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Abstract

We consider the problem of efficiently approximating and encoding high-dimensional data
sampled from a probability distribution p in R”, that is nearly supported on a d-dimensional
set M - for example supported on a d-dimensional manifold. Geometric Multi-Resolution
Analysis (GMRA) provides a robust and computationally efficient procedure to construct
low-dimensional geometric approximations of M at varying resolutions. We introduce
GMRA approximations that adapt to the unknown regularity of M, by introducing a
thresholding algorithm on the geometric wavelet coefficients. We show that these data-
driven, empirical geometric approximations perform well, when the threshold is chosen as
a suitable universal function of the number of samples n, on a large class of measures p,
that are allowed to exhibit different regularity at different scales and locations, thereby
efficiently encoding data from more complex measures than those supported on manifolds.
These GMRA approximations are associated to a dictionary, together with a fast transform
mapping data to d-dimensional coefficients, and an inverse of such a map, all of which are
data-driven. The algorithms for both the dictionary construction and the transforms have
complexity C'Dnlogn with the constant C' exponential in d. Our work therefore establishes
Adaptive GMRA as a fast dictionary learning algorithm, with approximation guarantees,
for intrinsically low-dimensional data. We include several numerical experiments on both
synthetic and real data, confirming our theoretical results and demonstrating the effective-
ness of Adaptive GMRA.

Keywords: Dictionary Learning, Multi-Resolution Analysis, Adaptive Approximation,
Manifold Learning, Compression

1. Introduction

We model a data set as n ii.d. samples &), := {z;}!' ; from a probability measure p in
RP. We make the assumption that p is supported on or near a set M of dimension d < D,
and consider the problem, given &),, of learning a data-dependent dictionary that enables
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efficient encoding of (future) data sampled from p, together with fast forward and inverse
transforms between R? and the space of encodings.

In order to circumvent the curse of dimensionality, a popular model for data is sparsity:
we say that the data is k-sparse on a suitable dictionary (i.e. a collection of vectors) & =
{@i}, C RP if each data point = € R? may be expressed as a linear combination of at most
k elements of ®. Clearly the case of interest is k < D. These sparse representations have
been used in a variety of statistical signal processing tasks, compressed sensing, machine
learning (see e.g. Protter and Elad, 2007; Peyré, 2009; Lewicki et al., 1998; Kreutz-Delgado
et al., 2003; Maurer and Pontil, 2010; Chen et al., 1998; Donoho, 2006; Aharon et al., 2005;
Candes and Tao, 2007, among many others), and spurred much research about how to
learn data-driven dictionaries (see Gribonval et al., 2015; Vainsencher et al., 2011; Maurer
and Pontil, 2010, and references therein). The algorithms used in dictionary learning are
often computationally demanding, and based on high-dimensional non-convex optimization
(Mairal et al., 2010). These approaches have the strength of being very general, with
minimal assumptions on the geometry of the dictionary or on the distribution from which
the samples are generated. This “worst-case” approach incurs bounds depending upon the
ambient dimension D in general (even in the standard case of data lying on one hyperplane).

It is possible to tackle the dictionary learning problem under geometric assumptions on
data sets (Maggioni et al., 2016), namely that data lie on or near a low-dimensional set
M. There are of course various possible geometric assumptions, the simplest one being
that M is a single d-dimensional subspace, in which case Principal Component Analysis
(PCA) (see Pearson, 1901; Hotelling, 1933, 1936) suffices for estimating the subspace. More
generally, one may assume that data lie on a union of several low-dimensional planes instead
of a single one. The problem of estimating multiple planes, called subspace clustering, is
more challenging (see Fischler and Bolles, 1981; Ho et al., 2003; Vidal et al., 2005; Yan and
Pollefeys, 2006; Ma et al., 2007, 2008; Chen and Lerman, 2009; Elhamifar and Vidal, 2009;
Zhang et al., 2010; Liu et al., 2010; Chen and Maggioni, 2011). This model was shown
effective in various applications, including image processing (Fischler and Bolles, 1981),
computer vision (Ho et al., 2003) and motion segmentation (Yan and Pollefeys, 2006). Yet
another type of geometric model gives rise to manifold learning, where M is assumed to
be a d-dimensional manifold isometrically embedded in R, see (Tenenbaum et al., 2000;
Roweis and Saul, 2000; Belkin and Niyogi, 2003; Donoho and Grimes, 2003; Coifman et al.,
2005a,b; Zhang and Zha, 2004) and many others. It is of interest to move beyond this model
to even more general geometric models, for example where the regularity of the manifold is
reduced, and data are not forced to lie exactly on a manifold, but only close to it.

Geometric Multi-Resolution Analysis (GMRA) was proposed in Chen and Maggioni
(2010), refined in Allard et al. (2012). In GMRA, geometric approximations of M are
constructed with multiscale techniques that have their roots in geometric measure theory,
harmonic analysis and approximation theory. GMRA performs a multiscale tree decom-
position of data and builds multiscale low-dimensional geometric approximations to M.
Given data, the cover tree algorithm (Beygelzimer et al., 2006) is run to obtain a multiscale
tree in which every node is a subset of M, called a dyadic cell, and all dyadic cells at a
fixed scale form a partition of M. After the tree is constructed, PCA is performed on the
data in each cell to locally approximate M by the d-dimensional principal subspace, so that
every point in that cell may be encoded by the d coefficients for the corresponding principal
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directions. At a fixed scale M is thereby approximated by a piecewise linear set. In Allard
et al. (2012) the performance of GMRA for volume measures on a C*, s € (1, 2] manifold was
analyzed in the continuous case (i.e. with no sampling), albeit the effectiveness of GMRA
was demonstrated empirically on simulated and real-world data, but for a fixed data set,
and without out-of-sample extension. In Maggioni et al. (2016), the approximation error
of M was estimated in the non-asymptotic regime with n i.i.d. samples from a measure
p, satisfying certain technical assumptions, supported on a thin tube of a C? manifold of
dimension d isometrically embedded in RP. The concentration bounds in Maggioni et al.
(2016) depend on n and d, but not on D, successfully avoiding the curse of dimensionality
caused by the ambient dimension. The assumption that p is supported in a tube around
a manifold can account for noise and does not force the data to lie exactly on a smooth
low-dimensional manifold.

In both Allard et al. (2012) and Maggioni et al. (2016), GMRA approximations are con-
structed on uniform partitions, at a fixed scale, in which all the cells have similar diameters.
However, when the regularity of M, such as smoothness or curvature, weighted by the p
measure, varies at different scales and locations, uniform partitions do not yield optimal
approximations. Inspired by the adaptive methods in classical multi-resolution analysis of
functions (see Donoho and Johnstone, 1994, 1995; Cohen et al., 2002; Binev et al., 2005,
2007, among many others, and references therein), we propose an adaptive version of GMRA
to construct low-dimensional geometric approximations of M on an adaptive partition, and
provide finite sample performance guarantees for a larger classes of geometric structures M
than those considered in Maggioni et al. (2016). This truly takes advantage of the multiscale
structure of GMRA, and leads to simple yet provably powerful approximations for a large
class of geometric objects that are not necessarily equally regular at all scales and locations.

Our main result (Theorem 8) in this paper may be paraphrased as follows: Let p be a
probability measure supported on or near a compact d-dimensional manifold M — RP with
d > 3. Assume that p admits a(n unknown) multiscale decomposition satisfying the techni-
cal assumptions A1-A5 in section 2.1. Given n i.i.d. samples of p, the intrinsic dimension d,
and a parameter £ large enough, Adaptive GMRA outputs a dictionary @n = {¢i}icy,, an
encoding operator D, : RP — R(@1DIn and a decoding operator D, REFDIn 5 RD that,
with high probability, satisfy the following properties. For every z € RP, Hﬁano <d+1
(i.e. only d + 1 entries of the encoded data are non-zero), and the Mean Squared Error
(MSE), over data sampled from p, satisfies

2s
log n 2s4+d—2
n .

MSE := B[z — D, ' Dpz||] < (

Here s is a regularity parameter of p (as in definition 5), which allows us to consider M’s and
p’s with nonuniform regularity, varying at different locations and scales. The parameter & is
used in choosing the threshold on the geometric wavelet coefficients, and selecting from the
GMRA a multiscale partition and set of local approximate tangent planes to use for encoding
the data. Note that the algorithm does not need to know s (indeed, s is independent of
s), but it automatically adapts to obtain a rate that depends on s. We believe, but do not
prove, that this rate is indeed optimal. As for computational complexity, constructing &Jn
takes O((C4+d?)Dnlogn) and computing D,z only takes O(d(D +d?)logn), which means
we have a fast transform mapping data to their sparse encoding on the dictionary.
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In Adaptive GMRA, the dictionary is composed of the low-dimensional planes on adap-
tive partitions and the encoding operator transforms a point to the local affine d+1 principal
coefficients of the data in a piece of the partition (the first affine principal component here
means the local mean). We state this results in terms of encoding and decoding to stress
that learning the geometry in fact yields efficient representations of data, which may be
used for performing signal processing tasks in a domain where the data admit a sparse
representation, e.g. in compressive sensing or estimation problems (see Iwen and Maggioni,
2013; Chen et al., 2012; Eftekhari and Wakin, 2015). Adaptive GMRA is designed towards
robustness, both in the sense of tolerance to noise and to model error (i.e. data not lying
on a manifold). We assume d is given throughout this paper. If not, we refer to Little et al.
(2017, 2009a,b) for the estimation of intrinsic dimensionality.

The paper is organized as follows. Our main results, including the construction of

GMRA, Adaptive GMRA and their finite sample analysis, are presented in Section 2. We
show numerical experiments in Section 3. The detailed analysis of GMRA and Adaptive
GMRA is presented in Section 4. In Section 5, we discuss the computational complexity of
Adaptive GMRA and extend our work to adaptive orthogonal GMRA. Proofs are collected
in the appendix.
Notation. We will introduce some basic notation here. f < g means that there exists a
constant C' independent on any variable upon which f and g depend, such that f < Cyg;
similarly for 2. f =< g means that f < g and f 2 g. The cardinality of a set A is denoted
by #A. For z € R”| ||z|| denotes the Euclidean norm and B, (x) denotes the Euclidean ball
of radius r centered at x. Given a subspace V € R, we denote its dimension by dim(V))
and the orthogonal projection onto V' by Projy,. If A is a linear operator on R, ||A|] is its
operator norm. The identity operator is denoted by I.

2. Main results

GMRA was proposed in Allard et al. (2012) to efficiently represent points on or near a
low-dimensional manifold in high dimensions. We refer the reader to that paper for details
of the construction, and we summarize here the main ideas in order to keep the presentation
self-contained. The construction of GMRA involves the following steps:

(i) construct a multiscale tree T and the associated decomposition of M into nested cells
{Cj k}rek, jez where j represents scale and k location;

(ii) perform local PCA on each Cj: let the mean (“center”) be ¢; and the d-dim principal
subspace V. Define P;(x) := ¢k + Projy,  (z — cj).

(ili) comstruct a “difference” subspace Wiy capturing P;r(Cjr) — P14 (Cjy1), for
each Cji1 € Cj (these quantities are associated with the refinement criterion in
Adaptive GMRA).

M may be approximated, at each scale j, by its projection Py, onto the family of linear sets
Aj := {Pjr(Cjx)}rex,;- For example, linear approximations of the S-manifold at scale 6
and 10 are displayed in Figure 1. In a variety of distances, Py, (M) — M. In practice M is
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(a) S-manifold (b) scale 6 (c) scale 10

Figure 1: (a) S-manifold; (b,c) Linear approximations at scale 6, 10.

unknown, and the construction above is carried over on training data, and its result is ran-
dom with respect to the training samples. Naturally we are interested in the performance of
the construction on new samples. This is analyzed in a setting of “smooth manifold+noise”
in Maggioni et al. (2016). When the regularity (such as smoothness or curvature) of M
varies at different locations and scales, linear approximations on fixed uniform partitions
are not optimal. Inspired by adaptive methods in classical multi-resolution analysis (see
Cohen et al., 2002; Binev et al., 2005, 2007), we propose an adaptive version of GMRA
which learns adaptive and near-optimal approximations.

We will start with the multiscale tree decomposition in Section 2.1 and present GMRA
and Adaptive GMRA in Section 2.3 and 2.4 respectively.

2.1. Multiscale partitions and trees

A multiscale set of partitions of M with respect to the probability measure p is a family
of sets {Cj}rek, jez, called dyadic cells, satisfying Assumptions (A1-A5) below, for all
integers j > Jmin:

(A1) for any k € K; and kK e Kjy1, either Cj 1 € Cjp or p(Cj_H,k/ N Cj,k) = 0. We
denote the children of Cj; by €(Cjx) = {Cjt1x : Cjz1pr € Cjr}. We assume that
amin < #€(Cj ) < amax. Also for every Cj, there exists a unique k' € K;_; such
that Cjx € Cj_1 . We call C;_1 s the parent of Cj .

(A2) p(M\ Ugek,;Cjk) =0, ie. Aj:={Cjx}rek, is a cover for M.
(A3) J6; >0 : #A] < 2jd/91.

(A4) 362 > 0 such that, if z is drawn from Ple, then a.s. ||z — cjzl < 62277.

(A5) Let )\{’k > )é’k >...> )\%k be the eigenvalues of the covariance matrix ¥ x of p o
J»
defined in Table 1. Then:

i) 303 > 0 such that Vj > jumim and k € K;, MF > 05272 /4,
70 7

(ii) 364 € (0,1) such that )\gfl < 94/\2&
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(A1) implies that the {C}k}rek;,j>jmm are associated with a tree structure, and with some
abuse of notation we call the above tree decompositions. (A1)-(Ab) are natural assumptions,
easily satisfied by natural multiscale decompositions when M is a d-dimensional manifold
isometrically embedded in R see the work (Maggioni et al., 2016) for a detailed discussion,
where the connections between the constants 6;’s and geometric properties of M (curvatures,
reach, etc...) are also discussed. (A2) guarantees that the cells at scale j form a partition of
M; (A3) says that there are at most 2/¢/0; dyadic cells at scale j. (A4) ensures diam(Cjx) <

~J. When M is a d-dimensional manifold, (A5)(i) is the condition that the best rank d
approximation to ¥; is close to the covariance matrix of a d-dimensional Euclidean ball,
while (A5)(ii) imposes that the (d+ 1)-th eigenvalue is smaller that the d-th eigenvalue, i.e.
the set has significantly larger variances in d directions than in all the remaining ones. The
conditions generalize those in (Allard et al., 2012) (which corresponded to the case when
M is a manifold) and in (Maggioni et al., 2016), for example by not assuming that all sets
{Cj 1}k (for any fixed j) have roughly the same volume, and also by weakening (A5). These
changes enlarge the class of measures p and sets M that we consider here, for exampling
allowing for a highly nonuniform measure p, and an M substantially “thickened” in many
dimensions.

We will construct such {Cjx}rek; j>jmn i Section 2.6. In our construction (Al-A4)
is satisfied when p is a regular doubling probability measure! (see Christ, 1990; Deng and
Han, 2008). If we further assume that M is a d-dimensional C*, s € (1, 2] closed manifold
isometrically embedded in R”, then (A5) is satisfied as well (See Proposition 14).

It may happen that at the coarsest scales conditions (A3)-(A5) are satisfied but with
very poor constants 6: it will be clear that in all that follows we may discard a few coarse
scales (i.e. by enlarging jmin), and only work at scales that are fine enough and for which
(A3)-(Ab) truly capture the local geometry of M.

Some mnotation: a master tree T is associated with {C}}kex; j>jmm (using property
(A1)), constructed on M; since Cj;’s at scale j have similar diameters, A; := {C}x }rek;
is called a uniform partition at scale j. A proper subtree T of T is a collection of nodes of
T with the properties: (i) the root node is in 7, (ii) if Cjj is in 7 then the parent of Cik
is also in 7. Any finite proper subtree 7 is associated with a unique partition A = A(T)
which consists of its outer leaves, by which we mean those Cj; € T such that Cj, ¢ T but
its parent is in T.

