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Abstract
The problem of multiclass boosting is considered. A new formulation is presented, combin-
ing multi-dimensional predictors, multi-dimensional real-valued codewords, and proper multiclass
margin loss functions. This leads to a number of contributions, such as maximum capacity code-
word sets, a family of proper and margin enforcing losses, denoted as γ − φ losses, and two new
multiclass boosting algorithms. These are descent procedures on the functional space spanned by
a set of weak learners. The first, CD-MCBoost, is a coordinate descent procedure that updates
one predictor component at a time. The second, GD-MCBoost, a gradient descent procedure that
updates all components jointly. Both MCBoost algorithms are defined with respect to a γ − φ
loss and can reduce to classical boosting procedures (such as AdaBoost and LogitBoost) for binary
problems. Beyond the algorithms themselves, the proposed formulation enables a unified treatment
of many previous multiclass boosting algorithms. This is used to show that the latter implement
different combinations of optimization strategy, codewords, weak learners, and loss function, high-
lighting some of their deficiencies. It is shown that no previous method matches the support of
MCBoost for real codewords of maximum capacity, a proper margin-enforcing loss function, and
any family of multidimensional predictors and weak learners. Experimental results confirm the su-
periority of MCBoost, showing that the two proposed MCBoost algorithms outperform comparable
prior methods on a number of datasets.

Keywords: Boosting, Multiclass Boosting, Multiclass Classification, Margin Maximization, Loss
Function.

1. Introduction

Boosting is a popular approach for classifier design. It is a simple and effective procedure to learn
strong decision rules by combination of weak learners. However, most boosting algorithms were
designed primarily for binary classification. In many cases, the extension to M -ary problems (of
M > 2) is not straightforward. There are many ways to interpret boosting (Schapire and Freund,
2012) and these have been used to justify different multiclass extensions. In this work, we consider
the view of boosting as a method for empirical risk minimization, using some optimization proce-
dure (usually gradient descent) on the functional space spanned by a set of weak learners (Friedman
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et al., 1998; Mason et al., 2000). Under this view, the effectiveness of a boosting algorithm is deter-
mined by the underlying choices of optimization method, weak learner pool, and risk function. The
latter can be further decomposed into a choice of a loss function and an encoding of class labels. All
of these are fairly well understood in the binary setting. In some cases, such as the selection of code-
word labels, there is virtually universal agreement in the literature, where most algorithms use −1
as the label of “negative” examples and +1 for “positives”. On others, there is wide but not univer-
sal agreement. For example, while it can be shown that most boosting algorithms implement some
form of functional gradient descent (Mason et al., 2000; Zhang, 2004; Buja et al., 2006; Masnadi-
Shirazi and Vasconcelos, 2008), there have also been proposals to use second order optimization
methods, based on Taylor series expansions (Saberian et al., 2010) and Newton’s method (Fried-
man et al., 1998). The remaining aspects are less consensual. Most algorithms differ in terms of
the loss function that defines the risk for which they are optimal. Several loss properties, such as
encouraging large margins (Vapnik, 1998) and allowing the recovery of class probabilities (Zhang,
2004; Buja et al., 2006; Mease and Wyner, 2008; Masnadi-Shirazi and Vasconcelos, 2008; Reid
and Williamson, 2010) have been identified as important, and shown to hold for a large family of
functions (Masnadi-Shirazi and Vasconcelos, 2015). Some members of this family, such as the ex-
ponential loss of AdaBoost (Freund and Schapire, 1997), the logit loss of LogitBoost (Friedman
et al., 1998), the hinge loss of support vector machines (Vapnik, 1998) or the Savage loss of Sav-
ageBoost (Masnadi-Shirazi and Vasconcelos, 2008), have been widely used in practice. Finally,
weak learners tend to vary with the application. Popular choices include weak classifiers, such as
the decision stumps or shallow decision trees commonly used in computer vision (Viola and Jones,
2004; Dollar et al., 2012), and regression models (Friedman et al., 1998).

To date, there have been no comprehensive efforts to extend this understanding to the M -ary
case. While boosting components such as the optimization strategy generalize in a straightforward
manner, others do not. In particular, many label encodings and loss functions are possible. There is
limited understanding of what constitutes a good encoding or when a loss function is proper (allows
the recovery of class conditional probabilities). As we will see later on, some popular choices for
these components are quite suboptimal. In fact, for multiclass boosting, it is not even easy to guaran-
tee that a set of multiclass weak learners can be boosted. For binary classification, it is well known
this is possible as long as a weak learner with “less than 50% error” can be found in all bosting iter-
ations. Since this only requires a weak learner marginaly better than random guessing, the condition
can be met trivially. However, for M -ary classification, the accuracy of a random classifier is only
100
M %. In this case, straightforward extensions of binary boosting algorithms that require multiclass

“weak” learners with “less than 50% error”, such as the well known AdaBoost.M1 algorithm (Fre-
und and Schapire, 1996), are too difficult to implement. In practice, they tend to stop prematurely
and fail to produce strong ensemble decision rules. Due to all this, many of the existing approaches
to multiclass boosting involve some form of reduction of the M -class problem to a collection of
binary problems. While the most popular are the well known “one vs all” (Nilsson, 1965) and “all
pairs” (Hastie and Tibshirani, 1998) classification architectures, many boosting algorithms based
on this type of representation have been proposed. A smaller number of true multiclass methods,
such as AdaBoost.M1(Freund and Schapire, 1996; Eibl and Schapire, 2005), SAMME (Zhu et al.,
2009), and AdaBoost.MM (Mukherjee and Schapire, 2013) have also been proposed. These boost
multiclass weak learners, usually decision trees. The limitations of these methods are discussed in
Section 2.
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In this work, we study multiclass boosting with the goal of an integrated understanding of the
roles of the optimization strategy, label codewords, weak learners, and multiclass risk. This leads to
a new formulation of the problem based on 1) multi-dimensional predictors, 2) multi-dimensional
real valued codewords, and 3) proper multiclass margin loss functions. We start by studying the
role of the label encoding, showing that the selected codewords impose an upper bound on the max-
imum margin achievable by any predictor. This is denoted the margin capacity bound. We then
define a family of losses, denoted γ − φ losses, which extend the classical margin losses used by
binary boosting algorithms. These losses connect the classification margin to a set of dot-products
between a multidimensional predictor and a codeword set, enabling the formulation of multiclass
boosting as a margin maximization problem in multidimensional functional space. This objective
is formulated through an empirical risk that combines a γ − φ loss and a margin capacity codeword
set. Two algorithms are then derived to solve this optimization. The first, denoted CD-MCBoost,
implements a functional coordinate descent procedure. CD-MCBoost supports any type of weak
learners, updating one component of the predictor per boosting iteration. This method has some
similarities to binary reduction procedures but 1) uses real-valued codewords and 2) learns all pre-
dictor components jointly. The second, denoted GD-MCBoost, implements functional gradient
descent, in a space of multidimensional weak learners, updating all predictor components simulta-
neously. Both MCBoost algorithms reduce to classical boosting algorithms (such as AdaBoost or
LogitBoost) for binary problems, depending on the choice of γ − φ loss. They are also shown to
exhibit classical boosting properties, such as seeking the weak learner of maximum margin on a
reweighted training sample at each iteration and well defined boostability conditions. These prop-
erties are, however, shown to hold more generally, as would be expected of the multiclass setting.
With respect to weights, MCBoost emphasizes not only the most difficult examples but also the
most difficult classes, at each boosting iteration. With regards to boostability, MCBoost is shown
to boost any set of weak learners with better than multiclass chance performance, i.e. less than
M/100% error.

In the remainder of the paper, we consider the design of good codeword sets and γ − φ loss
functions for MCBoost algorithms. We start by considering the design of a set of codewords of
maximum capacity, for any predictor dimension d. We derive necessary and sufficient conditions
for a codeword set to achieve this bound and show that such a codeword set is guaranteed to exist
whenever d > M − 1. A procedure to generate the associated codewords is then presented. We
next consider the case of low-dimensional predictors, with d ≤ M − 1. We show that, while there
are no guarantees of meeting the capacity bound in this case, it is possible to generate codeword
sets that are optimal in a related sense, the max-min codeword distance. A procedure to generate
such codeword sets is again provided. We next consider the interplay between codewords and
risk, by studying several properties of γ − φ losses. In particular, we derive conditions under
which these losses are margin enforcing and show that they are proper under mild conditions on
the codeword set. These conditions are shown to hold for all codeword sets that achieve the margin
capacity bound. By relating γ−φ losses to the binary margin losses of classical boosting algorithms,
we then derive extensions of the latter to the multiclass setting. This leads to natural multiclass
extensions of algorithms like AdaBoost (Freund and Schapire, 1997), LogitBoost (Friedman et al.,
1998), and SavageBoost (Masnadi-Shirazi and Vasconcelos, 2008). The theoretical framework now
introduced is finally used to place previous multiclass boosting algorithms in a common footing.
This exercise shows that all algorithms implement different combinations of optimization strategy,
codewords, weak learners, and loss function. It also highlights some of the deficiencies of these
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algorithms, explaining why they fail under some settings. In particular, it is shown that no previous
method matches the support of MCBoost for real codewords of maximum capacity, a proper margin-
enforcing loss function, multidimensional predictors and any class of weak learners. Experimental
results confirm the superiority of MCBoost, showing that the two proposed MCBoost algorithms
outperform comparable prior methods on a number of datasets.

The paper is organized as follows. In section 2, we briefly review prior work on multiclass
boosting. The foundations of the proposed formulation are introduced in Section 3, where we pro-
pose a set of multiclass definitions for class labels, predictor, and margin. The MCBoost algorithms
are derived in Section 4, where we also discuss properties such as weighting mechanisms and weak
learners. The problem of optimal codeword design is then discussed in Section 5, where we intro-
duce the notions of margin capacity and derive necessary and sufficient conditions for maximum
capacity and max-min distance codeword sets. Section 6 is devoted to weak learners, analyzing
issues such as boostability or the role of classification vs. real valued learners. Section 7 discusses
various properties of interest for γ − φ losses, and introduces a number of losses that meet these
properties, leading to the multiclass extensions of various classical boosting algorithms. These
are compared to previous multiclass boosting algorithms in Section 8, where existing methods are
studied in light of the proposed boosting framework. Finally, experimental results are discussed in
Section 9 and some conclusions drawn in Section 10.

2. Related work

In this section, we briefly review previous work in multiclass boosting.

2.1. Origins

The problem of multiclass classification has attracted significant attention since the early days of
machine learning. The first, and still popular, method for designing an M -class classifier is to learn
M binary classifiers, each separating one class form the remaining (Nilsson, 1965). At the test time,
a prediction score is computed by each binary classifier and the class of highest score is selected.
This is known as “one-vs-all” (OVA) classification. Later, (Sejnowski and Rosenberg, 1987) ex-
tended the idea by assigning a binary string of length l to each class and learning l binary classifiers
to predict the bits of those strings. While this is similar to OVA, the class selected at test time is that
whose string is closest, in the Hamming distance sense, to that recovered by the binary classifiers.
This was, to the best of our knowledge, the first attempt to represent classes by multidimensional
codewords (binary strings in this case). (Dietterich and Bakiri, 1995) improved this idea by intro-
ducing an error correcting output code (ECOC). This consists of using techniques from the error
correction literature to design a codeword set resistant to errors. It made it possible to recover the
true class even if a few of the binary classifiers produced erroneous bits. (Hastie and Tibshirani,
1998) suggested an alternative approach, by designing M(M−1)

2 classifiers to discriminate between
all pairs of classes. At test time, a class was selected through a vote among these classifiers. (All-
wein et al., 2001) unified all these binary classification methods, showing that they all reduce the
multiclass problem into binary sub-problems, for a specific choice of coding matrix.
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2.2. Reductions to binary

Upon the introduction of AdaBoost (Freund and Schapire, 1997), there was a substantial effort
to extend this simple and effective binary classification algorithm to multiclass problems. Like
the methods above, many of these approaches are based on a reduction to a collection of binary
classification problems. These can be grouped into three main sub-classes.

The first subclass follows the ECOC approach of (Dietterich and Bakiri, 1995). (Schapire,
1997) extended this approach by combining it with a pseudo-loss previously introduced to derive
AdaBoost.M2 (Freund and Schapire, 1996). The combination of the two components, through the
AdaBoost.OC algorithm, enabled the joint learning of the binary sub-classifiers. This work also pro-
posed using binary random codes and codes designed to have the best error correction performance,
using “max-cut” algorithms. A number of algorithms, including AdaBoost.ECC (Guruswami and
Sahai, 1999; Allwein et al., 2001), AdaBoost.SECC (Sun et al., 2005), AdaBoost.ERP (Li), Ad-
aBoost.SIP (Zhang et al., 2009) and HingeBoost (Gao and Koller, 2011), were then proposed to
generalize or improve the combination of boosting and error correction. For example, (Guruswami
and Sahai, 1999) modified the pseudo-loss of AdaBoost.OC and proposed AdaBoost.ECC, which
was shown to have better generalization guarantees and performance. (Allwein et al., 2001) studied
the impact of the codeword distance function, proposing a loss-based distance to replace the Ham-
ming distance, during both training and classification. (Sun et al., 2005) connected these methods
to the margin framework, showing that AdaBoost.OC and AdaBoost.ECC were in fact maximizing
multiclass definitions of the margin. The problem of finding the optimal binary coding matrix was
studied in (Li; Zhang et al., 2009; Gao and Koller, 2011), which proposed optimization methods to
find a good set of codes for each boosting iteration. However, (Crammer and Singer, 2002b) showed
that the problem of determining the optimal binary coding matrix is NP-hard, and suggested the use
of real-valued codes. In general, the performance of these algorithms depends on two factors: 1)
the error correction performance of the coding matrix and the weighting algorithms used to train the
binary classifiers. In practice, the optimization of these two factors often requires extensive compu-
tation, for both training and classification. This is not surprising since, as pointed out by (Crammer
and Singer, 2002b), the optimization problem is NP-hard.

The second subclass of binary reductions originated with AdaBoost.M2 (Freund and Schapire,
1997, 1996). This algorithm couples a class identifier c ∈ C with the example x ∈ X , learning a real
valued predictor f : X × C → R in the product space of examples and class labels. This predictor
produces a score for each example x and class c . It is learned by minimizing a pseudo-loss function
defined over all pairs of examples and incorrect labels, so as to penalize classification errors. At
the test time, f is evaluated for all pairs of example x and classes c. The class of largest score
is finally selected. (Schapire and Singer, 1999) used this approach to extend AdaBoost.M2 into
AdaBoost.MR, which addressed multi-label problems. The procedure was also improved by the
introduction of AdaBoost.MH, whose weights are updated using the Hamming loss. More recently,
(Kuznetsov et al., 2014) introduced new upper bounds and improved algorithms for this class of
approaches. As shown by (Friedman et al., 1998), coupling examples with class labels effectively
converts the multiclass problem into a binary problem. This is, however, an extremely non-linear
problem, since very similar examples, namely all (x, c) of common x, have very different scores
(depending on c). In result, these binary reductions require weak learners of high discriminant
power, usually deep decision trees. This makes the boosting algorithm prone to over-fitting.
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The final subclass of binary reductions originated with the multiclass LogitBoost method of
(Friedman et al., 1998). This is based on the statistical view of Boosting as gradient descent in func-
tional space and learns additive logistic regression models for each class, using binary LogitBoost.
While these regressors are binary predictors, the key difference to OVA is that they are learned
jointly, and must add up to zero. (Huang et al., 2007) extended this framework to a multiclass ver-
sion of GentleBoost, proposing the GAMBLE algorithm. This was further extended for any Fisher
consistent loss function by the AdaBoost.ML algorithm of (Zou et al., 2008). However, it has been
shown that scores of the binary regression classifiers do not represent true class probabilities (Mease
and Wyner, 2008).

2.3. Boosting multiclass base learners

In contrast to the large literature in binary reductions of the multiclass boosting problem, there
have been relatively few attempts to produce true multiclass boosting algorithms. The earliest such
attempt is AdaBoost.M1 (Freund and Schapire, 1997, 1996), which directly extends AdaBoost to
the multiclass setting. However, by maintaining the AdaBoost boostability requirement of “less
than 50% error weak learners,” this method has the limitations discussed in Section 1. A few
attempts have been made to relax these weak learner requirements, such as the works of (Eibl
and Schapire, 2005) and (Mukherjee and Schapire, 2013). The latter provided the most extensive
treatment, introducing a game theoretic analysis of the necessary conditions for boostable base
learners, proposing a less strict base learner selection criterion. However, the optimal criteria for
selection of base learners is still an open problem. Alternatively, (Zhu et al., 2009) devoted more
attention to the loss function, attacking the problem through the definition of an exponential loss
for multiclass classification in multi-dimensional functional space. They then proposed a gradient
descent procedure for this optimization, which was denoted as SAMME boosting. While this has
some similarity to the framework now introduced, we show in Section 8 that the exponential loss
function is not margin enforcing. Hence SAMME is not a maximum margin algorithm.

3. Multiclass boosting

In this work, we seek multiclass boosting algorithms that do not rely on binary reductions. We start
by reviewing the fundamental ideas behind the classical use of boosting for the design of binary
classifiers, and then extend these ideas to the multiclass setting.

3.1. Binary classification

A binary classifier, F (x), implements a decision rule that maps examples x ∈ X to classes c ∈
{1, 2}. The classifier is optimal when this decision rule minimizes some classification risk. A
classical risk is the probability of classification error, which is minimized by the Bayes decision
rule

F (x) = arg min
c∈{1,2}

PC|X(c|x). (1)

This rule is not easy to implement, due to the difficulty of estimating the probabilities PC|X(c|x).
Large margin methods, such as boosting, avoid this difficulty by adopting alternative risks. They

6



MULTICLASS BOOSTING: MARGINS, CODEWORDS, LOSSES, AND ALGORITHMS

implement the classifier as

F (x) =

{
1 if f∗(x) < 0
2 if f∗(x) > 0.

(2)

where f∗(x) : X → R is the continuous valued predictor

f∗(x) = arg min
f
RL(f) (3)

that minimizes the risk
RL(f) = EX,C{L[yc, f(x)]} (4)

defined by a loss function L[., .] and a set of class labels yc, where yc is the label of class c ∈ {1, 2}.
The loss L[., .] is Bayes consistent if the minimization of (4) results in the Bayes decision rule, i.e.
(1) and (2) are equivalent.

To learn the optimal classifier, the risk of (4) is estimated by the empirical risk

RL(f) =
1

n

n∑
i=1

L[yci , f(xi)] (5)

over a training sample D = {(xi, ci)}ni=1. Large margin methods use the labels y1 = −1 and
y2 = 1 and a Bayes consistent loss function that only depends on the classification margin ycf(x),
i.e.

