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Abstract

Graphical Lasso (GL) is a popular method for learning the structure of an undirected graph-
ical model, which is based on an l1 regularization technique. The objective of this paper
is to compare the computationally-heavy GL technique with a numerically-cheap heuristic
method that is based on simply thresholding the sample covariance matrix. To this end,
two notions of sign-consistent and inverse-consistent matrices are developed, and then it is
shown that the thresholding and GL methods are equivalent if: (i) the thresholded sample
covariance matrix is both sign-consistent and inverse-consistent, and (ii) the gap between
the largest thresholded and the smallest un-thresholded entries of the sample covariance
matrix is not too small. By building upon this result, it is proved that the GL method—
as a conic optimization problem—has an explicit closed-form solution if the thresholded
sample covariance matrix has an acyclic structure. This result is then generalized to arbi-
trary sparse support graphs, where a formula is found to obtain an approximate solution of
GL. Furthermore, it is shown that the approximation error of the derived explicit formula
decreases exponentially fast with respect to the length of the minimum-length cycle of
the sparsity graph. The developed results are demonstrated on synthetic data, functional
MRI data, traffic flows for transportation networks, and massive randomly generated data
sets. We show that the proposed method can obtain an accurate approximation of the GL
for instances with the sizes as large as 80, 000 × 80, 000 (more than 3.2 billion variables)
in less than 30 minutes on a standard laptop computer running MATLAB, while other
state-of-the-art methods do not converge within 4 hours.
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1. Introduction

There has been a pressing need in developing new and efficient computational methods to
analyze and learn the characteristics of high-dimensional data with a structured or ran-
domized nature. Real-world data sets are often overwhelmingly complex, and therefore it is
important to obtain a simple description of the data that can be processed efficiently. In an
effort to address this problem, there has been a great deal of interest in sparsity-promoting
techniques for large-scale optimization problems (Coleman and Li 1990; Bach et al. 2012;
Benson et al. 2000). These techniques have become essential to the tractability of big-data
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analyses in many applications, including data mining (Garcke et al. 2001; Muthukrishnan
2005; Wu et al. 2014), pattern recognition (Wright et al. 2010; Qiao et al. 2010), human
brain functional connectivity (Sojoudi and Doyle 2014), distributed controller design (Far-
dad et al. 2011; Fattahi and Lavaei 2017), and compressive sensing (Candes and Romberg
2007; Foucart and Rauhut 2013). Similar approaches have been used to arrive at a parsimo-
nious estimation of high-dimensional data. However, most of the existing statistical learning
techniques in data analytics are contingent upon the availability of a sufficient number of
samples (compared to the number of parameters), which is difficult to satisfy for many
applications (Bühlmann and Van De Geer 2011; Fan and Lv 2010). To remedy the afore-
mentioned issues, a special attention has been paid to the augmentation of these problems
with sparsity-inducing penalty functions to obtain sparse and easy-to-analyze solutions.

Graphical lasso (GL) is one of the most commonly used techniques for estimating the
inverse covariance matrix (Friedman et al. 2008; Banerjee et al. 2008; Yuan and Lin 2007).
GL is an optimization problem that shrinks the elements of the inverse covariance matrix
towards zero compared to the maximum likelihood estimates, using an l1 regularization.
There is a large body of literature suggesting that the solution of GL is a good estimate
for the unknown graphical model, under a suitable choice of the regularization parameter
(Friedman et al. 2008; Banerjee et al. 2008; Yuan and Lin 2007; Liu et al. 2010; Krämer
et al. 2009; Danaher et al. 2014). It is known that Graphical Lasso is computationally
expensive for large-scale problems. An alternative computationally-cheap heuristic method
for estimating graphical models is based on thresholding the sample covariance matrix.

In this paper, we develop a mathematical framework to analyze the relationship between
the GL and thresholding techniques. The paper Sojoudi (2016) offers a set of conditions for
the equivalence of these two methods, and argues the satisfaction of these conditions in the
case where the regularization coefficient is large or equivalently a sparse graph is sought.
Although the conditions derived in Sojoudi (2016) shed light on the performance of the
GL, they depend on the optimal solution of the GL and cannot be verified without solving
the problem. Nonetheless, it is highly desirable to find conditions for the equivalence of
the GL and thresholding that are directly in terms of the sample covariance matrix. To
this end, two notions of sign-consistent and inverse-consistent matrices are introduced,
and their properties are studied for different types of matrices. It is then shown that the
GL and thresholding are equivalent if three conditions are satisfied. The first condition
requires a certain matrix formed based on the sample covariance matrix to have a positive-
definite completion. The second condition requires this matrix to be sign-consistent and
inverse-consistent. The third condition needs a separation between the largest thresholded
and the smallest un-thresholded entries of the sample covariance matrix. These conditions
can be easily verified for acyclic graphs and are expected to hold for sparse graphs. By
building upon these results, an explicit closed-form solution is obtained for the GL method
in the case where the thresholded sample covariance matrix has an acyclic support graph.
Furthermore, this result is generalized to sparse support graphs to derive a closed-form
formula that can serve either as an approximate solution of the GL or the optimal solution
of the GL with a perturbed sample covariance matrix. The approximation error (together
with the corresponding perturbation in the sample covariance matrix) is shown to be related
to the lengths of the cycles in the graph.
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The remainder of this paper is organized as follows. The main results are presented
in Section 3, followed by numerical examples and case studies in Section 4. Concluding
remarks are drawn in Section 5. Most of the technical proofs are provided in Appendix.

Notations: Lowercase, bold lowercase and uppercase letters are used for scalars, vectors
and matrices, respectively (say x,x, X). The symbols Rd, Sd and Sd+ are used to denote the
sets of d×1 real vectors, d×d symmetric matrices and d×d symmetric positive-semidefinite
matrices, respectively. The notations trace(M) and log det(M) refer to the trace and the
logarithm of the determinant of a matrix M , respectively. The (i, j)th entry of the matrix
M is denoted by Mij . Moreover, Id denotes the d× d identity matrix. The sign of a scalar
x is shown as sign(x). The notations |x|, ‖M‖1 and ‖M‖F denote the absolute value of
the scalar x, the induced norm-1 and Frobenius norm of the matrix M , respectively. The
inequalities M � 0 and M � 0 mean that M is positive-semidefinite and positive-definite,
respectively. The symbol sign(·) shows the sign operator. The ceiling function is denoted as
d·e. The cardinality of a discrete set D is denoted as |D|0. Given a matrix M ∈ Sd, define

‖M‖1,off =
d∑
i=1

d∑
j=1

|Mij | −
d∑
i=1

|Mii|,

‖M‖max = max
i 6=j
|Mij |.

Definition 1 Given a symmetric matrix S ∈ Sd, the support graph or sparsity graph
of S is defined as a graph with the vertex set V := {1, 2, ..., d} and the edge set E ⊆ V × V
such that (i, j) ∈ V if and only if Sij 6= 0, for every two different vertices i, j ∈ V. The
support graph of S captures the sparsity pattern of the matrix S and is denoted as supp(S).

Definition 2 Given a graph G, define G(c) as the complement of G, which is obtained by
removing the existing edges of G and drawing an edge between every two vertices of G that
were not originally connected.

Definition 3 Given two graphs G1 and G2 with the same vertex set, G1 is called a subgraph
of G2 if the edge set of G1 is a subset of the edge set of G2. The notation G1 ⊆ G2 is used to
denote this inclusion.

Finally, a symmetric matrix M is said to have a positive-definite completion if
there exists a positive-definite M̃ with the same size such that M̃ij = Mij for every (i, j) ∈
supp(M).

2. Problem Formulation

Consider a random vector x = (x1, x2, ..., xd) with a multivariate normal distribution. Let
Σ∗ ∈ Sd+ denote the covariance matrix associated with the vector x. The inverse of the
covariance matrix can be used to determine the conditional independence between the
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random variables x1, x2, ..., xd. In particular, if the (i, j)th entry of Σ−1
∗ is zero for two

disparate indices i and j, then xi and xj are conditionally independent given the rest of
the variables. The graph supp

(
Σ−1
∗
)

(i.e., the sparsity graph of Σ−1
∗ ) represents a graphical

model capturing the conditional independence between the elements of x. Assume that Σ∗
is nonsingular and that supp

(
Σ−1
∗
)

is a sparse graph. Finding this graph is cumbersome in
practice because the exact covariance matrix Σ∗ is rarely known. More precisely, supp

(
Σ−1
∗
)

should be constructed from a given sample covariance matrix (constructed from n samples),
as opposed to Σ∗. Let Σ denote an arbitrary d × d positive-semidefinite matrix, which is
provided as an estimate of Σ∗. Consider the convex optimization problem

min
S∈Sd+

− log det(S) + trace(ΣS). (1)

It is easy to verify that the optimal solution of the above problem is equal to Sopt = Σ−1.
However, there are two issues with this solution. First, since the number of samples available
in many applications is small or modest compared to the dimension of Σ, the matrix Σ is ill-
conditioned or even singular. Under such circumstances, the equation Sopt = Σ−1 leads to
large or undefined entries for the optimal solution of (1). Second, although Σ−1

∗ is assumed
to be sparse, a small random difference between Σ∗ and Σ would make Sopt highly dense.
In order to address the aforementioned issues, consider the problem

min
S∈Sd+

− log det(S) + trace(ΣS) + λ‖S‖1,off , (2)

where λ ∈ R+ is a regularization parameter. This problem is referred to as Graphical
Lasso (GL). Intuitively, the term ‖S‖1,off in the objective function serves as a surrogate for
promoting sparsity among the off-diagonal entries of S, while ensuring that the problem is
well-defined even with a singular input Σ. Henceforth, the notation Sopt will be used to
denote a solution of the GL instead of the unregularized optimization problem (1).

Suppose that it is known a priori that the true graph supp
(
Σ−1
∗
)

has k edges, for some
given number k. With no loss of generality, assume that all nonzero off-diagonal entries of
Σ have different magnitudes. Two heuristic methods for finding an estimate of supp

(
Σ−1
∗
)

are as follows:

• Graphical Lasso: We solve the optimization problem (2) repeatedly for different
values of λ until a solution Sopt with exactly 2k nonzero off-diagonal entries are found.

• Thresholding: Without solving any optimization problem, we simply identify those
2k entries of Σ that have the largest magnitudes among all off-diagonal entries of
Σ. We then replace the remaining d2 − d − 2k off-diagonal entries of Σ with zero
and denote the thresholded sample covariance matrix as Σk. Note that Σ and Σk

have the same diagonal entries. Finally, we consider the sparsity graph of Σk, namely
supp(Σk), as an estimate for supp

(
Σ−1
∗
)
.