2.2. Empirical GMRA

In practice the master tree 7 is not given, nor can be constructed since M is not known:
we will construct one on samples by running a variation of the cover tree algorithm (see
Beygelzimer et al., 2006), which only creates candidate “centers” for the C}, by adding a
multiscale partitioning step. From now on we denote the training data by Xs,. We randomly
split the data into two disjoint groups such that Xo, = X UX,, where X, = {2}, ..., 2]} and
X, = {x1,...,2,}, apply our variation on cover trees on X, to construct a tree satisfying
(A1-A5) (see section 2.6). After the tree is constructed, we assign points in the second

1. p is regular doubling if there exists C1 > 0 such that C;'r? < p(M N B,(z)) < Cir? for any x € M and
r > 0. C is called the doubling constant of p.
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GMRA Empirical GMRA
Linear projection . = ~ . -
on Cj Pix(T) = cjp + PTOJ‘/]_‘C(I —Cjk) Pin(w) =T + PrO‘]‘?hk(I —Cik)
Linear projection ~ =
at scale j Pj = Lkex; Piklik Pj = Lkex, Pinklik
Measure p(Cjx) p(Cjx) =njk/n
Center cjk = Ejpx Cik = % ELECj,k x5
.. V; x minimizes V: ), minimizes
Principal b . 2 I . ~
subspaces Ejrlle — cjw = PrOJV(I —w)ll ﬁ%ﬂ Zmiecm | =&k — Projy (z — ¢x)|?
among d-dim subspaces among d-dim subspaces
Covariance a ~ ~
matrix D = Ejk(e — ) (@ — cjp)” Sjk = fr Dmecy, (@i — G (@i — )
Inner product
with respect to p (PX, QX) = [y, (Pz, Qu)dp 2 s e, (Pri Qu
Norm with 1 1
respect to p PX] = (f/vt HPIH?dP)Z (1/” D aic, ”PxiHQ)Z

Table 1: This table summarizes GMRA-related quantities and their empirical counterparts
(Allard et al., 2012; Maggioni et al., 2016). 1, is the indicator function on C
(i.e.,1j,(x) = 1ifx € O and 0 otherwise). Here E; ;, stands for expectation with
respect to the conditional distribution dp, Cn The measure of Cj, is p(Cj ) and
the empirical measure is p(Cj ) = njx/n where nj is the number of points in
Cjk. Vi and ‘Zk are the eigen-spaces associated with the largest d eigenvalues
of ¥ and EIM; respectively. Here P, Q: M — RP are two operators.

half of data X),, to the appropriate cells. In this way we obtain a family of multiscale
partitions for the points in X),, which we truncate to the largest subtree whose leaves
contain at least d points in A,,. This subtree is called the data master tree, denoted by
T". We then use X, to perform local PCA to obtain the empirical mean ¢;; and the
empirical d-dimensional principal subspace ‘A/]k on each Cj ;. Define the empirical projection
ﬁjk(x) = Cjk + Projf/m (x —¢j) for x € Cjj. Table 1 summarizes the GMRA-related
quantities and their empirical counterparts.

2.3. Geometric Multi-Resolution Analysis: uniform partitions

GMRA with respect to the distribution p associated with the multiscale tree 7 consists
a collection of piecewise affine projectors {P; : RP — RP},5;  on the multiscale par-
titions {A; = {Cjr}rex;}i>jmin- At scale j, M is approximated by the piecewise
linear sets {P;x(Cjr)}rex,- The approximation error of M by the empirical linear sets
{ﬁj,k(cj,k)}kelcj is defined as:

BIX - PX* =E [ fo-Palfdp=E Y [ o~ Pualfdp
M kek; ’ Cik
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where ﬁj and 7/5j7k are built from random samples x; ~ p (according to the GMRA algo-
rithm), X is a random vector distributed according to p, and the expectation is taken over
X. The squared approximation error above is also called the Mean Square Error (MSE) of
GMRA. In order to understand the error, we split it into a bias term and a variance term:

E|X —P;X|| < || X - P X[ +E||P; X — P X]. (1)
bias v/ variance

To bound the bias term, we need regularity assumptions on p, while for the variance term
we prove concentration bounds of the relevant quantities around their expected values.

For a fixed distribution p, the approximation error of M at scale j, measured by || X —
P;X]|, decays at a rate dependent on the regularity of M in the p-measure (see Allard
et al., 2012). We quantify the regularity of p as follows:

Definition 1 (Model class A;) A probability measure p supported on M is in As if

lpla, = Sup inf{Ag : || X — P;X|[| < A0277%,Vj > jmin} < 00, (2)

where T wvaries over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

We capture the case where the L? approximation error is roughly the same on every cell
with the following definition:

Definition 2 (Model class AS°) A probability measure p supported on M is in AL if
‘p‘Ago = Sl7l—p inf{Ao : H(X — Pj,kX)lj,kH < A()Qijsw/p(Cj’k), Vk e /Cj,j > jmin} < o0 (3)

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

Clearly A C As. Also, since diam(Cjg) < 265277, necessarily ||(I — Pjx)1;.X]| <
62277\/p(Cjr), Yk € Kj,j > jmin, and therefore p € AJ° in any case. Moreover, these
classes contain suitable measures supported on manifolds:

Proposition 3 Let M be a closed manifold of class C*, s € (1,2] isometrically embedded
in RP, and p be a doubing probability measure on M with the doubling constant Cy. Then
our construction of {Cjk}rek; j>jmn i1 Section 2.6 satisfies (A1-A5), and p € AY.

The proof is postponed to Appendix A.2.

Example 1 We consider the d-dim S-manifold whose x1 and xo coordinates are on an S-
shaped curve and x; ranges in [0,1] fori=3,...,d+ 1. By the Proposition just stated, the
volume measure on this S-manifold is in AS°. Numerically one can identify s from data
sampled from p € As as the slope of the line approzimating logyy || X — P; X|| as a function
of logyy1; where r; is the average diameter of C; 1 ’s at scale j. Our numerical experiments
in Figure 5 (b) give rise to s ~ 2.0,2.1,2.1 when d = 3,4,5 respectively.
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Total error 0 ‘ Iagw(err‘m) versus‘logm(pam‘tmn size) ‘

Variance

log ,(L*

Squared bias

scale j 0 05 1 15 2 25 3 a5 4
log,(partition size)

(a) Bias and variance tradeoff (b) Error versus the partition size

Figure 2: (a) Plot of the bias and variance estimates in Eq. (1), with s = 2,d = 5,n =
100. (b) shows the approximation error on test data versus the partition size in
GMRA and Adaptive GMRA for the 3-dim S-manifold. When the partition size
is between 1 and 10%®, the bias dominates the error so the error decreases; after
that, the variance dominates the error, which becomes increasing.

Example 2 As a comparison we consider the d-dimensional Z-manifold whose 1 and xo
coordinates are on a Z-shaped curve and xz; ranges in [0,1], for i = 3,...,d+ 1. Volume
measure on the Z manifold is in Ay 5 (see appendiz B.2). Our numerical experiments in
Figure 5 (c) give rise to s =~ 1.5,1.7,1.6 when d = 3,4,5 respectively.

The squared bias in (1) satisfies | X —P; X ||* < |p|% 27%* whenever p € A; (by definition
of As). In Proposition 16 we will show that the variance term is estimated in terms of the
sample size n and the scale j as follows:

E|P;X — P X|* < 5927, -

4 loglad#th] ( j2j(d_2)>

where «, 8 are constants depending on 65, 03. In the case d = 1 both the squared bias and
the variance decrease as j increases, so choosing the finest scale of the data tree 7" yields the
best rate of convergence. When d > 2, the squared bias decreases but the variance increases
as j gets large as shown Figure 2, as a manifestation of the classical bias-variance tradeoff,
except that it arises here in a geometric setting (a related instance of this phenomenon
appears in Canas et al. (2012)). By choosing a proper scale j* to balance these two terms,
we obtain the following rate of convergence for empirical GMRA truncated at scale j*:

Theorem 4 Suppose p € A for s > 1. Let v > 0 be arbitrary and fix n > 0. Let j* be
chosen such that

o (plesn ford=1
277" = 1 25+1d72 (4)
1 ( Oi") ,  ford>2

9
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then there exists C1 := C1(01,02,03,04,d,v, 1) and Cy := Cy(61,62,03,04,d, 1) such that:

~ logn —
P{\X =P X[ = (Ipla.p® +Cl)i} <Con™", ford=1, (5)

logn

N prw)
P{HX—PJ-*XHz<|p|Asm+cl>( ) }sczn—”, fordz2.  (6)

Theorem 4 is proved in Section 4.2. From the perspective of dictionary learning, it says that
GMRA provides a dictionary ;- of cardinality < dn/logn for d = 1 and =< d(n/log n)ﬁ
for d > 2, consisting of the principal directions in each of the Cj ;’s (forming the columns
of XA/]*I) and the means of the Cj« ;’s, so that every « sampled from p (and not just samples
in the training data) may be encoded with a vector with d 4+ 1 nonzero entries: one entry
encodes the location k of x on the tree, e.g. (j*,z) = (j*, k) such that x € Cj«j, and the
other d entries are the coefficients Y//\ﬁm (x — ¢j+ z). We also remind the reader that GMRA
automatically constructs a fast transform mapping points x to the vector representing @«
(See Allard et al. (2012); Maggioni et al. (2016) for a discussion). Note that by choosing v
large enough in the Theorem,

log n) T2

(6) = MSE = E||X — P+ X|[2 < (n

and (5) implies MSE < (lo%f for d = 1. Clearly, one could fix a desired MSE of size 2,
and obtain a dictionary of size dependent only on € and independent of n, for n sufficiently
large, thereby obtaining a way of compressing data (for further discussion on this point see

Maggioni et al. (2016), where also a special case of Theorem 4 with s = 2 was proved).

2.4. Geometric Multi-Resolution Analysis: Adaptive Partitions

The performance guarantee in Theorem 4 is not fully satisfactory for two reasons: (i)
the regularity parameter s is required to be known to choose the optimal scale j*, and
this parameter is typically unknown in any practical setting, and (ii) none of the uniform
partitions {C} j}rex, will be optimal if the regularity of p (and/or M) varies at different
locations and scales. This lack of uniformity in regularity can appear in a wide variety of
data sets for various reasons: when clusters exist that have cores denser than the remaining
regions of space, when sampled trajectories of a dynamical system linger in certain regions
of space for much longer time intervals than others (e.g. metastable states in molecular

Definition (infinite sample) Empirical version

Difference operator | Q1 := (P; — Pjy1)1jk @j’k = (P — 73j+1)1j,k:

Norm of difference | A2, = [ [QulPdp | A2 =10, e [1Qsuil?

T n

Table 2: Refinement criterion and the empirical counterparts

10
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Figure 3: Left: a master tree in which red nodes satisfy A, > 27J7,, but blue nodes do not.
Right: the subtree of the red nodes is the smallest proper subtree that contains
all the nodes satisfying A, > 2777, i.e. were red in the figure on the left. Green
nodes form the adaptive partition.

dynamics (Rohrdanz et al., 2011; Zheng et al., 2011)), in data sets of images where details
exist at different level of resolutions, affecting regularity at different scales in the ambient
space, and so on. To fix the ideas we consider again one simplest manifestations of this
phenomenon in the examples considered above: uniform partitions work well for the volume
measure on the S-manifold but are not optimal for the volume measure on the Z-manifold,
for which the ideal partition is coarse on flat regions but finer at and near the corners (see
Figure 4). In applications, for example to mesh approximation, it is often the case that the
point clouds to be approximated are not uniformly smooth and include different levels of
details at different locations and scales (see Figure 9). We therefore propose an adaptive
version of GMRA that automatically adapts to the regularity of the data and choose a
near-optimal partition.

We expect Ajj, defined in Table 2 to be small on approximately flat regions, and large
Aj ;; at many scales at irregular locations. We also expect ﬁjvk to have the same behavior, at
least when ﬁj,k is with high confidence close to A; ;. We see this phenomenon represented
in Figure 4 (a,b): as j increases, for the S-manifold Hﬁj+1$i - ﬁ]xZH decays uniformly
at all points, while for the Z-manifold, the same quantity decays rapidly on flat regions
but remains large even at fine scales near the corners (where “near” is scale-dependent,
decreasing with scale). We wish to include in our approximation the nodes where this
quantity is large, since we may expect a large improvement in approximation by including
such nodes. However if too few samples exist in a node, then this quantity is not to be
trusted, because its variance is large. It turns out that it is enough to consider the following
criterion: let 7A'Tn be the smallest proper subtree of 7" that contains all Cj; € T" for
which Ejyk > 2777, where 7, = k+/(logn)/n. Crucially, x may be chosen independently of
the regularity index (see Theorem 8). Empirical Adaptive GMRA returns piecewise affine
projectors on KTH, the partition associated with the outer leaves of ﬁn Our algorithm is
summarized in Algorithm 1.

11
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Algorithm 1 - Adaptive GMRA
Input: data Xy, = XT’&J X, intrinsic dimension d, threshold s
Output: 7", {C;i}, PT\T : multiscale tree, corresponding cells and adaptive piecewise

linear projectors on an adaptive partition.

1: Construct 7" and {C};} from X},

2: Now use &},. Compute 73]-7;@ and zj,k on every node Cj; € T".

3: ’ﬁn < smallest proper subtree of 7" containing all C;; € T" : ﬁjjk > 2777, where
T = K4/ (logn)/n.

4: A;, < the partition associated with outer leaves of T,
5: PKT,L — ch,kexm Pikljk.

Adaptive partitions may be effectively selected with a criterion that determines whether
or not a cell should participate in the adaptive partition. The quantities involved in the
selection and their empirical version are summarized in Table 2.

We will provide a finite sample performance guarantee of the empirical Adaptive GMRA
for a model class that is more general than A2°. Given any fixed threshold n > 0, we let
T(p,n) be the smallest proper subtree of 7 that contains all Cj; € T for which Aj; > 277n.
The corresponding adaptive partition A(,,) consists of the outer leaves of 7, ). We let
#;7T(p,n be the number of cells in 7, at scale j.

Definition 5 (Model class By) In the case d > 3, given s > 0, a probability measure p
supported on M is in Bs if p satisfies the following regularity condition:

D
lplg. := | sup supn” Z 272j#j7’(pm) < 00, withp=
T 77>0 jZ]mln

2(d — 2)
2s+d—2 (7)

where T wvaries over the set, assumed nonempty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

For elements in the model class Bs we have control on the growth rate of the truncated
tree 7, as n decreases, namely it is O(n~P). Our key estimates on variance and sample
complexity in Lemma 15 indicate that the natural measure of the complexity of 7, is the
weighted tree complexity measure > jenin 272 #;7T (o) in the definition above. First of all,
the class B is indeed larger than A%° (see appendix A.4 for a proof):

Lemma 6 By is a more general model class than AJ: if p € A, then p € Bs and
lplB, < lplage.

Example 3 The volume measures on the d-dim (d > 3) S-manifold and Z-manifold are
in By and By 5(q_2)/(a-3) respectively (see appendix B). In numerical experiments, s can be

approzimated by the negative of the slope in the log-log plot of | X — ﬁKnXHd*Q versus the

weighted complexity of the truncated tree according to Eq. (9): see numerical examples in
Figure 5.

12



ADAPTIVE GEOMETRIC MULTISCALE APPROXIMATIONS FOR INTRINSICALLY LOW-DIMENSIONAL DATA
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Figure 4: (a,b): logg |]7/5] (i) — 73j+1(aci)\| from the coarsest scale (top) to the finest scale
(bottom), with columns indexed by points, which, for visualization purposes
only, are sorted roughly from “left to right” on the manifold. (d,e): adaptive
approximations: for the S-manifold the adaptive approximation is close to a uni-
form approximation, but for the Z-manifold it contains few large pieces near the
almost-flat regions, and several small pieces near the “corners”. (c,f): log-log
plot of the approximation error versus the partition size in GMRA and Adap-
tive GMRA respectively. Theoretically, the slope is —2/d in both GMRA and
Adaptive GMRA for the S-manifold. For the Z-manifold, the slope is —1.5/d in
GMRA and —1.5/(d — 1) in Adaptive GMRA (see appendix B).

We also need a quasi-orthogonality condition which says that the operators {Q; i }re K52 dmin
applied on M are mostly orthogonal across scales and/or ||Q; ;X || quickly decays.

Definition 7 (Quasi-orthogonality) There ezists a constant By > 0 such that for any
proper subtree T of any master tree T satisfying Assumptions (A1-A5),

> QuXIP < Bo Y 119ixX | (8)

CykgT Ci kgT

We postpone further discussion of this condition to Section 5.2. One can show (see appendix
D) that in the case d > 3, p € B along with quasi-orthogonality implies a certain rate of

13



L1A0 AND MAGGIONI

approximation of X by Py, X, asn— 07

IX = Pa, XIP < Boaloly, " < Bodloly, | D 27%#Tm | (9)
jzjmin

where s = W and Bs 4 1= B2P/(1 — 2P2).
The main result of this paper is the following performance analysis of empirical Adaptive
GMRA (see the proof in Section 4.3).