L[yc, f(x)] = L[ycf(x)]. (6)

This guarantees that the classifier has good generalization for finite training samples (Vapnik, 1998).
Boosting learns the optimal predictor f∗(x) : X → R as the solution of{

minf(x) RL(f)

s.t f(x) ∈ span(H)
(7)

where RL(f) is the empirical risk of (5), and H = {h1(x), . . . , hr(x)}, a set of weak learners
hi(x) : X → R. The optimization is carried out by gradient descent in the functional space
span(H) of linear combinations of hi(x) (Friedman et al., 1998; Mason et al., 2000; Saberian et al.,
2010). The extension of binary boosting to the multiclass setting requires multiclass definitions of
class labels, predictor, margin, decision rule, loss function and risk minimization procedure.

3.2. Multiclass extensions

The definition of the classification labels as yc = ±1 plays a significant role in the binary formula-
tion. One of the difficulties of the multiclass extension is that these labels do not have an obvious
generalization. For M -ary classification, c ∈ {1, . . . ,M}, each class c must be mapped into a dis-
tinct class label yc ∈ Y = {y1, . . . , yM}. This label can be thought of as a codeword that identifies
the class. In the binary case, the predictor is a real valued function, i.e. f(x) ∈ R, and the code-
words ±1 are the two directions on the line. To generalize these concepts to the multiclass setting,
we introduce a multi-dimensional predictor f(x) ∈ Rd and codewords yk which are directions in
this space

yc ∈ Rd, ‖yc‖ = 1. (8)
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Given a multi-dimensional predictor and and a set of multi-dimensional codewords1, the multiclass
margin is defined as follows.

Definition 1 Let yk ∈ Rd, k ∈ {1, . . . ,M}, be the set of codewords of an M -ary classifier of
predictor f : X → Rd. The margin of example x with respect to class k is

M(yk, f(x)) = min
l 6=k

[
uk − ul

]
(9)

= uk −max
l 6=k

ul, (10)

where
uk =

1

2

〈
yk, f(x)

〉
, (11)

is the component of f(x) along codeword yk and< ., . > is the Euclidean dot-product. The quantity[
uk − ul

]
=

1

2

〈
yk − yl, f(x)

〉
(12)

is the lth margin component of f(x) with respect to class k.

This definition is closely related to previous definitions of multiclass margin in the literature. For
example, it generalizes that of (Guermeur, 2007), where the codewords yk are restricted to binary
vectors in the canonical basis of Rd, and is a special case of that of (Allwein et al., 2001), where
the dot products

〈
yk, f(x)

〉
are replaced by a generic function of f, x, and k. Furthermore, when

M = 2 and y1 = −y2 = 1,

M(yk, f(x)) =
1

2
[ykf(x)−max

l 6=k
ylf(x)] =

1

2
[ykf(x) + ykf(x)] = ykf(x), (13)

and (9) is identical to the classic definition of binary margin. Similarly to the binary case, it is
possible to define the margin of a predictor for a particular dataset, as follows.

Definition 2 The margin of a predictor f(.) with respect to a set of codewords Y = {y1, . . . , yM}
and examples D = {(xi, ci)}ni=1 is

Mp(D,Y, f) = min
(xi,yci )∈D

M(yci , f(xi)). (14)

This can be seen as a measure of the distance between the classification boundary and the point
closest to it.

To extent the binary decision rule of (2) to the multiclass case, we start by noting that, for a
binary classifier with y1 = 1 and y2 = −1, it can be written as

F (x) = arg max
k={1,2}

ykf∗(x), (15)

i.e. the classifier simply chooses the class of largest margin for example x. This has the following
straightforward extension.

1. At this point, we assume that a good set of codeword exists and is known. In Section 5 we will discuss how the
selection of codewords affects learning performance and procedures for determining the optimal ones.
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Definition 3 Consider anM -ary classification problem with codewords yk ∈ Rd, k ∈ {1, . . . ,M}.
A maximum margin classifier of predictor f : X → Rd implements the decision rule

F (x) = arg max
k∈{1,...,M}

M(yk, f(x)). (16)

The following result shows that this is equivalent to selecting the class along whose codeword f(x)
has the largest component.

Lemma 1 The decision rule of the maximum margin classifier of (16) is equivalent to

F (x) = arg max
k∈{1,...,M}

〈
yk, f(x)

〉
. (17)

Proof See Appendix A.1.

A corollary of this result is that, as is the case for binary classification, an example x of class c is
correctly classified by the max margin classifier if and if and only if the example margin of x with
respect to class c is positive.

Corollary 1 Let c be the class of example x and f(x) the predictor of a maximum margin classifier
F (x). Then F (x) = c if and only if

M(yc, f(x)) > 0. (18)

Proof See Appendix A.2

Finally, a maximum margin classifier classifies all examples in a dataset D correctly if and only if
its predictor margin with respect to D is positive.

Corollary 2 Let f(.) be the predictor of a maximum margin classifier F (x) andD a set of examples
(xi, ci). f(.) classifies all xi ∈ D correctly if and only if

Mp(D, f,Y) > 0. (19)

Proof See Appendix A.3.

These corollaries extend the equivalent properties of binary large margin predictors to the multiclass
case.

4. Multiclass Boosting Algorithms

In this section we introduce two multiclass boosting algorithms. Both are gradient descent proce-
dures for the minimization of a multiclass empirical risk in the functional space of linear combina-
tions of weak learners and can be seen as generalizations of GradientBoost (Mason et al., 2000).
We start by extending the definitions of risk and margin loss to the multiclass setting.
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Table 1: Binary losses and corresponding γ and φ functions.
Name ξ(v) γ(v) φ(v)

Exponential exp(−v) v exp(−v)
Logistic log(1 + e−2v) log(1 + v) exp(−2v)

Savage 1
(1+e2v)2

(
v

1+v

)2
exp(−2v)

4.1. γ − φ losses

Given a set of codewords Y , the optimal multiclass predictor f∗(x) minimizes the classification risk

RLM (f) = EX,C{LM [yc, f(x)]}, (20)

where c is the class of example x, yc its codeword and LM [yc, f(x)] the loss of prediction f(x).
For classifier design, this is approximated by the empirical estimate

RLM (f) =
1

n

n∑
i=1

LM [yci , f(xi)], (21)

derived from a training sample D = (xi, ci)
n
i=1. When the minimization of (21) encourages predic-

tors for which the margin of (14) is large, LM [., .] is denoted a margin loss. This property guarantees
that the optimal predictor has good generalization beyond the training set.

For binary classification, margin losses are monotonically decreasing functions of the margin
ycf . The natural multiclass extension would be to consider decreasing functions of the margin, now
defined in (9), i.e.

LM [yc, f(x)] = χ

(
min
l 6=c

(uc − ul)
)
, (22)

with uk as in (11), for some monotonically decreasing function χ. This, however, is a non-
differentiable function of the predictor f . We avoid this difficulty by considering the set of γ − φ
losses.

Definition 4 Let Y = {y1, . . . , yM} ∈ Rd be a set of codewords, f(x) : X → Rd a predictor. A
γ − φ loss is defined as

Lγ−φM [yc, f(x)] = γ

 M∑
l=1,l 6=c

φ
(
uc − ul

) , (23)

where φ : R→ R+ and γ : R+ → R+ are strictly positive and uj is defined in (11).

We leave a theoretical discussion of the properties of γ − φ losses to Section 7. For now, we
simply point out that this set includes a large family of losses. In fact, for binary classification with
the classic labels y1 = −y2 = −1, u1 = −u2 = −1

2f(x) and Lγ−φM [yc, f(x)] reduces to

Lγ−φ2 [yc, f(x)] = γ

 2∑
k=1|k 6=c

φ
[
uc − uk

] = γ

(
φ

[
(yc − (−yc))f

2

])
= γ (φ(ycf)) = ξ(ycf), (24)
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Algorithm 1 CD-MCBoost and GD-MCBoost
Input: Number of classes M , dimension d, codeword set Y = {y1, . . . , yM} ∈ Rd, boosting
iterations N and dataset D = {(xi, ci)}ni=1 of examples xi and class labels ci ∈ {1, . . . ,M}.
Initialization: set t = 0, and f t = 0 ∈ Rd

CD-MCBoost GD-MCBoost
while t < N do

Compute wi with (29)
for j = 1 to d do

Find ĝj(x), α̂j using (39) and (40)
end for
Set j∗ = arg minj R[f t(x) + α̂j ĝ(x)1j ]
Update f t+1(x) = f t(x) + α̂j∗ ĝj∗(x)1j
t = t+ 1

end while

while t < N do
Compute wi with (29)
Find g∗(x), α∗ using (32) and (33)
Update f t+1(x) = f t(x) + α∗g∗(x)
t = t+ 1

end while

Output: decision rule: F (x) = arg maxyk
〈
fN (x), yk

〉
where ξ = γ ◦φ is a composite function. Table 1 shows that the exponential loss of AdaBoost (Fre-
und and Schapire, 1997), the logistic loss of LogitBoost (Friedman et al., 1998), and the Savage
loss of (Masnadi-Shirazi and Vasconcelos, 2008) can all be interpreted as γ − φ losses with differ-
ent choices of γ and φ. It should be noted that these decompositions are not unique. In all cases, ξ
could be equally decomposed into γ(v) = v and φ = ξ. The key property is that ξ is a monotoni-
cally decreasing function. In Section 7 we show that γ − φ losses are margin enforcing whenever γ
is strictly increasing and φ is strictly decreasing. This implies that ξ = γ ◦ φ is decreasing.

4.2. Gradient descent

The first boosting algorithm is a gradient descent procedure to seek the optimal predictor f∗(x) =
[f∗1 (x), . . . , f∗d (x)] of the optimization problem{

minf(x) R
Lγ−φM

[f(x)]

s.t f(x) ∈ span(H),
(25)

whereH = {h1(x), . . . , hr(x)} is a set of multivariate weak learners,

hi(x) : X → Rd. (26)

Let f t(x) = [f t1(x), . . . , f td(x)] be the predictor available after t boosting iterations. At iteration
t+ 1, a step is given along the direction g(x) ∈ H of largest decrease of the risk R

Lγ−φM
[f(x)]. This

is determined by the directional derivative of R
Lγ−φM

[f(x)] along the functional g : X → Rd, at

point f(x) = f t(x) (Frigyik et al., 2008),

δR
Lγ−φM

[f t; g] =
∂R

Lγ−φM
[f t + εg]

∂ε

∣∣∣∣∣∣
ε=0

. (27)

11
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As shown in Appendix B.1,

−δR
Lγ−φM

[f t; g] =
1

2n

n∑
i=1

wi

〈
g(xi), y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
, (28)

where

wi = −γ′
∑
k 6=ci

φ

[
1

2

〈
f t(xi), y

ci − yk
〉]∑

k 6=ci

φ′
[

1

2

〈
f t(xi), y

ci − yk
〉] , (29)

and

τk(x, c) =
φ′
[

1
2

〈
f t(x), yc − yk

〉]∑
k 6=c φ

′
[

1
2 〈f t(x), yc − yk〉

] . (30)

The direction of steepest descent is the weak learner

g∗(x) = arg min
g∈H

δR[f t(x); g(x)] (31)

= arg max
g∈H

n∑
i=1

wi

〈
g(xi), y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
, (32)

and the optimal step size along this direction

α∗ = arg min
α∈R

R
Lγ−φM

[f t(x) + αg∗(x)]. (33)

Note that α∗ may not have a closed form and a line search might be required. The predictor is finally
updated according to

f t+1(x) = f t(x) + α∗g∗(x). (34)

This procedure is summarized in Algorithm 1-right, and denoted Gradient Descent Multiclass
Boosting (GD-MCBoost).

4.3. Coordinate descent

Alternatively, (21) can be minimized by learning a linear combination of scalar functions. In this
case, the optimization problem is{

minf1(x),...,fd(x) R
Lγ−φM

([f1(x), . . . , , fd(x)])

s.t fj(x) ∈ span(H) ∀j = 1, . . . , d,
(35)

where H = {h1(x), . . . , hr(x)} is a set of scalar weak learners hi(x) : X → R. Let f t(x) be
the predictor available after t boosting iterations. At iteration t + 1 a single component fj(x) of
f(x) is updated with a step in the direction of the scalar functional g that most decreases the risk
R
Lγ−φM

[f t1, . . . , f
t
j + α∗jg, . . . , f

t
d]. For this, we consider the functional derivative of R

Lγ−φM
[f(x)]

12
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along the direction of the functional g : X → R, at point f(x) = f t(x), with respect to the jth

component fj(x) of f(x)

δR
Lγ−φM

[f t; j, g] =
∂R

Lγ−φM
[f t + εg1j ]

∂ε

∣∣∣∣∣∣
ε=0

, (36)

where 1j ∈ Rd is a vector whose jth element is one and the remaining zero, i.e. f t + εg1j =
[f t1, . . . , f

t
j + εg, . . . , f td]. As shown in Appendix B.2,

−δR
Lγ−φM

[f t; j, g] = −1

2

n∑
i=1

wig(xi)

〈
1j , y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
, (37)

where wi is as in (29) and τk(x, c) as in (30). The direction of largest descent is then

g∗(x) = arg min
g∈H

δR
Lγ−φM

[f t; j, g] (38)

= arg max
g∈H

n∑
i=1

wig(xi)

〈
1j , y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
, (39)

and the optimal step size along this direction

α∗ = arg min
α∈R

R[f t(x) + αg∗(x)1j ]. (40)

Again, this step size may not have a closed form and a line search might be required. The predictor
is finally updated with

f t+1 = f t(x) + α∗g∗(x)1j = [f t1, . . . , f
t
j + α∗g∗, . . . , f td]. (41)

This procedure is summarized in Algorithm 1-left and denoted Coordinate Descent Multiclass
Boosting (CD-MCBoost). In each iteration of CD-MCBoost, the best weak learner update is found
for each of the d coordinates and the coordinate whose update results in the largest reduction of the
risk is then chosen. As can be seen from Algorithms 1, MC-Boost algorithms share the simplicity
of implementation (a few lines of code) of binary boosting. The main differences between the two
are 1) the use of multi-dimensional predictor and codewords, and 2) the weak learner selection rule.
We leave an analysis of the role of codewords to Section 5 and consider the weak learner selection
rule next.

4.4. Weak learner selection and boosting weights

The update equations of the two MCBoost algorithms are a natural generalization of the update
equations of binary boosting. From (32) and (39), the update equation can, in both cases, be written
as

g∗(x) = arg max
p

1

n

n∑
i=1

wiM̂ft(y
ci , g(xi)) (42)

where

M̂ft(y
c, g(x)) =

1

2

〈
g(x), yc −

∑
k 6=c

τ tk(x, c)y
k

〉
. (43)

13
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The only difference is that, while for GD-MCBoost g(x) is a generic vector g(x) ∈ Rd, for CD-
MCBoost it is a vector of the form g(x)1j with g(x) ∈ R. The two algorithms are thus conceptually
equivalent. We next show that they are conceptually equivalent to binary boosting algorithms in the
sense that they seek, at each iteration, the weak learner of largest margin on a reweighted training
sample. The only difference is that MCBoost implements two weighting mechanisms. The first one,
implemented through the weights wi, emphasizes difficult examples. The second one, implemented
through M̂ft , emphasizes difficult classes.

When the γ − φ loss is margin enforcing, the first weighting mechanism of MCBoost assigns
to each example a weight inversely proportional to how well the currently predictor classifies the
example. This can be seen by rewriting (29) as

wi = − γ′
∑
k 6=ci

φ(vk)

∑
k 6=ci

φ′(vk)

∣∣∣∣∣∣
vk= 1

2〈f t(xi),yci−yk〉
(44)

and using Theorem 5 (see Section 7), which states that a γ − φ loss is margin enforcing when
ξ(v) = γ ◦ φ(v) is a decreasing function. Since ξ(v) ≥ 0, by definition of γ − φ loss, the derivative
of ξ(v) must approach zero for large positive values of v, i.e. γ′(φ(v))φ′(v)→ 0 for large positive
v. Hence, wi is a decreasing function of the margin components < f t(xi), y

ci − yk > and close
to zero when the smallest component is positive and large. Since, from (9), this implies a large
margin, examples of larger margin under the current predictor f t(x) will receive smaller weights
than examples of smaller margin. As is common in boosting, this focuses the learning resources
in the examples that are poorly classified by f t(x). Hence, the first weighting mechanism is the
multiclass generalization of the weighting mechanism of binary boosting.

The second weighting mechanism appears on M̂ft(y
c, g(x)). By rewriting this quantity as

M̂ft(y
c, g(x)) =

1

2

∑
k 6=c

τ tk(x, c)
[〈
g(x), yc − yk

〉]
(45)

and comparing to (9), it can be seen that M̂ft(y
c, g(x)) is an estimate of the marginM(yc, g(x)).

Rather than taking the minimum of the margin components
〈
g(x), yc − yk

〉
over the classes k 6= c,

this estimate is a weighted average of these components, assigning weight τ tk(x, c) to class k. Hence,
τ tk(x, c) is a weighting mechanism that favors some classes over others. To interpret this mechanism
it is useful to consider the case where φ(v) = e−v and (30) reduces to

τ tk(x, c) =
e[−

1
2〈f t(x),yc−yk〉]∑

k 6=c e
−[ 12〈f t(x),yc−yk〉] =

e[
1
2〈f t(x),yk〉]∑

k 6=c e
[ 12〈f t(x),yk〉] , (46)

i.e. the soft-min of the margin components (and the soft-max of codeword projections). More
generally, when φ′(v) is any decreasing function, τ tk(x, c) is a generalized soft-min operator. It
assigns larger weights to classes of smaller margin component and smaller weights to classes of
larger margin component. The choice of φ function controls the softness of the weight assignment.
For example, if φ(v) = e−αv with α > 0, the softness of the assignments is controlled by the choice
of α. For large α the weights are harder, i.e. closer to one for the smallest margin component and
zero for all others. For smaller α the weights are more uniform. Hence, for this choice of φ function,
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the soft-min of (45) approaches the min of (9) as α→∞. More generally, up to the approximation
of the min by the soft-min operator,

M̂ft(y
c, g(x)) =

1

2

∑
k 6=c

τ tk(x, c)
[〈
g(x), yc − yk

〉]
(47)

≈ 1

2
〈g(x), yc − y〉 (48)

where
y = arg min

yj 6=yc
〈ft(x), yc − yj〉 = arg max

yj 6=yc
〈ft(x), yj〉. (49)

This is the multiclass margin of weak learner g(x) under the alternative margin definition M̂ft(y
c, g(x)).

Comparing to the original definition of (9), which can be written as

M(yc, g(x)) =
1

2

〈
g(x), yc − y

〉
where y = arg min

yj 6=yc
〈g(x), yc − yj〉, (50)

M̂f t(y
c, g(x)) restricts the margin of g(x) to the worst case codeword y for the current predictor

f t(x). The strength of this restriction is determined by the soft-min operator. If < f t(x), yc − y >
is much smaller than < f t(x), yc − yj >, y

j 6= y, τ tk(x, c) closely approximates the minimum
operator. Otherwise, the remaining codewords also contribute to (45). In summary, τ tk(x, c) is a set
of class weights that emphasizes classes of small margin for f t(x). In addition, M̂f t(y

c, g(x)) is
an estimate of the margin of g(x) under the restriction to the most difficult classes for the current
predictor f t(x). When combined with (29) this leads to a weighting mechanism that emphasizes
difficult examples (through the weights w) and difficult classes (through the margin M̂f t).

