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Abstract

In this paper we propose a modified version of the simulated annealing algorithm for solving
a stochastic global optimization problem. More precisely, we address the problem of finding
a global minimizer of a function with noisy evaluations. We provide a rate of convergence
and its optimized parametrization to ensure a minimal number of evaluations for a given
accuracy and a confidence level close to 1. This work is completed with a set of numerical
experimentations and assesses the practical performance both on benchmark test cases and
on real world examples.
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1. Introduction

We are interested in an algorithm that solves the stochastic global optimization problem:

Find x? = arg min
x∈E

Eω(U(x, ω)), (*)

where x is a decision variable belonging to some large space E, ω is a random variable and
U is the cost, a positive and bounded real valued function. We do not make any assumption
on the regularity of U . We only expect it to be rapidly evaluable: typically, U is the result
of some short numerical simulation. We do not make any distribution assumption for the
random inputs ω themselves but only on the outputs U . We assume the code has some
robustness property in the sense that, at some point x, it is either infinite for all ω or
bounded uniformly in ω.
This problem is twofold: we must both estimate and minimize the expectation of the cost.
A simple and general approach consists in the minimization of a sample average of Monte
Carlo estimators:

Êω,N (U(x, ω)) :=
1

N

N∑
i=1

U(x, ωi),
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for any given i.i.d. sample (ωi)1≤i≤N of size N distributed according to the distribution
PΩ(x) of ω and for any x ∈ E. Such an estimator consistently estimates Eω(U(x, ω)) for
any given x. Nevertheless, its accuracy is directly linked to N and thus to the computational
effort. One can thus wonder if a computationally efficient procedure using that estimator
can return a solution to the initial problem given a certain level of accuracy ε.

1.1. Previous Works: Different Types of Algorithms

There were many attempts to solve this stochastic problem across several research commu-
nities. We give a brief survey of them in what follows.
In the case E is finite and U takes its values in [0, 1], problem (*) is labelled as a ”simple
regret bandit optimization problem” by the bandit community. Indeed it can be seen as the
problem of choosing, among a small finite set of slot machines providing random rewards,
the one with the best expected reward by playing a minimal number of times. This is not
the classical setting of bandit optimization which usually seeks for the ”cumulative regret”.
As algorithm proposals for the simple regret context often extends cumulative regret con-
cepts (Audibert and Bubeck, 2010), we focus on them first. The Upper Confidence Bound
(UCB, Auer et al. 2002) algorithm aimed at building sequences of confidence bounds around
the estimated expected cost of each element of the search space. If the space is too large
this can be prohibitive. These were several attempts to bypass this issue by adding some
assumptions on the regularity of the cost function around its optimum. We can mention
HOO (Bubeck et al., 2011) that produced guarantees about the cumulative regret for a
continuous Lipschitz cost function with known Lipschitz constant. In the same framework
StoSOO (Munos, 2014) relaxed this last assumption. Both algorithms were however not
very efficient in practice if the search space is multidimensional. Indeed they still required
some uniform exploration of the state space in the first phase. This could lead to numerical
difficulties when the dimension was growing. The Adaptive-treed bandit algorithm (Bull
et al., 2015) partially solved this issue by adapting the exploration step using a Lipschitz
constant per dimension.
These algorithms could all be viewed as stochastic variations around the classical branch
and bound algorithm (Little et al., 1963), which was extensively studied by the optimization
community. We can mention the very popular DIRECT algorithm (Jones et al., 1993), from
which the StoSOO procedure was inspired.
Finally, let us mention the computer experiment community that introduced another pop-
ular global optimization method for dealing with the stochastic case, the so called Efficient
Global Optimization (EGO, Jones et al. 1998) based on expected improvement. The con-
vergence rate of this method was already investigated in Bull (2011) in a noise free context.
This algorithm focused on minimizing the number of cost evaluations because it considered
a setting where the cost evaluations were very time consuming. As a result, in order to
select each evaluation point, it required a higher computational effort and memory storage
per iteration than other optimization methods. Such a method could therefore turn out
to under-perform in a setting where the computational cost ratio between selection and
evaluation was inverted.
A typical algorithm that was known to perform well in the case of time-cheap cost evalu-
ations was the simulated annealing (SA) as mentioned by Locatelli in Horst and Pardalos
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(2013): ”The latter algorithms (mainly EGO) often outperform SA algorithms from the
point of view of the number of function evaluations to reach a given relative accuracy on the
standard test functions from Dixon and Szegö (1978), but usually require a higher computa-
tional effort per iteration. Typical advantages of SA algorithms are their very mild memory
requirements and the small computational effort per iteration. If the cost of a function
evaluation is very high, then even a considerable computational effort per iteration may be
negligible with respect to the cost of a function evaluation, and algorithms which require few
function evaluations are preferable; otherwise, also the computational effort per iteration
should be taken into account, and from this point of view SA algorithms are often better
than other algorithms.”

However SA algorithms have been designed and extensively studied in a context where
the exact cost could be observed. We recall below some basic facts in the noiseless case
(Section 1.2) and then present the noisy case which is the setting addressed in this paper
(Section 1.3).

1.2. Simulated Annealing without Noise

Let E be some finite search space and J : E → R+ a function that we want to minimize,
called cost thereafter.

Simulated Annealing is a classical global optimization method. It aims at building a
sequence of elements from E whose last element is drawn from a uniform probability law
on the subset of global minima of J . In other words it aims at sampling from the following
distribution

µ? =
1Sopt

|Sopt|
,

where Sopt = {x, J(x) = miny∈E J(y)} and |.| denotes the cardinality of a set. Such a
sampling is of course not straightforward but one can notice that this distribution can be
rewritten in the following form:

∀x ∈ E, µ?(x) = lim
T→0

e
−J(x)
T∑

y∈E e
−J(y)
T

,

and it is well-known that the Gibbs distributions of the form µT = e
−J
T /
∑
e

−J
T are ef-

ficiently sampled for reasonably low temperatures T ∈ R+ using the Metropolis-Hastings
algorithm (Aarts and Korst, 1988). A quite natural attempt is therefore to build a se-
quence of sequences obtained using Metropolis-Hastings algorithm for a set of decreasing
temperatures. In particular, at a very low temperature, the Metropolis-Hastings algorithm
generates exploratory moves that are accepted with very low probabilities, which makes
it a very bad sampler. Therefore it is necessary to first encourage exploration by using a
sampling at higher temperatures. A lower bound on the temperature at each step ensuring
a convergence in probability of the algorithm has been provided by Hajek (1988). At the
same time another proof of convergence using modern semi-group representation of Markov
processes has been obtained by Holley and Stroock (1988). The obtained bounds are less
explicit but contain information about the convergence rate and the proof scheme is much
more general. We set our work in the continuity of this last work and use similar notations.
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1.3. Simulated Annealing with Noisy Evaluations

As mentioned previously, our main interest is to extend such a method of simulated anneal-
ing to the stochastic case:

Find x? = arg min
x∈E

Eω(U(x, ω))

where ω is a random input of a bounded cost function U whose expectation can only
be numerically estimated through Monte Carlo simulations. In other words, we consider
J(.) = Eω(U(., ω)). This question is not novel and several attempts were made to address
this problem theoretically in the 90’s. Gelfand and Mitter (1989) were probably the first
ones to introduce the notion of simulated annealing with noisy measurements. They as-
sumed an additive Gaussian noise independent of the evaluation point and gave a sufficient
condition for the decrease of the variance σ2

k of this noise, to ensure convergence of the al-
gorithm to the optimal set. Gutjahr and Pflug (1996) extended the results to distributions
that are more peaked around zero than the Gaussian distribution. Their convergence result
can be stated roughly as follows:

Theorem 1 (Gutjahr and Pflug 1996) Let (Xk)k∈N denote the sequence of states in
E visited by the simulated annealing algorithm with Monte Carlo sampling of the noisy
measurements. If:

(i) the convergence conditions from (Hajek, 1988) are satisfied

(ii) ∃ε > 0 such that the standard error of the noise at step k of the algorithm σ2
k =

O(k−(2+ε))

then ∀x ∈ E, lim
k→+∞

P(Xk = x) = µ?(x), where µ? is the uniform distribution on the global

minima of the expected cost.

This result provided a first answer to our question about the convergence of the algo-
rithm in the stochastic case. However the convergence statement above did not give any
information about the convergence rate of the algorithm. Following the noise-free proof
of Aarts and Korst (1988), Homem-de Mello (2000) provided an extension of this state-
ment to the noisy case with bounded variance and introducing a state dependent noise.
He obtained the same constraint on the decrease of the variance and the same convergence
statement. He also highlighted the need for an extended result concerning the rate of con-
vergence and for numerical experiments. Indeed on this second point we can mention the
works of Fink (1998) and Branke et al. (2008) that addressed this issue. Fink (1998) made
a very interesting proposition in the framework of Gaussian noise. He proposed to use
the noise of measurement to drive the simulated annealing, i.e., accept a move if the esti-
mated cost of the proposed solution is lower than the one of the current solution. Using an
analogy with the Glauber acceptance mechanism, which is a symmetric alternative to the
Metropolis-Hasting mechanism (Aarts and Korst, 1988), he proposed a far more efficient
criteria for the variance decrease, i.e., σk = O(log(k)−2). Unfortunately he only provided a
few numerical examples to validate his statement and a theoretical proof is still missing.
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1.4. Main Contributions

In this paper we consider a simulated annealing algorithm based on mini-batches of in-
creasing size. More precisely, at each iteration, the expected cost is estimated by Monte
Carlo sampling of increasing sizes. The estimated cost at step k of the algorithm is
thus Êω(U(xk, ω)) = 1/Nk

∑Nk
i=1 U(xk, ωi), where Nk is an increasing sequence and ωi

are i.i.d. random variables having the same law as ω. The cost can be written also as
Êω(U(xk, ω)) = Eω(U(xk, ω)) + ζω(xk), where ζω(xk) is some bounded random variable.
We denote σ2

k := Var(ζω(xk)), the variance of post-sampling noise. As it is directly linked
to the number of measurements made during the mini-batch, it can be tuned by the user.

Rate of convergence for all variances of polynomial decay. In the sequel we
first show that theoretical guarantees of Theorem 1 can be extended to sub-Gaussian ran-
dom variables (e.g., bounded noise distributions) with stronger convergence results for this
algorithm. Indeed we show that convergence can be ensured if the number of measurements
is chosen such that σk = O(k−(α/2)) with α > 0, which corresponds to Nk of the order kα.
One can observe that, as opposed to Gutjahr and Pflug (1996), the convergence still holds
for α ≤ 2. This is summarized in Theorem 3.

We derive the rate of convergence of the procedure (Theorem 5) and optimize it (Corol-
lary 1) with respect to the noisy simulated annealing algorithm parameters in order to
provide a minimal total number of measurements at given accuracy and confidence require-
ments. This leads to the optimal value α = 2 for which the number of cost evaluations
increases fast enough to ensure almost the same convergence rate as in the noise-free case.
This shows that the convergence rate is limited by the concentration speed of the Gibbs
measure around its modes. According to our concentration result, increasing the estimation
effort cannot increase the performance of the algorithm above this limit. On the other hand
the convergence still holds for a decreased estimation effort (α < 2) as soon as the cooling
schedule is slowed consequently.