Theorem 8 Suppose p satisfies quasi-orthogonality and M is bounded: M C Bpr(0). Let
v > 0. There exists ko(02, 03,04, Amax, d, V) such that if T, = k+/(logn)/n with k > ko, the
following holds:

(i) if d > 3 and p € By for some s > 0, there are ¢ and ca such that

~ 1 25-:;1—2
]P’{HX ~Pi X|>a < 05”) } <em . (10)

(ii) if d = 1, there exist c; and cy such that

1
~ 1 2
IP’{HX ~P; X[ >a ( Oi”) } <em™. (11)

(iii) if d =2 and

1 o
o= supsp L Y 2T <40
T 77>0 njzjmin

then there exist c1 and co such that
~ log?
IP{HX—PK X| > e ( o8 ”)
™ n

Notice that by choosing v large enough, we have

N log® B log® 28
P{HX—PK XHZCl(Og n) }SCQn”:MSES(n(Og n) :
™ n mn

[NIES

} <con. (12)

2s
so we also have MSE < (logn/n)%+d—2 for d > 3 and MSE < log?n/n for d = 1, 2.
The dependencies of the constants in Theorem 8 on the geometric constants are as
follows:

d>3: ¢ =ci(b234,max,d, S, K, |p|B,, Bo,v), 2= c2(0234,amin; Amax, d; 5, K, |p|B,, Bo)-
d=2: c =ci(0234,amax, d; K, |plB,, Bo,v), 2 = c2(02,3.4, Gmin, Gmax, d; K, |p|B,, Bo)-
d 1: 1 =< (01,2,3747 Omax d? K, B07 V)? C2 = 02(91,2,3,47 Qmin, Gmax, d7 K, BO)

14
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Theorem 8 is more satisfactory than Theorem 4 for two reasons: (i) when d > 3, the
same rate (logn/n)?/(574=2) is proved for the model class B, which is larger than A
(ii) the threshold-based estimator is adaptive: it does not require a priori knowledge of the
regularity s, since the choice of k is independent of s, yet it achieves the rate as if it knew
the optimal regularity parameter s.

From the perspective of dictionary learning, when d > 3, Adaptive GMRA provides
a dictionary @3 associated with a tree of weighted complexity (n/logn)d—2/(2s+d=2) g4
that every x Sampled from p may be encoded by a vector with d 4 1 nonzero entries, among
which one encodes the location of z in the adaptive partition and the other d entries are
the local principal coefficients of z.

For a given accuracy ¢, in order to achieve MSE < ¢2, the number of samples we need
is n. > (1/e)@5t4=2)/510g(1/e). When s is unknown, we can determine s as follows: we fix
a small ng and run Adaptive GMRA with ng, 2ng,4ng, ..., Cng samples. For each sample
size, we evenly split data into a training set to construct Adaptive GMRA and a test set
to evaluate the MSE. According to Theorem 8, the MSE scales like [(logn)/ n]%fﬁ where
n is the sample size. Therefore, the slope in the log-log plot of the MSE versus n gives an
approximation of —2s/(2s + d — 2).

The threshold 7,, in our adaptive algorithm is independent of s since k¢ does not depend
on s, which means our adaptive algorithm does not require s as a priori information but
rather will learn it from data.

Remark 9 It would also be natural to consider another stopping criterion: szk = ﬁ
’ 75

ij,k Pz — z||2dp < n* which suggests stopping refinement to finer scales if the approz-
imation error is below certain threshold. The reason why we do not adopt this stopping
criterion is that in this case the threshold n would have to depend on s in order to guarantee
the (adaptive) rate MSE < (log n/n)2s/(28+d_2) for d > 3. More precisely, for any thresh-
old n > 0, let ’7?5”7) be the smallest proper subtree of T whose leaves satisfy £2 2,
The corresponding adaptive partition A(gp - consists of the leaves of Tp (o) This stop-
ping criterion guarantees || X — PA(s X|| < n. It is natural to define the model class
Fs in the case d > 3 to be the set of probability measures p supported on M such that
Sup7 Sup,~ n(d 2)/s ijjmin 272 #JAgpm) < oo where T waries over the set of multiscale
tree decompositions satisfying (A1-A5). One can show that AX C Fs. As an analogue of
Theorem 8, we can prove that, there exists kg > 0 such that if our adaptive algorithm adopts
the stopping criterion 5 & < 75 where the threshold is chosen as TS = m(log n/n)29+d 2

with k > kg, then the empirical approximation on the adaptive partition A‘r,‘f satisfies
MSE = || X — PA XH2 (logn/n)?*/s+4=2) With this stopping criterion, the thresh-

old Tn would requzre knowing s, unlike in Theorem §.

Theorem 8 is stated when M is bounded. The assumption of the boundedness of M is
largely irrelevant, and may be replaced by a weaker assumption on the decay of p.

Theorem 10 Let d > 3, 5,0, A\, u > 0. Assume that there exists C1 such that

/ ||z|[?dp < C1R™°, VR > Ry.
Br(0)¢

15



L1A0 AND MAGGIONI

Suppose p satisfies quasi-orthogonality. If p restricted on Bgr(0), denoted by Pl g0 s in
2(d—2

Bs for every R > Ry and (|p‘BR(O)\BS)p < O3R* for some Cy > 0, where p = 25(+d—)2' Then

there exists ko(02,03, 04, Gmax, d, V) such that if T, = ky/logn/n with k > ko, we have

s [
~ 1 Z5+d—2 5fmax(),2)
P{HX—PKMXH >0 ( ij") }g can™ (13)

for some c1, ca independent of n, where the estimator 7/5& X is obtained by Adaptive GMRA

2s
within Br, (0) where R, = max(Ry, u(n/logn)@sti=2)6tmaxX2)) ) - and is equal to 0 for the
points outside B, (0).

2s )
Theorem 10 is proved at the end of Section 4.3. It implies MSE < (log n/n)2s+d=2 stmax(3.2) |

As ¢ increases, i.e., § — 400, the MSE approaches (logn/ n)%fﬁ, which is consistent with
Theorem 8 for bounded M. Similar results, with similar proofs, would hold under differ-
ent assumptions on the decay of p; for example for p decaying at least exponentially, only
additional logn terms in the rate would be lost compared in Theorem 8.

Remark 11 We claim that A is not large in simple cases. For example, if p € A and p

decays in the radial direction in such a way that p(Cj 1) < C2779)|c; ]| =1+ it is easy
. d+1+6)(d—2

to show that py,, € Bs for all R >0 and ]p|BR(O) 5, < R with A =d — (23-1-# (see

the end of Section 4.3).

Remark 12 Suppose that p was supported in a tube of radius o around a d-dimensional
manifold M, a model that can account both for (bounded) noise and situations where data
is not exactly on a manifold, but close to it, as in Maggioni et al. (2016). Then Theorem 8
and Theorem 10 apply in this case, provided one stops the estimator at a scale j such that
277 > 0.

Remark 13 In these Theorems we are assuming that d is given because it can be estimated
using existing techniques, see Little et al. (2017) and many references therein.

2.5. Connection to previous works

The works by Allard et al. (2012) and Maggioni et al. (2016) are natural predecessors to
this work. In Allard et al. (2012), GMRA and orthogonal GMRA were proposed as data-
driven dictionary learning tools to analyze intrinsically low-dimensional point clouds in a
high dimensional space. The bias || X — P;X| were estimated for volume measures on
C*,s € (1,2] manifolds . The performance of GMRA, including sparsity guarantees and
computational costs, were systematically studied and tested on both simulated and real
data. In Maggioni et al. (2016) the finite sample behavior of empirical GMRA was studied.
A non-asymptotic probabilistic bound on the approximation error || X —ﬁjX || for the model
class Ay (a special case of Theorem 4 with s = 2) was established. It was further proved
that if the measure p is absolutely continuous with respect to the volume measure on a
tube of a bounded C? manifold with a finite reach, then p is in A;. Running the cover

16



ADAPTIVE GEOMETRIC MULTISCALE APPROXIMATIONS FOR INTRINSICALLY LOW-DIMENSIONAL DATA

tree algorithm on data gives rise to a family of multiscale partitions satisfying Assumption
(A3-A5). The analysis in Maggioni et al. (2016) robustly accounts for noise and modeling
errors as the probability measure is concentrated “near” a manifold. This work extends
GMRA by introducing Adaptive GMRA, where low-dimensional linear approximations of
M are built on adaptive partitions at different scales. The finite sample performance of
Adaptive GMRA is proved for a large model class. Adaptive GMRA takes full advantage of
the multiscale structure of GMRA in order to model data sets of varying complexity across
locations and scales. We also generalize the finite sample analysis of empirical GMRA
from A5 to Ag, and analyze the finite sample behavior of orthogonal GMRA and adaptive
orthogonal GMRA.

In a different direction, a popular learning algorithm for fitting low-dimensional planes
to data is k-flats: let Fj be the collections of k flats (affine spaces) of dimension d. Given
data X, = {z1,...,x,}, k-flats solves the optimization problem

1 n
in =S dist?(zs, S 14
é"fe“f%n; ist? (2, 5) (14)

where dist(z, S) = inf,cg [|z—y||. Even though a global minimizer of (14) exists, it is hard to
attain due to the non-convexity of the model class F}, and practitioners are aware that many
local minima that are significantly worse than the global minimum exist. While often k is
considered given, it may be in fact chosen from the data: for example Theorem 4 in Canas
et al. (2012) implies that, given n samples from a probability measure that is absolutely
continuous with respect to the volume measure on a smooth d-dimensional manifold M, the

d
expected (out-of-sample) L? approximation error of M by k,, = C1(M, p)n2@+D planes is of
2
order O(n~ @+1). This result is comparable with our Theorem 4 in the case s = 2 which says
. 1
that the L? error by empirical GMRA at the scale j such that 2/ =< (n/logn)@2 achieves

a faster rate (’)(n_ﬁ). So we not only achieve a better rate, but we do so with provable
and fast algorithms, that are nonlinear but do not require non-convex optimization.
Multiscale adaptive estimation has been an intensive research area for decades. In the
pioneering works by Donoho and Johnstone (see Donoho and Johnstone, 1994, 1995), soft
thresholding of wavelet coefficients was proposed as a spatially adaptive method to denoise a
function. In machine learning, Binev et al. addressed the regression problem with piecewise
constant approximations (see Binev et al., 2005) and piecewise polynomial approximations
(see Binev et al., 2007) supported on an adaptive subpartition chosen as the union of data-
independent cells (e.g. dyadic cubes or recursively split samples). While the works above are
in the context of function approximation/learning/denoising, a whole branch of geometric
measure theory (following the seminal work by Jones (1990); David and Semmes (1993))
quantifies via multiscale least squares fits the rectifiability of sets and their approximability
by multiple images of bi-Lipschitz maps of, say, a d-dimensional square. We can the view
the current work as extending those ideas to the setting where data is random, possibly
noisy, and guarantees on error on future data become one of the fundamental questions.
Theorem 8 can be viewed as a geometric counterpart of the adaptive function approx-
imation in Binev et al. (2005, 2007). Our results are a “geometric counterpart” of sorts.
We would like to point out two main differences between Theorem 8 and Theorem 3 in
Binev et al. (2005): (i) In Binev et al. (2005, Theorem 3), there is an extra assumption that
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the function is in A, with v arbitrarily small. This assumption takes care of the error at
the nodes in 7 \ 7" where the thresholding criteria would succeed: these nodes should be
added to the adaptive partition but have not been explored by our data. This assumption
is removed in our Theorem 8 by observing that the nodes below the data master tree have
small measure so their refinement criterion is smaller than 2777, with high probability.
(ii) we consider scale-dependent thresholding criterion AM > 2777, unlike the criterion
in Binev et al. (2005, 2007) that is scale-independent. This difference arises because at
scale j our linear approximation is built on data within a ball of radius < 277 and so the
variance of PCA on a fixed cell at scale j is proportional to 27%. For the same reason,
we measure the complexity of 7, in terms of the weighted tree complexity instead of the
cardinality since the former one gives an upper bound of the variance in piecewise linear
approximation on partition via PCA (see Lemma 15). Using scale-dependent threshold and
measuring tree complexity in this way give rise to the best rate of convergence. In con-
trast, if we use scale-independent threshold and define a model class I's for whose elements

#T (o) = O(n_%) (analogous to the function class in Binev et al. (2005, 2007)), we can

still show that A C T's, but the estimator only achieves MSE < ((logn)/ n)% However
many elements? of T’y not in A are in B* with 2§§i;2_)2 = 2521 5> and in Theorem 8 the
estimator based on scaled thresholding achieves a better rate, which we believe is optimal.

We refer the reader to Maggioni et al. (2016) for a thorough discussion of further related

work related to manifold and dictionary learning.

2.6. Construction of a multiscale tree decomposition

Our multiscale tree decomposition is constructed from a variation of the cover tree algorithm
(see Beygelzimer et al., 2006) applied on half of the data denoted by X’. In brief the cover
tree T'(X)) on X is a leveled tree where each level is a “cover” for the level beneath it.
Each level is indexed by j and each node in T'(X)) is associated with a point in X). A
point can be associated with multiple nodes in the tree but it can appear at most once at
every level. Let T;(X,) C &), be the set of nodes of T at level j. The cover tree obeys the
following properties for all j = juin, - - -, Jmax:

1. Nesting: Tj(X;,) C Tj+1(Xy);
2. Separation: for all distinct p, ¢ € T;(X}), ||lp — ¢l > 277;

3. Covering: for all ¢ € Tj41(X)), there is p € T;(X) such that |[p—q|| < 277. The node
at level j associated with p is a parent of the node at level j + 1 associated with q.

In the third property, ¢ is called a child of p. Each node can potentially have multiple
parents satisfying the distance constraint in 3. above, but is only assigned to one of them
in the tree. The properties above imply that for any ¢ € &), there exists p € T} such that
lp — q|| < 277*L. The authors in Beygelzimer et al. (2006) showed that cover tree always
exists and that can be constructed in time O(C?Dnlogn) .

2. For these elements, the average cell-wise refinement is monotone in the sense that for every Cj; and

Cjy1kr C Cjey we have Ajyy 1 /7/p(Civan) < Ajk/+/p(Cik)-
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We now show that from a set of nets {7} (X))} j=jiin,....jmax 8 abOve we can construct a
set of Cj’s with desired properties. (see Appendix A for the construction of Cj;’s and the
proof of Proposition 14). M defined in (31) is equal to the union of the Cj;’s up to a set
with 0 empirical measure.

Proposition 14 Assume p is a doubling probability measure on M with doubling constant
Cr. Then {Cj i} hek; jmin<j<jmax CONstructed in Appendiz A satisfies the Assumptions

1. (A1) with amax < C?(24)¢ and ami, = 1.
2. For anyv > 0,
—~ 28v 1
P\ 3 > BB < (15)
3. (A3) with 6, = C{'4%;
4. (A4) with 65 = 3.
5. Additionally:

Sa. if p satisfies the conditions in (A5) with B.(2), z € M, replacing Cjy with
constants 03,04 such that Aq(Cov(p, ) = 03r%/d and Ad+1(Cov(py, .)) <

9~4)\d(Cov(p|BT<z))), then the conditions in (A5) are satisfied by the Cj1’s we
construct with 03 = 53(46’1)*212%[ and 04 = 54/@31226”20%.

5b. if p is the volume measure on a closed C° manifold isometrically embedded in
RP, then the conditions in (A5) are satisfied by the Cjr’s when j is sufficiently
large.

Even though the {C} .} does not exactly satisfy Assumption (A2), we claim that (15) is
sufficient for our performance guarantees in the case that M is bounded by M and d > 3,
since simply approximating points on M \ M by 0 gives the error:

28M?1
P / lz)|?dp > 28M" logn <2n7". (16)
M\M 3n

The constants in Proposition 14 are extremely pessimistic, due to the generality of
the assumptions on the space M. Indeed when M is a nice manifold as in case (5b),
the statement in the Proposition says that the constants for the Cj;’s we construct are
similar to those of the ideal Cj’s. In practice we use a much simpler and more efficient
tree construction method and we experimentally obtain the properties above with ay.x =
0124d and amin = 1, at least for the vast majority of the points, and 034y & 5{3,4}. We
describe this simpler construction for the multiscale partitions in Appendix A.3, together
with experiments suggesting that at least in relatively simple cases one may expect 63 4 =

Besides cover trees, there are other methods that can be used in practice for the multi-
scale partition, such as METIS by Karypis and Kumar (1999) that is used in the numerical
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examples in Chen and Maggioni (2010) and Allard et al. (2012), iterated PCA (see some
analysis in Szlam (2009)) or iterated k-means. These can be computationally more efficient
than cover trees, with the downside being that they may lead to partitions not satisfying
our usual assumptions (in theory, and perhaps in practice).