Definition 4 It is said that the sparsity structures of Graphical Lasso and thresh-
olding are equivalent if there exists a regularization coefficient λ such that supp(Sopt) =
supp(Σk).
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Recently, we have verified in several simulations that the GL and thresholding are equiv-
alent for electrical circuits and functional MRI data of 20 subjects, provided that k is on the
order of n (Sojoudi 2016). This implies that a simple thresholding technique would obtain
the same sparsity structure as the computationally-heavy GL technique. In this paper, it
is aimed to understand under what conditions the easy-to-find graph supp(Σk) is equal to
the hard-to-obtain graph supp(Sopt), without having to solve the GL. Furthermore, we will
show that the GL problem has a simple closed-form solution that can be easily derived
merely based on the thresholded sample covariance matrix, provided that its underlying
graph has an acyclic structure. This result will then be generalized to obtain an approxi-
mate solution for the GL in the case where the thresholded sample covariance matrix has
an arbitrary sparsity structure. This closed-form solution converges to the exact solution of
the GL as the length of the minimum-length cycle in the support graph of the thresholded
sample covariance matrix grows. The derived closed-form solution can be used for two pur-
poses: (1) as a surrogate to the exact solution of the computationally heavy GL problem,
and (2) as an initial point for common numerical algorithms to numerically solve the GL
(see Friedman et al. (2008); Hsieh et al. (2014)). The above results unveil fundamental
properties of the GL in terms of sparsification and computational complexity. Although
conic optimization problems almost never benefit from an exact or inexact explicit formula
for their solutions and should be solved numerically, the formula obtained in this paper
suggests that sparse GL and related graph-based conic optimization problems may fall into
the category of problems with closed-form solutions (similar to least squares problems).

3. Main Results

In this section, we present the main results of the paper. In order to streamline the presen-
tation, most of the technical proofs are postponed to Appendix.

3.1. Equivalence of GL and Thresholding

In this subsection, we derive sufficient conditions to guarantee that the GL and thresholding
methods result in the same sparsity graph. These conditions are only dependent on λ and
Σ, and are expected to hold whenever λ is large enough or a sparse graph is sought.

Definition 5 A matrix M ∈ Sd is called inverse-consistent if there exists a matrix N ∈
Sd with zero diagonal elements such that

M +N � 0,

supp(N) ⊆ (supp(M))(c) ,

supp
(
(M +N)−1)

)
⊆ supp(M).

The matrix N is called inverse-consistent complement of M and is denoted as M (c).

The next Lemma will shed light on the definition of inverse-consistency by introducing
an important class of such matrices that satisfy this property, namely the set of matrices
with positive-definite completions.
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Lemma 6 Any arbitrary matrix with positive-definite completion is inverse-consistent and
has a unique inverse-consistent complement.

Proof: Consider the optimization problem

min
S∈Sn

trace(MS)− logdet(S) (4a)

subject to Sij = 0, ∀(i, j) ∈ (supp(M))(c) (4b)

S � 0, (4c)

and its dual

max
Π∈Sn

det(M + Π) (5a)

subject to M + Π � 0 (5b)

supp(Π) ⊆ (supp(M))(c) (5c)

Πii = 0, i = 1, ..., d. (5d)

Note that Πij is equal to the Lagrange multiplier for (4b) and every (i, j) ∈ (supp(M))(c),
and is zero otherwise. Since the matrix M has a positive-definite completion, the dual
problem is strictly feasible. Moreover, S = Id is a feasible solution of (4). Therefore,
strong duality holds and the primal solution is attainable. On the other hand, the objective
function (4a) is strictly convex, which makes the solution of the primal problem unique. Let
Sopt denote the globally optimal solution of (4). It follows from the first-order optimality
conditions that

Sopt = (M + Πopt)−1.

This implies that

supp(Πopt) ⊆ (supp(M))(c)

supp((M + Πopt)−1) ⊆ supp(M)

M + Πopt � 0.

As a result, M ∈ Sd is inverse-consistent and Πopt is its complement. To prove the unique-
ness of the inverse-consistent complement of M , let Π denote an arbitrary complement of
M . It follows from Definition 5 and the first-order optimality conditions that (M+Π)−1 is a
solution of (4). Since Sopt is the unique solution of (4), it can be concluded that Π = Πopt.
This implies that M has a unique inverse-consistent complement. �

Remark 7 Two observations can be made based on Lemma 6. First, the positive-definiteness
of a matrix is sufficient to guarantee that it belongs to the cone of matrices with positive-
definite completion. Therefore, positive-definite matrices are inverse-consistent. Second,
upon existence, the inverse-consistent complement of a matrix with positive-definite com-
pletion is equal to the difference between the matrix and its unique maximum determinant
completion.
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Definition 8 An inverse-consistent matrix M is called sign-consistent if the (i, j) entries
of M and (M +M (c))−1 are nonzero and have opposite signs for every (i, j) ∈ supp(M).

Example 1 (An inverse- and sign-consistent matrix) To illustrate Definitions 5 and
8, consider the matrix

M =


1 0.3 0 0

0.3 1 −0.4 0
0 −0.4 1 0.2
0 0 0.2 1

 .
The graph supp(M) is a path graph with the vertex set {1, 2, 3, 4} and the edge set
{(1, 2), (2, 3), (3, 4)}. To show that M is inverse-consistent, let the matrix M (c) be cho-
sen as

M (c) =


0 0 −0.120 −0.024
0 0 0 −0.080

−0.120 0 0 0
−0.024 −0.080 0 0

 .
The inverse matrix (M +M (c))−1 is equal to

1
0.91

−0.3
0.91 0 0

−0.3
0.91 1 + 0.09

0.91 + 0.16
0.84

0.4
0.84 0

0 0.4
0.84 1 + 0.16

0.84 + 0.04
0.96

−0.2
0.96

0 0 −0.2
0.96

1
0.96

 .
Observe that:

• M and M +M (c) are both positive-definite.

• The sparsity graphs of M and M (c) are complements of each other.

• The sparsity graphs of M and (M +M (c))−1 are identical.

• The nonzero off-diagonal entries of M and (M +M (c))−1 have opposite signs.

The above properties imply that M is both inverse-consistent and sign-consistent, and M (c)

is its complement.

Definition 9 Given a graph G and a scalar α, define β(G, α) as the maximum of ‖M (c)‖max

over all matrices M with positive-definite completions and with the diagonal entries all equal
to 1 such that supp(M) = G and ‖M‖max ≤ α.

Consider the dual solution Πopt introduced in the proof of Lemma 6 and note that it is
a function of M . Roughly speaking, the function β(G, α) in the above definition provides
an upper bound on ‖Πopt‖max over all matrices M with positive-definite completions and
with the diagonal entries equal to 1 such that supp(M) = G and ‖M‖max ≤ α. As will be
shown later, this function will be used as a certificate to verify the optimality conditions
for the GL.
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Since Σ∗ is non-singular and we have a finite number of samples, the elements of the
upper triangular part of Σ (excluding its diagonal elements) are all nonzero and distinct with
probability one. Let σ1, σ2, ..., σd(d−1)/2 denote the absolute values of those upper-triangular
entries such that

σ1 > σ2 > ... > σd(d−1)/2 > 0.

Definition 10 Consider an arbitrary positive regularization parameter λ that does not be-
long to the discrete set {σ1, σ2, ..., σd(d−1)/2}. Define the index k associated with λ as an
integer number satisfying the relation λ ∈ (σk+1, σk). If λ is greater than σ1, then k is set
to 0.

Throughout this paper, the index k refers to the number introduced in Definition 10, which
depends on λ.

Definition 11 Define the residue of Σ relative to λ as a matrix Σres(λ) ∈ Sd such that
the (i, j) entry of Σres(λ) is equal to Σij − λ × sign(Σij) if i 6= j and |Σij | > λ, and it is
equal to 0 otherwise. Furthermore, define normalized residue of Σ relative to λ as

Σ̃res(λ) = D−1/2 × Σres(λ)×D−1/2,

where D is diagonal matrix with Dii = Σii for every i ∈ {1, ..., d}.

Notice that Σres(λ) is in fact the soft-thresholded sample covariance matrix with the
threshold λ. For notational simplicity, we will use Σres or Σ̃res instead of Σres(λ) or Σ̃res(λ)
whenever the equivalence is implied by the context. One of the main theorems of this paper
is presented below.

Theorem 12 The sparsity structures of the thresholding and GL methods are equivalent if
the following conditions are satisfied:

• Condition 1-i: Id + Σ̃res has a positive-definite completion.

• Condition 1-ii: Id + Σ̃res is sign-consistent.

• Condition 1-iii: The relation

β
(

supp(Σres), ‖Σ̃res‖max

)
≤ min

i 6=j
|Σij |≤λ

λ− |Σij |√
ΣiiΣjj

holds.

A number of observations can be made based on Theorem 12. First note that, due to
Lemma 6, Condition (1-i) guarantees that Id + Σ̃res is inverse-consistent; in fact it holds
when Id + Σ̃res itself is positive-definite. Note that the positive-definiteness of Id + Σ̃res

is guaranteed to hold if the eigenvalues of the normalized residue of the matrix Σ relative
to λ are greater than −1. Recall that λ ∈ (σk+1, σk) for some integer k and the off-
diagonal entries of Id + Σ̃res are in the range [−1, 1]. In the case where the number k

8



Graphical Lasso and Thresholding

is significantly smaller than d2, the residue matrix has many zero entries. Hence, the
satisfaction of Condition (1-i) is expected for a large class of residue matrices; this will be
verified extensively in our case studies on the real-world and synthetically generated data
sets. Specifically, this condition is automatically satisfied if Id+Σ̃res is diagonally dominant.
Conditions (1-ii) and (1-iii) of Theorem 12 are harder to check. These conditions depend on
the support graph of the residue matrix Σ̃res and/or how small the nonzero entries of Σ̃res

are. The next two lemmas further analyze these conditions to show that they are expected
to be satisfied for large λ.

Lemma 13 Given an arbitrary graph G, there is a strictly positive constant number ζ(G)
such that

β(G, α) ≤ ζ(G)α2, ∀ α ∈ (0, 1) (7)

and therefore, Condition (1-iii) is reduced to

ζ(supp(Σres))× max
k 6=l
|Σkl|>λ

(
|Σkl| − λ√

ΣkkΣll

)2

≤ min
i 6=j
|Σij |≤λ

λ− |Σij |√
ΣiiΣjj

.

Lemma 14 Consider a matrix M with a positive-definite completion and with unit diag-
onal entries. Define α = ‖M‖max and G = supp(M). There exist strictly positive constant
numbers α0(G) and γ(G) such that M is sign-consistent if α ≤ α0(G) and the absolute value
of the off-diagonal nonzero entries of M is lower bounded by γ(G)α2. This implies that
Condition (i-ii) is satisfied if ‖Σ̃res‖max ≤ α0(supp(Σres)) and

γ(supp(Σres))× max
k 6=l
|Σkl|>λ

(
|Σkl| − λ√

ΣkkΣll

)2

≤ min
i 6=j
|Σij |>λ

|Σij | − λ√
ΣiiΣjj

. (8)

For simplicity of notation, define r = maxi Σii
minj Σjj

and Σmax = maxi Σii. Assuming that

‖Σ̃res‖max ≤ α0(supp(Σres)), Conditions (1-ii) and (1-iii) of Theorem 12 are guaranteed to
be satisfied if

ζ(supp(Σres)) ≤ 1

r2
·

λ−σk+1

Σmax(
σ1−λ
Σmax

)2 , γ(supp(Σres)) ≤ 1

r2
·

σk−λ
Σmax(
σ1−λ
Σmax

)2 , (9)

which is equivalent to

max {γ(supp(Σres)), ζ(supp(Σres))} ≤ 2

r2
·

σk−σk+1

Σmax(
2σ1−σk−σk+1

Σmax

)2 .

for the choice λ =
σk+σk+1

2 . Consider the set

T =
{
|Σij |

∣∣ i = 1, 2, ..., d− 1, j = i+ 1, ..., d
}
.