Computational cost in the general case. Finally, we derive an upper bound on the
computational time-complexity of our simulated annealing algorithm (with noisy measure-
ments). This quantity is roughly of the order of:

e
C1 log 1

δ
ε ,

where C1 is some constant depending on the cost function itself as detailed in Corollary
1. The provided bound exhibit an exponential dependency in 1/ε and log 1/δ. This is
comprehensive regarding the generality of the considered problem.

Computational cost in the absence of local minimum If the function has no local
minimum apart from the global minimum (e.g., a convex function evaluated on a finite set)
the temperature schedule can be adapted and the computational cost becomes of the order
of:
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(
C2 log 1

δ

ε

)3

,

where C2 is a constant detailed in Corollary 2. This second bound increases in a polynomial
way with respect to 1/ε and log 1/δ. This is a very positive result as it shows that the
noisy simulated annealing algorithm recovers the state-of-the-art convergence guaranties if
stronger hypotheses on the cost are considered.

Numerical experiments. We provide numerical evidence indicating that the numerically
observed requirements in Fink (1998), i.e., σk = O(log(k)), do not hold for a Metropolis-
Hastings Acceptance criteria. We apply the noisy simulated annealing on classical non
convex optimization test cases with different level of noise, but also perform a test on
a real-world example, i.e., an aircraft trajectory optimization problem using a black-box
aircraft performance model.

1.5. Aircraft Trajectory Optimization

As a leading example for this setting, we consider the problem of optimizing commercial
aircraft trajectories with respect to a combination of fuel consumption and flight duration:.

Find u? = arg min
u

g(x(tf ), tf ) +

∫ tf

t0

−ṁ(x(s), u(s))ds

s.t. ∀t > t0 ẋ(t) = f(x(t), u(t))

x(t0) = x0

d(tf ) = df ,

where x is the state of the aircraft, m its mass, ṁ its instantaneous fuel consumption, d the
ground distance it has flown over, u the path control, f the instantaneous dynamic and g
the terminal cost function. The path control u is the combination of the thrust rating δT
and the lift coefficient Cl.

u =

(
Cl
δT

)
Estimates of the cost of trajectories are usually obtained through numerical integration of
the flight dynamic equations, f :

ẋ =


V̇
γ̇

ḣ

ḋ
ṁ

 =


(T (h, V, δT )−D(h, V, CL)) 1

m − g sin γ
(L(h, V, CL)−mg cos γ) 1

mV
V sin(γ)
V cos(γ)
ηT (h, V )


where T is the thrust, D the drag, L the lift, η the specific fuel consumption, γ the path
angle, V the speed of the aircraft and h its height. These equations involve some terms
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like the aerodynamic drag coefficient (CD) or maximal propulsion effort (Tmax) who are
estimated using interpolation of experimental local measurements.

T (h, V, δT ) = δTTmax(h, V )

L(h, V, CL) =
1

2
ρ(h, V )SV 2CL

D(h, V, CL) =
1

2
ρ(h, V )SV 2CD(CL, V )

No analytic solution is therefore available nor conceivable. Moreover the relation between
cost and trajectory control parameters cannot reasonably be assumed to be convex. At
last, the cost estimation relies on some predicted flight conditions including atmospheric
ones. Hence, real-flight costs can thus deviate substantially from their predictions and some
uncertainty propagation method must be applied to obtain an accurate estimate of the ex-
pected flight costs. In other words the function we want to minimize can only be evaluated
with a certain random error, which corresponds exactly to the setting of this paper. Finally,
the computational efficiency is a key ingredient as it must be performed only a few hours
before the planned flight. For more information about aircraft trajectory optimization we
refer to Betts (1998).
This example completely fits our requirement as the computation of the cost of one single
complete trajectory is quite fast, i.e., less than a second. Therefore, the EGO algorithm
(Jones et al., 1998) would not be suited for this application. On the other hand formu-
lations based on the DIRECT algorithm (Jones et al., 1993) would suffer strongly from
the dimension of the problem. An additional element that motivates the use of simulated
annealing is the fact that in the case of trajectory optimization the set of admissible con-
trols is not known in advance as it is path dependent. We can only ensure that this set
is connected. This implies in particular that no projection on the constraints can be per-
formed and excludes the projected stochastic gradient descent for example. In the case
of simulated annealing, a very simple step can bypass this issue. By setting the value of
the cost to infinity when the trajectory evaluator returns an error we ensure staying in the
admissible domain. Consequently, a feasible solution and a conservative approximation of
the admissible domain are the only requirements to initiate the algorithm in this setting.

1.6. Outline of the Paper

Our paper is organized as follows. In Section 2 we present the noisy simulated algorithm and
our main theoretical result. In Sections 3, 4 and 5 we provide the proof of this statement.
More precisely, in Section 3 we compute the infinitesimal generator of the noisy simulated
annealing algorithm. In Section 4 we compare it to the one of the noise-free simulated
annealing algorithm from Holley and Stroock (1988). This enables us to derive a differen-
tial inequality for a L2 distance between the distributions of the two previously mentioned
processes. Integrating by applying Grönwall’s Lemma Section 5, we obtain obtain our con-
vergence result. In the same section, we show how to tune the parameters of the algorithm
in order to optimize the performance bound and give the corresponding computational cost.
In Section 6 we propose some numerical insight on synthetic and real data experiments.
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2. Noisy Simulated Annealing Algorithm: Statement and Convergence
Result

We first present our extended version of the simulated annealing to the stochastic case,
whose pseudo-code can be found in Algorithm 1.

2.1. Noisy Simulated Annealing algorithm (NSA)

Algorithm 1 Noisy Simulated Annealing

procedure NSA(Inputs: Neighbourhoods structure (Sx)x∈S , Initial guess x0, increasing
function β : R+ → R+, Function t 7→ nt)

Initialize time t0 = 0
β0 = β(t0)

for k from 0 to Maximal number of iterations do
Draw one solution candidate: x̃tk ∈ Sxtk according to q0(xk, ·)
Draw Ntk ∼ Poisson(ntk) + 1
Draw 2Ntk simulation conditions independently:

(ωk1 , ..., ω
k
Ntk

) ∼ (PΩ(xtk))⊗Ntk and (ω̃k1 , ..., ω̃
k
Ntk

) ∼ (PΩ(x̃tk))⊗Ntk

Compute estimates Ĵ(xt) and Ĵ(x̃t) using the Ntk conditions:

Ĵ(xtk) = 1
Ntk

∑Ntk
i=1 U(xtk , ω

k
i ),

Ĵ(x̃tk) = 1
Ntk

∑Ntk
i=1 U(x̃tk , ω̃

k
i )

Draw an exponential random variable ξk+1 of parameter 1
Update time tk+1 := tk + ξk+1

With probability e−βkbĴ(x̃tk )−Ĵ(xtk )c+ : 1

set xtk+1
:= x̃tk

Otherwise set xtk+1
:= xtk

Increase the inverse of the temperature βk+1 := β(tk+1)
end for
return xtk+1

end procedure
1 bxc+ = 0 if x ≤ 0 and x if not.
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As in the deterministic setting, the algorithm requires an initial feasible solution xt0 ,
a temperature schedule Tt (we will mostly use its inverse βt = 1/Tt), and a good neigh-
bourhood structure. What we mean by good will be specified in the definition of q0. The
algorithm explores the state space in the following manner. After k iterations, at time tk,
it selects a random neighbouring solution x̃tk ∈ Sxtk (Sxt being the set of neighbours of

xtk) according to a proposition law. Then it compares the estimate Ĵ(x̃tk) of the cost of

this new solution to the estimated cost Ĵ(xtk) of the current solution and then it decides to
substitute (or not) the new to the current:

• if the estimated cost of the new state is lower than the current one, i.e., Ĵ(x̃tk) ≤
Ĵ(xtk), the move is accepted, i.e., xtk+1

← x̃tk

• if not, it is only accepted with a probability exp(−βtk(Ĵ(x̃tk)− Ĵ(xtk)).

The time t is then updated using independent exponential random variables, enabling us
to consider the NSA as a continuous time Markov process.

Remark 2 As one can see in line 8 of Algorithm 1, the sample size at each step is random.
This is a technical choice that will ease the convergence study of the underlying process.
However in practice we did not observe any significant difference between using, at step k,
a random sample size Ntk and its expected value, namely ntk + 1.

2.2. General Setting and Notations

To state the convergence of Algorithm 1, we first need to describe formally the framework
we are working in. Notations introduced in this section are valid for the whole paper unless
mentioned explicitly.

• Regarding the noise structure and the estimation procedure, we denote:

(Ĵ) the estimated cost: Ĵ : E → R+, such that ∀ x ∈ E, Ĵ(x) = 1
N

∑N
i=1 U(x, ωi),

where: (ω1, ..., ωN ) is a N i.i.d. vectors sequence drawn from distribution PΩ(x)

(ξk) the time increments: (ξk)k∈N is a sequence of i.i.d. exponential random variables
of parameter 1

(tk) the jumping times: ∀k ∈ N, tk =
∑k

i=1 ξi.

(nt) the samplig intensity: nt a continuous increasing function.

(Ntk) the sample sizes: Nt1 , Nt2 , . . . Ntn are independent for all n ∈ N and all 0 < t1 <
t2 . . . < tn and

Ntk ∼ Poisson(ntk) + 1,

We can make a few remarks about the different notations. The construction of Nt

ensures that its value is a strictly positive integer at all times. The reason why we
choose to have a randomly sized sample for the Monte Carlo estimation procedure is
rather technical. It enables generating a continuous transition probability as it can
be noticed in Equation (3) and ease the formulation of the infinitesimal generator
(Equation (7)).
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• About the state space, we denote:

(E) a finite state space.

(S) a neighbourhood structure such that E is connected with respect to it, i.e., S is
a connected graph containing all the points in E. For any x in E, we denote Sx
the set of its direct neighbours.

(µ0) the initial distribution, a probability measure that charges every point of a subset
of interest E′ ⊂ E defined more precisely in (U) ,

(q0) the proposition law, an irreducible and µ0 − reversible transition probability,

i.e., ∀x, y ∈ E,
∞∑
n=0

q
(n)
0 (x, y) =∞ and µ0(x)q0(x, y) = µ0(y)q0(y, x). In addition

we assume that for any x in E, we have q0(x, Sx) = 1

Considering a finite search space E enables us to easily derive the spectral gap in-
equality in Theorem 4 and overcome differentiation-under-the-integral-sign issues in
Equation (15). Nevertheless, it could be replaced by coercivity assumptions on the
function J , which could be more general but not really well suited for the application
we are looking for. It is our most restrictive assumption. Nevertheless it is in line
with previous works on noisy global optimization for example: Gutjahr and Pflug
(1996), Homem-de Mello (2000) or Fink (1998). It corresponds to a historical use of
simulated annealing for problems with huge finite search space like for the traveling
salesman problem (Aarts and Korst, 1989). Mimicking Holley and Stroock (1988),
we might however relax this assumption of finiteness. Nevertheless it requires more
technicalities as in Aarts and Korst (1988) and this is left for future work.