3. Numerical experiments

We conduct numerical experiments on both synthetic and real data to demonstrate the
performance of our algorithms. Given {z;}",, we split them to training data for the
constructions of empirical GMRA and Adaptive GMRA and test data for the evaluation of
the approximation errors:

L2 error L™ error
T
~ b R
Absolute error <nth Z ||z — PIil|2> ,,dnax l|lz; — P

z;Etest set

—

~ 2 =N
Relative error (nl > ||$i—73x,-|2/||xi|2> max ||z — Pyl /|||
z;Etest set
x;Etest set

where n'*! is the cardinality of the test set and P is the piecewise linear projection given by

empirical GMRA or Adaptive GMRA. In our experiments we use absolute error for synthetic
data, 3D shape and relative error for the MNIST digit data, natural image patches.

3.1. Synthetic data

We take samples {x;} ; on the d-dim S and Z-manifolds, whose first two coordinates
Zi1,%;2 are on the S and Z curve and other coordinates z;;, € [0,1],k =3,4,...,d+1. We
evenly split the samples to the training set and the test set. In the noisy case, training data
are corrupted by Gaussian noise: Z{'in = gpirain 4 %fi,i =1,..., 5 where & ~ N(0,Ipxp),
but test data are noise-free. Test data error below the noise level implies that we are
denoising the data.

3.1.1. REGULARITY PARAMETER s IN THE A; AND BB; MODEL

We sample 10° training points on the d-dim S- or Z-manifolds, for d = 3,4,5. The measure
on the S-manifold is not exactly the volume measure but is comparable with the volume
measure. The log-log plot of the approximation error versus scale in Figure 5 (b) shows that
volume measures on the d-dim S-manifold are in A with s =~ 2.0,2.1,2.2 when d = 3,4, 5,
consistent with our theory which gives s = 2. Figure 5 (c) shows that volume measures on
the d-dim Z-manifold are in As with s &~ 1.5,1.7,1.6 when d = 3,4, 5, consistent with our
theory which gives s = 1.5. The log-log plot of the approximation error versus the weighted
complexity of the adaptive partition in Figure 5 (d) and (e) gives rises to an approximation
of the regularity parameter s in the B; model in the table.
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(a) Projection of S
and Z-manifolds
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(c) Z: error vs. scale

log, u(errnrd'z) versus log,  (complexity)

—6— d=3 slope=-3.6798 theory= -Inf
—#— d=4 slope= -3.2595 theory= -3
—+— d=5 slope= -2.707 theory= -2.25

s . . . . . . . .
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log ,, (complexity)

(e) Z: error vs. tree complexity

Figure 5: 10° training points are sampled on the d-dimensional S or Z-manifold (d = 3,4, 5).
In (b) and (c), we display log;o || X — ﬁjXHn, versus scale j. The negative of the
slope on the solid portion of the line approximates the regularity parameter s
in the As model. In (d) and (e), we display the log-log plot of || X — 737\nX||‘,iL_2
versus the weighted complexity of the adaptive partition for the d-dimensional
S and Z-manifold. The negative of the slope on the solid portion of the line
approximates the regularity parameter s in the Bs model. Our five experiments
give the s in the table. For the 3-dim Z-manifold, while s = 400 in the case of
infinite samples, we do obtain a large s with 10° samples.

3.1.2. ERROR VERSUS SAMPLE SIZE 7

We take n samples on the 3-dim S- and Z-manifolds embedded in R'% (d = 3, D = 100).
In Figure 6, we set the noise level 0 = 0 (a,c) and o = 0.05 (b,d), display the log-log
plot of the average approximation error over 10 trails with respect to the sample size n for
empirical GMRA at scale j* which is chosen as per Theorem 4: 277" = [(logn)/n]'/(?s+d=2)
with d = 3 and s = 2 for the S-manifold and s = 1.5 for the Z-manifold. For Adaptive
GMRA, the ideal k increases as o increases. We let k € {0.3,0.4} when ¢ = 0 and
k € {1,2} when o0 = 0.05. We also test the Nearest Neighbor (NN) approximation. The
negative of the slope, determined by least squared fit, gives rise to the rate of convergence:
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Figure 6:

L? error ~ n®°P°. When ¢ = 0, the convergence rate for the nearest neighbor approximation
should be 1/d = 1/3. GMRA gives rise to a smaller error and a faster rate of convergence
than the nearest neighbor approximation. When o = 0.05, Adaptive GMRA yields a faster
rate of convergence than GMRA, especially for the Z manifold. We note a de-noising effect
when the approximation error falls below o as n increases. In Adaptive GMRA, different
values of k do yield different errors up to a constant, but the rate of convergence is almost

42 44 46 48 5
Iogm(SampIe size)

5.2

(c) the 3-dim Z-manifold, o = 0

= 0.05 (right column).

56

independent of k, as predicted by Theorem 8.
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(d) the 3-dim Z-manifold, o = 0.05

L? error versus the sample size n, for the 3-dim S and Z manifolds (d = 3), top
and bottom rows respectively, of GMRA at the scale j* chosen as per Theorem
4 (with the constant p set, arbitrarily, equal to 1), and Adaptive GMRA with
varied k. We let k € {0.3,0.4} when o = 0 (left column) and x € {1,2} when
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(a) the S-manifold, o =0 (b) the Z-manifold, o =0

Figure 7: Average running time of GMRA in 10 experiments versus the sample size n for
the S (a) and Z (b) manifolds. We set d = 2, D = 100 and d = 3, D = 100 and
d =3, D = 20 respectively.

3.1.3. RUNNING TIME VERSUS SAMPLE SIZE n

The complexity of GMRA is O(C?Dnlogn). In Figure 7, we display the average running
time of GMRA in 10 experiments for the S and Z manifolds when d = 2, D = 100 and
d=3,D =100 and d = 3, D = 20. The running time of GMRA is almost linear in n. The
running time increases as d and D increase since the complexity of GMRA is exponential
in d and linear in D.

3.1.4. RoBUSTNESS OF GMRA AND ADAPTIVE GMRA

The robustness of the empirical GMRA and Adaptive GMRA is tested on the 3-dim S and
Z-manifolds embedded in R'% while ¢ varies but n is fixed to be 10°. Figure 8 shows that
the average L? approximation error in 10 trails increases linearly with respect to o for both
uniform and Adaptive GMRA with x € {0.01,0.05,0.5}.

3.2. 3D shapes

We run GMRA and Adaptive GMRA on 3D points clouds on the teapot, armadillo and
dragon in Figure 9. The teapot data are from the matlab toolbox and others are from the
Stanford 3D Scanning Repository http://graphics.stanford.edu/data/3Dscanrep/.

Figure 9 shows that the adaptive partitions chosen by Adaptive GMRA matches our
expectation that, at irregular locations, cells are selected at finer scales than at “flat”
locations.

In Figure 10, we display the absolute L?/L> approximation error on test data versus
scale and partition size. The left column shows the L? approximation error versus scale
for GMRA and the center approximation. While the GMRA approximation is piecewise
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k € {0.01,0.05,0.5} on data
sampled on the 3-dim S and
Z-manifolds.  This shows
the error of approximation
grows linearly with the noise
size, suggesting robustness
in the construction.

linear, the center approximation is piecewise constant. Both approximation errors decay
from coarse to fine scales, but GMRA yields a smaller error than the approximation by local
centers. In the middle column, we run GMRA and Adaptive GMRA with the L? refinement
criterion defined in Table 2 with scale-dependent (A;; > 2777,) and scale-independent
(A x > 75) threshold respectively, and display the log-log plot of the L? approximation error
versus the partition size. Overall Adaptive GMRA yields the same L? approximation error
as GMRA with a smaller partition size, but the difference is insignificant in the armadillo
and dragon, as these 3D shapes are complicated and the L? error simply averages the error
at all locations. Then we implement Adaptive GMRA with the L* refinement criterion:
ﬁ;’ok = mMaXg,eC;, H73j+1xi - ﬁjle and display the log-log plot of the L*> approximation
error versus the partition size in the right column. In the L error, Adaptive GMRA saves
a considerable number (about half) of cells in order to achieve the same approximation
error as GMRA. In this experiment, scale-independent threshold is slightly better than
scale-dependent threshold in terms of saving the partition size.

3.3. MINIST digit data

We consider the MNIST data set from http://yann.lecun.com/exdb/mnist/, which con-
tains images of 60,000 handwritten digits, each of size 28 x 28, grayscale. The intrinsic
dimension of this data set varies for different digits and across scales, as it was observed in
Little et al. (2017). We run GMRA by setting the diameter of cells at scale j to be O(0.97)
in order to slowly zoom into the data at multiple scales.

We evenly split the digits to the training set and the test set. As the intrinsic dimension
is not well-defined, we set GMRA to pick the dimension of V}; adaptively, as the smallest
dimension needed to capture 50% of the energy of the data in Cjj. As an example, we
display the GMRA approximations of the digit 0,1,2 from coarse scales to fine scales in
Figure 11. The histogram of the dimensions of the subspaces ‘A/M is displayed in (a). (b)
represents log, ||73j+133i — ﬁ]xZH from the coarsest scale (top) to the finest scale (bottom),
with columns indexed by the digits, sorted from 0 to 9. We observe that 1 has more fine
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Figure 9: Top line: 3D shapes; bottom line: adaptive partitions selected with refinement
criterion AM > 277k+/(logn)/n. Every cell is colored by scale. In the adaptive
partition, at irregular locations cells are selected at finer scales than at “flat”
locations.

scale information than the other digits. In (c¢), we display the log-log plot of the relative
L? error versus scale in GMRA and the center approximation. The improvement of GMRA
over center approximation is noticeable. Then we compute the relative L? error for GMRA
and Adaptive GMRA when the partition size varies. Figure 11 (d) shows that Adaptive
GMRA achieves the same accuracy as GMRA with fewer cells in the partition. Errors
increase when the partition size exceeds 10% due to a large variance at fine scales. In
this experiment, scale-dependent threshold and scale-independent threshold yield similar
performances.

3.4. Natural image patches

It was argued in Peyré (2009) that many sets of patches extracted from natural images
can be modeled a low-dimensional manifold. We use the Caltech 101 dataset from https:
//www.vision.caltech.edu/Image_Datasets/Caltech101/ (see F. Li and Perona, 2006),
take 40 images from four categories: accordion, airplanes, hedgehog and scissors and extract
multiscale patches of size 8 x 8 from these images. Specifically, if the image is of size m x m,
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Figure 10: Left column: log;,(L? error) versus scale for GMRA and center approximation;
Middle column: log-log plot of the L? error versus partition size for GMRA and
Adaptive GMRA with scale-dependent and scale-independent threshold under
the L? refinement defined in Table 2; Right column: log-log plot of L™ error
versus partition size for GMRA and Adaptive GMRA with scale-dependent and

log ,(partiton size)

scale-independent threshold under the L refinement.

for £ =1,...,logy(m/8), we collect patches of size 2¢8, low-pass filter them and downsample
them to become patches of size 8 x 8 (see Gerber and Maggioni (2013) for a discussion
about dictionary learning on patches of multiple sizes using multiscale ideas). Then we
randomly pick 200,000 patches, evenly split them to the training set and the test set. In
the construction of GMRA, we set the diameter of cells at scale j to be 0(0.97) and the
dimension of ‘A/]k to be the smallest dimension needed to capture 50% of the energy of the
data in Cjj. We also run GMRA and Adaptive GMRA on the Fourier magnitudes of these
image patches to take advantage of translation-invariance of the Fourier magnitudes. The
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Figure 11: The top three rows: multiscale approximations of the digit 0, 1,2 in the MNIST
data set, from the coarsest scale (left) to the finest scale (right). (a) the his-
togram of dimensions of the subspaces X/}jk, (b) logg Hﬁj+1$i — 73]xz|| from the
coarsest scale (top) to the finest scale (bottom), with columns indexed by the
digits, sorted from 0 to 9; (c) log-log plot of the relative L? error versus scale
in GMRA and the center approximation; (d) log-log plot of the relative L? er-
ror versus partition size for GMRA, Adaptive GMRA with scale-dependent and
scale-independent threshold.

results are shown in Figure 13. The histograms of the dimensions of the subspaces ‘//\}k
are displayed in (a,d). Figure 13 (b) and (e) show the relative L? error versus scale for
GMRA and the center approximation. We then compute the relative L? error for GMRA
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Figure 12: Caltech 101 image patches

Figure 13: Top line: learning on 200, 000 image patches; bottom line: results of learning the
Fourier magnitudes of the same image patches. (a,d) histograms of the dimen-
sions of the subspaces ‘7}1@7 (b,e) relative L? error versus scale for GMRA and the
center approximation; (c,f) relative L? error versus the partition size for GMRA,
Adaptive GMRA with scale-dependent and scale-independent threshold.

and Adaptive GMRA when the partition size varies and display the log-log plot in (c) and
(f). It is noticeable that Adaptive GMRA achieves the same accuracy as GMRA with a
smaller partition size. We conducted similar experiments on 200,000 multiscale patches
from CIFAR 10 from https://www.cs.toronto.edu/~kriz/cifar.html (see Krizhevsky
and Hinton, 2009) with extremely similar results (not shown).

4. Performance analysis of GMRA and Adaptive GMRA

This section is devoted to the performance analysis of empirical GMRA and Adaptive
GMRA. We will start with the following stochastic error estimate on any partition.
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4.1. Stochastic error on a fixed partition

Suppose 7T is a finite proper subtree of the data master tree 7". Let A be the partition
consisting the outer leaves of 7. The piecewise affine projector on A and its empirical
version are

PA: Z ’Pnglj,k and PA: Z Pj,klj,k-
ijkEA ijkEA

A non-asymptotic concentration bound on the stochastic error |[PyX — PaX || is given by:

Lemma 15 Let A be the partition associated a finite proper subtree T of the data master
tree T". Suppose A contains # ;A cells at scale j. Then for any n > 0,

Brn?

P{|PAX — PaAX|| >0} <ad-#A-e T2 7#A (17)

d?log(ad#A) > 272\

E||PaX —7/5/\)(||2 < o

where o = a(02,03) and B = B(02,0s,0,).
Lemma 15 and Proposition 16 below are proved in appendix C .

4.2. Performance analysis of empirical GMRA on uniform partitions

According to Eq. (1), the approximation error of empirical GMRA is split into the squared
bias and the variance. A corollary of Lemma 15 with A = A; results in an estimate of the
variance term.

Proposition 16 For any n > 0,

B 522j’ﬂﬁ2

P{||P;X —P;X|| >n} < ad#hje “FY (18)
~ d>#A ; log[ad#A ;
E|[P;X - P X|* < JﬁQQJ[H il (19)

In Eq. (1), the squared bias decays like O(27%*%) whenever p € A, and the variance
scales like O(j2/ (d-2) /m). A proper choice of the scale j gives rise to Theorem 4 whose proof
is given below.

PrROOF OF THEOREM 4

Proof [Proof of Theorem 4]

E|X —P;X|?> < 2||X — P;X|? + 2E||P; X — P; X|?

2d%# A logad#A,] o g 2d220(d=2) g q27d
. <2 27
522 < 2Apla 27+ —pa—le =

<20pl4,27* +
as #A; < 294/6; due to Assumption (A3).

29



L1A0 AND MAGGIONI

Intrinsic dimension d = 1: In this case, both the squared bias and the variance decrease

as j increases, so we should choose the scale j* as large as possible as long as most cells at

scale j* have d points. We will choose j* such that 277" = ulo% for some p > 0. After

28(v+1)logn
3n

)2 and all heavy cells have at

grouping A« into light and heavy cells whose measure is below or above

logn
n

, We can
show that the error on light cells is upper bounded by C(
least d points with high probability (see Lemma 17).

logn
n

Lemma 17 Suppose j* is chosen such that 277" = p with some > 0. Then

28(v + 1)03p <logn>2

2
_P.. <
I =PrX0N 0 iy e esmosn P < ——7- n

W has at least d pomts} >1—-n"".

P {each Cj» i satisfying p(Cj= k) >

Lemma 17 is proved in appendix D. If j* is chosen as above, The probability estimate in
(5) follows from

e logn\* logn
I = Py < ol 2 < ol (P57 ) < ol "
1 o _paocy
N ogn _q1 _MPOiCylogn nn 4 -
P{IPy X~ Byl 2 B L < e (gt HE < e M < o

provided that Cj is chosen such that u86,C%/d*> —1 > v.

