk)) (70)

≥ f(wk+1). (71)

The inequality (70) comes from the Taylor expansion of f(wk −∇f(wk)/ρ) and (44):

f(wk −
1

ρ
∇f(wk)) = f(wk)−

1

ρ
‖∇f(wk)‖2 +

1

2ρ2
∇f(wk)

>∇2f(w̃)∇f(wk)

≤ f(wk)−
1

ρ
‖∇f(wk)‖2 +

1

2ρ
‖∇f(wk)‖2,
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where w̃ is between wk and wk− 1
ρ∇f(wk). For (71), it holds because ∇f(wk) ∈ span(Pk)

and wk+1 is a minimizer of f over w0 + span(Pk). Combining (69) and (71), we have (65)
holds at iteration k + 1. Therefore, (65) holds for every k ≥ 0 by induction.

Now, we arrive at the final steps. From (65), (56), and the strong convexity of f in
Assumption 1, we have

f(wk+1)− f(w∗)

≤ min
w

φk+1(w)− f(w∗)

≤ φk+1(w∗)− f(w∗) (72)

= (1− α)φk(w
∗) + α(f(wk) +∇f(wk)

>(w∗ −wk) +
σ

2
‖w∗ −wk‖2)− f(w∗)

≤ (1− α)φk(w
∗) + αf(w∗)− f(w∗)

= (1− α)(φk(w
∗)− f(w∗)) (73)

≤ (1− α)k+1(φ0(w∗)− f(w∗)). (74)

Note that (74) comes from repeating the steps between (72) and (73). By taking logarithm
at both sides, we have proven that Algorithm 4 achieves the optimal rate when (21) is solved
exactly.

Next we discuss the situation when (21) is approximately solved. In the above proof we
can see that having a wk+1 that satisfies (65) is sufficient for proving the linear convergence.
Because (65) comes from (66)-(69) and (71),11 we can consider running inner iterations in
Algorithm 4 until the following inner stopping condition is satisfied.

∇f(wk+1)>(vk+1 −wk+1) +
σ

2
‖vk+1 −wk+1‖2 ≥ 0, (75a)

f(wk+1) ≤ f(wk −
1

ρ
∇f(wk)). (75b)

Denote t∗k as the exact solution of (21) and let

w∗k+1 ≡ wk + Pkt
∗
k.

From the discussion in (68) and (71), clearly w∗k+1 satisfies (75). The remaining task is to
prove that (75) can be achieved in a finite number of iterations. If w∗k+1 strictly satisfies
inequalities in (75), then by the continuity of f and ∇f , there is a neighborhood of w∗k+1 in
which every point satisfies (75). Because inner iterations lead to the convergence to w∗k+1,
the inner loop must terminate finitely. On the other hand, we can easily rule out situations
where w∗k+1 satisfies one of the conditions in (75) as an equality. When (75a) becomes an
equality under w∗k+1, (68) implies that

w∗k+1 = vk+1.

When (75b) becomes an equality, the strong convexity of f(wk + Pkt) on t, which follows
from Lemma 9, implies that the optimum w∗k+1 of mint f(wk+Pkt) is unique. This property,
the fact that ∇f(wk) lies in the column space of Pk, and the equality in (75b) imply that

w∗k+1 = wk −
1

ρ
∇f(wk).

11. Note that we ensure (75) holds for every k, so (75a) with k rather than k + 1 is what we use for (66).
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Therefore, before starting the inner loop of Algorithm 4, we can first check if vk+1 or wk −
(1/ρ)∇f(wk) satisfies (75). If one of them satisfies both inequalities, then we can take this
vector as wk+1 without going into the loop. Otherwise, neither vk+1 nor wk−(1/ρ)∇f(wk)
is w∗k+1, so w∗k+1 must strictly satisfy inequalities in (75).

Therefore, after a finite number of inner iterations we can always find an iterate wk+1

satisfying (75). This condition ensures (69) and (71) hold. Therefore, (65) is established.

Appendix C. Proof of Theorem 6

At the k-th iteration, if (21) is solved exactly, the optimality condition (67) implies that any
column in Pk is orthogonal to ∇f(wk+1). Therefore, if ∇f(wk+1) 6= 0, the new gradient
will augment Pk+1 by one column. By induction, if ∇f(wk′) 6= 0, ∀k′ = 0, . . . , k − 1, then
Pk has k orthogonal columns. Because each column of Pk is in Rn, there can be at most n
orthogonal directions in Pk. Therefore, when k ≥ n , span(Pk) = Rn and the solution of
(21) is equivalent to the solution of (1). Thus, the optimum is reached within n iterations.
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(a) a9a
(b) covtype

(c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 1: Comparison between single inner iteration and multiple inner iterations variants of
the common-directions method. We present training time (in log scale) of logistic regression
with C = 10−3.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 2: Comparison between single inner iteration and multiple inner iterations variants of
the common-directions method. We present training time (in log scale) of logistic regression
with C = 101.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

Figure 3: Comparison between single inner iteration and multiple inner iterations variants of
the common-directions method. We present training time (in log scale) of logistic regression
with C = 103.
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(a) a9a
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(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 4: Comparison between single inner iteration and multiple inner iterations variants
of the common-directions method. We present data passes (in log scale) of logistic regression
with C = 10−3.
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(a) a9a (b) covtype
(c) news20

(d) url
(e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 5: Comparison between single inner iteration and multiple inner iterations variants
of the common-directions method. We present data passes (in log scale) of logistic regression
with C = 101.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

Figure 6: Comparison between single inner iteration and multiple inner iterations variants
of the common-directions method. We present data passes (in log scale) of logistic regression
with C = 103.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 7: Training time of logistic regression with C = 10−3.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t (i) epsilon

(j) KDD2010-b

Figure 8: Training time of logistic regression with C = 1.
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(a) a9a (b) covtype (c) news20

(d) url (e) yahoo-japan (f) yahoo-korea

(g) webspam (h) rcv1t
(i) epsilon

Figure 9: Training time of logistic regression with C = 103.
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(c) news20
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(j) KDD2010-b

Figure 10: Number of data passes of logistic regression with C = 10−3.
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Figure 11: Number of data passes of logistic regression with C = 1.
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Figure 12: Number of data passes of logistic regression with C = 103.
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Figure 13: Training time of L2-loss SVM with C = 10−3.
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(j) KDD2010-b

Figure 14: Training time of L2-loss SVM with C = 1.
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Figure 15: Training time of L2-loss SVM with C = 103.
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Figure 16: Number of data passes of L2-loss SVM with C = 10−3.
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Figure 17: Number of data passes of L2-loss SVM with C = 1.
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Figure 18: Number of data passes of L2-loss SVM with C = 103.
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