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Abstract
A typical problem in spatial data analysis is regionalization or spatially constrained clus-
tering, which consists of aggregating small geographical areas into larger regions. A major
challenge when partitioning a map is the huge number of possible partitions that compose
the search space. This is compounded if we are partitioning spatio-temporal data rather
than purely spatial data. We introduce a spatio-temporal product partition model that
deals with the regionalization problem in a probabilistic way. Random spanning trees are
used as a tool to tackle the problem of searching the space of possible partitions making
feasible this exploration. Based on this framework, we propose an efficient Gibbs sam-
pler algorithm to sample from the posterior distribution of the parameters, specially the
random partition. The proposed Gibbs sampler scheme carries out a random walk on the
space of the spanning trees and the partitions induced by deleting tree edges. In the purely
spatial situation, we compare our proposed model with other state-of-art regionalization
techniques to partition maps using simulated and real social and health data. To illustrate
how the temporal component is handled by the algorithm and to show how the spatial
clusters vary along the time we presented an application using human development index
data. The analysis shows that our proposed model is better than state-of-art alternatives.
Another appealing feature of the method is that the prior distribution for the partition is
interpretable with a trivial coin flipping mechanism allowing its easy elicitation.

Keywords: Spatial Clustering, Product Partition Models, Random Spanning Trees,
Bayesian Clustering

1. Introduction

Traditional cluster analysis aims at partitioning a set of n objects into k clusters such
that the clusters are composed by objects with similar valued attributes while objects from
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different clusters tend to be dissimilar. When the objects are spatially located, inducing
a neighborhood structure, the clustering can be constrained by their spatial contiguity.
For instance, in mapping problems, it is common to aggregate neighboring small areas to
partition the map into larger regions, named spatial clusters. The small areas within a given
spatial cluster are relatively homogeneous with respect to attributes such as, for example,
ecological characteristics (Sayre et al., 2014) or crime rates (Mennis and Harris, 2013). This
spatial clustering problem is called regionalization or spatially constrained clustering.

Regionalization serves to a range of purposes, such as to facilitate the visualization and
understanding of the geographical information, to reduce the noise introduced by outliers
and inaccurate data, to make data analysis tractable, or to provide a better statistical
handling of the data by reducing the effect of different populations (Wise et al., 1997). It has
been used in widely different applied problems such as ecoregion delimitation (Sayre et al.,
2014; McKenney et al., 2007), climate zoning (Zhang et al., 2016), environmental planning
(Bernetti et al., 2011), image segmentation (Ribeiro et al., 2013), communication protocols
in geo-sensor networks (Reis et al., 2007), map generalization (Ruas, 2008), zone design
for health studies (Cockings and Martin, 2005; Ricketts, 1997), and enhanced sampling
procedures (Martin, 1998).

There are two possible ways to carry out this aggregation. One way is through an
artificial clustering, where the constructed regions are predetermined using official or nor-
mative designations (such as states, districts and counties). That is, the regionalization
of small units of interest, such as counties, are arbitrarily specified as larger units such as
states, defined for administrative or political reasons. This kind of aggregation is usually
the expression of political will and may not take into account the information specific to the
domain being studied. Another way is to perform the aggregation based on the analysis of
data characteristics related to the phenomena under study. An outcome of a regionalization
method can be found in the left hand side of Figure 1, which shows the three spatial clusters
based on the values of lung cancer mortality rates in municipalities in the South of Brazil
for the period 2008-2012.

Many different methods have been proposed to deal with the problem of spatial region-
alization as a non-stochastic optimization problem. These previous works are presented in
Section 1.1. Most of these regionalization techniques consider data as fixed, static values
and prefix the number of clusters a priori. Frequently, these assumptions are inappropriate,
as they do not allow for measurement error or uncertainty on the areas’ measures nor the
evaluation of the uncertainty of the obtained clusters. For example, consider the bladder
cancer mortality rate of a small town in a given year. This value should not be considered as
the most representative value for the true mortality rate since it can be severely impacted by
small differences from one year to another, particularly if the area has a small population.
The measured value can show a natural variability, expressed in this widely different bladder
cancer mortality rate variation in two successive years in small population areas. Traditional
regionalization techniques that emphasizes the similarity between the observations will be
sensitive to this variability and may output an regionalization that discloses an undesirably
high number of clusters. To illustrate this problem, the right hand side map in Figure 1
shows an outcome of the Automatic Zoning Procedure (AZP) regionalization technique pro-
posed by Openshaw (1977) considering the bladder cancer mortality rate in municipalities
in the South of Brazil for the period 2008-2012. This type of cancer is rare, generating small
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Figure 1: Example of a good (left) and a bad (right) regionalization using data from lung
(left) and bladder (right) cancer mortality rates in South Brazilian municipalities
for the period 2008-2012.

death counts in low population areas and thus extreme rates (high or low) in sharp contrast
with their neighbors.

It is necessary to use an explicit stochastic framework to perform the regionalization if
we want to take into account this natural variability in the data. An appropriate modeling
approach should also allow us to quantify the uncertainty about the geographic partition. A
stochastic framework accounting for such characteristics defines a random partition model.
Consequently, our inference becomes more complex as there is a huge number of possible
partitions that compose the parametric space.

Some attempts to achieve this goal in the spatial context have been already considered
in the literature and they are reviewed in Section 1.1. In Teixeira et al. (2015), we introduce
a random partition model that deals with purely spatial regionalization problems in a prob-
abilistic way. In this article, in addition to presenting the model, we discuss in detail the
elicitation of prior distributions for the partition and for the number of clusters. Such model
is an alternative to the spatial product partition model (PPM) introduced by Hegarty and
Barry (2008) and by Page and Quintana (2016). We also extend these models to space-time
data by also accounting for spatio-temporal regionalization and provide extensive simula-
tion results and new examples. We run a simulation study comparing the proposed model
with well-known stochastic and non-stochastic regionalization techniques including Bayesian
modeling alternatives. To illustrate the purely spatial case, we partition the Brazilian map
based on the Human Development Index (HDI) and the Brazilian South region based on
bladder and lung cancer mortality rates. The space-time case is illustrated with HDI in
three decades.

The spatial and the spatio-temporal structure are both represented by a graph. The
partition of graphs is not a new subject (Green and Thomas, 2013; Bornn and Caron, 2011).
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Our contribution is the introduction of random spanning trees into the random partition
model as a tool to handle the problem of searching in the space of possible partitions. We
propose an efficient Gibbs sampler algorithm to sample from the posterior probability dis-
tribution, specially that for the partition. Conditionally on the spanning tree, the random
partition has a product distribution thus defining a spatio-temporal/spatial product parti-
tion model. This strategy also greatly facilitates the scheme for sampling from the posterior
distributions. By conditioning on the partitions resulting from spanning trees pruning, we
substantially reduce the space of partitions or clusters to be explored. It is important to
emphasize that the partition space is the set of all possible spatio-temporal/spatial parti-
tions. The way we search this space is by selecting a new random spanning tree from the
set of all possible spanning trees at each Gibbs step and then proceed with its partitioning.
This guarantees that there is a positive probability that any partition will be reached in a
finite time starting from any other partition in our MCMC sampling scheme.

In Section 2, we briefly review some basic concepts of graph theory we need in the
construction of the proposed model. In Section 3 we introduce our proposed model and
describe how we incorporate the spanning trees as a tool to drive through the partition space.
In Section 4 we propose an efficient algorithm to sample from the posterior distribution.
Section 5 presents a simulation study comparing the proposed model with some other well-
known methods for regionalization in the spatial context. The analysis of some real data
from Brazil is carried out in Section 6. Section 7 closes the paper with some final comments
and the main conclusions.

1.1. Related Work

Openshaw (Openshaw, 1977) was a pioneer when he proposed Automatic Zoning Procedure
(AZP), a heuristic method to aggregate areas that swapped regions locally improving an
initial rough partitioning. Later, AZP variants were introduced using simulated annealing
and tabu search (Openshaw and Rao, 1995). A modification of AZP named Automatic
Regionalization with Initial Seed Location (ARiSeL) was presented by Duque and Church
(2004). In ARiSeL, the construction of an initial feasible solution is repeated several times
before running a tabu search which, according to the author, is less expensive than per-
forming a local search. The Self Organizing Maps (SOM) algorithm, proposed by Kohonen
(1990), is an unsupervised neural network which adjusts its weights to represent a data set
distribution on a regular lattice. Although used to perform regionalization, the spatial con-
tiguity desirable in a regionalization is not guaranteed. SOM variants have been proposed
by Bação et al. (2004) and Bação et al. (2005) considering different procedures to explore
the neighborhood structure. The heuristic devised by Aldstadt and Getis (2006), called
AMOEBA (A Multidirectional Optimum Ecotope-Based Algorithm), starts with an initial
area and grows it by adding neighboring areas until a local spatial autocorrelation statistic
stops increasing. This process is repeated to all areas and a final step resolves overlaps. The
Max-p-regions technique (Duque et al., 2012) does not require the previous setting of the
number of spatial clusters and enforces the contiguity constraint. Clusters are formed in
a such way that a regional attribute is always above certain threshold such as a minimum
population or cluster area size.
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The Spatial ’K’luster Analysis by Tree Edge Removal (SKATER) proposed by Assunção
et al. (2006) is a graph based method that uses a minimal spanning tree to reduce the search
space. The regions are then defined by the removal of edges from the minimal spanning
tree. The removed edges are chosen to minimize a dissimilarity measure. Inspired by
SKATER, Guo (2008) proposed REDCAP (Regionalization with Dynamically Constrained
Agglomerative clustering and Partitioning) which considers six other methods to explore
different connection strategies using the underlying graph structure. The model introduced
in the present manuscript is also inspired by SKATER by using spanning trees as a tool
to summarize the spatial connection and the variability of the data. It adopts a Bayesian
approach putting prior distributions on all unknown aspects of the regionalization, including
the partition itself. As a consequence, we are able to make inference on unknown parameters
and, most importantly, to infer about the partition in a probabilistic way. Our method
outputs a posterior distribution over all possible partitions and we can infer which ones are
the most probable.

