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Abstract

Sparse-Group Lasso (SGL) has been shown to be a powerful regression technique for si-
multaneously discovering group and within-group sparse patterns by using a combination
of the `1 and `2 norms. However, in large-scale applications, the complexity of the regular-
izers entails great computational challenges. In this paper, we propose a novel two-layer
feature reduction method (TLFre) for SGL via a decomposition of its dual feasible set. The
two-layer reduction is able to quickly identify the inactive groups and the inactive features,
respectively, which are guaranteed to be absent from the sparse representation and can be
removed from the optimization. Existing feature reduction methods are only applicable to
sparse models with one sparsity-inducing regularizer. To our best knowledge, TLFre is the
first one that is capable of dealing with multiple sparsity-inducing regularizers. Moreover,
TLFre has a very low computational cost and can be integrated with any existing solvers.
We also develop a screening method—called DPC (decomposition of convex set)—for non-
negative Lasso. Experiments on both synthetic and real data sets show that TLFre and
DPC improve the efficiency of SGL and nonnegative Lasso by several orders of magnitude.

Keywords: Sparse, Sparse Group Lasso, Screening, Fenchel’s Dual, Decomposition,
Convex Sets, Composite Function Optimization

1. Introduction

Sparse-Group Lasso (SGL) (Friedman et al.; Simon et al., 2013) is a powerful regression
technique in identifying important groups and features simultaneously. To yield sparsity
at both group and individual feature levels, SGL combines the Lasso (Tibshirani, 1996)
and group Lasso (Yuan and Lin, 2006) penalties. In recent years, SGL has found great
success in a wide range of applications, including but not limited to machine learning
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(Vidyasagar, 2014; Yogatama and Smith, 2014), signal processing (Sprechmann et al., 2011),
bioinformatics (Peng et al., 2010) etc. Many research efforts have been devoted to developing
efficient solvers for SGL (Friedman et al.; Simon et al., 2013; Liu and Ye, 2010; Vincent
and Hansen, 2014). However, when the feature dimension is extremely high, the complexity
of the SGL regularizers imposes great computational challenges. Therefore, there is an
increasingly urgent need for nontraditional techniques to address the challenges posed by
the massive volume of the data sources.

Recently, El Ghaoui et al. (2012) proposed a promising feature reduction method, called
SAFE screening, to screen out the so-called inactive features, which have zero coefficients
in the solution, from the optimization. Thus, the size of the data matrix needed for the
training phase can be significantly reduced, which may lead to substantial improvement
in the efficiency of solving sparse models. Inspired by SAFE, various exact and heuristic
feature screening methods have been proposed for many sparse models such as Lasso (Wang
et al., 2013; Liu et al., 2014; Tibshirani et al., 2012; Xiang and Ramadge, 2012), group Lasso
(Wang et al., 2013; Wang et al.; Tibshirani et al., 2012), etc. It is worthwhile to mention that
the discarded features by exact feature screening methods such as SAFE (El Ghaoui et al.,
2012), DOME (Xiang and Ramadge, 2012) and EDPP (Wang et al., 2013) are guaranteed
to have zero coefficients in the solution. However, heuristic feature screening methods like
strong rule (Tibshirani et al., 2012) may mistakenly discard features that have nonzero
coefficients in the solution. Thus, to compute the exact solutions, the authors propose to
check the KKT conditions after the screening pass of strong rules. More recently, the idea
of exact feature screening has been extended to exact sample screening, which screens out
the nonsupport vectors in SVM (Ogawa et al., 2013; Wang et al., 2014) and LAD (Wang
et al., 2014). As a promising data reduction tool, exact feature/sample screening would
be of great practical importance because they can effectively reduce the data size without
sacrificing the optimality (Ogawa et al., 2014).

However, all of the existing feature/sample screening methods are only applicable for
the sparse models with one sparsity-inducing regularizer. In this paper, we propose an
exact two-layer feature screening method, called TLFre, for the SGL problem. The first
and second layer of TLFre aim to quickly identify the inactive groups and the inactive
features, respectively, which are guaranteed to have zero coefficients in the solution. To the
best of our knowledge, TLFre is the first screening method which is capable of dealing with
multiple sparsity-inducing regularizers.

We note that most of the existing exact feature screening methods involve an estimation
of the dual optimal solution. The difficulty in developing screening methods for sparse
models with multiple sparsity-inducing regularizers like SGL is that the dual feasible set is
the sum of simple convex sets. Thus, to determine the feasibility of a given point, we need to
know if it is decomposable with respect to the summands, which is itself a nontrivial problem
(see Section 2). One of our major contributions is that we derive an elegant decomposition
method of any dual feasible solutions of SGL via the framework of Fenchel’s duality (see
Section 3). Based on the Fenchel’s dual problem of SGL, we motivate TLFre by an in-
depth exploration of its geometric properties and the optimality conditions in Section 4.
We derive the set of the regularization parameter values corresponding to zero solutions. To
develop TLFre, we need to estimate the upper bounds involving the dual optimal solution.
To this end, we first give an accurate estimation of the dual optimal solution via the normal
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cones. Then, we formulate the estimation of the upper bounds via nonconvex optimization
problems. We show that these nonconvex problems admit closed form solutions.

The rest of this paper is organized as follows. In Section 2, we briefly review some
basics of the SGL problem. We then derive the Fenchel’s dual of SGL with nice geometric
properties under the elegant framework of Fenchel’s Duality in Section 3. In Section 4, we
develop the TLFre screening rule for SGL. To demonstrate the flexibility of the proposed
framework, we extend TLFre to the nonnegative Lasso problem in Section 5. Experiments
in Section 6 on both synthetic and real data demonstrate that the speedup gained by the
proposed screening rules in solving SGL and nonnegative Lasso can be orders of magnitude.
Please see the appendix for detailed proofs that are not presented in the main text.

Notation: Let ‖ · ‖1, ‖ · ‖ and ‖ · ‖∞ be the `1, `2 and `∞ norms, respectively. Denote
by Bn1 , Bn, and Bn∞ the unit `1, `2, and `∞ norm balls in Rn (we omit the superscript if it
is clear from the context). For a set C, let int C be its interior. If C is closed and convex,
we define the projection operator as

PC(w) := argminu∈C‖w − u‖.

We denote the indicator function of C by

IC(w) =

{
0, if w ∈ C,
∞, otherwise.

Let Γ0(Rn) be the class of proper closed convex functions on Rn. For f ∈ Γ0(Rn), let ∂f
be its subdifferential. The domain of f is the set dom f := {w : f(w) <∞}.

For w ∈ Rn, let [w]i be its ith component. More generally, if G ⊂ {1, 2, . . . , n} is an
index set, we denote the corresponding subvector of w by [w]G ∈ R|G|, where |G| denotes
the number of elements in G. For γ ∈ R, let

sgn(γ) =

{
sign(γ), if γ 6= 0,

0, otherwise.

We define

SGN(w) =

{
s ∈ Rn : [s]i ∈

{
sign([w]i), if [w]i 6= 0;

[−1, 1], if [w]i = 0.

}
We denote by γ+ = max(γ, 0). Then, for γ ≥ 0, the shrinkage operator Sγ(w) : Rn → Rn
can be written as

[Sγ(w)]i = (|[w]i| − γ)+sgn([w]i), i = 1, . . . , n. (1)

2. Basics and Motivation

In this section, we briefly review some basics of SGL. Let y ∈ RN be the response vector
and X ∈ RN×p be the matrix of features. With the group information available, the SGL
problem (Friedman et al.) is

min
β∈Rp

1

2

∥∥∥∥y−∑G

g=1
Xgβg

∥∥∥∥2

+ λ1

∑G

g=1

√
ng‖βg‖+ λ2‖β‖1, (2)
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where ng is the number of features in the gth group, Xg ∈ RN×ng denotes the predictors in
that group with the corresponding coefficient vector βg, and λ1, λ2 are positive regularization
parameters. Without loss of generality, let λ1 = αλ and λ2 = λ with α > 0. Then, problem
(2) becomes:

min
β∈Rp

1

2

∥∥∥∥y−∑G

g=1
Xgβg

∥∥∥∥2

+ λ

(
α
∑G

g=1

√
ng‖βg‖+ ‖β‖1

)
. (3)

By the Lagrangian multipliers method (Boyd and Vandenberghe, 2004) (see the appendix),
we can derive the dual problem of SGL as follows.

sup
θ

1

2
‖y‖2 − 1

2

∥∥∥y

λ
− θ
∥∥∥2

(4)

s.t. XT
g θ ∈ Dαg := α

√
ngB + B∞, g = 1, . . . , G.

It is well-known that the dual feasible set of Lasso is the intersection of closed half spaces
(thus a polytope); for group Lasso, the dual feasible set is the intersection of ellipsoids. Sur-
prisingly, the geometric properties of these dual feasible sets play fundamentally important
roles in most of the existing screening methods for sparse models with one sparsity-inducing
regularizer (Wang et al., 2014; Liu et al., 2014; Wang et al., 2013; El Ghaoui et al., 2012).

When we incorporate multiple sparse-inducing regularizers to the sparse models, prob-
lem (4) indicates that the dual feasible set can be much more complicated. Although (4)
provides a geometric description of the dual feasible set of SGL, it is not suitable for fur-
ther analysis. Notice that, even the feasibility of a given point θ is not easy to determine,
since it is nontrivial to tell if XT

g θ can be decomposed into b1 + b2 with b1 ∈ α
√
ngB and

b2 ∈ B∞. Therefore, to develop screening methods for SGL, it is desirable to gain deeper
understanding of the sum of simple convex sets.

In the next section, we analyze the dual feasible set of SGL in depth via the Fenchel’s
Duality Theorem. We show that for each XT

g θ ∈ Dαg , Fenchel’s duality naturally leads to

an explicit decomposition XT
g θ = b1 + b2, with one belonging to α

√
ngB and the other one

belonging to B∞. This lays the foundation of the proposed screening method for SGL.

3. The Fenchel’s Dual Problem of SGL

In Section 3.1, we derive the Fenchel’s dual of SGL via Fenchel’s Duality Theorem. We then
motivate TLFre in Section 3.2 and sketch our approach by Algorithm 1. In Section 3.3,
we explore the geometric properties of the Fenchel’s dual of SGL and derive the effective
interval of the parameter λ with a fixed value of α—that is the set of λ given α corresponding
to nonzero solutions of SGL.
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Algorithm 1 Guidelines for developing TLFre.

1: Given a pair of parameter values (λ, α), we estimate a region Θ that contains the dual
optimum θ∗(λ, α) of (4).

2: We solve the following two optimization problems:

s∗g = sup
ξg

{‖S1(ξg)‖ : ξg ∈ Ξg ⊇ XT
g Θ}, where XT

g Θ = {XT
g θ : θ ∈ Θ}, (5)

t∗gk = sup
θ
{|xTgkθ| : θ ∈ Θ}, where xgk is the kth column of Xg. (6)

3: The TLFre screening rules take the form of

s∗g < α
√
ng ⇒ β∗g (λ, α) = 0, (7)

t∗gk ≤ 1⇒ [β∗g (λ, α)]k = 0, (8)

where β∗(λ, α) is the optimal solution of SGL in (3).

3.1. The Fenchel’s Dual of SGL via Fenchel’s Duality Theorem

To derive the Fenchel’s dual problem of SGL, we need the Fenchel’s Duality Theorem as
stated in Theorem 1. We denote the conjugate of f ∈ Γ0(Rn) by f∗ ∈ Γ0(Rn):

f∗(z) = supw 〈w, z〉 − f(w). (9)

Theorem 1 [Fenchel’s Duality Theorem] Let f ∈ Γ0(RN ), Ω ∈ Γ0(Rp), and T (β) = y−Xβ
be an affine mapping from Rp to RN . Let p∗, d∗ ∈ [−∞,∞] be primal and dual values defined,
respectively, by the Fenchel problems:

p∗ = infβ∈Rp f(y −Xβ) + λΩ(β); d∗ = supθ∈RN −f∗(λθ)− λΩ∗(XT θ) + λ〈y, θ〉.

One has p∗ ≥ d∗. If, furthermore, f and Ω satisfy the condition

0 ∈ int (dom f − y + Xdom Ω) ,

then p∗ = d∗, and the supreme is attained in the dual problem if finite.

We omit the proof of Theorem 1 as it is similar to that of Theorem 3.3.5 in (Borwein
and Lewis, 2006).

