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Abstract

In this paper, we consider three typical optimization problems with a convex loss function
and a nonconvex sparse penalty or constraint. For the sparse penalized problem, we prove
that finding an O(nc1dc2)-optimal solution to an n × d problem is strongly NP-hard for
any c1, c2 ∈ [0, 1) such that c1 + c2 < 1. For two constrained versions of the sparse
optimization problem, we show that it is intractable to approximately compute a solution
path associated with increasing values of some tuning parameter. The hardness results
apply to a broad class of loss functions and sparse penalties. They suggest that one cannot
even approximately solve these three problems in polynomial time, unless P = NP.

Keywords: nonconvex optimization, computational complexity, variable selection, NP-
hardness, sparsity

1. Introduction

Sparsity is a prominent modeling tool for extracting useful information from high-dimensional
data. A practical goal is to minimize the empirical loss using as few variables/features as
possible. In this paper, we consider three typical optimization problems arising from sparse
machine learning. The first problem takes the form of empirical risk minimization with an
additive sparse penalty.

Problem 1 Given the loss function ` : R×R 7→ R+, penalty function p : R 7→ R+, and
regularization parameter λ > 0, consider the problem

min
x∈Rd

n∑
i=1

`
(
aTi x, bi

)
+ λ

d∑
j=1

p (|xj |) ,

where A = (a1, . . . , an)T ∈ Rn×d, b = (b1, . . . , bn)T ∈ Rn are input data.
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We also consider two constrained versions of sparse optimization, which are given by
Problems 2 and 3. Such problems arise from sparse estimation (Shen et al., 2012) and
sparse recovery (Natarajan, 1995; Bruckstein et al., 2009).

Problem 2 Given the loss function ` : R × R 7→ R+, penalty function p : R 7→ R+,
consider the problem

min
x∈Rd

n∑
i=1

`
(
aTi x, bi

)
s.t.

d∑
j=1

p (|xj |) ≤ K,

where A = (a1, . . . , an)T ∈ Rn×d, b = (b1, . . . , bn)T ∈ Rn and the sparsity parameter K are
input data.

Problem 3 Given the loss function ` : R × R 7→ R+, penalty function p : R 7→ R+,
consider the problem

min
x∈Rd

d∑
j=1

p (|xj |) s.t.
n∑
i=1

`
(
aTi x, bi

)
≤ η,

where A = (a1, . . . , an)T ∈ Rn×d, b = (b1, . . . , bn)T ∈ Rn and the error tolerance parameter
η ≥ 0 are input data.

For a given sparsity level K, the optimal solution to Problem 2 is the best K-sparse
solution that fits the data set (A, b). To select the best sparsity level that fits the data,
one usually needs to solve a sequence of instances of Problem 2, corresponding to different
values of K. Similarly for Problem 3, one often needs to compute the solution path that is
associated with a sequence of values of η.

We are interested in the computational complexity of Problems 1, 2 and 3 under general
conditions of the loss function ` and the sparse penalty p. In particular, we focus on
the case where ` is a convex loss function and p is a nonconvex function with a unique
minimizer at 0. These problems naturally arise from feature selection, compressive sensing,
and sparse approximation. For some special cases of Problem 1, it has been shown that
finding an exact solution is strongly NP-hard (Huo and Chen, 2010; Chen et al., 2014).
However, these results have not excluded the possibility of the existence of polynomial-time
algorithms with small approximation error. The technical note by Chen and Wang (2016)
established the hardness of approximately solving Problems 1, 2 for the special case where
p is the L0 norm.

In this paper, we prove that it is strongly NP-hard to approximately solve Problems 1,
2 and 3 within certain levels of suboptimality. For Problem 1, we show that there exists a
worst-case lower bound on the suboptimality error that can be achieved by any tractable
deterministic algorithm. For Problems 2 and 3, we show that there does not exist any
pseudo polynomial-time algorithm that can approximately compute a solution path where
K or η increases at a certain speed. Our results apply to a variety of optimization problems
in estimation and machine learning. Examples include sparse classification, sparse logistic
regression and many more. The strong NP-hardness of approximation is one of the strongest
forms of complexity result for continuous optimization. To our best knowledge, this is the
first work that gives the proof of the approximation hardness for sparse optimization under
general conditions on ` and p. A preliminary conference version of this paper (Chen et al.,
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2017) focused solely on Problem 1. The current journal version extends the analysis to
sparse constrained optimization and establishes hardness results for Problems 2 and 3.

Our results on optimization complexity provide new insights into the complexity of
sparse feature selection (Zhang et al., 2014; Foster et al., 2015). In the case of sparse regres-
sion for linear models, our result on Problem 1 shows that the lower bound of approximation
error is significantly larger than the desired small statistical error (although our lower bound
is worst-case). In the case where practitioners wish to choose the best sparsity level, our
result on Problem 2 shows that it is impossible to know how much the loss function would
improve when increasing the sparsity level. These observations provide strong evidences for
the hardness of variable selection.

Our main contributions are four-folded.

1. We prove the strong NP-hardness for Problems 1, 2 and 3 with a general loss function
`(·), which are no longer limited to L2 or Lp functions. These are the first results
that apply to the broad class of problems including but not limited to: least square
regression, linear model with Laplacian noise, robust regression, Poisson regression,
logistic regression, inverse Gaussian models and the generalized linear model under
the exponential distributions.

2. We present a general condition on the penalty function p(·) such that Problems 1,
2 and 3 are strongly NP-hard. Our condition is a slightly weaker version of strict
concavity. It only requires the penalty function be concave while ruling out the pos-
sibility of linear penalty function (i.e., the LASSO) which is concave but also convex.
It is satisfied by typical penalty functions such as the Lp norm (p ∈ [0, 1)), clipped L1

norm, smoothly clipped absolute deviation, etc. To the best of our knowledge, this is
the most general condition on the penalty function in the literature.

3. We prove that finding an O (λnc1dc2)-optimal solution to Problem 1 is strongly NP-
hard, for any c1, c2 ∈ [0, 1) such that c1 + c2 < 1. Here the O(·) hides parameters that
depend on the penalty function p, which is to be specified later. Our proof provides
a first unified analysis that deals with a broad class of problems taking the form of
Problem 1.

4. We prove that it is strongly NP-hard to distinguish the optimal values of instances of
Problem 2 (or Problem 3) that are associated with increasing values of the sparsity
parameter K (or the error tolerance parameter η). This is the first hardness result for
sparsity-constrained optimization with general loss and penalty functions. It implies
that it is hard to approximately compute a solution path for the purpose of parameter
tuning.

Section 2 reviews the background of sparse optimization and related literatures in the
complexity theory. Section 3 presents the key assumptions and illustrates examples of loss
and penalty functions that satisfy the assumptions. Section 4 gives the main results. Section
5 discusses the implications of our hardness results. The full proofs are given in Section 6.
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2. Background and Related Works

Sparse optimization problems are common in machine learning, estimation, and signal pro-
cessing. The sparse penalty p plays the important role of variable/feature selection. A
common technique of imposing sparsity is to penalize the objective with a penalty function,
leading to Problem 1. A well known example is the LASSO where p is the L1 norm penalty
and ` is the regression objective (Tibshirani, 1996). Nonconvex choices of p have been exten-
sively studied in order to provide stronger statistical guarantee to the optimal soluion. Fan
and Li (2001) proposed the smoothly clipped absolute deviation (SCAD) penalty which
forces the solution of Problem 1 to be unbiased, sparse and stable in certain statistical
sense. Frank and Friedman (1993) proposed the bridge estimator which use the Lp norm
(0 < p < 1) as its penalty function. Other related works include exact reconstruction of
sparse signals by Candes et al. (2008) and Chartrand (2007), high-dimensional variable
selection by Fan and Lv (2010), sparse Ising model by Xue et al. (2012) and regularized
M-estimators by Loh and Wainwright (2013), etc.

Problem 2 finds applications in sparse estimation and feature selection. The work by
Shen et al. (2012) proposed a statistically optimal estimator as the solution to the maxim-
imum likelihood problem with L0 sparsity constraint

min
x∈Rd

−
n∑
i=1

log g(x; ai, bi) s.t.
d∑
i=1

‖xi‖0 ≤ K.

This is a special case of Problem 2. The work by Fang et al. (2015) proposed an L0

constrained optimization problem for sparse estimation of large-scale graphical models,
which is also a special case of Problem 2. Another related problem is sparse recovery, which
is to find the sparsest solution to a system of equations within an error tolerance. For
example, Natarajan (1995) considered the problem

min
x∈Rd

d∑
i=1

‖xi‖0 s.t.
n∑
i=1

(aTi x− bi)2 ≤ δ,

which is a special case of Problem 3. See the work by Bruckstein et al. (2009) for more
examples of Problem 3.