Knorr-Held and Raßer (2000) presented a Bayesian approach, named Bayesian Detec-
tion of Clusters and Discontinuities (BDCD), to aggregate small contiguous areas into larger
regions to form spatial clusters. Focusing on the random partition, they assume a prior dis-
tribution p(c) for the number c of spatial clusters. Conditioned on c, cluster centers are
uniformly selected among the n available centroids. Each area is assigned to that cluster
whose center is the nearest according to the number of boundaries that need to be crossed.
In the Bayesian partition model (BPM) introduced by Denison and Holmes (2001), the
prior distribution p(c) is an uniform distribution and they use a Voronoi tessellation to de-
termine the spatial clusters. One of the main differences between the two of them is the
computational strategy to sample from the posterior distribution. While Knorr-Held and
Raßer (2000) use an explicit reversible jump Markov chain Monte Carlo (MCMC) proce-
dure (Green, 1995; Richardson and Green, 1997), Denison and Holmes (2001) proceed using
a standard MCMC after integrating out some parameters.

Gangnon and Clayton (2000) proposed a different Bayesian approach for this problem by
assuming a prior distribution for the number of clusters that depends on the geometry of the
clusters. Such prior distribution gives more flexibility for spatial cluster analysis since, de-
pending on our prior knowledge, it can be elicited penalizing some particular cluster aspects
such as large cluster sizes or odd-shaped clusters. The algorithm proposed to approximate
the posterior distribution has two components. The first is a window of plausibility, an adap-
tation of the Occam’s window approach to model selection (Madigan and Raftery, 1994). In
the second, given a window of plausibility, they use a randomized search algorithm similar
to the backward elimination method used for variable selection in regression problems.

Lu and Carlin (2005) and Banerjee and Gelfand (2006) worked on a dual problem propos-
ing a method known as boundary (or wobbling) analysis. Rather than aggregating similar
areas into homogeneous regions, their method aims at identifying sharp boundaries between
pairs of areas in such a way that homogeneous regions can be obtained as a byproduct.
Wakefield and Kim (2013) proposed a Bayesian method for the detection of a small number
of high risk zones, rather than providing a map partition. It requires the pre-specification
of the maximum number of clusters, the clusters found tend to have a circular shape.

Anderson et al. (2014) proposed a two-step regionalization method. First, a hierarchical
clustering method is used to define a set of possible partitions. In the second step, the
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models defined by each partition are compared using a model selection tool and the best
partition is thus selected.

The product partition model (PPM) introduced by Hartigan (1990) has been used for
different purposes due to its flexibility in modeling heterogeneous data. However, only
recently it has been considered to analyze spatial data. PPMs assume that the partition
π = {G1, . . . ,Gc} of a set of data is a random quantity and its main feature is to assume
that the π distribution is a product of subjective non-negative functions κ(Gk) called prior
cohesions, for k = 1, . . . , c. The cohesion functions measure how likely elements in Gk are
clustered a priori. The structure adopted to such cohesions defines the type of PPM we
have in mind. Hegarty and Barry (2008) were the first to propose a spatial approach to
PPM. They assumed that the prior cohesions of a component Gi of π is a function of the
summation (over all areas in Gi) of the number of neighboring areas not in Gi. This cohesion
may encourage maps with few contiguous clusters and discourage maps with large number
of disconnected ones, which is desirable in regionalization problems. In the spatial PPM
introduced by Page and Quintana (2016) the spatial dependence among the neighboring
areas is incorporated into the model through both the likelihood and the prior for π. Four
prior cohesions are introduced. Differently from what was considered by Hegarty and Barry
(2008), all of them are location dependent and usually dependent on the distance between
areas.

2. Preliminary Concepts

Consider n contiguous geographical regions such as those in Figure 2. The map is identified
with an undirected graph G = (V,E), where V is the set of vertices or nodes representing the
areas and E is the set of edges connecting pairs of vertices and representing the adjacency
relationship among regions (see Figure 2, map on the top left). If there is an edge between
vertices i and j we say that the corresponding areas are neighboring areas. A path from
node v1 to node vm is a sequence of nodes v1, v2, . . . , vm which are connected by edges
(v1, v2), . . . , (vm−1, vm) and with vi 6= vi+1 for i = 1, . . . , n. All vertices are distinct except,
possibly, the initial and final vertices v1 and vm. This exceptional case, a path with v1 = vm,
is a circuit. A graph is said to be connected if, for any pair of nodes vi and vj , there is at
least one path connecting them.

A spatial cluster is defined as any subset of nodes forming a connected subgraph. The
graph G is partitioned into c spatial clusters G1, . . . ,Gc if the clusters are disjoint and G =⋃

i Gi, where 1 ≤ c ≤ n. A spatial partition π = {G1, . . . ,Gc} can be viewed as a function
from the set {1, . . . , n} that labels the areas into the set {1, . . . , c} of spatial cluster labels.

A spanning tree T of a graph G is a fundamental concept in our work. It is a connected
subgraph with no circuits containing all nodes of G. The second and third maps on the
top row in Figure 2 show two spanning trees associated with the first graph. In a spanning
tree, any two nodes of G are connected by a unique path and the number of edges in T
is n − 1. This implies that the removal of any c − 1 edges from T partitions the graph G
into c spatial clusters. The last property makes the spanning tree a useful tool for spatial
clustering problems. This can be seen in the bottom row where three different partitions
are shown. The last two are based on the removal of only four edges from the corresponding
spanning trees in the top row.
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Figure 2: Map of Belo Horizonte city partitioned into 81 administrative planning units su-
perimposed by the adjacency neighborhood graph (first map in the top row) and
two spanning trees (other two maps in the top row). The bottom row shows three
partitions into five spatial clusters.

Usually, there are many possible spanning trees associated with a given graph. A special
kind of spanning tree can be obtained when we associate a cost or weight to each edge. The
cost of a graph is the sum of its weights. A minimum spanning tree is a spanning tree with
minimum cost. The minimum spanning tree is not necessarily unique. A sufficient condition
for uniqueness is that the pairwise costs are distinct numbers.

Consider a spanning tree T and a partition π of G into c disjoint spatial clusters
G1, . . . ,Gc. We say that π is compatible with T if π can be obtained by pruning c − 1
edges from T , and we denote this by π ≺ T . Otherwise, they are incompatible and we write
π 6≺ T . The extremely large number of possible partitions of a graph is reduced tremen-
dously by considering only those compatible with a given spanning tree. For example, there
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are only n−1 possible partitions of a particular spanning tree into two spatial clusters while
in the original graph this number is of order O(2n).

These purely spatial graph concepts can be easily extended to the space-time situation.
We assume that the same map is observed for T time periods, that is, areas are not created
or deleted during the observation period. Hence, we can stack the sequence of maps creating
a three-dimensional lattice with nodes indexed by (t, i) where i denotes the geographical unit
and t, the time. Edges between nodes (t, i) and (t, j) at the same time t are specified based
only on the adjacency between the areas, as described before. Additionally, each node (t, i)
is connected to itself and to all its adjacent neighboring regions at time t + 1. Since the
remaining concepts of spanning trees, paths and others are defined for general graphs, they
are also valid for this extended three-dimensional graph G = (V,E).

3. Spatio-Temporal PPM Driven by Spanning Trees

Let Y = (Y1, . . . ,YT ) and θ = (θ1, . . . ,θT ) where Yt = (Yt1, . . . , Ytn) and θt = (θt1, . . . ,θtn),
respectively, denote the observable variables and the vector of parameters for the n regions
of a map, at time t, t = 1, . . . , T . We associate (Ytr,θtr) with the node (t, r) in the graph.
If the interest lies only on a purely spatial regionalization we take T = 1. Assume that
Ytj | θtj

ind∼ f(Ytj | θtj), j = 1, . . . , n and t = 1, . . . , T . Let I = {1, . . . , nT} be the set of
labels for the nodes.