We assume that the algorithm can visit and start from every point in the solution
space through the connection assumption S and the definition of µ0. The proposition
law q0 defines the way a new solution x̃ is proposed to the NSA at each iteration.
The irreducibility of q0 implies the fact that one can go from any state x to any
other state y using the neighbourhood structure S, in a finite number of steps. The
µ0−reversibility is used to simplify the notations. A classical choice (Aarts and Korst,
1988) for q0 and µ0 is: ∀ x, y ∈ E, µ0(x) = 1

|E| and q0(x, y) = 1
|Sx| , assuming every

point in E to have the same number of neighbors. However there are other possible
choices for µ0 and q0. This last two assumptions are inherited from the classical
Metropolis-Hasting sampling algorithm which corresponds to the NSA algorithm with
no cooling mechanism and no noise. They ensure that a run in this setting, starting
from any point of the search space, converges to a stationary distribution which is the
Gibbs measure associated to J .

• About the cost function, we consider:

(U) the underlying cost: ∃M > 0 and ∃E′ ⊂ E, such that U is bounded and non-
negative on E′, i.e. ∀x ∈ E′, ∀ω, 0 ≤ U(x, ω) ≤ M and U is infinite on E\E′,
i.e.,∀x ∈ E\E′, ∀ω, U(x, ω) = +∞.
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The assumption about U being bounded is not restrictive. It reflects the practical
setting where a simulation code crashes out of the definition domains. We associate
infinite costs to crashes and thus (U) is rather a consequence of (E).

• About the algorithm parametrization, we denote

(βt) the inverse of the temperature: a positive increasing real function of t,

(α) the sampling size (expected number of simulations): ∃α ∈ R+ such that nt =
(t+ 1)α,

βt is usually chosen such that ∀t ∈ R+, dβt
dt = bd

1+td for some b, d ∈ R+, as it was
shown by (Hajek, 1988) and (Holley and Stroock, 1988) to be a necessary condition
to ensure the convergence of the simulated annealing algorithm for any cost function.
There is no reason to expect that the noisy context would be more favorable than the
deterministic one. As suggested by the definition of α, we choose a polynomial growth
of the number of simulations for the cost estimation. We show later on in this work
that this ensures the convergence of the noisy simulated annealing for a good choice
of α and b.

2.3. Tool for the Analysis: the NSA Process

We now present the mathematical formalization of the NSA algorithm’s underlying stochas-
tic process. First, for pedagogical purposes, we omit the temperature evolution and noisy
measurements. The NSA algorithm then becomes a simpler Markov chain exploring the
state space E according to the Markovian transition matrix whose elements are of the form:

P(x→ y) = qβ(x, y) =

q0(x, y)e−βbJ(y)−J(x)c+ if y 6= x

1− ∑
z∈E\x

qβ(x, z) if y = x, (1)

This reflects the transition mechanism introduced at the beginning of this section. As
the process is in fact a continuous one, we must also consider the time component. NSA
jumps happen at stochastic times and the probability of acceptance depends on these times.
Combining the law of the jumping times and the previous mechanism, we can make their
joint transition probability explicit:

• Let (χ̃k, Tk)k∈N a E × R+-valued Markov chain such that ∀k ∈ N, ∀y ∈ E, ∀u ∈ R+:

P(χ̃k+1 = y, Tk+1 ≥ u|χ̃k, Tk) =

+∞∫
u

q̃βτ (χ̃k, y)1[Tk,+∞[(τ)e−(τ−Tk)dτ, (2)

where

q̃βt(x, y) =


q0(x, y)ENtEω1,...,ωNt

(
e
− βt
Nt
b
∑Nt
i=1 U(y,ωi)−U(x,ωi)c+

)
if y 6= x

1− ∑
x 6=z

q̃βt(x, z) if y = x
(3)
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This is a similar construction to the one of the classical simulated annealing process
(Hajek, 1988). The state transition mechanism must also reflect the estimation pro-
cedure, therefore the form of Equation (3) differs from Equation (1). As mentioned
before the function t 7→ βt represents the inverse of the temperature schedule and Nt

is the random process described by Ntk . The jumping times, or evaluation times of
the process happen at times defined by the sequence Tk (cf. the definition of tk).

The chain (χ̃k)k≥0 explores the state space E using a transition probability q̃βt con-
structed in a same way as the classical one, replacing the exact value of −βTk(J(y)−
J(x))+ by its Monte Carlo estimation. The expected value from the formula comes
from the fact that, as mentioned in the definition of Ĵ and in Algorithm 1, we use a
random number of Monte Carlo shootings for the estimations.

Finally, we obtain the NSA process by associating the two sub-processes as follows:

• Let
(
X̃t

)
t≥0

be the inhomogeneous Markov Process such that X̃t = χ̃k if Tk ≤ t <

Tk+1. One can see that this process is piecewise constant and jumps at exponen-
tial times from one candidate solution to another, in other words (X̃t)t≥0 is just the
continuous-time version of the noisy simulated annealing discrete time process,(χ̃k)k≥0.

Note that, if y ∈ E\E′ then ∀x ∈ E′, q̃βt(x, y) = 0. Hence, if the initial solution X̃0

is chosen in E′, then ∀t ≥ 0, X̃t ∈ E′.

2.4. Convergence Result

We denote:

• m? the maximum depth of a well not containing a fixed global minimum of the
function J . To be more precise, we call a path from x to y any finite sequence
x0 = x, x1, . . . , xn = y such that for all i, xi+1 ∈ Sxi . Let Pxy be the set of paths from
x to y.
For a given path p ∈ Px,y, the elevation of the function J on p is max

z∈p
J(z). Minimizing

this quantity over the set of possible paths Px,y, gives us the elevation of the cheapest
path going from x to y. Denote this elevation by:

Hx,y = min
p∈Pxy

{
max
z∈p

J(z)

}
Then

m? := max
x,y∈E

{Hx,y −max (J(y), J(x))} (4)

As represented on Figure 1, m? can also be understood as the highest energy barrier
to climb to go from one point to another in the search space in the easiest direction.
As mentioned before, it also represents the maximal depth of a well not containing a
fixed global minimum. If x? is a global minimum then:

m? = max
y∈E
{Hx?,y − J(y)} .

12
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m?

x? = argmin
u∈E

J(u)

J

y

p ∈ Pyx?

min
p∈Pyx?

max
z∈p

J(z)

1

Figure 1: m?, maximal depth of local minima

The definition provided here is equivalent to the classical one, i.e., the one provided
in Hajek (1988) and Holley and Stroock (1988). A proof of this statement can be
found in Appendix B.

• γ(β) the spectral gap between 0 and the rest of the L2(µβ) spectrum of −Lβ, where
Lβ is the generator of the classical simulated annealing (for more details about Lβ see
Section 3):

γ(β) := inf

{
−
∫
φLβφdµβ s.t.

∫
|φ|2dµβ = 1 and

∫
φdµβ = 0

}
(5)

Following Holley and Stroock (1988), we know that given E, µ0 and U , there exists a
constant c such that:

∀β ≥ 0, γ(β) ≥ ce−m?β

Remark that this lower bound is mainly informative for small values of β. In addition set:

∀x ∈ E, J(x) = Eω(U(x, ω)) and J? = min
x∈E

Eω(U(x, ω)).

We define χε the set of ε-optimal points in E, i.e.,

χε = {x : J(x) ≤ J? + ε}, (6)

and denote cχε = E\χε, its complementary in E. We also write a ∧ b = min a, b.

13
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Theorem 3 Consider the settings of Section 2.2,
if βt = b log(td+ 1) and nt = (t+ 1)α, with:

{m?b < 1 ∧ α/2} or {m?b = 1, α > 2 and d < 2cm?/M},
then there exits C > 0 such that, ∀t ∈ R+, ∀ε > 0, P(X̃t ∈ cχε) ≤ C(µβt(

cχε))
1/2.

This theorem is a natural extension of the result provided by Holley and Stroock (1988).
There are two main interesting facts to point out. First, we obtain a balance between
the expected number of Monte Carlo simulations at each step of the algorithm and the
inverse of the temperature, i.e., {m?b < 1 ∧ α/2} or {m?b = 1, α > 2 and d < 2cm?/M}.
Reducing the growth rate α of the number of simulations below the quadratic rate should be
compensated by decreasing accordingly the temperature factor b. Second, the convergence
is stated in terms of a bound on the probability of not returning an optimal solution. Using
the concentration speed of the Gibbs measure one can deduce a rate of convergence of the
algorithm. Also the theorem provides an insight on how the algorithm could be used in
practice. A run of parallel noisy simulated annealing would have a probability of returning
a bad solution that would decrease in the power of the number of runs. Nevertheless this
benefit should be traded with an additional selection cost. Indeed, if we obtain K solutions
retrieved by K parallel NSA realization, we still face the problem of selecting the best one.
We only access estimates of the costs associated to each solution.

Remark 1 Taking nt = (t+ 1)α, implies that the sample size at step k, is of the order tαk .
The value α = 2 minimizes the number of measurements used by the algorithm in order to
return an estimation of a given accuracy and confidence level (see Corollary 1). In practice
generating samples of sizes growing at this rate might be overwhelming. However, for some
well-behaved cost functions and low noise levels one can afford a sub-optimal evaluation
number as shown in Figure 3. On the other hand, when this is not the case, using fewer
measurements at each step can decrease the performance of the algorithm as suggested in
Figure 5.

Sketch of the proof The proof of this theorem is divided into three parts. First, in
Section 3, we compute the infinitesimal generator of the classical (Equation (11)) and noisy
simulated annealing (Equation (7)). Second, in Section 4, we compare them (Lemma 1) and
third, in Section 5, we conclude about the convergence using the Grönwall lemma (Equation
(18)) and the convergence of the classical simulated annealing (Equation (24)).

Convergence rate In the case m?b < 1 a finer bound can be deduced from Grönwall’s
lemma and one can obtain a more precise convergence rate for the algorithm (Theorem 5),
which is roughly of the order of:

P(X̃t ∈ cχε) ≤ Γ t((m
?−ε)b−min(1,α/2))/2

where Γ is some constant detailed in Theorem 5. In particular this implies that for fixed
ε, δ > 0 we can find T ? such that P(X̃?

T ∈ cχε) ≤ δ. This leads to a bound (Lemma 6) on
the computational complexity, E

(
NT∗
call

)
, of the order of:

E
(
NT∗
call

)
≤
(

Γ

δ

)2(α+1)/(min(1,α/2)−(m?−ε)b)
.
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3. Proof, Part 1: Infinitesimal Generator

In this section we use the semi-group characterization of the generator in order to prove that
as soon as q̃βt defined in Equation (3) is continuous with respect to t then the infinitesimal

generator L̃βt of the Markov process X̃t can be written as:

L̃βtf(x) =
∑
y∈E

(
f(y)− f(x)

)
q̃βt(x, y). (7)

We briefly recall the definition of the semi-group associated to a Markov process.