This set has d(d−1)
2 elements. The cardinality of {σ1, ..., σd−1}, as a subset of T , is smaller

than the cardinality of T by a factor of d
2 . Combined with the fact that |σi| < Σmax for
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every i = 1, ..., d(d−1)
2 , this implies that the term

2σ1−σd−1−σd
Σmax

is expected to be small and its
square is likely to be much smaller than 1, provided that the elements of T are sufficiently
spread. If the number (2σ1 − σd−1 − σd) is relatively smaller than the gap σd−1 − σd and
k = O(d), then (7) and as a result Conditions (1-ii) and (1-iii) would be satisfied. The
satisfaction of this condition will be studied for acyclic graphs in the next section.

3.2. Closed-form Solution: Acyclic Sparsity Graphs

In the previous subsection, we provided a set of sufficient conditions for the equivalence
of the GL and thresholding methods. Although these conditions are merely based on the
known parameters of the problem, i.e., the regularization coefficient and sample covariance
matrix, their verification is contingent upon knowing the value of β(supp(Σres), ‖Σ̃res‖max)
and whether Id + Σ̃res is sign-consistent and has a positive-definite completion. The ob-
jective of this part is to greatly simplify the conditions in the case where the thresholded
sample covariance matrix has an acyclic support graph. First, notice that if Id + Σ̃res is
positive-definite, it has a trivial positive-definite completion. Furthermore, we will prove
that ζ(supp(Σres)) in Lemma 13 is equal to 1 when supp(Σres) is acyclic. This reduces
Condition (1-iii) to the simple inequality

‖Σ̃res‖2max ≤ min
i 6=j
|Σij |≤λ

λ− |Σij |√
ΣiiΣjj

,

which can be verified efficiently and is expected to hold in practice (see Section 4). Then,
we will show that the sign-consistency of Id + Σ̃res is automatically implied by the fact that
it has a positive-definite completion if supp(Σres) is acyclic.

Lemma 15 Given an arbitrary acyclic graph G, the relation

β(G, α) ≤ α2 (10)

holds for every 0 ≤ α < 1. Furthermore, strict equality holds for (10) if G includes a path
of length at least 2.

Sketch of the Proof: In what follows, we will provide a sketch of the main idea behind
the proof of Lemma 15. The detailed analysis can be found in the Appendix. Without loss
of generality, one can assume that G is connected. Otherwise, the subsequent argument
can be made for every connected component of G. Consider a matrix M that satisfies the
conditions delineated in Definition 9, i.e. 1) it has a positive-definite completion and hence,
is inverse-consistent (see Lemma 6), 2) it has unit diagonal entries, 3) the absolute value
of its off-diagonal elements is upper bounded by α, and 4) supp(M) = G. The key idea
behind the proof of Lemma 15 lies in the fact that, due to the acyclic structure of G, one
can explicitly characterize the inverse-consistent complement of M . In particular, it can
be shown that the inverse-consistent complement of M has the following explicit formula:

for every (i, j) 6∈ G, M
(c)
ij is equal to the multiplication of the off-diagonal elements of M

corresponding to the edges in the unique path between the nodes i and j in G. This key
insight immediately results in the statement of Lemma 15: the length of the path between
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nodes i and j is lower bounded by 2 and therefore, M
(c)
ij ≤ α2. Furthermore, it is easy

to see that if G includes a path of length at least 2, M can be chosen such that for some

(i, j) 6∈ G, we have M
(c)
ij = α2. �

Lemma 15 is at the core of our subsequent arguments. It shows that the function β(G, α)
has a simple and explicit formula since its inverse-consistent complement can be easily
obtained. Furthermore, it will be used to derive approximate inverse-consistent complement
of the matrices with sparse, but not necessarily acyclic support graphs.

Lemma 16 Condition (1-ii) of Theorem 12 is implied by its Condition (1-i) if the graph
supp(Σres) is acyclic.

Proof: Consider an arbitrary matrix M ∈ Sd with a positive-definite completion. It
suffices to show that if supp(M) is acyclic, then M is sign-consistent. To this end, consider
the matrix Πopt introduced in the proof of Lemma 6, which is indeed the unique inverse-
consistent complement of M . For an arbitrary pair (i, j) ∈ supp(M), define a diagonal
matrix Φ ∈ Sn as follows:

• Consider the graph supp(M)\{(i, j)}, which is obtained from the acyclic graph supp(M)
by removing its edge (i, j). The resulting graph is disconnected because there is no
path between nodes i and j.

• Divide the disconnected graph supp(M)\{(i, j)} into two groups 1 and 2 such that
group 1 contains node i and group 2 includes node 2.

• For every l ∈ {1, ..., n}, define Φll as 1 if l is in group 1, and as -1 otherwise.

In light of Lemma 6, (M + Π)−1 is the unique solution of (4). Similarly, Φ(M + Π)−1Φ is
a feasible point for (4). As a result, the following inequality must hold{

trace(M(M + Πopt)−1)− logdet((M + Πopt)−1)

}
−
{

trace(MΦ(M + Πopt)−1Φ)− logdet(Φ(M + Πopt)−1Φ)

}
< 0.

It is easy to verify that the left side of the above inequality is equal to twice the product
of the (i, j) entries of M and (M + Π)−1. This implies that the (i, j) entries of M and
(M + Π)−1 have opposite signs. As a result, M is sign-consistent. �

Definition 17 Define T (λ) as a d × d symmetric matrix whose (i, j)th entry is equal to
Σij + λ× sign(Sopt

ij ) for every (i, j) ∈ supp(Sopt), and it is equal to zero otherwise.

The next result of this paper is a consequence of Lemmas 15 and 16 and Theorem 12.

Theorem 18 Assume that the graph supp(Sopt) is acyclic and the matrix D + T (λ) is
positive-definite. Then, the relation Eopt ⊆ Eres holds and the optimal solution Sopt of the
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GL can be computed via the explicit formula

Sopt
ij =


1

Σii

(
1 +

∑
(i,m)∈Eopt

(Σres
im)2

ΣiiΣmm−(Σres
im)2

)
if i = j,

−Σres
ij

ΣiiΣjj−(Σres
ij )2 if (i, j) ∈ Eopt,

0 otherwise,

(11)

where Eopt and Eres denote the edge sets of supp(Sopt) and supp(Σres), respectively.

When the regularization parameter λ is large, the graph supp(Sopt) is expected to be
sparse and possibly acyclic. In this case, the matrix T (λ) is sparse with small nonzero
entries. If D + T (λ) is positive-definite and supp(Sopt) is acyclic, Theorem 18 reveals
two important properties of the solution of the GL: 1) its support graph is contained in
the sparsity graph of the thresholded sample covariance matrix, and 2) the entries of this
matrix can be found using the explicit formula (11). However, this formula requires to
know the locations of the nonzero elements of Sopt. In what follows, we will replace the
assumptions of the above theorem with easily verifiable rules that are independent from the
optimal solution Sopt or the locations of its nonzero entries. Furthermore, it will be shown
that these conditions are expected to hold when λ is large enough, i.e., if a sparse matrix
Sopt is sought.

Theorem 19 Assume that the following conditions are satisfied:

• Condition 2-i. The graph supp(Σres) is acyclic.

• Condition 2-ii. Id + Σ̃res is positive-definite.

• Condition 2-iii. ‖Σ̃res‖2max ≤ min
i 6=j
|Σij |≤λ

λ−|Σij |√
ΣiiΣjj

.

Then, the sparsity pattern of the optimal solution Sopt corresponds to the sparsity pattern
of Σres and, in addition, Sopt can be obtained via the explicit formula (11).

The above theorem states that if a sparse graph is sought, then as long as some easy-
to-verify conditions are met, there is an explicit formula for the optimal solution. It will
later be shown that Condition (2-i) is exactly or approximately satisfied if the regularization
coefficient is sufficiently large. Condition (2-ii) implies that the eigenvalues of the normalized
residue of Σ with respect to λ should be greater than -1. This condition is expected to be
automatically satisfied since most of the elements of Σ̃res are equal to zero and the nonzero
elements have small magnitude. In particular, this condition is satisfied if Id + Σ̃res is
diagonally dominant. Finally, using (8), it can be verified that Condition (2-iii) is satisfied
if (

2σ1−σk−σk+1

Σmax

)2

σk−σk+1

Σmax

≤ 2

r2
. (12)

Similar to the arguments made in the previous subsection, (12) shows that Condition (2-iii)
is satisfied if

2σ1−σk−σk+1

Σmax
is small. This is expected to hold in practice since the choice of λ
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entails that 2σ1−σk−σk+1 is much smaller than Σmax. Under such circumstances, one can
use Theorem 19 to obtain the solution of the GL without having to solve (2) numerically.

Having computed the sample covariance matrix, we will next show that checking the
conditions in Theorem 19 and finding Sopt using (11) can all be carried out efficiently.

Corollary 20 Given Σ and λ, the total time complexity of checking the conditions in The-
orem 19 and finding Sopt using (11) is O(d2).

Another line of work has been devoted to studying the connectivity structure of the
optimal solution of the GL. In particular, Mazumder and Hastie (2012) and Witten et al.
(2011) have shown that the connected components induced by thresholding the covariance
matrix and those in the support graph of the optimal solution of the GL lead to the same
vertex partitioning. Although this result does not require any particular condition, it cannot
provide any information about the edge structure of the support graph and one needs to
solve (2) for each connected component using an iterative algorithm, which may take up
to O(d3) per iteration (Friedman et al. 2008; Banerjee et al. 2008; Mazumder and Hastie
2012). Corollary 20 states that this complexity could be reduced significantly for sparse
graphs.

Remark 21 The results introduced in Theorem 12 can indeed be categorized as a set of
“safe rules” that correctly determine sparsity pattern of the optimal solution of the GL.
These rules are subsequently reduced to a set of easily verifiable conditions in Theorem 19
to safely obtain the correct sparsity pattern of the acyclic components in the optimal solution.
On the other hand, there is a large body of literature on simple and cheap safe rules to pre-
screen and simplify the sparse learning and estimation problems, including Lasso, logistic
regression, support vector machine, group Lasso, etc( Ghaoui et al. (2010); Tibshirani et al.
(2012); Fercoq et al. (2015); Ndiaye et al. (2015)). Roughly speaking, these methods are
based on constructing a sequence of safe regions that encompass the optimal solution for the
dual of the problem at hand. These safe regions, together with the Karush—Kuhn—Tucker
(KKT) conditions, give rise to a set of rules that facilitate inferring the sparsity pattern
of the optimal solution. Our results are similar to these methods since we also analyze the
special structure of the KKT conditions and resort to the dual of the GL to obtain the correct
sparsity structure of the optimal solution. However, according to the seminal work Ndiaye
et al. (2015), most of the developed results on safe screening rules rely on strong Lipschitz
assumptions on the objective function; an assumption that is violated in the GL. This calls
for a new machinery to derive theoretically correct rules for this problem; a goal that is at
the core of Theorems 12 and 19.