Intrinsic dimension d > 2: When d > 2, the squared bias decreases but the variance
increases as j gets large. We choose j* such that 277" = 1 ((log n)/n)m to balance these
two terms. We use the same technique as d = 1 to group Aj+ into light and heavy cells
whose measure is below and above, repectively, 28/3 - (v + 1)(logn)/n, we can show that

the error on light cells is upper bounded by C((logn)/n) z4a=2 and all heavy cells have at
least d points with high probability (see Lemma 18).

Lemma 18 Let j* be chosen such that 277" = p((logn)/n) =2 with some w>0. Then

2s
28(v + 1)02u2~4 [logn | T=+d-2
_P., 2 2
”(X Pj X)l{cj*,k:p(cj*,k)SW}“ < 36, n )
28 1)1
IP’{VC]'*Jg 2 p(Cx i) > W, Cj= 1 has at least d points} >1—-n"".

Proof of Lemma 18 is omitted since it is the same as the proof of Lemma 17. The probability
estimate in (6) follows from

s logn e
HX—WJMSW&2”§WMW( ) |

e a2 < Con™¥
91 n

s d
~ 1 Zstd—2 du=? /1 Tastd—2 01042 logn
P{HPJ‘*X—PJ‘*XHZQ(Oin) }Sa 1 <ogn> 17

provided that 80;C2ud=2/d*> — 1 > v. [ |
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4.3. Performance analysis of empirical GMRA on adaptive partitions

Proof [Proof of Theorem 8| In the case that M is bounded by M, the minimum scale
Jmin = logy GMQ. We first consider the case d > 3. In our proof C' stands for constants that
may vary at different locations, but it is independent of n and D. We will begin by defining
several objects of interest:

e 7": the data master tree whose leaf contains at least d points in X},. It can be viewed
as the part of a multiscale tree that our data have explored.

e 7: a complete multiscale tree containing 7. 7 can be viewed as the union 7" and
some empty cells, mostly at fine scales with high probability, that our data have not
explored.

e T(,: the smallest subtree of 7 which contains {Cj € T : Aj > 27In}.
® Tn=TomNT"

. ’7A:7: the smallest subtree of 7™ which contains {Cj € T" : Ajﬁk > 27In}.
® A, the partition associated with 7, .
e A, : the partition associated with 7.

° Kn : the partition associated with 7AZ7

e Suppose 7 and 7! are two subtrees of 7. If AY and A! are two adaptive partitions
associated with 70 and 7! respectively, we denote by A°VA! and A°AA! the partitions
associated to the trees 70U Tt and 7°N T respectively.

We also let b = 2amax + 5 where amax is the maximal number of children that a node has
in T; ko = max(k1, k) where b?x3/(2103) = v + 1 and agk3/b* = v + 1 with ay defined in
Lemma 20. In order the obtain the MSE bound, one can simply set v = 1. R

The empirical Adaptive GMRA projection is given by P/A\m = ZCM R, Pj k1. Using
the triangle inequality, we split the error as follows:

||X—737\T X[|<er+exteztey

where
€1 = HX - PKTn\/AanXH ? €2 1= “PKTnVAanX o PKTnAATn/bXH
€3 = HPK‘rn/\ATn/bX o K‘rn/\ATn/bXH ’ €4 1= HPATn/\ATn/bX B PKT?LXH.

A similar split appears in the works of Binev et al. (2005, 2007). The partition built from
those Cj}’s satisfying Kj,k > 2777, does not exactly coincide with the partition chosen
based on those C;, satisfying A, > 27J7,. This is accounted by ey and ey, corresponding
to those Cj’s whose ﬁmk is significantly larger or smaller than Aj;j, which we will prove
to be small with high probability. The remaining terms e; and es correspond to the bias
and variance of the approximations on the partition obtained by thresholding A .
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Term eq: The first term e; is essentially the bias term. Since /AXTn V Apr, 2 Aprs

el = |1X - Py XIZ <X = Py, XIP < IX = Py ey X1+ 1PA ) X = Py, X

™ VAan

2 2
11 €12

2, may be upper bounded deterministically from Eq. (9):

2(d—2) 1 Is+d—2
611 < B (an)2 P < Bs |p|25+d 2(b’i) 26+d ’ < O7g1n> ' (20)

e12 encodes the difference between thresholding 7 and 7", but it is 0 with high probability:
Lemma 19 For any v > 0, k such that k > k1, where b*k%/(2103) = v + 1,
IP){€12 > 0} S 0(927 Omax @min, F"/)n_y (21)

The proof is postponed, together with those of the Lemmata that follow, to appendix D).
If M is bounded by M, then €2, < 4M? and

1 25+d—2
Ee2, < 4AM?P{e1s > 0} < 4M2Cn™" < AM2C <°i”> (22)

if v > 2s/(2s 4+ d — 2), for example v = 1.
Term e3: e3 corresponds to the variance on the partition Ay, A A, . For any n > 0,

Bnn?

P{es > n} < add(Ar, A Ay, e 02> 7 Aot o)

according to Lemma 15. Since KTn ANz, C Try e, for any j > 0, regardless of KTH, we have
#; (ATn AN ) < #5T5 b < #T5, b Therefore

Bnn? Bnn?

- o —27 4 . T a21p2 (rn/b)—P
Ples > 0} < ad#f T, pe = rimn® TR0 < adgt T, e BT (23)

which implies

+oo +oo - Bnn®
Ee3 :/ nlP{es > n}dn :/ nmin | 1, ad#T,, pe * i 2imin 2 2 #iTmast | dp
0 0

dQIOgad#ﬁn/b 27 logn Tn\ P logn %fﬁ
Z 2- j#] /b— n (?) §C(92,93,d,/€,8,‘ﬁ?’65)< n > :

J2Jmin

Term es; and ey: These terms account for the difference of truncating the master tree
based on Aj;’s and its empirical counterparts Aj;;’s. We prove that A;’s concentrate
near Aj;’s with high probability if there are sufficient samples.

Lemma 20 For anyn >0 and any Cj, € T
max {IP’ {ﬁj,k <n and Ajp > bn} P {Aj,k <n and Aj,k > bn}} < a167a222jm]2 (24)

for some constants ay := (02,03, amax, d) and ag := ag(02,03, 04, amax, d).
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This Lemma enables one to show that e = 0 and ey = 0 with high probability:

Lemma 21 Let ay and ag be the constants in Lemma 20. For any fixed v > 0,
P{es > 0} + P{es > 0} < aamimn™ " (25)
when k is chosen such that k > Ko, with Ozgli%/b2 =v+1.

Since M is bounded by M, we have €3 < 4M? so

2s
1 25+d—2
Ee% < 4M21P’{eg >0} < AM? a1 aminn ™" < 4AM?oqamin (ogn)
n

if v > 2s/(2s + d — 2), for example v = 1. The same bound holds for ey.
2(d—2) .
Finally, we complete the probability estimate (10): let c2 = B alplg ™ (br) z4a=2 such

that e;1 < co ((log n)/n)m We have
B{[lX — Py X|l > e ((logn)/m)=7e2 |
<P{es> (1 — co) ((logn)/m) 7512 | + P{ers > 0} + P{es > 0} + Ple > 0}
<P{es> (1 — o) ((logn)/m)F5e2 | 4 Cn ™,

as long as k is chosen such that x > max(k1, ko) where b?x?/(2103) = v + 1 and ask3/b* =
v + 1 according to (21) and (25). Applying (23) gives rise to

(01760)2((10gn)/n)2s+2%

____Bn
P {63 > (c1 — ¢o) ((log n)/n)zH%} < ad#T;, e 1 (r/b) P

_ Bleg—cg)?xP B(C1*Co)2~p_1

P _( p ) _
< ad#T, pn "B < adagin N B < adayinn ™"

PR
if ¢y is taken large enough such that B(?”T(ZI()%)#) >v+1

We are left with the cases d = 1,2. When d = 1, for any distribution p satisfying
quasi-orthogonality (8) and any 1 > 0, the tree complexity may be bounded as follows:

Do 2T < D0 2700 =2/6127Im = 2M/(0,63),
jzjmin ]ijm

so [| X — 73A<M>XH2 < 8M Byn?/(30165). Hence

2,2 _ 91698nn°
el < 83]“,{?; (bmn)? < %(log n)/n, Ples >n} < ad#T,, pe 2md
which yield Ee3 < 2Md? log ad#T,, p/(0102n) < C(logn)/n and estimate (11).

When d = 2, for any distribution satisfying quasi-orthogonality and given any n > 0,
we have >~ 275 #; T < —lp| " logn, whence || X — 73/\([)"7)X||2 < —3Bolp|n*logn.
Therefore

,,]2

__2Bnn”
et < —53Bolp|(bmn)?log(bry) < C(log*n)/n . Ples > n} < ad#T,, pe @lelosn
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which yield Ee3 < d?|p|log ad# T, p(logn)/(26n) < C(log?n)/n and the probability esti-
mate (12). |

Proof [Proof of Theorem 10| Let R > 0. If we run Adaptive GMRA on Bg(0), and
approximate points outside Br(0) by 0, the MSE of the Adaptive GMRA in Bg(0) is

~ 2s max 2s
10=P5, i< X I S (olo(mlP+ B?) (log n) /) 55572 < R0 (log ) fn) 7472

The squared error outside Br(0) is

1L g2 my X [1° = / ||z|[2dp < CR. (26)
BR(O ¢

The total MSE is )
MSE < R™*(A2) ((logn)/n)2s+d2 + R0,

2s
Minimizing over R suggests taking R = R,, = max(Ry, u(logn/n) @s+d=2@+max@)) ) yield-

2s o)
ing MSE < ((logn)/n)2s+d=2"6+max(3.2) | The probability estimate (13) follows from Eq. (26)
and Eq. (10) in Theorem 8. [ |

In Remark 11, we claim that A is not large in simple cases. If p € AY® and p de-
cays such that p(Cjz) < 2779|c; 1] =41+ we have Ajy < 27752794/2||¢; ||~ (@H+1+9)/2,
Roughly speaking, for any 7 > 0, the cells of distance r to 0 satisfying A;; > 27Ip

. X . d+1+6 2 .
will satisfy 277 > (pr— 2 )2std=2. In other words, the cells of distance r to 0 are trun-
. ; d+148 ., 2 . . . .
cated at scale jpmax such that 277max = (pr— 2 )2s+d-2, which gives rise to complexity
94 d _y _20d=2) g g (d+146)(d=2) . )
< 27 Umaxpd—lgjmaxd < T asra-zy zs+d—2 . If we run Adaptive GMRA with thresh-

old n on Bgr(0), the weighted complexity of the truncated tree is upper bounded by
_2(d=2) ;_ (d+1%45)(d—2) )
n 2sta2p?" " 2td-2 . Therefore, Pl € Bs for all R > 0 and |p|BR(0>|%S < R with

d+1+6)(d—2
A=d-! 2$+d)£2 ).

5. Discussions and extensions

5.1. Computational complexity

The computational cost in GMRA and Adaptive GMRA may be split as follows:

Tree construction: Cover tree itself is an online algorithm where a single-point insertion
or removal takes cost at most O(logn). The total computational cost of the cover tree
algorithm is C¢Dnlogn where C' > 0 is a constant (Beygelzimer et al., 2006).

Local PCA: At every scale j, we perform local PCA on the training data restricted to the
Cj, for every k € K;, using the random PCA algorithm (Halko et al., 2009). Recall that
nj denotes the number of training points in Cj ;. The cost of local PCA at scale j is in
the order of ) ke, Ddn; i, = Ddn, and there are about 1/dlogn scales which gives rise to
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the total cost of Dnlogn.

Adaptive approrimation: To achieve an adaptive approximation, we need to compute the
empirical geometric wavelet coefficients A; j, for every C} i, which costs 2Ddn; j, on Cj ) and
2Dnlogn for the whole tree.

The computational costs of GMRA and Adaptive GMRA are summarized in Table 3.

Operations Computational cost
Multiscale tree construction C?Dnlogn
Randomized PCA at all nodes Dnlogn
Computing A 1’s 2Dnlogn
GMRA C%Dnlogn + Dnlogn
Adaptive GMRA C?Dnlogn + 3Dnlogn
Compute Pj(z) for a test point w + Q,dz = D(logn + d)
find C} , containing = compute P; ()

Table 3: Computational cost

5.2. Quasi-orthogonality

A main difference between GMRA and orthonormal wavelet bases (see Daubechies, 1992;
Mallat, 1998) is that Vj, & Vi1, where (j,x) = (j,k) such that © € C;. Therefore the
geometric wavelet subspace Pro jVj ,ZL‘/j_FLx which encodes the difference between V11, and
Vj.« is in general not orthogonal across scales.

Theorem 8 involves a quasi-orthogonality condition (8), which is satisfied if the operators
{Q;x} applied on M are rapidly decreasing in norm or are orthogonal. When p € A7° such
that [|Q;xX|| ~ 279/p(Cj ), quasi-orthogonality is guaranteed. In this case, for any node
Cj,k and Cj/,k’ C Cj7k, we have ‘|Qj/7k/X||/\/p(Cj/’k/) S 27(]/73)’|Qj7kX||/\/p(Cj7k), which
implies ch, o0y Qik X, Qi X) S 2||Q;xX||?. Therefore By < 2. Another setting is
when Q1 and Q, are orthogonal whenever Cj/ 1r C Cj, as guaranteed in orthogonal
GMRA in Section 5.3, in which case exact orthogonality is automatically satisfied.

Quasi-orthogonality enters in the proof of Eq. (9). If quasi-orthogonality is violated, we
still have a convergence result in Theorem 8 but the convergence rate will be worse: MSE
< [(logrL)/n]?s+5ﬁ when d > 3 and MSE < [(log? n)/n]% when d =1, 2.

5.3. Orthogonal GMRA and adaptive orthogonal GMRA

A different construction, called orthogonal geometric multi-resolution analysis in Section
5 of Allard et al. (2012), follows the classical wavelet theory by constructing a sequence
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of increasing subspaces and then the corresponding wavelet subspaces exactly encode the
orthogonal complement across scales. Exact orthogonality is therefore satisfied.

5.3.1. ORTHOGONAL GMRA

In the construction, we build the sequence of subspaces {gjyk}k@cj J>imin With a coarse-to-
fine algorithm in Table 4. For fixed x and j, (j, ) denotes (j, k) such that x € Cj;. In
orthogonal GMRA the sequence of subspaces Sj, is increasing such that Sp, C S1, C
-+ 8Sjz C Sjy1,2--- and the subspace Uj41, exactly encodes the orthogonal complement of
Sjz in Sjy1,. Orthogonal GMRA with respect to the distribution p corresponds to affine
projectors onto the subspaces {.Sjx }kek;,j>jmin-

Orthogonal GMRA Empirical orthogonal GMRA
SO,I =V §0,m = ‘70,1

B

Ul,af = PrOjSULTVLa:, Sl,x = SO,Q: ® Ul,w Ul,:v = Projgoi Vl,:u Sl,x = SO,ac 52 Ul,a:

Subpaces
Ujt1a = Projgt Vitie Ujt1e =Projgi Vit1e
Sj+1.e = Sz ©Ujy1,e Sj+1e = Sz ©Ujy1e
Affine Sj = D kek; Siklik Sj = Dkex, Siklik
projectors Sjk(2) = ¢jk + Projg , (z — ¢jk) Sir(x) =Cjp+ Projgj (@ =)

Table 4: Orthogonal GMRA

For a fixed distribution p, the approximation error || X — S;X|| decays as j increases.
We will consider the model class A2 where || X — S;X|| decays like O(277%).

Definition 22 A probability measure p supported on M is in A2 if

plag = sup inf{Ag : [[X — S;X|| < 48279V > juin} < o0, (27)
T

where T wvaries over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

__ Notice that As C A7. We split the MSE into the squared bias and the variance as: E[|X —
S;X|? = ||X - S;X|?*+E||S;X — S;X||*. The squared bias || X —S; X |? < |p|},2~%* when-
ever p € AJ. In Lemma 34 we show E||S;X — gSA'jXH2 < d2j4#A521§f£°‘j#AJ’] =0 (W)
where o and [ are the constants in Lemma 15. A proper choice of the scale yields the
following result:
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Theorem 23 Assume that p € A2, s > 1. Let v > 0 be arbitrary and p > 0. If j* is
properly chosen such that

plosn ford=1

n

1 7
L <10g5n> B ford > 2

277" =
n

then there exists a constant C1(01,02,03,04,d,v, u, s) such that

log® n

P{I!X ~ 8 X || > (|p| acp® + C1) - } < Cy(61,02,05,04,d, pi)n™"  ford=1,

S

10g5 n) G

]P’{”X —S}*XH > (’p|Agus +C'1) < } < 02(017027937947617”7 S)nill ford>2.