Definition 1 The semi-group (Pt,t+s)t≥0,s≥0 associated to the Markov process (Xt)t≥0 is a
family of probability kernels such that for all non-negative borelian functions:

∀t, s ∈ R+ Pt,t+sf(x) = E(f(Xt+s)|Xt = x)

Let (Pt,t+s)t≥0,s≥0 be the semi-group associated to the Markov process (Xt)t≥0. The semi-
group characterization of its generator is given in the following definition:

Definition 2 The infinitesimal generator Lt of the Markov process (Xt)t≥0 is defined as
the operator such that for any bounded function f :

Ltf(x) = lim
s→0

Pt,t+sf(x)− Pt,tf(x)

s

We start by computing the infinitesimal generator Lβt of the process associated to the SA
algorithm, i.e., with no measurement noise, and then deduce the infinitesimal generator of
the NSA algorithm. Using similar notations to the ones of Section 2.3, we consider the noise
free inhomogeneous Markov process, (Xt)t≥0 constructed from the inhomogeneous Markov
chain (χk)k∈N whose one step transition probability is:

∀x, y ∈ E, qβTk (x, y) =

q0(x, y)e−βTk (J(y)−J(x))+ if y 6= x

1− ∑
z∈E\{x}

qβTk (x, z) if y=x

This is the natural extension of the simulated annealing process with discrete jumping
times (Hajek, 1988) to the continuous time process. In this configuration, the jumping
times are drawn from an i.i.d. sequence of exponential random variables of parameter 1. In
the homogeneous configuration, i.e., βt = β, the infinitesimal generator has a classical form:
Lβ = Qβ−Id where Qβ is the transition matrix associated to qβ and Id denotes the identity.
The extension to the generator of the non-homogeneous process is not straightforward.
Therefore we propose to detail the computations.

By definition, for any bounded function f :

Lβtf(x) = lim
s→0

Pt,t+sf(x)− Pt,tf(x)

s

= lim
s→0

∑
y∈E

f(y)P(Xt+s = y|Xt = x)− f(x)

s

= lim
s→0

∑
y∈E

f(y)P(Xt+s = y,Ht+s −Ht ≥ 0|Xt = x)− f(x)

s
, (8)
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where Ht = max{k ∈ N : Tk < t} denotes the number of jumps before time t. Since Tk is a
sum of independent exponential variables of parameter 1, one can remark that Ht is in fact
a Poisson process of parameter 1.

In order to compute the above limit, we begin by calculating a more explicit form of the
probabilities above. We can divide these computations into three parts according to the
number of jumps between t and t+ s:

P(Xt+s = y,Ht+s −Ht ≥ 0|Xt = x) = P(Xt+s = y,Ht+s −Ht = 0|Xt = x)

+ P(Xt+s = y,Ht+s −Ht = 1|Xt = x)

+ P(Xt+s = y,Ht+s −Ht ≥ 2|Xt = x).

The first case is straightforward, if there is no jump between t and t + s, the process will
not change its position and we thus have:

P(Xt+s = y, Ht+s −Ht = 0|Xt = x) = δx(y)e−s.

The second case is slightly more involved. Using the stationarity and the definition of
Poisson processes, the event that the algorithm goes from x to y, having only one jump
between t and t+ s, can be written as:

P(Xt+s = y,Ht+s −Ht = 1|Xt = x) =P(Xt+s = y, ξ′1 < s, s− ξ′1 < ξ′2|Xt = x)

where ξ′1 and ξ′2 are two independent exponential random variables of parameter one.
Let ξ = (ξ′1, ξ

′
2) and Ds = {(h1, h2) ∈ R2|h1 < s and h2 > s− h1}. Also in what follows, for

a random variable Y we denote fY its probability distribution. Using these notations and
the fact that ξ is independent of Xt, we can write:

P(Xt+s = y, ξ ∈ Ds|Xt = x) =

∫
Ds

f(Xt+s,ξ)|Xt=x(y, h)dh

=

∫
Ds

fXt+s|ξ=h,Xt=x(y)fξ(h)dh

=

∫ s

0

∫ +∞

s−h1
qβt+h1 (x, y)e−h1e−h2dh1dh2

The previous equality yields:

P(Xt+s = y, Ht+s −Ht = 1|Xt = x) = e−s
∫ s

0
qβt+h1 (x, y)dh1. (9)

In the following we use the classical O(.) and o(.) notations: for all functions f and g
defined on some subset of R,

• f(x) = O(g(x)) as x→ 0+ ⇐⇒ ∃σ, x0 > 0, |f(x)| ≤ σ|g(x)| for all 0 < x ≤ x0

• f(x) = o(g(x)) as x→ 0+ ⇐⇒ lim
x→0+

f(x)
g(x) = 0.
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For the third term we can see that:

P(Xt+s = y, Ht+s −Ht ≥ 2|Xt = x) ≤ P(Ht+s −Ht ≥ 2) ≤ P(Hs ≥ 2)

Since Hs is a Poisson Process of parameter 1, one can check that for all s close to zero we
have that P(Hs ≥ 2) = 1− P(Hs = 0)− P(Hs = 1) = 1− e−s − se−s = O(s2).

This implies that when s is close to zero, the probability that the process goes from x
to y between t and t+ s, with more than one jump is small in comparison to s:

P(Xt+s = y, Ht+s −Ht ≥ 2|Xt = x) = O(s2) (10)

Putting all the terms together and replacing them in Equation (2), we can rewrite the
infinitesimal generator as follows:

Lβtf(x) = lim
s→0

1

s

[∑
y∈E

f(y)

[
δx(y)e−s + e−s

∫ s

0
qβ(t+τ)(x, y)dτ

]
− f(x)

]
+ lim
s→0

1

s

∑
y∈E

f(y)P(Xt+s = y,Ht+s −Ht ≥ 2|Xt = x)

Using the fact that f is bounded, E finite and the upper bound given by Equation (10),
one can easily check that the second term is zero. Hence we obtain:

Lβtf(x) = lim
s→0

1

s

e−s
f(x) +

∑
y∈E

f(y)

∫ s

0
qβ(t+τ)(x, y)dτ

− f(x)


= lim

s→0

f(x)(e−s − 1)

s
+ lim
s→0

e−s

s

∑
y∈E

f(y)

∫ s

0
qβ(t+τ)(x, y)dτ


Noting the fact that qβt is continuous with respect to t and the following identity

e−s = 1− s+O(s2),

we easily obtain the simplest form for the infinitesimal generator of the inhomogeneous
Markov chain:

Lβtf(x) =
∑
y∈E

(
f(y)− f(x)

)
qβt(x, y). (11)

We can remark that the explicit form of the transition probability qβt does not appear in the
proof, hence the result is completely general. The only necessary property of this transition
probability is its continuity with respect to t.

The fact that nt and βt are continuous functions ensures the continuity of transition
probability q̃βt , defined in Equation (3) . Therefore, following the same argument,one
can deduce (7). Here we can see the relevance of the randomness of Nt. An increasing
deterministic sequence would generate a discontinuous q̃βt and would make difficult the use
of derivations above.
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4. Proof, Part 2: Generators Comparison

The fact that for a temperature schedule that decreases slowly enough, the process generated
by the classical Simulated Annealing converges to the set of global minima of J is well known.
The Noisy Simulated Annealing is a similar algorithm, built on the same principles except
that the values of the function J are replaced by an estimation each time its computation is
needed. Therefore a tight relation exists between both approaches. Furthermore, as we will
show in this section, for a well chosen couple (βt, nt) the generators of the two algorithms
will be ’close’ at large times. This is a key element of the proof as it will imply a first
condition for the ratio βt/nt.

Using the relations given by Equation (11) and Equation (7), the quantity of interest is:

L̃βtf(x) = Lβtf(x) +
∑
y∈E

(f(y)− f(x))(q̃βt − qβt)(x, y).

Hence quantifying the difference between the two generators can be reduced to bounding
the difference between the two probability transitions qβt and q̃βt . Thus the main result of
this section is the following lemma.

Lemma 1 Let βt/
√
nt →∞ 0. There exist two functions ε−t and ε+t such that

∀ t ∈ R+, ∀ x ∈ E′, ∀ y ∈ E, ε−t qβt(x, y) ≤ (q̃βt − qβt)(x, y) ≤ ε+t qβt(x, y)

and
lim

t→+∞
ε−t = lim

t→+∞
ε+t = 0.

Before going into the proof of this lemma, we present some preliminaries. First it can be
noticed that for all x, y ∈ E, x 6= y we have:

(q̃βt − qβt)(x, y)

= qβt(x, y)

(
q̃βt
qβt
− 1

)
(x, y)

= qβt(x, y)

ENtEω1,...,ωNt

e− β
Nt
b
∑Nt
i=1 U(y,ωi)−U(x,ωi)c+

e−βtbE(U(y,Ω))−E(U(x,Ω))c+
− 1

 .

Unless specified otherwise, in this section we always consider x 6= y . The case x = y is
handled at the end of the section. To simplify the notations we denote Xx,y

i := U(y, ωi)−
U(x, ωi)− E(U(y, ωi)− U(x, ωi)) and Kx,y = E(U(y, ωi)− U(x, ωi)). Hence,

(q̃βt − qβt)(x, y)

= qβt(x, y)

(
ENtEω1,...,ωNt

(
e
−βt

(
b 1
Nt

∑Nt
i=1X

x,y
i +Kx,yc++bKx,yc+

)
− 1

))
.

Noticing that,

∀ a, b ∈ R, −|a| ≤ −ba+ bc+ + bbc+ ≤ |a|,
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we obtain the following bounds for (q̃βt − qβt)(x, y):

ENtEω1,...,ωNt

(
e
| βt
Nt

∑Nt
i=1X

x,y
i | − 1

)
≥ (

q̃βt − qβt
qβt

)(x, y) ≥ ENtEω1,...,ωNt

(
e
−| βt

Nt

∑Nt
i=1X

x,y
i | − 1

)
.

(12)

In order to obtain a bound for the expectation of a function of Nt we need an estimation
of the probability that Nt takes values ’far’ from its expectation.

Lemma 2 There exist δ ∈ (0, 1) and a = |(1−δ) (1− log(1− δ))−1| such that for all t > 0
we have:

P(Nt ≤ (1− δ)nt) ≤ e−ant .

Proof. We remind the reader that, as mentioned in the definition Ntk , at a fixed time t
the process Nt can be written as 1+H, where H is a Poisson random variable of parameter
nt.

Fix t ∈ R and δ ∈ (0, 1). We provide an upper bound for P(Nt ≤ (1 − δ)nt) using the
Cramer-Chernoff method.

First we see that for any λ > 0, applying Markov’s inequality we have:

P(Nt ≤ (1− δ)nt) = P(e−λNt > eλ(δ−1)nt) ≤ ENt [e−λNt ]
eλ(δ−1)nt

..

For t fixed Nt − 1 has the distribution of a Poisson random variable of parameter nt.
Therefore by direct computations we have:

ENt [e−λNt ] =
∑
k>0

(e−λ(k+1)e−nt
nkt
k!

)

= e−nt−λ
∑
k>0

(e−λnt)
k

k!

= e−nt−λee
−λnt

Putting all these elements together yields:

P(Nt ≤ (1− δ)nt) ≤ exp([−λ(δ − 1)− 1 + e−λ]nt)

The idea is to choose λ and δ in order to obtain the smallest possible value for −λ(δ −
1) − 1 + e−λ. For δ ∈ (0, 1), the minimum is reached at λ = − log(1 − δ) which is strictly
positive. For such λ and δ, we denote a = |(1 − δ) (1− log(1− δ)) − 1| and conclude the
proof.

Now we have what we need in order to start the proof of Lemma 1.
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4.1. Proof of Lemma 1.

First, recall that if y ∈ E\E′ then ∀x ∈ E′, q̃βt(x, y) = qβt(x, y) = 0. Hence Lemma
Equation (1) is trivially verified for x ∈ E and y ∈ E\E′.
Considering the inequalities given by Equation (12), the proof can be divided in two parts

by studying separately the upper bound ENtEω1,...,ωNt

(
e
| βt
Nt

∑Nt
i=1X

x,y
i |
)

and the lower bound

ENtEω1,...,ωNt

(
e
−| βt

Nt

∑Nt
i=1X

x,y
i |
)

.