Within the mathematical programming community, the complexity of Problem 1 has
been considered in a few works. Huo and Chen (2010) first proved the hardness result for
problems with a relaxed family of penalty functions minx∈Rd ‖Ax−b‖22+λ

∑d
i=1 p(|xi|). They

show that for the penalties in `0, hard-thresholded (Antoniadis and Fan, 2001) and SCAD
(Fan and Li, 2001), the above optimization problem is NP-hard. Our result (Theorem 1)
requires weaker conditions on p(·) than theirs. In particular, our results applies to the
Lp(0 < p < 1) penalization and the clipped L1 penalty function specified in Section 3.1
which do not satisfy the conditions in their paper. Moreover, our result applies to a broad
class of ` functions and obtains strong NP-hardness. A problem is strongly NP-hard if every
problem in NP can be polynomially reduced to it in a way such that input in the reduced
instance are written in unary (Vazirani, 2001). It is a stronger notion than NP-hardness
where NP-hard problems might still be fast to solve in practice using pseudo-polynomial
algorithms if the coding size is small (Garey and Johnson, 1978). On the contrary, a
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strongly NP-hard problem doesn’t have such a pseudo-polynomial algorithm. Chen et al.
(2014) showed that the L2-Lp minimization minx∈Rd ‖Ax − b‖22 + λ

∑d
i=1 |xi|p is strongly

NP-hard when p ∈ (0, 1). At the same time, Bian and Chen (2014) proved the strong
NP-hardness for another class of penalty functions. Their result requires p(t) to be at least
locally strictly concave, while ours does not. In particular, among the examples listed in
Section 3.1, their results do not apply to L0 penalization and clipped L1 penalty function.
To the best of our knowledge, our results are the most general ones up to today, which
contains as special cases a broad class of penalty functions including `0, hard-thresholded,
SCAD, Lp penalization (p ∈ (0, 1)), folded concave penalty family (Fan et al., 2014) etc.

Within the theoretical computer science community, there have been several early works
on the complexity of sparse recovery, beginning with the work by Arora et al. (1993). Amaldi
and Kann (1998) proved that the problem min{‖x‖0 | Ax = b} is not approximable within

a factor 2log1−ε d for any ε > 0. Natarajan (1995) showed that, given ε > 0, A and b, the
problem min{‖x‖0 | ‖Ax− b‖2 ≤ ε} is NP-hard. Davis et al. (1997) proved a similar result
that for some given ε > 0 and M > 0, it is NP-complete to find a solution x such that
‖x‖0 ≤ M and ‖Ax − b‖ ≤ ε. More recently, Foster et al. (2015) studied sparse linear
recovery and sparse linear regression with subgaussian noises. Assuming that the true
solution is K-sparse, it showed that no polynomial-time (randomized) algorithm can find

a K · 2log1−δ d-sparse solution x with ‖Ax − b‖22 ≤ dC1n1−C2 with high probability, where
δ, C1, C2 are arbitrary positive scalars. Another work (Zhang et al., 2014) showed that
under the Gaussian linear model, there exists a gap between the mean square loss that
can be achieved by polynomial-time algorithms and the statistically optimal mean squared
error. These two works focus on the estimation of linear models and impose distributional
assumptions regarding the input data. For comparison with our results, theirs are stronger
in the sense that they exclude the existence of any tractable randomized algorithm that
succeds with high probability, while ours apply to deterministic algorithms. In the mean
time, their results are less general than ours in the sense that they assume specific data
distributions and specific loss functions, while ours are concerned with a much more general
setting. In short, existing complexity results on sparse recovery are different in nature with
our results on sparse computational optimization.

There remain several open questions. First, existing results do not apply to general
loss functions ` or sparse penalties p. Existing analyses rely on specific properties of the
Lq loss functions, such as the linear shift property ‖ax‖q = aq‖x‖q and the property that
Lq has sufficiently large second-order derivative around its minimum. However, these nice
properties are lost in a majority of estimation problems, such as logistic regression and
poisson regression. Second, the existing results from mathematical programming community
apply only to the unconstrained Problem 1. The computational complexity of Problems 2
and 3 remain under-investigated in the community of optimization. Third, the results from
computer science community apply to Problem 2 when the penalty function is L0. These
results work for specific loss functions and some of them impose distributional assumption
about the input (Foster et al., 2015). In this paper, we focus on the worst-case complexity
without making any distributional assumption regarding the input data. In this setting,
the complexity of Problems 2 and 3 with penalty functions other than L0 is yet to be
established.
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3. Assumptions

In this section, we state the two critical assumptions that lead to the strong NP-hardness
results: one for the penalty function p, the other one for the loss function `. We argue
that these assumptions are essential and very general. They apply to a broad class of loss
functions and penalty functions that are commonly used.

3.1. Assumption On The Sparse Penalty

Throughout this paper, we make the following assumption regarding the sparse penalty
function p(·).

Assumption 1 The penalty function p(·) satisfies the following conditions:

(i) (Monotonicity) p(·) is non-decreasing on [0,+∞).

(ii) (Concavity) There exists τ > 0 such that p(·) is concave but not linear on [0, τ ].

In words, condition (ii) means that the concave penalty p(·) is nonlinear. Assumption
1 is the most general condition on penalty functions in the existing literature of sparse
optimization. Below we present a few such examples.

1. In variable selection problems, the L0 penalization p(t) = I{t6=0} arises naturally as a
penalty for the number of factors selected.

2. A natural generalization of the L0 penalization is the Lp penalization p(t) = tp where
(0 < p < 1). The corresponding minimization problem is called the bridge regression
problem (Frank and Friedman, 1993).

3. To obtain a hard-thresholding estimator, Antoniadis and Fan (2001) use the penalty
functions pγ(t) = γ2 − ((γ − t)+)2 with γ > 0, where (x)+ := max{x, 0} denotes the
positive part of x.

4. Any penalty function that belongs to the folded concave penalty family (Fan et al.,
2014) satisfies the conditions in Assumption 1. Examples include the SCAD (Fan and
Li, 2001) and the MCP (Zhang, 2010a), whose derivatives on (0,+∞) are p′γ(t) =

γI{t≤γ}+ (aγ−t)+
a−1 I{t>γ} and p′γ(t) = (γ− t

b)
+, respectively, where γ > 0, a > 2 and

b > 1.

5. The conditions in Assumption 1 are also satisfied by the clipped L1 penalty function
(Antoniadis and Fan, 2001; Zhang, 2010b) pγ(t) = γ ·min(t, γ) with γ > 0. This is a
special case of the piecewise linear penalty function:

p(t) =

{
k1t if 0 ≤ t ≤ a
k2t+ (k1 − k2)a if t > a

where 0 ≤ k2 < k1 and a > 0.

6. Another family of penalty functions which bridges the L0 and L1 penalties are the

fraction penalty functions pγ(t) =
(γ + 1)t

γ + t
with γ > 0 (Lv and Fan, 2009).
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7. The family of log-penalty functions:

pγ(t) =
1

log(1 + γ)
log(1 + γt)

with γ > 0, also bridges the L0 and L1 penalties (Candes et al., 2008).

3.2. Assumption On The Loss Function

We state our assumption about the loss function `.

Assumption 2 Let M be an arbitrary constant. For any interval [τ1, τ2] where 0 < τ1 <
τ2 < M , there exists k ∈ Z+ and b ∈ Qk such that h(y) :=

∑k
i=1 `(y, bi) has the following

properties:

(i) h(y) is convex and Lipschitz continuous on [τ1, τ2].

(ii) h(y) has a unique minimizer y∗ in (τ1, τ2).

(iii) There exists N ∈ Z+, δ̄ ∈ Q+ and C ∈ Q+ such that when δ ∈ (0, δ̄), we have

h(y∗ ± δ)− h(y∗)

δN
≥ C.

(iv) h(y∗), {bi}ki=1 can be represented in O(log 1
τ2−τ1 ) bits.

Assumption 2 is a critical, but very general, assumption regarding the loss function
`(y, b). Condition (i) requires convexity and Lipschitz continuity within a neighborhood.
Conditions (ii), (iii) essentially require that, given an interval [τ1, τ2], one can artificially
pick b1, . . . , bk to construct a function h(y) :=

∑k
i=1 `(y, bi) such that h has its unique

minimizer in [τ1, τ2] and has enough curvature near the minimizer. This property ensures
that a bound on the minimal value of h(y) can be translated to a meaningful bound on
the distance to the minimizer y∗. The conditions (i), (ii), (iii) are typical properties that
a loss function usually satisfies. Condition (iv) is a technical condition that is used to
avoid dealing with infinitely-long irrational numbers. It can be easily verified for almost all
common loss functions.

We will show that Assumptions 2 is satisfied by a variety of loss functions. An (incom-
plete) list is given below.

1. In the least squares regression, the loss function has the form

n∑
i=1

(
aTi x− bi

)2
.

Using our notation, the corresponding loss function is `(y, b) = (y− b)2. For all τ1, τ2,
we choose an arbitrary b′ ∈ [τ1, τ2]. We can verify that h(y) = `(y, b′) satisfies all the
conditions in Assumption 2.
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2. In the linear model with Laplacian noise, the negative log-likelihood function is

n∑
i=1

∣∣aTi x− bi∣∣ .
So the loss function is `(y, b) = |y − b|. As in the case of least squares regression, the
loss function satisfy Assumption 2. Similar argument also holds when we consider the
Lq loss | · |q with q ≥ 1.