A major problem when partitioning a data set or a graph is the huge number of possible
partitions that compose the search space. To introduce the cluster structure tackling this
problem and making feasible the exploration of this space of possible partitions, let us assume
a random spanning tree T selected from the set of all possible spanning trees associated with
the graph. Denote by π a partition of I compatible with the selected T and assume that,
given T and the partition π = {G1, . . . ,Gc}, there are common parameters θGk , k = 1, . . . , c,
such that, for all nodes with labels belonging to Gk, we have that θi = θGk , i ∈ Gk.
To establish notation, denote by YGk the set of observations associated with the nodes in
Gk. A spatio-temporal PPM induced by random spanning trees is the joint distribution of
(Y ,θ,π, T ), with π ≺ T , and denoted by (Y ,θ,π, T ) ∼ SPPM, satisfying the following
conditions:

(i) Given T , π = {G1, . . . ,Gc} ≺ T and θG1 , . . . ,θGc , the observations YG1 , . . . ,YGc are
independent and such that

Yi | θGk
iid∼ f(Yi | θGk), ∀ i ∈ Gk ;

(ii) Given T and π = {G1, . . . ,Gc} ≺ T , the common parameters θG1 , . . . ,θGc are indepen-
dent with joint distribution given by

θG1 , . . . ,θGc | π, T ∼
c∏

k=1

f(θGk) ;

(iii) Given T , the prior distribution of π ≺ T is a product distribution such that, for each
partition {G1, . . . ,Gc} for c ∈ {1, . . . , nT}, we have

P(π = {G1, . . . ,Gc} | T ) =

∏c
k=1 κ(Gk)∑

G′k∈C(T )

∏c
k=1 κ(G′k)

, (1)
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where κ(Gk) ≥ 0 denotes the prior cohesion associated to the subgraph Gk and rep-
resents how likely elements in Gk are clustered a priori. The summation in the de-
nominator is over all the elements in the set C(T ) which represents all the 2nT−1 − 1
partitions compatible with the specific spanning tree T in which we are conditioning.

(iv) The prior distribution of the spanning tree T is P(T ) with the support on the set of
all possible spanning trees of G.

Usually, there is very little prior information to guide our choice of this last distribution.
Hence, we assume that T is uniformly distributed over the space of spanning trees of the
original graph.

The partition of a graph consists simply of the removal of a set of edges resulting in
disjoint connected subgraphs. By conditioning on a spanning tree, this task is substantially
simplified. We have only nT − 1 edges and the removal of any c − 1 of them immediately
partition the original graph into c space-times clusters. We want to emphasize that we do
not prune a single and fixed spanning tree. Rather, we randomly walk on the space of all
spanning trees and, at each step, we generate a new partition. The final inference about the
partition is obtained by integrating out over the spanning tree space.

With this motivation, we specify the prior cohesions as functions of ρe, the probability
of removing a given edge e. For instance, if all edges have a common probability ρ, the prior
cohesion related to group Gk becomes

κ(Gk) =

{
(1− ρ)nGk−1ρ, if k < c

(1− ρ)nGk−1, if k = c,
(2)

where nGk is the number of remaining edges in Gk. This prior cohesion is similar to that one
considered by Barry and Hartigan (1993) to analyze problems involving the identification
of contiguous clusters, such as in change point analysis in time series. In that context, this
structure is a consequence of the Markovian behavior usually assumed for the change points.

Considering the prior cohesions in (2), given T and ρ, the prior probability of π =
{G1, . . . ,Gc} is given by

P(π | T , ρ) =

{
ρ(c−1)(1− ρ)(nT−c), if π ≺ T
0, otherwise.

It is more relevant to obtain the unconditional prior distributions for the partition π and
for the number C of clusters. Let NT be the total number of spanning trees associated with
G and NT (π) the total number of spanning trees compatible with a partition π. It follows
that, given ρ, the prior distributions for π and C are given respectively by

P(π | ρ) =
∑
T

P(π | T , ρ)P(T )

=
∑
T
ρ(c−1)(1− ρ)(nT−c)P(T ) I[π ≺ T ]

= ρ(c−1)(1− ρ)(nT−c)NT (π)

NT
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and

P(C = c | ρ) =
∑
π

I[π, c]P(π | ρ) =

(
nT − 1

c− 1

)
ρ(c−1)(1− ρ)(nT−c)NT (π)

NT

where the last sum is over all partitions π and I[π, c] is an indicator function assuming 1,
if the partition π has c clusters, and 0, otherwise.

Assuming a priori that P(ρ = 1/2) = 1, it becomes clear the dependence of the prior
distribution for π on the graph topology since P(π) = 2−nT+1NT (π)N−1

T . As NT (π) de-
pends on π, we have that P(π) is not uniform over all possible partitions. As a consequence,
the prior distribution of the number of clusters C is also influenced by the graph structure.
Figure 3 shows a simple graph with three different partitions. The left hand side partition
is given by π1 = {G1,G2} = {{1, 2, 3}, {4, 5, 6}} and NT (π1) = 9. The middle partition
is π2 = {G1,G2,G3} = {{1, 2, 3}, {4, 5}, {6}} and NT (π2) = 6. The number NT (π) does
not depend only on the number c of spatial clusters in π. The right hand side partition
is π3 = {G1,G2} = {{1, 2, 3, 4, 5}, {6}}, with the same number of clusters as π1 but with
NT (π3) = 6.

It will be more common to assume a prior distribution for ρ such as Beta(r, s). Then

P(π) =
NT (π)

NT

Γ(r + s)Γ(r + nT − c)Γ(s+ c− 1)

Γ(r)Γ(s)Γ(nT + r + s− 1)

P(C = c) =

(
nT − 1

c− 1

)
NT (π)

NT

Γ(r + s)Γ(r + nT − c)Γ(s+ c− 1)

Γ(r)Γ(s)Γ(nT + r + s− 1)
.

Although the prior distribution for C is dependent on the graph topology, the expected
number of clusters a priori is not. Given T and ρ, the number of removed edges from the

1 3

2

5

4 6

G1

G2

1 3

2

5

4 6

G1

G2

G3

1 3

2

5

4 6

G1

G2

Figure 3: A graph composed by six nodes and with three different partitions π1 (left), π2

(middle), and π3 (right). The number of trees compatible with each partition is
NT (π1) = 9, and NT (π2) = NT (π3) = 6.
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tree compatible with the partition has a Binomial distribution with parameters nT − 1 and
ρ. Consequently, the expected number C of clusters is

E(C) = E (E(C | T , ρ)) = E ((nT − 1)ρ+ 1) = (nT − 1)E(ρ) + 1 . (3)

As (3) reveals, the prior distribution of ρ determines how many clusters we expect a priori.
A larger value for E(ρ) would indicate that we expect a high number of clusters, while
a smaller value has the opposite effect. Note that the choice of a non informative uniform
prior for ρ would stimulate the partition of the graph into a large number of clusters, around
E(C) = (nT + 1)/2.

4. Sampling Partitions Using Spanning Trees

The great advantage of removing edges from spanning trees for regionalization is the reduc-
tion of the search space of partitions. Originally, we have to move through the huge space
of all partitions of the graph avoiding those that do not respect the spatial constraint. By
pruning the spanning trees, the search space of partitions is drastically reduced and all par-
titions generated in this way will, by definition, respect the spatial constraint. After all, the
spanning tree is built from the neighborhood structure and, therefore, the clusters formed
will be spatially or spatio-temporally connected.

To sample from the posterior distribution of (θ,π, T , ρ | Y ), we introduce an MCMC
algorithm. The full conditional distributions of θi, i = 1, . . . , nT , ρ are, respectively, given
by:

θi | π, T , ρ,Y ∼ P(θG∗ | YG∗), if i ∈ G∗,
ρ | θ,π, T ,Y ∼ Beta(r + c− 1, s+ nT − c) .

The full conditional distribution for T assuming a general prior cohesion is given by

P(T | θ,π, T ,Y ) ∝


(∑

C(T )

∏c
k=1 κ(Gk)

)−1
, if π ≺ T

0, otherwise.
(4)

Assuming the prior cohesion specified in (2), this full conditional distribution assumes
the simple uniform distribution

P(T | θ,π, T ,Y ) ∝

{
1, if π ≺ T
0, otherwise.

(5)

because, in this case, the denominator in (1) is constant and equal to 1 for any spanning
tree T : ∑

C(T )

c∏
k=1

κ(Gk) =

nT∑
c=1

(
nT − 1

c− 1

)
ρ(c−1)(1− ρ)(nT−c) = 1 .

A more efficient algorithm that has a fast convergence is obtained when we integrate out
θ and ρ from the full conditional distribution P(π | θ, T , ρ,Y ) thus obtaining

P(π | Y , T ) =

{
fT (Y )Γ(r+s)Γ(s+nT−c)Γ(r+c−1)

Γ(r+s+nT−1)Γ(r)Γ(s) , for π ≺ T
0, otherwise

(6)
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where fT (Y ) =
∏c

k=1

∫
Θ f(YGk | θGk)f(θGk) dθGk . We reinforce that fT (Y ) is calculated

only for partitions π compatible with a given spanning tree T . The posterior distribution for
the partition π should be obtained by marginalizing over all spanning trees compatible with
a given partition: P(π | Y ) =

∑
T ≺π P(π | Y , T ) P(T | Y ). This would imply the need to

additionally derive the posterior P(T | Y ). Rather than following this approach, we decide
to adopt a different strategy, by sampling from the joint posterior of compatible pairs of T
and π. The challenge is to sample partitions and the spanning trees that are compatible to
each other. The proposed strategy to achieve this is presented in the following.