3.3. Approximate Closed-form Solution: Sparse Graphs

In the preceding subsection, it was shown that, under some mild assumptions, the GL has
an explicit closed-form solution if the support graph of the thresholded sample covariance
matrix is acyclic. In this part, a similar approach will be taken to find approximate solutions
of the GL with an arbitrary underlying sparsity graph. In particular, by closely examining
the hard-to-check conditions of Theorem 12, a set of simple and easy-to-verify surrogates
will be introduced which give rise to an approximate closed-form solution for the general
sparse GL. Furthermore, we will derive a strong upper bound on the approximation error
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and show that it decreases exponentially fast with respect to the length of the minimum-
length cycle in the support graph of the thresholded sample covariance matrix. Indeed,
the formula obtained earlier for acyclic graphs could be regarded as a by-product of this
generalization since the length of the minimum-length cycle can be considered as infinity
for such graphs. The significance of this result is twofold:

• Recall that the support graph corresponding to the optimal solution of the GL is
sparse (but not necessarily acyclic) for a large regularization coefficient. In this case,
the approximate error is provably small and the derived closed-form solution can
serve as a good approximation for the exact solution of the GL. This will later be
demonstrated in different simulations.

• The performance and runtime of numerical (iterative) algorithms for solving the GL
heavily depend on their initializations. It is known that if the initial point is chosen
close enough to the optimal solution, these algorithms converge to the optimal solution
in just a few iterations (Friedman et al. 2008; Hsieh et al. 2014; Zhang and Lavaei
2017). The approximate closed-form solution designed in this paper can be used as
an initial point for the existing numerical algorithms to significantly improve their
runtime.

The proposed approximate solution for the GL with an arbitrary support graph has the
following form:

Aij =


1

Σii

(
1 +

∑
(i,m)∈Eopt

(Σres
im)2

ΣiiΣmm−(Σres
im)2

)
if i = j,

−Σres
ij

ΣiiΣjj−(Σres
ij )2 if (i, j) ∈ Eres,

0 otherwise.

(13)

The definition of this matrix does not make any assumption on the structure of the graph
Eres. Recall that Σres in the above formula is the shorthand notation for Σres(λ). As a
result, the matrix A is a function of λ. To prove that the above matrix is an approximate
solution of the GL, a few steps need to be taken. First, recall that—according to the proof
of Lemma 15—it is possible to explicitly build the inverse-consistent complement of the
thresholded sample covariance matrix if its sparsity graph is acyclic. This matrix serves as
a certificate to confirm that the explicit solution (13) indeed satisfies the KKT conditions
for the GL. By adopting a similar approach, it will then be proved that if the support graph
of the thresholded sample covariance matrix is sparse, but not necessarily acyclic, one can
find an approximate inverse-consistent complement of the proposed closed-form solution to
approximately satisfy the KKT conditions.

Definition 22 Given a number ε ≥ 0, a d× d matrix B is called an ε-relaxed inverse of
matrix A if A×B = Id + E such that |Eij | ≤ ε for every (i, j) ∈ {1, 2, ..., d}2.

The next lemma offers optimality (KKT) conditions for the unique solution of the GL.
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Lemma 23 (Sojoudi (2016)) A matrix Sopt is the optimal solution of the GL if and only
if it satisfies the following conditions for every i, j ∈ {1, 2, ..., d}

(Sopt)−1
ij = Σij if i = j, (14a)

(Sopt)−1
ij = Σij + λ× sign(Sopt

ij ) if Sopt
ij 6= 0, (14b)

Σij − λ ≤ (Sopt)−1
ij ≤ Σij + λ if Sopt

ij = 0, (14c)

where (Sopt)−1
ij denotes the (i, j)th entry of (Sopt)−1.

The following definition introduces a relaxed version of the first-order optimality condi-
tions given in (14).

Definition 24 Given a number ε ≥ 0, it is said that the d × d matrix A satisfies the
ε-relaxed KKT conditions for the GL problem if there exists a d× d matrix B such that

• B is an ε-relaxed inverse of the matrix A.

• The pair (A,B) satisfies the conditions

Bij = Σij if i = j, (15a)

|Bij − (Σij + λ× sign(Aij)) | ≤ ε if Aij 6= 0, (15b)

|Bij − Σij | ≤ λ+ ε if Aij = 0. (15c)

By leveraging the above definition, the objective is to prove that the explicit solution in-
troduced in (13) satisfies the ε-relaxed KKT conditions for some number ε to be defined
later.

Definition 25 Given a graph G, define the function c(G) as the length of the minimum-
length cycle of G (the number c(G) is set to +∞ if G is acyclic). Let deg(G) refer to the
maximum degree of G. Furthermore, define Pij(G) as the set of all simple paths between
nodes i and j in G, and denote the maximum of |Pij(G)|0 over all pairs (i, j) as Pmax(G).

Define Σmax and Σmin as the maximum and minimum diagonal elements of Σ, respec-
tively.

Theorem 26 Under the assumption λ < σ1, the explicit solution (13) satisfies the ε-relaxed
KKT conditions for the GL with ε chosen as

ε = max

{
Σmax,

√
Σmax

Σmin

}
· δ · (Pmax(supp(Σres))− 1) ·

(
‖Σ̃res‖max

)⌈ c(supp(Σres))
2

⌉
, (16)

where

δ = 1 +
deg(supp(Σres)) · ‖Σ̃res‖2max

1− ‖Σ̃res‖2max

+
(deg(supp(Σres))− 1)

1− ‖Σ̃res‖2max

, (17)

if the following conditions are satisfied:

• Condition 3-i. Id + Σ̃res is positive-definite.
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• Condition 3-ii. ‖Σ̃res‖2max ≤ min
i 6=j

(i,j)6∈supp(Σres)

λ−|Σij |√
ΣiiΣjj

.

The number ε given in Theorem 26 is comprised of different parts:

• ‖Σ̃res‖max: Notice that ‖Σ̃res‖max is strictly less than 1 and λ is large when a sparse
graph is sought. Therefore, ‖Σ̃res‖max is expected to be small for sparse graphs. Under
this assumption, we have 0 ≤ ‖Σ̃res‖max � 1.

• c(supp(Σres)): It is straightforward to verify that c(supp(Σres)) is a non-decreasing
function of λ. This is due to the fact that as λ increases, Σres(λ) becomes sparser
and this results in a support graph with fewer edges. In particular, if d ≥ 3, then
c(supp(Σres)) = 3 for λ = 0 and c(supp(Σres)) = +∞ for λ = σ1 almost surely.

• Pmax(supp(Σres)) and deg(supp(Σres)): These two parameters are also non-decreasing
functions of λ and likely to be small for large λ. For a small λ, the numbers
Pmax(supp(Σres)) and deg(supp(Σres)) could be on the order ofO(d!) andO(d), respec-
tively. However, these values are expected to be small for sparse graphs. In particular,
it is easy to verify that for nonempty and acyclic graphs, Pmax(supp(Σres)) = 1.

The above observations imply that if λ is large enough and the support graph of Σres

is sparse, (13) serves as a good approximation of the optimal solution of the GL. In other
words, it results from (16) that if supp(Σres) has a structure that is close to an acyclic
graph, i.e., it has only a few cycles with moderate lengths, we have ε ≈ 0. In Section 4,
we will present illustrative examples to show the accuracy of the closed-form approximate
solution with respect to the size of the cycles in the sparsity graph.

Consider the matrix A given in (13), and let µmin(A) and µmax(A) denote its minimum
and maximum eigenvalues, respectively. If λ = σ1, then A = D−1 (recall that D collects the
diagonal entries of Σ) and subsequently µmin(A) > 0. Since µmin(·) is a continuous function
of λ, there exists a number λ0 in the interval (0, 1) such that the matrix A (implicitly defined
based on λ) is positive-definite for every λ ≥ λ0. The following theorem further elaborates
on the connection between the closed-form formula and the optimal solution of the GL.

Theorem 27 There exists an strictly positive number λ0 such that, for every λ ≥ λ0, the
matrix A given in (13) is the optimal solution of the GL problem after replacing Σ with
some perturbed matrix Σ̂ that satisfies the inequality

‖Σ− Σ̂‖2 ≤ dmax(A)

(
1

µmin(A)
+ 1

)
ε, (18)

where dmax(A) is the maximum vertex cardinality of the connected components in the graph
supp(A) and ε is given in (16). Furthermore, 18 implies that

f(A)− f∗ ≤
(
µmax(A) + µmax(Sopt)

)
dmax(A)

(
1

µmin(A)
+ 1

)
ε, (19)

where f(A) and f∗ are the objective functions of the GL evaluated at A and the optimal
solution, respectively.
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As mentioned before, if a sparse solution is sought for the GL, the regularization coeffi-
cient would be large and this helps with the satisfaction of the inequality λ ≥ λ0. In fact,
it will be shown through different simulations that λ0 is small in practice and hence, this
condition is not restrictive. Under this circumstance, Theorem 27 states that the easy-to-
construct matrix A is 1) the exact optimal solution of the GL problem with a perturbed
sample covariance matrix, and 2) it is the approximate solution of the GL with the original
sample covariance matrix. The magnitudes of this perturbation and approximation error
are a function of dmax(A), µmin(A), µmax(A), µmax(Sopt), and ε. Furthermore, it should be
clear that A and ε are functions of λ and Σ (we dropped this dependency for simplicity of
notation). Recall that the disjoint components (or the vertex partitions) of supp(A) satisfy
a nested property: given 1 ≥ λ1 > λ2 ≥ 0, the components of supp(A) for λ = λ1 are
nested within the components of supp(A) for λ = λ2 (see Mazumder and Hastie (2012)
for a simple proof of this statement). This implies that dmax(A) is a decreasing function
of λ. In particular, it can be observed that dmax(A) = d if λ = 0 and dmax(A) = 1 if
λ = σ1. Now, consider µmin(A), µmax(A), and µmax(Sopt). First, note that if λ = σ1, then
A = Sopt = D−1. Furthermore, it is easy to verify that both A and Sopt are continuous
functions of λ. Therefore, for large values of λ, µmin(A), µmax(A), and µmax(Sopt) are ex-
pected to be close to 1/Σmax, 1/Σmin, and 1/Σmin, respectively. In addition, as discussed
earlier, ε is a decreasing function of λ and vanishes when λ is large enough. Based on these
observations, it can be concluded that the upper bound presented in (18) is small if λ is
chosen to be large.

Notice that although the aforementioned value of ε in (16) and the upper bound in (18)
were essential in the study of the effect of the sparsity of the support graph on the accuracy
of the presented closed-form solution, they are conservative in practice. These numbers may
be tightened significantly for specific sample covariance matrices. We will further discuss
the approximation error of the closed-form solution in Section 4.

Warm-start algorithm As delineated before, one of the main strengths of the proposed
closed-form solution is that it can be used as an initial point (warm-start) for the numerical
algorithms specialized for solving the GL. To this goal, the following warm-start procedure
is proposed.