Theorem 23 is proved in appendix E.1.

5.3.2. ADAPTIVE ORTHOGONAL GMRA

Definition (infinite sample) Empirical version
Af )= 1(S) = Sj1) L Xl A= H(Sj - 5j+1)1j,kXH
9 9\ 3 ~ 2 ~ 2\ 3
= (Il(ﬂfsj)ljﬁkXH = (T =Sj41) 1 X]| ) = H(Hfsj)lj,kXH - H(H*SJ‘H)lj,kXH

Table 5: Refinement criterion in adaptive orthogonal GMRA

Orthogonal GMRA can be constructed adaptively to the data with the refinement cri-
terion defined in Table 5. We let 79 := r(log® n/n)2 where & is a constant, truncate the
data master tree 7" to the smallest proper subtree that contains all Cj, € T satisfying
ﬁ;’k > 27979, denoted by ’ﬁg. Empirical adaptive orthogonal GMRA returns piecewise

)

affine projectors on the adaptive partition KTg consisting of the outer leaves of ’7A'Tg. Our
algorithm is summarized in Algorithm 2.

If p is known, given any fixed threshold n > 0, we let 7(, ;) be the smallest proper tree of
T that contains all C;, € T for which A?}k > 27In. This gives rise to an adaptive partition
Ay, consisting the outer leaves of 7, . We introduce a model class By for whose elements
we can control the growth rate of the truncated tree 7, as n decreases.

Definition 24 In the case d > 3, given s > 0, a probability measure p supported on M is
in BY if the following quantity is finite

2(d — 2)

—_— 2
2s+d—2 (29)

|p|%o = sup supn? Z Z_Qj#j’ﬁpm) with p =
) 7 >0 J 2 Jmin

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).
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Algorithm 2 Empirical Adaptive Orthogonal GMRA
Input: data X, = X! U A, intrinsic dimension d, threshold x
Output: S;  : adaptive piecewise linear projectors

1: Construct 7" and {C};} from X,

2: Compute S and A;k on every node Cj € T".

3: ’ﬁg < smallest proper subtree of 7" containing all Cj; € T" : Ejk > 2777° where

70 = ry/ (log® n)/n.

4: /AXTS < partition associated with the outer leaves of ’7A'Tg

5: S/A\Tg — ch,kef\fg Sikljik-

Notice that exact orthogonality is satisfied for orthogonal GMRA. One can show that,
as long as p € BY,

d—2
2 2— 2 —2j
IX = Sag, XI7 < Balplen™™® < Blalolge | Y 275 #Tom) ,
jzjmin
where B ; == 2P/(1 — 2P=2). We can prove the following performance guarantee of the

empirical adaptive orthogonal GMRA (see Appendix E.2):

Theorem 25 Suppose M is bounded: M C By (0) and the multiscale tree satisfies p(Cj i) <
00279¢ for some 0y > 0. Let d > 3 and v > 0. There exists ro(0, 02,03, 04, Gmax, d, V) such

1
that if p € BS for some s >0 and 75 = & [(log” n)/n|* with k > Ko, then there is a c1 and
co such that

~ log® Ford—3
IP’{HX—SK X[z < Ogn "> }gch”. (30)

In Theorem 25, the constants are ¢y := c1(o, 02,03, 04, Amax, d, 5, K, |p|Be, V) and co :=
c2(6o, 02,03, 04, amin, Gmax, d, 5, K, |pge). Eq. (30) implies that MSE < (@)255372 for
orthogonal Adaptive GMRA when d > 3. In the case of d = 1,2, we can prove that

4+d n

MSE < lg“n
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Algorithm 3 Construction of a multiscale tree decomposition {C};}
Input: data X,
Output: A multiscale tree decomposition {C 1}
1: Run cover tree on X}, to obtain a set of nets {7}(X},)
20 J = Jmint Cjn,0 = M defined in (31)
3: for 7 = Jmin + 1,...,Jmax : For every Cj_1;, at scale j — 1, Cj_1, has
# (T;(X)) N Cj_1,,) children indexed by a;; € Tj(X;) N Cj_1 4, with corresponding
C; 1’s constructed as follows:

}je [jmirnjmax]

C](]k) =M ﬂ Voronoi(a; i, Tj(X,,) N Cj_1 k)

andfori:j+1,---,]max

Finally, let C;, = C](J}:lax)'

Appendix A. Tree construction, regularity of geometric spaces
A.1. Tree construction

We now show that from a set of nets {7} (A7)} je[jn,jmax] from the cover tree algorithm we
can construct a set of Cjj with desired properties. Similar constructions are classical in
harmonic analysis (Christ, 1990). Let {aj,k}fj:(]l) be the set of points in T};(X],). Given a set
of points {z1,...,2m} C R¥Y, the Voronoi cell of z;, with respect to {21,..., 2y} is defined
as

Voronoi(zg, {21, ..., zm}) = {x € RP : ||z — z|| < || — 2| for all i # ¢}.

Let

Jmax
M= U Bisla). (31)
J=Jmin a; ,€T;(X})
Our Cj’s are constructed in Algorithm 3. These C} ;’s form a multiscale tree decomposition
of M. We will prove that M\Mv has a negligible measure and {Cj k }reic; je[umin,jmax] Satisfies
Assumptions (A1-A5). The key is that every C;, is contained in a ball of radius 3-277 and
also contains a ball of radius 277 /4.

Lemma 26 FEvery C;, constructed in Algorithm 3 satisfies B,—j (aj ) C Cj i € Bz.g-i(aj k)
4

Proof For any x € R” and any set C € RP, the diameter of C with respect to z is defined
as diam(C, ) := sup_¢¢ ||z —z|. First, we prove that, for every j, C;x, NCjr, = 0 whenever
ki # ko. Take any a;yq 3 € Cjp, and ajyq gy € Cjp,. Our construction guarantees that

diam(Cj 1 g, a1 ) < iQ*(J#l) + %27042) +...< %2*(]#1)

39



L1A0 AND MAGGIONI

and similarly for diam(Cj sy, @jy1k,)- Since [lajiqp — ajppl > 2-U+1) | this implies

that Cj 1 N Cj1p, = 0. In our construction,

Cj,k1 = < U Cj+1,k’1> UB% (aj,k1)7 Cj,kz = < U Cj+1,ké) UB% (aj,kz)'

aj+1,k’1€Cj,k1 @51k} €C ky

Since |lajk, — ajk,| > 279, we observe that Birj(ajm) N Birj(ajm) =0, Cjy1p N
Birj (ajk,) = 0 for every a1 g € Cjky, and Cjpg ﬁBiQ,j (ajk,) =0 for every a; 1z €
Cjky- Therefore Cj i, NCjg, = 0.

Our construction of Cj;’s guarantees that every Cjj contains a ball of radius i .27,
Next we prove that every C}, is contained in a ball of radius 3 - 277. The cover tree struc-
ture guarantees that X, C Ua, reT;(xs) Ba.o-i (a; 1) for every j. Hence, for every a;; and
every aji1k € Cjk, we obtain ||aji1p —ajk| < 2- 277 and the computation above yields
diam(Cj41 47, aj41,4) < 277 /4, and therefore diam(Cjy,ajr) <2-277 +277/4<3-277. In
summary C}y is contained in the ball of radius 3 - 277 centered at aj k- |

The following Lemma will be useful when comparing comparing covariances of sets:
Lemma 27 If B C A, then we have Ag(cov(p|a)) > %)\d(cov(plg)).

Proof Without loss of generality, we assume both A and B are centered at zg. Let V be
the eigenspace associated with the largest d eigenvalues of cov(p|p). Then

. UTCOV u . 'UTCOV v
feov(pla)) = o mip A > iy LCOPL)
o min O Ja(@ —z0)(x — z0) dp) v
T wev p(A)vTv
T ([l = 20) (@ — x0)Tdp) v N v” (fA\B(l’ —xp)(x — :co)po) v
T p(A)vTo p(A)vTv
o ([z(z = z0)(x —x0)"dp) v p(B)
> mi B _ .
= bev p(A)oTv o(A) Ad(cov(p|B))

A.2. Regularity of geometric spaces

To fix the ideas, consider the case where M is a manifold of class C*, s € RT \ Z, i.e.
around every point xg there is a neighborhood U,, that is parametrized by a function
f:V — Ug,, where V is an open connected set of R?, and f € C* ie. f is [s] times
continuously differentiable and the |s|-th derivative fl* is Holder continuous of order s —
[s), ie. £ (@) = S )] < 115 lgrmro e — yll~15). In particular, for s € (0,1), f is
simply a Holder function of order s. Without loss of generality, up to a (linear) change of
coordinates we may assume z = f(z?) where z¢ € V.
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If M is a manifold of class C*,s € (0,1), a constant approximation of f on a set I by
the value z¢ := f(zg) on such set yields

7 [ = f@Pap(e) < 2 [~ i1 B dote) < 1) dinm(r)

where we used continuity of f. If I was a ball, we would obtain a bound which would
be better by a multiplicative constant no larger than 1/d. Moreover, the left hand side is
minimized by the mean I) [; f(y)dp(y) of f on I, and so the bound on the right hand side

holds a fortiori by replacmg f (xo) by the mean.

Next we consider the linear approximation of M on I C M. Suppose there exits 6g, 0o
such that I is contained in a ball of radius #>r and contains a ball of radius fyr. Let zg € I be
the closest point on I to the mean. Then [ is the graph of a C® function f: PTTO I — PT% )

where T7,(I) is the plane tangent to I at xp and T;B(I ) is the orthogonal complement of
Ty, (). Since all the quantities involved are invariant under rotations and translations, up
to a change of coordinates, we may assume ¢ = (z1,...,24) and f = (f1,..., fp_q) where
fi == fi(z?), i =d+1,...,D. A linear approximation of f = (f4;1,..., fp) based on Taylor
expansion and an application of the mean value theorem yields the error estimates.

e Case 1: s € (
/ [y — r(a) ~ V1) - @ — )| o

— ﬁ edsup " /‘VfZ &) (x —a;o) sz(xo) (m —:cg)Qd,o
—d ;€domain( f;

+

D

]‘ S—1|S8
< D B o g oy N 1 = D ITA
=d+1 ik

& €domain(f;) J C

2 : 2
<D 1ma% ||vfiHCs—|.sJ dlam(I) °

30y

e Case 2: s =2
s -1 s o
) Z()/ T N

2
dp

1

D
1
< 'Zl m sup 5(& - xg)TDQfﬂxg(gi - x%) +o(ll& — xgng)

& edomain(f;) J I

x || D2 fil|diam(1)" + o(274).

M does not have boundaries, so the Taylor expansion in the computations above can
be performed on the convex hull of PTI0 (1)> whose diameter is no larger than diam([). Note

41



L1A0 AND MAGGIONI

that this bound then holds for other linear approximations which are at least as good, in
L?(p|7), as Taylor expansion. One such approximation is, by definition, the linear least
square fit of f in L?(p|;). Let L; be the least square fit to the function x + f(x). Then

S Aeovloln)? = 7 [5@) = L@ Pdnte)

i=d+1
- Dmaxizl,,,,,D,dHVfngs,wdiamu)?S, se(1,2)

32
- { % max;—1,. p—d Hsziniam(I)‘l, s=2 (32)

Proof [Proof of Proposition 14| Claim (A1) follows by a simple volume argument: C; is
contained in a ball of radius 3-277, and therefore has volume at most C1(3-277)¢, and each
child contains a ball of radius 2~U*1) /4, and therefore volume at least C;*(270+1) /4)2. Tt
follows that amax < CF(3 - 2_j/2_(j+1) -4)4. Clearly amin > 1 since every a; i belongs to

both Tj(X)) and Tj (X)) with j° > j. (Al),(A3), (A4) are straightforward consequences of
the doubling assumption and Lemma 26. As for (A2), for any v > 0, we have

28vlogn
3n

P{p(M\M)>W}:p{ﬁw\ﬂ):omdpw\ﬂp

P{m(M\M) — p(M\ M)| > %p(M\/W) and p(M \ M) > nggfgn}

< 2e~mmeM\M) < 9 v,

In order to prove the last statement about property (A5) in the case of 5a, observe that
Byjja(ajk) € Cjx € Byo-i(ajk). By Lemma 27 we have

Cr /4

Cy(3-277 d
oGy VPl a0) < Aaleovlple,) <

)
W/\d(COV(P‘B&Tj (aj,k))

and therefore Ay(cov(p|c; ) > (1/12)d>\d(cov(,o|32 j/4(aj,k)) > C72(1/12)%05(277 /4)%/d,

so that (A5)-(i) holds with 03 = 03(401) 2(1/12)%. Proceeding similarly for Ay, 1, we obtain
from the upper bound above that

Cy(3-277 4/0
< Cll((2]/4))d)‘d+1(COV(P| By,—j(aj) < (12%)% - 144C104/837a(cov (plc, )

Msa(cov(lc, )
so that (A5)-(ii) holds with 64 = (129)2 - 144C#0,/03.

In order to prove (A5) in the case of 5b, we use calculations as in Little et al. (2017);
Maggioni et al. (2016) where one obtains that the first d eigenvalues of the covariance matrix
of p|p,(z) with z € M, is lower bounded by 0372 /d for some 03 > 0. Then (A5)-(i) holds for
Cjx with 3 = 03(4C1)~2(1/12)%. The estimate of Ad+1(cov(plc;,)) follows from (32) such
that

D .
Dmaxi—1 _p_al|Vfill2._ ., (6-279)2, s€(1,2)
Meov(ple, ) < { it o
z‘zd-iz-l l 7 D maxi—1,.p-a||D*fil|(6 - 279)*, 5 =2
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Therefore, there exists jo such that Agi1(cov(plc;,)) < Oali(cov(plc;,)) when j > jo. The
calculation above also implies that p € A if max;—1  p_q HVfiHCS,LSJ for s € (1,2) or
max;—1,. p—d | D2 f;|| for s = 2 is uniformly upper bounded.

|

A.3. An alternative tree construction method

The {Cj} constructed by Algorithm 3 is proved to satisfy Assumptions (A1-A5). In
numerical experiments, we use a much simpler algorithm to construct {C;x} as follows:

ijaX7k = VorOHOi(a’jmafo? j—jjmax (XT,L)) m B2_jmax (a’jmax,k)7

and for any j < jmax, we define C}j, = U Ci1 -
Qg g child of a;

We observe that the vast majority of Cj;’s constructed above satisfy Assumptions (Al-
A5) in our numerical experiments. While it is not difficult to construct counterexamples
in which the Cj’s thus construct fail to satisfy Assumptions (A1-A5). In Fig. 14, we
will show that (A5) is satisfied when we experiment on volume measures on the 3-dim S
and Z-manifold. Here we sample 10° training data, perform multiscale tree decomposition
as stated above, and compute H‘k Gj’k at every Cj . In Fig. 14, we display the mean of
{9] " Yrek; or {9‘7’ }rek; versus scale j, with a vertical error bar representing the standard
deviation of {HJ’ brexc,; or {03’ }kex; at each scale. We observe that 3 = min; «9]’ > 0.05

at all scales and 04 = max; Hi’ < 1/2 except at very coarse scales, which demonstrates
Assumption (Ab) is satisfied here. Indeed 64 is not only bounded, but also decreases from
coarse scales to fine scales.

il

(a) {0§’k}ke;cj versus j of (b) {Hi’k}ke;cj versus j of (c) {Hg’k}ke;cj versus j of (d) {Gi’k}ke;gj versus j of
the 3-dim S-manifold the 3-dim S-manifold the 3-dim Z-manifold the 3-dim Z-manifold

Figure 14: The mean of {9‘7’ Yrek; or {9‘7’ }rek; versus scale j, with a vertical error bar

representing the standard deviation of {9] " Ykex; or {03 " ke, at each scale.

We observe that, every Cj constructed above is contained in a ball of radius 05279 and
contains a ball of radius 6p277, with 62/ € [1,2] for the majority of C;;’s. In Fig. 15, we
take the volume measures on the 3-dim S and Z-manifold, and plot log, of the outer-radius
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and the statistics a lower bound for the in-radius® versus the scale of cover tree. Notice
that the in-radius is a fraction of the outer-radius at all scales, and logy 2 —log, 6y < 1 for
the majority of cells.

log2(radii) versus log2(radii) ver

log2(radius)
log2{radius)

sssss

Figure 15: From left to right: the in-radius and outer-radius of a pentagon; log, of the
outer-radius and the statistics of the in-radius versus the scale of cover tree for
the 3-dim S-manifold, and then the same plot for the 3-dim Z-manifold; ratio
between outer-radii and in-radii, for the 3-dim S-manifold (top) and the 3-dim
Z-manifold (bottom).