4.1.1. Upper Bound

We have:

(q̃βt − qβt)(x, y) ≤ qβt(x, y)

(
ENtEω1,...,ωNt

(
e
| βt
Nt

∑Nt
i=1X

x,y
i | − 1

))
.

First we will provide an estimate of Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
for all Nt.

We start by rewriting this expectation as:

Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
=

∫
R+

P
(
e
| βt
Nt

∑Nt
i=1X

x,y
i | > u|Nt

)
du

=

∫
R+

P

(∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ > log(u)Nt

βt
|Nt

)
du.

Since Xx,y
i = U(y, ωi)−U(x, ωi)−ENtEωi(U(y, ωi)−U(x, ωi)) is a centered random variable

and U is bounded on E′ (see the definition of U) there exists σ such that |Xx,y
i | ≤ σ (for

example set σ = 2M), almost surely for all i. Therefore (Xx,y
i )1≤i≤Nt are sub-gaussian

random variables ((Boucheron et al., 2013)) with variance factor σ2, i.e.,

∀u ≥ 0, max (P(Xx,y
i > u),P(−Xx,y

i > u)) ≤ e−
u2

2σ2 .

Considering that (Xx,y
i )i≤Nt is a sequence of independent sub-Gaussian variables, their sum

is still a sub-Gaussian variable. As Var(Xx,y
i ) ≤ σ2 for all i we have that Var

(∑Nt
i=1X

x,y
i

)
≤

Ntσ
2 and therefore:

∀u ≥ 0, max

(
P

(
Nt∑
i=1

Xx,y
i > u

)
,P

(
−

Nt∑
i=1

Xx,y
i > u

))
≤ e−

u2

2σ2Nt .

For more details about sub-gaussian variables we refer to (Boucheron et al., 2013). We
use this property of concentration in order to get an estimate of the expectation:
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Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
=

∫ 1

0
P

(∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ > log(u)Nt

βt
|Nt

)
du+

∫ +∞

1
P

(∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ > log(u)Nt

βt
|Nt

)
du

≤ 1 + 2

∫ +∞

1
e
− 1

2σ2

(
log(u)

√
Nt

βt

)2

du.

Using a simple variable substitution s = log(u)
λt

with λt = σβt√
Nt

, we get:

Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
≤ 1 + 2λt

∫ +∞

0
eλtse−

s2

2 du

≤ 1 + 2λte
λ2t
2

∫ +∞

0
e−

(s−λt)
2

2 ds

≤ 1 + 2λte
λ2t
2

∫ +∞

−λt
e−

u2

2 du

≤ 1 + 2
√

2πλte
λ2t
2 P(G > −λt)

≤ 1 + 2
√

2πλte
λ2t
2 (1− P(G > λt)).

where G is a standard Gaussian. Thanks to the Taylor formula, we know that there exists
a constant 0 < θ < 1, such that:

P(G > λt) = P(G > 0) + λt
e

−(θλt)
2

2√
2π

=
1

2
+ λt

e
−(θλt)

2

2√
2π

≥ 1

2
+ λt

e
−(λt)

2

2√
2π

.

This leads to:

Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
≤ 1 + (

√
2πe

λ2t
2 )λt.

Thus, replacing λt by its definition we see that we need an estimate of:

ENt
[
1 + (

√
2πe

σ2β2t
2Nt )

σβt√
Nt

]
.
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In order to simplify the notations we denote: gt = σβt. Using the bound given by Lemma
2 we get:

ENt

[
1 +
√

2πe
g2t

2
√
Nt

gt√
Nt

]

= 1 + ENt

[
√

2πe
g2t

2
√
Nt

gt√
Nt

]

≤ 1 + ENt

[
√

2πe
g2t

2
√
Nt

gt√
Nt

(1[1,(1−δ)nt] + 1[(1−δ)nt,+∞))

]

≤ 1 +
√

2πgt

 e
g2t

2(1−δ)nt√
(1− δ)nt

+ eg
2
t−ant


Finally we have obtained that under assumptions of Section 2.2:

(q̃βt − qβt)(x, y) ≤ qβt(x, y)

(
ENtEω1,...,ωNt

(
e
| βt
Nt

∑Nt
i=1X

x,y
i | − 1

))

≤ qβt(x, y)
√

2πgt

 e
g2t

2(1−δ)nt√
(1− δ)nt

+ eg
2
t−ant


Hence it is natural to define ε+t as:

ε+t =
√

2πβtσ

 e
β2t σ

2

2(1−δ)nt√
(1− δ)nt

+ eβ
2
t σ

2−ant

 .
Since βt/

√
nt →∞ 0 one can check that ε+t goes to 0 when t goes to infinity. Here we can see

once more the importance of the balance between the two parameters βt and nt.

4.1.2. Lower Bound

Considering the left-hand side of Equation (12) we have:

(q̃βt − qβt)(x, y) ≥ qβt(x, y)

(
ENtEω1,...,ωNt

(
e
−| βt

Nt

∑Nt
i=1X

x,y
i | − 1

))
.

In a similar way we start by obtaining a lower bound for Eω1,...,ωNt

(
e
−| βt

Nt

∑Nt
i=1X

x,y
i ||Nt

)
and after we improve it using the probabilistic properties of Nt. First observe that:
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Eω1,...,ωNt

[
e
−| βt

Nt

∑Nt
i=1X

x,y
i ||Nt

]
=

∫
R+

P
(
e
−| βt

Nt

∑Nt
i=1X

x,y
i | > u|Nt

)
du

=

∫
R+

P

(
−
∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ > log(u)Nt

βt
|Nt

)
du

=

∫ 1

0
P

(∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ < − log(u)Nt

βt
|Nt

)
du

=

∫ 1

0
1− P

(∣∣∣∣∣
Nt∑
i=1

Xx,y
i

∣∣∣∣∣ > − log(u)Nt

βt
|Nt

)
du

≥ 1− 2

∫ 1

0
e
− Nt

2σ2

(
− log(u)
βt

)2
du

Again, this is due to the fact that the sum of Xx,y
i is sub-Gaussian with variance factor

Ntσ
2.
Using the same variable substitution as above: s = log(u)

λt
with λt = σβt√

Nt
, we get:

Eω1,...,ωNt

[
e
−| βt

Nt

∑Nt
i=1X

x,y
i ||Nt

]
≥ 1− 2λt

∫ 0

−∞
eλtse−

s2

2 du

≥ 1− 2λte
λ2t
2

∫ 0

−∞
e−

(s−λt)
2

2 ds

≥ 1− 2λte
λ2t
2

∫ −λt
−∞

e−
u2

2 du

≥ 1− 2
√

2πλte
λ2t
2 P(G > λt)

where G is a standard N(0, 1) Gaussian. As seen before there exists some 0 < θ < 1, such
that:

P(G > λt) ≥
1

2
+ λt

e
−(λt)

2

2√
2π

.

This leads to

Eω1,...,ωNt

[
e
| βt
Nt

∑Nt
i=1X

x,y
i ||Nt

]
≥ 1− (

√
2πe

λ2t
2 )λt.

This expression has exactly the symmetric form to the one obtained in the upper bound
part. Thus, the lower bound is obtained the same way as the upper bound. We directly
get:

ENt
[
1− (

√
2πe

g2t
2Nt )

gt√
Nt

]

≥ 1−
√

2πgt

 e
g2t

2(1−δ)nt√
(1− δ)nt

+ eg
2
t−ant


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Now we define ε−t :

ε−t = −
√

2πβtσ

 e
β2t σ

2

2(1−δ)nt√
(1− δ)nt

+ eβ
2
t σ

2−ant

 .
It is easy to see that ε−t goes to 0 when t goes to infinity as soon as βt/

√
nt →∞ 0. This

completes the proof of Lemma 1.

5. Proof, Last Part: Rate of Convergence in the General Case

We first complete the proof of convergence as stated in Theorem 3 and then deduce the
convergence rate (Theorem 5) from it. This enables us to provide an upper bound on the
minimal number of cost function evaluations in Section 5.3.

5.1. Proof of Theorem 3

The proof of Theorem 3 follows the roadmap of Holley and Strook (Holley and Stroock,
1988) and relies on the use of the Grönwall lemma. We derive a differential inequality for
the L2

µβt
-norm of the density measure of the NSA process with respect to µβt and deduce

an integrated version of it using the lemma. We then show that bounding the L2
µβt

-norm
of this density implies the convergence of the process to the optimal state space χε.

Proof. [Proof of Theorem 3] Our goal is to show that when t goes to infinity,
the noisy simulated annealing gets “close enough” to the classical simulated annealing.
Therefore we denote by ft the Radon-Nikodym derivative of the probability density of the
noisy simulated annealing process X̃t with respect to the Gibbs measure µβt , i.e.:

ft =
dmt

dµβt
(13)

where mt is the distribution of (X̃s)s≥0 at time t. A first remark is that ft(x) = 0 for all
t ≥ 0 and all x ∈ E \ E′, since our process, by construction does not accept states out of
E′.
Using the results obtained in Section 3 one can see that R+ 3 t → L̃βt is continuous
and therefore the semi-group (Ps,t)0≤s≤t is smooth . Also by their definition the operators
(Ps,t)0≤s≤t are linear and have the following semi-group property: Ps,t+h = Ps,t ◦Pt,t+h, for
all 0 ≤ s < t and h > 0. Hence, for all 0 ≤ s ≤ t, we have:

d

dt
Ps,t = Ps,tLt. (14)

For details about the infinitesimal generator see Section 1.4. of (Bakry et al., 2013).

As shown in Equation (23), bounding the L2-norm of ft w.r.t. µβt , i.e., ‖ft‖µβt , ensures
convergence of the NSA algorithm. However it does not provide enough information about
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the convergence of mt to µβt to deduce a fine convergence rate. This is why we study
the evolution of ‖ft − 1‖µβt which controls the distance between the two measures. If this
quantity is bounded then we obtain the convergence of the NSA algorithm. If moreover it
converges to zero, it implies a stronger convergence rate. In order to prove that, we deduce
a differential inequality for ‖ft − 1‖2µβt . We start by computing its derivative:

∂t‖ft − 1‖2µβt = ∂t‖ft‖2µβt =∂t
∑
x∈E

f2
t (x)µβt(x)

= 2
∑
x∈E

ft(x)∂tmt(x) +
∑
x∈E

ft(x)∂tµβt(x).

Using the backward Kolmogorov equation given by Equation (14), for the first term we
have:

∑
x∈E

ft(x)∂t

[
mt

µβt

]
(x)µβt(x) =

∑
x∈E

ft(x)∂t

[
mt

µβt

]
(x)µβt(x) +

∑
x∈E

ft(x)∂tµβt(x) (15)

=
∑
x∈E

[
L̃βtft(x)

]
mt(x)−

∑
x∈E

ft(x)
mt

µβt
(x)∂tµβt(x).

Denote 〈J〉µβt :=
∫
Jdµβt the mean of J with respect to µβt . One can check that:

∂tµβt(x) = −β′t
[
J(x)− 〈J〉µβt

]
µβt(x).