4.1. Sampling a Partition Compatible with the Current Tree

The transformation suggested by Barry and Hartigan (1993) inspired the Gibbs sampler we
describe here. A partition π of the graph can be transformed into a vector U of nT − 1
dependent binary variables, given a compatible spanning tree T . The coordinate Ui of
U is 1 if the i-th edge is not removed from the tree to form π, and 0, otherwise. With
this multidimensional random variable, we can sample from the posterior of π using Gibbs
sampler. Let U−i = {U1, · · · , Ui−1, Ui+1, · · · , UnT−1}. To decide if each edge in the tree
should be removed or not, it is sufficient to know the ratio between the P(Ui = 1 | U−i, T ,Y )
and P(Ui = 0 | U−i, T ,Y ). For the model assumed here such ratio is given by

Ri =
f

(1)
T (YGk)

f
(0)
T

(
Y

(L)
Gk

)
f

(0)
T

(
Y

(R)
Gk

) (r + c− 2)

(s+ nT − c)
,

where f (1)
T (YGk) is the prior predictive of the group formed when the edge i is present,

whereas f (0)
T

(
Y

(L)
Gk

)
and f

(0)
T

(
Y

(R)
Gk

)
are the predictive distributions for the observations

of the two groups formed when the edge i is removed from the tree T pruned by U−i.
Thus, we can sample from the distribution of Ui simply by sampling a uniform value

u ∼ Uniform(0, 1) and using the following accept/reject criterion:

Ui =

{
1, if Ri ≥ u

1−u
0, otherwise.

(7)

4.2. Sampling a tree compatible with the current partition

We need to sample trees that are compatible with the current partition. The valid trees are
uniformly distributed over the subset of trees compatible with the partition as shown in (5).
The generation of uniformly distributed spanning trees without constraints is a subject
of study since 1989 (Broder, 1989). Wilson algorithm (Wilson, 1996) is the main algorithm
in the literature and it is based on a certain random walk on the adjacency graph. Under
the constraint that the generated trees must be compatible with the current partition at
each step of the Gibbs sampler, Wilson’s algorithm could be used using a rejection sampling
approach. Uniformly select a spanning tree from the adjacency graph G and reject it if it
is not compatible with the current partition. Otherwise, accept it. This is a very expensive
way to generate uniformly from the set of spanning trees compatible with π. For example,
suppose that G is a regular 26 × 26 rectangular lattice split into two spatial clusters, the
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upper half and the lower half. We did not obtain a single compatible spanning tree after
uniformly generating 3.8 million spanning trees. Another example is the Brazilian map
partitioned into 5564 municipalities (see Figure 7a), again split only into two groups, one
being the municipalities within the three most Southern states of Brazil (see Figure 13 for
the states’ boundaries). This partitioning of the map has 67 edges connecting municipalities
of different groups. After 1.5 million simulations by Wilson’s method, none was compatible
with that partition.

Another possibility is to adapt Wilson’s algorithm to obey the constraints imposed by
the current partition. A reviewer suggested the following procedure. Suppose a clustering
as in Figure 3 (middle). First sample a uniform spanning tree by Wilson’s algorithm within
each of G1,G2,G3. Next, define a collapsed graph where the nodes are the three clusters and
we set an edges between Gi and Gj if there is at least one edge between the two subgraphs.
Sample a uniform spanning tree on that collapsed graph. Finally, for each edge sampled in
the collapsed graph, sample one of the edge uniformly in the original bipartite graph.

While this procedure may sound promising at first, it, unfortunately fails to generate
trees uniformly. What is problematic in this approach is that the number of edges be-
tween clusters can be imbalanced, which could lead to trees being sampled with different
probability.

Consider the graph in Figure 4. We would first sample a uniform tree inside of each
of the tree groups. In this example, there are 3 independent options for each group, so in
this first step a choice is made with probability

(
1
3

)3
= 1

27 . Now, the collapsed graph is a
complete graph of size 3 (a triangle). Once again, there is a choice between three spanning
trees. Assume we uniformly select a spanning tree which contains an edge between Group
A and Group B and between Group B and Group C. This choice has probability 1

3 . Finally,
we need to uniformly choose among the corresponding edges between the clusters. For the
connection between Group B and Group C, there is only one option, while for Group A and
Group B, there are three choices. Uniformly selecting the edges, thus, will have a probability
of 1

3 · 1 = 1
3 . The final tree, then, will have been selected with probability 1

27
1
3

1
3 = 1

247 .

Consider now another possible combination of choices. For the first step, we select
the same trees inside the groups, with probability 1

27 . For the second step, we choose the
spanning tree of the collapsed graph which contains a connection between Group A and
Group C and between Group C and Group B. This step, again, has probability 1

3 . Finally,
to select the corresponding trees in the original bipartite graph, there is only one choice
corresponding to each connection, namely (B2, C3) and (A2, C1). Therefore, the choice in
this final step was made with probability 1. The final tree, then, was chosen with probability
1
27

1
31 = 1

81 . Therefore, this method will sample the trees with a probability which is not
uniform.

Instead of Wilson’s algorithm, we employ another procedure to sample trees using a
minimum spanning tree (MST) algorithm. We sample a new tree T compatible with the
current partition π by assigning weights to the edges in the graph respecting this current
partition in the following way. The edges that connect vertices belonging to the same cluster
receive a low weight, obtained from a uniform distribution which generates low values (e.g.
between 0 and 1). The edges that connect vertices belonging to different clusters receive
a high weight, obtained from a uniform distribution which generates higher values (e.g.
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A1 A2

A3

B1 B2

B3

C1 C2

C3

Group A

Group B

Group C

Figure 4: Counter example of graph where the approach of adapting Wilson’s algorithm as
a multi-step procedure to obey the constraints imposed by the partition fails to
sample trees uniformly.

between 10 and 20). Once the weights are assigned, the minimum spanning tree is obtained
and it is the new sampled tree, compatible with the current partition.

The reason for using these two sets of values is that the algorithm computes the spanning
tree with minimum sum of weights. When we use weights in this way, we ensure that the
tree will be compatible with the partition, since the edges with higher weights are added to
the tree only when all possible connections through edges with a lower weight are already
explored. So, it only adds a connection between clusters when all the possible connections
inside a cluster have been visited.

The proposed algorithm works because the MST algorithm, either by Prim algorithm or
by the Kruskal algorithm (Cormen et al., 2009), selects the edges according to their weights.
Since all edges separating clusters have higher weights, they are selected only after the lower
weight edges connecting vertices inside a cluster. The random attribution of weights ensures
that the tree will respect the partition and, since we randomly assign weights each time we
sample a tree, we get a random tree, even though the algorithm is deterministic.

This procedure does not sample exactly from a uniform distribution. To see this, consider
the following example. Consider the graph in the left hand side of Figure 5 where we
disregard any partition. There are 5 spanning trees that do not include the (3 − 4) edge,
each one obtained by the removal of (3 − 4) and one of the remaining edges. There are 6
other spanning trees including the (3 − 4) edge: we need to prune one of the three edges
located at the left-hand side of (3−4) and one of the two located at its right-hand side. Our
method would assign independent U(0, 1) random variables W1, . . . ,W6 to the six edges
and then select its minimum spanning tree. This is equivalent to substitute the Wi’s by
their rank statistics R1, . . . , R6 where Ri =

∑6
j=1 I[Wj ≤ Wi] and to select the minimum

spanning tree using these ranks. The total number of possible ranks assignment to the
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Figure 5: Two graphs to discuss different possibilities to randomly generate spanning trees.

edges is equal to the number of permutations of the six edges, that is, 6! = 720. Each rank
statistic configuration is equally likely and each one of the 11 spanning trees is associated
with a subset of these 720 ranking patterns. The cardinality of these subsets should be the
same if we have a uniform sampling procedure. However, 11 is not a divisor of 720 and
therefore some spanning trees are selected with higher frequency than others.

However, this simple and fast procedure is a good approximation for the uniform sam-
pling of spanning trees and we show this by means of an example. Consider the graph in the
right-hand side of Figure 5 with 6 nodes divided into 2 groups (nodes 1-3 and nodes 4-6). A
complete enumeration shows that there are 27 spanning trees compatible with this partition,
which, if uniformly sampled, should have a selection probability equal to 1/27 ≈ 0.03704.
Using Wilson’s algorithm, we selected 100 thousand random spanning trees. The observed
frequencies of the 27 spanning trees varied from 0.03588 to 0.03831. Using our method based
on 100 thousand simulations of U(0, 1) random variables for the edges within cluster and
U(10, 20) random variables for the edges between clusters, the observed frequencies of the
spanning trees varied from 0.03588 to 0.03811. Additionally, Wilson’s algorithm requires
generating about 3 spanning trees before one is accepted (compatible with the partition),
even in this small example, while for our approach each generated tree is guaranteed to be
compatible with the partition.

5. Analysis of Simulated Data Sets

In this section, we evaluate the performance of our model for regionalization in spatial
settings only. The main goal is to compare it with the following state-of-art regional-
ization techniques: SKATER, through its implementation on the spdep R package1, the
original Automatic Zoning Procedure (AZP), and its variations with Simulated Annealing
(AZP_SA), Tabu (AZP_TABU ), Reactive tabu (AZP_RTABU ), the Automatic Regional-
ization with Initial Seed Location (ARISEL), the Max-p-regions Tabu model (MAXP) and
the "A Multidirectional Optimum Ecotope-Base Algorithm" (AMOEBA), all implemented

1. http://cran.r-project.org/package=spdep
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in the Python ClusterPy2 library (Duque et al., 2011). For Poisson data sets, the proposed
spatial PPM is also compared to the BDCD model, implemented in C++ code (available
at http://www.statistik.lmu.de/sfb386/software/bdcd/download.html) and to BPM,
implemented in R software by ourselves.