4.5. GD vs. CD-MCBoost

Since (29) and (30) only depend on the current predictor f t(x) and not on the weak learner g(x),
the computation of weights is identical for GD-MCBoost and CD-MCBoost. The only difference
thus resides on the margin estimate of (45). While GD-MCBoost simply chooses the vector weak
learner g(x) with (42)-(45), CD-MCBoost uses

g∗(x) = arg max
g∈H

max
j

1

n

n∑
i=1

wiM̂f t(y
ci , g(xi), j). (51)

In this case, the approximation of (48) is

M̂f t(y
c, g(x), j) ≈ g(x)

2
[〈1j , yc〉 − 〈1j , y〉] (52)

= g(x)
ycj − yj

2
, (53)

andMf t(y
c, g(x), j) is a measure of the margin of g(x) under the jth coordinate of the codewords

that determine the margin of the current predictor f t(x). Note that, for binary codewords,

Mf t(y
ci , g(xi), j) ≈

{
0, ycij = yj
ycij g(xi) ycij 6= yj .

(54)

This is the standard definition of margin for a scalar weak learner g(x), but discards the points for
which yj = ycij . In this way, the boosting algorithms modulates the emphasis on poorly classified
points in a coordinate-by-coordinate manner.
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5. Optimal codewords

So far, we have assumed the existence of a good codeword set Y = {y1, . . . , yM}. In this section
we study the impact of the codeword set on the performance of MCBoost algorithms.

5.1. The role of codewords

In both MCBoost algorithms, the predictor is initialized with f(x) = 0 ∀x, i.e. all examples are
mapped to the origin. By minimizing (21), MCBoost then learns a predictor f(x) of maximum
margin. From (10), the margin of example xi is maximal when the projection of f(xi) is maximal
along correct class codeword, yci , and minimal along the remaining codewords. If the margin of
xi is positive, it can be increased by increasing the magnitude of the projection of f(xi) along yci .
Hence, both MCBoost algorithms seek a predictor f(x) that, for all i, f(xi) 1) is as aligned as
possible with yci and 2) has the largest possible magnitude along this direction. Hence, starting
from the origin, both MCBoost algorithms push all example predictions outward, in the direction of
the corresponding class codewords. The effectiveness of this mechanism depends on the structure
of the codeword set. For example, if two classes were to share a codeword, it would be impossible
to distinguish them with (16) or (17). This implies that some codeword sets result in larger margins
for the decision rule of (17) than others.

Intuitively, the margin capacity will increase if the codewords are better separated. This suggests
that better performance should be possible for larger values of the codeword dimension d. However,
since increasing d increases the complexity of the decision rule, there is a trade-off between margin
capacity and implementation complexity. For a fixed d, it remains to determine how to best separate
the codewords, so as to maximize the margin capacity, and whether a solution to this problem, i.e.
an optimal codeword set, exists.

5.2. Optimal codeword sets

To find the optimal set of codewords, we start by noting that there are several factors that impact
the margin, (14), of the learned predictor by MCBoost. The first is the complexity and separability
of the underlying problem, i.e., if the problem is not separable, there will never be a classifier with
100% accuracy and the margin of (14) will always be negative. The second is the set of weak
learners, i.e. if the set of weak learners is limited then the space of their linear combinations won’t
be rich enough to have a good classifier. Finally as mentioned above the set of codewords can also
impact the margin.

To focus on the impact of the codewords, we assume that 1) the problem is separable and, 2) our
weak learners are rich enough and there exists a linear combination of them, f∗, that can separate
training examples with 100% accuracy. Under these assumptions, according to (14), the margin of
f∗ is the positive and we can arbitrarily increase it by increasing norm of f∗. Therefore we can
achieve arbitrarily large margin for any codewords set. To resolve this problem we assume that
norm of f∗ is bounded, e.g., ‖f∗‖ = 1 2.

Definition 5 A predictor f(x) is normalized if ||f(x)|| = 1, ∀x. F is the set of normalized predic-
tors.

2. Note that this normalization constraint is only required for finding the optimal set of codewords and is not required
in MCBoost algorithm.
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Finally note that (9) is invariant to the addition of a constant to all codewords. Also if the
margin is positive you can arbitrarily increase it by increasing the codewords norms. To remove
these issues, we complement the unit norm constraint of (8) with the constraint that the codewords
be centered, i.e., add up to zero.

Definition 6 A set of vectors Y = {y1, . . . , yM} ∈ Rd, is denoted a centered (M,d) codeword set
if ∑M

k=1 y
k = 0, ‖yk‖ = 1 ∀k = 1, . . . ,M. (55)

The set of all centered (M,d) codeword sets is denoted S(M,d).

In the rest of this section, we assume that codeword sets are always centered, simply referring to a
centered (M,d) codeword set as “an (M,d) codeword set,”.

Definition 7 Consider an M -ary classification problem with a codeword set Y ∈ S(M,d). The
margin capacity of Y is

C[Y] = min
k=1,...,M

M(yk, ξk), (56)

where
ξk = arg max

||v||=1
M(yk, v). (57)

is the predictor direction of largest margin for class k.

The margin capacity C[Y] can then be interpreted as the maximum margin achievable by any
predictor in F using codewords Y on any dataset D. Note, from (14), that it is the margin, with
respect to Y and D, of a predictor which maps all examples from class k into the direction ξk of
largest margin. A large capacity implies that the codeword set is such that a large margin can be
achieved for all classes. A small capacity implies that there is at least one class for which the largest
achievable margin is small. We define the optimal codeword set as that of largest capacity.

Definition 8 Y∗ ∈ S(M,d) is a codeword set of maximum capacity if

Y∗ = arg max
Y∈S(M,d)

C[Y]. (58)

To formalize this discussion, we start by deriving an upper bound on the margin achievable
along any direction of largest margin.

Theorem 1 LetY ∈ S(M,d) be a codeword set with directions of largest margin ξk, k ∈ {1, . . . ,M}
as defined in (57). Then, ∀k

M(yk, ξk) ≤ M

2(M − 1)
, (59)

Proof See Appendix C.1.

An immediate consequence of (56) and (59) is that, for any codeword set Y ∈ S(M,d),

C[Y] ≤ M

2(M − 1)
. (60)

The right hand side of this inequality is denoted the capacity bound of S(M,d). The following
result characterizes the codeword sets that achieve this bound.
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Theorem 2 A codeword set Y ∈ S(M,d) meets the capacity bound of (60) with equality if and
only if its directions of largest margin are ξk = yk, ∀k and

〈
yk, yl

〉
= − 1

M − 1
∀k, l, k 6= l. (61)

Proof See Appendix C.2.

The theorem shows that a codeword set meets the capacity bound if and only if it has the directions
of largest margin as codewords. We next derive the conditions under which such a set of codewords
exists.

Theorem 3 S(M,d) contains a set of codewords Yc(M,d) that meets the capacity bound if and
only if d ≥M − 1. In this case, the codewords in Yc(M,d) are the vertexes of a regular simplex in
Rd.

Proof See Appendix C.3.

The proof of the theorem is constructive, providing a procedure to determine the codeword set
Yc(M,d). The main results of this section are summarized in the following corollary, which is a
straightforward consequence of Theorems 1 and 3.

Corollary 3 Let Y∗ be a codeword set of maximum capacity in S(M,d). If d ≥ M − 1, the
codewords (y∗)k of Y∗ are the vertexes of a regular simplex in Rd. In this case, the directions of
largest margin are ξk = (y∗)k,

〈
(y∗)k, (y∗)l

〉
= − 1

M − 1
, ∀k, l 6= k (62)

and

C[Y∗] =
M

2(M − 1)
. (63)

In summary, the capacity bound of (60) is met whenever d ≥ M − 1. Since this bound only
depends on the number of classesM , not in the dimension d, and the decision rule of (17) has linear
complexity in d, there is usually no benefit in adopting codewords of dimension larger than M − 1.
Hence, when the classification problem has no further constraints, it is natural to rely on codeword
sets of dimension

d = M − 1. (64)

Figure 1 presents the optimal codeword sets for various M . Note that in the binary case, M = 2,
the optimal codewords are the classical {+1,−1} labels3.

3. A set of Matlab scripts that determine the optimal codeword set for any M is available at
http://www.svcl.ucsd.edu/publications/conference/2014/icml/ICML 2014 guess averse code data.zip
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Figure 1: Codewords of maximal capacity for different values of M .

5.3. Low-dimensional predictors

When d < M − 1, there is no guarantee that a codeword set of maximum capacity will achieve the
capacity bound. Nevertheless, the choice of d < M − 1 can be appealing for applications where
it is critical to use low-dimensional predictors. In this case, from (9)-(11), (56), (57), and (58), the
search for the codeword set of maximum capacity requires the solution of

Y∗ = arg max
Y∈S(M,d)

min
k=1,...,M

max
||v||=1

min
l 6=k

[〈
yk, v

〉
−
〈
yl, v

〉]
. (65)

This is a non-trivial optimization for which, to the best of our knowledge, there are no efficient
algorithms. Hence, it is of interest to consider alternative optimality criteria. One possibility is the
max-min codeword distance criterion.

Definition 9 Let Y be a codeword set in S(M,d). The minimum distance of Y is

dmin[Y] = min
k,l 6=k

‖yk − yl‖2. (66)

Y∗ is a max-min distance codeword set in S(M,d) if

Y∗ = arg max
Y∈S(M,d)

dmin[Y]. (67)

Max-min distance codeword sets have various appealing properties. First, the maximization of
dmin[Y] is intuitive. From (17), the decision rule of the maximum margin classifier is based on the
projections

〈
f, yk

〉
of the predictor f along the codewords. If the codewords are similar, the same

will hold for the projections, resulting in lower margins. Second, the problem of (67) is equivalent
to determining the maximum diameter of M equal circles placed on the surface of the unit sphere
without overlap. This is known as the Tammes problem (Tammes, 1930). While it does not have
closed-form solution, or even a unique solution (any rotation of a valid solution is a valid solution),
its numerical solution is much simpler than that of (65). Finally, as shown in the following result,
there is a close relationship between the capacity and the minimum distance of any codeword set in
S(M,d).

Lemma 2 Let Y be a codeword set in S(M,d). Then

1

4
dmin[Y] ≤ C[Y] <

1

2
dmin[Y] (68)
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Figure 2: max-min codeword sets for different values of d and M .

and

dmin[Y] ≤ 2M

M − 1
. (69)

Proof See Appendix D.1.

The following theorem uses this result to show that the optimal codeword sets under the optimality
criteria of Definitions 8 and 9 are identical when d > M − 1.

Theorem 4 Let Y∗ be a codeword set in S(M,d). If d ≥ M − 1 then Y∗ is a codeword set of
maximum capacity, i.e.

C[Y∗] =
M

2(M − 1)
, (70)

if and only if Y∗ is a codeword set of max-min distance, i.e.

dmin[Y∗] =
2M

M − 1
. (71)

Proof See Appendix D.2.

In summary, in the regime of d ≥ M − 1, the vertexes of a regular simplex in Rd are both
a maximum capacity and a max-min distance codeword sets of S(M,d). These codeword sets
achieve both the capacity and max-min distance bounds of S(M,d). The main difference between
the two optimality criteria is the difficulty of finding an optimal solution for d < M − 1. While the
optimization problem of (65) is difficult, there are many algorithms for the solution of (67). Our
implementation uses a solver based on the barrier method (Nocedal and Wright, 1999). Figure 2
presents max-min codewords sets for different values of M and d.

5.4. Complexity vs. capacity

In general, the complexity of an M-ary predictor increases with the number M of classes. For
example, the “one vs all” architecture requires the evaluation of one predictor per class, i.e. has
complexity O(M), while the “all pairs” architecture has complexity O(M2). While the decision
rule F (x) of (17) always has complexity O(M), this consists of computing M d-dimensional dot-
products and can be usually be performed efficiently for large values of M , as long as d is small.
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Hence, for MCBoost, predictor complexity is mostly a function of the predictor dimension d, not the
number of classes. In fact, MCBoost can solve any M -ary classification problem with a predictor
of dimension as low as d = 2. Obviously, this carries a penalty, by limiting the margin capacity
of the codeword set. While, as discussed in Theorem 3, the margin capacity can be achieved for
any dimension d ≥ M − 1, smaller dimensions typically lead to reduced classification accuracy.
Hence, the dimension d can be seen as a parameter that controls the trade-off between predictor
complexity and accuracy. Note that complexity does not need to refer simply to the number of com-
putations. For d < M , the act of learning the predictor f(x) can be seen as a form of discriminant
dimensionality reduction. This could be of interest for applications such as hashing (Datar et al.,
2004; Torralba et al., 2008; Kulis and Darrell, 2009; Gong et al., 2012; Liu et al., 2012), where it
is important to represent information from many classes by short codes. In this case, MCBoost can
directly learn a discriminant representation of low complexity.

6. Weak Learners

In this section, we investigate the role of weak learners in MCBoost. We consider the questions of
which weak learner families can be boosted, the role of classification versus real-valued learners,
and how these connect to interpretations of boosting as voting rules. While we limit the discussion
to GD-MCBoost, for brevity, all considerations extend to CD-MCBoost.

6.1. Boostability

The selection of weak learner family for a boosting algorithm is usually guided by a boostability
condition. A weak learner family is boostable if it guarantees zero training error after a sufficient
number of iterations of the boosting algorithm. For binary classification, this holds if the family
contains a weak learner with better than random performance, i.e. error rate smaller than 50%,
for any weight distribution over training examples. Existing multiclass boosting algorithms are
usually designed for specific classes of weak learners, e.g regression or decision stumps, and require
this boostability condition. However, while trivial for binary classification, the “less than chance
error” condition can be non-trivial to prove for multiclass problems, where chance level error is
M−1 × 100%. For example, (Mukherjee and Schapire, 2013) used a fairly sophisticated game
theoretic analysis to derive boostability conditions in terms of the error rate of a set of weak learners.

Unlike most of these algorithms, MCBoost has a fairly straightforward boostability condition
for any convex γ − φ loss. It suffices that, at any iteration t, there exists a weak learner h ∈ H for
which the directional derivative of (28) satisfies

−δR
Lγ−φM

[f t;h] > δ, (72)

for some fixed δ > 0. In this case, it is always possible to reduce the classification risk by adding
h to the weak learner ensemble and, by convexity, the algorithm will converge to the minimum
training error, which is zero for separable data. In summary, a set of weak learners H is boostable
by MCBoost if, under any weight distribution over training examples, it contains a member h for
which (72) holds with δ > 0.

Similarly to binary boosting, this condition can be expressed in terms of the performance of a
set of random weak learners. Let ρ(x) be a weak learner with random output, i.e.

P (ρ(x) = yk) =
1

M
∀x, k = 1, . . . ,M. (73)
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It follows that, for any given xi, εi = ρ(xi) is a sample from a random vector ε uniformly distributed
over the codeword set {y1, . . . , yM}. The derivative of (28)

−δR
Lγ−φM

[f t; ρ] =
1

2n

n∑
i=1

wi

〈
εi, y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
(74)

has expected value

Eε

{
−δR

Lγ−φM
[f t; ρ]

}
=

1

2n

n∑
i=1

wi

〈
Eε {εi} , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
, (75)

Since

Eε {εi} =
M∑
k=1

yk

M
= 0, (76)

where the second equality follows from (55), it follows that

Eε

{
−δR

Lγ−φM
[f t; ρ]

}
= 0. (77)

Hence, the boostability condition of (72) can be written as

−δR
Lγ−φM

[f t;h] > Eε

{
−δR

Lγ−φM
[f t; ρ]

}
+ δ, (78)

with δ > 0. A weak learner family is boostable if, for any weight distribution, it contains a weak
learner h that beats the random learner ρ. Hence, as is the case for binary boosting, MCBoost can
boost any set of any weak learners hwhose performance is slightly better than random, i.e. has “less
than 1/M × 100% error,” for any weight distribution. Note that this result is valid for any set H of
weak learners. In fact, the weak learners do not even have to be classifiers. CD-Boost can be applied
to any set of real-valued functions h : X → R and GD-MCBoost to any set of multi-dimensional
functions h : X → Rd.

6.2. Classification weak learners and voting rules

Obviously, MCBoost can be implemented with classification weak learners. In this case, the algo-
rithm can be presented as a voting rule, as in the classical presentation of AdaBoost. In appendix E.1
we derive the GD-MCBoost equations for the case where the weak learner space H is a space of
multiclass classifiers, i.e. h : X → Y where Y = {y1, . . . , yM} is the codeword set of the classifi-
cation problem. We show that, when this is the case, the learned predictor has the form

f(x) =
∑
k

yk
∑

t|gt(x)=yk

αt (79)

if Y is a codeword set of maximum capacity in S(M,d) and

fk(x) =
∑

t|gt(x)=1k

αt. (80)
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if Y is a set of canonical codewords 1j . In either case, denoting I(g(x) = yk)α as a vote of
strength α from weak learner g(x) for class k, f(x) can be seen as a weighted average of the class
codewords, where each class is weighted by the strength of its weak learner votes.

It is also shown that, although these predictors have different codeword projections, namely〈
f(x), yj

〉
=

∑
t|gt(x)=yj

αt −
1

M − 1

∑
k 6=j

∑
t|gt(x)=yk

αt, (81)

for the maximum capacity codeword set and〈
f(x), yj

〉
=

∑
t|gt(x)=1j

αt (82)

for canonical codewords, the margin components are similar up to a rescaling, namely

〈
f(x), yc − yk

〉
=

M

M − 1

 ∑
t|gt(x)=yc

αt −
∑

t|gt(x)=yk

αt

 , (83)

for a maximum capacity set and〈
f(x), yc − yk

〉
=

∑
t|gt(x)=1c

αt −
∑

t|gt(x)=1k

αt (84)

for a canonical set. In summary, for maximum capacity codewords, the projection of f(x) along
codeword yj is the difference between the strength of the weak learner votes for class j and the
average vote strength for the remaining classes. Hence, the projection is large if and only if the
class receives votes of strength well above average. On the other hand, for canonical codewords,
the projection reduces to the strength of the weak learner votes for class j. The margin components
are always larger under the maximum capacity codeword set, but the difference vanishes for large
M . Nevertheless, due to the similar form of the margin components, the decision rule of (17) is the
same in the two cases and consists of choosing the class of strongest vote

F (x) = arg max
k

∑
t|gt(x)=yk

αt. (85)

The margin condition of (18) thus holds if and only if this is the true class yc.
With regards to learning, it is shown in appendix E.1 that the steepest descent direction of (32)

is also

g∗(x) = arg min
g∈H

∑
i|g(xi) 6=yci

wi

1 +
∑
j 6=ci

τj(xi, ci)I(g(xi) = yj)

 , (86)

in the two cases. The weak learner selection rule reduces to selecting the classifier g(x) of lowest
error rate on a dataset where each point xi is reweighted proportionally to how poorly it is classified
by the current predictor f t(x) (which is captured by wi) and the agreement between the (incor-
rect) class to which it is assigned by g(x) and f t(x) (captured by

∑
j 6=ci τj(xi, ci)I(g(xi) = yj)).