3. In robust regression, we consider the Huber loss (Huber, 1964) which is a mixture of
L1 and L2 norms. The loss function takes the form

Lδ(y, b) =

{
1
2 |y − b|

2 for |y − b| ≤ δ,
δ(|y − b| − 1

2δ) otherwise.

for some δ > 0 where y = aTx. We then verify that Assumption 2 is satisfied. For
any interval [τ1, τ2], we pick an arbitrary b ∈ [τ1, τ2] and let h(y) = `(y, b). We can
see that h(y) satisfies all the conditions in Assumption 2.

4. In Poisson regression (Cameron and Trivedi, 2013), the negative log-likelihood mini-
mization is

min
x∈Rd
− logL(x;A, b) = min

x∈Rd

n∑
i=1

(exp(aTi x)− bi · aTi x).

We now show that `(y, b) = ey−b·y satisfies Assumption 2. For any interval [τ1, τ2], we
choose q and r such that q/r ∈ [eτ1 , eτ2 ]. Note that eτ2−eτ1 = eτ1+τ2−τ1−eτ1 ≥ τ2−τ1.
Also, eτ2 is bounded by eM . Thus, q, r can be chosen to be polynomial in d1/(τ2−τ1)e
by letting r = d1/(τ2 − τ1)e and q be some number less than r · eM . Then, we choose
k = r and b ∈ Zk such that h(y) =

∑k
i=1 `(y, bi) = r · ey − q · y. Let us verify

Assumption 2. (i), (iv) are straightforward by our construction. For (ii), note that
h(y) take its minimum at ln(q/r) which is inside [τ1, τ2] by our construction. To verify
(iii), consider the second order Taylor expansion of h(y) at ln(q/r),

h(y + δ)− h(y) =
r · ey

2
· δ2 + o(δ2) ≥ δ2

2
+ o(δ2),

We can see that (iii) is satisfied. Therefore, Assumption 2 is satisfied.

5. In logistic regression, the negative log-likelihood function minimization is

min
x∈Rd

n∑
i=1

log(1 + exp(aTi x))−
n∑
i=1

bi · aTi x.

We claim that the loss function `(y, b) = log(1 + exp(y)) − b · y satisfies Assumption
2. By a similar argument as the one in Poisson regression, we can verify that h(y) =∑r

i=1 `(y, bi) = r log(1+exp(y))−qy where q/r ∈ [ eτ1
1+eτ1 ,

eτ2
1+eτ2 ] and q, r are polynomial

in d1/(τ2−τ1)e satisfies all the conditions in Assumption 2. For (ii), observe that `(y, b)
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take its minimum at y = ln q/r
1−q/r . To verify (iii), we consider the second order Taylor

expansion at y = ln q/r
1−q/r , which is

h(y + δ)− h(y) =
q

2(1 + ey)
δ2 + o(δ2)

where y ∈ [τ1, τ2]. Note that ey is bounded by eM , which can be computed beforehand.
As a result, (iii) holds as well.

6. In the mean estimation of inverse Gaussian models (McCullagh, 1984), the negative
log-likelihood function minimization is

min
x∈Rd

n∑
i=1

(bi ·
√
aTi x− 1)2

bi
.

Now we show that the loss function `(y, b) =
(b·√y−1)2

b satisfies Assumption 2. By
setting the derivative to be zero with regard to y, we can see that y take its minimum
at y = 1/b2. Thus for any [τ1, τ2], we choose b′ = q/r ∈ [1/

√
τ2, 1/

√
τ1]. We can see

that h(y) = `(y, b′) satisfies all the conditions in Assumption 2.

7. In the estimation of generalized linear model under the exponential distribution (Mc-
Cullagh, 1984), the negative log-likelihood function minimization is

min
x∈Rd

− logL(x;A, b) = min
x∈Rd

bi

aTi x
+ log(aTi x).

By setting the derivative to 0 with regard to y, we can see that `(y, b) = b
y + log y

has a unique minimizer at y = b. Thus by choosing b′ ∈ [τ1, τ2] appropriately, we can
readily show that h(y) = `(y, b′) satisfies all the conditions in Assumption 2.

To sum up, the combination of any loss function given in Section 3.1 and any penalty
function given in Section 3.2 results in a strongly NP-hard sparse optimization problem.
We will provide formal statements and proof of these results in subsequent sections.

4. Main Results

In this paper, we aim to clarify the complexity for a broader class of sparse optimiza-
tion problems taking the form of Problems 1, 2 and 3. Given an optimization problem
minx∈X f(x), we say that a solution x̄ is ε-optimal if x̄ ∈ X and f(x̄) ≤ infx∈X f(x) + ε.

Theorem 1 (Strong NP-Hardness of Problem 1) Let Assumptions 1 and 2 hold, and
let c1, c2 ∈ [0, 1) be arbitrary such that c1 + c2 < 1. Then it is strongly NP-hard to find a
λ · κ · nc1dc2-optimal solution of Problem 1, where d is the dimension of variable space and
κ = mint∈[τ/2,τ ]{

2p(t/2)−p(t)
t }.
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The non-approximable error in Theorem 1 involves the constant κ which is determined
by the sparse penalty function p. In the case where p is the L0 norm function, we can take
κ = 1. In the case of piecewise linear L1 penalty, we have κ = (k1 − k2)/4. In the case of
SCAD penalty, we have κ = Θ(γ2).

According to Theorem 1, the non-approximable error λ · κ · nc1dc2 is determined by
three factors: (i) properties of the regularization penalty λ · κ; (ii) data size n; and (iii)
dimension or number of variables d. This result illustrates a fundamental gap that can not
be closed by any polynomial-time deterministic algorithm. This gap scales up when either
the data size or the number of variables increases. In Section 5.1, we will see that this gap
is substantially larger than the desired estimation precision in a special case of sparse linear
regression.

Next we study the complexity of the sparsity-constrained Problem 2. We denote by
`n(x) the normalized loss function:

`n(x) =
1

n

n∑
i=1

`
(
aTi x, bi

)
,

and denote by x∗K the best K-sparse solution:

x∗K ∈ argmin

`n(x)

∣∣∣∣∣
d∑
j=1

p(|xj |) ≤ K

 .

We obtain the following result.

Theorem 2 (Strong NP-Hardness of Problem 2) Let Assumptions 1 and 2 hold, and
let c1, c2 ∈ [0, 1) be arbitrary such that c1 + c2 < 1. Let x̂K be the approximate solution to
Problem 2 with sparsity parameter K. Then there does not exist a pseudo polynomial-time
algorithm that takes the input of Problem 2 and outputs a sequence of approximate solutions
satisfying

`n(x̂K+κnc1dc2 ) ≤ `n(x∗K),

for all K = 0, κnc1dc2 , 2κnc1dc2 , . . . , unless P=NP, where κ = mint∈[τ/2,τ ]{
2p(t/2)−p(t)

t }.

Let us interpret the results of Theorem 2 in a practical setting. Suppose that we want
to solve a sequence of sparsity-constrained problems with different values of the sparsity
parameter K. The aim is to compare the corresponding empirical losses {`n(x∗K)} and tune
the parameter K.

Theorem 2 suggests that we cannot decide whether and how much the objective value
will change by increasing the sparsity level from K to K+κnc1dc2 . Even if `n(x∗K) is known
as a benchmark, we can not find a better approximation of `n(x∗K+κnc1dc2 ) in polynomial
time. In short, Theorem 2 tells us that it is computationally intractable to differentiate
the minimal empirical losses that correspond to different values of K, unless P=NP. This
implies that tuning the parameter K is computationally intractable.

Our last result concerns the error-constrained Problem 3.
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Theorem 3 Let Assumptions 1 and 2 hold, and let c ∈ [0, 1) be arbitrary. Let x̂η be the
approximate solution to Problem 3 with error tolerance η and let x∗η be the corresponding
optimal solution. There does not exist a pseudo polynomial-time algorithm that takes the
input of Problem 3 and outputs a sequence of approximate solutions satisfying

d∑
j=1

p
(

(x̂η+κnc1dc2 )j

)
≤

d∑
j=1

p
(

(x∗η)j

)
,

for all η = 0, κnc1dc2 , 2κnc1dc2 , . . . , unless P=NP. Here, (x)j is the j-th component of vector

x and κ = mint∈[τ/2,τ ]{
2p(t/2)−p(t)

t }.

Theorems 1, 2 and 3 are closely related to one another. Recall that the goal of sparse
optimization is to make both the loss function and sparsity level small. Theorem 2 and
Theorem 3 suggest that it is not possible to approximate the solution path, where either
the loss tolerance or the sparsity level varies, in polynomial time. In contrast, Theorem 1
proves the approximation hardness for the sum between the loss tolerance and the sparsity
level, when a fixed λ is used.

Theorems 1, 2 and 3 validate the long-lasting belief that optimization involving noncon-
vex penalty is hard. They provide worst-case lower bounds for the optimization error that
can be achieved by any polynomial-time algorithm. This is one of the strongest forms of
hardness result for continuous optimization.

5. Implications of The Hardness Results

In this section, we interpret the strong NP-hardness results in the contexts of linear re-
gression with SCAD penalty (which is a special case of Problem 1) and sparsity parameter
tuning (which is related to Problem 2). We give a few remarks on the implication of our
hardness results.