Let f(w) = 1
2‖w‖

2 and λΩ(β) be the second term in (3). We can write SGL as

minβ f(y −Xβ) + λΩ(β). (10)

To derive the Fenchel’s dual problem of SGL, Theorem 1 implies that we need to find f∗

and Ω∗. It is well-known that f∗(z) = 1
2‖z‖

2. Therefore, we only need to find Ω∗, where
the concept infimal convolution is needed:
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Definition 2 (Bauschke and Combettes, 2011) Let h, g ∈ Γ0(Rn). The infimal convolution
of h and g is

(h�g)(ξ) = infη h(η) + g(ξ − η), (11)

and it is exact at a point ξ if there exists a η∗(ξ) such that

(h�g)(ξ) = h(η∗(ξ)) + g(ξ − η∗(ξ)). (12)

h�g is exact if it is exact at each point in its domain, and we denote it by h� g.

With the infimal convolution, we derive Ω∗ in the following Lemma.

Lemma 3 Let Ωα
1 (β) = α

∑G
g=1
√
ng‖βg‖, Ω2(β) = ‖β‖1 and Ω(β) = Ωα

1 (β) + Ω2(β).
Moreover, let Cαg = α

√
ngB ⊂ Rng , g = 1, . . . , G. Then, the following hold:

(i) (Ωα
1 )∗(ξ) =

∑G
g=1 ICαg (ξg) , (Ω2)∗(ξ) =

∑G
g=1 IB∞ (ξg),

(ii) Ω∗(ξ) = ((Ωα
1 )∗ � (Ω2)∗) (ξ) =

∑G
g=1 IB

(
ξg−PB∞ (ξg)

α
√
ng

)
,

where ξg ∈ Rng is the sub-vector of ξ corresponding to the gth group.

To prove Lemma 3, we first cite the following technical result.

Theorem 4 (Hiriart-Urruty, 2006) Let f1, · · · , fk ∈ Γ0(Rn). Suppose there is a point in
∩ki=1dom fi at which f1, · · · , fk−1 is continuous. Then, for all p ∈ Rn:

(f1 + · · ·+ fk)
∗(p) = min

p1+···+pk=p
[f∗1 (p1) + · · ·+ f∗k (pk)].

We now give the proof of Lemma 3.
Proof The first part can be derived directly by the definition as follows:

(Ωα
1 )∗(ξ) = sup

β
〈β, ξ〉 − Ωα

1 (β) =
G∑
g=1

α
√
ng

(
sup
βg

〈
βg,

ξg
α
√
ng

〉
− ‖βg‖

)

=
G∑
g=1

α
√
ngIB

(
ξg

α
√
ng

)
=

G∑
g=1

IB

(
ξg

α
√
ng

)
=

G∑
g=1

ICαg (ξg).

(Ω2)∗(ξ) = sup
β
〈β, ξ〉 − Ω2(β) = IB∞ (ξ) =

G∑
g=1

IB∞ (ξg) .

To show the second part, Theorem 4 indicates that we only need to show (Ωα
1 )∗�(Ω2)∗(ξ)

is exact (note that Ωα
1 and Ω2 are continuous everywhere). Let us now compute (Ωα

1 )∗�(Ω2)∗.

((Ωα
1 )∗�(Ω2)∗) (ξ) =inf

η
(Ωα

1 )∗(ξ − η) + (Ω2)∗(η) (13)

=

G∑
g=1

inf
ηg

IB

(
ξg − ηg
α
√
ng

)
+ IB∞ (ηg)

=

G∑
g=1

inf
‖ηg‖∞≤1

IB

(
ξg − ηg
α
√
ng

)
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To solve the optimization problem in (13), i.e.,

µ∗g = inf
ηg

{
IB

(
ξg − ηg
α
√
ng

)
: ‖ηg‖∞ ≤ 1

}
, (14)

we can consider the following problem

ν∗g = inf
ηg

{
1

α
√
ng
‖ξg − ηg‖ : ‖ηg‖∞ ≤ 1

}
. (15)

We can see that the optimal solution of problem (15) must also be an optimal solution of
problem (14). Let η∗g(ξg) be the optimal solution of (15). We can see that η∗g(ξg) is indeed
the projection of ξg on B∞, which admits a closed form solution:

[η∗g(ξg)]i = [PB∞(ξg)]i =


1, if [ξg]i > 1,

[ξg]i, if |[ξg]i| ≤ 1,

−1, if [ξg]i < −1.

Thus, problem (14) can be solved as

µ∗g = IB

(
ξg −PB∞(ξg)

α
√
ng

)
.

Hence, the infimal convolution in Eq. (13) is exact and Theorem 4 leads to

Ω∗(ξ) = ((Ωα
1 )∗ � (Ω2)∗) (ξ) =

G∑
g=1

IB

(
ξg −PB∞(ξg)

α
√
ng

)
, (16)

which completes the proof.

Note that PB∞(ξg) admits a closed form solution:

[PB∞(ξg)]i = sgn ([ξg]i) min (|[ξg]i| , 1) .

By Theorem 1 and Lemma 3, we derive the Fenchel’s dual of SGL in Theorem 5 (see Section
B for the proof).

Theorem 5 For the SGL problem in (3), the following hold:

(i) The Fenchel’s dual of SGL is given by:

inf
θ

1

2
‖y
λ
− θ‖2 − 1

2
‖y‖2, (17)

s.t.
∥∥XT

g θ −PB∞(XT
g θ)
∥∥ ≤ α√ng, g = 1, . . . , G.

(ii) Let β∗(λ, α) and θ∗(λ, α) be the optimal solutions of problems (3) and (17), re-
spectively. Then,

λθ∗(λ, α) =y −Xβ∗(λ, α), (18)

XT
g θ
∗(λ, α) ∈α√ng∂‖β∗g (λ, α)‖+ ∂‖β∗g (λ, α)‖1, g = 1, . . . , G. (19)

7



Wang, Zhang, and Ye

Eq. (18) and Eq. (19) are the so-called KKT conditions (Boyd and Vandenberghe, 2004)
and can also be obtained by the Lagrangian multiplier method (see Section A in the ap-
pendix).

Remark 6 We note that the shrinkage operator can also be expressed by

Sγ(w) = w −PγB∞(w), γ ≥ 0. (20)

Therefore, problem (17) can be written more compactly as

inf
θ

1

2
‖y
λ
− θ‖2 − 1

2
‖y‖2, (21)

s.t.
∥∥S1(XT

g θ)
∥∥ ≤ α√ng, g = 1, . . . , G.

The equivalence between the dual formulations For the SGL problem, its Lagrangian
dual in (4) and Fenchel’s dual in (17) are indeed equivalent to each other. We bridge them
together by the following lemma.

Lemma 7 (Bauschke and Combettes, 2011) Let C1 and C2 be nonempty subsets of Rn.
Then IC1 � IC2 = IC1+C2.

In view of Lemmas 3 and 7, and recall that Dαg = Cαg + B∞, we have

Ω∗(ξ) = ((Ωα
1 )∗ � (Ω2)∗) (ξ) =

∑G

g=1

(
ICαg � IB∞

)
(ξg) =

∑G

g=1
IDαg (ξg). (22)

Combining Eq. (22) and Theorem 1, we obtain the dual formulation of SGL in (4). There-
fore, the dual formulations of SGL in (4) and (17) are the same.

Remark 8 An appealing advantage of the Fenchel’s dual in (17) is that we have a natural
decomposition of all points ξg ∈ Dαg : ξg = PB∞(ξg) + S1(ξg)) with PB∞(ξg) ∈ B∞ and
S1(ξg) ∈ Cαg . As a result, this leads to a convenient way to determine the feasibility of any

dual variable θ by checking if S1(XT
g θ) ∈ Cαg , g = 1, . . . , G.

3.2. Motivation of the Two-Layer Screening Rules

We motive the two-layer screening rules via the KKT condition in Eq. (19). As implied by
the name, there are two layers in our method. The first layer aims to identify the inactive
groups, and the second layer detects the inactive features for the remaining groups.

by Eq. (19), we have the following cases by noting ∂‖w‖1 = SGN(w) and

∂‖w‖ =

{{
w
‖w‖

}
, if w 6= 0,

{u : ‖u‖ ≤ 1}, if w = 0.

Case 1. If β∗g (λ, α) 6= 0, we have

[XT
g θ
∗(λ, α)]k ∈

{
α
√
ng

[β∗g (λ,α)]k
‖β∗g (λ,α)‖ + sign([β∗g (λ, α)]k), if [β∗g (λ, α)]k 6= 0,

[−1, 1], if [β∗g (λ, α)]k = 0.
(23)

8



Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets

In view of Eq. (23), we can see that

(a): S1(XT
g θ
∗(λ, α)) = α

√
ng

β∗g (λ1, λ2)

‖β∗g (λ1, λ2)‖
and ‖S1(XT

g θ
∗(λ, α))‖ = α

√
ng, (24)

(b): If
∣∣[XT

g θ
∗(λ, α]k

∣∣ ≤ 1 then [β∗g (λ, α)]k = 0. (25)

Case 2. If β∗g (λ, α) = 0, we have

[XT
g θ
∗(λ, α)]k ∈ α

√
ng[ug]k + [−1, 1], ‖ug‖ ≤ 1. (26)

The first layer (group-level) of TLFre From (24) in Case 1, we have∥∥S1(XT
g θ
∗(λ, α))

∥∥ < α
√
ng ⇒ β∗g (λ, α) = 0. (R1)

We can see that we can utilize (R1) to identify the inactive groups, and thus it is a group-
level screening rule.

The second layer (feature-level) of TLFre Let xgk be the kth column of Xg. We
have [XT

g θ
∗(λ, α)]k = xTgkθ

∗(λ, α). In view of (25) and (26), we can see that∣∣xTgkθ∗(λ, α)
∣∣ ≤ 1⇒ [β∗g (λ, α)]k = 0. (R2)

Different from (R1), (R2) detects the inactive features, and thus it is a feature-level screening
rule.

However, we cannot directly apply (R1) and (R2) to identify the inactive groups/features
because both need to know θ∗(λ, α). Inspired by the SAFE rules (El Ghaoui et al., 2012),
we can first estimate a region Θ containing θ∗(λ, α). Let XT

g Θ = {XT
g θ : θ ∈ Θ}. Then,

(R1) and (R2) can be relaxed as follows:

supξg
{
‖S1(ξg)‖ : ξg ∈ Ξg ⊇ XT

g Θ
}
< α
√
ng ⇒ β∗g (λ, α) = 0, (R1∗)

supθ
{∣∣xTgkθ∣∣ : θ ∈ Θ

}
≤ 1⇒ [β∗g (λ, α)]k = 0. (R2∗)

We note that the two optimization problems in (R1∗) and (R2∗) are the same with (5)
and (6), respectively. Therefore, inspired by (R1∗) and (R2∗), we can develop TLFre via
the guidelines as shown in Algorithm 1.

3.3. The Effective Interval of Parameter Values

In this section, we explore the geometric properties of the Fenchel’s dual of SGL in depth—
based on which we can derive the set of parameter values such that the primal optimum is
zero/nonzero. We note that, Simon et al. (Simon et al., 2013) derived similar results for
SGL with a different parameterization of the parameter values. However, their approach is
based on the primal problem of SGL and the KKT conditions. Our new approach—that is
based on the dual perspective—sheds new insights on the geometric properties of SGL. We
consider the SGL problem in (3) and (2) in Section 3.3.1 and 3.3.2, respectively.

9



Wang, Zhang, and Ye

3.3.1. The Effective Interval of Parameter Values for Problem (3)

Consider the SGL problem in (3). For notational convenience, let

Fαg = {θ : ‖S1(XT
g θ)‖ ≤ α

√
ng}, g = 1, . . . , G.

We denote the feasible set of the Fenchel’s dual of SGL by

Fα = ∩g=1,...,GFαg .

Problem (17) [or (21)] implies that θ∗(λ, α) is the projection of y/λ on Fα, i.e.,

θ∗(λ, α) = PFα(y/λ). (27)

Thus, if y/λ ∈ Fα, we have θ∗(λ, α) = y/λ. Moreover, (R1) implies that β∗(λ, α) = 0 if
y/λ is an interior point of Fα. Indeed, we have the following stronger result.