A4d. AX C B;

Proof [proof of Lemma 6] Assume p(Cj1) =< 9-i1_ According to Definition 2, p € A®
if (X — PiaX)Likll < |plae2795\/p(Cix), Yk € Kj,j > jmin, which implies A;) <
2plage 2775\ /p(Ci) S plae2 T +9),

Let n > 0 and 7, ;) be the smallest proper subtree of 7" that contains all Cj ;. for which
Ajr > 277n. All the nodes satisfying A;, > 277 will satisfy \p]Ago27j(S+%) > 270y
which implies 277 > (n/]p] A?o)m%, Therefore, the truncated tree 7, is contained in
Tj» = Uj<;j+A; with 277" < (n/]p|Ago)2s+$, so the entropy of 7(,, is upper bounded by

) Y _ 2(d—2)
the entropy of 7j+, which is } ... 27UHN; = V712 < (n/]plage) 25732, Then p € B
and |p|p, < |plax according to Definition 5. [ |

Appendix B. S-manifold and Z-manifold

We consider volume measures on the d dimensional S-manifold and Z-manifold whose x
and xo coordinates are on the S curve and Z curve in Figure 5 (a) and z;,i = 3,...,d + 1
are uniformly distributed in [0, 1].

3. The in-radius of C ; is approximately computed as follows: we randomly pick a center, and evaluate the
largest radius with which the ball contains at least 95% points from C; . This procedure is repeated for
two centers, and then we pick the maximal radius as an approximation of the in-radius.
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B.1. S-manifold

Since S-manifold is smooth and has a bounded curvature, the volume measure on the S-
manifold is in A3°. Therefore, the volume measure on the S-manifold is in A and B2 when
d> 3.

B.2. Z-manifold
B.2.1. THE VOLUME ON THE Z-MANIFOLD IS IN Aj 5

The uniform distribution on the d dimensional Z-manifold is in A; at two corners and
satisfies [[(X — P;jxX)1;k|| = 0 when Cj, is away from the corners. There exists Ay > 0
such that ||(X — P X)1;x|| < A0277\/p(Cj k) when Cj}, intersects with the corners. At
scale j, there are about 2/¢ cells away from the corners and there are about 2/(4~1 cells
which intersect with the corners. As a result,

X — PJXH <0 (\/de .0 -2-dd 4 24(d=1) . 9—25 . 2—jd) _ 0(2—1.5]‘),
so the volume measure on Z-manifold is in Aj; 5.

B.2.2. MODEL CLASS B,

Assume p(Cj) = 2774 We compute the regularity parameter s in the By model class
when d > 3. It is easy to see that A, = 0 when Cj} is away from the corners and
A < 240277 /p(Cir) S 9=3(5+1) when Cj r intersects with the corners. Given any fixed
threshold 1 > 0, in the truncated tree 7, ), the parent of the leaves intersecting with the

. d .
corners satisfy 277 (3+1) 2 277, In other words, at the corners the tree is truncated at a

scale coarser than j* such that 277" = (9(77%). Since A, = 0 when (), is away from the
corners, the entropy of 7(, ;) is dominated by the nodes intersecting with the corners whose

(d-1)

cardinality is 27 at scale j. Therefore

Entropy of 7(,.n) < Z 9-2j9i(d=1) _ (n—LdJB)) ,

J<5*
which implies that p < 2(%—3) and s > §EZ:§§ > 1.5.

Then we study the relation between the error | X — Py,  X| and the partition size

#A (), which is numerically verified in Figure 4. Since all the nodes in 7, , that intersect
. ) . _ 2(d—1)
with corners are at a scale coarser than j*, #A(,,) ~ 2/ (d-1) = n~ 4 . Therefore,

1S #A ] 7D and

2— 2s _ 2sd _ 3
IX = Pa,, XIS N2 =nmiis < [FA () TEDCFTD = [#A(, ] T,

Appendix C. Proofs of Lemma 15 and Proposition 16

C.1. Concentration inequalities

We first recall a Bernstein inequality from Tropp (2014) which is an exponential inequality
to estimate the spectral norm of a sum independent random Hermitian matrices of size
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D x D. It features the dependence on an intrinsic dimension parameter which is usually
much smaller than the ambient dimension D. For a positive-semidefinite matrix A, the
intrinsic dimension is the quantity

intdim(A) = W'

Proposition 28 (Theorem 7.3.1 in Tropp (2014)) Let &1,...,&, be D x D indepen-
dent random Hermitian matrices that satisfy

E& =0 and H&H < R, 1= 1,...,71.
Form the mean £ = %Z?:1 &. Suppose E(€2) < ®. Introduce the intrinsic dimension
parameter di, = intdim(®). Then, for nt > n||®||*/? + R/3,

nt2/2

P{|[&]| >t} < ddipe” FTITRTS,

We use the above inequalities to estimate the deviation of the empirical mean from the
mean and the deviation of the empirical covariance matrix from the covariance matrix when
the data X, = {x1,...,2,} (with a slight abuse of notations) are i.i.d. samples from the
distribution p, Cypt

Lemma 29 Suppose x1,...,x, are i.i.d. samples from Ple, - Let the local mean and
7y

covariance, and their empirical counterparts, be defined as

1 n
Cjk = / .%'Clp|cjlC y Cik = E E ZTj
Cik ’ i=1

~ 1 = =
ik = / (@ =)@ =) dp. s Sini=— Y (wi =)@ —Ex)"
Cik o e
Then
N Y —
P{”é\]’k’ _ CJ’kH 2 t} S 86 6922_23+2922_Jt , (33)
~ 402 ~S10%5=47 1 3525 743'm2 25-27
PSSl 20 < (flaws)e T (34)
3

Proof We start by proving (33). We will apply Bernstein inequality with § = z; —¢j 1 €
RP. Clearly E¢; = 0, and [|&] < 62277 due to Assumption (A4). We form the mean
§=1%" & =70k — ¢ and compute the variance

n T n
o =n’|ET¢| = ||E (Z T — Cj,k) (Z Ti — Cj,k> ' =
i=1 =1

Then for nt > o + 62277/3,

< ng22Y.

D B(wi —cip) " (@i — cj)
=1

_ n2t2/3 _ 73‘”’52 -
P65 — el > 1) < 8 s s < g WA
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We now prove (34). Define the intermediate matrix £, = 3" | (2 — ¢ ) (zi — ¢jp) T

. ~ ~ T
Since 35, — Bk = Njk — Xjk = Gk — ¢in) Gk — )", we have

15k — Sikll < NE50 = Sikll + 185k — cipll® < 1850 — Syl + 02277 [1Ek — cjinll-

A sufficient condition for Hij,k—zj,kzu <t isjlij,k—2j7k|] < t/2and |[Cjx—cjkll < 27t/(209).
We apply Proposition 28 to estimate P{||X;r — X k| > ¢/2}: let & = (27 — ¢jp)(@i —
cip)l =%k € R’?XD. One can verify that E§; = 0 and ||&]| < 203272, We form the mean
= %Z?:l & =Xk — Xk, and then

1 n n 1 n 1 n ) 922_2j
2 ) ) _ 2 20—2 A 2 .
Eg —E<nQZ§zZ§z> _EZE@ jﬁZGQZ Tk 3 n 2ij ks
i=1 =1 i=1

i=1

25

29— .
922n Ej’kH < 05274 /n. Meanwhile

which satisfies ‘

t 3 922—2]' 92
din = intdim(¥; ;) = race(3; 1) 5 63

el =~ 02774 5"
Then, Proposition 28 implies
2 % 2 —3nt?
P{ISj% — Sl > t/2} < %d6932—4j+92%” = ‘;i?de%%*r“%%ﬂjt :

Combining with (33), we obtain

P{IZ, 5 — Sixll > 3 <P{IZj% — ik

. 27t
| = t/2} +Plein —ciull = 5=
264
2 nt?
< @d +8 67 24932*4?}J:89§2*2jt
— 93 .
|

In Lemma 29 data are assumed to be i.i.d. samples from the conditional distribution
Pl - Given X, = {z1,...,x,} which contains i.i.d. samples from p, we will show that the
75

empirical measure p(C} k) = njx/n is close to p(Cj ) with high probability.

Lemma 30 Suppose x1,...,2, are i.i.d. samples from p. Let p(Cjy) = fC‘k 1dp and
s
p(Cj i) = nji/n where njy is the number of points in Cj. Then

_ 3nt2
P{P(Cjk) — p(Cjp)l = t} < 2e Or*2 (35)
for all t > 0. Setting t = %p(CjJﬁ) gives rise to
~ 1 — 3 o(C
P {\p(Cj,k) —p(Cjr)| > 2p(Cj,k)} < 2¢38™P(Clik) (36)
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Combining Lemma 29 and Lemma 30 gives rise to concentration bounds on ||¢;x —
cjk| and Hfljk — X, k|| where ¢, g, Xjr and ij’k are the conditional mean, empirical
conditional mean, conditional covariance matrix and empirical conditional covariance matrix
on Cj, respectively:

Lemma 31 Suppose x1,...,xy, are i.i.d. samples from p. Define c;,¥; 1 and Cjy, flj’k as
in Table 1. Then given any t > 0,

3np(Cj’k)t2

P{I[cjx — cjull =t} < 2e2"Con) g 1202 H a0 dr (37)
Y 3 42 - Snp(.cj7’“)t2 _
PSSyl > 1) < 2070w (de + 8) e MBTTHIETEL(38)
3

Proof The number of samples on Cj i, is 71 = > 1 1 x(x;). Clearly E[n;i] = np(Cj).
Let Z Cc {1,...,n} and |Z| = s. Conditionally on the event Az := {z; € Cj; fori €
7 and z; ¢ Cj, for i ¢ T}, the random variables {z;,7 € Z} are i.i.d. samples from Ple,
According to Lemma 30, ’

. _ R 1
P{l[cik —ciull 2t | Aje =5y = > P{llgie—ciull >t | AI}W

Zc{1,...,n} S
1=

3st2

_ P{H/C\j,k _ Cj,kH >t ‘ A{l,...,s}} < 86_69327%4-2922*]}’

and
35t2

= Y 402 v, pmy Vs e Y
P{sz,k’ — Ej,k” >t njk = st < <92d+8> e 2403274 +80327 %0t
3
Furthermore |p(Cjx) — p(Cjx)| < $p(Cjx) yields 7y, > inp(Cjx) and then

3np(Cj7k)t2

P{ch,k — Cj,k:“ >t ‘ |p(Cj7k) — ,O(Cj,k)| < §p(0j k)} < 8e 1202227 +4052— 3¢ ’ (39)

Snp(ijk)tz

~ 1 462 - e —
P {sz,k — Skl >t ‘ p(Ci) — p(Cige)| < 2P(Cj,k)} < (9;d+ 8) e 180327V HI0032TH (40)

Eq. (39) (40) along with Lemma 30 gives rise to

P{|[Sj5 — cjpll >t} < 2e75"0(Cik) 4 ge 2Bz Hwao2 Tt

Snp(Cj7k)t2

2 - . .
P{HEM — Ykl = t} < 2¢~zm(Cin) 4 <%992d + 8> e 480327 V16052720
3

Given ||§]]k — X, k||, we can estimate the angle between the eigenspace of ijjk and X
with the following proposition.
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Proposition 32 (Davis and Kahan (1970) or Theorem 3 in Zwald and Blanchard (2006))
Let 54(Sik) = 35" = Xit)). I ISk — Zykll < 36a(5;4), then

d+1
. . 1S5 — Sk
Projy,, — Projy, || < 1225 ==L,
’ I'O‘]ijk ro‘]‘/},k S 5(1(2]7’6)

According to Assumption (A4) and (A5), d4(X; %) > 052727 /(4d). An application of Propo-
sition 32 yields

. ‘ - O3(1 — 04)t
P {HPTOJVj,k — PI‘OJVJ_J@H >t} < ]P’{sz,k — Ykl > o2

303 (1-04)np(C; )t2
- T2 202(1—
> e 38405d2+320503(1—04)dt (41)

2
< 2¢~3"P(C5k) 4 (409%1 +8
3

Proof [Proof of Lemma 15| Since

[PAX = PaX|>= > / [Pjsz = PiszlPdp=>_ / 1Py — Pjxl*dp,
Cjeh’ Cik i k:Cjpen”’ Cik

we obtain the estimate

2204 An?

P{IPax - Paxlza} <SPS S [ P Piaaldp > T 0(42)
j k:Cj e ¥ Ciok Zijmin 73
Next we prove that, for any fixed scale 7,
R 5222
PSS [P PualPdpz b <agine (43)
ijk

k?le’kEA

Then Lemma 15 is proved by setting ¢? = 2*29'#]»/&172/(2].20 272 45N).
The proof of (43) starts with the following calculation:

> / 1Pj xw — Pjaal|*dp
Cik

kZCj’kGA
- / lejx + Projv; , (x = i) = &k = Projy,  (x = &)l*dp
k:Cj €A Cji
33 / I(T = Projp )(ejk — &) + (Projy, , — Projp )(z — cjn)|*dp
k:Cj’keA C] k
<2 Z / [ch,k - /C\j,kH? + H(PrOjVjJC — Proj?j k)(x _ Cj,k)Hz} dp
k:C; e’ Ciok ,
P> / (s = &ill? + 63272 |Projy, , — Projg, || dp
k:Cj pEA Cjk
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For any fixed j and given ¢ > 0, we divide A into light cells A}, and heavy cells Ajjt, where

2
A7, = ik €N k) <
Gt {Cj,k € P(Cj,k) = 20952_23#3‘/&

+ . _
} and Aj,t = AN Aj,t'
Since [, [lejn — @l + 03272 |Projy, , — Projg [12] dp < 56327%(C), for light sets
we have
2 Z /C [ch,k _@,kHQ +9%2—2j||PrOjVj,k - Projvj‘ I } dp < 5 (44)
kZCj,kGA;t J.k

Next we consider Cj 1, € A;rt. We have

P Ein—cinll > ¢
T S
! ’ 8p(Cjr)#iA

3np(Cj k) 7&,(0 k)#]

1202227 44092—7 ——L

227

C Jnt2
Ve < Cre = #il (45)
_— b

3
< 2exp (—%n,o(Cj’k)> + 8e

and

27t
P{Wmmm—ﬁmwﬂze 8m0>#A}
: 2 k)G
22742

303(1 94) np(Cj k)m
J> J

) 38404 d2+320303(1— 04)d 27¢ 22.7'nt2

2
< 2™ 3"P(Ci) 4 < Yats WOREN < Cyde TRA(46)

03

where positive constants C1, Cy, C3, Cy depend on 2 and #3. Combining (44), (45) and (46)
gives rise to (43) with @ = max(C1,C3) and 8 = min(Cy, Cy).
|

Proof [Proof of Proposition 16] The bound (18) follows directly from Lemma 15 applied
to A = Aj; (19) follows from (18) by integrating the probability over :

E|[P,X — P X||? = /0 wP {|[P;X — x| = 0} dn

+o00 _ 8229 nn? 1o +00 _ 622]7”12
< / nmin{ 1, ad#Aje CHEN N dny = / ndn +/ adn#Aje PHN;
0 0 n

0

_B2%Tnng

where ad#A e @*#5; — 1. Then

1 a  #A %”"jo d?# A ; loglad# A

28 2%n° = 322in

E|P;X — P, X2 =
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Appendix D. Proof of Eq. (9), Lemma 17, 19, 20, 21

Proof [Proof of Eq. (9)] Let Az;on) = Ay and AZF”) be the partition consisting of the
children of ATV for n = 1,2,.... Then

(o)
n—1
1X = Pag,, X1 =11 A(ﬂ)x P?;(gl)X)—l—PAM(M)X X||
ZO
_ X-P, + lim Pyn X — X
IZZ;( A AFED X) + lim AT |
<l D> QX+l Jim Pyen X - X
Jk¢7zpn

We have [|lim; oo Py+n X — X|| = 0 due to Assumption (A4). Therefore,
(psm)

IX =Pa,, XIP< Y0 QuXIP< Y BollQuXIP=Bs Y A,

G5k T (p,m) CikET(p,m) CikET(o,m)
2 —jo—~C, \2
< By, > Al S Bod Y (@727 Tpa-wiy)
520 C kET 2,(@+1)n)\7~p 2_27]) 620 jz]mm
2/ 2 — 20,21 |p (£+1)
<Byy 2 > 27T iy < Bo Y 27 pl [27 ]
£2>0 J2Jmin >0