5.1. Hardness of Regression with SCAD Penalty

Let us try to understand how significant is the non-approximable error of Problem 1. We
consider the special case of linear models with SCAD penalty. Let the input data (A, b) be
generated by the linear model Ax̄+ ε = b, where x̄ is the unknown true sparse coefficients
and ε is a zero-mean multivariate subgaussian noise. Given the data size n and variable
dimension d, we follow the work by Fan and Li (2001) and obtain a special case of Problem
1, given by

min
x

1

2
‖Ax− b‖22 + n

d∑
j=1

pγ(|xj |), (1)

where γ =
√

log d/n. Fan and Li (2001) showed that the optimal solution x∗ of problem (1)
has a small statistical error, i.e., ‖x̄ − x∗‖22 = O

(
n−1/2 + an

)
, where an = max{p′λ(|x∗j |) :

x∗j 6= 0}. Fan et al. (2015) further showed that we only need to find a
√
n log d-optimal

solution to (1) to achieve such a small estimation error.
However, Theorem 2 tells us that it is not possible to compute an εd,n-optimal solution

for problem (1) in polynomial time, where εd,n = λκn1/2d1/3 (by letting c1 = 1/2, c2 = 1/3).

11
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In the special case of problem (1), we can verify that λ = n and κ = Ω(γ2) = Ω(log d/n).
As a result, we see that

εd,n = Ω(n1/2d1/3)�
√
n log d,

for high values of the dimension d. According to Theorem 2, it is strongly NP-hard to
approximately solve problem (1) within the required statistical precision

√
n log d, where

there is no distributional assumption on the data.
This gap is due to that the positive statistical properties of SCAD rely on strong distri-

butional assumptions, while our hardness result does not. This illustrates a sharp contrast
between the desirable statistical properties of sparse optimization under distributional as-
sumptions and the worst-case computational complexity. In short, there does not exist a
general-purpose polynomial algorithm.

5.2. Hardness of Tuning the Sparsity Level with L0 Penalty

Suppose that we are given the input data set (A, b) with d variables/features and n samples.
Now we want to find a sparse solution x that approximately minimize the empirical loss
Ln(x) = 1

n

∑n
i=1 `(a

T
i x, bi). A practical problem is to find the right sparsity level for the

approximate solution. This is essentially a model selection problem.
Finding the sparsity level requires computing the K-sparse solutions

x∗K ∈ argmin {Ln(x) | ‖x‖0 ≤ K} ,

for a range of values of K. This can be translated into solving a sequence of L0 constrained
problems (of the form Problem 2) with K ranging from 1 to d. Regardless of the specific
model selection procedure, it is inevitable to compute x∗K for many values of K’s, and to
compare their empirical losses such as Ln(x∗K) and Ln(x∗K+1).

Now let us interpret the results of Theorem 3 in the setting of tuning parameter K.
Theorem 3 can be translated as follows. There exists some sparsity level K such that: even
if the exact K-sparse solution x∗K is known, the non-approximable optimization error for
the (K + 1)-sparse problem is at least

Ln(x∗K)− Ln(x∗K+1) > 0.

The minimal empirical loss using K features is the best possible approximation to the
minimal loss using K+1 features. In other words, we cannot decide whether and how much
the objective value will change by increasing the sparsity level from K to K + 1. Even if
Ln(x∗K) is known as a benchmark, we can not find a better approximation of Ln(x∗K+1) in
polynomial-time. In summary, Theorem 2 tells us that it is computationally intractable
to differentiate between the sparsity levels K and K + 1, unless P=NP. This implies that
selection of the sparsity level is computationally intractable.

5.3. Remarks on the NP-Hardness Results

As illustrated by the preceding analysis, the non-approximibility of Problems 1, 2 and 3
suggests that computing the sparse estimator and tuning the sparsity parameter are hard in
the worst case. Although the results seem negative, they should not discourage researchers
from studying computational perspectives of sparse optimization. We make the following
remarks:

12
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1. Theorems 1, 2 and 3 are worst-case complexity results. They suggest that one cannot
find a tractable solution to the sparse optimization problems, without making any
additional assumption to rule out the worst-case instances. It is possible that the
worst-case instances are highly unlikely to occur in practical situations.

2. Our results do not exclude the possibility that, under more stringent modeling and
distributional assumptions, the problem would be tractable with high probability or
on average.

In short, the sparse optimization Problems 1, 2 and 3 are fundamentally hard from a purely
computational perspective. This paper together with the prior related works provide a
complete answer to the computational complexity of sparse optimization.

6. Technical Proofs

In this section, we prove the hardness of approximation of Problem 1, 2 and 3 for general
loss function ` and penalty function p. We develop the reduction proof through a series of
preliminary lemmas.

6.1. Preliminary Lemmas

Our first lemma gives us a key fact about the nonconvex penalty function p. We use B(θ, δ)
to denote the interval (θ − δ, θ + δ).

Lemma 4 For any penalty function p that satisfies Assumption 1, we have

(i) p(t) is continuous on (0, τ ].

(ii) For any t1, ..., tl ≥ 0, if
∑n

i=1 ti ≤ τ , then
∑l

i=1 p(ti) ≥ p(
∑l

i=1 ti).

(iii) There exists a ∈ [1/2, 1) such that when
∑l

i=1 ti ∈ [aτ, τ ], the above inequality holds
as equality if and only if ti = t∗ for some i while tj = 0 for j 6= i.

(iv) Denote κ = mint∈[aτ,τ ]{
2p(t/2)−p(t)

t }. For the constant a given in (iii), we have that

∀δ > 0, t1, · · · , tl ∈ R, ∀ε ≤ κδ : if
∑l

i=1 ti = t∗ ∈ [aτ, τ ] and p(
∑l

i=1 ti) + ε ≥∑l
i=1 p(ti), then there is at most one i such that ti 6∈ B(0, δ).

Proof As (i), (ii) and (iii) are proved by Ge et al. (2015), we prove (iv) here. We first prove
the lemma when t1, · · · , tl ≥ 0. We start by proving the case when l = 2. By (iii), there
exists a such that when t∗ ∈ [aτ, τ ] and p(t∗) ≥ p(t1) + p(t2), we have t1 = 0 or t2 = 0. It
follow that when t1 6= 0, t2 6= 0 and t∗ ∈ [aτ, τ ], we have p(t1 + t2) < p(t1) + p(t2). Without
loss of genearlity, we assume that t1 ≤ t2. Then, we have

p(t∗)− p(t∗ − t1)

t1
<
p(t1)

t1
.

Notice that the right term is non-increasing with the increment of t1 as p is a concave
function and the left term is non-decreasing with the increment of t1 when t∗ is fixed. As

13
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t1 ≤ t∗/2, we have p(t1)
t1
≥ k1(t∗) := p(t∗/2)

t∗/2 and p(t∗)−p(t∗−t1)
t1

≤ k2(t∗) := p(t∗)−p(t∗/2)
t∗/2 . As p

is not linear on [0, t∗], we have k1(t∗) > k2(t∗).
On the other hand, we can see that when p(t1 + t2) + ε ≥ p(t1) + p(t2),

p(t1 + t2)− p(t2)

t1
+

ε

t1
≥ p(t1)

t1
.

Assume t1 < t2, we have k2(t∗) + ε/t1 ≥ k1(t∗) 1. As a result t1 ≤ ε
k1(t∗)−k2(t∗) . Note that

k1 and k2 are defined on a closed interval [aτ, τ ] by (iii), giving us that mint∈[aτ,τ ](k1(t) −
k2(t)) > 0. Therefore, ∃a ∈ (0, 1), ∀δ > 0, ∃ε0 = mint∈[aτ,τ ](k1(t) − k2(t)) · δ, ∀ε < ε0, if
t1 + t2 = t∗ ∈ [aτ, τ ] and p(t1 + t2) + ε ≥ p(t1) +p(t2), then t1 ≤ ε

k1(t∗)−k2(t∗) ≤ δ. Therefore,

there is at most one i such that ti 6∈ B(0, δ).
Now consider the case when l > 2 and t1, . . . , tl ≥ 0. If there are more than one i such

that ti 6∈ B(0, δ), assume t1 and t2 are two of them. By (ii), we have

l∑
i=1

p(ti) ≥ p(t1) + p

(
l∑

i=2

ti

)
.

If t1 +
∑n

i=2 ti ∈ [aτ, τ ] and p(t1 +
∑l

i=2 ti) + ε ≥
∑l

i=1 p(ti) ≥ p(t1) + p(
∑l

i=2 ti), either t1
or
∑n

i=2 ti should be inside B(0, δ). This is contradictory to our assumption that both t1
and t2 are outside B(0, δ). To this point, we prove (iv) when t1, · · · , tl ≥ 0.