Theorem 9 For the SGL problem in (3), let

λαmax = max
g
{ρg :

∥∥S1(XT
g y/ρg)

∥∥ = α
√
ng}. (28)

Then, the following statements are equivalent:

(i)
y

λ
∈ Fα, (ii) θ∗(λ, α) =

y

λ
, (iii) β∗(λ, α) = 0, (iv) λ ≥ λαmax.

Remark 10 Theorem 9 implies that the primal optimum β∗(λ, α) 6= 0 if and only if λ ∈
(0, λαmax), namely, the effective interval of the parameter λ with a fixed value of α is (0, λαmax).

We note that ρg in the definition of λαmax admits a closed form solution. For notational
convenience, let |w| be the vector by taking absolute value of w component-wisely and
[w](k) be the vector consisting of the first k components of w.

Lemma 11 We sort 0 6= |XT
g y| ∈ Rng in descending order and denote it by z.

(i) If there exists [z]k such that ‖S1(XT
g y/[z]k)‖ = α

√
ng, then ρg = [z]k.

(ii) Otherwise, let τi = ‖S1(XT
g y/[z]i)‖, i = 1, . . . , ng, and τng+1 =∞. There exists a

k such that α
√
ng ∈ (τk, τk+1), and ρg ∈ ([z]k+1, [z]k) is the root of

(k − α2ng)ρ
2 − 2ρ‖[z](k)‖1 + ‖[z](k)‖2 = 0.

We omit the proof of Lemma 11 because it is a direct consequence by noting that

‖S1(XT
g y/λ)‖2 = α2ng

is piecewise quadratic.

10
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3.3.2. The Effective Interval of Parameter Values for Problem (2)

Theorem 9 implies that the optimal solution β∗(λ, α) is 0 as long as y/λ ∈ Fα. This
geometric property also leads to an explicit characterization of the set of (λ1, λ2) such that
the corresponding solution of problem (2) is 0. We denote by β̄∗(λ1, λ2) the optimal solution
of problem (2).

Corollary 12 For the SGL problem in (2), let

λmax
1 (λ2) = max

g

1
√
ng
‖Sλ2(XT

g y)‖.

Then, the following hold.

(i) β̄∗(λ1, λ2) = 0⇔ λ1 ≥ λmax
1 (λ2).

(ii) β̄∗(λ1, λ2) = 0 if

λ1 ≥ λmax
1 := max

g

1
√
ng
‖XT

g y‖ or λ2 ≥ λmax
2 := ‖XTy‖∞.

By Corollary 12, we can see that the primal optimum β̄∗(λ1, λ2) 6= 0 if and only if
λ1 ∈ (0, λmax

1 (λ2)). In other words, the effective interval of the parameter λ1 with a fixed
value of λ2 is (0, λmax

1 (λ2)).

4. The Two-Layer Screening Rules for SGL

We follow the guidelines in Algorithm 1 to develop TLFre. In Section 4.1, we give an
accurate estimation of θ∗(λ, α) via normal cones (Ruszczyński, 2006). Then, we compute
the supreme values in (R1∗) and (R2∗) by solving nonconvex problems in Section 4.2.

We note that, in many applications, the parameter values that perform the best are
usually unknown. To determine appropriate parameter values, commonly used approaches
such as cross validation and stability selection involve solving SGL many times over a grip
of parameter values. Thus, given {αi}Ii=1 and λi,1 > · · · > λi,Ji , we can fix the value of α
each time and solve SGL by varying the value of λ. We repeat the process until we solve
SGL for all of the parameter values.

We present the TLFre screening rule combined with any solver for solving the SGL
problems at a grid of parameters in Algorithm 2 (see Section 4.3 for a detailed explanation).
Moreover, Theorem 9 gives the closed form solution of β∗(λ, α) for any λ ≥ λαmax. Thus, we
assume that the input parameter values in Algorithm 2 satisfy λi,j < λαimax for all i = 1, . . . , I
and j = 1, . . . ,Ji.

11
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Algorithm 2 The TLFre screening rule combined with any solver of SGL.

Input: {(λi,j , αi) : i = 1, . . . , I, j = 1, . . . ,Ji}, where λαimax > λi,1 > · · · > λi,Ji for
i = 1, . . . , I.

Output: β∗(λi,j , αi) and the index set Gi,j such that [β∗(λi,j , αi)]Gi,j = 0 for i = 1, . . . , I
and j = 1, . . . ,Ji.

1: Initialize Gi,j ← ∅, i = 1, . . . , I, j = 1, . . . ,Ji.
2: for i = 1 to I do
3: Compute λαimax by Eq. (28) and set λi,0 ← λαimax.
4: Set θ∗(λi,0, αi)← y

λi,0
by Theorem 9.

5: for j = 1 to Ji do
6: /* compute the ball Θ that contains θ∗(λi,j , αi) */
7: Compute v⊥αi(λi,j−1, λi,j) by Theorem 14.
8: Set the center of Θ: oαi(λi,j−1, λi,j)← θ∗(λi,j−1, αi) + 1

2v⊥αi(λi,j , λi,j−1).
9: Set the radius of Θ: rαi(λi,j−1, λi,j)← 1

2‖v
⊥
αi(λi,j , λi,j−1)‖.

10: for g = 1 to G do
11: Compute s∗g(λi,j , λi,j−1;αi) by Theorem 17.
12: /* the first layer (group-level screening) of TLFre */
13: if s∗g(λi,j , λi,j−1;αi) < αi

√
ng then

14: β∗g (λi,j , αi) = 0.

15: Set Gi,j ← Gi,j ∪ {gk : xgk is the kth column of Xg}.
16: else
17: for k = 1 to ng do
18: Compute t∗gk(λi,j , λi,j−1;αi) by Theorem 18.
19: /* the second layer (feature-level screening) of TLFre */
20: if t∗gk(λi,j , λi,j−1;αi) ≤ 1 then
21: [β∗g (λi,j , αi)]k = 0.
22: Set Gi,j ← Gi,j ∪ {gk}.
23: end if
24: end for
25: end if
26: end for
27: Set Gi,j ← {k : k = 1, . . . , p, k /∈ Gi,j}.
28: Compute [β∗(λi,j , αi)]Gi,j on the reduced data set XGi,j by any solver.

29: Set θ∗(λi,j , αi)← (y −Xβ∗(λi,j , αi))/λi,j by Eq. (18).
30: end for
31: end for

4.1. Estimation of the Dual Optimal Solution

Due to the geometric property of the dual problem in (17), i.e., θ∗(λ, α) = PFα(y/λ), we
have a very useful characterization of the dual optimal solution via the so-called normal
cones (Ruszczyński, 2006).

12
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Proposition 13 (Ruszczyński, 2006; Bauschke and Combettes, 2011) For a closed convex
set C ∈ Rn and a point w ∈ C, the normal cone to C at w is defined by

NC(w) = {v : 〈v,w′ −w〉 ≤ 0, ∀w′ ∈ C}. (29)

Then, the following hold:

(i) NC(w) = {v : PC(w + v) = w}.

(ii) PC(w + v) = w, ∀v ∈ NC(w).

(iii) Let w /∈ C. Then, w = PC(w)⇔ w −w ∈ NC(w).

(iv) Let w /∈ C and w = PC(w). Then, PC(w + t(w −w)) = w for all t ≥ 0.

By Theorem 9, θ∗(λ̄, α) is known if λ̄ = λαmax. Thus, we can estimate θ∗(λ, α) in terms of
θ∗(λ̄, α). Due to the same reason, we only consider the cases with λ < λαmax for θ∗(λ, α) to
be estimated.

Theorem 14 For the SGL problem in (3), suppose that θ∗(λ̄, α) is known with λ̄ ≤ λαmax.
Let ρg, g = 1, . . . , G, be defined by Theorem 9. For λ ∈ (0, λ̄), let

nα(λ̄) =


y

λ̄
− θ∗(λ̄, α), if λ̄ < λαmax,

X∗S1

(
XT
∗

y
λαmax

)
, if λ̄ = λαmax,

where X∗ = argmaxXg
ρg,

vα(λ, λ̄) =
y

λ
− θ∗(λ̄, α),

v⊥α (λ, λ̄) = vα(λ, λ̄)− 〈vα(λ, λ̄),nα(λ̄)〉
‖nα(λ̄)‖2

nα(λ̄).

Then, the following hold:

(i) nα(λ̄) ∈ NFα(θ∗(λ̄, α)),

(ii) ‖θ∗(λ, α)− (θ∗(λ̄, α) + 1
2v⊥α (λ, λ̄))‖ ≤ 1

2‖v
⊥
α (λ, λ̄)‖.

For notational convenience, we denote

oα(λ, λ̄) = θ∗(λ̄, α) +
1

2
v⊥α (λ, λ̄). (30)

Theorem 14 shows that θ∗(λ, α) lies inside the ball of radius 1
2‖v

⊥
α (λ, λ̄)‖ centered at

oα(λ, λ̄).

4.2. Solving for the Supreme Values via Nonconvex Optimization

We solve the optimization problems in (R1∗) and (R2∗). To simplify notations, let

Θ = {θ : ‖θ − oα(λ, λ̄)‖ ≤ 1

2
‖v⊥α (λ, λ̄)‖}, (31)

Ξg =

{
ξg : ‖ξg −XT

g oα(λ, λ̄)‖ ≤ 1

2
‖v⊥α (λ, λ̄)‖‖Xg‖2

}
, g = 1, . . . , G. (32)

13
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Theorem 14 indicates that θ∗(λ, α) ∈ Θ. Moreover, we can see that XT
g Θ ⊆ Ξg, g = 1, . . . , G.

To develop the TLFre rule by (R1∗) and (R2∗), we need to solve the following optimization
problems:

s∗g(λ, λ̄;α) = supξg {‖S1(ξg)‖ : ξg ∈ Ξg}, g = 1, . . . , G, (33)

t∗gk(λ, λ̄;α) =supθ {|xTgkθ| : θ ∈ Θ}, k = 1, . . . , ng, g = 1, . . . , G. (34)

4.2.1. The Solution of Problem (33)

We consider the following equivalent problem of (33):

1

2

(
s∗g(λ, λ̄;α)

)2
= supξg

{
1

2
‖S1(ξg)‖2 : ξg ∈ Ξg

}
. (35)

We can see that the objective function of problem (35) is continuously differentiable and
the feasible set is a ball. Thus, problem (35) is nonconvex because we need to maximize a
convex function subject to a convex set. We first derive the necessary optimality conditions
in Lemma 15 and then deduce the closed form solutions of problems (33) and (35) in
Theorem 17.

Lemma 15 Let Ξ∗g be the set of optimal solutions of (35) and ξ∗g ∈ Ξ∗g. Then, the following
hold:
(i) Suppose that ξ∗g is an interior point of Ξg. Then, Ξg is a subset of B∞.
(ii) Suppose that ξ∗g is a boundary point of Ξg. Then, there exists µ∗ ≥ 0 such that

S1(ξ∗g) = µ∗
(
ξ∗g −XT

g oα(λ, λ̄)
)
. (36)

(iii) Suppose that there exists ξ0
g ∈ Ξg and ξ0

g /∈ B∞. Then, we have
(iiia) ξ∗g /∈ B∞ and ξ∗g is a boundary point of Ξg, i.e.,

‖ξ∗g −XT
g oα(λ, λ̄)‖ =

1

2
‖v⊥α (λ, λ̄)‖‖Xg‖2.

(iiib) The optimality condition in Eq. (36) holds with µ∗ > 0.

To show Lemma 15, we need the following proposition.

Proposition 16 (Hiriart-Urruty, 1988) Suppose that h ∈ Γ0 and C is a nonempty closed
convex set. If w∗ ∈ C is a local maximum of h on C, then ∂h(w∗) ⊆ NC(w∗).

We now present the proof of Lemma 15.
Proof To simplify notations, let

c = XT
g oα(λ, λ̄) and r =

1

2
‖v⊥α (λ, λ̄)‖‖Xg‖2. (37)

By Eq. (1), we have

h(w) :=
1

2
‖S1(w)‖2 =

1

2

∑
i

(|[w]i| − 1)2
+. (38)

14
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It is easy to see that h(·) is continuously differentiable. Indeed, we have

∇h(w) = S1(w). (39)

Then, problem (35) can be written as

1

2
(s∗g(λ, λ̄;α))2 = sup

ξg

{
h(ξg) =

1

2

∑
i

([ξg]i − 1)2
+ : ξg ∈ Ξg

}
, (40)

where Ξg = {ξg : ‖ξg − c‖ ≤ r}. Then, Proposition 16 results in

S1(ξ∗g) = ∇h(ξ∗g) ⊆ ∂h(ξ∗g) ⊆ NΞg(ξ
∗
g). (41)

(i) Suppose that ξ∗g is an interior point of Ξg. Then, we have NΞg(ξ
∗
g) = 0. By

Eq. (41), we can see that

0 = S1(ξ∗g)⇒ 0 =
1

2
‖S1(ξ∗g)‖2 =

1

2
(s∗g(λ, λ̄;α))2 = sup

ξg

{
1

2
‖S1(ξg)‖2 : ξg ∈ Ξg

}
.