Note that, even though the weak learner selection rule is identical for the two codeword sets, the
algorithms are not the same, since the weights wi and τj(xi, ci) are determined by the margin com-
ponents, according to (29)-(30),
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6.3. Classification vs. real valued learners

Finally, we consider the question of whether anything is lost by using a set of classification weak
learners. Consider the implementation of MCBoost in a space H of continuous weak learners. Let
the direction of steepest descent of the risk at a given iteration be h(x) ∈ H. Then, it is possible to
define a classification weak learner

g(x) = yk, k = arg max
j

< h(x), yj > . (87)

It follows that ∫
〈g(x), h(x)〉 dx =

∫ 〈
yarg maxj<h(x),yj>, h(x)

〉
dx (88)

=

∫
arg max

j

〈
h(x), yj

〉
dx. (89)

Since arg maxj
〈
h(x), yj

〉
≥
〈
yj+yl

2 , yj
〉
, ∀l 6= j, and

〈
yj + yl

2
, yj
〉

=

{ 1
2 if Y is a canonical codeword set
1
2 −

1
2(M−1) if Y is a maximum capacity codeword set, (90)

the inequality arg maxj
〈
h(x), yj

〉
> 0 holds for both classes of codewords, whenever M > 2.

Hence, ∫
〈g(x), h(x)〉 dx > 0 (91)

and g(x) is a descent direction, albeit not the steepest descent direction, in H. It follows that the
family of weak learners g(x) is boostable. In summary, for either canonical or maximum capacity
codeword sets, whenever there is a boostable setH of generic weak learners, there is also a boostable
family of classification weak learners, given by (87). The only penalty in adopting the latter is that,
because MCBoost is no longer a steepest descent procedure inH, its convergence can be slower.

7. Loss functions

So far, we have considered a generic γ − φ loss function. In this section, we derive conditions
under which γ − φ losses belong to some families with desirable properties for classification, such
as margin or proper losses. We then design specific γ − φ losses functions in these families and use
them to implement different MCBoost algorithms.

7.1. Margin losses

An important question is under which conditions γ − φ losses are margin enforcing, i.e. when
the minimization of the empirical risk of a γ − φ loss encourages predictors of large margin
Mp(D, f,Y). The following result shows that this holds whenever γ is strictly increasing and
φ is strictly positive and decreasing.
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Theorem 5 Consider a training set D, a codeword set Y = {y1, . . . , yM}, a predictor f(x). Let
R
Lγ−φM

(f) be the empirical risk of (21) for a γ − φ loss as in (23), such that γ is strictly increasing
and φ is strictly positive and decreasing. Then

R
Lγ−φM

(f) >
1

n
γ (φ[Mp(D, f,Y)]) , (92)

whereMp(D, f,Y) is the margin of predictor f - as defined in (14).

Proof See Appendix F.1.

Since γ is strictly increasing and φ is strictly decreasing, ξ = γ ◦ φ is strictly decreasing. It follows
from (92) that the minimization of R

Lγ−φM
(f) forces large margins and the γ − φ loss is margin

enforcing. Note that the minimization of a decreasing ξ is similar to the definition of margin loss
for binary classification, where ξ = γ ◦ φ is always decreasing. The main difference is that the
components γ and φ now have different roles. While φ operates on each margin component, γ is
applied to the aggregate of all the components. Hence, it no longer suffices to specify ξ, but γ and
φ have to be specified explicitly.

7.2. Proper losses

A loss LM [., .] is said to be proper if it is possible to recover the class posterior probabilities
PC|X(c|x), C = 1, . . . ,M, for all x from any predictor f∗(x) optimal under that loss. This
property is important for applications that require a confidence score for the classification. It is
natural to ask under which conditions are γ − φ losses proper. For simplicity, we adopt the notation

ηk(x) = PC|X(k|x), (93)

for the posterior class probabilities and represent a codeword set Y = {y1, . . . , yM} ∈ Rd by a
code matrix Y ∈ Rd×M , whose columns are the codewords in Y , i.e.

Y = [y1, . . . , yM ]. (94)

We also resort to the well known result that, to minimize (20), it suffices to determine the predictor
f∗(x) of minimum conditional risk

R
Lγ−φM

(f |x) = EC|X{L
γ−φ
M [yc, f(x)]|x}, (95)

for all x. The following theorem characterizes the set of minimizers of the conditional risk of a
γ − φ loss.

Theorem 6 Let Y = {y1, . . . , yM} ∈ Rd be a codeword set, f(x) : X → Rd a predictor, ηk(x)

the posterior probabilities of (93), and R
Lγ−φM

(f |x) the conditional risk of (95) when Lγ−φM [., .] is a
γ − φ loss with differentiable γ, φ. In this case any minimizer, f∗, of (95) is a solution of

YQφ
f∗Γ

γ−φ
f∗ η = 0, (96)

where Y ∈ Rd×M is the code matrix of (94), η = [η1, . . . , ηM ]T the vector of posterior probabili-
ties, Qφ

f ,Γ
γ−φ
f ∈ RM×M with

Qφ
f (k, l) =

{
−φ′(ul − uk) k 6= l∑

j 6=k φ
′(uk − uj) k = l,

(97)

25



SABERIAN AND VASCONCELOS

Γγ−φf (k, l) =

{
γ′
(∑

l 6=k φ(uk − ul)
)

k = l

0 k 6= l,
(98)

uj as defined in (11) and we have omitted the dependency of all terms on x for notational simplicity.

Proof See Appendix G.1.

Since (96) holds for any minimizer f∗ of (95), the posterior probability vector η can be uniquely
recovered from f∗ only when the null space of YQφ

f∗Γ
γ−φ
f∗ contains a single probability vector. The

following lemma provides sufficient conditions for this to holds. In the following results, we use
|A| to denote the dimensionality of a space A, and Rank(A), Null(A), and Range(A) to denote
the rank, null space, and column space of matrix A, respectively.

Lemma 3 Let Y = {y1, . . . , yM} ∈ Rd be a codeword set, Y the corresponding matrix of (94)
and Qφ

f , Γγ−φf as defined in (97), (98) respectively. The following statements hold.

1. If γ : R+ → R+ is strictly monotonic then

Null(YQφ
fΓ

γ−φ
f ) = Null(YQφ

f ) and Null(Qφ
fΓ

γ−φ
f ) = Null(Qφ

f ).

2. If Rank(Y) ≤M − 2 then |Null(YQφ
f )| ≥ 2

3. If Rank(Y) ≥M − 1 then Null(YQφ
f ) = Null(Qφ

f ).

4. If φ : R→ R+ is strictly monotonic then |Null(Qφ
f )| = 1.

Proof See Appendix G.2.

The lemma shows that, ifRank(Y) ≥M−1 and φ, γ are strictly monotonic, the set of vectors η for
which (96) holds is a one-dimensional space. It remains to verify if this space contains a probability
vector, i.e. a vector of non-negative entries that sum to one. The following lemma shows that this is
indeed the case.

Lemma 4 Let η = [η1, . . . , ηM ]T and Qφ
f ,Γ

γ−φ
f be as defined in (97) and (98), respectively. If

Qφ
fΓ

γ−φ
f η = 0 then

ηk =

∑M
l=1 ηlπlφ

′(ul − uk)
πk
∑M

l=1 φ
′(uk − ul)

∀k, (99)

where

πj = γ′

∑
l 6=j

φ(uj − ul)

 ∀j. (100)

Furthermore, if γ : R+ → R+ and φ : R→ R+ are strictly monotonic and η 6= 0 then all ηk have
the same sign.
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Proof See Appendix G.3.

Together, Lemmas 3 and 4 state that, for any code matrix Y such that Rank(Y) ≥M − 1 and
any pair of strictly monotonic functions φ, γ, the space of η that satisfy (96) is one dimensional and
composed by vectors that satisfy (99). Since, for any vector η 6= 0 in this subspace, all ηk have the
same sign,

∑
k ηk 6= 0 and thus η̄ = η∑

k ηk
is a probability vector. Under these conditions, the class

posterior probabilities of (96) can be recovered from the optimal predictor f∗ as follows.

Theorem 7 Let Y = {y1, . . . , yM} ∈ Rd be a codeword set of matrix Y, Lγ−φM [., .] a γ − φ loss,
R
Lγ−φM

(f |x) the conditional risk of (95), and η the vector of the posterior probabilities of (93). If
Rank(Y) ≥ M − 1 and (φ, γ) is a pair of strictly monotonic differentiable functions, then η can
be recovered from any minimizer, f∗, of R

Lγ−φM
(f |x) with

η =
(
Ωγ−φ
f

)−1
e1, (101)

where e1 = [1, 0, . . . , 0]T ∈ RM and

Ωγ−φ
f (k, l) =


1 k = 1
−πlφ′(ul − uk) k 6= l
πk
∑

j 6=k φ
′(uk − uj) k = l,

(102)

with uk, πk as defined in (11) and (100), respectively.

Proof See Appendix G.4

Theorems 3 and 4 show that, for an M -ary classification problem, a codeword space of dimen-
sion M − 1 is the smallest to contain a set of codewords that achieve either the margin capacity or
maximum distance bounds. In this case, the optimal codeword set consists of the M vertexes of the
regular simplex in RM−1 and can be obtained with the procedure of (Coxeter, 1973). The associated
matrix Y has rank M − 1 and the codewords are the directions of largest margin for each of the M
classes. Theorem 7 shows that the combination of the M − 1 dimensional simplex codewords with
strictly monotonic γ, φ functions is a sufficient condition for a proper γ − φ loss. In this case, the
posterior probability vector η can be recovered from any minimizer f∗ of the risk, using (101).

7.3. Relations to binary classification

A third question of interest is how the results above generalize previously known properties of
binary losses. For binary classification, where M = 2 and y1 = −y2 = 1, it follows from (102)
that

Ωγ−φ
f =

[
1 1

−φ′(u1 − u2)γ′(φ(u1 − u2)) φ′(u2 − u1)γ′(φ(u2 − u1)),

]
=

[
1 1

−ξ′(f) ξ′(−f),

]
, (103)
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Table 2: Loss, link, and inverse link, of various boosting algorithms.
Algorithm ξ(v) ζγ−φ(η) ζ−1

γ−φ(v)

AdaBoost (Freund and Schapire, 1997) exp(−v) 1
2 log η

1−η
e2v

1+e2v

LogitBoost (Friedman et al., 1998) log(1 + e−2v) 1
2 log η

1−η
e2v

1+e2v

SavageBoost (Masnadi-Shirazi and Vasconcelos, 2008) 1
(1+e2v)2

1
2 log η

1−η
e2v

1+e2v

where f = u1 − u2 and ξ = γ ◦ φ. Using (103), the solution of (101) is then

η1 =
ξ′(−f)

ξ′(f) + ξ′(−f)
(104)

η2 =
ξ′(f)

ξ′(f) + ξ′(−f)
, (105)

where we omitted the dependence on x. Defining η = η1, the two equations can be rewritten as

ηξ′(f) = (1− η)ξ′(−f). (106)

This is a popular equation in the binary classification literature, where it is known as a sufficient con-
dition for f to minimize the classification risk associated with the binary margin loss ξ(.) (Zhang,
2004; Reid and Williamson, 2010). It is usually possible to solve (106) for the optimal f . This is
given by

f = ζγ−φ(η), (107)

for some function ζγ−φ, which is denoted the link function of the loss ξ. The link function plays an
important role in the recovery of the posterior probabilities ηk because, for a proper loss φ, ζγ−φ is
invertible and

η = ζ−1
γ−φ(f). (108)

Hence, probabilities η(x) can be recovered by simply feeding the classifier predictions f(x) through
the inverse of the link. Table 2 lists the loss, link, and inverse link of the margin losses that underlie
various popular boosting algorithms.

For M-ary classification, (99) generalizes the inverse link relationship of (108). The main dif-
ficulty of the M-ary extension is that the inverse link does not always have closed-form. In fact,
while the exact decomposition of the loss ξ into the components γ and φ does not affect the link
for binary classification, this is not the case for M -ary classification. Consider, for example, the
exponential and logistic losses of Table 1. For all these losses, φ(v) = eαv with α ∈ R−. Consider
next a multiclass γ − φ loss whose φ(.) function is in this family. From (99)

ηk =

∑M
l=1 ηlπlαe

α(ul−uk)

πk
∑M

l=1 αe
α(uk−ul)

=
e−αu

k∑M
l=1 ηlπle

αul

πkeαu
k∑M

l=1 e
−αul

∝ e−2αuk−log πk , (109)
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Table 3: Expressions of γ, φ, ηk, and πk for multiclass generalizations of the binary γ − φ losses of Table 1. In all

cases, pk = e2u
k∑

i e
2ui .

name multiclass loss γ(v) φ(v) ηk πk
Exponential

∑
l 6=c e

−(uc−ul) v e−v pk 1

Logistic log
(

1 +
∑

l 6=c e
−2(uc−ul)

)
log(1 + v) e−2v pk pk

Savage
(

1− 1

1+
∑
l6=c e

−2(uc−ul)

)2 (
v

1+v

)2
e−2v 1

1+
∑
j 6=k

1−pk
1−pj

2p2
k(1− pk)

where, from (100),

πk = γ′

(
eαu

k
M∑
l=1

e−αu
l − 1

)
. (110)

Since η is a probability vector, it follows that

ηk =
e−2αuk−log πk∑
i e
−2αui−log πi

. (111)

Hence, the inverse link of any γ − φ loss of exponential φ function is the softmax mapping ρ :
RM → [0, 1]M ,

ρk(v) =
evk∑
i e
vi
, (112)

of the class scores ui rescaled according to

η = ρ(−2αu− κ(u)) (113)

u =
1

2

[
< y1, f >, . . . , < yM , f >

]T
(114)

κ(u) = [log π1(u), . . . , log πM (u)]T . (115)

In summary, whenever the recovery of the posterior probability vector η is of interest, the choice
of φ(v) = eαv is desirable, as it guarantees a closed form-solution for the inverse link. The choice
of γ(.) function simply determines the rescaling κ(u) of the scores, through (110). This suggests a
very natural generalization of the binary losses of Table 1, which is given in Table 3. Note that, in
all cases, γ ◦ φ is a decreasing function. Hence, by Theorem 5, all losses are margin enforcing. The
table also presents the values of πk and ηk for all losses. Since in all cases the probabilities are

ηk =
e2uk∑
i e

2ui
, (116)

i.e. directly proportional to the class scores uk, the decision rule of (17) is identical to the Bayes
decision rule (1).
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Table 4: Expressions of the MCBoost weights of (29) and (30) for the multiclass losses of of Table 3.
name multiclass loss wi τk(xi, ci)

Exponential
∑

l 6=c e
−(uc−ul) ∑

k 6=ci e
− 1

2〈f t(xi),yci−yk〉 e
− 1

2〈ft(xi),yci−yk〉∑
k 6=ci

e−
1
2 〈ft(xi),yci−yk〉

Logistic log
(

1 +
∑

l 6=c e
−2(uc−ul)

)
2
∑
k 6=ci

e
−〈ft(xi),yci−yk〉

1+
∑
k 6=ci

e−〈ft(xi),y
ci−yk〉

e
−〈ft(xi),yci−yk〉∑

k 6=ci
e−〈ft(xi),y

ci−yk〉

Savage
(

1− 1

1+
∑
l 6=c e

−2(uc−ul)

)2 4

(∑
k 6=ci

e
−〈ft(xi),yci−yk〉

)2

(
1+
∑
k 6=ci

e−〈ft(xi),y
ci−yk〉

)3 e
−〈ft(xi),yci−yk〉∑

k 6=ci
e−〈ft(xi),y

ci−yk〉

7.4. Multiclass boosting algorithms

A final important question is how the discussion above can be used to derive multiclass boosting
algorithms that generalize the ones available in the literature for binary classification. In Section 4.4,
we saw that the update equations of the two MCBoost algorithms are given by (42)-(44) and (30).
In the binary setting (M = 2) with y1 = 1, y2 = −1, (30) reduces to τ tk(x, c) = 1 for k 6= c and

M̂f t(y
c, g(x)) =

1

2
[g(x)yc − g(x)(−yc)] = ycg(x), (117)

reduces to the standard definition of margin. Furthermore, from (44)

wi = −γ′
(
φ(ycif t(xi))

) (
φ′(ycif t(xi))

)
= −ξ′(ycif t(xi)), (118)

where ξ = γ ◦ φ is a decreasing function. This leads to the classical weak learner selection rule

g∗(x) = arg max
g∈H

1

n

n∑
i=1

wiMf t(y
ci , g(xi)) (119)

= arg max
g∈H

1

n

n∑
i=1

yciwig(xi), (120)

of binary boosting algorithms. Hence, when M = 2, both GD-MCBoost and CD-MCBoost re-
duce to binary boosting with loss ξ(v) = γ(φ(v)). It follows that, by using the losses of Table 2,
MCBoost can implement all popular binary boosting algorithms, including AdaBoost (Freund and
Schapire, 1997), LogitBoost (Friedman et al., 1998) and SavageBoost (Masnadi-Shirazi and Vas-
concelos, 2008). Furthermore, because these are special cases of the losses of Table 3, MCBoost
algorithms derived with these losses can be seen as multiclass extensions of AdaBoost and Log-
itBoost. Table 4 summarizes the expressions of the weights wi and τk(xi, ci) that define these
algorithms.