Next, we prove the lemma when t1, · · · , tl could be smaller than 0. Suppose t∗ =∑l
i=1 ti ∈ [aτ, τ ] and p(t∗) + ε ≥

∑l
i=1 p(ti). We consider two cases separately. In the first

case, assume that there is one ti ≤ −δ. Without loss of generality, we assume that t∗ > 0.
Then we can choose α = δ, β = t∗ − α and get

p(α+ β) + ε = p(t∗) + ε ≥
∑

i∈{j:tj<0}

p(ti) +
∑

i∈{j:tj>0}

p(ti) ≥ p(α) + p(β),

which is a contradiction to the previous proof that only one of α, β could be outside of
B(0, δ) as δ is smaller than t∗/2 by our choice and

∑
i∈{j:tj>0} ti > t∗ > t∗ − α. We then

proceed to the case when there is one ti ≥ δ and one tj ≥ δ. Suppose that α = ti ≥ tj = β.
If α + β > t∗, we set α′ = δ + t∗−2δ

α+β−2δ · (α− δ) and β′ = δ + t∗−2δ
α+β−2δ · (β − δ). It is easy to

verify that

p(α′ + β′) + ε = p(t∗) + ε ≥
l∑

i=1

p(ti) ≥ p(α) + p(β) ≥ p(α′) + p(β′),

which is a contradiction. If α+ β < t∗, we can verify that

p(α+ β + t∗ − α− β) + ε = p(t∗) + ε ≥
l∑

i=1

p(ti) ≥ p(α) + p(β) + p(t∗ − α− β),

which is also a contradiction. To this point, we prove the case that t1, · · · , tl could be
smaller than 0, which completes the proof of the lemma.

1. For the case when t1 = 0, (iv) holds trivially.
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Remark. In the proof of (iv), our choice of ε is linear to δ given δ. However, in the
case of L0, ε could be any constant smaller than 1 no matter what δ is. This property of
L0 has wide applications in statistical problems. Actually, suppose that penalty function is
indexed by δ and pδ satisfies

pδ(δ)− pδ(aτ) + pδ(aτ − δ) ≥ C

for some constant C, then ∀δ > 0 and ε ≤ C, the proposition stated in (iv) holds. To prove
this, just note that if p(t1 +t2)−p(t2)+ε > p(t1) and t1 > δ, then p(t1)−p(t1 +t2)+p(t2) >
p(δ)−p(aτ) +p(aτ − δ) ≥ C which is a contradiction to that ε should be smaller than C.

Lemma 4 states the key properties of the penalty function p. Property (iv) is of special
interest. It indicates that if we can manipulate the sum of non-negative variables to let it lie
within [aτ, τ ] while minimizing the penalty function, we can be sure that only one variable
has large absolute value.

Our second lemma explores the relationship between the penalty function p and the loss
function `.

Lemma 5 Let Assumption 1 hold. Let f(·) be a convex function with a unique minimizer

τ̂ ∈ (aτ, τ) and f(τ̂±x)−f(τ̂)
xN

≥ C(0 < x < δ̄) for some N ∈ Z+, δ̄ ∈ R+, C ∈ R+. Define

gµ(t) = p(|t|) + µ · f(t),

where µ > 0. Let h(µ) be the minimum value of gµ(·). We have ∀δ < δ̄, µδ >
p(|τ̂ |)2N
CδN

, ∃ε0 =

µδ · C ·
(
δ
2

)N − p(|τ̂ |): if t satisfies h(µδ) + ε0 ≥ gµδ(t) ≥ h(µδ), then t ∈ [τ̂ − δ/2, τ̂ + δ/2].

Proof First, we can see that when t > τ̂ + δ/2, we have

gµδ(t) ≥ p(|τ̂ |) + µδ · f(t) > p(|τ̂ |) + µδ · f(τ̂ + δ/2) ≥ p(|τ̂ |) + µδ · f(τ̂) + µδ · C ·
(
δ

2

)N
= gµδ(τ̂) + µδ · C ·

(
δ

2

)N
≥ h(µδ) + µδ · C ·

(
δ

2

)N
≥ h(µδ) + ε0,

by the definition of f(·). When t < τ̂ − δ/2, we have

gµδ(t) ≥ µδ · f(t) > µδ · f(τ̂ − δ/2) ≥ µδ · f(τ̂) + µδ · C ·
(
δ

2

)N
= µδ · f(τ̂) +

p(|τ̂ |)2N

CδN
· C ·

(
δ

2

)N
+

(
µδ −

p(|τ̂ |)2N

CδN

)
· C ·

(
δ

2

)N
≥ h(µδ) + µδ · C ·

(
δ

2

)N
− p(|τ̂ |).

Therefore, when we choose ε0 = µδ ·C ·
(
δ
2

)N−p(|τ̂ |), point t satisfying h(µδ)+ε0 ≥ gµδ(t) ≥
h(µδ) must lie in [τ̂ − δ/2, τ̂ + δ/2].
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Lemma 6 Let Assumption 1 hold and let f(·) be a convex function with a unique minimizer

τ̂ ∈ (aτ, τ) and f(τ̂±x)−f(τ̂)
xN

≥ C1(0 < x < δ̄) for some N ∈ Z+, δ̄ ∈ R+, C1 ∈ R+. Let h(µ)
be the minimum value of gµ(x) = p(|x|) + µ · f(x), then we have

(i) ∀µ ∈ Z+, t1, ..., tn ∈ R :
∑n

j=1 p(|tj |) + µ · f
(∑n

j=1 tj

)
≥ h(µ).

(ii) ∃κ = mint∈[aτ,τ ]{
2p(t/2)−p(t)

t }, ∀δ ≤ min{δ̄, 4τ − 4τ̂ , 4τ̂ − 4aτ},∃µ = p(|τ̂ |)4N+1

C1δN
, ε0 =

κ · δn ,∀θ ∈ [τ̂ − δ/4, τ̂ + δ/4] : if t1, ..., tn ∈ R satisfy

h(µ) + ε0 ≥
n∑
j=1

p(|tj |) + µ · f

 n∑
j=1

tj

 ≥ h(µ), (2)

then ti ∈ B(θ, δ) for one i and tj ∈ B(0, δ) for all j 6= i.

Proof
We first prove (i). We consider two cases separately. In the first case, we suppose that

|
∑n

j=1 tj | > τ . Then we have

n∑
j=1

p(|tj |) ≥
n∑
j=1

p

(
τ∑n

k=1 |tk|
· |tj |

)
≥ p

 n∑
j=1

τ∑n
k=1 |tk|

· |tj |

 ≥ p(τ),

where the first inequality is inferred by the monotonicity of p and the second inequality is
due to (ii) of Lemma 4. Thus, we have

n∑
j=1

p(|tj |) + µ · f

 n∑
j=1

tj

 > min{p(τ) + µ · f(τ), p(τ) + µ · f(−τ)} ≥ h(µ).

As a result, we can see that (i) holds when |
∑n

j=1 tj | > τ . In the second case, we suppose
|
∑n

j=1 tj | ≤ τ and obtain

n∑
j=1

p(|tj |) ≥
n∑
j=1

p

(
|
∑n

k=1 tk|∑n
k=1 |tk|

|tj |
)
≥ p

 n∑
j=1

|
∑n

k=1 tk|∑n
k=1 |tk|

|tj |

 ≥ p
∣∣∣∣∣∣

n∑
j=1

tj

∣∣∣∣∣∣
 ,

where the second inequality is due to (ii) of Lemma 4. It follows that

n∑
j=1

p(|tj |) + µ · f

 n∑
j=1

tj

 ≥ p
∣∣∣∣∣∣

n∑
j=1

tj

∣∣∣∣∣∣
+ µ · f

 n∑
j=1

tj

 = gµ

 n∑
j=1

tj

 ≥ h(µ). (3)

which completes our proof of (i).
We then prove (ii). Assume equation (2) holds. If

∑n
j=1 tj > τ , we can see that by

choosing ε0 ≤ gµ(τ)− gµ(τ̂), we have

n∑
j=1

p(|tj |) + µ · f

 n∑
j=1

tj

 > gµ(τ) = gµ(τ̂) + gµ(τ)− gµ(τ̂) ≥ h(µ) + ε0.
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We will show later that our choice of ε0 is indeed smaller than gµ(τ) − gµ(τ̂). We will
also show later that equation (2) cannot hold when

∑n
j=1 tj < −τ under our choice of

parameters. Thus, if equation (2) holds, then |
∑n

j=1 tj | ≤ τ , which implies that

p

∣∣∣∣∣∣
n∑
j=1

tj

∣∣∣∣∣∣
+ µ · f

 n∑
j=1

tj

 ≤ h(µ) + ε0, (4)

by equation (2) and the first inequality of (3), and

n∑
j=1

p(|tj |) ≤ p

∣∣∣∣∣∣
n∑
j=1

tj

∣∣∣∣∣∣
+ ε0, (5)

due to equation (2) and equation (3). Note that we just need to prove the case when
δ is sufficiently small. Thus, we assume in the following paper that δ is smaller than
δ̄, 4τ − 4τ̂ , 4τ̂ − 4aτ .

Consider the case when equation (4) holds. By Lemma 6, if we choose µ = p(|τ̂ |)4N+1

CδN
and

ε1 = 3p(|τ̂ |), then all of the points t such that h(µ)+ε1 ≥ gµ(t) ≥ h(µ) lie in [τ̂−δ/4, τ̂+δ/4].
Thus, we have

∑n
j=1 tj ∈ [aτ, τ ] and

∑n
j=1 tj ∈ B(θ, δ2) for all θ ∈ [τ̂ − δ/4, τ̂ + δ/4]. Note

that gµ(t) is non-increasing when t < 0, meaning that equation (2) cannot hold under our
choice of ε1 when

∑n
j=1 tj ≤ −τ .