Thus, we easily obtain the following equality:

∂t‖ft − 1‖2µβt = 2
∑
x∈E

ft(x)(L̃βtft)(x)µβt(x) + β′t
∑
x∈E

(J(x)− 〈J〉µβt )f
2
t (x)µβt . (16)

First, we focus on the first term of the right hand side of Equation (16). Since we try to
control the generator of the noisy simulated annealing by the generator of the classical one,
it is natural to write L̃βt as Lβt + L̃βt − Lβt . This comparison leads to the computation:

∑
x∈E

ft(x)(L̃βtft)(x)µβt(x)

=
∑
x

ft(x)(Lβtft)(x)µβt(x) +
∑
x∈E

ft(x)

∑
y∈E

(ft(y)− ft(x))(q̃βt − qβt)(x, y)

µβt(x).
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We rewrite the last part of the second term using Lemma 1:∑
y∈E

(ft(y)− ft(x))(q̃βt − qβt)(x, y)

=
∑
y∈E

ft(y)(q̃βt − qβt)(x, y)−
∑
y∈E

ft(x))(q̃βt − qβt)(x, y)

≤ ε+t
∑
y∈E

ft(y)qβt(x, y)− ε+t
∑
y∈E

ft(x)qβt(x, y) + ε+t
∑
y∈E

ft(x)qβt(x, y)− ε−t
∑
y∈E

ft(x)qβt(x, y)

≤ ε+t
∑
y∈E

(ft(y)− ft(x))qβt(x, y) + (ε+t − ε−t )ft(x)

≤ ε+t Lβtft(x) + (ε+t − ε−t )ft(x).

Inserting this in the previous inequality, we get:∑
x∈E

ft(x)(L̃βtft)(x)µβt(x)

≤ (1 + ε+t )
∑
x

ft(x)(Lβtft)(x)µβt(x) + (ε+t − ε−t )
∑
x∈E

f2
t (x)µβt(x)

≤ (1 + ε+t )
∑
x

ft(x)(Lβtft)(x)µβt(x) + (ε+t − ε−t )
∑
x∈E

(f2
t (x)− 1)µβt(x) + (ε+t − ε−t ).

Therefore, using Equation (16), we obtain the following inequality:

d

dt
‖ft − 1‖2µβt

≤ 2

[
(1 + ε+t )

∑
x

ft(x)(Lβtft)(x)µβt(x) + (ε+t − ε−t )
∑
x∈E

(f2
t (x)− 1)µβt(x) + (ε+t − ε−t )

]
+ β′t

∑
x∈E

(J(x)− 〈J〉µβt )f
2
t (x)µβt

≤ 2

[
(1 + ε+t )

∑
x

ft(x)(Lβtft)(x)µβt(x) + (ε+t − ε−t )
∑
x∈E

(f2
t (x)− 1)µβt(x) + (ε+t − ε−t )

]
+ β′t

∑
x∈E

(J(x)− 〈J〉µβt )(ft(x)− 1)2µβt(x) + 2β′t
∑
x∈E

(J(x)− 〈J〉µβt )(ft(x)− 1)µβt(x).

In order to deal with the first sum we use an estimate of the spectral gap of Lβt . This is
provided by Theorem 2.1 of Holley and Strook(Holley and Stroock, 1988).

Theorem 4 (Holley and Strook 88) Under assumptions of 2.2, there exist two positive
constants 0 < c ≤ C < +∞ such that ∀ β ∈ R+,

ce−βm
? ≤ γ(β) ≤ Ce−βm?

where γ(β) = inf{−
∫
φLβφ dµβ : ‖φ‖µβ = 1 and

∫
φdµβ = 0} and m? is the maximum

depth of a well containing a local minimum defined in Equation(4).
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Remark 2 The constant m? is always strictly positive as soon as the function has a strict
local minimum that is not global. This is generally the case in our setting. Also, we always
have m? ≤M .

Following of the Proof. Using the definition of ft, one can see that
∫
ftdµβt = 1,

hence applying the theorem for φ =
ft − 1

‖ft − 1‖µβt
gives:

−
∑
x

φ(Lβtφ)(x)µβt(x) ≥ ce−βtm? .

This and the definition of Lβt imply:∑
x

ft(x)(Lβtft)(x)µβt(x) ≤ −ce−βtm?‖ft − 1‖2µβt .

J is a positive function bounded by M on E′. For all x ∈ E \ E′, the only points where
J > M , we have that J(x) = +∞ and therefore µβt(x) = 0. This implies that for all
measurable functions g, ∑

x∈E
(J(x)− 〈J〉µβt )g(x)µβt ≤M‖g‖µβt .

Putting all these terms together gives:

d

dt
‖ft − 1‖2µβt ≤ 2

[
−ce−βtm?(1 + ε+t ) + (ε+t − ε−t ) +

M

2
β′t

]
‖ft − 1‖2µβt (17)

+ 2Mβ′t‖ft − 1‖µβt
+ 2(ε+t − ε−t ).

We denote ut = ‖ft − 1‖2µβt . Considering the fact that ε+t is a positive function we have:

u′t ≤ 2

[
−ce−βtm? + (ε+t − ε−t ) +

M

2
β′t

]
ut (18)

+ 2Mβ′t
√
ut

+ 2(ε+t − ε−t ).

Using that, ∀x ∈ R, 1
4x

2 + 1 ≥ x, we get:

u′t ≤ 2

[
−ce−βtm? + (ε+t − ε−t ) + (

M

2
+
M

4
)β′t

]
ut (19)

+ 2Mβ′t + 2(ε+t − ε−t ).

Let At = 2ce−βtm
?

and Bt = 2(ε+t − ε−t ) + 2Mβ′t.

Applying Grönwall’s Lemma for the previous relation gives:

ut ≤ u0e
∫ t
0 −As+Bsds +

∫ t

0
Bse

∫ t
s −Ah+Bhdhds. (20)
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Under Assumptions 2.2, there exist b, d > 0 such that βt = b log(1 + td). This implies:

β′t =
bd

1 + td
and e−m

?βt =

(
1

1 + td

)m?b
.

Using the definition of ε+t , ε
−
t and the fact that nt = (1 + t)α one can check that:

At = O
(

1

tm?b

)
and Bt = O

(
1

t
∨ log t

tα/2

)
We can see that if Bt = o(At) the second term of Equation (20) is bounded and gives us a
finite upper bound on ut. This happens as soon as:

m?b < 1 ∧ α/2 (21)

However, the condition given by Equation (21) is sufficient yet not necessary. For α > 2,
Bt becomes of the order O(1/t) and thus we can choose d in a way that preserves a finite
upper bound of Equation (20) even for m?b = 1. One can check by direct computation that
this is true for any d < cm?/M .

Let βt and nt be chosen in order to comply to one of the two previously mentioned
conditions. Then there exists a constant K ′ such that

ut ≤ K ′ for all t ∈ R+ (22)

To complete the proof of Theorem 3 one can observe that for all t ∈ R+, and all ε > 0 :

P(X̃t ∈ cχε) = E(1[J?+ε,+∞)(J(X̃t))).

Using the Cauchy-Schwarz inequality and the upper bound given by Equation (22) we
obtain:

E(1[J?+ε,+∞(J(X̃t))) =

∫
R
1[J?+ε,+∞(J(x))ftdµβt(x)

≤
(∫

R
(ft)

2dµβt(x)

) 1
2
(∫

R
12

[J?+ε,+∞)(J(x))dµβt(x)

) 1
2

(23)

≤‖ft‖L2
µβt

(µβt(
cχε))

1/2

≤K(µβt(
cχε))

1/2

with K =
√
K ′ + 1. This completes the proof of Theorem 3.

5.2. Convergence Rate

A first rate of convergence can be deduced from Theorem 3 using the concentration speed
of the Gibbs measure on χε.
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µβt(
cχε) =

∑
x∈cχε e

−βtJ(x)∑
x∈E e

−βtJ(x)

=

∑
x∈cχε e

−βtJ(x)∑
x∈cχε e

−βtJ(x) +
∑

x∈χε e
−βtJ(x)

≤ (|E| − |χε|)e−βt(J?+ε)

0 + |χε|e−βtJ?

≤
( |E|
|χε|
− 1

)
(1 + td)−bε (24)

As the dependency of K (Theorem 3) in b and α is not explicit, we can however not deduce
an optimal choice of (b, α) from this bound. This can be achieved if we assume that Equation
(21) holds and distinguish the two cases α ≤ 2 and α > 2. Indeed, we can then improve
the bound on ut and derive a more accurate convergence rate of the algorithm. This rate
can then be optimized to obtain either an upper bound of the probability of convergence to
χε for a fixed computational budget or the minimal computational budget at a fixed risk of
convergence out of χε.

Theorem 5 Under assumptions of Section 2.2, suppose: βt = b log(td+ 1), nt = (1 + td)α

and m?b < min(α/2, 1):

• if α ≥ 2, let b be such that m?b < 1 and let γ ∈ (0, α/2−m?b),
Then, there exist Γγ ,Γ2 > 0 such that for t large enough, for all ε > 0,

P(X̃t ∈ cχε) ≤ ΓγΓ2(1 + td)(m?b−1−bε)/2 + Γ2(1 + td)−bε

• if α < 2, let b be such that m?b < α/2 and let γ ∈ (0, α/2−m?b),
Then, there exist Γγ ,Γ2 > 0 such that for t large enough, for all ε > 0,

P(X̃t ∈ cχε) ≤ ΓγΓ2(1 + td)(m?b−α/2+γ−bε)/2 + Γ2(1 + td)−bε

Remark 3 γ is not a new parameter of the NSA algorithm. This is a technical element
that enables the tuning of the computational complexity bounds of Section 5.3. As shown in
the Appendix A, Γγ is of the order of 1/γ.

Remark 4 This two bounds display the trade off between the convergence rate of the Gibbs
measure to the uniform distribution over the global minima and the rate of convergence of
the NSA process to the Gibbs measure. For the first bound, considering α > 2 we recover
the classical rate of convergence of the simulated annealing in the noise free case. This
corresponds to the result of Gutjahr and Pflug (1996). The second bound provides the rate
of convergence for a choice of α < 2. It can be seen that b will have to be reduced to
ensure the convergence and thus this bound exhibits clearly the trade off between cooling and
estimation.
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Proof. Under assumptions of Theorem 5, the following bound on ut can be derived
from Grönwall’s Lemma (for details see Appendix A):

ut ≤
{

Γγ(1 + td)m
?b−1 if α ≥ 2

Γγ(1 + td)m
?b−α/2+γ if α < 2

(25)

Thus we can compute a new bound on the probability that X̃t does not belong to the
optimal set χε (cf. 6):

P(X̃t ∈ cχε) =

∫
R
1cχε(J(x))ftdµβt(x)

=

∫
R
1cχε(J(x))(ft − 1)dµβt(x) +

∫
R+

1cχε(J(x))dµβt(x)

≤
(∫

R+

(ft − 1)2dµβt(x)

∫
R+

12
cχε(J(x))dµβt(x)

)1/2

+ µβt(
cχε)

≤
√
utµβt(

cχε) + µβt(
cχε) (26)

This means that if there exist (α, b) such that ut = O(µβt) the convergence rate in the noisy
case will be of the same order as in the classical one, but for a smaller b.