Therefore, we have

‖S1(ξg)‖ = 0, ∀ ξg ∈ Ξg. (42)

Because S1(ξg) = ξg −PB∞(ξg) (see Remark 6), Eq. (42) implies that

ξg = PB∞(ξg), ∀ ξg ∈ Ξg ⇒ ξg ∈ B∞, ∀ ξg ∈ Ξg.

This completes the proof.

(ii) Suppose that ξ∗g is a boundary point of Ξg. We can see that

NΞg(ξ
∗
g) = {µ(ξ∗g − c), µ ≥ 0}. (43)

Then, Eq. (36) follows by combining Eq. (43) and the optimality condition in (41).

(iii) Suppose that there exists ξ0
g ∈ Ξg and ξ0

g /∈ B∞.

(iiia) The definition of ξ0
g leads to

0 < ‖S1(ξ0
g)‖ ≤ ‖S1(ξ∗g)‖ ⇒ ξ∗g /∈ B∞.

Moreover, we can see that ξ∗g is a boundary point of Ξg. Because if ξ∗g is an
interior point of Ξg, the first part implies that Ξg ⊂ B∞. This contradicts
with the existence of ξ0

g . Thus, ξ∗g must be a boundary point of Ξg, i.e.
‖ξ∗g − c‖ = r.

(iiib) Because ξ∗g is a boundary point of Ξg, the second part implies that Eq. (36)
holds. Moreover, from (iiia), we know that ξ∗g /∈ B∞. Therefore, both sides
of Eq. (36) are nonzero and thus µ∗ > 0. This completes the proof.
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Based on the necessary optimality conditions in Lemma 15, we derive the closed form
solutions of (33) and (35) in the following Theorem. The notations are the same as the ones
in the proof of Lemma 15 [see Eq. (37) and Eq. (38)].

Theorem 17 For problems (33) and (35), let c = XT
g oα(λ, λ̄), r = 1

2‖v
⊥
α (λ, λ̄)‖‖Xg‖2 and

Ξ∗g be the set of the optimal solutions.

(i) Suppose that c /∈ B∞, i.e., ‖c‖∞ > 1. Let u = rS1(c)/‖S1(c)‖. Then,

s∗g(λ, λ̄;α) = ‖S1(c)‖+ r and Ξ∗g = {c + u}. (44)

(ii) Suppose that c is a boundary point of B∞, i.e., ‖c‖∞ = 1. Then,

s∗g(λ, λ̄;α) = r and Ξ∗g = {c + u : u ∈ NB∞(c), ‖u‖ = r} . (45)

(iii) Suppose that c ∈ intB∞, i.e., ‖c‖∞ < 1. Let i∗ ∈ I∗ = {i : |[c]i| = ‖c‖∞}. Then,

s∗g(λ, λ̄;α) = (‖c‖∞ + r − 1)+ , (46)

Ξ∗g =


Ξg, if Ξg ⊂ B∞,
{c + r · sgn([c]i∗)ei∗ : i∗ ∈ I∗} , if Ξg 6⊂ B∞ and c 6= 0,

{r · ei∗ ,−r · ei∗ : i∗ ∈ I∗} , if Ξg 6⊂ B∞ and c = 0,

where ei is the ith standard basis vector.

Proof

(i) Suppose that c /∈ B∞. By the third part of Lemma 15, we have

ξ∗g /∈ B∞, ‖ξ∗g − c‖ = r, (47)

ξ∗g −PB∞(ξ∗g) = S1(ξ∗g) = µ∗(ξ∗g − c), µ∗ > 0. (48)

By Eq. (48), we can see that µ∗ 6= 1 because otherwise we would have c =
PB∞(ξ∗g) ∈ B∞. Moreover, we can only consider the cases with µ∗ > 1 because
‖S1(ξ∗g)‖ = µ∗r and we aim to maximize ‖S1(ξ∗g)‖. Therefore, if we can find a
solution with µ∗ > 1, there is no need to consider the cases with µ∗ ∈ (0, 1).

Suppose that µ∗ > 1. Then, Eq. (48) leads to

c =PB∞(ξ∗g) +

(
1− 1

µ∗

)(
ξ∗g −PB∞(ξ∗g)

)
, (49)

ξ∗g =PB∞(ξ∗g) +
µ∗

µ∗ − 1

(
c−PB∞(ξ∗g)

)
. (50)

In view of part (iv) of Proposition 13 and Eq. (49), we have

PB∞(c) = PB∞(ξ∗g). (51)
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Therefore, Eq. (50) can be rewritten as

S1(ξ∗g) = ξ∗g −PB∞(ξ∗g) =
µ∗

µ∗ − 1
(c−PB∞(c)) =

µ∗

µ∗ − 1
S1(c). (52)

Combining Eq. (48) and Eq. (52), we have

µ∗

µ∗ − 1
‖S1(c)‖ = µ∗‖ξ∗g − c‖ = µ∗r ⇒ µ∗ = 1 +

‖S1(c)‖
r

> 1. (53)

The statement holds by plugging Eq. (53) and Eq. (51) into Eq. (50) and Eq. (52).
Moreover, the above discussion implies that Ξ∗g only contains one element as shown
in Eq. (44).

(ii) Suppose that c is a boundary point of B∞. Then, we can find a point ξ0
g ∈ Ξg

and ξ0
g /∈ B∞. By the third part of Lemma 15, we also have Eq. (47) and Eq. (48)

hold. We claim that µ∗ ∈ (0, 1]. The argument is as follows.

Suppose that µ∗ > 1. By the same argument as in the proof of the first part, we
can see that Eq. (52) holds. Because S1(ξ∗g) 6= 0 by Eq. (47), we have S1(c) 6= 0.
This implies that c /∈ B∞. Thus, we have a contradiction, which implies that
µ∗ ∈ (0, 1].

Let us consider the cases with µ∗ = 1. Because ‖S1(ξ∗g)‖ = µ∗r [see Eq. (48)]
and we want to maximize ‖S1(ξ∗g)‖, there is no need to consider the cases with
µ∗ ∈ (0, 1) if we can find solutions of problem (33) with µ∗ = 1. Therefore,
Eq. (48) leads to

PB∞(ξ∗g) = c.

By part (iii) of Proposition 13, we can see that

PB∞(ξ∗g) = c⇔ ξ∗g − c ∈ NB∞(c). (54)

Combining Eq. (54) and Eq. (47), the statement holds immediately, which confirms
that µ∗ = 1.

(iii) Suppose that c is an interior point of B∞.

(a) We first consider the cases with Ξg ⊂ B∞. Then, we can see that

S1(ξ) = 0, ∀ξ ∈ Ξg ⇒ Ξ∗g = Ξg.

In other words, an arbitrary point of Ξg is an optimal solution of problem
(33). Thus, we have

c + r · sgn(ei∗)ei∗ ∈ Ξ∗g,

s∗g(λ, λ̄;α) = 0.

On the other hand, we can see that

c− rei ∈ Ξg ⊂ B∞, c + rei ∈ Ξg ⊂ B∞, i = 1, . . . , ng ⇒ ‖c‖∞ + r ≤ 1.
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Therefore, we have

(‖c‖∞ + r − 1)+ = 0,

and thus

s∗g(λ, λ̄;α) = (‖c‖∞ + r − 1)+.

(b) Suppose that Ξg 6⊂ B∞, i.e., there exists ξ0 ∈ Ξg such that ξ0 /∈ B∞. By the
third part of Lemma 15, we have Eq. (47) and Eq. (48) hold. Moreover, in
view of the proof of the first and second part, we can see that µ∗ ∈ (0, 1).
Therefore, Eq. (48) leads to

(1− µ∗)ξ∗g + µ∗c = PB∞(ξ∗g). (55)

By rearranging the terms of Eq. (55), we have

PB∞(ξ∗g)− c = (1− µ∗)(ξ∗g − c). (56)

Because µ∗ ∈ (0, 1), Eq. (55) implies that PB∞(ξ∗g) lies on the line segment
connecting ξ∗g and c. Thus, we have

‖ξ∗g −PB∞(ξ∗g)‖+ ‖PB∞(ξ∗g)− c‖ = ‖ξ∗g − c‖ = r. (57)

Therefore, to maximize ‖S1(ξ∗g)‖ = ‖ξ∗g − PB∞(ξ∗g)‖, we need to minimize
‖PB∞(ξ∗g) − c‖. Because ξ∗g /∈ B∞, we can see that PB∞(ξ∗g) is a boundary
point of B∞. Therefore, we need to solve the following minimization problem:

min
φg
{‖φg − c‖ : ‖φg‖∞ = 1}. (58)

Suppose that c = 0. We can see that the set of optimal solutions of problem
(58) is

Φ∗g = {ei}
ng
i=1 ∪ {−ei}

ng
i=1.

For each φ∗g ∈ Φ∗g, we set it as PB∞(ξ∗g). In view of Eq. (56) and Eq. (47),
the statement follows immediately.

Suppose that c 6= 0. Recall that I∗ = {i∗ : |[c]i∗ | = ‖c‖∞}. It is easy to see
that

Φ∗g =

{
φi∗ : [φi∗ ]k =

{
sgn([c]i∗), if k = i∗,

[c]k, otherwise,
i∗ ∈ I∗

}
.

We can see that

φi∗ − c = (1− |[c]i∗ |)sgn([c]i∗)ei∗ , i
∗ ∈ I∗.

For each φi∗ , we set it to PB∞(ξ∗g). Then, we can see that the statement
holds by Eq. (56) and Eq. (47). This completes the proof.
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4.2.2. The Solution of Problem (34)

Problem (34) can be solved directly via the Cauchy-Schwarz inequality.

Theorem 18 For problem (34), we have

t∗gk(λ, λ̄;α) = |xTgkoα(λ, λ̄)|+ 1

2
‖v⊥α (λ, λ̄)‖‖xgk‖.

We are now ready to present the proposed screening rule TLFre.

4.3. The Proposed Two-Layer Screening Rules

To develop the two-layer screening rules for SGL, we only need to plug the supreme values
s∗g(λ, λ̄;α) and t∗gk(λ, λ̄;α) in (R1∗) and (R2∗). We present the TLFre rule as follows.

Theorem 19 For the SGL problem in (3), suppose that we are given a grid of parameter
values {αi}Ii=1 and λαimax = λi,0 > λi,1 > . . . > λi,Ji for each αi. Moreover, assume
that β∗(λi,j−1, αi) is known for an integer 0 < j < Ji. Let θ∗(λi,j−1, αi), v⊥αi(λi,j , λi,j−1)
and s∗g(λi,j , λi,j−1;αi) be given by Eq. (18), Theorems 14 and 17, respectively. Then, for
g = 1, . . . , G, the following holds

s∗g(λi,j , λi,j−1;αi) < αi
√
ng ⇒ β∗g (λi,j , αi) = 0. (L1)

For the gth group that does not pass the rule in (L1), we have [β∗g (λi,j , αi)]k = 0 if

t∗gk(λi,j , λi,j−1;αi) ≤ 1, (L2)

where

t∗gk(λi,j , λi,j−1;αi)

=

∣∣∣∣xTgk (y −Xβ∗(λi,j−1, αi)

λi,j−1
+

1

2
v⊥αi(λi,j , λi,j−1)

)∣∣∣∣+
1

2
‖v⊥αi(λi,j , λi,j−1)‖‖xgk‖.

(L1) and (L2) are the first and second layer screening rules of TLFre, respectively.
We also write Theorem 19 in an algorithmic manner in Algorithm 2. For each pair of

parameter values (λi,j , αi), we first apply TLFre to identify the inactive groups and inactive
features, namely, the zero components of β∗(λi,j , αi). Then, we remove the inactive groups
and inactive features from the data matrix and apply an arbitrary solver to solve the SGL
problem on the remaining features.