To define the spatial structure of the simulated data (coordinates, shapes and spatial
adjacency), we consider two geographical neighborhood structures of Brazilian regions. In
the Gaussian data sets, inspired by the human development index map shown in Section 6,
we considered 853 Brazilian regions grouped into three clusters: two large clusters and a
third small cluster, composed by 10 regions and islanded in the middle of one of the other
two clusters. The small cluster mean is very different from that in surrounding regions. In
Scenario 1, the observations within each cluster are iid generated from normal distributions.
To mimic the observed data, we choose means µi = 0.73 and precision τi = 4000, for the
small cluster, µi = 0.63 and τi = 754.20, for the large cluster containing the small one, and
µi = 0.70 and τi = 878.35, for the other large cluster. In Scenario 2, the spatial structure
also presents three clusters but inside each cluster, the distribution varies slightly from a
region to another. The regions means within the large cluster containing the smaller one
vary from 0.612 up to 0.685 and precision varies between 435 and 484. The other large
cluster have µi ∈ (0.663, 0.726) and τi ∈ (471, 497). Finally, the small cluster is composed
by three areas with common mean equal to 0.780 and precision 10000.

For the Poisson data sets, we were inspired by the epidemiological studies presented in
Section 6. We considered smaller areas in the southern region of Brazil, the 1188 Brazilian
municipalities divided into clusters. Each observation yi simulates a cancer death count and
the expected count Ei is extracted from the real data analysis and based on true population
in each area. Motivated by the high mortality rates observed in the lung cancer data, we
simulated Poisson data with high rates in Scenarios 3 and 4, while in Scenarios 5 and 6,
we assumed low rates similar to those observed in the bladder cancer data. Rates assumed
in high rate scenarios are, on average, 8 times higher than those for the low rate scenarios.
Similarly to the normal case, we assume areas with the same rate (Scenarios 3 and 5) and
with distinct but similar rates (Scenarios 4 and 6) within each cluster.

In Scenarios 3 and 4, the map is divided into 10 clusters with the common rates in
Scenario 3 ranging from 0.45 to 1.40. The distinct rates for the 1188 regions considered in
Scenario 4 range from 0.45 to 1.75. In bladder cancer inspired low rate scenarios, the map
is divided into 13 clusters. The common rates in Scenario 5 has values varying from 0.24 to
1.74, while for Scenario 6, the distinct parameters for each region vary from 0.77 to 1.42.

Concerning the inference, we assume that Yi | µGk , τGk
iid∼ Normal

(
µGk , τ

−1
Gk

)
, for all

i ∈ Gk, in the normal case. We also consider the normal-gamma prior distribution with
µGk | τGk ∼ Normal

(
m, [vτGk ]−1

)
and τGk ∼ Gamma (a, b), where m = 0.65, v = 1, a = 400

and b = 1. For the Poisson data, Yi | φGk
iid∼ Poisson (Ei · φGk) and φGk ∼ Gamma(a, b),

where a = b = 2. This prior distribution for φGk puts probability mass around 1, as we
usually expect for the relative risk. Furthermore, 90% of its probability mass is concentrated
between 0.18 and 2.37, which is a reasonable range for many human disease relative risks.
As usually done in real problems, in our analysis, the expected count Ei is assumed to

2. http://www.rise-group.org/
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be known. Besides, we assume that each edge is removed from the spanning tree with
probability ρ ∼ Beta(5, 1000).

Our algorithm was implemented in C++ and is available upon request. For the MCMC
we run a chain of 5000 iterations, skipping the first 500 samples as a burn-in period and, to
avoid correlation, we use a thinning of 5 simulated values.

5.1. Evaluation Metrics

We consider two groups of metrics. The first group is based on the estimates of the pa-
rameters that index the data distributions. We consider the mean absolute error (MAE),
the mean relative error (MRE) and the mean squared error (MSE) based on the distance
between the true parameters and their estimates. Under BPM, BDCD and the proposed
PPM the parameter estimates in each region are the posterior means. Under the usual
regionalization methods, such estimates are obtained by averaging the observations Yi into
the cluster. For normal data, these are given by θ̂i =

∑
j∈Gk Yj/nk ∀i ∈ Gk and, in the

Poisson case, they are θ̂i = [
∑

j∈Gk Yj ][
∑

j∈Gk Ej ]
−1, ∀i ∈ Gk.

The other set of metrics is based on the difference between the true clusters used to
generate the data and the clusters obtained by the different methods. Each pair of areas
is labeled as positive if they are in the same cluster and as negative if they are in different
clusters. We looked at the number of true positives (TP ) classifications, the number of pairs
that are in the same cluster both, in the true partition as well as in the estimated one. False
positive classifications (FP ) is the number of pairs assigned to distinct clusters but that
actually are in the same cluster in the true partition. True negatives (TN) classification
is the number of pairs correctly assigned to distinct clusters. Finally, false negatives (FN)
classification is the number of pairs incorrectly assigned to distinct clusters. In our evalua-
tion, we consider the rand measure (RAND), the F1 score (F1), the Jaccard index (JI) and
the Fowlkes-Mallows index (FM) which are given, respectively, by

RAND = [TP + TN ] · [TP + FP + FN + TN ]−1,

F1 = 2 · P ·R · [P +R]−1,

JI = TP · [TP + FP + FN ]−1,

FM =
√
P ·R,

where P = TP · [TP + FP ]−1 and R = TP · [TP + FN ]−1.
Most of the traditional regionalization techniques considered in our analysis requires the

pre-definition of the number of clusters to be generated as an input. In all cases, we use
three different values: the true number c of clusters as well as 3 more and 3 less (1 less for
the normal case) clusters than the true number. The max-p-regions model clusters a set of
geographic areas into the maximum number of homogeneous regions such that the value of a
spatially extensive regional attribute is above a predefined threshold value. In clusterPy we
measure heterogeneity as the within-cluster sum of squares from each area to the attribute
centroid of its cluster. The parameter values shown in the tables for this method correspond
to this threshold.

To summarize the posterior information about the random partition provided by our
method, we take the underlying graph of the spatial structure of the data and, for each edge
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connecting neighboring areas, we compute how often they are in the same cluster based on
the generated partitions. This percentage is assigned to each edge. Then, we trim the edges
by removing all those which are below a certain threshold. Once the infrequent edges are re-
moved, the remaining components of the graph define the clusters. The reasoning is that the
removed edges are exactly those which are frequently crossing the borders between clusters
in the sampled partitions. By removing them, the bulk of the clusters frequently present in
the sampled partitions remain connected in the graph. We consider three thresholds: 70%,
80% and 90%. The same strategy is used for the BPM and BDCD methods.

5.2. Results

Tables 1 to 3 show the model fit measures for the proposed model and the competitor
methods for normal and Poisson data. For each evaluation measure, the best outcome is
underlined and shown in bold.

In almost all the simulated data sets, our model outperformed all the other methods.
The only scenarios where our method had inferior results were in the normal data set with
common parameter, where the MAE for the SPPM was the second best and the Poisson data
set with low rate and common parameter where SKATER had the lowest MRE. However,
in both cases, the SPPM had better performance according to all other metrics we consider
to evaluate the models. Furthermore, in these two exceptional cases, even in those losing
metrics, SPPM had a very close value to the better competitors.

In all data sets, particularly in the Poisson data sets, the error metrics (MAE, MSE,
MRE) for our method were from 1.5 to 5 times smaller than the other methods. For
SKATER, ARISEL and the AZP -type methods, we notice that the bias in the parameter
estimates (either the normal mean or the Poisson rate) depends on the number of clusters
we assume to implement the method as well as on the type of scenario. We notice, for
instance, that SKATER produced less biased estimates for such parameters in all scenarios
if the assumed number of cluster is c − 3 (and c − 1 for the normal case), the exception
occurring in Scenario 1. Moreover, in Scenario 3, less biased estimates are obtained by all
such methods, except SKATER, if the number of clusters is correctly assumed. This bias
may be explained by the poor capacity of these methods to identify correctly the clusters.
The non-stochastic methods were favored in the sense that they received good information
about the number of clusters. We either provided the exact number or a close one. In
some cases, even with the correct number of clusters, the AZP -type methods had a worse
performance than with the wrong number of clusters.