Algorithm 1: Warm-start algorithm

Data: data samples (x), and regularization coefficient (λ)
Result: Solution of the GL (Sopt)

1 Obtain the residue matrix Σres based on Definition 11 and the closed-form solution
A from (13);

2 for each component i in supp(Σres) do
3 if Conditions 2-i, 2-ii, 2-iii are satisfied then
4 Sopt[i]← A[i];
5 else
6 Find Sopt[i] by numerically solving the GL for component i with initial

point A[i];

7 end

8 end
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In the above algorithm, Sopt[i] and A[i] are the submatrices of Sopt and A corresponding to
the ith component of supp(Σres). The warm-start algorithm is based on the key fact that
the GL decomposes over the disjoint components of supp(Σres) (Mazumder and Hastie 2012;
Witten et al. 2011). In particular, in the first step, the warm-start algorithm obtains the
residue matrix according to Definition 11. Next, for every disjoint component of the residue
matrix, if its support graph is acyclic and the conditions of Theorem 19 are satisfied, then the
corresponding component in Sopt is found using the closed-form solution (11). Otherwise,
this closed-form solution is provided as an initial point to a numerical algorithm, such as
GLASSO and QUIC Friedman et al. (2008); Hsieh et al. (2014), in order to boost the
runtime of solving the GL for the considered component. The results of the warm-start
algorithm will be evaluated in the next section.

Remark 28 The statistical analysis of the GL entails that λ should converge to zero as
the number of samples grows to infinity. It is worthwhile to mention that our results may
not be applicable in the high sampling regime, where λ is close to zero and consequently the
thresholded sample covariance matrix is dense. However, notice that the main strength of
the GL lies in the high dimensional-low sampling regime where n is much smaller than d
and is in the order of log d. Under such circumstances, the proposed explicit formula results
in highly accurate solutions for the GL. In fact, it will be shown through massive-scale
simulations that in practice, the required conditions on λ—such as the positive-definiteness
of Id + Σ̃res—for the validity of the presented results are much more relaxed than the known
conditions on λ to guarantee the statistical consistency of the GL.

4. Numerical Results

In this section, we will demonstrate the effectiveness of the proposed methods on syn-
thetically generated data, as well as on real data collected from the brain networks and
transportation systems.

4.1. Case Study on Synthetic Data

Given a nonnegative number ω, consider an arbitrary sample covariance matrix Σ with the
following properties:

• Its diagonal elements are normalized to 1.

• The entries corresponding to an arbitrary spanning tree of supp(Σ) belong to the
union of the intervals [−0.85,−0.95] and [0.85, 0.95].

• The off-diagonal entries that do not belong to the spanning tree are in the interval
[−0.85 + ω, 0.85− ω].

The goal is to find conditions on λ, ω and the size of the covariance matrix such that
Theorem 19 can be used to obtain a closed-form solution for the GL problem. One can
choose the value of λ to be greater than σd to ensure that the graph supp(Σres) is acyclic. In
particular, if we pick λ in the interval (σd, σd−1), the graph supp(Σres) becomes a spanning
tree.

Select λ as 0.85 − ε for a sufficiently small number ε and consider Condition (2-ii)
in Theorem 19. One can easily verify that Id + Σres is positive-definite if the inequality
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Figure 1: The optimality gap between the closed-form and optimal solutions for the GL

1
deg(v) > (σ1−λ)2 holds for every node v in supp(Σres), where deg(v) is the degree of node v.

This condition is guaranteed to be satisfied for all possible acyclic graphs if (deg(v))(0.95−
0.85)2 < 1 or equivalently deg(v) ≤ 100 for every node v. Regarding Condition (2-iii), it can
be observed that the relation (σ1−λ)2 ≤ λ−σk+1 holds if (0.95−0.85)2 < 0.85−(0.85−ω).
This implies that the inequality ω > 0.01 guarantees the satisfaction of Condition (2-iii)
for every acyclic graph supp(Σres). In other words, one can find the optimal solution of
the GL problem using the explicit formula in Theorem 19 as long as: 1) a spanning tree
structure for the optimal solution of the GL problem is sought, 2) the degree of each node
in the spanning tree is not greater than 100, and (3) the difference between σd−1 and σd is
greater than 0.01. Note that Condition (2) is conservative and can be dropped for certain
types of graphs (e.g., path graphs). In practice, the positive-definiteness of Id + Σres is
not restrictive; we have verified that this matrix is positive-definite for randomly generated
instances with the sizes up to d = 200, 000 even when deg(v) > 100.

Now, consider the following modifications in the experiment:

• The elements of Σ corresponding to a cycle of length d are randomly set to −0.8 or
0.8 with equal probability.

• The off-diagonal entries that do not correspond to the above cycle are in the interval
[−0.7, 0.7].

If λ is chosen as 0.75, then the graph supp(Σres) coincides with a cycle of length d. Fur-
thermore, Id + Σres is diagonally dominant and hence positive-definite for every d. Figure 1
shows the optimality gap of the proposed closed-form solution and its derived theoretical
upper bound (i.e. the left and right hand sides of (19), respectively) with respect to the
length of the cycle d in log-linear scale. (note that deg(supp(Σres)) and Pmax(supp(Σres))
in (19) are both equal to 2). Two important observations can be made based on this figure.

• In practice, the performance of the derived closed-form solution is significantly better
than its theoretical upper bounds. In fact, this error is less than 10−6 when the
length of the minimum-length cycle is at least 6. The high accuracy of the closed-
form solution will become more evident in the subsequent case studies on large-scale
problems.
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• It can be seen that the logarithm of the optimality gap is approximately a linear
function of the cycle length. This matches the behavior of the theoretical bounds in-
troduced in Theorems 26 and 27: the approximation error is exponentially decreasing
with respect to the length of the minimum-length cycle.

4.2. Case Study on Brain Networks

Consider the problem of estimating the brain functional connectivity network based on a set
of resting state functional MRI (fMRI) data collected from 20 individual subjects (Vértes
et al., 2012). The data for each subject correspond to disjoint brain activities and are
correlated due to the underlying functional connectivity structure of the brain. In order to
represent these dependencies, each disjoint region of the brain can be considered as a node
and the correlation between two different regions can be resembled by an edge between the
nodes. The data set for each subject consists of 134 samples of low frequency oscillations
taken from 140 different cortical brain regions. We construct a normalized sample covariance
matrix by combining the data sets of all 20 subjects (note that the data for each individual
is limited and not informative enough, but the combined data provides rich information
about the brain network). The goal is to use the GL to estimate the underlying functional
connectivity network of different regions of the brain based on the obtained 140 × 140
sample covariance matrix. We study the thresholded sample covariance matrix and the
derived closed-form solution for different values of the regularization coefficient in order to
analyze their accuracy.

Figure 2a shows the number of edges in the sparsity graph of the thresholded sample
covariance matrix that belong to those connected components satisfying the conditions in
Theorem 19. The formula derived in this paper is able to find the optimal values of the
entries of the solution corresponding to these edges. It can be observed that if λ is greater
than 0.51, then almost half of the edges in the sparsity graph of the optimal solution can be
found using the proposed explicit formula. This is due to the fact that the corresponding
entries in the residue matrix belong to the acyclic components of its sparsity graph and
satisfy the conditions of Theorem 19. Figure 2b depicts the number of nodes that belong to
the components (with sizes greater than 1) for which the corresponding submatrices of the
solution of the GL have an explicit formula. Note that those entries in the optimal solution
that correspond to isolated nodes are trivially equal to 0. Therefore, in order to better
reflect the significance of the derived solution, we have only considered the components
with at least two nodes. It can be observed that if λ is greater than 0.5, then the number
of nodes belonging to the components with explicit formula is greater than the number
of those nodes associated with inexact closed-form solutions. Figure 2c demonstrates the
number of edges in the sparsity graph of the optimal solution, together with the number of
mismatches in the edge sets of the sparsity graphs of the optimal and thresholded solutions.
Notice that the number of mismatches is less than 10% when λ is greater than 0.35 and is
almost 0 when λ is greater than 0.5.

Figure 2d shows the minimum eigenvalues of the optimal and closed-form approximate
solutions for different values of λ. The approximate solution is positive-definite when λ is
greater than 0.37. This implies that λ0 in Corollary 27 is equal to 0.37. Figures 2e and 2f
depict the 2-norm of the approximation error (the difference between the optimal and closed-

20



Graphical Lasso and Thresholding

λ

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

N
u
m

b
e
r 

o
f 
E

d
g
e
s

0

50

100

150

200

250
Number of Edges with Explicit Solutions
Number of Edges without Explicit Solutions
Total Number of Edges

(a) Number of edges

λ

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

N
u
m

b
e
r 

o
f 
N

o
d
e
s

0

20

40

60

80

100

120

140
Number of Nodes with Explicit Solutions
Number of Nodes without Explicit Solutions

(b) Number of nodes

λ

0.22 0.3 0.4 0.5 0.6 0.7

N
u

m
b

e
r 

o
f 

N
o

n
z
e

ro
s

0

100

200

300

400

500

600
Number of Mismatches
Number of Nonzeros in Optimal Solution

(c) Number of nonzeros and mismatches

λ

0.22 0.3 0.4 0.5 0.6 0.7

M
in

im
u

m
 E

ig
e
n

v
a
lu

e

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Closed-Form Solution
Optimal Solution

(d) Minimum eigenvalue

λ

0.22 0.3 0.4 0.5 0.6 0.7

2
-n

o
rm

 o
f 
A

p
p
ro

x
im

a
ti
o

n
 E

rr
o
r

0

0.2

0.4

0.6

0.8

1

1.2

(e) 2-norm of the approximation error

λ

0.22 0.3 0.4 0.5 0.6 0.7

S
im

ila
ri
ty

 D
e

g
re

e

0.94

0.95

0.96

0.97

0.98

0.99

1

(f) Similarity degree

Figure 2: a) Number of edges in the sparsity graph of the closed-form approximate solution whose corre-
sponding entries are guaranteed to be equal to those in the sparsity graph of the optimal solution due to
Theorem 19. b) Number of nodes that belong to the components for which the corresponding submatrices
of the optimal solution have explicit formulas. c) Number of edges in the sparsity graph of the optimal
solution, compared to the number of mismatches. d) Minimum eigenvalues of the optimal and closed-form
approximate solutions. e) The 2-norm of the difference between the optimal and approximate solutions. f)
The similarity degree between the optimal and approximate solutions.
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form approximate solutions) and the similarity degree between these two solutions, which
is defined as

similarity degree =
trace(S̃opt × Ã)

‖S̃opt‖F × ‖Ã‖F
,

where S̃opt = Sopt− Id and Ã = A− Id. Subtracting the identity matrix from A and Sopt is
due to the observation that both matrices have diagonal entries close to 1 when the support
graph is sparse. This leads to an artificially inflated similarity degree between A and Sopt.
Therefore, in order to have a better assessment of the similarity between the closed-form
and optimal solutions, we measure the similarity between A and Sopt after softening the
effect of their diagonal entries. The similarity degree of 1 means that the optimal and
approximate solutions are exactly equal.

It can be observed that the approximation error is small and the similarity degree is
high for a wide range of values of λ. For instance, if λ is greater than 0.4, then the 2-norm
of the approximation error is less than 0.37 and the similarity degree is greater than 0.98.
For these values of λ, the number of edges in the sparsity graph of the optimal solution
ranges from 200 to 0. In all of these cases, the structure and values of the optimal solution
can be estimated efficiently, without solving the optimization problem numerically.