Specifically, lines 7 to 9 in Algorithm 2 compute the ball that contains θ∗(λi,j , αi) in
terms of θ∗(λi,j−1, αi) (see remark 20). Lines 13 till 15 apply the first layer of TLFre, i.e., the
group-level screening, to identify the inactive groups. Take the gth group for an example.
If the first layer identifies the gth group as an inactive group, we can set β∗g (λi,j , αi) = 0.
Otherwise, lines 20 till 23 apply the second layer of TLFre, i.e., the feature-level screening,
to identify the inactive features in the gth group. The index set Gi,j stores the indices
of inactive features, i.e., if k ∈ Gi,j , then [β∗(λi,j , αi)]k = 0. After we scan the entire
matrix, the index set Gi,j contains all the indices of inactive features identified by TLFre,
i.e., [β∗(λi,j , αi)]Gi,j = 0. Thus, the remaining unknowns are indeed [β∗(λi,j , αi)]Gi,j (see line
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27). Then, we apply an arbitrary solver to solve for [β∗(λi,j , αi)]Gi,j on the reduced data

matrix XGi,j , where XGi,j = (xk1 , . . . ,xkq), q = |Gi,j |, and k` ∈ Gi,j for ` = 1, . . . , q. Once we

have solved for [β∗(λi,j , αi)]Gi,j , we indeed have solved for β∗(λi,j , αi) as [β∗(λi,j , αi)]Gi,j = 0.

Then, line 29 computes θ∗(λi,j , αi) by Eq. (18), based on which we can estimate θ∗(λi,j+1, αi)
and apply TLFre to identify the zero components of β∗(λi,j+1, αi).

Remark 20 As shown by Theorem 19 and Algorithm 2, TLFre estimates the dual optimum
at (λi,j , αi), i.e., θ∗(λi,j , αi), in terms of a known dual optimum at a different pair of
parameter values (λi,j−1, αi), i.e., θ∗(λi,j−1, αi). Then, we can apply TLFre to identify
the inactive groups and inactive features and solve the TLFre problems on a reduced data
matrix. Thus, to initialize TLFre, we may need to solve the SGL problem on the entire
data matrix once to compute θ∗(λi,0, αi), which can be time consuming. However, we note
that, Theorem 9 not only gives the effective interval of λ for a fixed value of α, but also
a closed form solution of the dual optimum for any λ ≥ λαmax. Thus, as we have done in
Algorithm 2 (see line 3), we can always set λi,0 = λαimax and θ∗(λi,0, αi) = y/λi,0 to initialize
the computation of TLFre. This implies that, if we combine TLFre and an arbitrary solver,
we do not need to solve the SGL problem on the entire data matrix even once.

5. Extension to Nonnegative Lasso

The framework of TLFre is applicable to a large class of sparse models with multiple regu-
larizers. As an example, we extend TLFre to nonnegative Lasso:

min
β∈Rp

{
1

2
‖y−Xβ‖2 + λ‖β‖1 : β ∈ Rp+

}
, (59)

where λ > 0 is the regularization parameter and Rp+ is the nonnegative orthant of Rp. In
Section 5.1, we transform the constraint β ∈ Rp+ to a regularizer and derive the Fenchel’s
dual of the nonnegative Lasso problem. We then motivate the screening method—called
DPC since the key step is to decompose a convex set via Fenchel’s Duality Theorem—via
the KKT conditions in Section 5.2. In Section 5.3, we analyze the geometric properties of
the dual problem and derive the set of parameter values leading to zero solutions. We then
develop the screening method for nonnegative Lasso in Section 5.4.

5.1. The Fenchel’s Dual of Nonnegative Lasso

Let IRp+ be the indicator function of Rp+. By noting that IRp+ = λIRp+ for any λ > 0, we can

rewrite the nonnegative Lasso problem in (59) as

min
β∈Rp

1

2
‖y−Xβ‖2 + λ‖β‖1 + λIRp+(β). (60)

In other words, we incorporate the constraint β ∈ Rp+ to the objective function as an addi-
tional regularizer. As a result, the nonnegative lasso problem in (60) has two regularizers.
Thus, similar to SGL, we can derive the Fenchel’s dual of nonnegative Lasso via Theorem
1.
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We now proceed by following a similar procedure as the one in Section 3.1. We note
that the nonnegative Lasso problem in (60) can also be formulated as the one in (10) with
f(·) = 1

2‖ ·‖
2 and Ω(β) = ‖β‖1 +IRp+(β). To derive the Fenchel’s dual of nonnegative Lasso,

we need to find f∗ and Ω∗ by Theorem 1. Since we have already seen that f∗(·) = 1
2‖ · ‖

2

in Section 3.1, we only need to find Ω∗(·). The following result is indeed a counterpart of
Lemma 3.

Lemma 21 Let Ω2(β) = ‖β‖1, Ω3 = IRp+(β), and Ω(β) = Ω2(β) + Ω3(β). Then,

(i) (Ω2)∗(ξ) = IB∞(ξ) and (Ω3)∗(ξ) = IRp−(ξ), where Rp− is the nonpositive orthant of

Rp.

(ii) Ω∗(ξ) = ((Ω2)∗ � (Ω3)∗)(ξ) = IRp−(ξ − 1), where Rp 3 1 = (1, 1, . . . , 1)T .

We omit the proof of Lemma 21 since it is very similar to that of Lemma 3.

Remark 22 Consider the second part of Lemma 21. Let C1 = {ξ : ξ ≤ 1}, where “≤” is
defined component-wisely. We can see that

IRp−(ξ − 1) = IC1(ξ).

On the other hand, Lemma 7 implies that

Ω∗(ξ) = ((Ω2)∗ � (Ω3)∗)(ξ) = IB∞+Rp−(ξ).

Thus, we have B∞+Rp− = C1. The second part of Lemma 21 decomposes each ξ ∈ B∞+Rp−
into two components: 1 and ξ − 1 that belong to B∞ and Rp−, respectively.

By Theorem 1 and Lemma 21, we can derive the Fenchel’s dual of nonnegative Lasso in
the following theorem (which is indeed the counterpart of Theorem 5).

Theorem 23 For the nonnegative Lasso problem, the following hold:

(i) The Fenchel’s dual of nonnegative Lasso is given by:

inf
θ

{
1

2

∥∥∥y

λ
− θ
∥∥∥2
− 1

2
‖y‖2 : 〈xi, θ〉 ≤ 1, i = 1, . . . , p

}
. (61)

(ii) Let β∗(λ) and θ∗(λ) be the optimal solutions of problems (60) and (61), respec-
tively.Then,

λθ∗(λ) = y −Xβ∗(λ), (62)

XT θ∗(λ) ∈ ∂‖β∗(λ)‖1 + ∂IRp+(β∗(λ)). (63)

We omit the proof of Theorem 23 since it is very similar to that of Theorem 5.
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5.2. Motivation of the Screening Method via KKT Conditions

The key to develop the DPC rule for nonnegative lasso is the KKT condition in (63). We
can see that ∂‖w‖1 = SGN(w) and

∂IRp+(w) =

{
ξ ∈ Rp : [ξ]i =

{
0, if [w]i > 0,

ρ, ρ ≤ 0, if [w]i = 0,

}
.

Therefore, the KKT condition in (63) implies that

〈xi, θ∗(λ)〉 ∈

{
1, if [β∗(λ)]i > 0,

%, % ≤ 1, if [β∗(λ)]i = 0.
(64)

By Eq. (64), we have the following rule:

〈xi, θ∗(λ)〉 < 1⇒ [β∗(λ)]i = 0. (R3)

Because θ∗(λ) is unknown, we can apply (R3) to identify the inactive features—which have
0 coefficients in β∗(λ). Similar to TLFre, we can first find a region Θ that contains θ∗(λ).
Then, we can relax (R3) as follows:

sup
θ∈Θ
〈xi, θ〉 < 1⇒ [β∗(λ)]i = 0. (R3∗)

Inspired by (R3∗), we develop DPC via the following three steps:

Step 1. Given λ, we estimate a region Θ that contains θ∗(λ).

Step 2. We solve the optimization problem ωi = supθ∈Θ 〈xi, θ〉.

Step 3. By plugging in ωi computed from Step 2, (R3∗) leads to the desired screening
method DPC for nonnegative Lasso.

5.3. Geometric Properties of the Fenchel’s Dual of Nonnegative Lasso

In view of the Fenchel’s dual of nonnegative Lasso in (61), we can see that the optimal
solution is indeed the projection of y/λ onto the feasible set F = {θ : 〈xi, θ〉 ≤ 1, i =
1, . . . , p}, i.e.,

θ∗(λ) = PF

(y

λ

)
. (65)

Therefore, if y/λ ∈ F , Eq. (65) implies that θ∗(λ) = y/λ. If further y/λ is an interior
point of F , R3∗ implies that β∗(λ) = 0. The next theorem gives the set of parameter values
leading to 0 solutions of nonnegative Lasso.

Theorem 24 For the nonnegative Lasso problem (60), Let λmax = maxi〈xi,y〉. Then, the
following statements are equivalent:

(i)
y

λ
∈ F , (ii) θ∗(λ) =

y

λ
, (iii) β∗(λ) = 0, (iv) λ ≥ λmax.

We omit the proof of Theorem 24 since it is very similar to that of Theorem 9.
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5.4. The Proposed Screening Rule for Nonnegative Lasso

We follow the three steps in Section 5.2 to develop the screening rule for nonnegative Lasso.
We first estimate a region that contains θ∗(λ). Because θ∗(λ) admits a closed form solution
with λ ≥ λmax by Theorem 24, we focus on the cases with λ < λmax.

Theorem 25 For the nonnegative Lasso problem, suppose that θ∗(λ̄) is known with λ̄ ≤
λmax. For any λ ∈ (0, λ̄), we define

n(λ̄) =


y

λ̄
− θ∗(λ̄), if λ̄ < λαmax,

x∗, if λ̄ = λmax,
where x∗ = argmaxxi 〈xi,y〉,

v(λ, λ̄) =
y

λ
− θ∗(λ̄),

v(λ, λ̄)⊥ = v(λ, λ̄)− 〈v(λ, λ̄),n(λ̄)〉
‖n(λ̄)‖2

n(λ̄).

Then, the following hold:

(i) n(λ̄) ∈ NF (θ∗(λ̄)),

(ii)

∥∥∥∥θ∗(λ)−
(
θ∗(λ̄) +

1

2
v⊥(λ, λ̄)

)∥∥∥∥ ≤ 1

2
‖v⊥(λ, λ̄)‖.

Proof We only show that n(λmax) ∈ NF (θ∗(λmax)) since the proof of the other statement
is very similar to that of Theorem 14.

By Proposition 13 and Theorem 24, it suffices to show that

〈x∗, θ − y/λmax〉 ≤ 0, ∀ θ ∈ F . (66)

Because θ ∈ F , we have 〈x∗, θ〉 ≤ 1. The definition of x∗ implies that 〈x∗,y/λmax〉 = 1.
Thus, the inequality in (66) holds, which completes the proof.

Theorem 25 implies that θ∗(λ) is in a ball—denoted by B(λ, λ̄)—of radius 1
2‖v

⊥(λ, λ̄)‖
centered at θ∗(λ̄) + 1

2v⊥(λ, λ̄). Simple calculations lead to

ωi = sup
θ∈B(λ,λ̄)

〈xi, θ〉 =

〈
xi, θ

∗(λ̄) +
1

2
v⊥(λ, λ̄)

〉
+

1

2
‖v⊥(λ, λ̄)‖‖xi‖. (67)

By plugging ωi into (R3∗), we have the DPC screening rule for nonnegative Lasso as follows.

Theorem 26 For the nonnegative Lasso problem, suppose that we are given a sequence of
parameter values λmax = λ(0) > λ(1) > . . . > λ(J ). Then, [β∗(λ(j+1))]i = 0 if β∗(λ(j)) is
known and the following holds:〈

xi,
y −Xβ∗(λ(j))

λ(j)
+

1

2
v⊥(λ(j+1), λ(j))

〉
+

1

2
‖v⊥(λ(j+1), λ(j))‖‖xi‖ < 1. (68)
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6. Experiments

We evaluate TLFre for SGL and DPC for nonnegative Lasso in Sections 6.1 and 6.2, respec-
tively, on both synthetic and real data sets. To the best of knowledge, the TLFre and DPC
are the first screening methods for SGL and nonnegative Lasso, respectively. The code is
available at http://dpc-screening.github.io/.