Our method also achieved better results if compared to the Bayesian models BPM and
BDCD (only implemented for Poisson models). BPM had a very poor performance for both,
cluster identification and parameter estimation, in all four Poisson scenarios. BDCD and the
proposed SPPM are comparable with respect to the parameter estimation, with proposed
model usually providing only slightly better estimates. However, the proposed model has
much better performance for cluster identification, except for Scenario 3 and thresholds 70%
and 80%, and Scenarios 4 and 6 and thresholds 70%.
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Table 1: Model fit summaries for all methods, Normal data, Scenarios 1 and 2.
Method Parameter MAE MSE MRE RAND F1 JI FM

Common parameters

SPPM
70%

0.00466 0.00010 0.00701
96.50 96.51 93.26 96.51

80% 96.30 96.26 92.79 96.27
90% 94.74 94.58 89.72 94.65

SKATER
c− 1 0.00745 0.00024 0.01132 92.08 92.22 85.56 92.22

c 0.00503 0.00016 0.00771 94.10 94.08 88.82 94.09
c + 3 0.00909 0.00027 0.01389 89.24 88.56 79.47 88.79

AZP
c− 1 0.03526 0.00125 0.05304 50.34 66.92 50.28 70.87

c 0.00488 0.00017 0.00751 92.52 92.34 85.77 92.39
c + 3 0.01158 0.00035 0.01799 84.98 83.11 71.10 83.85

AZP_SA
c− 1 0.00488 0.00015 0.00751 96.03 96.07 92.44 96.07

c 0.01902 0.00071 0.02865 67.15 62.10 45.04 62.93
c + 3 0.00849 0.00028 0.01304 81.07 77.92 63.82 79.14

AZP_TABU
c− 1 0.02972 0.00104 0.04536 60.17 67.43 50.86 68.50

c 0.00702 0.00021 0.01093 87.63 86.55 76.29 86.95
c + 3 0.01171 0.00037 0.01805 86.35 84.84 73.67 85.45

AZP_RTABU
c− 1 0.02680 0.00108 0.03943 60.49 63.33 46.34 63.47

c 0.00683 0.00023 0.01056 93.50 93.59 87.96 93.60
c + 3 0.00530 0.00022 0.00807 92.39 92.17 85.49 92.23

ARISEL
c− 1 0.00456 0.00015 0.00701 96.02 96.07 92.43 96.07

c 0.00945 0.00024 0.01481 88.77 87.92 78.45 88.23
c + 3 0.00542 0.00025 0.00824 86.91 85.72 75.01 86.14

AMOEBA None 0.02497 0.00074 0.03770 70.89 64.90 48.04 66.45

MAXP 10 0.01243 0.00036 0.01879 51.45 7.89 4.10 19.15
100 0.01551 0.00058 0.02317 65.74 55.54 38.44 58.36

Distinct parameters

SPPM
70%

0.00705 0.00015 0.01065
50.37 66.58 49.90 70.32

80% 90.97 90.84 83.22 90.86
90% 90.33 89.63 81.21 89.92

SKATER
c− 1 0.01086 0.00037 0.01624 87.45 87.55 77.85 87.55

c 0.01131 0.00039 0.01702 86.06 85.93 75.33 85.94
c + 3 0.01263 0.00041 0.01927 82.92 81.75 69.14 81.99

AZP
c− 1 0.01213 0.00046 0.01822 85.08 85.40 74.51 85.40

c 0.03308 0.00130 0.04894 52.96 59.88 42.74 60.49
c + 3 0.01162 0.00043 0.01741 86.41 86.51 76.23 86.51

AZP_SA
c− 1 0.01102 0.00037 0.01651 87.88 88.07 78.69 88.08

c 0.01256 0.00049 0.01891 73.41 69.46 53.21 70.33
c + 3 0.01281 0.00053 0.01931 76.11 74.31 59.12 74.57

AZP_TABU
c− 1 0.02277 0.00113 0.03506 65.63 69.11 52.80 69.42

c 0.01512 0.00066 0.02280 78.56 78.98 65.27 78.99
c + 3 0.01566 0.00055 0.02374 73.43 68.39 51.96 69.77

AZP_RTABU
c− 1 0.01386 0.00054 0.02068 83.51 83.73 72.02 83.73

c 0.01317 0.00050 0.01978 84.15 84.15 72.63 84.15
c + 3 0.01394 0.00051 0.02076 79.09 77.26 62.95 77.61

ARISEL
c− 1 0.01206 0.00044 0.01808 85.87 86.12 75.62 86.12

c 0.01149 0.00040 0.01722 87.01 87.17 77.26 87.17
c + 3 0.01477 0.00047 0.02199 77.31 73.55 58.16 74.69

AMOEBA None 0.03450 0.00144 0.05156 61.44 52.00 35.14 53.76

MAXP 10 0.01180 0.00034 0.01751 51.58 8.63 4.51 19.86
100 0.01774 0.00053 0.02647 60.15 43.46 27.76 48.12
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Table 2: Model fit summaries for all methods, Poisson data with high rate, Scenarios 3 and
4.

Method Parameter MAE MSE MRE RAND F1 JI FM

Common parameters

SPPM
70%

0.03054 0.00422 0.03797
49.14 42.08 26.65 51.24

80% 76.54 59.65 42.50 63.71
90% 90.59 74.28 59.09 74.32

SKATER
c− 3 0.11544 0.02046 0.12527 74.76 54.92 37.86 58.11

c 0.12579 0.03044 0.13527 75.50 54.12 37.10 56.62
c + 3 0.12618 0.03409 0.12778 77.03 54.06 37.04 55.77

AZP
c− 3 0.14481 0.03003 0.15500 69.35 43.77 28.01 46.01

c 0.10819 0.02484 0.11362 74.69 57.25 40.11 61.45
c + 3 0.13351 0.02751 0.14128 79.76 51.97 35.11 52.26

AZP_SA
c− 3 0.17650 0.04653 0.21710 51.07 42.05 26.62 50.49

c 0.07600 0.01620 0.08459 76.36 51.36 34.55 52.70
c + 3 0.11834 0.03139 0.12526 74.29 47.72 31.34 49.07

AZP_TABU
c− 3 0.19176 0.06519 0.23379 49.84 36.52 22.34 42.84

c 0.10617 0.02122 0.11570 73.60 51.01 34.23 53.47
c + 3 0.13359 0.02907 0.14364 81.11 48.89 32.35 48.90

AZP_RTABU
c− 3 0.18137 0.05388 0.22075 53.29 41.53 26.20 48.90

c 0.10348 0.02615 0.11161 78.00 47.37 31.03 47.60
c + 3 0.13224 0.03324 0.14001 78.60 50.97 34.20 51.45

ARISEL
c− 3 0.13210 0.02655 0.14694 66.90 47.90 31.49 52.43

c 0.10389 0.02524 0.11519 73.19 55.76 38.66 60.23
c + 3 0.12787 0.03623 0.13810 77.63 46.42 30.22 46.64

AMOEBA None 0.16781 0.06013 0.18080 69.82 37.53 23.10 38.48

MAXP 10 0.08963 0.01851 0.10448 81.91 10.06 5.30 20.76
100 0.12921 0.02821 0.15403 82.93 46.76 30.52 47.50

BPM
70%

0.35841 0.30151 0.53348
49.90 41.00 25.79 49.33

80% 49.90 41.00 25.79 49.33
90% 49.90 41.00 25.79 49.33

BDCD
70%

0.03637 0.00528 0.04562
74.61 57.73 40.58 62.21

80% 83.63 61.93 44.85 62.41
90% 82.33 14.34 7.72 25.57

Distinct parameters

SPPM
70%

0.04759 0.00544 0.05465
51.13 42.04 26.62 50.46

80% 89.02 70.40 54.32 70.41
90% 88.95 65.78 49.01 66.73

SKATER
c− 3 0.09821 0.02133 0.10367 82.90 62.00 44.93 62.83

c 0.10061 0.02474 0.10698 84.04 61.96 44.89 62.28
c + 3 0.10650 0.02619 0.11220 85.39 62.13 45.06 62.15

AZP
c− 3 0.11725 0.02275 0.12573 72.38 46.57 30.35 48.37

c 0.09930 0.01941 0.10935 71.55 50.88 34.12 54.29
c + 3 0.11223 0.02456 0.12804 74.61 43.48 27.78 44.05

AZP_SA
c− 3 0.12101 0.02373 0.14110 70.97 39.75 24.81 40.73

c 0.09564 0.01968 0.10301 76.76 56.78 39.65 59.50
c + 3 0.07958 0.01855 0.08658 83.88 56.34 39.22 56.35

AZP_TABU
c− 3 0.10113 0.01917 0.11041 69.77 50.18 33.49 54.22

c 0.14293 0.03248 0.17143 64.21 36.72 22.49 38.95
c + 3 0.09638 0.01827 0.10530 76.34 46.68 30.45 47.22

AZP_RTABU
c− 3 0.11068 0.01971 0.12723 67.98 48.34 31.87 52.53

c 0.10050 0.02104 0.11083 68.54 49.37 32.78 53.70
c + 3 0.12937 0.02724 0.14326 78.26 44.22 28.39 44.25

ARISEL
c− 3 0.09152 0.01625 0.09966 76.59 48.94 32.40 49.74

c 0.11073 0.02656 0.11981 79.64 51.77 34.93 52.07
c + 3 0.09866 0.02000 0.10814 76.19 51.87 35.01 53.40

AMOEBA None 0.17683 0.05720 0.19835 67.94 35.11 21.29 36.13

MAXP 10 0.09528 0.01730 0.10998 81.93 10.68 5.64 21.19
100 0.13384 0.02775 0.16170 80.19 41.26 26.00 41.56

BPM
70%

0.35298 0.26530 0.51927
50.58 37.93 23.40 44.61

80% 50.58 37.93 23.40 44.61
90% 50.61 37.87 23.36 44.52

BDCD
70%

0.05641 0.00676 0.06367
67.69 46.47 30.27 50.13

80% 83.00 29.55 17.34 35.75
90% 82.76 16.59 9.04 29.32
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Table 3: Model fit summaries for all methods, Poisson data with low rate, Scenarios 5 and
6.