On the other hand, if equation (2) holds, equation (5) should also hold. By (iv) of Lemma
4, for the same δ, ∃ε2 = mint∈[aτ,τ ](k1(t) − k2(t)) · δ

2n−2 , there is at most one i such that

ti 6∈ B(0, δ
2n−2). As

∑n
j=1 tj ∈ B(θ, δ2), we have ti ∈ B(θ, δ) for all i = 1, · · · , n. Observe

that gµ(τ) − gµ(τ̂) is always larger than ε1. Also, ε1 > ε2 if δ is sufficiently small. There-

fore, ∃κ = mint∈[aτ,τ ](k1(t) − k2(t))/2, ∀δ ≤ min{δ̄, 4τ − 4τ̂ , 4τ̂ − 4aτ},∃µ = p(|τ̂ |)4N+1

CδN
, ε =

κ · δn ,∀θ ∈ [τ̂ − δ/4, τ̂ + δ/4] : if h(µ) + ε ≥ gµ(
∑n

j=1 ti), then ti ∈ B(θ, δ) for some i while
tj ∈ B(0, δ) for all j 6= i.

6.2. Proof of Theorem 1

Now we are ready to prove Theorem 1.
Proof Suppose that we are given the input to the 3-partition problem, i.e., 3m positive
integers s1, ..., s3m. Assume without loss of generality that all si’s are upper bounded by
some polynomial function M(m). This restriction on the input space does not weaken our
result, because the 3-partition problem is strongly NP-hard.

In what follows, we construct a reduction from the 3-partition problem to Problem 1. We
assume without loss of generality that 1

4m

∑3m
j=1 sj < si <

1
2m

∑3m
j=1 sj for all i = 1, . . . , n.

Such condition can always be satisfied by adding a sufficiently large integer to all si’s.
Step 1: The Reduction. The reduction is developed through the following steps.

1. For the interval [aτ, τ ], we choose {b1i}k1i=1 such that `1(y) = 1
λ

∑k1
i=1 `(y, b1i) satisfies

Assumption 1 with constants C,N, δ̄ and has a unique minimizer τ̂ inside the interval
(aτ, τ). Let κ = mint∈[aτ,τ ]{

2p(t/2)−p(t)
t }. Let δ ≤ { aτ

9m·M(m) , δ̄, 4τ − 4τ̂ , 4τ̂ − 4aτ},
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µ ≥ p(|τ̂ |)4N+1

C1δN
and ε = κ · δ

3m such that Lemma 6 is satisfied. Note that ε ≥ C3
m2·M(m)

for some constant C3 by our construction.

2. For the µ and ε chosen in the previous step, all the minimizers of gµ(x) = p(|x|) + µ ·
`1(x) lie in [τ̂−δ/4, τ̂+δ/4] by Lemma 6. By the Lipschitz continuity of p(|x|), f(x) and
thus gµ(x) on [aτ, τ ], there exists δε = ε

6mK (K is the Lipschitz constant) such that we
can find in polynomial time an interval [θ1, θ2] where θ2−θ1 = δε and gµ(x)−gµ(t∗) <
ε

6m for x ∈ [θ1, θ2]. This interval can be find in polynomial time as gµ(x) is Lipschitz
continuous.

3. By Assumption 2, for the interval [θ1, θ2], we choose {b2i}k2i=1 to construct a loss
function `2 : R 7→ R in polynomial time with regard to 1/δε such that `2(y) =
1
λ

∑k2
i=1 `(y, b2i) has a unique minimizer at t̃ ∈ [θ1, θ2]. We choose

ν =
⌈
ε/max

(
`2(t̃+ 2δm)− `2(t̃), `2(t̃− 2δm)− `2(t̃)

)⌉
+ 1,

and construct function f : R3m×m 7→ R where

f(x) = λ ·
3m∑
i=1

m∑
j=1

p (|xij |) + λµ ·
3m∑
i=1

`1

 m∑
j=1

xij

+ λν ·
m∑
j=1

`2

(
3m∑
i

si∑3m
i′=1 si′/m

xij

)
.

(6)

Note that by (iii) of Assumption 2, ν is polynomial in max(d 1
δε
e, dθ2e). In the rest

of the paper, we ignore the dθ2e term in the bound as it can be upperbounded by τ ,
which can be taken as a constant in the reduction.

4. Let Φ1 = 3m · p(|t̃|) + µ · 3m · `1(t̃)− ε
2 and Φ2 = ν ·m · `2(t̃). We claim that

(i) If there exists z such that

Φ1 + Φ2 + ε ≥ 1

λ
f(z) ≥ Φ1 + Φ2,

then we obtain a feasible assignment for the 3-partition problem as follows: If
zij ∈ B(t̃, δ), we assign number i to subset j.

(ii) If the 3-partition problem has a solution, we have 1
λ minx f(x) ≤ Φ1 + Φ2 + ε

2 .

5. Choose r =

⌈(
2(3m·λ·µ·k1+m·λ·ν·k2)c1 (3m2)

c2

ε/κ

)1/(1−c1−c2)
⌉

where c1 and c2 are two arbi-

trary constants that c1 + c2 < 1. Construct the following instance of Problem 1:

min
x(1),··· ,x(r)∈R3m×m

r∑
q=1

f(x(q)) = min
x(1),··· ,x(r)∈R3m×m

λ ·
r∑
q=1

3m∑
i=1

m∑
j=1

p(|x(q)
ij |)+

λµ
r∑
q=1

3m∑
i=1

k1∑
t=1

`

 m∑
j=1

x
(q)
ij , b1t

+ λν
r∑
q=1

m∑
j=1

k2∑
t=1

`

(
3m∑
i=1

si∑3m
i′=1 si′/m

x
(q)
ij , b2t

)
,

(7)
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where the input data are coefficients of x and the values b11, . . . , b1t, b21, . . . , b2t. The
variable dimension d is r ·3m2 and the sample size n is λ ·µ · r ·3m ·k1 +λ ·ν · r ·m ·k2.
The input size is polynomial with respect to m. Our choice of r is the solution to
εr = 2κnc1dc2 where κ = mint∈[aτ,τ ]{

2p(t/2)−p(t)
t }.

The parameters µ, ν, δ, r, d are bounded by polynomial functions of m. Computing
their values also takes polynomial time. The parameter k1 and k2 is a constant
determined by the loss function ` and is not related to m. As a result, the reduction
is polynomial.

6. Let z(1), · · · z(r) ∈ R3m×m be a λ ·κ ·nc1dc2-optimal solution to problem (13) such that∑r
i=1 f(z(i)) ≤ minx(1),··· ,x(r)

∑r
i=1 f(x(i)) + λ · κ · nc1dc2 . We claim that

(iii) If the approximate solution z(1), · · · z(r) satisfies

1

λ

r∑
i=1

f(z(i)) ≤ rΦ1 + rΦ2 + 2κnc1dc2 , (8)

we can choose one z(i) such that Φ1 + Φ2 + ε ≥ 1
λf(z(i)) ≥ Φ1 + Φ2 and obtain

a feasible assignment: If z
(i)
ij ∈ B(t̃, δ), we assign number i to subset j. If the

λ · κ · nc1dc2-optimal solution z(1), · · · z(r) does not satisfy (8), the 3-partition
problem has no feasible solution.

We have constructed a polynomial reduction from the 3-partition problem to finding an
λ ·κ ·nc1dc2-optimal solution to problem (13). In what follows, we prove that the reduction
works.

Step 2: Proof of Claim (i). We begin with the proof (i). By our choice of µ and Lemma
6(i), we can see that for all x ∈ R3m×m,

3m∑
i=1

m∑
j=1

p(|xij |) + µ ·
3m∑
i=1

`1

 m∑
j=1

xij

 ≥ 3m · p(|t∗|) + µ · 3m · `1(t∗) ≥ Φ1,

where the last inequality is due to that gµ(t̃)− gµ(t∗) < ε
6m . By the fact t̃ = argmint`2(t),

we have for all x ∈ R3m×m that

ν ·
m∑
j=1

h

(
3m∑
i=1

si∑3m
i′=1 si′/m

xij

)
≥ ν ·m · `2(t̃) = Φ2.

Thus we always have minz
1
λf(z) ≥ Φ1 + Φ2. Now if there exists z such that Φ1 + Φ2 + ε ≥

1
λf(z) ≥ Φ1 + Φ2, we must have

Φ1 + ε ≥
3m∑
i=1

m∑
j=1

p(|zij |) + µ ·
3m∑
i=1

h

 m∑
j=1

zij

 ≥ Φ1, (9)

and

Φ2 + ε ≥ ν ·
m∑
j=1

h

(
3m∑
i=1

si∑3m
i′=1 si′/m

zij

)
≥ Φ2. (10)
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In order for equation (9) to hold, we have that for all i,

p(|t̃|) + µ · `1(t̃) +
ε

2
≥

m∑
j=1

p(|zij |) + µ · `1

 m∑
j=1

zij

 ≥ p(|t∗|) + µ · `1(t∗).