6.1. TLFre for SGL

We perform experiments to evaluate TLFre on synthetic and real data sets in Sections 6.1.1
and 6.1.2, respectively. To measure the performance of TLFre, we compute the rejection
ratios of (L1) and (L2), respectively. Specifically, let m be the number of features that have
0 coefficients in the solution, G be the index set of groups that are discarded by (L1) and p
be the number of inactive features that are detected by (L2). The rejection ratios of (L1)

and (L2) are defined by r1 =
∑
g∈G ng
m and r2 = |p|

m , respectively. Moreover, we report the
speedup gained by TLFre, i.e., the ratio of the running time of solver without screening to
the running time of solver with TLFre.

To determine appropriate values of α and λ by cross validation or stability selection, we
can run TLFre with as many parameter values as we need. Given a data set, for illustrative
purposes only, we select seven values of α from {tan(ψ) : ψ = 5◦, 15◦, 30◦, 45◦, 60◦, 75◦, 85◦}.
Then, for each value of α, we run TLFre along a sequence of 100 values of λ equally spaced
on the logarithmic scale of λ/λαmax from 1 to 0.01. Thus, 700 pairs of parameter values of
(λ, α) are sampled in total.

We use sgLeastR from the SLEP package (Liu et al., 2009) as the solver for SGL, which
is one of the state-of-the-arts (Zhang et al., 2018b) [see Section G for a comparison between
sgLeastR and another popular solver (Lin et al., 2014)].

For the non-screening case, we apply sgLeastR directly to solve SGL with different
parameter values. We use zero as the initial point.

6.1.1. Simulation Studies

We perform experiments on two synthetic data sets that are commonly used in the literature
(Tibshirani et al., 2012; Zou and Hastie, 2005). The true model is y = Xβ∗ + 0.01ε,
ε ∼ N(0, 1). We generate two data sets with 1000 × 160000 entries: Synthetic 1 and
Synthetic 2. We randomly divide the 160000 features into 16000 groups. For Synthetic 1,
the entries of the data matrix X are i.i.d. standard Gaussian with pairwise correlation zero,
i.e., corr(xi,xi) = 0. For Synthetic 2, the entries of the data matrix X are drawn from
i.i.d. standard Gaussian with pairwise correlation 0.5|i−j|, i.e., corr(xi,xj) = 0.5|i−j|. To
construct β∗, we first randomly select γ1 percent of groups. Then, for each selected group,
we randomly select γ2 percent of features. The selected components of β∗ are populated
from a standard Gaussian and the remaining ones are set to 0. We set γ1 = γ2 = 10 for
Synthetic 1 and γ1 = γ2 = 20 for Synthetic 2.

Fig. 1(a) and Fig. 2(a) show the plots of λmax
1 (λ2) (see Corollary 12) and the sampled

parameter values of λ and α (recall that λ1 = αλ and λ2 = λ). For the other figures, the
blue and red regions represent the rejection ratios of (L1) and (L2), respectively. We can
see that TLFre is very effective in discarding inactive groups/features; that is, more than
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Figure 1: Rejection ratios of TLFre on the Synthetic 1 data set.
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Figure 2: Rejection ratios of TLFre on the Synthetic 2 data set.

90% of inactive features can be detected. Moreover, we can observe that the first layer
screening (L1) becomes more effective with a larger α. Intuitively, this is because the group
Lasso penalty plays a more important role in enforcing the sparsity with a larger value of
α (recall that λ1 = αλ). The top and middle parts of Table 1 indicate that the speedup
gained by TLFre is very significant (up to 80 times) and TLFre is very efficient. Compared
to the running time of the solver without screening, the running time of TLFre is negligible.
The running time of TLFre includes that of computing ‖Xg‖2, g = 1, . . . , G, which can be
efficiently computed by the power method (Halko et al., 2011). Indeed, this can be shared
for TLFre with different parameter values.

6.1.2. Experiments on Real Data Sets

We perform experiments on two commonly used real data sets – the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) data set (http://adni.loni.usc.edu/) and the
news20.binary (Chang and Lin, 2011) data set. Details of these data sets are as follows.
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Table 1: Running time (in seconds) for solving SGL along a sequence of 100 tuning param-
eter values of λ equally spaced on the logarithmic scale of λ/λαmax from 1.0 to 0.01
by (a): the solver (Liu et al., 2009) without screening; (b): the solver combined
with TLFre. The data sets are Synthetic 1 and Synthetic 2.

α tan(5◦) tan(15◦) tan(30◦) tan(45◦) tan(60◦) tan(75◦) tan(85◦)

Synthetic 1

solver 15555.28 16124.08 16106.24 16293.04 16426.44 16836.16 16862.36

TLFre 37.84 43.08 46.92 51.16 54.24 53.4 53.24

TLFre+solver 184.16 275.36 680.08 1196.04 1465.16 1629.96 1657.00

speedup 84.46 58.55 23.68 13.62 11.21 10.33 10.18

Synthetic 2

solver 15709.72 16615.16 16286.04 16826.48 16919.41 17178.08 17350.36

TLFre 41.72 47.28 54.08 54.72 59.08 58.56 60.12

TLFre+solver 328.52 906.72 1452.28 1702.61 1912.76 2181.23 2180.24

speedup 47.82 18.32 11.21 9.88 8.85 7.88 7.96

Table 2: Running time (in seconds) for solving SGL along a sequence of 100 tuning pa-
rameter values of λ equally spaced on the logarithmic scale of λ/λαmax from 1.0 to
0.01 by (a): the solver (Liu et al., 2009) without screening; (b): the solver com-
bined with TLFre. We perform experiments on the ADNI data sets. The response
vectors are GMV and WMV, respectively.

α tan(5◦) tan(15◦) tan(30◦) tan(45◦) tan(60◦) tan(75◦) tan(85◦)

ADNI+GMV

solver 30652.56 30755.63 30838.29 31096.10 30850.78 30728.27 30572.35

TLFre 64.08 64.56 64.96 65.00 64.89 65.17 65.05

TLFre+solver 372.04 383.17 386.80 402.72 391.63 385.98 382.62

speedup 82.39 80.27 79.73 77.22 78.78 79.61 79.90

ADNI+WMV

solver 29751.27 29823.15 29927.52 30078.62 30115.89 29927.58 29896.77

TLFre 62.91 63.33 63.39 63.99 64.13 64.31 64.36

TLFre+solver 363.43 364.78 386.15 393.03 395.87 400.11 399.48

speedup 81.86 81.76 77.50 76.53 76.08 74.80 74.84

Table 3: Running time (in seconds) for solving SGL along a sequence of 100 tuning param-
eter values of λ equally spaced on the logarithmic scale of λ/λαmax from 1.0 to 0.01
by (a): the solver (Liu et al., 2009) without screening; (b): the solver combined
with TLFre. We perform experiments on the news20.binary data sets.

α tan(5◦) tan(15◦) tan(30◦) tan(45◦) tan(60◦) tan(75◦) tan(85◦)

news20.binary

solver 1233401.05 1231570.22 1277630.92 1299353.68 1292879.86 1216554.09 1347890.85

TLFre 350.51 337.75 332.01 346.98 352.78 353.52 362.43

TLFre+solver 1434.49 1465.37 1539.37 1598.87 1608.90 1659.78 1709.35

speedup 859.82 840.45 829.97 812.67 803.58 793.21 788.54
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Figure 3: Rejection ratios of TLFre on the ADNI data set with grey matter volume as
response.
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Figure 4: Rejection ratios of TLFre on the ADNI data set with white matter volume as
response.

ADNI The data matrix of the ADNI data set consists of 747 samples with 426040 single
nucleotide polymorphisms (SNPs), which are divided into 94765 groups. The response
vectors are the grey matter volume (GMV) and white matter volume (WMV), respectively.

news20.binary The news20.binary data set consists of 19996 samples with 1355191
features, which are divided into 67760 groups. The entries of the response vectors are the
labels of the corresponding samples, which are 1 or −1.

Fig. 3(a), Fig. 4(a), and Fig. 5(a) show the plots of λmax
1 (λ2) (see Corollary 12) and the

sampled parameter values of α and λ. The other figures present the rejection ratios of (L1)
and (L2) by blue and red regions, respectively. We can see that almost all of the inactive
groups/features are discarded by TLFre. The rejection ratios of r1 +r2 are very close to 1 in
all cases. Tables 2 and 3 show that TLFre leads to a very significant speedup (about 80 times
on the ADNI data set and 800 times on the news20.binary data set). In other words, the
solver without screening needs about 8.5 and 360 hours to solve the 100 SGL problems for
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Figure 5: Rejection ratios of TLFre on the news20.binary data set.

each value of α on the ADNI and news20.binary data set, respectively. However, combined
with TLFre, the solver needs only 6∼8 minutes and 24∼29 minutes, respectively. Moreover,
we can observe that the computational cost of TLFre is negligible compared to that of the
solver without screening. This demonstrates the efficiency of TLFre.

6.2. DPC for Nonnegative Lasso

In this experiment, we evaluate the performance of DPC on two synthetic data sets and six
real data sets. We integrate DPC with the solver, nnLeastR, (Liu et al., 2009) to solve the
nonnegative Lasso problem along a sequence of 100 parameter values of λ equally spaced on
the logarithmic scale of λ/λmax from 1.0 to 0.01. The two synthetic data sets are the same
as the ones we used in Section 6.1.1. To construct β∗, we first randomly select 10 percent
of features. The corresponding components of β∗ are populated from a standard Gaussian
and the remaining ones are set to 0.

We use nnLeastR from the SLEP package (Liu et al., 2009) as the solver for nonnegative
Lasso, which is one of the state-of-the-arts [see Section G for a comparison between nnLeastR
and another popular solver (Lin et al., 2014)].

For the non-screening case, we apply nnLeastR directly to solve SGL with different
parameter values. We use zero as the initial point.

We list the six real data sets and the corresponding experimental settings as follows.

Breast Cancer data set (West et al., 2001; Shevade and Keerthi, 2003): this data
set contains 7129 gene expression values of 44 tumor samples (thus the data matrix X is of
44× 7129). The response vector y ∈ {1,−1}44 contains the binary label of each sample.

Leukemia data set (Armstrong et al., 2002): this data set contains 11225 gene ex-
pression values of 52 samples (X ∈ R52×11225). The response vector y contains the binary
label of each sample.

Prostate Cancer data set (Petricoin et al., 2002): this data set contains 15154 mea-
surements of 132 patients (X ∈ R132×15154). By protein mass spectrometry, the features
are indexed by time-of-flight values, which are related to the mass over charge ratios of the
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constituent proteins in the blood. The response vector y contains the binary label of each
sample.

PIE face image data set (Sim et al., 2003; Cai et al., 2007): this data set contains
11554 gray face images (each has 32× 32 pixels) of 68 people, taken under different poses,
illumination conditions and expressions. In each trial, we first randomly pick an image
as the response y ∈ R1024, and then use the remaining images to form the data matrix
X ∈ R1024×11553. We run 100 trials and report the average performance of DPC.

MNIST handwritten digit data set (Lecun et al., 1998): this data set contains grey
images of scanned handwritten digits (each has 28× 28 pixels). The training and test sets
contain 60, 000 and 10, 000 images, respectively. We first randomly select 5000 images for
each digit from the training set and get a data matrix X ∈ R784×50000. Then, in each trial,
we randomly select an image from the testing set as the response y ∈ R784. We run 100
trials and report the average performance of the screening rules.

Street View House Number (SVHN) data set (Netzer et al., 2001): this data
set contains color images of street view house numbers (each has 32× 32 pixels), including
73257 images for training and 26032 for testing. In each trial, we first randomly select an
image as the response y ∈ R3072, and then use the remaining ones to form the data matrix
X ∈ R3072×99288. We run 20 trials and report the average performance.
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Figure 6: Rejection ratios of DPC on eight data sets.

Table 4: Running time (in seconds) for solving nonnegative Lasso along a sequence of 100
tuning parameter values of λ equally spaced on the logarithmic scale of λ/λmax

from 1.0 to 0.01 by (a): the solver (Liu et al., 2009) without screening; (b): the
solver combined with DPC.