Method Parameter MAE MSE MRE RAND F1 JI FM

Common parameters

SPPM
70%

0.07669 0.01905 0.49370
65.43 78.99 65.27 80.78

80% 65.98 79.17 65.52 80.87
90% 79.50 82.46 70.16 82.99

SKATER
c− 3 0.22172 0.12678 0.36023 49.73 52.20 35.32 53.72

c 0.26417 0.16666 0.41019 46.72 47.16 30.85 49.27
c + 3 0.29476 0.23519 0.44595 45.43 44.73 28.81 47.16

AZP
c− 3 0.24460 0.14382 0.74205 44.84 47.85 31.45 49.16

c 0.23630 0.15310 0.60011 56.83 58.58 41.42 60.46
c + 3 0.27275 0.21656 0.78907 43.98 43.27 27.61 45.62

AZP_SA
c− 3 0.22391 0.11542 0.74414 45.51 47.05 30.76 48.77

c 0.18481 0.14430 0.66085 49.64 55.47 38.38 56.10
c + 3 0.17373 0.14279 0.67033 44.04 41.78 26.40 44.65

AZP_TABU
c− 3 0.18362 0.12962 0.63674 51.98 60.42 43.29 60.58

c 0.30429 0.18741 0.46918 45.31 38.46 23.81 43.40
c + 3 0.27051 0.19779 0.85028 47.51 45.23 29.23 48.42

AZP_RTABU
c− 3 0.27233 0.17007 0.78498 44.19 44.95 28.99 46.86

c 0.30857 0.20849 0.81854 43.09 43.67 27.93 45.59
c + 3 0.30699 0.21135 0.86227 43.84 35.09 21.28 40.60

ARISEL
c− 3 0.29914 0.19268 0.81843 43.80 43.72 27.97 45.86

c 0.28959 0.18852 0.43265 45.82 43.18 27.53 46.35
c + 3 0.30599 0.22116 0.88723 41.76 33.93 20.43 38.56

AMOEBA None 0.53662 0.56779 0.66286 42.83 33.89 20.40 39.23

MAXP 10 0.16617 0.05139 0.60488 36.08 3.69 1.88 13.04
100 0.12539 0.03611 0.68845 39.68 20.78 11.59 29.41

BPM
70%

0.18454 0.05587 0.67587
65.02 78.80 65.02 80.63

80% 64.61 78.47 64.56 80.24
90% 46.72 58.23 41.08 58.24

BDCD
70%

0.09166 0.01986 0.51715
63.98 77.84 63.72 79.44

80% 36.77 5.67 2.92 16.60
90% 35.02 0.12 0.06 2.44

Distinct parameters

SPPM
70%

0.05172 0.00532 0.05553
65.02 78.80 65.02 80.63

80% 71.80 81.23 68.39 81.97
90% 82.34 84.77 73.57 85.40

SKATER
c− 3 0.17415 0.14741 0.19465 58.07 72.63 57.02 73.47

c 0.21371 0.17941 0.24005 53.24 67.56 51.02 67.89
c + 3 0.24092 0.24516 0.27006 49.64 63.36 46.37 63.45

AZP
c− 3 0.23537 0.14779 0.26733 43.52 53.24 36.28 53.39

c 0.24854 0.17059 0.28081 42.97 38.19 23.60 41.85
c + 3 0.18657 0.19945 0.20594 48.30 51.36 34.56 52.69

AZP_SA
c− 3 0.19384 0.11809 0.21444 45.09 38.37 23.74 43.20

c 0.14145 0.11201 0.15493 48.34 59.72 42.57 59.72
c + 3 0.22061 0.22617 0.24595 39.32 29.60 17.37 34.37

AZP_TABU
c− 3 0.20738 0.16752 0.22732 46.57 48.66 32.16 50.25

c 0.21042 0.21353 0.22851 54.15 57.56 40.41 58.79
c + 3 0.30981 0.25766 0.34688 40.37 30.94 18.30 35.87

AZP_RTABU
c− 3 0.24173 0.11225 0.26920 49.53 57.09 39.95 57.41

c 0.26007 0.22601 0.29338 41.96 40.90 25.71 43.23
c + 3 0.28364 0.24032 0.32242 42.29 51.31 34.51 51.56

ARISEL
c− 3 0.26916 0.18284 0.30273 42.89 46.43 30.23 47.59

c 0.26754 0.19789 0.30433 40.72 48.16 31.72 48.62
c + 3 0.30933 0.26337 0.34726 42.22 37.86 23.35 41.28

AMOEBA None 0.50147 0.55240 0.56333 42.28 34.78 21.05 39.38

MAXP 10 0.14022 0.03872 0.15519 35.97 3.46 1.76 12.44
100 0.08065 0.01122 0.08758 40.55 23.89 13.57 31.97

BPM
70%

0.22147 0.06551 0.24927
52.61 58.85 41.70 59.35

80% 52.61 58.85 41.70 59.35
90% 41.58 43.90 28.13 45.33

BDCD
70%

0.04487 0.00426 0.04738
65.12 78.77 64.98 80.55

80% 40.61 16.44 8.95 29.42
90% 35.04 0.17 0.09 2.88
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6. Case Studies

The analysis described in this section illustrates the usefulness of our method in three rel-
evant applications. The first one is a purely spatial case with Gaussian data and aims at
the regionalization of the Brazilian municipalities according to their Human Development
Index (HDI) in 2010. The second application is also purely spatial but assumes a Poisson
distribution for death counts. It aims at the regionalization of the Southern Brazilian mu-
nicipalities according to lung and bladder cancer mortality. We restrict the analysis to the
Brazilian region where the mortality data is not affected by under reporting. The third ap-
plication is a spatio-temporal situation with Gaussian data. We analysed the HDI as in the
first application but now we describe its evolution from 1991 to 2010. In the three analysis,
for the MCMC, we ran chains of size 10000, skipping the first 1000 samples as the burn-in
period and take a lag of 10 to avoid correlation.

6.1. HDI Data: A Spatial Regionalization with Gaussian SPPM

The HDI is an index combining life expectancy, education and income measures developed by
the United Nations Development Programme (UNDP) and it is often used to rank countries.
Together with UNDP, the Instituto de Pesquisa Econômica e Aplicada (IPEA) and Fundação
João Pinheiro developed a version of the HDI incorporating additional variables extracted
from the demographic census to evaluate the Brazilian municipalities.

The data set is composed of the HDI of 5564 municipalities of Brazil (see Figure 7)
in 2010. which is assumed to be normally distributed with mean and variance changing
over the space. We consider the neighborhood structure computed through the geographic
adjacency. As prior distribution for the cluster parameters we assume a conjugate Normal-
Gamma distribution such that µGk | τGk ∼ N

(
0.65, (0.04τGk)−1

)
and τGk ∼ Gamma (100, 1).

This prior distribution for the precision concentrates its probability mass around 100, which
yields a standard deviation of about 0.1 for the observations of the clusters. Consequently,
the cluster means are most probably around 0.65, with a deviation of 0.5. This spans most
of the range the HDI can take, which is from 0.0 to 1.0. A priori, we assume that each
edge is removed from the tree with probability ρ ∼ Beta(2, 7). As a result, the expected
number of clusters in the map is around 1236. This is likely to be much larger than one
would expect. However, we selected these values for two reasons. First, we want to allow a
possible large variability in the parameters to be expressed by the prior. Second, we want
to verify if the data provide enough evidence to shrink the distribution of the number of
clusters.

The posterior distribution for the number c of clusters has mode equal to 12 and varies
between 10 and 16, the 5% and 95% quantiles, respectively. The posterior probability of
edge removal ρ has mean 0.0025 and median 0.0022.

In Figure 6 we show a random sample of partitions generated by our algorithm. The
main difference between samples is on the frontier between the clusters. As expected, the
boundaries are hard to be established because, for this type of data, we do not expect a
clearly defined and sharp transition in the data.

To summarize the posterior partition distribution, we present Figure 7b. It is constructed
by deleting the boundary between neighboring municipalities that belong to the same cluster
in at least 80% of the sampled partitions. Therefore, the boundaries that remain indicates
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Figure 6: Some of the sampled partitions (HDI data)

areas that cannot be sharply allocated together into a cluster with its neighbor. It does
not mean that the area necessarily stays isolated from their neighbors most of the time. It
means that it is often allocated to clusters with different area components. Lines clearly
splitting large portions of the map indicate sharp transition zones. Another posterior par-
tition summary is given in Figure 7c . Each area is colored according to the size of cluster
to which it belongs. Darker colors indicate that the area belong to a small cluster.