Consider an arbitrary i. By Lemma 6(ii) and gµ(t̃) − gµ(t∗) < ε
6m , we have zij ∈ B(t̃, δ)

for one j while zik = 0 for all k 6= j. If zij ∈ B(t̃, δ), we assign number i to subset j.
As δ < aτ/2 ≤ t̃/2, B(t̃, δ) and B(0, δ) are not overlapping. Thus each number index i is
assigned to exactly one subset index j. Therefore the assignment is feasible.

We claim that every subset sum must equal to
∑3m

i=1 si/m. Assume that the jth subset
sum is greater than or equal to

∑3m
i=1 si/m + 1. Let Ij = {i | zij ∈ B(t̃, δ)}. Thus,∑

i∈Ij si ≥
∑3m

i=1 si/m+ 1. As a result, we have

3m∑
i=1

si∑3m
i′=1 si′/m

zij ≥
∑
i∈I1

si∑3m
i′=1 si′/m

(t̃− δ) +
∑
i∈I2

si∑3m
i′=1 si′/m

(−δ)

≥
∑3m

i=1 si/m+ 1∑3m
i=1 si/m

t̃− δm = t̃+
t̃∑3m

i=1 si/m
− δm.

Because si ≤M(m) for all i and δ = aτ
9m·M(m) , we have

t̃∑3m
i=1 si/m

− δm ≥ aτ

3m ·M(n)
m− δm = 2δm > 0.

Since h is a convex function with minimizer y∗, we apply the preceding inequalities and
further obtain

`2

(
3m∑
i=1

si∑3m
i′=1 si′/m

zij

)
≥ `2(t̃+ 2δm).

By our construction of ν and Assumption 1(iii), we further have

ν ·

(
`2

(
3m∑
i=1

si∑3m
i′=1 si′/m

zij

)
− `2(t̃)

)
≥ ν ·

(
`2(t̃+ 2δm)− `2(t̃)

)
> ε. (11)

However, in order for equation (10) to hold, we have that for all j,

ν · `2(t̃) + ε ≥ ν · `2

(
3m∑
i=1

si∑3m
i′=1 si′/m

zij

)
≥ ν · `2(t̃),

yielding a contradiction to (11). We could prove similarly that it is not possible for any
subset sum to be strictly smaller than 1

m

∑3m
i=1 si. Therefore, the sum of every subset equals

to
∑3m

i=1 si/m. Finally, using the assumption that 1
4m

∑3m
i=1 si < si <

1
2m

∑3m
i=1 si, each

subset has exactly three components. Therefore the assignment is indeed a solution to the
3-partition problem.

Step 3: Proof of Claim (ii). Suppose we have a solution to the 3-partition problem.
Now we construct z to the optimization problem such that f(z) ≤ Φ1 + Φ2 + ε

2 . For all
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1 ≤ i ≤ 3m, if number i is assigned to subset j, let zij = t̃ and zik = 0 for all k 6= j. We
can easily verify that

3m∑
i=1

m∑
j=1

p (|zij |) + µ ·
3m∑
i=1

`1

 m∑
j=1

zij

 = 3m ·
(
p(t̃) + µ · `1(t̃)

)
= Φ1 +

ε

2
,

Also, we have

ν ·
m∑
j=1

`2

(
3m∑
i=1

si∑3m
i′=1 si′/m

zij

)
= ν ·m · `2(t̃) = Φ2.

Therefore,
1

λ
f(z) ≤ Φ1 + Φ2 +

ε

2
. (12)

which completes the proof of (ii).

Step 4: Proof of Claim (iii). Suppose that the λ ·κ ·nc1dc2-optimal solution satisfies (8),
i.e., 1

λ

∑r
i=1 f(z(i)) ≤ rΦ1 + rΦ2 + 2κnc1dc2 . It follows that there exists at least one term

z(i) such that
1

λ
f(z(i)) ≤ Φ1 + Φ2 +

2κnc1dc2

r
≤ Φ1 + Φ2 + ε.

where the second inequality equality uses εr = 2κnc1dc2 . Therefore, by claim (ii), we can
find a solution to the 3-partition problem.

Suppose that the 3-partition problem has a solution. By claim (ii), there exists z such
that 1

λf(z) ≤ Φ1 + Φ2 + ε
2 . Thus we have

min
x(1),··· ,x(r)

1

λ

r∑
i=1

f(x(i)) ≤ r

λ
f(z) ≤ rΦ1 + rΦ2 + κnc1dc2 .

Thus if z(1), · · · z(r) is a λ · κ · nc1dc2-optimal solution to (13), we have

1

λ

r∑
i=1

f(z(i)) ≤ min
x(1),··· ,x(r)

1

λ

r∑
i=1

f(x(i)) + κnc1dc2 ≤ rΦ1 + rΦ2 + 2κnc1dc2

implying that the relation (8) must hold. If (8) is not satisfied, the 3-partition problem has
no solution.

Remark. When the loss function is L2 loss, we can move λµ and λν of equation (13) into
the loss. Specifically, we have

min
x(1),··· ,x(r)∈R3m×m

r∑
q=1

f(x(q)) = min
x(1),··· ,x(r)∈R3m×m

λ ·
r∑
q=1

3m∑
i=1

m∑
j=1

p(|x(q)
ij |)+

r∑
q=1

3m∑
i=1

 m∑
j=1

√
λµx

(q)
ij −

√
λµb1

2

+
r∑
q=1

m∑
j=1

(
3m∑
i=1

√
λνsi∑3m

i′=1 si′/m
x

(q)
ij −

√
λνb2

)2

,

(13)
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where µ, ν is chosen such that
√
λµ,
√
λν are rational numbers. In this case, the variable

dimension is r · 3m2 and the sample size n is 4r · m. Our choice of r is the solution to

εr = 2κnc1dc2 which is r =

⌈(
2(4m)c1 (3m2)

c2

ε/κ

)1/(1−c1−c2)
⌉

. The value of r doesn’t depend on

λ and p, which means that we can plug in any λ, p and the reduction is still polynomial in
m. It means that for any choice of λ and p, it is strongly NP hard to find a λκnc1dc2-optimal
solution.

6.3. Proof of Theorem 2

Next we study the complexity of Problem 2. The proof uses a basic duality between Problem
1 and Problem 2.

Proof We will use a reduction from the 3-partition problem to prove the theorem. The
reduction is developed through the following steps. We first constructed a polynomial
reduction from the 3-partition problem to finding an approximate solution to Problem 2.
We then prove that the reduction works.

1. Given the input to the 3-partition problem, we conduct the first three steps of the
reduction in Theorem 1 to compute µ, ν, t̃ and ε with λ = 1. The nuance is that we pick
δε = ε

12mK in step 2 so that gµ(t̃)−gµ(t∗) ≤ ε
12m where gµ(x) = p(|x|)+µ·`1(x). Denote

f(x) = µ ·
∑3m

i=1

∑k1
t=1 `

(∑m
j=1 xij , b1t

)
+ ν ·

∑m
j=1

∑k2
t=1 `

(∑3m
i=1

si∑3m
i′=1 si′/m

xij , b2t

)
and q(x) =

∑3m
i=1

∑m
j=1 p (|xij |).

2. Choose r =

⌈(
4(3m·µ·k1+m·ν·k2)c1 (3m2)

c2

ε/κ

)1/(1−c1−c2)
⌉

where c1 and c2 are two arbitrary

constants that c1 + c2 < 1. Note that κnc1dc2 = εr
4 by our choice of r. Construct the

following instance of Problem 2:

min
x(1),x(2),...,x(r)∈R3m×m

r∑
i=1

f(x(i)) s.t.
r∑
i=1

q(x(i)) ≤ K̄, (14)

where K̄ ∈ [3m · r · p(t̃), 3m · r · p(t̃) + εr/4). The coding size of K̄ is bounded by
a polynomial function of m because εr/4 and 3m · r · p(t̃) are both bounded by a
polynomial functions of n. Denote the minimizer of the minimization problem (14)

to be x
(1)

K̄
, · · ·x(r)

K̄
.

3. Let Φ1 = 3m · p(|t̃|) + µ · 3m · `1(t̃) − ε
4 and Φ2 = ν ·m · `2(t̃). We claim that if the

3-partition problem has a solution, then

(i)
∑r

i=1 f(x
(i)

K̄
) +

∑r
i=1 q(x

(i)

K̄
) ≤ rΦ1 + rΦ2 + εr

2 .

(ii)
∑r

i=1 q(x
(i)

K̄
) ≥ 3m · r · p(t̃)− εr/4.

4. Suppose we have approximate solutions satisfying
∑r

i=1 f(x̂
(i)

K̄+κnc1dc2
) ≤

∑r
i=1 f(x

(i)

K̄
),

we claim that
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(iii) If the approximate solutions satisfy

r∑
i=1

f(x̂
(i)

K̄+κnc1dc2
) +

r∑
i=1

q(x̂
(i)

K̄+κnc1dc2
) ≤ rΦ1 + rΦ2 + 4κnc1dc2 , (15)

we can choose one index k such that Φ1 + Φ2 + ε ≥ f(x̂
(k)

K̄+κnc1dc2
) ≥ Φ1 + Φ2

and obtain a feasible assignment: If
(
x̂

(k)

K̄+κnc1dc2

)
ij
∈ B(t̃, δ), we assign number

i to subset j. If the approximate solutions do not satisfy (15), the 3-partition
problem has no feasible solution.