Synthetic 1 Synthetic 2 Breast Cancer Leukemia Prostate Cancer PIE MNIST SVHN

solver 13140.84 13853.84 23.40 34.04 187.82 674.04 3000.69 24761.07

DPC 3.08 3.59 0.03 0.06 0.23 1.16 3.53 30.59

DPC+solver 61.56 69.52 2.18 3.37 6.37 5.01 9.31 104.93

speedup 213.52 199.30 10.73 10.10 29.49 134.54 322.31 235.98

29



Wang, Zhang, and Ye

We present the rejection ratios—the ratio of the number of inactive features identified
by DPC to the actual number of inactive features—in Fig. 6. We also report the running
time of the solver with and without DPC, the time for running DPC, and the corresponding
speedup in Table 4.

Fig. 6 shows that DPC is very effective in identifying the inactive features even for small
parameter values: the rejection ratios are very close to 100% for the entire sequence of
parameter values on the eight data sets. Table 4 shows that DPC leads to a very significant
speedup on all the data sets. Take MNIST as an example. The solver without DPC takes
50 minutes to solve the 100 nonnegative Lasso problems. However, combined with DPC,
the solver only needs 10 seconds. The speedup gained by DPC on the MNIST data set is
thus more than 300 times. Similarly, on the SVHN data set, the running time for solving
the 100 nonnegative Lasso problems by the solver without DPC is close to seven hours.
However, combined with DPC, the solver takes less than two minutes to solve all the 100
nonnegative Lasso problems, leading to a speedup about 230 times. Moreover, we observe
that the computational cost of DPC is very low—which is negligible compared to that of
the solver without DPC.

7. Conclusion

In this paper, we propose a novel feature reduction method for SGL via decomposition
of convex sets. We also derive the set of parameter values that lead to zero solutions
of SGL. To the best of our knowledge, TLFre is the first method which is applicable to
sparse models with multiple sparsity-inducing regularizers. More importantly, the proposed
approach provides novel framework for developing screening methods for complex sparse
models with multiple sparsity-inducing regularizers, e.g., `1 SVM that performs both sample
and feature selection, fused Lasso and tree Lasso with more than two regularizers. To
demonstrate the flexibility of the proposed framework, we develop the DPC screening rule
for the nonnegative Lasso problem. Experiments on both synthetic and real data sets
demonstrate the effectiveness and efficiency of TLFre and DPC. We plan to generalize the
idea of TLFre to `1 SVM, fused Lasso and tree Lasso, which are expected to consist of
multiple layers of screening.
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Appendix A. The Lagrangian Dual Problem of SGL

We derive the dual problem of SGL in (4) via the Lagrangian multiplier method.

By introducing an auxiliary variable

z = y −
G∑
g=1

Xgβg, (69)
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the SGL problem in (3) becomes:

min
β

1

2
‖z‖2 + αλ

G∑
g=1

√
ng‖βg‖+ λ‖β‖1 : z = y −

G∑
g=1

Xgβg

 .

Let λθ be the Lagrangian multiplier, the Lagrangian function is

L(β, z; θ) =
1

2
‖z‖2 + αλ

G∑
g=1

√
ng‖βg‖+ λ‖β‖1 + 〈λθ,y −

G∑
g=1

Xgβg − z〉 (70)

=αλ

G∑
g=1

√
ng‖βg‖+ λ‖β‖1 − λ〈θ,

G∑
g=1

Xgβg〉+
1

2
‖z‖2 − λ〈θ, z〉+ λ〈θ,y〉. (71)

Let

f1(β) =

G∑
g=1

fg1 (βg) =

G∑
g=1

(
αλ
√
ng‖βg‖+ λ‖βg‖1 − λ〈θ,Xgβg〉

)
,

f2(z) =
1

2
‖z‖2 − λ〈θ, z〉.

To derive the dual problem, we need to minimize the Lagrangian function with respect to
β and z. In other words, we need to minimize f1 and f2, respectively. We first consider

min
βg

fg1 (βg) = αλ
√
ng‖βg‖+ λ‖βg‖1 − λ〈θ,Xgβg〉.

By the Fermat’s rule, we have

0 ∈ ∂fg1 (βg) = αλ
√
ng∂‖βg‖+ λ∂‖βg‖1 − λXT

g θ, (72)

which leads to

XT
g θ = α

√
ngζ1 + ζ2, ζ1 ∈ ∂‖βg‖, ζ2 ∈ ∂‖βg‖1. (73)

By noting that

〈ζ1, βg〉 = ‖βg‖, 〈ζ2, βg〉 = ‖βg‖1,

we have

〈XT
g θ, βg〉 = α

√
ng‖βg‖+ ‖βg‖1.

Thus, we can see that

0 = min
βg

fg1 (βg). (74)

Moreover, because ζ1 ∈ ∂‖βg‖, ζ2 ∈ ∂‖βg‖1, Eq. (73) implies that

XT
g θ ∈ α

√
ngB + B∞. (75)
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To minimize f2, the Fermat’s rule results in

z = λθ, (76)

and thus

−λ
2

2
‖θ‖2 = min

z
f2(z). (77)

In view of Eq. (70), Eq. (74), Eq. (77) and Eq. (75), the dual problem of SGL can be
written as

sup
θ

{
1

2
‖y‖2 − 1

2

∥∥∥θ − y

λ

∥∥∥2
: XT

g θ ∈ α
√
ngB + B∞, g = 1, . . . , G

}
,

which is equivalent to (4).
Recall that β∗(λ, α) and θ∗(λ, α) are the primal and dual optimal solutions of SGL,

respectively. By Eq. (69), Eq. (72) and Eq. (76), we can see that the KKT conditions are

λθ∗(λ, α) =y −Xβ∗(λ, α),

XT
g θ
∗(λ, α) ∈α√ng∂‖β∗g (λ, α)‖+ ∂‖β∗g (λ, α)‖1, g = 1, . . . , G.

Appendix B. Proof of Theorem 5

To show Theorem 5, we need the Fenchel-Young inequality as follows:

Lemma 27 [Fenchel-Young inequality] (Borwein and Lewis, 2006) Any point z ∈ Rn
and w in the domain of a function h : Rn → (−∞,∞] satisfy the inequality

h(w) + h∗(z) ≥ 〈w, z〉.

Equality holds if and only if z ∈ ∂h(w).

We now give the proof of Theorem 5.
Proof We first show the first part. Combining Theorem 1 and Lemma 3, the Fenchel’s
dual of SGL can be written as:

sup
θ
−λ

2

2
‖θ‖2 −

∑G

g=1
λIB

(
XT
g θ −PB∞(XT

g θ)

α
√
ng

)
+ λ〈y, θ〉,

which is equivalent to problem (17).
To show the second half, we have the following inequalities by Fenchel-Young inequality:

f(y −Xβ) + f∗(λθ) ≥ 〈y −Xβ, λθ〉, (78)

λΩ(β) + λΩ∗(XT θ) ≥ λ〈β,XT θ〉. (79)

We sum the inequalities in (78) and (79) together and get

f(y −Xβ) + λΩ(β) ≥ −f∗(λθ)− λΩ∗(XT θ) + λ〈y, θ〉. (80)
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Clearly, the left and right hand sides of inequality (80) are the objective functions of the
pair of Fenchel’s problems. Because dom f = RN and dom Ω = Rp, we have

0 ∈ int (dom f − y + Xdom Ω).

Thus, the equality in (80) holds at β∗(λ, α) and θ∗(λ, α), i.e.,

f(y −Xβ∗(λ, α)) + λΩ(β∗(λ, α)) = −f∗(λθ∗(λ, α))− λΩ∗(XT θ∗(λ, α)) + λ〈y, θ∗(λ, α)〉.

Therefore, the equality holds in both (78) and (79) at β∗(λ, α) and θ∗(λ, α). By applying
Lemma 27 again, we have

λθ∗(λ, α) ∈ ∂f(y −Xβ∗(λ, α)) = y −Xβ∗(λ, α),

XT θ∗(λ, α) ∈ ∂Ω(β∗(λ, α)) = ∂Ωα
1 (β∗(λ, α)) + ∂Ω2(β∗(λ, α)),

which completes the proof.

Appendix C. Proof of Theorem 9

Proof The equivalence between (i) and (ii) can be see from the fact that

θ∗(λ, α) = PFα(y/λ).

Next, we show (ii)⇔(iii). Let us first show (ii)⇒(iii). We assume that θ∗(λ, α) = y/λ.
By the KKT condition in (18), we have Xβ∗(λ, α) = 0. We claim that β∗(λ, α) = 0. To
see this, let β′ 6= 0 with Xβ′ = 0 be another optimal solution of SGL. We denote by h the
objective function of SGL in (3). Then, we have

h(0) =
1

2
‖y‖2 < h(β′) =

1

2
‖y‖2 + λ1

∑
g

√
ng‖β′g‖+ λ2‖β′‖1,

which contradicts with the assumption β′ 6= 0 is also an optimal solution. This contradiction
indicates that β∗(λ, α) must be 0. The converse direction, i.e., (ii)⇐(iii), can be derived
directly from the KKT condition in Eq. (18).

Finally, we show the equivalence (i)⇔(iv). Indeed, in view of the dual problem in (21),
we can see that y/λ ∈ Fα if and only if

‖S1(XT
g y/λ)‖ ≤ α√ng, g = 1, . . . , G. (81)

We note that ‖S1(XT
g y/λ)‖ is monotonically decreasing with respect to λ. Thus, the in-

equality in (81) is equivalent to (iv), which completes the proof.
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Appendix D. Proof of Corollary 12

Before we prove Corollary 12, we first derive the Fenchel’s dual of (2). By letting f(w) =
1
2‖w‖

2 and Ω(β) = λ1
∑G

g=1
√
ng‖βg‖+ λ2‖β‖1, the SGL problem in (2) can be written as:

min
β

f(y −Xβ) + Ω(β).

Then, by Fenchel’s Duality Theorem, the Fenchel’s dual problem of (2) is

inf
θ

{
1

2
‖y − θ‖2 − 1

2
‖y‖2 :

∥∥Sλ2(XT
g θ)
∥∥ ≤ λ1

√
ng, g = 1, . . . , G

}
. (82)

Let β̄∗(λ1, λ2) and θ̄∗(λ1, λ2) be the optimal solutions of problem (2) and (82). The opti-
mality conditions can be written as

θ̄∗(λ1, λ2) =y −Xβ̄∗(λ1, λ2), (83)

XT
g θ̄
∗(λ1, λ2) ∈ λ1

√
ng∂‖β̄∗g (λ1, λ2)‖+ λ2∂‖β̄∗g (λ1, λ2)‖1, g = 1, . . . , G. (84)

We denote by F(λ1, λ2) the feasible set of problem (82). It is easy to see that

θ̄∗(λ1, λ2) = PF(λ1,λ2)(y).

We now present the proof of Corollary 12.
Proof For notational convenience, let

(i). y ∈ F(λ1, λ2),

(ii). θ̄∗(λ1, λ2) = y,

(iii). β̄∗(λ1, λ2) = 0,

(iv). λ1 ≥ λmax
1 (λ2) = maxg

1√
ng
‖Sλ2(XT

g y)‖.

The first half of the statement is (iii)⇔(iv). Indeed, by a similar argument as in the proof
of Theorem 9, we can see that the above statements are all equivalent to each other.

We now show the second half. We first show that

λ1 ≥ λmax
1 ⇒ β̄∗(λ1, λ2) = 0. (85)

By the first half, we only need to show

λ1 ≥ λmax
1 ⇒ y ∈ F(λ1, λ2).

Indeed, the definition of λ1 implies that

‖XT
g y‖ ≤ λ1

√
ng, g = 1, . . . , G.

We note that for any λ2 ≥ 0, we have

‖Sλ2(XT
g y)‖ ≤ ‖XT

g y‖.
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Therefore, we can see that

‖Sλ2(XT
g y)‖ ≤ ‖XT

g y‖ ≤ λ1
√
ng, g = 1, . . . , G⇒ y ∈ F(λ1, λ2).

The proof of (85) is complete.

Similarly, to show that λ2 ≥ λmax
2 ⇒ β̄∗(λ1, λ2), we only need to show

λ2 ≥ λmax
2 ⇒ y ∈ F(λ1, λ2).

By the definition of λ2, we can see that

‖XT
g y‖∞ ≤ λ2, g = 1, . . . , G⇒ ‖Sλ2(XT

g y)‖ = 0 ≤ λ1
√
ng, g = 1, . . . , G.