4.3. Case Study on Transportation Networks

In recent years, the problem of short- and long-term traffic flow prediction and control has
attracted much attention in Intelligent Transportation Systems (ITSs) (Figueiredo et al.
2001). Estimating the correlation between the traffic flows on different links of a transporta-
tion network is one of the crucial steps toward the traffic congestion control in the network;
it can also serve as an initial block in different traffic forecasting methods. Substantial re-
search has been devoted to extracting these dependencies and performing predictions based
on the measured data (see Yin et al. (2017); Nassiri and Aghamohammadi (2017); Sun et al.
(2012) and the references therein). In this case study, the objective is to construct a sparse
matrix representing the conditional covariance between the traffic flows of different links in
the network. The data is collected from the Caltrans Performance Measurement System
(PeMS) database, which consists of traffic information of freeways on the a statewide scale
across California (PeM 2017). We consider the data measured by the stations deployed
in District 3 of California, which is collected and aggregated every 5 minutes from 1277
stations during March 6th to March 12th of the year 2017 (one-week interval). Due to the
malfunctioning of some of the detectors, a non-negligible portion of the traffic flows was
missing from the raw data set. Therefore, the following steps were taken before solving the
GL problem in order to obtain a useful representation of the raw data:

• Since 228 stations did not have sufficient number of measurements during the one-week
period, they were removed from the sampled data.

• In a few stations, the detectors did not measure the traffic flow for some periods of
time. For these data samples, we used a linear interpolation method to estimate the
missing values.

After performing the aforementioned data-cleaning steps, a 1049× 1049 normalized sample
covariance matrix was constructed from the combined 2016 data samples (288 samples for
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Figure 3: a) Number of edges in the sparsity graph of the optimal solution, compared to the number of
mismatches. b) Minimum eigenvalues of the optimal and closed-form approximate solutions. c) The 2-norm
of the difference between the optimal and approximate solutions. d) The similarity degree between the
optimal and approximate solutions.

each day of the week). In Figure 3, the accuracy of the thresholding technique and its
corresponding closed-form approximate solution is compared to the optimal solution of the
GL problem for different values of the regularization coefficient.

Since the number of entries in the upper triangular part of the sample covariance matrix
is large (roughly 550,000 entries), we have only considered large values of λ in order to obtain
a sparse solution for the GL. Figure 3a shows the number of edges in the sparsity graph
of the optimal solution, compared to the number of mismatches between the edge sets of
the sparsity graphs of the optimal and closed-form solutions. It can be observed that as
λ increases, the support graph of the optimal solution becomes sparser and the number of
mismatches decreases. In particular, the number of mismatches is almost zero if λ is chosen
to be greater than 0.97. Figure 3b depicts the minimum eigenvalues of the optimal and
closed-form approximate solutions of the GL with respect to λ. The approximate solution
becomes positive-definite if λ is greater than 0.991. Furthermore, Figures 3c and 3d show
that, for those values of λ between 0.991 and 0.999, the 2-norm of the approximation error
is between 0.5 and 0.01, and that the similarity degree is greater than 0.99. For this range
of λ, the number of edges in the sparsity graph of the optimal solution is 7.82 to 7.40 times
higher the number of nodes.
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4.4. Case Study on Large-Scale Data

In this case study, we evaluate the performance of the proposed closed-form solution on
massive randomly generated data sets. Given d (the dimension of each sample) and similar
to Hsieh et al. (2014) and Yun and Toh (2011), a sparse inverse covariance matrix is gener-
ated for each test case according to the following procedure: first, a sparse matrix U ∈ Rd×d
is generated whose nonzero elements are randomly set to +1 or −1, with equal probability.
Then, the inverse covariance matrix is set to UU> + 2I. Depending on the test case, the
number of nonzero elements in U is controlled so that the resulted inverse covariance matrix
has approximately 5d or 10d nonzero elements. n = d/2 number of i.i.d. samples are drawn
from the corresponding multivariate Gaussian distribution in all experiments, except for
the largest test case with d = 80000. This instance has more than 3.2 billion variables
and only n = 20000 samples are collected to solve the GL due to the memory limitations.
Furthermore, the regularization coefficient is chosen such that the estimated solution has
approximately the same number of nonzero elements as the ground truth.

Table 1 reports the runtime of the closed-form solution, compared to two state-of-the-art
methods for solving the GL, namely QUIC (Hsieh et al. 2014) and GLASSO (Friedman et al.
2008) algorithms, as well as elementary estimator (Yang et al. 2014). The GLASSO is the
most widely-used algorithm for the GL, while the QUIC algorithm is commonly regarded as
the fastest available solver for this problem. The elementary estimator is recently proposed
in lieu of the GL to remove its computational burden, while preserving its desired high-
dimensional properties. We use the source codes for latest versions of QUIC and GLASSO in
our simulations. In particular, we use the QUIC 1.1 (available in http://bigdata.ices.

utexas.edu/software/1035/) which is implemented in C++ with MATLAB interface.
The GLASSO is downloaded from http://statweb.stanford.edu/~tibs/glasso/ and
is implemented in FORTRAN with MATLAB interface. We implemented the elementary
estimator and the proposed closed-form solution in MATLAB using its sparse package. A
time limit of 4 hours is considered in all experiments. Table 1 has the following columns:

• d: The dimension of the samples.

• m: The number of nonzero elements in the true inverse covariance matrix.

• Closed-form: The runtime of the proposed method.

• QUIC-C and GLASSO-C: The runtime of the QUIC and GLASSO without initializa-
tion.

• QUIC-W and GLASSO-W: The runtime of the QUIC and GLASSO using the warm-
start Algorithm 1.

• Elem.: The runtime of the elementary estimator.

In all of the test cases, the resulted closed-form solution is positive-definite and hence,
feasible. It can be seen that the proposed method significantly outperforms QUIC, GLASSO
and elementary estimator in terms of its runtime. In particular, the presented method is
on average 6, 36, and 951 times faster than elementary, QUIC, and GLASSO methods,
respectively, provided that they can obtain the solution within the predefined time limit.
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d m Closed-Form QUIC-C QUIC-W GLASSO-C GLASSO-W Elem.
2000 9894 0.1 2.0 1.4 42.8 13.5 0.2
2000 20022 0.1 3.0 2.1 43.8 15.3 0.2
4000 20094 0.5 13.9 7.5 460.8 135.1 2.1
4000 40382 0.5 21.5 12.0 467.6 156.2 2.9
8000 40218 2.5 78.7 49.3 3675.1 1011.2 11.3
8000 79890 2.5 111.7 88.4 3784.3 1278.8 22.2
12000 60192 7.8 243.8 153.1 ? 3233.0 31.8
12000 119676 7.4 333.6 251.0 ? 3437.2 70.2
16000 80064 17.1 570.0 322.8 ? 6545.0 67.2
16000 160094 18.5 787.4 616.4 ? 9960.8 174.8
20000 99954 39.4 1266.5 539.4 ? ? 107.8
20000 200018 37.4 1683.8 1392.5 ? ? 211.5
40000 200290 495.4 ? ? ? ? ?
80000 401798 1450.4 ? ? ? ? ?

Table 1: The runtime of different methods.

Furthermore, for the cases where the GL can be solved to optimality using QUIC, the
relative optimality gap of the closed-form solution, i.e., (f(A) − f∗)/f∗, is 2.1 × 10−3 on
average. For the cases with d = 40000 and d = 80000, none of these methods converge to
a meaningful solution, while the proposed method can obtain an accurate solution in less
than 30 minutes. On the other hand, the warm-start Algorithm 1 accompanied by QUIC
and GLASSO yields up to 2.35 and 4.45 times speedups in their runtime, respectively.
Moreover, the warm-start algorithm doubles the size of the instances that are solvable
using the GLASSO.

Table 2 compares the accuracy of the estimated inverse covariance matrix using different
methods. This table includes the following columns:

• `F : The Frobenius norm of the difference between the true and estimated inverse
covariance matrices, normalized by the Frobenius norm of the true inverse covariance
matrix.

• TPR and FPR: The true positive rate (TPR) and false positive rate (FPR) defined
as

TPR =

∣∣(i, j) : i 6= j, Sij 6= 0, (Σ−1
∗ )ij 6= 0

∣∣
0∣∣(i, j) : i 6= j, (Σ−1

∗ )ij 6= 0
∣∣
0

,

FPR =

∣∣(i, j) : i 6= j, Sij 6= 0, (Σ−1
∗ )ij = 0

∣∣
0∣∣(i, j) : i 6= j, (Σ−1

∗ )ij = 0
∣∣
0

,

where S corresponds to the explicit formula, the optimal solution of the GL, or the
elementary estimator.

It can be seen that, while the elementary estimator has slightly better estimation error,
its TPR is significantly outperformed by the those of the GL and closed-form solutions.
Furthermore, it can be seen that the closed-form estimator has almost the same accuracy
as the optimal solution of the GL. The superiority of the proposed closed-form solution
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Figure 4: a) Values of λ0, used λ, and theoretical λ, b) The density of the true inverse and thresholded
sample covariance matrices.

over the other methods becomes more evident in the larger instances, where it (almost)
exactly recovers the true sparsity pattern of the inverse covariance matrix and results in
small estimation error, while becoming the only viable method for estimating the inverse
covariance matrix.

Finally, we show that the requirement λ ≥ λ0 in Theorem 27 does not impose any re-
striction on the practicality of this theorem under the finite-sampling regime. In particular,
we show that in practice, the lower bound λ0 on λ is significantly smaller than the theoret-
ical value of λ that is derived for the high-dimensional consistency of the GL. To this goal,
we compare λ0 with the theoretical value of λ introduced in the seminal paper Ravikumar
et al. (2011). In particular, Ravikumar et al. (2011) shows that the following value for λ is
sufficient to guarantee consistency

λ =
8

α

√
128(1 + 4σ2)2 max(Σ∗)2

ii

√
log d+ log 4

n
, (20)

where α is the mutual incoherence parameter, σ is the sub-Gaussian parameter of normalized
random variables, and (Σ∗)ii is the ith diagonal element of the true covariance matrix.
Figure 4a shows the values for λ0, theoretical λ defined as (20), and λ used in our simulations
with respect to the dimension of the problem. On average, λ0 is 640 and 6 times smaller
than the theoretical and used λ, respectively. Furthermore, Figure 4b shows the density (the
number of nonzero elements, normalized by the total number of entries) of the thresholded
sample covariance matrix when λ is set to λ0, compared to the density of the true inverse
covariance matrix. Note that when λ = λ0, the density of the thresholded sample covariance
matrix is close to 0.3 on average while the average density of the true inverse covariance
matrix is less than 0.0009. Based on these simulations, one can infer that λ0 is an under-
estimator for the values of the regularization coefficient that correctly promote sparsity
in the estimated solution, and the requirement λ ≥ λ0 is extremely mild for large-scale
instances of the GL.
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Closed-Form Graphical Lasso Elementary

d m `F TPR FPR `F TPR FPR `F TPR FPR

2000 9894 0.41 0.71 0.00 0.41 0.71 0.00 0.40 0.63 0.00

2000 20022 0.50 0.59 0.00 0.65 0.59 0.00 0.49 0.34 0.01

4000 20094 0.39 0.83 0.00 0.38 0.84 0.00 0.37 0.76 0.00

4000 40382 0.48 0.74 0.00 0.48 0.75 0.00 0.48 0.54 0.00

8000 40218 0.36 0.92 0.00 0.35 0.93 0.00 0.33 0.87 0.00

8000 79890 0.45 0.87 0.00 0.44 0.88 0.00 0.44 0.71 0.00

12000 60192 0.33 0.96 0.00 0.32 0.97 0.00 0.30 0.93 0.00

12000 119676 0.43 0.93 0.00 0.41 0.94 0.00 0.42 0.81 0.00

16000 80064 0.32 0.97 0.00 0.30 0.98 0.00 0.28 0.96 0.00

16000 160094 0.42 0.95 0.00 0.40 0.96 0.00 0.40 0.86 0.00

20000 99954 0.31 0.99 0.00 0.30 0.99 0.00 0.28 0.96 0.00

20000 200018 0.41 0.96 0.00 0.39 0.97 0.00 0.39 0.89 0.00

40000 200290 0.28 1.00 0.00 ? ? ? ? ? ?