8. Comparison to previous learning algorithms

In this section we compare MCBoost learning algorithms in the literature. We start by comparing
MCBoost with the current multiclass boosting algorithms and then compare it with the kernel-SVM.
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Table 5: Comparison of multiclass boosting algorithms.
Algorithm Optimization Codewords Weak Learners Loss

OVA CD canonical any Lova (225)
AdaBoost.M1 GD canonical classification LAda.M1 (238)

SAMME GD max-capacity classification LSAMME (240)
AdaBoost.MH GD canonical product Lova (225)
AdaBoost.ECC CD binary any γ(v) = v, φ(v) = e−2v

LogitBoost CD canonical regression Logistic γ − φ
CD-MCBoost CD max-capacity any any γ − φ

AdaBoost.M2/MR GD canonical product Exponential γ − φ
AdaBoost.MM GD canonical classification γ(v) = v, φ(v) = e−2v

GD-MCBoost GD max-capacity any any γ − φ

8.1. Comparison to boosting algorithms

Many of the current multiclass boosting algorithms are special instances of MCBoost using differ-
ent, and sometimes sub-optimal, codewords, weak learners, loss functions, or optimization strategy
(CD v. GD). We discuss these relationships in detail in Appendix H, where we show that these
multiclass boosting algorithms can be cast as special cases of, or approximations to, MCBoost. The
differences between them are summarized in Table 5. To simplify comparisons, the table is orga-
nized in three sections. The top section contains algorithms that do not use γ − φ losses. These
are used by the algorithms in the middle and bottom sections, which differ in optimization strat-
egy. It can be seen that all algorithms are either gradient descent (GD) or coordinate descent (CD)
procedures. They also differ in the codeword set used to label the different classes. While some
use a maximum capacity codeword set, most rely on canonical codewords, or codeword choices
(ECOC) of margin capacity below the bound of (59). With regards to weak learners, most algo-
rithms adopt classification learners h : X → Y = {y1, . . . , yM}, but there also have been proposals
for linear regressors (multiclass LogitBoost), or the product learners h : X × {1, . . . ,M} → R
of AdaBoost.M2, AdaBoost.MR, and AdaBoost.MH. Finally, while most algorithms use a special
form of the γ − φ loss of (23), a few (OVA, AdaBoost.MH) rely on the OVA loss of (225), while
others (Ada.M1,SAMME) minimize the exponential losses of (238) and (240).

As discussed in the previous sections, many of the configurations in the table can result in
sub-optimal performance. In the bottom two sections, it is worth noting the codewords of Ad-
aBoost.ECC, which do not offer guarantees in terms of margin capacity, and the product weak
learners of AdaBoost.M2 and AdaBoost.MR, which can lead to slow convergence. These problems
can be compounded by the choice of loss function. In fact, a consistent experimental observation
is that all algorithms derived from losses outside of the γ − φ family (top section of the table) tend
to produce sub-optimal classifiers. In Section H.1.1, we show that the combination of the Lova
loss and canonical codewords, used by OVA and AdaBoost.MH, encourages the independent learn-
ing of coordinate classifiers. This frequently leads to uncalibrated scores across classes and poor
classification performance. On the other hand, the losses

Lα[yc, f(x)] = e−α〈y
c,f(x)〉, (121)
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Figure 3: Loss functions Lα[y1, f(x)] for a classification problem with M = 3, d = 2, and the max-capacity code-
words of Figure 1 (center), where y1 = (0, 1). Left: exponential loss of (125). Right: γ − φ loss of (126).
In both plots α = 1, codewords are shown in green and class boundaries in red.

used by AdaBoost.M1 (α = 1) and SAMME (α = 1/M ) are vaguely similar to a γ − α loss with
γ(v) = v and φ(v) = e−αv

Lγ−φ[yc, f(x)] =
∑
l 6=c

e−α(〈yc,f(x)〉−〈yl,f(x)〉). (122)

However, these losses do not consider the pair-wise difference between class scores. Hence, while
it has been shown that, asymptotically, the minimizer of the risk defined by these losses implements
Bayes rule (Zhu et al., 2009), these losses do not encourage large values of the margin of (9).

Consider, for example, the case where M = 3, d = 2, and the codeword set is the max-capacity
set shown in the center of Figure 1, i.e.

y1 = (1, 0) y2 = (−1/2,
√

3/2) y3 = (−1/2,−
√

3/2). (123)

In this case, as shown in Figure 3, the class boundaries are the lines of direction

l12 = (1/2,
√

3/2) l13 = (1/2,−
√

3/2) l23 = (−1, 0), (124)

where lij is the direction of the boundary between classes i and j. The loss associated with y1 is
then

Lα[y1, f(x)] = e−αf1(x) (125)

for the exponential loss and

Lγ−φ[y1, f(x)] = e−α〈d12,f(x)〉 + e−α〈d13,f(x)〉 (126)

with
d12 = y1 − y2 = (3/2,−

√
3/2) d13 = y1 − y3 = (3/2,

√
3/2). (127)
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The contour plots of these functions, shown in Figure 3, illustrate the limitations of the exponential
loss. While this loss has contours orthogonal to y1, it does not take into account the remaining code-
words. In result, its contours cross the class boundaries. This implies that many classification errors
(e.g. the prediction output marked as ’B’) receive the same penalty as correct decisions (prediction
marked as ’A’), which is clearly sub-optimal for classification. More generally, the loss functions
of (121) produce poor classifiers whenever codewords are not aligned with the coordinate axes.
This predicts poor performance for methods like SAMME. The empirical studies of (Mukherjee
and Schapire, 2013) and Section 9 confirm this prediction. On the other hand, by aligning the loss
contours with the decision boundaries, the γ − φ loss eliminates this problem. Note how it assigns
a larger penalty to ’B’ than ’A’.

These observations support the claim that the design of a multiclass boosting algorithm requires
the careful joint selection of optimization strategy, codewords, weak learners, and loss function.
For example, AdaBoost.M1 combines the loss of (121) and (axis-aligned) canonical codewords.
However, the poor choice of step size along the gradient direction, see (236), leads to a boostability
condition that demands weak learners with “better than 50%” error. Since this is unfeasible for most
problems, the algorithm frequently stops prematurely. SAMME corrects this problem, but through
the introduction of a set of max-capacity codewords that are no-longer axis-aligned. The mismatch
between the loss of (121) and these codewords in turn compromises it performance. MCBoost elim-
inates these problems, supporting any max-capacity codeword set and any family of weak learners,
as long as a γ − φ loss is used. In fact, MCBoost even establishes a connection between boosting
and other machine learning algorithms, such as support vector machines (SVMs).

8.2. MCBoost and the SVM

Given a training set D = {(xi, ci)}ni=1 kernel support vector machines (K-SVMs) first map training
examples xi into a reproducing kernel Hilbert space (RKHS), using the mapping Φ(x) = K(x, .)
induced by the kernel K(., .). The linear classifier that maximizes the margin in this space is then
learned, so as to separate examples of different classes (Vapnik, 1998). As is the case for boosting,
multiclass K-SVMs can be learned in multiple ways, including the reduction to several binary sub-
problems, as in the ‘one vs all’, ‘all pairs’ or ‘ECOC’ methods (Scholkopf et al., 1995; Blanz
et al., 1996; Allwein et al., 2001). These are usually sub-optimal. In this work, we consider direct
multiclass methods (Vapnik, 1998; Weston and Watkins, 1999; Hsu and Lin, 2002; Crammer and
Singer, 2002a).

Under the direct formulation, the multiclass K-SVM solves an M -ary classification problem by
learning the M linear discriminants w∗l , l = 1, . . . ,M that maximize a risk based on the multiclass
margin

MK−SVM (xi,wci) =
1

2

[
〈Φ(xi),wci〉 −max

l 6=ci
〈Φ(xi),wl〉

]
, (128)

so as to implement the decision rule

FSVM (x) = arg max
l=1,...,M

〈Φ(x),w∗l 〉 . (129)

The comparison of (128) with (9) and (129) with (17) reveals a parallel with MCBoost, where

• the kernel mapping Φ(x) of the SVM plays the role of the predictor f(x) of boosting,
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• the linear discriminants wl of the SVM are equivalent to the class codewords yl of boosting.

This parallel can be taken even further, by considering the SVM optimization. While several for-
mulations have been proposed to maximize (128) (Vapnik, 1998; Weston and Watkins, 1999; Hsu
and Lin, 2002; Crammer and Singer, 2002a), the most popular (Vapnik, 1998) is to find the optimal
linear discriminants w∗l by solving

minwl,...,wM

∑M
l=1 ‖wl‖22 + C

∑
i ξi

s.t 〈Φ(xi),wci〉 − 〈Φ(xi),wl〉 ≥ 1− ξi
∀(xi, ci) ∈ D, l 6= ci,
ξi ≥ 0 ∀i.

(130)

Rewriting the constraints as

ξi ≥ max[0, (1− 〈Φ(xi),wci〉 −max
l 6=ci
〈Φ(xi),wl〉)],

and using the fact that the objective function is monotonically increasing in ξi, this is identical to
solving the problem

minwl,...,wM Rsvm + λ
∑M

l=1 ‖wl‖22, (131)

where

Rsvm =
∑
i

⌊
〈Φ(xi),wci〉 −max

l 6=ci
〈Φ(xi),wl〉

⌋
+

, (132)

bxc+ = max(0, 1− x) is the hinge loss, and λ = 1/C. Hence, the SVM minimizes the risk Rsvm
subject to a regularization constraint on

∑
l ‖wl‖22. Note that, under the parallel above, Rsvm is the

risk RLM (w) of (21) using the margin loss LM [wc,Φ(x)] of (22), and the hinge loss as χ function,
i.e. χ(v) = bvc+. It follows that the parallel is exact, i.e. the methods are mathematically identical,
up to the replacement of LM [., .] by the γ − φ loss of (23).

In summary, boosting and SVMs optimize very similar costs, but with different optimization
strategies. In SVM learning, examples are first mapped into the RKHS, using a pre-defined trans-
formation based on the kernel. The SVM then finds a set of linear discriminants that maximizes the
margin of examples in this RKHS. On the other hand, boosting pre-defines the linear discriminants
as the codewords yc. It then finds a mapping of the examples, the predictor f(x), that maximizes the
margin with respect to these codewords. Both the SVM discriminants and the boosting predictor are
found by solving optimization problems that are equivalent, up to slight differences in loss function
(LM [., .] vs. γ−φ loss) and regularization. While the SVM uses an explicit regularization constraint
on the norm of the discriminants wl, boosting uses two implicit constraints on the complexity of the
predictor f(x): it 1) restricts f(x) to a linear combination of weak learners and 2) limits the number
of weak learners in this combination to the number of boosting iterations.

While this shows that there is a great degree of similarity between the two approaches, there is
also a significant difference. This follows from the fact that it is much easier to design a good set
of codewords than a good kernel. As we have shown in Section 5, under the boosting strategy it is
possible to first design a set of codewords of maximum margin capacity and then find the predictor
that maximizes the margin with respect to these codewords. This is unlike the SVM strategy, where
it is quite difficult to determine an optimal kernel. In practice, the SVM kernel is usually chosen by
cross-validation within a relatively small set of functions. In summary, while the SVM exploits a
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Table 6: Characteristics of the used UCI datasets

#Id Data Name #Training #Testing #Attributes # Classes
1 Landsat Satellite 4, 435 2, 000 36 6

2 Letter 16, 000 4, 000 16 26

3 Pen Digit 7, 494 3, 498 16 10

4 Poker 25, 010 1, 000 10 10

5 Optical Digit 3, 823 1, 797 64 10

6 Shuttle 43, 500 14, 500 9 7

7 Isolet 6, 238 1, 559 617 26

8 Vehicle 692 154 18 4

9 Vertebral 239 71 6 3

10 Image Segmentation 210 2, 100 19 7

11 Ecoli 258 78 7 8

12 Breast Tissue 81 25 9 6

single tool for margin maximization (finding the optimal linear discriminants), boosting decouples
the margin maximization into a sequence of two optimizations 1) determination of a codeword
set (linear discriminants) of maximum margin capacity and 2) learning of an example mapping
(predictor) of maximum margin with respect to these codewords.

9. Evaluation

Several experiments were conducted to evaluate the performance of MCBoost algorithms. Unless
otherwise noted, these were implemented with d = M − 1, a max capacity codeword set composed
by the vertexes of a regular simplex in RM−1, and the exponential γ − φ loss of Table 3 (γ(v) = v
and φ(v) = e−v)4.

9.1. Data

The first experiment was based on a synthetic dataset, for which the optimal decision rule is known.
This is a three class problem, with two-dimensional Gaussian classes of means[

1
2

]
,

[
−1
0

]
,

[
2
−1

]
(133)

and covariances [
1 0.5

0.5 2

]
,

[
1 0.3

0.3 1

]
,

[
0.4 0.1
0.1 0.8

]
(134)

respectively. Training and test sets of 1, 000 examples each were randomly sampled and the Bayes
rule computed in closed form (Duda et al., 2001). This rule achieved an error rate of 11.67% in
the training and 11.13% in the test set, suggesting a Bayes error of about 11%. The remaining
experiments were based on the twelve UCI datasets of Table 6. For these, we used the training/test
set split provided by the dataset, whenever possible. If a split was unavailable, 20% of the examples
were randomly selected for testing.

4. A Matlab implementation of CD-MCBoost and GD-MCBoost is available from
http://www.svcl.ucsd.edu/publications/conference/2014/icml/ICML 2014 guess averse code data.zip. A C++
implementation of GD-MCBoost for deep convolutional neural networks (Moghimi et al., 2016) integrated with the
CAFFE library (Jia et al., 2014) is available from https://github.com/mmoghimi/BoostCNN.
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Figure 4: Classifier predictions f t(xi) of CD-MCBoost, on the test set, after t = 0, 10, 100 boosting iterations.
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Figure 5: Histogram of the example margins M(yci , f t(xi)) using CD-MCBoost prediction, on the test set, after

t = 0, 10, 100 boosting iterations.

9.2. Synthetic data

We start with the synthetic dataset. A classifier was learned with CD-MCBoost, using decision
stumps as weak learners. Figures 4 and 5 show the predictions5 f t(xi) and histograms of the
associated example marginsM(yci , f t(xi)) for all test examples, after t = 0, 10, and 100 iterations,
respectively. While the predictor initially maps all examples to the origin, f0(xi) = [0, 0]T ∀xi, CD-
MCBoost produces predictions that are gradually more aligned with the class codewords, shown as
dashed lines in Figure 4. Note how the example predictions, whose color reflects their class label,
are pushed out, filling up the space that surrounds the codewords of the corresponding classes. This
alignment of f t(xi) with yci guarantees that f t(xi) will have a larger dot product with yci than
with the remaining codewords, leading to the correct classification of xi by the decision rule of
(17). Similarly, since f0(xi) = [0, 0]T ∀xi, all examples have zero margin in the initial iterations.
However, as shown by the histograms of Figure 5, the margins M(yci , f t(xi)) increase with the
boosting iteration t. Note that, as the example predictions expand in Figure 4, both the percentage
of examples with positive margin and the strength of their margins increase in Figure 5. This implies
that, in addition to a decrease in error rate, the decision rule generalizes better. Finally, the test set
error rate was 11.30% after 100 iterations, which is very close to the estimates of the Bayes error
rate of 11%.

5. We emphasize the fact that these are plots of f t(x) ∈ R2, not x ∈ R2.
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Figure 6: Effect of the dimension of codewords on the accuracy of the trained classifiers. Left: CD-MCBoost with

decision stumps. Right: GD-MCBoost with trees of depth 2.

9.3. Effect of codeword dimension, d

The theoretical analysis of Section 5 suggests that there is no benefit to using a predictor dimension-
ality d larger than M − 1, where M is the number of classes. Since larger dimensionality increases
computation and over-fitting potential, this implies that d = M − 1 is the best selection for the
predictor dimension. In this section, we report on an empirical study of the effect of this parameter
on the performance of MCBoost.

We considered 5 UCI datasets, Landsat, Pen Digit, Optical Digit, Image Segmentation, and
Ecoli, with M ∈ [6, 10] classes. For each dataset, we learned classifiers with predictors of dimen-
sionality d ranging from 2 to M . A max-min codeword set was used for each value of d. Note that
these codewords are identical to the optimal set for d = M − 1. All classifiers were learned with
200 iterations of MCBoost. We considered both CD-MCBoost and GD-MCBoost, using decision
stumps and trees of depth 2 as weak learners, respectively. Figure 6 shows the accuracy of the
learned classifiers as a function of the dimension d, for each of the five datasets.

A number of conclusions can be drawn from the figure. First, increasing d usually leads to a
better classifier, for both CD-MCBoost and GD-MCBoost. This is not surprising, since for larger
d it is possible to increase the minimum mutual distance dmin between codewords. Since, from
Lemma 2, this yields a larger margin capacity, MCBoost can produce predictors of larger margin.
This explains the performance improvement. Second, since increasing d increases classification
complexity, the curves of Figure 6 also depict the trade-off between accuracy and complexity of the
MCBoost classifiers. Third, all curves saturate as D approaches the value of M − 1, confirming the
theoretical prediction for the lack of benefit of higher dimensions. This follows from the fact that
the margin capacity does not increase beyond d = M − 1. Finally, it is interesting that most curves
saturate well below this point. Note, for example, that the GD-MCBoost performance saturates at a
dimension between 50% and 70% of the number M of classes, for most datasets. This implies that
it is possible to perform “dimensionality reduction on the output space,” without a noticeable cost in
classification accuracy. In this sense, the predictor f(x) could be interpreted as an extractor of low
dimensional features without loss of discriminant power. This could be interesting for applications
where classification has to be performed under complexity constraints.
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Table 7: Classification accuracy (%) of coordinate descent boosting algorithms with decision stump weak learners.
CD-MCBoost implemented with the exponential γ − φ loss.

Data set id #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

AdaBoost-OVA 88.0 83.3 95.0 50.9 95.0 79.2 95.3 68.2 83.1 67.8 85.9 32.0

AdaBoost-ECC 88.2 77.8 94.9 51.6 94.8 79.2 93.6 69.5 83.1 82.7 84.6 44.0
CD-MCBoost 87.0 84.0 95.4 51.5 95.0 79.2 95.0 71.4 83.1 81.4 85.9 44.0

Table 8: Classification accuracy (%) of coordinate descent boosting algorithms with regression weak learners. CD-
MCBoost implemented with the logistic γ − φ loss.

Data set id #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

LogitBoost 84.4 77.5 92.9 50.8 89.6 94.7 96.3 81.2 87.3 93.0 85.9 76.0
CD-MCBoost 84.5 77.5 92.9 50.8 95.1 96.7 95.6 81.2 87.3 92.3 87.2 72.0

9.4. Comparison to other multiclass Boosting methods

We finish with an experimental comparison of MCBoost to previous boosting algorithms, which
complements the theoretical analysis of Section 8.

9.4.1. CD-MCBOOST

We started by comparing the coordinate descent (CD) methods of Table 5, namely OVA, Ad-
aBoost.ECC (Guruswami and Sahai, 1999) and multiclass LogitBoost (Friedman et al., 1998), to
CD-MCBoost. The first experiment compared CD-MCBoost to OVA and AdaBoost.ECC, using de-
cision stumps as weak learners. As shown in Table 7, CD-MCBoost had better accuracy than OVA
in six and equal accuracy in four of the twelve datasets. Compared to AdaBoost.ECC, it had better
performance in six and same performance in three of the twelve datasets. Comparing all methods,
CD-MCBoost produced the most accurate classifier for six of twelve datasets, the next best method
was AdaBoost-ECC with 4 wins and AdaBoost-OVA had the worst performance (1 win). These re-
sults are explained by the sub-optimal codewords of AdaBoost.ECC and the loss function of OVA,
which encourages independent learning of coordinate predictors.