Thus, we have y ∈ F(λ1, λ2), which completes the proof.

Appendix E. Proof of Theorem 14

Proof

(i) Suppose that λ̄ < λαmax. Theorem 9 implies that y/λ̄ /∈ Fα and thus

y/λ̄−PFα
(
y/λ̄

)
= y/λ̄− θ∗(λ̄, α) 6= 0.

By the third part of Proposition 13, we can see that

y/λ̄− θ∗(λ̄, α) ∈ NFα(θ∗(λ̄, α)). (86)

Thus, the statement holds for all λ̄ < λαmax.

Suppose that λ̄ = λαmax. By Theorem 9, we have

θ∗(λ̄, α) = y/λ̄ ∈ Fα.

In view of the definition of X∗, we have∥∥∥∥S1

(
XT
∗

y

λαmax

)∥∥∥∥ = α
√
n∗,

where n∗ is the number of feature contained in X∗. Moreover, it is easy to see
that

‖S1(XT
∗ θ)‖ ≤ α

√
n∗, ∀θ ∈ Fα.

Therefore, to prove the statement, we need to show that〈
X∗S1

(
XT
∗

y

λαmax

)
, θ − y

λαmax

〉
≤ 0, ∀θ ∈ Fα. (87)
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Recall Remark 6, we have the following identity [see Eq. (20)]

S1

(
XT
∗

y

λαmax

)
= XT

∗
y

λαmax

−PB∞

(
XT
∗

y

λαmax

)
.

Thus, we have〈
X∗S1

(
XT
∗

y

λαmax

)
, θ − y

λαmax

〉
(88)

=

〈
S1

(
XT
∗

y

λαmax

)
,XT
∗

(
θ − y

λαmax

)
+ PB∞

(
XT
∗

y

λαmax

)
−PB∞

(
XT
∗

y

λαmax

)〉
=

〈
S1

(
XT
∗

y

λαmax

)
,XT
∗ θ −PB∞

(
XT
∗

y

λαmax

)〉
−
∥∥∥∥S1

(
XT
∗

y

λαmax

)∥∥∥∥2

=

〈
S1

(
XT
∗

y

λαmax

)
,XT
∗ θ −PB∞

(
XT
∗

y

λαmax

)〉
− α2n∗.

Consider the first term on the right hand side of Eq. (88), we have〈
S1

(
XT
∗

y

λαmax

)
,XT
∗ θ −PB∞

(
XT
∗

y

λαmax

)〉
(89)

=

〈
S1

(
XT
∗

y

λαmax

)
,XT
∗ θ −PB∞(XT

∗ θ) + PB∞(XT
∗ θ)−PB∞

(
XT
∗

y

λαmax

)〉
=

〈
S1

(
XT
∗

y

λαmax

)
,S1(XT

∗ θ)

〉
+

〈
S1

(
XT
∗

y

λαmax

)
,PB∞(XT

∗ θ)−PB∞

(
XT
∗

y

λαmax

)〉
.

Let P = {i : [XT
∗

y
λαmax

]i > 1} and N = {i : [XT
∗

y
λαmax

]i < −1}. We note that the

second term on the right hand side of Eq. (89) can be written as〈
S1

(
XT
∗

y

λαmax

)
,PB∞(XT

∗ θ)−PB∞

(
XT
∗

y

λαmax

)〉
(90)

=
∑
i∈P

(
[XT
∗

y

λαmax

]i − 1

)(
[PB∞(XT

∗ θ)]i − 1
)

+
∑
j∈N

(
[XT
∗

y

λαmax

]j + 1

)(
[PB∞(XT

∗ θ)]j + 1
)
.

Because ‖PB∞(XT
∗ θ)‖∞ ≤ 1, we can see that Eq. (90) is non-positive. Therefore,

by Eq. (89), we have〈
S1

(
XT
∗

y

λαmax

)
,XT
∗ θ −PB∞

(
XT
∗

y

λαmax

)〉
≤
〈
S1

(
XT
∗

y

λαmax

)
,S1(XT

∗ θ)

〉
(91)

≤
∥∥∥∥S1

(
XT
∗

y

λαmax

)∥∥∥∥∥∥S1(XT
∗ θ)
∥∥

≤α2n∗.

Combining Eq. (88) and the inequality in (91), we can see that the inequality in
(87) holds. Thus, the statement holds for λ̄ = λαmax. This completes the proof.
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(ii) We now show the second half. It is easy to see that the statement is equivalent to

‖θ∗(λ, α)− θ∗(λ̄, α)‖2 ≤ 〈θ∗(λ, α)− θ∗(λ̄, α), v⊥α (λ, λ̄)〉. (92)

Thus, we will show that the inequality in (92) holds.

Because of the first half, we have

〈nα(λ̄), θ − θ∗(λ̄, α)〉 ≤ 0, ∀ θ ∈ Fα. (93)

By letting θ = θ∗(λ, α), the inequality in (93) leads to

〈nα(λ̄), θ∗(λ, α)− θ∗(λ̄, α)〉 ≤ 0. (94)

In view of the first half and by letting θ = 0, the inequality in (93) leads to

〈nα(λ̄), 0− θ∗(λ̄, α)〉 ≤ 0⇒

{
〈nα(λ̄), y〉 ≥ 0, if λ̄ = λαmax,

‖y‖/λ̄ ≥ ‖θ∗(λ̄, α)‖, if λ̄ < λαmax.
(95)

Moreover, the first half also leads to y
λ − θ

∗(λ, α) ∈ NFα(θ∗(λ, α)). Thus, we have

〈y
λ
− θ∗(λ, α), θ − θ∗(λ, α)〉 ≤ 0, ∀ θ ∈ Fα. (96)

By letting θ = θ∗(λ̄, α), the inequality in (96) results in

〈y
λ
− θ∗(λ, α), θ∗(λ̄, α)− θ∗(λ, α)〉 ≤ 0, ∀ θ ∈ Fα. (97)

We can see that the inequality in (97) is equivalent to

‖θ∗(λ, α)− θ∗(λ̄, α)‖2 ≤〈θ∗(λ, α)− θ∗(λ̄, α), vα(λ, λ̄)〉. (98)

On the other hand, the right hand side of (92) can be rewritten as

〈θ∗(λ, α)− θ∗(λ̄, α), v⊥α (λ, λ̄)〉 (99)

=〈θ∗(λ, α)− θ∗(λ̄, α), vα(λ, λ̄)〉 − 〈θ∗(λ, α)− θ∗(λ̄, α), vα(λ, λ̄)− v⊥α (λ, λ̄)〉

=〈θ∗(λ, α)− θ∗(λ̄, α), vα(λ, λ̄)〉 −

〈
θ∗(λ, α)− θ∗(λ̄, α),

〈vα(λ, λ̄),nα(λ̄)〉
‖nα(λ̄)‖2

nα(λ̄)

〉
.

In view of (94), (98) and (99), we can see that (92) holds if 〈vα(λ, λ̄),nα(λ̄)〉 ≥ 0.
Indeed,

〈vα(λ, λ̄),nα(λ̄)〉 =
〈
y/λ− θ∗(λ̄, α),nα(λ̄)

〉
(100)

=
(
1/λ− 1/λ̄

)
〈y,nα(λ̄)〉+ 〈y/λ̄− θ∗(λ̄, α),nα(λ̄)〉

Consider the first term on the right hand side of Eq. (100). By the first half of
(95), we have

〈y,nα(λ̄)〉 ≥ 0, if λ̄ = λαmax. (101)
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Suppose that λ̄ < λαmax. By the second half of (95), we can see that

〈y,nα(λ̄)〉 = 〈y,y/λ̄− θ∗(λ̄, α)〉 ≥ 1/λ̄‖y‖2 − ‖y‖‖θ∗(λ̄, α)‖ ≥ 0. (102)

Consider the second term on the right hand side of Eq. (100). It is easy to see
that

〈y/λ̄− θ∗(λ̄, α),nα(λ̄)〉 =

{
0, if λ̄ = λαmax,

‖nα(λ̄)‖2, if λ̄ < λαmax.
(103)

Combining (101), (102) and Eq. (103), we have 〈vα(λ, λ̄),nα(λ̄)〉 ≥ 0, which
completes the proof.

Appendix F. Proof of Theorem 18

Proof To simplify notations, let o = oα(λ, λ̄), r = 1
2‖v

⊥
α (λ, λ̄)‖ and t∗gk = t∗gk(λ, λ̄;α).

Therefore, the set Θ in Eq. (31) can be written as

Θ = {o + v : ‖v‖ ≤ r}.

Then, problem (34) becomes

t∗gk = sup
v
{|xTgk(o + v)| : ‖v‖ ≤ r}.

We can see that

|xTgk(o + v)| ≤ |xTgko|+ |x
T
gk

v| ≤ |xTgko|+ ‖xgk‖‖v‖ ≤ |x
T
gk

o|+ ‖xgk‖r.

Thus, we have

t∗gk ≤ |x
T
gk

o|+ ‖xgk‖r.

Consider v∗1 = rxgk/‖xgk‖ and v∗2 = −rxgk/‖xgk‖. It is easy to see that o + v∗1 ∈ Θ and
o + v∗2 ∈ Θ. Then,

|xTgk(o + v∗i )| = |xTgko|+ ‖xgk‖r, for i = 1, 2,

which leads to

t∗gk = |xTgko|+ ‖xgk‖r.

This completes the proof.
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Appendix G. Efficiency of sgLeastR, nnLeastR, and APCG

We show that sgLeastR and nnLeastR are more appropriate solvers than APCG (Lin et al.,
2014)—which is an accelerated coordinate descent method—in terms of the efficiency in
solving SGL and nonnegative Lasso problems, respectively. Indeed, sgLeastR and nnLeastR
are among the state-of-the-arts (Zhang et al., 2018a).

From the theoretical perspective, sgLeastR has a convergence rate of O(1/k2) (k is the
number of iterations) for the SGL problem, and so does nnLeastR for nonnegative Lasso
(Liu et al., 2009). However, as pointed out by (Lin et al., 2014), without strong convexity,
APCG recovers a special case of APPROX (Fercoq and Richtrik, 2013) and has a sublinear
convergence rate of O( m

m+k ), where m is the number of groups. Notice that, sparse learning
techniques usually deal with problems with p� N (Tibshirani et al., 2015) (p is the number
of features and N is the number of samples), in which strong convexity does not hold. Thus,
sgLeastR and nnLeastR converge faster than APCG in solving SGL and nonnegative Lasso,
respectively.

Synthetic 1 This data set is the same as that in Section 6.1.1, which consists of 1000
samples with 160000 features. The entries of the data matrix are i.i.d. standard Gaussian
with pairwise correlation zero. For SGL, we randomly divide the features into 16000 groups.

E2006-tfidf (Chang and Lin, 2011) The E2006-tfidf data set consists of 3308 samples
with 150360 features. The features include the volitility in twelve months and tf-idf of
unigrams. For SGL, we randomly divide the 150360 features into 15036 groups.

Tables 5 and 6 show that sgLeastR and nnLeastR significantly outperform APCG in
terms of the running time. Thus, we use sgLeastR and nnLeastR to solve SGL and non-
negative Lasso, respectively, in this paper.

Table 5: Running time (in seconds) for solving SGL along a sequence of 100 tuning param-
eter values of λ equally spaced on the logarithmic scale of λ/λαmax from 1.0 to 0.01
by (a): APCG (Lin et al., 2014); (b): sgLeastR Liu et al. (2009).

α tan(5◦) tan(15◦) tan(30◦) tan(45◦) tan(60◦) tan(75◦) tan(85◦)

Synthetic 1
APCG 123088.60 126410.46 126301.35 126536.18 127348.69 127533.82 127419.43

sgLeastR 15555.28 16124.08 16106.24 16293.04 16426.44 16836.16 16862.36

E2006-tfidf
APCG 116522.32 116546.41 115324.36 115982.47 119432.35 115433.98 115453.62

sgLeastR 1303.25 1438.62 1458.32 1498.63 1506.35 1462.98 1408.38

Table 6: Running time (in seconds) for solving nonnegative Lasso along a sequence of 100
tuning parameter values of λ equally spaced on the logarithmic scale of λ/λmax

from 1.0 to 0.01 by (a): APCG (Lin et al., 2014); (b): nnLeastR Liu et al. (2009).

Synthetic 1 E2006-tfidf

APCG 92405 .15 106446.16
nnLeastR 13140.84 634.66
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