Using the previous inequality, Equation (25) and the concentration rate of the Gibbs
measure given by Equation (24) we have:

P(X̃t ∈ cχε) ≤
{

ΓγΓ2(1 + td)
m?b−1−bε

2 + Γ2(1 + td)−bε if α ≥ 2

ΓγΓ2(1 + td)
m?b−α/2+γ−bε

2 + Γ2(1 + td)−bε if α < 2

where Γ2 = |E|
|χε| − 1.

5.3. Computational Complexity of NSA

Given the convergence rate of the algorithm, we can define T ? such that the confidence
inequality constraint is satisfied at time T ?.

Let NT
call be the number of cost function evaluations made by the NSA until time T . This

is a random variable. We define the computational cost of the algorithm as the expectation
of this random variable. It can be written as:

E
(
NT
call

)
= E

∑
k≥1

1Tk<TNTk

 .

Lemma 6 Let δ, ε > 0, γ ∈ (0, α/2−m?b) and

T ? =
1

d

(
max

((
2Γγ
δ

)2/(min(1,α
2
−γ)−m?b+bε)

,

(
2Γ2

δ

)1/bε
)
− 1

)
.
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Then, for all t ≥ T ?, P(X̃t ∈ cχε) ≤ δ and the computational cost up to time T ? is bounded:

E
(
NT∗
call

)
≤ 1

d
max

((
2Γγ
δ

)2(α+1)/(min(1,α
2
−γ)−m?b+bε)

,

(
2Γ2

δ

)(α+1)/bε
)
.

Proof. In order to prove this statement, we use the inequalities from Theorem 5 treating
each term separately.
We consider T1, T2 such that ΓγΓ2(1+dT1)m

?b−min(1,α
2
−γ)−bε = δ/2 and Γ2(1+dT2)−bε = δ/2.

This implies:

1 + dT1 =

(
2Γγ
δ

)2/(min(1,α
2
−γ)−m?b+bε)

and 1 + dT2 =

(
2Γ2

δ

)1/bε

. (27)

Now we can define T ?, the time after which the current state of the NSA belongs to χε with
probability at least 1− δ, i.e., ∀t > T ?, P(X̃t ∈ χε) ≥ 1− δ:

T ? = max(T1, T2).

We are interested in the computational cost up to time T ?, more precisely the expected

number of Monte Carlo simulations used up to T ?. This is given by E
(∑

k≥1 1Tk<T ?NTk

)
.

The value of this quantity cannot be computed exactly, but it can easily be upper bounded.

E

∑
k≥1

1Tk<T ?NTk

 =E

E

∑
k≥1

1Tk<T ?NTk

 |(Tk)k=1···+∞


=E

∑
k≥1

1Tk<T ?nTk


≤E

∑
k≥1

1Tk<T ?

nT ?

The last inequality is implied by the fact that nt is an increasing function. Since
∑

k≥1 1Tk<T ?

is a Poisson variable of parameter T ?, using the definition of nt one can see that:

E

∑
k≥1

1Tk<T ?NTk

 ≤T ?(1 + dT ?)α (28)

≤1

d
(1 + dT ?)α+1.

We conclude using Equation (27).

The rate of growth of the total computation number is mainly driven by the exponent of
1
δ in the cost function. We are looking for the couple (α, b) that minimizes this quantity and
fulfills the requirements of Theorem 5. We can split the problem into two sub-problems:
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Case 1: α
2 − γ > 1

min
b,α

max

(
2(α+ 1)

1−m?b+ bε
,
α+ 1

bε

)
(29)

s.t.

m?b < 1 and α− 2γ > 2

Case 2: α
2 ≤ 1

min
b,α

max

(
2(α+ 1)

α/2− γ −m?b+ bε
,
α+ 1

bε

)
(30)

s.t.

0 < γ <
α

2
−m?b and α− 2γ ≤ 2

The solution of Equation (29) is obvious, the minimal value for α and the maximal for
b, i.e, α must be as close to 2 as possible and b = 1

m?+ε . As for Equation (30), we consider
two sub-cases. First suppose that:

2(α+ 1)

α/2− γ −m?b+ bε
≥ α+ 1

bε
⇐⇒ α/2− γ −m?b ≤ bε. (31)

The function we want to minimize is strictly decreasing in α and strictly increasing in b, so
its minimum value is attained for the maximal value of α and the minimal value of b, under
the domain constraints given by Equation (30) and Equation (31), so the solution is:

α = 2(1 + γ) and b >
1

m? + ε
. (32)

In the second sub-case, supposing that the inequality Equation (31) is inverted, the problem
can be resumed at minimizing (α+ 1)/bε, a decreasing function with respect to b, for

b ≤ α/2− γ
(m? + ε)

and α ≤ 2.

Replacing b by its maximal value the objective function becomes a decreasing function in
α, and therefore we obtain the same solution as before, defined in Equation (32). This
is a quite comprehensive result, as it indicates that the lower the required accuracy in the
solution space is, i.e., ε increases and thus the size of χε does too, the faster the temperature
can decrease to zero. We need to explore less the state space.

Corollary 1 For the optimal parameters choice defined in Equation (32), an ε-optimal
solution is returned by NSA with probability 1− δ at a computational cost at most :

1

d

(
2Γγ
δ

)m?+ε
ε

(3+2γ)

,

where Γγ is defined in Theorem 5.
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This is rather costly but represents a general bound with few constraints on the function
J . However, if the function J has additional properties the bound can be significantly
improved:

Corollary 2 Suppose that J has no well containing a local minimum, apart from the one
containing the global minimum, i.e. m? = 0, then an ε-optimal solution is returned by NSA
with probability 1− δ at a computational cost at most :(

2 log 1
δ

dε

)3

.

Remark 5 We recover the polynomial dependency in 1/ε and log 1/δ of the state-of-the-
art complexity results (c.f. Woodroofe 1972 and Nemirovski et al. 1982) which are of the
order of ε−2 log(1

δ ) for strongly convex cost functions. As we relax this assumption and
only consider cost functions with no local minimum, it seems coherent to observe a slight
degradation of the complexity.

Proof. In order to have an estimate of the computational cost in this setting we follow the
same method as before and highlight only the main steps of the proof. First remark that
in this case, Theorem 4 states that there exist C, c > 0 such that ∀β ∈ R+:

c ≤ γ(β) ≤ C (33)

This changes the differential inequality obtained for ut = ‖ft − 1‖2µβt and thus Equation

(19) becomes :

u′t ≤ 2

[
−c+ (ε+t − ε−t ) + (

M

2
+
M

4
)β′t

]
ut + 2Mβ′t + 2(ε+t − ε−t ).

We can apply Grönwall’s Lemma and obtain the same type of inequality as before:

ut ≤ u0e
∫ t
0 −As+Bsds +

∫ t

0
Bse

∫ t
s −Ah+Bhdhds. (34)

where Bt has the same form as before, Bt = 2(ε+t − ε−t ) + 2Mβ′t and At = 2c .

The convergence of ut towards 0 can be proved now for a larger class of functions nt, βt,
since:

At = O(1) and Bt = O(βt/
√
nt ∨ β′t).

We no longer need to impose βt = O(logt). Let α, b, d > 0. Define

nt = (1 + t)α and βt = d(1 + t)b.

Using Equation (34) one can check that we have a finite upper bound on ut as soon as:

{b < α/2 ∧ 1, d > 0} or {b = 1, α ≥ 2, 0 < d < c}.
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This in particular implies that the NSA algorithm converges a.s. to the set of global
minimums of J . Furthermore for the first set of conditions one can prove using the same
technique as in Appendix A that :

ut = O(tmax(b−1,b−α/2)).

This means that there exits Γ′γ > 0 such that for t large enough ut ≤ Γ′γt
−γ , where γ =

−max(b− 1, b− α/2). Using this, Equation (26) and Equation (24), for t large enough, we
get:

P(X̃t ∈ cχε) ≤ Γ′γt
−γ/2e−εd(1+t)b/2 + Γ2e

−εd(1+t)b

≤ e−εd(1+t)b/2(Γ′γt
−γ/2 + Γ2e

−εd(1+t)b/2)

≤ e−εd(1+t)b/2

The last inequality is valid as soon as t > max

[(
2 log(2Γ2)

εd

) 1
b − 1,

(
2Γ′γ

) 2
γ

]
. This is not a

restrictive condition. Take for example the minimization of the ‖.‖1 over the subset subset
E = {x ∈ Zp, ‖x‖∞ ≤ n} for some n ∈ N. As Γ2 = ‖E‖ − 1 = (n + 1)p − 1, the time for
which the first part of the condition is fulfilled only grows linearly with the dimension of the
search space. We show latter on that the optimal choice for b is one and thus the second
part of the condition can be omitted.

Let δ > 0 be a fixed. Using the previous inequality one can compute T ? such that the
confidence inequality constraint is satisfied:

T ?ε,δ =

(
−2 log δ

dε

)1/b

− 1.

Regarding the computational cost we remind the reader that Equation (28) implies:

E(NT ?

call) ≤ nT ?T ? ≤
(
−2 log δ

dε

) 1+α
b

.

We can optimize this bound with respect to α and b in the same way as for Corollary 1.
This leads to α = 2 and b < 1 and thus to the desired results:

E(NT ?

call) ≤
(
−2 log δ

dε

)3

.

6. Numerical Experiments

In this section we first present some test cases, for which we use an additive Gaussian noise
at each evaluation. We recover the theoretical results introduced by Gutjahr and Pflug
(1996). In a second part we present some results for the aircraft trajectory optimization
problem. In this case the solution of the problem is unknown. We can only observe the total
cost improvement in comparison with a trajectory optimized for a similar but deterministic
setting.

34



Convergence rate of a noisy simulated annealing

0

1

6

4

3

5

2 7

8 11

10

13

15

9 14

12

2

5

7

10

12

U(x)

d*

S*

Figure 2: B. Hajek test case for the simulated annealing in a deterministic environment

6.1. Basic Exemple

The first experimental setting we consider, was introduced in (Hajek, 1988). The cost
function and the neighbourhood structure are represented on Figure 2. This is of particular
interest as the function has two basins from which it is hard to escape. B. Hajek has shown
that the following holds:

Theorem 7 (Hajek 1988)
If βk = b log(k + 2), then b ≤ d? ⇔ lim

k→∞
P(Xk ∈ S?) = 1, where d? is the maximum

depth of a cup containing a local but not global minima. The depth of a cup is the maximal
energy difference between two of it states and (Xk)k∈N denotes the Markov chain generated
by the classical simulated annealing.

For a complete definition of d?, see Hajek (1988).

We add Gaussian noises to the cost function of Figure 2 with different variance levels
to highlight the fact that if only one sampling is performed the simulated annealing perfor-
mance becomes rapidly very poor as the variance increases. On the other hand it appears
that the performance of the NSA for a linear increase of the mean number of samples is as
good a quadratic one. These results are summarized on Figure 3.

6.2. Ackley Test Function

We introduce a second test case to further asses these observations. We consider the
uniformly (2000 points) discretized version of the Ackley function in one dimension on
[−100, 100]. This function has many local minima as shown on Figure 4.