< Bo2r | Y 271 P | |pfh * P < By glpll n*> P

>0
|
Proof [of Lemma 17]
2
X — P X)1 osn1|| < — Py kll*d
T I

{C»* &:p(Cyx )< 8<”+1)10gn} J

28(v + 1)logn «28(r+1
< #{Cpp(Cyesy < BB Y oz 2+ Dlogn
n 3n

28(v+1)6 — 28(v+1)63 2
< (1;) )3 05 (d 2 (logn)/n < ('/T)W((logn)/n) .
For every Cj« 1, we have

P{p(Cjx) > Z(v+1)(logn)/n and p(Cj« 1) < d/n}
< P{IA(C k) — p(Cyo )| > p(Cye /2 and p(Cye ) > 2 (v + 1)(logn) n}
for n so large that 14(v + 1) logn > 3d

< 2@723787”)(0]'*,’“) < 277,71/71
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Then
P {each Cj- , satisfying p(Cj ) > 22(v + 1)(logn)/n has at most d points}
< #{Cjr 1 p(Cjr ) < B(v+ 1)(logn)/n}2n ™1 < #Aj2n™" 71 <2077 /(Opulogn) <n™”,

when n is so large that 6yplogn > 2. |

Proof [of Lemma 19| Since Tyr,, C Tppr,), P{er2 > 0} if and only if there exists Cjy €
Tipprn) \ Tor, - In other words, P{e12 > 0} if and only if there exists Cj 1. € T, 4r,) such that
p(Cjx) < d/n and Ajj > 277b7,. Therefore,

P{elg > 0} < Z P{ﬁ(CLk) < d/n and Aj,k > 27jb7'n}
Cjk€T(p,brn)

~ 2.2 ) .
< Z IP’{p(Cng) < d/n and p(Cjp) > 4303”} <smce Aji < 30527 p(Cj,k))
Cin€T(p,brn)

N 2,2
< > P{IA(CH) ~ plCia)l > plCip) /2 and p(C) > ozt )
Cjk€T(p,brn)

(for n large enough so that 2b*x*logn > 965d)

_ 3 _4b2n2 logn 71)2&2
28 902n 2162
< > <o M T,
Cj k€T (p.brn)

The leaves of T(, ) satisfy p(Cjr) > 4b°77/(965). Since p(M) = 1, there are at most
902 /(4b%72) leaves in T(pbr)- Meanwhile, since every node in 7 has at least ampin children,
H#T (pprn) < 903 amin/(4b*72). Then for a fixed but arbitrary v > 0,

b2k2 b2 K2
1802amin 9162 _ 1802amin 175742 _
IED{612 > 0} < 4b2£f§mn 2163 < 4172262121mn 2163 < 0(927 Gmax; Amin H)n V?
if % is chosen such that x > k1 where b%k2/(2163) = v + 1. [ |

Proof [of Lemma 20] We first prove (24). Introduce the intermediate variable

Ajr =119kl

n = [I(Pj = Pis 1)1 X,
and then observe that
P {ﬁjk <n and Ajj > bn} <P {ﬁjk <7 and Aj,k > (Gmax + 2)77}
+P {Aﬁk < (@max +2)n and Ajp > (2amax + 5)77} . (47)

The bound in Eq. (24) is proved in the following three steps. In Step One, we show that
A > by implies p(Cj ) > O(2%n?). Then we estimate P {Ejk <n and Aji > (amax + 2)?7}
in Step Two and P {Aj,k < (@max +2)n and Aj,k > (2amax + 5)7]} in Step Three.
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Step One: Notice that A < %922*jw/p(0j7k). As a result, Ajj > by implies

(i) 2 L2 (48)
Step Two:
P {ﬁjk <n and Ajg > (amax + 2)77} < P{]ﬁjk — ANjkl > (amax + 1)77} : (49)
We can write
\Aj,k —Ajil < H(Pj,k - 73j,k)1j,kXHn + Z H(ﬁj+1,k’ - Pj+1,k’)1j+1,k/XHn

Cj+1,k/€%0(oj,k

< (llej = &iall + 02277 ||Projy, , — Proje, [1) 1/A(Ci)

€1

+ Y (e =Gl + 027D Projy,  —Projp ) /A(Can).

Ci11 1 €C(Ciik)

€2

(50)

Term e;: We will estimate P{e; > n}. Conditional on the event that {|p(C}j ) — p(Cj )| <

5p(Cjk)}, we have e; < 3 (ch,k —Cikll + t922_jHProjVj’]C - Proj‘A/ij) VP(Cjr). A similar
argument to the proof of Lemma 15 along with (48) give rise to

3 —~ o . . - _2n927 2
P {2 (||Cj,k = Cill + 02277 ||Projy, , — PTOJ@,gH) p(Cjk) > 77} < Fre~2mn

where 41 := 41 (02, 03, d) and 7o := J2(02, 03, 04, d); otherwise P{’ﬁ(cj,k) = p(Cjx)| > %P(Cy}k)} <
522202
26_%”9(0731“) <2 29  Therefore

2 .
)22]n,’,}2

b2
219% (51)

~ 7min(:§/27
P{e; > n} < max(¥,2)e
. . _ 27,2
Term ey: We will estimate P{ea > amaxn}. Let A~ = {Cj+1,k' €C(Cir) : p(Cipr1pr) < %}
and AT = €(C;) \ A™. For every Cji1, € A7, when we condition on the event that

227 2 . 227 2 .
{P(Cirap) < ZgF and p(Cri10) < -}, we obtain

~ —(j+1 . . ~
Z <||Cj+1,k/ — Cjp |l + 02270 )HPTO‘]VjH,k, — Projp H) P(Cjt1h7)

Cj+l,k’ I\
< Z 0227j\/ ﬁ(cj,k) < amaxn/2; (52)
Cj+1’k/€A_
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otherwise,

2 27,2
P {P(Cj+1,k') = 802 and p(Cjr1) > %}

2 2
<P{p(Cir1p) < ZF and [3(Cipaw) - p(Cran)l = |

. 2
- 3n<22J"2) ) (GP(C /)+2223 2) _3:2%nn?
< 2e ( o) )ty <2¢ oW (53)

(&

For Cjt1 4 € AT, a similar argument to e; gives rise to

P Z (HCj—i-l,k’ — G| + 227U [Projy. PFOJ@+L,€,H> \/ P(Cit1pr) > amaxn/2

Cj+1,k/€A+

< Z {(HCJH g — i || + 02270 HY [Projy. ., PTOJ‘7j+1 k,”) \/ P(Cit1pr) = 77/2}
Cjiqp EAT ’

< e 112’ (54)

where 3 := 73(02, 03, Amax, d) and 3y := J4(02,03, 04, amax, d).
Finally combining (49), (50), (51), (52), (53) and (54) yields

P {Bj,k < n and Aj,k > (amax + 2)77} <P {|3j,k - Aj,k| 2 (amax - 1)77}

<P{er > 0} + Plea > amaxn} < Fse 6270 (55)

for some constants 5 := J5(02, 03, amax, d) and s := (02, 03, 04, Amax, d).
Step Three: The probability P {Aj,k < (@max +2)n and Ajp > (2amax + 5)7]} is esti-
mated as follows. For a fixed Cj, we define the function

f(x) = [(Pj = Pjt1) 12|, x € M.

Observe that |f(z)| < 26,277 for any 2 € M. We define | f||? = S 2 (@)dp and || fI|2 =
LS f*(%;). Then

P {Ajak < (amax + 2)77 and A],k‘ > (2amax + 5),,7}
227 pn?

< P{Ajk =285 = n} =P{If] = 2llflln = n} < 3e % (56)

where the last inequality follows from Gyorfi et al. (2002, Theorem 11.2). Combining (47),
(55) and (56) yields (24).

Next we turn to the bound in Eq. (24), which corresponds to the case that Aj;; < n
and ﬁj,k > bn. In this case we have ﬁj,k < %922_j\/ﬁ(Cj’k) which implies

4b222j772

p(Cjk) = o (57)
2
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instead of (48). We shall use the fact that p(Cjx) > (2b622%n?)/(963) given (57) with high
probability, by writing

~ ~ 292,
P{Ajk<n and B> bn}p <P{A;, <y and Ry > by|p(Cip) = 222

+P{p(c o) < L2 and p(Cy) > 4b292;§”} (58)

where the first term is estimated as above and the second one is estimated through Eq. (35)
in Lemma 30:

P{p(Crp) < B2 and 5(Cyp) > L2

962 902
20222 . 202227
<P p(Cia) < Zomh and [B(Cix) — p(Cia)| = Zo
963 963

26222972 |9 _ 252227 2 362227 pyy2
<92 (3 (790 ) )/(6/’(03 k)+2 902 ) < 26_7360% .

Using the estimate in (58), we obtain the bound (24) which concludes the proof. |

Proof [Proof of Lemma 21| We will show how Lemma 20 implies Eq. (25). Clearly e =0
if A V Apr, = ATn NA;, Jbs OF equivalently Tm U Ty, = ’Tm N Tr, - In the case ex > 0,

the 1nclus1on 7'Tn N7 C 'TTn U T, is strict, i.e. there exists C;j € T™ such that either

Cir € ’7'% and Cjx & Tr, /b, or Cjx € Tpr, and Cjk ¢ ’TTn In other words, there exists
Cjk € T™ such that either A;x < 2797,/b and A]k > 2707, or Ajp > b277, and
A k<27 I7,. As a result,

Pleo >0} < Y P{Aj4 <277 and Ajp > 0277, } (59)
Cj,kGTn
+ Z ]P’{ANC < 27an/b and ﬁj’k > 27]'7”}.
C]"kET"
Plea >0} < > IP’{AM <277, /band Ay, > 2—J'Tn} . (60)
C LET™

We apply (24) in Lemma 20 to estimate the first term in (59):

—~ . . _ 2j.9—2j ,.2logn
Z P{Aj,k <2 an and Aj,k > b2 JTn} < Z a1e 0n2%-27 %k n
CLET™ C,LET™

1—agk? 042:‘62—1)

_ 2 _ 2 _
= #T"n" " < araminnn” " < ajaminn = ayaminn ¢

Using (24), we estimate the second term in (59) and (60) as follows

25 logn
Z F {A] k< 277/band Ajk > 2" JTn} < Z a16_a2n22j Rl < alaminn*(azﬁ/b?—l)'
Cj,kETn kGTn
We therefore obtain (25) by choosing x > kg with agr3/b? = v + 1. ]
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Appendix E. Proofs for orthogonal GMRA
E.1. Performance analysis of orthogonal GMRA

The proofs of Theorem 23 and Theorem 25 are resemblant to the proofs of Theorem 4 and
Theorem 8. The main difference lies in the variance term, which results in the extra log
factors in the convergence rate of orthogonal GMRA. Let A be the partition associated with
a finite proper subtree T of the data master tree 7™, and let

Sy = Z Sjkljr and Sp = Z S;kljk-
Cj7k6./\ Cj,kEA

Lemma 33 Let A be the partition associated with a finite proper subtree T of the data
master tree T". Suppose A contains #;A cells at scale j. Then for any n > 0,

Bnn?

P{ISAX —SaX[| >0} <ad | D j#A | e T Zizima TN (61)

ijmin

where o and B are the constants in Lemma 15.

Proof [Proof of Lemma 33| The increasing subspaces {S;,} in the construction of orthog-
onal GMRA may be written as

SO,x = ‘/0,:(:
Sl,x - ‘/O,z D %{xVLm
S22 =Voa ® VizVie ® ViaVie Vo

Sje =Vou ®ViVie @ ... © Vb, - VIRV Vi

Therefore [[Projg,  — Projgjw” < Zgzo(j +1—0)[[Projy, , — Proj%zH, and then

J
P {HProjSm — Projg, || > t} < ZP{Hijm ~ Projg, || > t/jQ}, (62)
=0

The rest of the proof is almost the same as the proof of Lemma 15 in appendix C with a
slight modification of (41) substituted by (62). [ |

The corollary of Lemma 33 with A = A; results in the following estimate of the variance
in empirical orthogonal GMRA.

Lemma 34 For anyn > 0,

R _ 622jnn2

P{||S; X — S;X|| > n} < adj#Aje “7#N (63)

d*j #A logladj#A,]
B22in )

E[S;X - 8;X|* < (64)
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Proof [Proof of Theorem 23]

EIX — §X|* < |X - S; X|I? + E[S; X — §;X|?
d?j #A  logladj# ;]
B22in

. d2j42j(d_2) Oédj2]d
< 2 02728.] 1
< |pl4o + 0,6 og 0,

< lplhg2 7™ +

- 1
When d > 2, We choose j* such that 277 = p ((log n)/n)?*=2 . By grouping Aj- into
light and heavy cells whose measure is below or above 2 3 (v + 1)log® n/n, we can show that

the error on light cells is upper bounded by C((log®n) / n)2s+d—2 74d=2 and all heavy cells have at
least d points with high probability.

1
Lemma 35 Suppose j* is chosen such that 277" = (ﬁ) 22 ith some w>0. Then

n

2s
+1)02u2=4 (1ogdn '\ Zs+d—2
I(X =P X)1 o 2 < B 2
J 28(v+1) log” n — 360 ’
{Cj*yk:p(cj*’k)g(g%} ! "

5
]P){VC’j*Jg : p(Cjr i) > W, Cj» 1 has at least d pomts} >1—-n"".

Proof of Lemma 35 is omitted since it is the same as the proof of Lemma 17. Lemma 35
guarantees that a sufficient amount of cells at scale j* has at least d points. The probability
estimate in (28) follows from

s d
g {HSj*X - 83X =Gy <10ng> 28+H} < Calogn (log n) IR =012 0 (25 +d-2)! /d? logn
< Oy (logn) nﬁn—ﬁelud*20f(2s+d—2)4/d2 < le—/aewd*?cf(25+d—2)4/d2 < CynV

provided Cj is chosen such that 361 u?~2C%(2s +d — 2)*/d? —1 > v. The proof when d = 1
is completely analogous to that of Theorem 4. |

E.2. Performance analysis of adaptive orthogonal GMRA
Proof [Proof of Theorem 25| Empirical adaptive orthogonal GMRA is given by ‘SA‘K , =

ZC KR ]’klj k- Using triangle inequality, we have

||X—§K X[ <er+ext+estes

with each term given by

€1 = HX —SA

AT,,‘{ VAb‘r,,OL

X\ eyi=|IS; X -8

o/\A O/bXH
X -8 X|

2 VAb )

€3 1= HS"

A‘rﬁ/\A‘rg/bX B SKTgAATg/bXH €4 1= HSK

g N2 /b

where b = 2am.x + 5. We will prove the case d > 3. Here one proceeds in the same way as
in the proof of Theorem 8. A slight difference lies in the estimates of e3, es and ey.

57



L1A0 AND MAGGIONI

Term e3: Ee3 is the variance. One can verify that Tiprom) C Tjo := Uj<joAj where jg is the
largest integer satisfying 270¢ < 9626602 /(472%). The reason is that Af < 302277/0p2 74
so A2, > 27770 /b implies 2704 < 9626063 /(475%). For any 1 > 0,

ﬂnnz /37”72

. BTSSP —27 4 . . " iEpP (18 /b)—P
Pes > 0} < adjo#t Trope 0 >mn®  #iTr8/0 < adjodt Trepe 0587

The estimate of ]Ee§ follows from

+o00 +o0 —- ﬁ""f .
Ee3 = / nP{es >n}dn= /0 7 min (1, adjo#t Trg jpe 0 =i2imin® 21#%%/17) dn
0

4 . 2s
Jo log ajo#Trg —2j log® — logb n\ Zs+d—2
< BT N 9 Ry Ty < CE (70 /6) 7P < C(00, 02,03, max. . d, 5) (%) .

jzjmin

Term ey and e4: These two terms are analyzed with Lemma 36 stated below such that
for any fixed but arbitrary v > 0,

P{ea > 0} + P{eq > 0} < Bramin/dn™"
if x is chosen such that x > ko with d*fBar3/b? = v + 1.

Lemma 36 b= 2amax + 5. For anyn >0 and any Cj € T
max (IP’ {ﬁjok <n and Af; > bn} ,P {A?k <n and ﬁjk > bn}) < 51j6_’82"22j’72/j4,

with positive constants By := P1(02,03,04, amax, d) and By := Pa(02, 03,04, amax, d).
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