These figures show the presence of three large regions in the country. Additionally, we
can see a number of small groups in the frontier and some tiny clusters located on the
Northeast coast, hard to visualize on the figure. We also have two small clusters isolated in
the middle of the big clusters, both with average HDI. The Southern one is surrounded by
better HDI areas while the Northern one is relatively better than its neighbors. Although
the main groups are well defined, the separation between them is not, causing a certain level
of noise. In fact, this discloses the natural characteristic of this kind of data where there is
a transition between two distinct groups but frontiers are not well defined. Another result
is related to the tiny clusters found on the Northeast coast. These areas are frequently
assigned to small clusters, with size within 9000 squared kilometers in at least 90% of the

23



Teixeira, Assunção and Loschi

(a) Map of Brazilian municipalities and their
HDI data

(b) Summary of the sampled partitions for
Brazilian municipalities (HDI data)

(c) Average group size for each municipality
in the sampled partitions

Figure 7: Posterior regionalization of Brazilian municipalities according to their HDI

sampled partitions. Such areas are the capital of states in the northeast region and their
neighboring towns. The HDI in the northeast region is generally very low, as can be seen
in Figure 7a, but the capital cities and their surroundings are more developed and have a
stronger economy than other regions on the State.

6.2. Lung and Bladder Cancer Data: A Spatial Regionalization with Poisson
SPPM

To illustrate the use of the Poisson SPPM we consider the number of deaths by bladder and
lung cancer in the south region of Brazil. These two types of cancers were selected due to
their different incidence rate. Bladder cancer is almost an order of magnitude rarer than
lung cancer. Thus, the incidence rate for bladder cancer is more affected by small variations.
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(a) Lung cancer (b) Bladder cancer

Figure 8: Ratio between the actual and expected number of deaths by lung and bladder
cancer in Brazilian south region

This scenario is a good example where the benefits of using a stochastic method instead of
traditional approaches may be more easily perceived.

For both data sets, we obtained the total number of deaths by age group and gender,
in each municipality, in the years 2008 - 2012. Data are available in the DATASUS website
(http://datasus.saude.gov.br/). We also obtained demographic information of the same
years, for the same age groups and gender, from IBGE. We summed over the years the
number of deaths in each area to obtain the total number of events in the period generating
one single count Yi for each municipality. We assume that, conditional on a parameter θi,
the random variable Yi follows a Poisson distribution with mean µi = Eiθi. The values of
Ei represent the expected number of deaths in area i if the risk was spatially constant in
each age and sex class. That is, after obtaining the age-sex-specific mortality rates for the
entire map, we applied them on each municipality respecting their demographic distribution
by age and sex. We end up with the expected number of events in each municipality under
this spatially homogeneous hypothesis. The θi parameters are called relative risks and they
represent multiplicative factors with respect to the baseline Ei. In Figure 8 we show the
ratio between the observed and the expected number of deaths by cancer.

We assume that, a priori, the cluster mortality rate has a Gamma distribution with
parameters a = 1.1, and b = 1.1. This distribution concentrates its mass around 1.1, with
a variance of 0.91, so the relative risk is concentrated in values mostly between 0 and 2.
This seems reasonable as we expect the incidence rate to deviate from the expected value
by a factor smaller than 2. We also assume that ρ ∼ Beta(5, 1000) and thus the expected
number of cluster a priori is 6.9. The proposed model is compared to ARISEL and SKATER.
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Figure 9: Some of the sampled partitions (lung cancer)

Inspired by our findings by applying the proposed model, for such approaches, we fixed the
number the clusters equal to 4.

The posterior distribution for the number of clusters c has mode 29 (lung) and 13 (blad-
der) with 5% and 95% quantiles given by 18 and 34 (lung) and 7 and 22 (bladder). The
edge removal parameter ρ has posterior mean and median around 0.013 and 0.008 for the
lung and bladder examples, respectively.

In Figures 9 and 10 we show some of the partitions sampled by our algorithm for the
lung and bladder cancer data sets, respectively.

As in the normal case, we summarize the posterior distribution of these partitions in
Figure 11. Maps in (a) and (b) that are constructed taking into consideration the neighboring
municipalities belonging to the same cluster in at least 85% of the sampled partitions. Maps
in (c) and (d) represent the average size of the cluster to which each region belongs.

Our method is able to find the easily spotted clusters in the extreme North and South
regions in Figure 8a for the lung cancer. However, it goes beyond that by also finding
additional clusters that divide the central area into West and East. In the bladder cancer
case, our model finds evidence in favor of the existence of clusters in the West and South
regions. These findings are hardly identified by visual inspection of Figure 8b or by using
some of the traditional approaches.
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Figure 10: Some of the sampled partitions (bladder cancer)

As we can see in Figure 12, the ARiSEL and SKATER techniques result in regional-
izations that capture only the most obvious visual aspects of the raw data maps. These
deterministic methods were run with 4 groups. The SKATER method was still able to
separate the top from the bottom of the lung cancer map, while ARiSEL detected only the
southern boundary and with a more jagged line. For the bladder cancer, however, neither
method was able to detect the region in the northeast of the map. They seemed to be more
sensitive to local variations in the rate. This is the practical exemplification of what we ex-
pected. Given that these methods do not use a statistical model, they are more susceptible
to this kind of problem where the population incidence rate is small.

Lung cancer is linked to smoking and the rate increases going south, which could be
related to the colder climate. This explains the clusters in the two extreme parts of the
North-South gradient in Figure 11a. With the help of hindsight, we can see that the right
portion of the middle region in this figure is where some of the large cities are located,
and presents a lower rate than its western counterpart. The deterministic methods either
separates out only the extreme south region and fail to identify the regions in the center. A
more visible difference between the methods is in Figure 11b. SPPM identified a cluster in
the northeast of the map, where Curitiba (capital of Paraná state) and the most populated
cities of the state of Santa Catarina are located. All the other methods failed to find this
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(a) Summary of the sampled partitions for
each region, Lung cancer

(b) Summary of the sampled partitions for
each region, Bladder cancer

(c) Average group size for each region, Lung can-
cer

(d) Average group size for each region, Bladder
cancer

Figure 11: Posterior regionalization of municipalities in Brazilian south region according to
the number of deaths by lung and bladder cancer, proposed model
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(a) Lung Cancer, ARiSEL (b) Lung Cancer, SKATER

(c) Bladder Cancer, ARiSEL (d) Bladder Cancer, SKATER

Figure 12: Regionalization of municipalities in the Brazilian south region according to the
number of deaths by lung and bladder cancer, ARiSEL and SKATER methods.
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cluster and instead identified noisy small regions, which is a demonstration of how these
methods are sensitive to the variations of the data.

6.3. HDI Data: A Space-Time Regionalization

In this section, we provide a short example of our space-time method using the state-level
HDI for the 26 Brazilian states and the Federal district. We have data for three different
time moments, the 1991, 2000, and 2010 Census years, which implies in 81 graph nodes.
We used the state-level graph to simplify the analysis and the interpretation of the results.
We considered the same prior choices as in Section 6.1: µGk | τGk ∼ N

(
0.65, (0.04τGk)−1

)
,

τGk ∼ Gamma (100, 1), and ρ ∼ Beta(2, 7).
Figure 13 shows the HDI in each year in the top row and the summary of our poste-

rior distribution in the bottom row. We delete the boundary between neighboring states
that belong to the same cluster in at least 70% of the sampled partitions. It is clear the
improvement of the Brazilian socio-economic condition over the three decades. In the first
decade, the small Federal District was isolated from the other regions presenting the highest
HDI level. In the second decade, this cluster is enlarged including the states in southern
part of the map. Such regions, in fact, presented an improvement in their socio-economic
conditions if compared with the first decade under analysis, getting closer of the Federal
District. Another small cluster was identified separating Amapá state, located in the North,
from the other regions. After three decades, all Brazilian states are assembled in a single
cluster.

7. Conclusion

In this work we dealt with the problem of regionalization, an important type of clustering
problem which arises in many areas. We proposed a new product partition model that
accounts for spatial and spatio-temporal clustering. The innovative aspect of this paper
is the use of random spanning trees as a tool to reduce the search space of partitions.
This random spanning tree trick allowed us to represent the random partitions as fixed
dimensional vector with binary elements. We presented a posterior sampling algorithm for
the proposed model that keeps fixed the dimension of the parametric space and resorts to a
regular Gibbs sampling procedure.

We evaluated of our method using simulated and real data. In the simulated study, we
compared our approach to available implementations of non-stochastic optimization methods
and Bayesian proposals and showed how our results were consistently superior. This was
particularly noticed in low rate Poisson generated data. We applied our technique to perform
the regionalization of Brazilian municipalities based on the human development index and
on bladder and lung cancer mortality data. We discussed how the results we obtained were
suitable for the domain subjects and how the use of our model obtained better and more
meaningful results.

The model proposed has some limitations. The temporal component is not dealt with
typical time series techniques and this prevents us to make inference in a prospective way.
More importantly, the prior distribution on the set of spanning trees is an artificial tool to
make inference on the partitions and these spanning trees do not have an obvious interpreta-
tion making difficult a prior distribution elicitation for T . However, the spanning tree plays
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Figure 13: Map of Brazilian states and their HDI data (first row) and the evolution of the
posterior summaries for cut point 0.7 (second row), over the years 1991, 2000,
and 2010.

an important role in the prior elicitation for the partition. Coupled with the simplification
of the computational search for a good partition by restricting this search to n edges, it
allowed us to write the prior cohesion as functions of ρ, the prior probability of removing
edges from the tree.

In conclusion, we proposed a stochastic model for the problem of space-time regional-
ization that captures much of the prior reasoning one could have for its formation. We
introduced the use of spanning trees to provide an effective sampling algorithm. Our model
is flexible enough to accommodate different types of data and provides good results.
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