We next compared CD-MCBoost to multiclass LogitBoost. To guarantee a fair comparison, CD-
MCBoost was implemented with regression weak learners and the logistic γ−φ loss of Table 3. As
shown in Table 8, CD-MCBoost had better accuracy in four datasets, LogitBoost was better in three
and the results were identical in five datasets. The similar performance of the two classifiers is not
surprising since, as discussed in Section H.1.3, they are conceptually equivalent. The only difference
between LogitBoost and this implementation of CD-MCBoost is in the use of different codewords.
However, since LogitBoost uses the canonical basis in RM and CD-MCBoost the vertexes of a
simplex in RM−1, the theory predicts identical margin capacity for the two sets. These results
confirm the lack of benefit in increasing d beyond M − 1.
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Table 9: Classification accuracy (%) of gradient descent boosting algorithms with depth 2 tree weak learners. GD-
MCBoost implemented with the exponential γ − φ loss.

Data set id #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Ada.M1 72.9 − − − − 96.4 − 59.1 88.7 − 73.1 60.0

SAMME 82.0 53.3 90.4 52.0 91.8 99.7 85.7 76.6 84.5 93.1 87.2 80.0
AdaBoost.MM 89.0 64.4 95.2 59.2 95.4 99.8 91.2 81.2 87.3 94.9 84.6 68.0

GD-MCBoost 89.1 85.2 96.5 60.8 96.8 99.9 95.2 81.8 87.3 95.3 89.7 76.0

9.4.2. GD-MCBOOST

The final set of experiments compared the performance of previous gradient descent methods to
GD-MCBoost. In this experiment, we considered AdaBoost.M1 (Freund and Schapire, 1996), Ad-
aBoost.MM (Mukherjee and Schapire, 2013) and AdaBoost.SAMME (Zhu et al., 2009), using deci-
sion trees of depth 2 as weak learners. These weak learners were designed with a greedy procedure,
so as to 1) minimize the weighted error rate of (235) for AdaBoost.M1 (Freund and Schapire,
1996) and AdaBoost.SAMME (Zhu et al., 2009), 2) minimize the classification cost of (266) for
AdaBoost.MM (Mukherjee and Schapire, 2013), and 3) maximize (32) for GD-MCBoost.

Several conclusions can be drawn from the results, presented in Table 9. First, AdaBoost.M1
was not able to boost the weak learners used in this experiment for half of the datasets. This is
due to the “better than 50% error” boostability condition, which is too stringent for trees of depth
2. Second, compared to SAMME, GD-MCBoost achieved superior performance in eleven of the
twelve datasets. The improvements were quite significant in some cases e.g. from 53% to 85% in
dataset #2 or from 85% to 95% in dataset #7. The inferior performance of SAMME is explained
by the use of the loss of (121), as discussed in Section 8.1. Third, compared to AdaBoost.MM, GD-
MCBoost achieved higher accuracy in eleven datasets and the same performance in the remaining
one. Again, the improvements were sometimes substantial, e.g. from 64% to 85% in dataset #2.
This is not surprising since, as discussed in Section H.2.5, that AdaBoost.MM is a sub-optimal
special case of GD-MCBoost. Finally, when compared to all methods, GD-MCBoost achieved the
highest accuracy in ten of the twelve datasets. Among the remaining methods, AdaBoost.MM had
better performance, followed by AdaBoost-SAMME. AdaBoost.M1 had the worst results. It should
be noted that the results of Tables 7, 8 and 9 are not directly comparable, since the classifiers are
based on different types of weak learners and have different complexities.

10. Conclusion

In this work, we studied the problem of multiclass boosting with the goal of an integrated under-
standing of the roles of the optimization strategy, label codewords, weak learners, and multiclass
risk. This motivated a new formulation of the problem based on multi-dimensional predictors,
multi-dimensional real valued codewords, and proper multiclass margin loss functions. This for-
mulation led to a number of interesting results, such as maximum capacity codeword sets, proper
and margin enforcing γ − φ losses, and two new multiclass boosting algorithms, CD-MCBoost and
GD-MCBoost, which differ in optimization strategy. CD-MCBoost implements a functional coor-
dinate descent procedure and updates one predictor component at a time, GD-MCBoost a functional
gradient descent in a space of multidimensional weak learners, updating all predictor components
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simultaneously. Both MCBoost algorithms reduce to classical boosting algorithms (such as Ad-
aBoost or LogitBoost) for binary problems, depending on the choice of γ − φ loss and have all the
classical boosting properties, such as seeking the weak learner of maximum margin on a reweighted
training sample at each iteration and well defined boostability conditions. Beyond the algorithms
themselves, the proposed formulation enables a unified treatment of many previous multiclass boost-
ing algorithms. This was used to show that all algorithms implement different combinations of
optimization strategy, codewords, weak learners, and loss function, highlighting some of the defi-
ciencies of these algorithms and explaining why they fail under some settings. In particular, it was
shown that no previous method matches the support of MCBoost for real codewords of maximum
capacity, a proper margin-enforcing loss function, and any family of multidimensional predictors
and weak learners. Experimental results confirm the superiority of MCBoost, showing that the two
proposed MCBoost algorithms outperform comparable prior methods on a number of datasets.

Beyond algorithms, a number of insights were shown both theoretically and experimentally.
First, the dimension d of the predictor f(x) seems to play a central role in large margin multiclass
classification. For M classes, any dimension larger M − 1 supports a codeword set of maximum
capacity. This enables the decomposition of the classifier design problem into two sub-problems:
the design of a maximal capacity codeword set, for which an exact algorithm is available, and the
design of the best predictor for this codeword set. The latter can be accomplished with the MCBoost
algorithms now introduced or some other risk minimization procedure. Second, a predictor of di-
mension lower than M − 1 will, in principle, entail some loss of classification accuracy. It is still,
nevertheless, possible to find the best codeword set in a sense related to the margin capacity. This
can again be done with an exact algorithm. Interestingly, our experimental results have shown that it
is possible to achieve performance identical to that of the margin capacity predictors for dimensions
substantially smaller than M − 1. The use of a low dimensional predictor can be seen as a form of
dimensionality reduction. Unlike classical approaches, which operate on the space of observations
x, this is done directly in the output space. Such an interpretation of low-dimensional predictors
could be of interest for applications with complexity constraints, for example. Third, for a predictor
of dimensionM−1 or larger, it is fairly simple to guarantee that a γ−φ loss is margin enforcing and
proper. It suffices to guarantee that γ is strictly increasing and φ is strictly positive and decreasing,
and that the codeword set is of maximum margin capacity. In this case, the posterior class proba-
bilities can be recovered from the outputs of the optimal predictor by a simple mapping, usually a
softmax. Since these constraints are quite weak, it is not difficult to define new proper multiclass
margin losses, tailored for particular applications. This was exemplified by the derivation of multi-
class extensions of popular binary losses, such as the exponential, logistic, or Savage. The resulting
MCBoost algorithms are multiclass generalizations of AdaBoost, LogitBoost, and SavageBoost, re-
spectively. Finally, the discussion above highlights the fact that the design of a multiclass boosting
algorithm requires the careful joint selection of optimization strategy, codewords, weak learners,
and loss function. The combination of MCBoost, margin capacity codewords, a proper margin en-
forcing γ − φ loss, and a family of weak learners with better than random performance is a good
solution to all these problems.
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Appendix A. Decision rule

A.1. Proof of Lemma 1

Consider a prediction f(x). Defining

k∗ = arg max
k∈{1,...,M}

〈
yk, f(x)

〉
, (135)

it follows that

M(yk
∗
, f(x)) ≥ 0 ≥M(yl, f(x)) ∀ l 6= k∗, (136)

and thus

k∗ = arg max
k∈{1,...,M}

M(yk, f(x)). (137)

To prove the converse we start by noting that, by definition of margin in (10), for any f(x) there is
at least one codeword with non-negative margin. Hence, if

k∗ = arg max
k∈{1,...,M}

M(yk, f(x)), (138)

it follows from (10) that 〈
yk
∗
, f(x)

〉
≥ max

l 6=k∗

〈
yl, f(x)

〉
, (139)

from which

k∗ = arg max
k∈{1,...,M}

〈
yk, f(x)

〉
. (140)

A.2. Proof of Corollary 1

If F (x) = c, it follows from Lemma 1 that

c = arg max
k∈{1,...,M}

〈
yk, f(xi)

〉
, (141)

and (18) follows from (10). IfM(yc, f(x)) > 0, it follows from (10) that

〈yc, f(x)〉 > max
k 6=c

〈
yk, f(x)

〉
. (142)

and, from (17), F (x) = c.

A.3. Proof of Corollary 2

IfMp(D, f,Y) > 0, it follows from (14) that

M(yci , f(xi)) > 0 ∀xi ∈ D, (143)

and, from Corollary 1, all examples are classified correctly. Conversely, if all examples are classified
correctly, then (143) follows from Corollary 1, and

Mp(D, f,Y) = min
(xi,yci )∈D

M(yci , f(xi)) > 0. (144)
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Appendix B. Algorithms

B.1. Derivation of GD-MCBoost

For the problem of (25), the gradient expression follows from the application of (27) to (21).

−δR[f t; g] = − 1

n

∂

∂ε

n∑
i=1

Lγ−φM [yci , f t(xi) + εg(xi)]

∣∣∣∣∣
ε=0

= − 1

n

n∑
i=1

∂Lγ−φM [yci , f t(xi) + εg(xi)]

∂ε

∣∣∣∣∣
ε=0

For the γ − φ loss of (23) this leads to

−δR[f t; g] = − 1

n

n∑
i=1

∂

∂ε
γ

∑
k 6=ci

φ

[
1

2

〈
f t(xi) + εg(xi), y

ci − yk
〉]∣∣∣∣∣∣

ε=0

= − 1

n

n∑
i=1

γ′

∑
k 6=ci

φ

[
1

2

〈
f t(xi), y

ci − yk
〉]×

×

∑
k 6=ci

∂

∂ε
φ

[
1

2

〈
f t(xi), y

ci − yk
〉

+
ε

2

〈
g(xi), y

ci − yk
〉]∣∣∣∣∣∣

ε=0

= − 1

n

n∑
i=1

γ′

∑
k 6=ci

φ

[
1

2

〈
f t(xi), y

ci − yk
〉]×

×

∑
k 6=ci

1

2

〈
g(xi), y

ci − yk
〉
φ′
[

1

2

〈
f t(xi), y

ci − yk
〉]

= − 1

n

n∑
i=1

γ′

∑
k 6=ci

φ

[
1

2

〈
f t(xi), y

ci − yk
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k 6=ci

φ′
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1

2

〈
f t(xi), y

ci − yk
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1
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〉 φ′
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1
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ci − yk
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k 6=ci φ
′
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1
2 〈f t(xi), yci − yk〉

]
 .

Using (29) and (30), this can finally be written as

−δR[f t; g] =
1

n

n∑
i=1

wi

∑
k 6=ci

1

2

〈
g(xi), y

ci − yk
〉
τk(xi, ci)


=

1

2n

n∑
i=1

wi

〈
g(xi),

∑
k 6=ci

(yci − yk)τk(xi, ci)

〉

=
1

2n

n∑
i=1

wi

〈
g(xi), y

ci −
∑
k 6=ci

ykτk(xi, ci)

〉
.
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B.2. Derivation of CD-MCBoost

For the problem of (35) the gradient expression follows from the application of (27) to (21),

−δR[f t; j, g] = − 1

n

∂

∂ε
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i=1
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Appendix C. Maximum capacity codewords

C.1. Proof of Theorem 1

Consider any direction v such that ||v|| = 1. Using (9), (55) and the fact that the minimum cannot
be larger than the average

M(yk, v) = min
l 6=k

1

2

〈
yk − yl, v

〉
≤ 1

2(M − 1)

∑
l 6=k

〈
yk − yl, v

〉
(145)

=
1

2(M − 1)

〈∑
l 6=k

(yk − yl), v

〉

=
1

2(M − 1)

〈
(M − 1)yk −

∑
l 6=k

yl, v

〉

=
1

2(M − 1)

〈
Myk −

M∑
l=1

yl, v

〉

=
M

2(M − 1)

〈
yk, v

〉
≤ M

2(M − 1)
. (146)

C.2. Proof of Theorem 2

By definition of margin capacity

C[Y] = min
k=1,...,M

M(yk, ξk), (147)

where ξk is the direction of largest capacity for class k. As shown in the proof of Theorem 1,

M(yk, ξk) = min
l 6=k

1

2

〈
yk − yl, ξk

〉
(148)

≤ 1

2(M − 1)

∑
l 6=k

〈
yk − yl, ξk

〉
(149)

=
M

2(M − 1)

〈
yk, ξk

〉
. (150)

The margin componentM(yk, ξk) is maximum when equality holds. Since the minimum is equal
to the average if and only if all elements are equal, this is the case if and only if

1

2

〈
yk − yl, ξk

〉
=

M

2(M − 1)

〈
yk, ξk

〉
∀l 6= k. (151)

Hence the maximum value of the margin component is

M(yk, ξk) =
M

2(M − 1)

〈
yk, ξk

〉
≤ M

2(M − 1)
(152)
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with equality if and only if 〈
yk, ξk

〉
= 1. (153)

Since both yk and ξk are unit vectors, this holds if and only if

yk = ξk. (154)

It follows that the margin capacity of (147) meets the capacity bound of (60) if and only if, for all
k, the directions of largest margin are ξk = yk and, from (151),

1

2

〈
yk − yl, yk

〉
=

M

2(M − 1)
∀l 6= k (155)

1

2

(
1−

〈
yl, yk

〉)
=

M

2(M − 1)
∀l 6= k, (156)〈

yl, yk
〉

= − 1

M − 1
,∀l 6= k. (157)

C.3. Proof of Theorem 3

Assume that Yc(M,d) is a set of codewords that achieves the capacity bound of (60). Then, from
Theorem 2 and Definition 6, Yc(M,d) is a set of M centered, unit norm, d-dimensional vectors yk

such that 〈
yk, yl

〉
= − 1

M − 1
, ∀k, l 6= k. (158)

The proof is by construction and uses a known method for the design of regular simplexes (Cox-
eter, 1973). Let yk be the codewords in Yc(M,d). Without loss of generality we can set y1 =
[1, 0, . . . , 0]T ∈ Rd. From (158) it follows that

yk1 = − 1

M − 1
∀k > 1, (159)

where yki is the ith coordinate of vector yk. Defining

ȳk =
M − 1√
M(M − 2)

[yk+1
2 , . . . , yk+1

d ] ∈ Rd−1 k = 1, . . . ,M − 1, (160)

it follows that
∑M−1

k=1 ȳk = 0,

‖ȳk‖2 =
(M − 1)2

M(M − 2)
[‖yk+1‖2 − [yk+1

1 ]2]

=
(M − 1)2

M(M − 2)

[
1− 1

(M − 1)2

]
= 1, ∀k (161)

and 〈
ȳk, ȳl

〉
=

(M − 1)2

M(M − 2)

[〈
yk+1, yl+1

〉
− yk+1

1 yl+1
1

]
=

(M − 1)2

M(M − 2)

[
− 1

M − 1
− 1

(M − 1)2

]
= − (M − 1)2

M(M − 2)

M

(M − 1)2
= − 1

M − 2
, ∀k, l 6= k. (162)
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Hence, the codewords ȳk are the elements of Yc(M − 1, d − 1), the codeword set that meets the
capacity bound of S(M − 1, d − 1). In summary, the application of the simplex design procedure
of (160) to a codeword set Yc(M,d) produces a codeword set Yc(M − 1, d− 1).

If d ≤ M − 2, the procedure can be applied d − 1 times, to produce a codeword set Yc(M −
d + 1, 1). This is a set of M − d + 1 centered, unit norm, scalars that satisfy (158). It follows
from the unit norm constraint that ȳk ∈ {+1,−1} and thus, for k 6= l,

〈
ȳk, ȳl

〉
= −1. This,

however, contradicts (158), since − 1
M−d+1−1 = − 1

M−d ≥ −
1
2 . Hence, S(M,d) contains no set of

codewords that meets the capacity bound, when d ≤M − 2.
If d ≥M − 1, the procedure can be applied M − 2 times, to produce a codeword set Yc(2, d−

M + 2). This is a set of 2 centered, unit norm, (d−M + 2)-dimensional vectors that satisfy (158),
i.e.

〈
ȳ1, ȳ2

〉
= −1. Since ȳ1 = [1, 0, . . . , 0] and ȳ2 = [−1, 0, . . . , 0] in Rd−M+2 satisfy these

conditions, there exists a sequence Yc(2, d−M + 2), . . . ,Yc(M,d) of codeword sets that meet the
capacity bounds of S(2, d−M + 2), . . . ,S(M,d), respectively. Since the procedure used to design
this sequence is the regular simplex design procedure of (160), the codewords in Yc(2, d −M +
2), . . . ,Yc(M,d) form a regular simplex in Rd−M+2, . . . ,Rd, respectively.

Appendix D. Low dimensional predictors

D.1. Proof of Lemma 2

We start with (68). The left inequality follows from (56), (57) and (9), since

C[Y] = min
k=1,...,M

max
||v||=1

M(yk, v)

≥ min
k=1,...,M

M(yk, yk)

=
1

2
min

k=1,...,M
min
l 6=k

[
‖yk‖ −

〈
yk, yl

〉]
=

1

4
min

k=1,...,M
min
l 6=k

[
2‖yk‖ − 2

〈
yk, yl

〉]
=

1

4
min

k=1,...,M
min
l 6=k

[
‖yk‖+ ‖yl‖ − 2

〈
yk, yl

〉]
=

1

4
min
k,l 6=k

‖yk − yl‖2. (163)

The right inequality follows from (9) since, for any v such that ||v|| = 1,

M(yk, v) =
1

2
min
l 6=k

〈
yk − yl, v

〉
≤ 1

2
min
l 6=k
‖yk − yl‖2, (164)

and thus

C[Y] = min
k=1,...,M

max
||v||=1

M(yk, v)

≤ min
k=1,...,M

max
||v||=1

1

2
min
l 6=k
‖yk − yl‖2

=
1

2
min
k,l 6=k

‖yk − yl‖2. (165)
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Finally, (69) follows from the left inequality of (68) and (60).

D.2. Proof of Theorem 4

Let Y∗ be a codeword set of maximum capacity. From (66) and (62)

dmin[Y∗] = min
k,l 6=k

‖(y∗)k − (y∗)l‖2

= min
k,l 6=k

[
2− 2

〈
(y∗)k, (y∗)l

〉]
= min

k,l 6=k

[
2 +

2

M − 1

]
=

2M

M − 1
(166)

and Y∗ meets the bound of (69). Hence, it is a max-min distance codeword set. Let Y∗ be a
codeword set of max-min distance, i.e.

dmin[Y∗] =
2M

M − 1
. (167)

From (68) it follows that

C[Y∗] ≥ M

2(M − 1)
, (168)

and Y∗ meets the capacity bound of (60). Hence, it is a codeword set of maximum capacity.

Appendix E. Properties

In this appendix, we derive several properties of MCBoost algorithms.