80000 401798 0.27 1.00 0.00 ? ? ? ? ? ?

Table 2: The accuracy of different methods.

5. Conclusions

Graphical Lasso (GL) is a popular method for finding the conditional independence between
the entries of a random vector. This technique aims at learning the sparsity pattern of the
inverse covariance matrix from a limited number of samples, based on the regularization of
a positive-definite matrix. Motivated by the computational complexity of solving the GL
for large-scale problems, this paper provides conditions under which the GL behaves the
same as the simple method of thresholding the sample covariance matrix. The conditions
make direct use of the sample covariance matrix and are not based on the solution of the
GL. More precisely, it is shown that the GL and thresholding techniques are equivalent if:
(i) a certain matrix formed based on the sample covariance matrix is both sign-consistent
and inverse-consistent, and (ii) the gap between the largest thresholded and the smallest
un-thresholded entries of the sample covariance matrix is not too small. Although the GL is
believed to be a difficult conic optimization problem, it is proved that it indeed has a closed-
form solution in the case where the sparsity pattern of the solution is known to be acyclic.
This result is then extended to general sparse graphs and an explicit formula is derived as an
approximate solution of the GL, where the approximation error is also quantified in terms
of the structure of the sparsity graph. The significant speedup and graceful scalability of
the proposed explicit formula compared to other state-of-the-art methods is showcased on
different real-world and randomly generated data sets.
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Appendix

In what follows, the omitted technical proofs will be presented. A number of lemmas are
required for this purpose.

Before presenting the proof of Theorem 12, consider the normalized GL, defined as

min
S∈Sd+

− log det(S) + trace(Σ̃S) +
∑
i 6=j

λ̃ij |Sij |, (21)

where Σ̃ is the normalized sample covariance, i.e., Σ̃ij =
Σij√
ΣiiΣjj

for every (i, j) ∈ {1, 2, ..., d}2

(also known as sample correlation matrix). Similarly, λ̃ij is defined as λ√
ΣiiΣjj

. Upon de-

noting the optimal solution of the normalized GL as S̃, we consider the relationship between
S̃ and Sopt. Recall that D is defined as a matrix collecting the diagonal elements of Σ.

Lemma 29 We have Sopt = D−1/2S̃D−1/2.

Proof Notice that the GL (2) can be re-written as follows

min
S∈Sd+

− log det(S) + trace(Σ̃D1/2SD1/2) +
∑
i 6=j

λ|Sij |, (22)

where we have used the equality

trace(ΣS) = trace(D1/2Σ̃D1/2S) = trace(Σ̃D1/2SD1/2).

Upon defining

S̃ = D1/2SD1/2 (23)

and following some algebra, one can verify that (22) is equivalent to

min
S̃∈Sd+

− log det(S̃) + trace(Σ̃S̃) +
∑
i 6=j

λ̃ij |S̃ij |+ log det(D). (24)

Dropping the constant term in (24) gives rise to the normalized GL (21). Therefore,
Sopt = D−1/2S̃D−1/2 holds in light of 23. This completes the proof.

Proof of Theorem 12 Note that, due to the Definition 11 and Lemma 29, Σ̃res and S̃
have the same sparsity pattern as Σres and Sopt, respectively. Therefore, it suffices to show
that the sparsity structures of Σ̃res and S̃ are the same.

To verify this, we focus on the optimality conditions for optimization (21). Define M as
Id + Σ̃res. Due to Condition (1-i) and Lemma 6, M is inverse-consistent and has a unique
inverse-consistent complement, which is denoted by N . First, will show that (M +N)−1 is
the optimal solution of (21). For an arbitrary pair (i, j) ∈ {1, ..., d}2, the KKT conditions,
introduced in Lemma 23, imply that one of the following cases holds:

1) i = j: We have (M +N)ij = Mii = Σ̃ii.
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2) (i, j) ∈ supp(Σ̃res): In this case, we have

(M +N)ij = Mij = Σ̃ij − λ̃ij × sign(Σ̃ij).

Note that since |Σij | > λ, we have that sign(Mij) = sign(Σ̃ij). On the other hand,

due to the sign-consistency of M , we have sign(Mij) = −sign
((

(M +N)−1
)
ij

)
. This

implies that
(M +N)ij = Mij = Σ̃ij + λ̃ij × sign((M +N)−1).

3) (i, j) 6∈ supp(Σ̃res): One can verify that (M+N)ij = Nij . Therefore, due to Condition
(1-iii), we have

|(M +N)ij | ≤ β
(

supp(Σ̃res), ‖Σ̃res‖max

)
≤ min

k 6=l
(k,l)6∈supp(Σres)

λ− |Σkl|√
ΣkkΣll

= min
k 6=l

(k,l)6∈supp(Σres)

λ̃kl − |Σ̃kl|.

(25)

This leads to

|(M+N)ij−Σ̃ij | ≤ |(M+N)ij |+|Σ̃ij | ≤ min
k 6=l

(k,l)6∈supp(Σres)

(
λ̃kl − |Σ̃kl|

)
+|Σ̃ij | ≤ λ̃ij . (26)

Therefore, it can be concluded that (M +N)−1 satisfies the KKT conditions for (21)1. On
the other hand, note that supp((M + N)−1) = supp(Σ̃res). This concludes the proof. �

To proceed with the proof of Lemma 13, we need the following lemma.

Lemma 30 Consider a matrix M ∈ Sd with positive-definite completion. Assume that
‖M (c)‖1 ≤ η‖M − Id‖1 and ‖M − Id‖1 < 1

η+1 , for some number η. The relation

‖M (c)‖1 ≤ (1 + η)2 ‖M − Id‖21
1− (η + 1)‖M − Id‖1

holds.

Proof Note that M ∈ Sd has a positive-definite completion and hence, is inverse-consistent
due to Lemma 6. One can write

‖(M − Id) +M (c)‖1 ≤ ‖M − Id‖1 + ‖M (c)‖1 ≤ (η + 1)‖M − Id‖1 < 1.

Therefore,

(M +M (c))−1 = (Id + (M − Id +M (c)))−1 + Id − (M − Id +M (c))

+ (M − Id +M (c))2 ×
∞∑
i=0

(−M + Id −M (c))i.

1. The KKT conditions for the normalized GL are equivalent to (14) after replacing λ with λ̃ij
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Since supp((M + M (c))−1) ⊆ supp(M), it can be concluded that the (i, j) entries of M (c)

and

(M − Id +M (c))2 ×
∞∑
i=0

(−M + Id −M (c))i

are equal for every (i, j) ∈ supp(M (c)). Since the (i, j) entry of M (c) is zero if (i, j) 6∈
supp(M (c)), we have

‖M (c)‖1 ≤

∥∥∥∥∥(M − Id +M (c))2
∞∑
i=0

(M − Id +M (c))i

∥∥∥∥∥
1

.

Since 1-norm is sub-multiplicative, the above inequality can be simplified as

‖M (c)‖1 ≤ (‖M − Id‖1 + ‖M (c)‖1)2 ×
∞∑
i=0

(‖M − Id‖1 + ‖M (c)‖1)i

=
(‖M − Id‖1 + ‖M (c)‖1)2

1− ‖M − Id‖1 − ‖M (c)‖1

≤ (‖M − Id‖1 + η‖M − Id‖‖1)2

1− ‖M − Id‖1 − η‖M − Id‖‖1

= (1 + η)2 ‖M − Id‖21
1− (η + 1)‖M − Id‖1

.

This completes the proof.

Proof of Lemma 13 Given an arbitrary graph G, consider a matrix variable M with 1’s
on the diagonal such that supp(M) ⊆ G. The first objective is to find a matrix in terms of
M , denoted by the matrix function N(M), satisfying the following properties

supp
(
(M +N(M))−1

)
⊆ G,

supp(N(M)) ⊆ G(c).

To this end, define the matrix function A(M) as

A(M) = (M +N(M))−1.

Observe that

• As long as A(M) exists and supp(A(M)) ⊆ G, there is a continuously differentiable
mapping from A(M) to M because M can be found by setting those entries of A(M)−1

corresponding to the edges of G(c) to zero. Moreover, the Jacobian of this mapping
has full rank at M = Id. Due to the inverse function theorem, the mapping from M
to A(M) exists and is continuously differentiable.

• Similarly, as long as A(M) exists and supp(A(M)) ⊆ G, there is a continuously
differentiable mapping from A(M) to N(M).
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• If M = Id, then N(M) = 0.

It follows from the above properties that if M is sufficiently small, the function N(M)
exists and satisfies the following properties: (i) 0 = N(Id), and (ii) N(·) is differentiable at
M = Id. This implies that there are sufficiently small nonzero numbers η and α0 such that
‖N(M)‖1 ≤ η‖M − Id‖1 whenever ‖M‖max ≤ α0. Now, it follows from Lemma 30 that

‖N(M)‖1 ≤ (1 + η)2 ‖M − Id‖21
1− (η + 1)‖M − Id‖1

,

or

‖N(M)‖max ≤
(1 + η)2 × (deg(G))2

1− (η + 1)α0 × deg(G)
‖M‖2max,

if ‖M‖max ≤ α0. The inequality (7) is satisfied for the number ζ defined as the maximum
of

(1 + η)2 × (deg(G))2

1− (η + 1)α0 × deg(G)

and the finite number

max

{
β(G, α)

α2

∣∣∣∣α ∈ (α0, 1)

}
.

This completes the proof. �

Proof of Lemma 14 It can be easily verified that

(M +M (c))−1 = I − (M +M (c) − I) + (M +M (c))−1(M +M (c) − I)2.