Figures 5 displays the convergence results on this test case for different levels of variance
of the added Gaussian noise, for each estimation schedule introduced in this paper. As
before, the success ratio of the algorithm is established using 1000 Monte Carlo runs for
each noise level and estimation schedule, by comparing at every run the returned value with
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Figure 3: Convergence performance of NSA for the Hajek setting. Each line represents the
evolution of the success ratio of the algorithm when the variance of the noise
added to the cost function increases. The success ratio is measured over 1000
Monte Carlo simulations for each level of noise. A run is considered successful if
the algorithm returns a true optimal value. One can see that the performance in
the case where the mean sample number is generated using nk = k2 (green curve)
or nk = k (red curve) is similar and quite stable, as opposed to case of only one
sample used at each step (blue curve), where the success ratio decreases rapidly.
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Figure 4: Ackley 1D Test Function

the true optimizer of the cost function. We observe that the only case where the convergence
is not impacted by the noise variance increase is the nt = t2 case (corresponding to the use
of approximately k2 measurements at each step k). Although, when the variance of the
noise is rather small ( equal to 1), the algorithm’s performance using the linear schedule
(nt = t) or the quadratic one (nt = t2) is quite similar, a clear gap is highlighted between
the two schedules as soon as the variance increases.

These results also highlight the fact that a logarithmic sampling schedule is not ap-
propriate for any cost function, even in the Gaussian case. This invalidates partially the
hypotheses introduced in Fink (1998).

6.3. Aircraft Trajectory Optimization

We use a black box trajectory evaluator for a long range commercial aircraft. We consider
a direct shooting method for optimizing the vertical part of the trajectory. As displayed
on Figure 6, the vertical path is made of a sequence of flight segments at constant altitude
called steps. The transitions between those steps are called step climbs. This has been put
in place by the international authorities to ease the air traffic control. Aircraft can only
fly at a finite set of altitudes. The steps climbs are transition phases that must be very
short. The Figure 6 is a conceptual. It does not reflect the real scale of the different phases.
Our optimization variables are the vectors of position of the steps and the vector of steps’
altitude, denoted respectively x and h on Figure 6. The structure of this airspace strongly
limits the number of steps. We will only consider the problem with an a priori number of
steps. There are two main reasons why the aircraft might vary its altitude during a flight
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Figure 5: Performance of the NSA algorithm as a function of the level of noise on the
evaluation of the cost function.

Figure 6: Aircraft trajectory, structure of the vertical path
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Figure 7: NSA descent: Aircraft trajectory optimization problem

(optimizing fuel consumption and air traffic control). Because of fuel consumption, the
aircraft weight is decreasing during the flight. Analyzing the laws of flight physics, it can be
shown that there exists an altitude at which the fuel consumption per flown distance unit
is minimal. It can also be shown that this altitude increases as the weight decreases. This
last statement is however only true if there is no wind. It is easily understandable that for
some particular wind map configuration it might be preferable to target lower altitudes at
lower weights.
The choice of the vertical path must be declared to the authorities before the flight to ensure
traffic manageability. Airlines operating aircraft have therefore a stochastic optimization
problem to solve. This is a stochastic problem for two main reasons. First, they only
access predicted weather conditions that suffer some uncertainty. Second, the airspace is
not empty and sometimes air traffic controllers might refuse some altitude changes because
of the presence of other aircraft. As the weather, the traffic is not known in advance.
We applied NSA to the problem of finding an optimal 3 steps configuration. An example
of the current solution cost evolution with respect to the number of iterations is displayed
on Figure 7.

We observe a very quick convergence to a low cost trajectory. We do not claim it is a
general behaviour. It might be due to the structure of the cost function. Figure 8, shows
how the cost evolves with respect to the ground position of the first step. It is obviously
not convex but has some regularity. We can observe some flat parts. This explains why
gradient based methods would fail solving this problem. However, we are not aware of any
other study solving the Aircraft trajectory optimization problem under uncertainty using a
Black box aircraft model and are thus unable to provide more advance appreciation of the
performance of such an approach.

As for the previous problems we have observed that the increase sampling condition
must be satisfied to ensure a good behaviour of the algorithm.
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Figure 8: Sampling of the cost function along the first step position for a 3 step vertical
path

Appendix A. Proof of Bound Equation (25)

Proof.[Proof of Theorem 5]
Let βt = b log(td+ 1) and nt = (1 + td)α.
Recall Equation (18):

u′t ≤ 2

[
−ce−βtm? + (ε+ − ε−) +

(
M

2
+
M

4

)
β′t

]
ut + 2Mβ′t + 2(ε+ − ε−)

Let At = 2ce−βtm
?

and Bt = 2(ε+ − ε−) + 2Mβ′t.

Applying Grönwall’s Lemma for the previous relation gives:

ut ≤ u0e
∫ t
0 −As+Bsds +

∫ t

0
Bse

∫ t
s −Ah+Bhdhds

Under Assumptions 2.2, there exist b, d > 0 such that βt = b log(1 + td). This implies:

β′t =
bd

1 + td
and e−m

?βt =

(
1

1 + td

)m?b
.

Using the definition of ε−, ε+ we have:

ε+ − ε−t = 2
√

2πβtσ

 e
β2t σ

2

2(1−δ)nt√
(1− δ)nt

+ eβ
2
t σ

2−ant

 .
This implies that when t goes to infinity:

At = O
(

1

tm?b

)
and Bt = O

(
1

t
∨ log t

tα/2

)
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In order to highlight the mains ideas of the proof we will try to simplify the notations as

much as possible. First observe that for all α > 0 and all 0 < γ < α/2 ,
log t

tα/2
= o

(
1

tα/2−γ

)
.

Hence we can assume there exist A,B > 0 and δ1, δ2 such that:

At = A
d

(1 + td)δ1
and Bt ≤ B

d

(1 + td)δ2

where δ1 = m?b and δ2 = min(1,−γ+α/2). Since min(1, α/2) > m?b, and γ can be chosen
arbitrarily close to 0, we choose it such that δ1 < δ2. This means that 0 < γ < α/2−m?b.

Remark 6 The choice of γ influences the choice of B. If Bt = O
(

log t

tα/2

)
, there exists

CB > 0 such that Bt ≤ CB
log t

tα/2
,∀t. The constant B is then such that ∀t, CB

log t

tγ
≤ B.

Hence we can choose:

B =
CB
eγ

. (35)

Let T 1
t = u0e

∫ t
0 −As+Bsds and T 2

t =
∫ t

0 Bse
∫ t
s −Ah+Bhdhds.

The first term T 1
t is always easy to deal with and one can check that under the theorem’s

assumptions we always have T 1
t = o(1/tδ1−δ2) when t goes to infinity. As for the second

term, using a substitution gives:

T 2
t ≤

∫ 1+td

1

B

sδ2
e
∫ 1+td
s − A

hδ1
+ B

hδ2
dh

ds

≤ e−
A(1+td)1−δ1

1−δ1
+
B(1+td)1−δ2

1−δ2

∫ 1+td

1

B

sδ2
e
As1−δ1
1−δ1

−Bs
1−δ2

1−δ2 ds (36)

For the last inequality we assume δ2 6= 1 which corresponds to the case α ≤ 2.

Let It =
∫ 1+td

1
B
sδ2
e
As1−δ1
1−δ1

−Bs
1−δ2

1−δ2 ds and fs = As1−δ1
1−δ1 −

Bs1−δ2
1−δ2 . Let T0 be such that for

all s ≥ T0, sδ2−δ1 ≥ B+1
A (for instance T0 = (BA + 1)1/(δ2−δ1)). We can write It as follows:

It =

∫ T0

1

B

sδ2
efsds+

∫ 1+td

T0

B

sδ2
efsds

= KT0 +

∫ 1+td

T0

B

sδ2(As−δ1 −Bs−δ2)
efsf ′sds

= KT0 +

[
B

Asδ2−δ1 −Be
fs

]1+td

T0

+

∫ 1+td

T0

AB(δ2 − δ1)sδ2−δ1−1

(Asδ2−δ1 −B)2
efsds

Since δ1 < δ2,
A(δ2 − δ1)s−δ1−1

(Asδ2−δ1 −B)2
goes to 0 when s goes to infinity. Moreover one can check

that for all s ≥ T0 this quantity is smaller than 1/2. Using this we get:

It ≤ KT0 +

[
B

Asδ2−δ1 −Be
fs

]1+td

T0

+
1

2
It
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and therefore for all t ≥ T0:

It ≤ 2

[
B

Asδ2−δ1 −Be
fs

]1+td

1

+ 2KT0

This gives:

T 2
t ≤ 2e−f1+td

([
B

Asδ2−δ1 −Be
fs

]1+td

1

+KT0

)

≤ 2

[
B

A(1 + td)δ2−δ1 −B

]
+ 2

(
KT0 −

B

A−Be
f1

)
e−f1+td

Regrouping the terms we obtain for all t ≥ T0:

ut ≤
[
u0 + 2

(
KT0 −

B

A−Be
f1

)]
e−f1+td +

2B

A(1 + td)δ2−δ1 −B (37)

Since the first term is a O(e−ft) and therefore a o(tδ1−δ2) it is obvious that:

ut = O
(

1

tδ2−δ1

)
when t→∞ (38)

This means that for all γ ∈ (0, α/2−m?b) there exists Γγ > 0 such that:

ut ≤ Γγt
−α/2+m?b+γ for all t ≥ T0. (39)

Since ft = O(t1−δ1), e−fttδ1−δ2 goes very fast to zero and therefore the size of Γγ is mainly

driven by
2B

A
. Using Equation (35) one can see that:

Γγ '
1

γ
.

If α > 2, δ2 = 1 and Equation (36) becomes of the form:

T 2
t ≤ e

−A(1+td)1−δ1
1−δ1

+B log(1+td)
∫ 1+td

1

B

s1+B
e
As1−δ1
1−δ1 ds.

Using a similar procedure one can check that in this case we also have an inequality similar

to Equation (37) , T t2 remains a O
(

1

t1−δ1

)
, and Equation (38) and Equation (39) still hold.

Remark 7 In this case one can choose γ = α/2− 1, this way min(1, α2 − γ) = 1 and Γγ is
minimal.
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Appendix B. Definition of m?

In this section we prove that the definition of m?, i.e. Equation (4), is equivalent to the
definition provided by Holley and Stroock (1988).

Lemma 3 Let, m?
HS := max

x,y∈E

{
min
p∈Pxy

{
max
z∈p

J(z)

}
− J(y)− J(x) + minu J(u)

}
.

Then
m? = m?

HS

Proof. Let x, y ∈ E and denote Hxy := min
p∈Pxy

{
max
z∈p

J(z)

}
.

First it can be noticed that if x is a global minimum of J then we have

Hx,y − J(y)− J(x) + min
u
J(u) = Hx,y − J(y) (40)

Thus m?
HS ≥ Hx?,y − J(y) for any y in E, where x? is a global minimum of J .

Recall that m? = max
x,y∈E

{Hxy −max (J(y), J(x))}. As the set of paths going from x to

y containing a global minimum x? is a subset of the paths going from x to y, we have:

Hxy ≤ max (Hx?x, Hx?y)

Let x, y ∈ E such that m? = Hxy −max (J(y), J(x)),

m? ≤ max (Hx?x, Hx?y)−max (J(y), J(x))

≤ max (Hx?x − J(x), Hx?y − J(y))

≤ m?
HS

On the other hand, as ∀ x, y ∈ E, we have −min (J(y), J(x)) + minu J(u) ≤ 0, so

Hxy − J(y)− J(x) + min
u
J(u) ≤ Hxy −max (J(y), J(x))

This implies m?
HS ≤ m?, which completes the proof.
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