E.1. Classification weak learners

We start by deriving the specialization of the algorithm to classification weak learners. While we
consider only GD-MCBoost, a similar derivation is possible for CD-MCBoost. We assume a weak
learner spaceH of multiclass classifiers, i.e. h : X → Y where Y = {y1, . . . , yM} is the codeword
set of the classification problem.

E.1.1. MAXIMUM CAPACITY CODEWORDS

Assume that Y is a codeword set of maximum capacity in S(M,d). The predictor learned by
MCBoost is then

f(x) =
∑
t

αtgt(x)

=
∑
t

αt
∑
k

I(gt(x) = yk)yk

=
∑
k

yk
∑

t|gt(x)=yk

αt

=
∑
k

ζkyk (169)
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where
ζk =

∑
t|gt(x)=yk

αt. (170)

Since 〈
f(x), yj

〉
=

∑
k

ζk < yk, yj >

=

ζj < yj , yj > +
∑
k 6=j

ζk < yk, yj >


=

ζj − 1

M − 1

∑
k 6=j

ζk


=

 ∑
t|gt(x)=yj

αt −
1

M − 1

∑
k 6=j

∑
t|gt(x)=yk

αt

 , (171)

where we have used the codeword properties of (55) and (61), and〈
f(x), yj

〉
−
〈
f(x), yk

〉
= ζj −

1

M − 1

∑
l 6=j

ζl − ζk +
1

M − 1

∑
l 6=k

ζl

= ζj −
1

M − 1
ζk − ζk +

1

M − 1
ζj

=
M

M − 1
(ζj − ζk). (172)

f(x) has margin components〈
f(x), yc − yk

〉
=

M

M − 1
(ζc − ζk)

=
M

M − 1

 ∑
t|gt(x)=yc

αt −
∑

t|gt(x)=yk

αt

 . (173)

With regards to learning, the steepest descent direction of (32) can be written as

g∗(x) = arg max
g∈H

M∑
j=1

∑
i|g(xi)=yj

wi

〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
. (174)

There are two possibilities for the dot-products
〈
yj , yci −

∑
k 6=ci y

kτk(xi, ci)
〉

:

1. yj = yci : in this case〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
= ||yci ||2 −

∑
k 6=ci

〈
yci , yk

〉
τk(xi, ci)

= 1 +
1

M − 1

∑
k 6=ci

τk(xi, ci)

= 1 +
1

M − 1
=

M

M − 1
(175)
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where we have also used (30).

2. yj 6= yci : in this case〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
=

〈
yj , yci

〉
− ||yj ||2τj(xi, ci)−

∑
k 6=ci,j

〈
yj , yk

〉
τk(xi, ci)

= − 1

M − 1
− τj(xi, ci) +

1

M − 1

∑
k 6=ci,j

τk(xi, ci)

= − 1

M − 1
− τj(xi, ci) +

1

M − 1
(1− τj(xi, ci))

= − M

M − 1
τj(xi, ci), (176)

where we have also used (30).

It follows that

g∗(x) = arg max
g∈H

∑
i|g(xi)=yci

wi −
∑
j 6=ci

∑
i|g(xi)=yj

wiτj(xi, ci)

= arg max
g∈H

∑
i

wi −
∑

i|g(xi) 6=yci
wi −

∑
j 6=ci

∑
i|g(xi)=yj

wiτj(xi, ci)

= arg min
g∈H

∑
j 6=ci

∑
i|g(xi)=yj

wi(1 + τj(xi, ci))

= arg min
g∈H

∑
i|g(xi)6=yci

wi

1 +
∑
j 6=ci

τj(xi, ci)I(g(xi) = yj)

 . (177)

E.1.2. CANONICAL CODEWORDS

We next consider the case where Y is the of set canonical codewords yj = 1j . In this case, the
predictor learned by MCBoost is

f(x) =
∑
t

αtgt(x)

=
∑
t

αt
∑
k

I(gt(x) = 1k)1k

=
∑
k

1k
∑

t|gt(x)=1k

αt. (178)

which can be written as

fk(x) =
∑

t|gt(x)=1k

αt. (179)

It follows that 〈
f(x), yj

〉
= 〈f(x),1j〉 = fj(x) =

∑
t|gt(x)=1j

αt. (180)
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and 〈
f(x), yc − yk

〉
= fc(x)− fk(x) =

∑
t|gt(x)=1c

αt −
∑

t|gt(x)=1k

αt. (181)

With regards to learning, the steepest descent direction of (32) can be written as

g∗(x) = arg max
g∈H

M∑
j=1

∑
i|g(xi)=yj

wi

〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
. (182)

and there are two possibilities for the dot-products
〈
yj , yci −

∑
k 6=ci y

kτk(xi, ci)
〉

:

1. yj = yci : in this case〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
= ||yci ||2 −

∑
k 6=ci

〈
yci , yk

〉
τk(xi, ci) = 1. (183)

2. yj 6= yci : in this case〈
yj , yci −

∑
k 6=ci

ykτk(xi, ci)

〉
=

〈
yj , yci

〉
− ||yj ||2τj(xi, ci)−

∑
k 6=ci,j

〈
yj , yk

〉
τk(xi, ci)

= −τj(xi, ci). (184)

It follows that

g∗(x) = arg max
g∈H

∑
i|g(xi)=yci

wi −
∑
j 6=ci

∑
i|g(xi)=yj

wiτj(xi, ci)

= arg max
g∈H

∑
i

wi −
∑

i|g(xi) 6=yci
wi −

∑
j 6=ci

∑
i|g(xi)=yj

wiτj(xi, ci)

= arg min
g∈H

∑
j 6=ci

∑
i|g(xi)=yj

wi(1 + τj(xi, ci))

= arg min
g∈H

∑
i|g(xi)6=yci

wi

1 +
∑
j 6=ci

τj(xi, ci)I(g(xi) = yj)

 (185)

E.2. Exponential loss

We next consider the algorithm derived from the loss function

LM [ȳci , f(xi)] = e−〈ȳci ,f̄(xi)〉. (186)
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E.2.1. GD-MCBOOST

Using this loss in (21), it follows that

−δR[f t; g] = − 1

n

n∑
i=1

∂LM [yci , f t(xi) + εg(xi)]

∂ε

∣∣∣∣∣
ε=0

= − 1

n

n∑
i=1

∂

∂ε
e−〈f t(xi)+εg(xi),yci〉

∣∣∣∣∣
ε=0

=
1

n

n∑
i=1

e−〈f t(xi),yci〉 〈g(xi), y
ci〉

=
1

n

n∑
i=1

wi 〈g(xi), y
ci〉 , (187)

with

wi = e−〈f t(xi),yci〉. (188)

Hence, the gradient descent direction is

gt(x) = arg max
g∈H

,
n∑
i=1

wi 〈g(xi), y
ci〉 , (189)

and the descent update for the predictor

f t+1(x) = f t(x) + αtgt(x), (190)

for a suitably chosen step size αt.

E.2.2. MAXIMUM CAPACITY CODEWORDS

Assume that gt(x) ∈ Y, where Y is a codeword set of maximum capacity in S(M,d). Then, as
shown in Section E.1.1, the predictor learned by MCBoost is

f(x) =
∑
t

αtgt(x) =
∑
k

yk
∑

t|gt(x)=yk

αt, (191)

and has codeword projections

〈
f(x), yj

〉
=

∑
t|gt(x)=yj

αt −
1

M − 1

∑
k 6=j

∑
t|gt(x)=yk

αt. (192)

Hence, the weights of (188) are

wi = e
−
∑
t αtI(gt(x)=yci )− 1

M−1

∑
k 6=ci

∑
t αtI(gt(x)=yk)

. (193)
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(189) can be written as

gt(x) = arg max
g∈H

M∑
j=1

n∑
i=1|gt(xi)=yj

wi
〈
yj , yci

〉

= arg max
g∈H

 ∑
i|gt(xi)=yci

wi||yci ||2 +
∑
j 6=ci

∑
i|gt(xi)=yj

wi
〈
yj , yci

〉
= arg max

g∈H

 ∑
i|gt(xi)=yci

wi −
1

M − 1

∑
i|gt(xi) 6=yci

wi


= arg max

g∈H

∑
i

wi −
∑

i|gt(xi)6=yci
wi −

1

M − 1

∑
i|gt(xi)6=yci

wi


= arg min

g∈H

∑
i|gt(xi) 6=yci

wi

= arg max
g∈H

∑
i|gt(xi)=yci

wi. (194)

E.2.3. CANONICAL CODEWORDS

Assume that Y is the of set canonical codewords yj = 1j . In this case, as shown in Section E.1.2,
the predictor learned by boosting has components

fj(x) =
∑

t|gt(x)=1j

αt =
∑
t

αtI(gt(x) = 1j), (195)

and codeword projections〈
f(x), yj

〉
= fj(x) =

∑
t

αtI(gt(x) = 1j). (196)

Hence, the weights of (188) are

wi = e−
∑
t αtI(gt(x)=1ci ). (197)

(189) can be written as

gt(x) = arg max
g∈H

M∑
j=1

n∑
i=1|gt(xi)=yj

wi 〈1j ,1ci〉

= arg max
g∈H

n∑
i=1|gt(xi)=1ci

wi

= arg max
g∈H

n∑
i=1

wiI(gt(xi) = 1ci). (198)
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Appendix F. Margin maximization

F.1. Proof of Theorem 5

Defining l∗ = arg minl 6=c u
c − ul, (23) can be written as

Lγ−φM [yc, f(x)] = γ

φ(uc − ul∗)+
∑
l 6=c,l∗

φ
(
uc − ul

) , (199)

and it follows from (9) that

Lγ−φM [yc, f(x)] = γ

φ[M(yc, f(x))]

1 +
∑
l 6=c,l∗

φ(uc − ul)
φ[M(yc, f(x))]

 . (200)

Since γ is strictly increasing and φ(.) is strictly positive

φ(uc − ul)
φ[M(yc, f(x))]

> 0, ∀c, l, x. (201)

and

φ[M(yc, f(x))]

1 +
∑
l 6=c,l∗

φ(uc − ul)
φ[M(yc, f(x))]

 > φ[M(yc, f(x))], ∀x (202)

from which

Lγ−φM [yc, f(x)] > γ (φ[M(yc, f(x))]) ∀x. (203)

Combining (21), (14) and the fact that γ(.) is strictly positive

R
Lγ−φM

(f) =
1

n

n∑
i=1

Lγ−φM [yci , f(xi)]

>
1

n

n∑
i=1

γ (φ[M(yci , f(xi))])

=
1

n
γ (φ[Mp(D, f,Y)])

1 +
∑
i 6=i∗

γ (φ[M(yci , f(xi))])

γ (φ[Mp(D, f,Y)])


>

1

n
γ (φ[Mp(D, f,Y)]) (204)

where i∗ = arg miniM(yci , f(xi)).
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Appendix G. Proper γ − φ losses

G.1. Proof of Theorem 6

From (95),

R
Lγ−φM

(f |x) =

M∑
k=1

ηk(x)Lγ−φM [yk, f(x)]

=

M∑
k=1

ηk(x)γ

 M∑
l=1,l 6=k

φ(uk(x)− ul(x))

. (205)

The derivative of R
Lγ−φM

(f |x) with respect to f(x) is

∂R
Lγ−φM

(f |x)

∂f(x)
=

∂

∂f(x)

M∑
k=1

ηkγ

 M∑
l=1,l 6=k

φ(uk − ul)


=

1

2

M∑
k=1

ηkγ′
∑
l 6=k

φ(uk − ul)

∑
l 6=k

φ′(uk − ul)[yk − yl]

 . (206)

Defining

πk = γ′

∑
l 6=k

φ(uk − ul)

 , (207)

results in

∂R
Lγ−φM

(f |x)

∂f(x)
=

1

2

M∑
k=1

ηkπk∑
l 6=k

φ′(uk − ul)[yk − yl]


=

1

2

∑
l,k|k 6=l

ηkπkφ
′(uk − ul)[yk − yl]

=
1

2

∑
l,k|k 6=l

ykηkπkφ
′(uk − ul)− 1

2

∑
l,k|k 6=l

ylηkπkφ
′(uk − ul)

=
1

2

∑
j,k|k 6=j

ykηkπkφ
′(uk − uj)− 1

2

∑
l,k|k 6=l

ykηlπlφ
′(ul − uk)

=
1

2

M∑
k=1

ykηkπk
∑
j 6=k

φ′(uk − uj)− 1

2

M∑
k=1

yk
∑
l 6=k

ηlπlφ
′(ul − uk)

=
1

2

M∑
k=1

yk

ηkπk∑
j 6=k

φ′(uk − uj)−
∑
l 6=k

ηlπlφ
′(ul − uk)


=

1

2
YQφ

fΓγ−φf η. (208)

where Y is the code matrix of (94), Qφ
f as defined in (97) and Γγ−φf as defined in (98). Hence, (96)

holds for any minimizer of R
Lγ−φM

(f |x).
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G.2. Proof of Lemma 3

1. If γ is strictly monotonic then, from (98), Γγ−φf is full rank and the statement follows.

2. Let Rank(Y) < M − 1 and consider two possibilities.

(a) The setNull(Y)
⋂
Range(Qφ

f ) is empty. In this case, sinceNull(Y)
⋃
Range(Qφ

f ) ⊂
RM and

M ≥ |Null(Y)|+ |Range(Qφ
f )|

= M −Rank(Y) + |Range(Qφ
f )|

≥ 2 + |Range(Qφ
f )|. (209)

Since Qφ
f ∈ RM×M , it follows that |Null(Qφ

f )| ≥ 2. Since Null(Qφ
f ) ⊂ Null(YQφ

f ),

it follows that |Null(YQφ
f )| ≥ 2.

(b) The set Null(Y)
⋂
Range(Qφ

f ) is non-empty. Hence, there is at least one vector v1 ∈
Null(Y)

⋂
Range(Qφ

f ). Since v1 ∈ Range(Qφ
f ), there exists a vector v2 such that

Qφ
fv2 = v1, i.e. v2 6∈ Null(Qφ

f ). Since v1 ∈ Null(Y), it follows that YQφ
fv2 = 0 and

v2 ∈ Null(YQφ
f ). On the other hand, it follows from (97) that the rows of Qφ

f sum to
zero and

|Null(Qφ
f )| ≥ 1. (210)

Hence, there is at least a vector v0 6= 0 such that Qφ
fv0 = 0. It follows that v0 ∈

Null(YQφ
f ). In summary, there is a vector v0 ∈ Null(Qφ

f ) and a vector v2 6∈ Null(Qφ
f )

such that v0, v2 ∈ Null(YQφ
f ). Hence, |Null(YQφ

f )| ≥ 2.

By combination of the two possibilities it follows that |Null(YQφ
f )| ≥ 2.

3. Since Y ∈ Rd×M , Rank(Y) ≤ M . If Rank(Y) = M , then the null space of Y contains
only the origin. It follows that a vector is in the null space of YQφ

f if and only if it is also on

the null space of Qφ
f . Assume that Rank(Y) = M − 1. Since Y ∈ Rd×M , |Null(Y)| = 1.

Since the codewords are centered, as in (55), Y1 = 0 and Null(Y) = Range(1), i.e. the
null space of Y is spanned by the vector 1. Hence, for any η ∈ Null(YQφ

f ) there is a scalar
λ such that

Qφ
fη = λ1. (211)

Denoting by riQ the ith row of Qφ
f , it follows that < riQ, η >= λ and <

∑M
i=1 r

i
Q, η >=

Mλ. Since, from (97),
∑M

i=1 r
i
Q = 0 it follows that λ = 0. Hence, η ∈ Null(Qφ

f )

and Null(YQφ
f ) ⊂ Null(Qφ

f ). The statement follows from the fact that Null(Qφ
f ) ⊂

Null(YQφ
f ) always holds.
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4. Let Q
φ
f ∈ RM−1×M−1 be the matrix obtained by eliminating the first row and column of Qφ

f .
From (97) and strict monotonicity of φ

|Qφ
f (k, k)| =

∣∣∣∣∣∣
∑
j 6=k

φ′(uk − uj)

∣∣∣∣∣∣
=

∑
j 6=k
|φ′(uk − uj)|, (212)

and

|Qφ
f (k, k)| =

∑
j 6=k+1

|φ′(uk+1 − uj)|

=
∑
j 6=k+1

|Qφ
f (j, k + 1)|

= |Qφ
f (1, k + 1)|+

∑
j 6=k
|Qφ

f (j, k)|

>
∑
j 6=k
|Qφ

f (j, k)|. (213)

Therefore Q
φ
f is strictly diagonally dominant and thus non-singular (Horn and Johnson,

1986). It follows that rows riQ, i = 2, . . . ,M of Qφ
f are linearly independent andRank(Qφ

f ) ≥
M − 1. Since, from (97),

r1
Q = −

M∑
i=2

riQ, (214)

it follows that Rank(Qφ
f ) = M − 1. Hence, |Null(Qφ

f )| = 1.

G.3. Proof of Lemma 4

From (97), (98) and (100), Qφ
fΓγ−φf η = 0 is equivalent to

0 = ηkπk
∑
j 6=k

φ′(uk − uj)−
∑
l 6=k

ηlπlφ
′(ul − uk)

= ηkπk
∑
j 6=k

φ′(uk − uj) + ηkπkφ
′(uk − uk)

− ηkπkφ
′(uk − uk)−

∑
l 6=k

ηlπlφ
′(ul − uk)

= ηkπk

M∑
j=1

φ′(uk − uj)−
M∑
l=1

ηlπlφ
′(ul − uk), (215)

and (99) follows. The proof that all ηk have the same sign is by contradiction. Assume the ηj
have different signs and let N ,P be sets of positive and negative indices, i.e. ηj < 0 ∀j ∈ N ,
ηj ≥ 0 ∀j ∈ P . Define

ζk,l = πkφ
′(uk − ul), (216)
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with πk as in (100). Since φ, γ are strictly monotonic, all ζk,l’s are non-zero and have the same sign.
Without loss of generality, we assume they are positive. From (99),

ηk

M∑
l=1

ζk,l −
M∑
l=1

ηlζl,k = 0. (217)

Adding over all k ∈ N ,

0 =
∑
k∈N

{
ηk

M∑
l=1

ζk,l −
M∑
l=1

ηlζl,k

}

=
∑
k∈N

ηk

{∑
l∈N

ζk,l +
∑
l∈P

ζk,l

}
−
∑
k∈N

{∑
l∈N

ηlζl,k +
∑
l∈P

ηlζl,k

}
=

∑
k∈N ,l∈N

ηkζk,l +
∑

k∈N ,l∈P
ηkζk,l −

∑
k∈N ,l∈N

ηlζl,k −
∑

k∈N ,l∈P
ηlζl,k

=
∑

k∈N ,l∈P
ηkζk,l −

∑
k∈N ,l∈P

ηlζl,k (218)

and ∑
k∈N ,l∈P

ηkζk,l =
∑

k∈P,l∈N
ηkζk,l. (219)

Since by definition of the sets N ,P , the two sides of this equation have opposite signs, we have a
contradiction unless one of the sets N ,P is empty.