We begin with the proof of (i). By the condition that the 3-partition problem has a
solution, we construct x∗ ∈ R3m×m as follows. If number i is assigned to subset j, let x∗ij = t̃

and x∗ik = 0 otherwise. We can see that x(1) = · · · = x(r) = x∗ satisfy the constraint of (14)

with sparsity level K̄ and
∑r

i=1 q(x
(i)

K̄
) ≤ 3m · r · p(t̃) + εr/4. Thus,

r∑
i=1

f(x
(i)

K̄
) +

r∑
i=1

q(x
(i)

K̄
) ≤ r · f(x∗) + 3m · r · p(t̃) +

εr

4
= r · 3m · gµ(t̃) + rΦ2 +

εr

4

= r · 3m ·
(
gµ(t̃)− ε

12m

)
+ rΦ2 +

εr

2
= rΦ1 + rΦ2 +

εr

2
,

(16)

where gµ(x) = p(|x|) + µ · `1(x). To prove (ii), we just need to notice that if
∑r

i=1 q(x
(i)

K̄
) <

3m · r · p(t̃) − εr/4, we would have
∑r

i=1 f(x
(i)

K̄
) +

∑r
i=1 q(x

(i)

K̄
) < rΦ1 + rΦ2 by the same

reasoning of equation (16), yielding a contradiction as
∑r

i=1 f(x
(i)

K̄
)+
∑r

i=1 q(x
(i)

K̄
) will always

be greater than or equal to rΦ1 + rΦ2.
Now we prove (iii). To prove the first half of the claim, we only need to use 4κnc1dc2 = rε

and apply the proof of Theorem 1 to get the result. To prove the second half of the claim,

assume that we have an algorithm that outputs x̂K̄+κnc1dc2 satisfying
∑r

i=1 f(x̂
(i)

K̄+κnc1dc2
) ≤∑r

i=1 f(x
(i)

K̄
). Suppose that the 3-partition problem has a solution. Then we have

r∑
i=1

f(x̂
(i)

K̄+κnc1dc2
) +

r∑
i=1

q(x̂
(i)

K̄+κnc1dc2
) ≤

r∑
i=1

f(x
(i)

K̄
) +

r∑
i=1

q(x
(i)

K̄
) +

εr

2
≤ rΦ1 + rΦ2 + εr,

where the first inequality is due to (ii) and the second inequality is due to (i). It means
that the approximate solutions satisfy (15). To this point, we have finished the proof of
Theorem 2.

Remark. Note that K is the input of Problem 2, which means that for all ` and p, we
only need to find a K that makes Problem 2 hard to solve. A natural question to ask is
whether or not K could be the parameter of Problem 2 such that the hardness result still
holds. Unfortunately, we have the following counterexample. Assume p is L0 norm and
K = 1. Then the constraint is

∑d
j=1 L0(xj) ≤ 1, which means that there is at most one

component of x that is not equal to 0. In this case, we could solve the optimization problem
in polynomial time by searching for the nonzero component of x.
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6.4. Proof of Theorem 3

Using a similar argument, we can prove the last part of our main result.
Proof The proof is analogous to the proof of Theorem 2. We will use a reduction from the
3-partition problem to prove the theorem. The reduction is developed through the following
steps.

1. Given the input to the 3-partition problem, we conduct the first reduction step of The-

orem 2 to compute µ, ν, t̃ and ε with λ = 1. Let f(x) = µ·
∑3m

i=1

∑k1
t=1 `

(∑m
j=1 xij , b1t

)
+

ν ·
∑m

j=1

∑k2
t=1 `

(∑3m
i=1

si∑3m
i′=1 si′/m

xij , b2t

)
and q(x) =

∑3m
i=1

∑m
j=1 p (|xij |).

2. Choose r =

⌈(
4(3m·µ·k1+m·ν·k2)c1 (3m2)

c2

ε/κ

)1/(1−c1−c2)
⌉

where c1 and c2 are two arbitrary

constants that c1 + c2 < 1. Note that κnc1dc2 = εr
4 by our choice of r. Construct the

following instance of Problem 3:

min
x(1),x(2),...,x(r)∈R3m×m

r∑
i=1

q(x(i)) s.t.

r∑
i=1

f(x(i)) ≤ η̄, (17)

where η̄ ∈ [µ · 3m · `1(t̃) + ν · m · `2(t̃), µ · 3m · `1(t̃) + ν · m · `2(t̃) + εr/4). Note
that the parameters µ, ν, δ,m, r, d and η̄ are bounded by polynomial functions of n.
Computing their values also takes polynomial time. Given the sparsity level η̄, denote

the minimizer of (17) to be x
(1)
η̄ , · · ·x(r)

η̄ .

3. Let Φ1 = 3m · p(|t̃|) + µ · 3m · `1(t̃) − ε
4 and Φ2 = ν ·m · `2(t̃). We claim that if the

3-partition problem has a solution, then

(i)
∑r

i=1 f(x
(i)
η̄ ) +

∑r
i=1 q(x

(i)
η̄ ) ≤ rΦ1 + rΦ2 + εr

2 .

(ii)
∑r

i=1 f(x
(i)
η̄ ) ≥ µ · 3m · `1(t̃) + ν ·m · `2(t̃)− εr/4.

4. Suppose we have an approximate solution satisfying
∑r

i=1 f(x̂
(i)
η̄+κnc1dc2 ) ≤

∑r
i=1 f(x

(i)
η̄ ),

we claim that

(iii) If the approximate solution satisfies

r∑
i=1

f(x̂
(i)
η̄+κnc1dc2 ) +

r∑
i=1

q(x̂
(i)
η̄+κnc1dc2 ) ≤ rΦ1 + rΦ2 + 4κnc1dc2 , (18)

we can choose the index k such that Φ1 + Φ2 + ε ≥ f(x̂
(k)
η̄+κnc1dc2 ) ≥ Φ1 + Φ2

and obtain a feasible assignment: If
(
x̂

(k)
η̄+κnc1dc2

)
ij
∈ B(t̃, δ), we assign number

i to subset j. If the approximate solutions do not satisfy (18), the 3-partition
problem has no feasible solution.

We have constructed a polynomial reduction from the 3-partition problem to finding an
approximate solution to Problem 3. We then prove that the reduction works. We begin
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with the proof of (i). By the condition that the 3-partition problem has a solution, we
construct x∗ ∈ R3m×m as follows. If number i is assigned to subset j, let x∗ij = t̃ and

x∗ik = 0 otherwise. We can see that x(1) = · · · = x(r) = x∗ satisfy the constraint of (14)

with error tolerance η̄ and
∑r

i=1 f(x
(i)
η̄ ) ≤ µ · 3m · `1(t̃) + ν ·m · `2(t̃) + εr/4. Thus,

r∑
i=1

f(x
(i)
η̄ ) +

r∑
i=1

q(x
(i)
η̄ ) ≤ r · q(x∗) + µ · 3m · `1(t̃) + ν ·m · `2(t̃) + εr/4

≤ r · 3m ·
(
gµ(t∗)− ε

12m

)
+ rΦ2 +

εr

2
= rΦ1 + rΦ2 +

εr

2
,

(19)

where gµ(x) = p(|x|) + µ · `1(x) and the last inequality is due to the choice of t̃ in step 1 of
the reduction.

To prove (ii), we just need to notice that if
∑r

i=1 f(x
(i)
η̄ ) ≤ µ·3m·`1(t̃)+ν ·m·`2(t̃)−εr/4,

we would have
∑r

i=1 f(x
(i)
η̄ ) +

∑r
i=1 q(x

(i)
η̄ ) < rΦ1 + rΦ2 by the same reasoning of equation

(16), yielding a contradiction as
∑r

i=1 f(x
(i)
η̄ ) +

∑r
i=1 q(x

(i)
η̄ ) will always be greater than or

equal to rΦ1 + rΦ2.
Now we prove (iii). To prove the first half of the claim, we only need to use 4κnc1dc2 = rε

and apply the proof of Theorem 1 to get the result. To prove the second half of the

claim, assume that we have an algorithm that outputs x̂η satisfying
∑r

i=1 f(x̂
(i)
η+κnc1dc2 ) ≤∑r

i=1 f(x
(i)
η ). Suppose that the 3-partition problem has a solution. Replacing η by η̄ gives

us
r∑
i=1

f(x̂
(i)
η̄+κnc1dc2 ) +

r∑
i=1

q(x̂
(i)
η̄+κnc1dc2 ) ≤

r∑
i=1

f(x
(i)
η̄ ) +

r∑
i=1

q(x
(i)
η̄ ) +

εr

2
≤ rΦ1 + rΦ2 + εr,

where the first inequality is due to (ii) and the second inequality is due to (i). It means
that the approximate solutions satisfy (18). To this point, we have finished the proof of
Theorem 3.
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