G.4. Proof of theorem 7

From Lemmas 3 and 4, sinceRank(Y) ≥M−1 and (φ, γ) strictly monotonic, the solution of (96)
is identical to that of Qφ

fΓ
γ−φ
f η = 0 and, up to a normalization constant, a probability vector.

Defining Ψγ−φ
f = Qφ

fΓ
γ−φ
f , it follows that the system of equations{

Ψγ−φ
f η = 0

1T η = 1,
(220)

has a unique solution. Furthermore, it follows from the monotonicity of γ that Rank(Γγ−φf ) = M

and from (97) thatRank(Qφ
f ) = M−1. Hence, Rank(Ψγ−φ

f ) = M−1, i.e. the first row of Ψγ−φ
f

is a linear combination of the other rows and can be removed from (220). The system of equations
of (220) can thus be written as

Ωγ−φ
f η = e1, (221)

where

Ωγ−φ
f (k, l) =

{
1 k = 1, ∀l
Ψγ−φ
f (k, l) otherwise.

(222)

Since (220) has a unique solution, Ωγ−φ
f is invertible and η =

(
Ωγ−φ
f

)−1
e1.
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Appendix H. MCBoost vs previous multiclass boosting algorithms

In this appendix we compare MCBoost to multiclass learning algorithms in the literature. We start
by showing that many of the multiclass boosting algorithms are special instances of MCBoost using
different, and sometimes sub-optimal, codewords, weak learners, loss functions, or optimization
procedures.

H.1. Coordinate descent algorithms

Several previous learning algorithms can be seen as coordinate descent optimization procedures and
are thus closely related to CD-MCBoost.

H.1.1. ONE-VS-ALL CLASSIFIERS

Multiclass classifiers are frequently implemented with the one-vs-all architecture (OVA), where M
predictors f̄k(x) are learned independently. Predictor f̄k(x) discriminates between class k and all
other classes. For predictors learned with AdaBoost, f̄k(x) is learned by minimizing the risk

Rk =
1

n

n∑
i=1

e−z̄
k
i f̄k(xi), (223)

where

z̄ki =

{
1 if ci = k
−1 otherwise.

(224)

TheM OVA predictors are combined into a multiclass predictor f̄(x) = [f̄1(x), . . . , f̄M (x)] ∈ RM ,
which is used to implement the decision rule arg maxk f̄k(x).

Since this predictor is learned in a coordinate-wise manner, OVA is closest to CD-MCBoost. In
fact, the individual risks of (223) can be combined into

R =
∑
k

Rk =
1

n

n∑
i=1

∑
k

e−z̄
k
i f̄k(xi)

=
1

n

n∑
i=1

e−f̄ci (xi) +
∑
k 6=ci

ef̄k(xi)

 ,

which is the risk of (21) for the loss

Lova[y
ci , f̄(xi)] = e−〈ȳci ,f̄(xi)〉 +

∑
k 6=ci

e〈ȳk,f̄(xi)〉, (225)

under the choice of canonical codewords ȳj = 1j ∈ RM . Hence, the fundamental differences
between OVA and CD-MCBoost are the use, by the former, of 1) canonical codewords and 2) the
loss of (225). This combination is sub-optimal for two reasons. First, the minimization of the
resulting risk decouples into M independent problems for learning M coordinate classifiers. This
tends to produce weaker decision rules than the joint learning of all coordinate predictors. Second,
the loss of (225) is not guess-averse (Beijbom et al., 2014). This can easily lead to sub-optimal
classifiers.
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H.1.2. ADABOOST.ECC

AdaBoost.ECC (Guruswami and Sahai, 1999) is a multiclass boosting algorithm based on the the
error correcting output coding (ECOC) strategy of (Dietterich and Bakiri, 1995). It relies on binary-
valued codewords and the γ − φ loss of (23) with φ(v) = e−2v and γ(v) = v. It is initialized
with an empty codeword set. At each iteration t, 1) each codeword is augmented with a new bit
and 2) a corresponding predictor dimension f̄t is learned. After T iterations, the algorithm learns
a set of T -dimensional binary codewords ȳj ∈ {+1,−1}T and a T -dimensional predictor f̄(x) =
[f̄1(x), . . . , f̄T (x)] ∈ RT . The decision rule is

F̄ (x) ≡ arg max
j∈{1,...,M}

〈
f̄(x), ȳj

〉
. (226)

Since the multi-dimensional predictor is learned in a coordinate-wise manner, AdaBoost.ECC is
closest to CD-MCBoost. The main difference is in the definition of the codewords. While CD-
MCBoost uses real-valued codewords selected a priori so as to maximize the margin capacity of
(56), AdaBoost.ECC codewords are generated on-the-fly, by either random selection or the solution
of a “max-cut” problem. This is sub-optimal for two reasons. First, the limitation to binary code-
words can lead to codeword sets of margin capacity below the bound of (59). This limits the margin
maximizing ability of the learning algorithm and degrades its generalization. Second, the codeword
length increases at each iteration of the algorithm. Since this increases predictor dimensionality, it
can easily lead to high computational costs and over-fitting. Finally, the procedures used to learn
the codewords do not guarantee a codeword set optimal for classification. These limitations extend
to a number of other methods based on the ECOC strategy (Schapire, 1997; Li; Zhang et al., 2009;
Gao and Koller, 2011).

H.1.3. MULTICLASS LOGITBOOST

Multiclass LogitBoost (Friedman et al., 1998) is a multiclass boosting method that learns an M -
dimensional predictor f̄(x) = [f̄1(x), . . . , f̄M (x)] ∈ RM where each coordinate is a linear regressor

f̄j(x) = ax+ b, (227)

for some a, b ∈ R. It is assumed that

M∑
k=1

f̄k(x) = 0. (228)

The predictor is learned by minimizing the negative log likelihood,

LLogit[ci, f̄(xi)] = − log
[
P̄C,X(ci|xi)

]
, (229)

with probabilities defined as

P̄C,X(ci|xi) =
ef̄ci (xi)∑M
j=1 e

f̄j(xi)
. (230)

Each iteration of the algorithm computes the best regression update for all coordinates, using New-
ton’s method. These updates are then centered to satisfy (228) and added to the multi-dimensional
predictor.
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To compare this to MCBoost note that, from (229)-(230),

LLogit[ci, f̄(xi)] = − log

[
ef̄ci (xi)∑M
j=1 e

f̄j(xi)

]

= log

[∑M
j=1 e

f̄j(xi)

ef̄ci (xi)

]

= log

1 +
∑
j 6=ci

ef̄j(xi)−f̄ci (xi)


= log

1 +
∑
j 6=ci

e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]
 , (231)

with ȳj = 1j ∈ RM . Since this is the special case of (23) with φ(v) = e−2v and γ(v) = log(1+v),
multiclass LogitBoost is an implementation of CD-MCBoost with the logistic γ−φ loss, canonical
codewords, and regression weak learners. The only difference is that LogitBoost relies on the
Newton method for finding the best update per iteration while CD-MCBoost uses gradient descent
updates. Although it is possible to use Newton updates in MCBoost (Saberian et al., 2010), this is
beyond the scope of the current manuscript. Finally, note that the analysis above holds for a number
of algorithms inspired by multiclass LogitBoost (Huang et al., 2007; Zou et al., 2008).

H.2. Gradient descent algorithms

Several previous learning algorithms can be seen as gradient descent optimization procedures and
are thus closely related to GD-MCBoost.

H.2.1. ADABOOST.M1

AdaBoost.M1 is the first multiclass Boosting algorithm introduced by (Freund and Schapire, 1996).
It relies on multiclass weak learners ĝ(x) : X → {1, . . . ,M} and the decision rule

F̄ (x) = arg max
j∈{1,...,M}

f̂j(xi), (232)

where

f̂j(xi) =
∑
t

αtI(ĝt(xi) = j), (233)

and I(.) is the indicator function. AdaBoost.M1 is initialized with a uniform weight distribution
over the training sample, e.g. wi = 1. At iteration t, it selects the weak learner ĝt of lowest
weighted error rate

e∗t = min
g

∑
i

wi[1− I(g(xi) = ci)] (234)

= max
g

∑
i

wiI(g(xi) = ci). (235)
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The algorithm stops if e∗t > 50%, otherwise the weak learner is added to the ensemble with

αt = log

(
1− e∗t
e∗t

)
, (236)

and the weights are updated according to

wi = wi × e−αtI(ĝt(xi)=ci) = e−
∑
t αtI(ĝt(xi)=ci). (237)

In Appendix E.2.3 we show that (233), (235), and (237) are the equations of a GD-MCBoost algo-
rithm for the minimization of the risk defined by the loss

LAda.M1[ȳci , f̄(xi)] = e−〈ȳci ,f̄(xi)〉 (238)

with ȳj = 1j ∈ RM and f̄ = [f̂1, . . . , f̂M ] where f̂j is given by (233). Hence, AdaBoost.M1 is
a descent algorithm using the loss of (238), canonical codewords, and classification weak learners.
While this has some similarity with GD-MCBoost, there are important differences. First, (238) is
not a γ − φ loss. Second, the constraint αt > 0 requires the existence of a weak learner with error
rate smaller than 50% for any weight distribution. As discussed above, this is usually too stringent
for problems with large M . In practice, AdaBoost.M1 frequently terminates too early, due to the
impossibility of finding such a weak learner (Zhu et al., 2009).

H.2.2. SAMME

SAMME (Zhu et al., 2009) is a multiclass Boosting algorithm explicitly introduced to address this
problem. It learns anM -dimensional predictor f̄ = [f̄1, . . . , f̄M ] ∈ RM such that

∑M
k=1 f̄k(x) = 0,

using codewords

ȳj =
M1j − 1

M − 1
=

[
−1

M − 1
,
−1

M − 1
, . . . , 1,

−1

M − 1
,
−1

M − 1

]
∈ RM , (239)

and multiclass classification weak learners ĝ(x) : X → {ȳ1 . . . ȳM}. The boosting algorithm is
derived explicitly to minimize the loss

LSAMME [ȳci , f(xi)] = e−
1
M 〈ȳci ,f̄(xi)〉. (240)

using updates of the form of (33) and a decision rule

F̄ (x) = arg max
j∈{1,...,M}

f̄j(x) (241)

≡ arg max
j∈{1,...,M}

〈
ȳj , f̄(x)

〉
(242)

with ȳj = 1j ∈ RM . Appendix E.2.2 shows that this leads to the weak learner selection rule
of (235), making the updates of SAMME nearly identical to those of AdaBoost.M1. The only
difference is the step size αt. (Zhu et al., 2009) have shown that the optimal step is

αt = log

(
1− e∗t
e∗t

)
+ log(M − 1). (243)
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When compared to (236), the addition of the term log(M − 1) enables the algorithm to continue
running when e∗t < 50%. This substantially loosens the boostability condition, enabling the use of
much weaker weak learners. Comparing to GD-MCBoost, SAMME is a gradient descent procedure,
uses a maximum capacity codeword set, and classification weak learners. There are, however, two
main differences. The first is the use of the exponential loss of (240) instead of the φ − γ loss
of (23). These losses are compared in Section 8.1. The second is the use of different codeword sets
for learning the predictor (maximum capacity) and computing the decision rule (canonical). This
inconsistency is likely to degrade classification accuracy.

H.2.3. ADABOOST.M2 AND ADABOOST.MR

AdaBoost.MR (Schapire and Singer, 1999) is a multiclass boosting algorithm that supports multiple
labels per example. Its single-label version is AdaBoost.M2 (Freund and Schapire, 1996). Like
SAMME, it was introduced to increase the boostability of AdaBoost.M1. The extension is, however,
of a different nature. The idea behind AdaBoost.MR and AdaBoost.M2 is to define a distribution
over mislabels and a pseudo-loss of weak learner ht with respect to this distribution. The weak
learners are defined on the product space of input and class labels

gt : X × {1, . . . ,M} → R (244)

and denoted product weak learners. The goal is to learn a decision rule

F̄ (x) = arg max
j∈{1,...,M}

∑
t

αtĝt(x, j). (245)

AdaBoost.MR defines a weight per class for each training example, w(xi, k) k = 1, . . . ,M . This
can be seen as a weight distribution over classes and is initially uniform, i.e. w(xi, k) = 1, ∀k. At
each iteration, the weak learner ĝt(., .) of lowest pseudo loss

et =
1

2

∑
(i,y)∈B

w(xi, y)(1− g(xi, yi) + g(xi, y)), (246)

where B = {(i, y)|y 6= yi} is the set of mislabels, is selected and added to the current predictor
with coefficient

αt = log

(
1− et
et

)
. (247)

The weights are updated according to

w(xi, k) = w(xi, k)× e−
αt
2

[ĝt(xi,yi)−ĝt(xi,k)]. (248)

To compare AdaBoost.M2 to MCBoost, we start by defining the class-specific predictors

f̂j =
∑
t

αtĝt(x, j), (249)

the multi-dimensional predictor f̄(x) = [f̂(xi, 1), . . . , f̂(xi,M)] and the multi-dimensional weak
learner g(x) = [g(x, 1), . . . , g(x,M)]. The decision rule of (245) is then equivalent to

F̄ (x) = arg max
j∈{1,...,M}

〈
ȳj , f̄(x)

〉
, (250)
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with canonical codewords ȳj = 1j ∈ RM and the weights of (248) reduce to

w(xi, j) = e−
1
2 [〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]. (251)

The pseudo-loss of (246) can also be written as

et =
1

2

∑
i

∑
j 6=ci

w(xi, j)(1− 〈g(xi), ȳ
ci〉+

〈
g(xi), ȳ

j
〉
)

=
1

2

∑
i

wi

1−
∑
j 6=ci

w(xi, j)

wi

〈
g(xi), ȳ

ci − ȳj
〉

=
1

2

∑
i

wi

1−

〈
g(xi), ȳ

ci −
∑
j 6=ci

ȳj
w(xi, j)

wi

〉 , (252)

with
wi =

∑
j 6=ci

w(xi, j). (253)

Hence, the weak learner selected by AdaBoost.M2 is

ĝt ∝ arg max
g

1

2

∑
i

wi

〈
g(xi), ȳ

ci −
∑
j 6=ci

ȳj
w(xi, j)

wi

〉
. (254)

Since the combination of (251), (253), and (254) is the special case of (29)-(32) with φ(v) = e−v

and γ(v) = v, AdaBoost.M2 is conceptually equivalent to GD-MCBoost with the exponential
γ − φ loss of Table 3, canonical codewords, and the product weak learners of (244). In practice,
however, the algorithms can behave very differently, due to the replacement of the MCBoost weak
learners of (26) by the product learners of (244). Note that the latter augment training examples
with their class identities, to form a new set of training examples x̄ = [x, j] ∀j. This is problematic
because, besides increasing the size of the of training set M -fold, it creates many examples that
differ by only one coordinate. These examples can be difficult to discriminate with the simple
functions typically used to implement weak learners, e.g. decision stumps. These problems make
AdaBoost.MR computationally intensive and very slow to converge. The same problem arises for
AdaBoost.MH (Schapire and Singer, 1999) which also uses the weak learners of (244).

H.2.4. ADABOOST.MH

AdaBoost.MH is very similar to AdaBoost.MR. The only difference is the weight update stage,
where (248) is replaced by

w(xi, k) = w(xi, k)× e−αtzci,k ĝt(xi,k), (255)

with zci,k as defined in (224). Using the procedure above, it can be shown that AdaBoost.MH
minimizes the one-vs-all loss. This leads to a combination of the problems associated with the
weak learners of (244) and the loss function of (225), discussed in Section H.1.1.
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H.2.5. ADABOOST.MM

(Mukherjee and Schapire, 2013) proposed a framework for the characterization of multiclass boost-
ability conditions and used it to motivate the AdaBoost.MM algorithm. This a is multiclass boost-
ing method that uses classification weak learners ĝ(x) : X → {1, 2, . . . ,M} to learn a predictor
f̂(x) =

∑
t αtĝt(x). The decision rule is

F̄ (x) = arg max
j∈{1,...,M}

f̂(xi, j), (256)

where

f̂(xi, j) =
∑
t

αtI(ĝt(xi) = j), (257)

and I(.) is the indicator function. Each round of AdaBoost.MM computes the cost of assigning
example i to class j according to

Ci,j =

{
ef̂(xi,j)−f̂(xi,ci) if j 6= ci

−
∑

l 6=ci e
f̂(xi,l)−f̂(xi,ci) if j = ci

, (258)

and selects the weak learner of lowest cost

g∗ = arg min
ĝ

∑
i

Ci,ĝ(xi). (259)

AdaBoost.MM can be related to MCBoost by considering multidimensional weak learners of canon-
ical output, i.e.

ḡ(xi) = 1ĝ(xi), (260)

and a predictor

f̄(x) =
∑
t

αtḡt(x). (261)

Under these definitions, (257) can be written as

f̂(xi, j) =
〈
f̄(xi), ȳ

j
〉
, (262)

where

ȳj = 1j ∈ RM , (263)

is the canonical codeword set and the decision rule of (256) is equivalent to

F̄ (x) = arg max
j∈{1,...,M}

〈
ȳj , f̄(x)

〉
. (264)

Similarly, the costs of (258) can be written as

Ci,j =

{
e〈f̄(xi),ȳ

j〉−〈f̄(xi),ȳ
ci〉 if j 6= ci

−
∑

l 6=ci e
〈f̄(xi),ȳ

l〉−〈f̄(xi),ȳ
ci〉 if j = ci

, (265)
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and the weak learner selection rule as

g∗ = arg min
ĝ

∑
i

〈Ci, ḡ(xi)〉 , (266)

where Ci ∈ RM is the vector of components Ci,j . Using (263) and (265), this can be written as

Ci =
∑
j 6=ci

ȳje〈ȳj ,f̄(xi)〉−〈ȳci ,f̄(xi)〉 − ȳci
∑
j 6=ci

e〈ȳj ,f̄(xi)〉−〈ȳci ,f̄(xi)〉

=
∑
j 6=ci

(ȳj − ȳci)e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]. (267)

It follows from (266) that (259) is equivalent to

g∗ = arg min
ĝ

∑
i

∑
j 6=ci

〈
ḡ(xi), ȳ

j − ȳci
〉
e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]

= arg max
ĝ

∑
i

wi

〈
ḡ(xi), ȳ

ci −
∑
j 6=ci

ȳj
w(xi, j)

wi

〉
, (268)

with

w(xi, j) = e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]

wi =
∑
j 6=ci

w(xi, j), (269)

which is equivalent to the GD-MCBoost weak learner selection rule of (29) for φ(v) = e−2v and
γ(v) = v. Hence, AdaBoost.MM is an implementation of GD-MCBoost with the canonical code-
word set 1j , classification weak learners, and a γ − φ loss with φ(v) = e−2v and γ(v) = v. The
only difference is that each iteration of GD-MCBoost finds the optimal step size through a line
search. On the other hand, AdaBoost.MM relies on heuristics to determine the step size. This can
be sub-optimal.
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