This implies that, for a given pair (i, j) ∈ G, one can write(
(M +M (c))−1

)
ij

= −Mij +
(

(M +M (c))−1
)
i:

(
(M +M (c) − I)2

)
:j
, (28)

where
(
(M +M (c))−1

)
i:

and
(
(M +M (c) − I)2

)
:j

are the ith row and jth column of (M +

M (c))−1 and (M + M (c) − I)2, respectively. Based on (28), the (i, j) entries of M and
(M +M (c))−1 have opposite signs if

|Mij | >
∣∣∣∣((M +M (c))−1

)
i:

(
(M +M (c) − I)2

)
:j

∣∣∣∣ . (29)

To streamline the presentation, ‖M‖max is redefined as maxi,j |Mij | in the rest of the proof.
One can write∥∥∥(M+M (c)−I)2

∥∥∥
max
≤
∥∥(M−I)2

∥∥
max

+

∥∥∥∥(M (c)
)2
∥∥∥∥

max

+
∥∥∥M (c)(M−I)

∥∥∥
max

+
∥∥∥(M−I)M (c)

∥∥∥
max

≤ deg(G)α2 + (d− deg(G))ζ(G)2α4 + 2deg(G)ζ(G)α3

≤ 3deg(G) max{α2, ζ(G)α3}+ (d− deg(G))ζ(G)2α4

≤ Kα2, (30)
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for some K that only depends on deg(G), ζ(G), and d. Furthermore, assume that

α ≤ 1

2deg(G)
√
ζ(G)

= α0(G). (31)

Note that

(M +M (c))−1 = I − (M +M (c) − I)(M +M (c))−1,

which implies that∥∥∥(M +M (c))−1
∥∥∥

max
= 1 + deg(G) max{α, ζ(G)α2}

∥∥∥(M +M (c))−1
∥∥∥

max
, (32)

where we have used the fact that supp((M +M (c))−1) ⊆ G and hence, its maximum degree
is upper bounded by deg(G). (32), together with the assumption (31) implies that∥∥∥(M +M (c))−1

∥∥∥
max
≤ 1

1− deg(G) max{α, ζ(G)α2}
≤ 2. (33)

Combining (30) and (33) with (29) completes the proof. �

Proof of Lemma 15 Without loss of generality, assume that G is a tree. Note that if there
are disjoint components, the argument made in the sequel can be applied to each connected
component of G separately. Let dij denote the unique path between every two disparate
nodes i and j in G. Furthermore, define N (i) as the set of all neighbors of node i in G.
Consider a matrix M with positive-definite completion and with diagonal elements equal to
1 such that ‖M‖max ≤ α and supp(M) = G. Let N be a matrix with the following entries

Nij =

{ ∏
(m,t)∈dij Mmt if (i, j) ∈ (supp(M))(c),

0 otherwise.
(34)

Moreover, define

Aij =


1 +

∑
m∈N (i)

M2
mi

1−M2
mi

if i = j,
−Mij

1−M2
ij

if (i, j) ∈ supp(M),

0 otherwise.

(35)

The goal is to show that the matrix N is the unique inverse-consistent complement of M .
First, note that supp(N) = (supp(M))(c) and supp(M) = supp(A). Next, it is desirable to
prove that (M +N)−1 = A or equivalently (M +N)A = I. Upon defining T = (M +N)A,
one can write

Tii =
d∑

m=1

(Mim +Nim)Ami = 1 +
∑

m∈N (i)

M2
mi

1−M2
mi

−
∑

m∈N (i)

M2
mi

1−M2
mi

= 1.

Moreover, for every pair of nodes i and j, define Dij as
∏

(k,t)∈dij Mkt if i 6= j and as 1 if
i = j.
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Consider a pair of distinct nodes i and j. Let t denote the node adjacent to j in dij
(note that we may have t = i). It can be verified that

Tij =
d∑

m=1

(Mim +Nim)Amj = Dij

1 +
∑

m∈N (j)

M2
mj

1−M2
mj

−Dit

(
Mtj

1−M2
tj

)

−
∑

m∈N (j)
m 6=t

Dim
Mmj

1−M2
mj

. (36)

Furthermore,

Dij = DitMtj ,

Dim = DitMtjMjm, ∀ m ∈ N (j), m 6= t. (37)

Plugging (37) into (36) yields that

Tij = DitMtj

 1

1−M2
tj

+
∑

m∈N (j)
m6=t

M2
mj

1−M2
mj

−Dit

(
Mtj

1−M2
tj

)
−DitMtj

∑
m∈N (j)
m6=t

M2
mj

1−M2
mj

= 0.

Hence, T = I. Finally, we need to show that M + N � 0. To this end, it suffices to prove
that A � 0. Note that A can be written as I +

∑
(i,j)∈G L

(i,j), where L(i,j) is defined as

L
(i,j)
rl =


M2

ij

1−M2
ij

if r = l = i or j,

−Mij

1−M2
ij

if (r, l) = (i, j),

0 otherwise.

Consider the term xTAx for an arbitrary vector x ∈ Rd. One can verify that

xTAx =

d∑
i=1

x2
i +
∑

(i,j)∈G

xTL(i,j)x

=
d∑
i=1

x2
i +
∑

(i,j)∈G

(
M2
ij

1−M2
ij

)
x2
i +

(
M2
ij

1−M2
ij

)
x2
j−

(
2Mij

1−M2
ij

)
xixj . (38)

Without loss of generality, assume that the graph is a rooted tree with the root at node d.
Assume that each edge (i, j) defines a direction that is toward the root. Then, it follows
from (38) that

xTAx =x2
d +

∑
(i,j)∈G

x2
i +

(
M2
ij

1−M2
ij

)
x2
i +

(
M2
ij

1−M2
ij

)
x2
j −

(
2Mij

1−M2
ij

)
xixj

=x2
d +

∑
(i,j)∈G

(
1

1−M2
ij

)
x2
i +

(
M2
ij

1−M2
ij

)
x2
j −

(
2Mij

1−M2
ij

)
xixj

=x2
d +

∑
(i,j)∈G

(xi −Mijxj)
2

1−M2
ij

≥ 0.
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Therefore, M + N � 0 and subsequently M + N � 0 (because it is invertible). Hence,
according to Definition 5 and Lemma 6, the matrix N is the unique inverse-consistent
compliment of M . On the other hand, it follows from the definition of N that ‖N‖max ≤ α2

and consequently β(G, α) ≤ α2. Now, suppose that G includes a path of length at least
2, e.g., the edges (1, 2) and (2, 3) belong to G. By setting M12 = M23 = α and choosing
sufficiently small values for those entries of M corresponding to the remaining edges in G,
the matrix M becomes positive-definite with a trivial positive-definite completion and we
obtain ‖N‖max = α2. This completes the proof. �

Proof of Theorem 18 To prove this theorem, first consider the following matrix

Ŝij =


1 +

∑
(i,m)∈Eopt

(Σ̃res
im)2

1−(Σ̃res
im)2

if i = j,

−Σ̃res
ij

1−(Σ̃res
ij )2

if (i, j) ∈ Eopt,

0 otherwise.

(39)

In what follows, we will show that Ŝ = S̃, where S̃ is the optimal solution for the normalized
GL. This, together with Lemma 29 implies that (11) is indeed optimal for the GL.

First, note that there exists a matrix N such that S̃−1 = M + N , where M is defined
as

Mij =

 Σ̃ij + λ̃ij × sign(S̃ij) if (i, j) ∈ supp(S̃),
1 if i = j,
0 otherwise.

(40)

Clearly, supp(S̃) = supp(M). Furthermore, M = Id + T̃ (λ), where (i, j)th entry of T̃ (λ) is
equal to Σ̃ij + λ̃ijsign(Sopt

ij ) for every (i, j) ∈ supp(Sopt) and it is equal to zero otherwise.

Subsequently, M = D−1/2(D + T (λ))D−1/2 and hence, D + T (λ) � 0 implies M � 0. By
combining N = (S̃)−1 −M with (40) and exploiting the optimality conditions in (14), one
can verify that supp(N) ⊆ (supp(M))(c) and supp(S̃) = supp

(
(M +N)−1

)
⊆ supp(M).

Therefore, according to Lemma 6, the matrix N is the unique inverse-complement of M .
Moreover, since M is sign-consistent, the equation sign(Mij) = −sign(S̃ij) holds for every
(i, j) ∈ supp(S̃). This leads to the relations sign(Σij) = −sign(S̃ij) and

Mij = Σ̃res
ij , (41a)

|Σ̃ij | > λ̃ij , (41b)

for every (i, j) ∈ supp(S̃). Part 1 of the theorem is an immediate consequence of (41b). On
the other hand, based on the argument made in the proof of Lemma 15, the matrix N can
be obtained as

Nij =

{ ∏
(m,t)∈dij Mmt if dij 6= ∅ and (i, j) ∈ (supp(M))(c) ,

0 otherwise,
(42)

where dij denotes the unique path between nodes i and j in supp(S̃) if they belong to the
same connected component in supp(S̃), and dij is empty if there is no path between nodes
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i and j. Similar to the proof of Lemma 15, one can show that (11) is equal to (M +N)−1.
This completes the proof of the second part of the theorem. �

Proof of Theorem 19 Based on Lemmas 15 and 16, the conditions introduced in Theo-
rem 12 can be reduced to conditions (2-ii) and (2-iii) in Theorem 19 if supp(Σres) is acyclic
and therefore, Eopt = Eres. Moreover, suppose that M is set to Id + Σ̃res, and that the
matrices N and A are defined as (34) and (35), respectively. Similar to the proof of The-
orem 12, it can be verified that (39) satisfies all the KKT conditions for the normalized
GL (21). Therefore, due to Lemma 29, (11) is the unique solution of the GL. The details
are omitted for brevity. �

Proof of Corollary 20 Given Σ and λ, the matrix Σres can be computed in O(d2).
Moreover, Condition (2-i) in Theorem 19 can be checked using the Depth-First-Search
algorithm, which has the time complexity of O(d2) in the worst case (Ahuja et al., 1993).
If the graph is cyclic, Theorem 19 cannot be used. Otherwise, we consider Condition (2-ii).
For matrices with acyclic support graphs, the Cholesky Decomposition can be computed
in O(d), from which the positive-definiteness of the matrix can be checked (Vandenberghe
and Andersen 2015). The complexity of checking Condition (2-iii) is equivalent to that of
finding its left and right hand sides, which can be done in O(d) and O(d2), respectively.
Finally, since (11) can be used only if the support graph of Σres is acyclic, one can easily
verify that the complexity of obtaining Sopt using (11) is at most O(d). This completes the
proof of Corollary 20. �

The remainder of this section is devoted to proving approximation bounds for the de-
rived closed-form solution when the acyclic assumption on the support graph of the thresh-
olded sample covariance matrix is not necessarily acyclic. The shorthand notations c, deg,
Pij and Pmax will be used instead of c(supp(Σres)), deg(supp(Σres)), Pij(supp(Σres)) and
Pmax(supp(Σres)), respectively. First, the approximation error of the closed-form solution
for the normalized GL will be analyzed. Then, the result will be generalized to the GL
via the key equality in Lemma 29. To prove Theorem 26, the first step is to generalize
the definition of the matrix N in (42) and show that this generalized matrix is an approx-
imate inverse-consistent complement of Id + Σ̃res. Without loss of generality, assume that
supp(Σres) is connected. If there are disjoint components in supp(Σres), the argument made
in the sequel can be used for every connected component due to the decomposition rule
for the GL (see Mazumder and Hastie (2012)). Let M be equal to Id + Σ̃res. Consider the
matrix N as

Nij =


∑

dij∈Pij

∏
(m,t)∈dij Mmt if (i, j) ∈ (supp(M))(c) ,∑

dij∈Pij\{(i,j)}
∏

(m,t)∈dij Mmt if (i, j) ∈ (supp(M)) ,

0 otherwise.

(43)

It can be verified that M +N = R, where

Rij =

{ ∑
dij∈Pij

∏
(m,t)∈dij Mmt if i 6= j,

1 if i = j.
(44)

For each simple path between the pair of nodes i and j, define its length as the multiplication
of the entries of M corresponding to the edges of the path. Based on this definition, Rij is
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equal to the sum of the lengths of all nonidentical simple paths between nodes i and j in
supp(M). Denote dsij as any shortest path between nodes i and j in supp(M) (recall that
supp(M) is unweighted), and let Rs be given by

Rsij =

{ ∏
(m,t)∈dsij

Mmt if i 6= j,

1 if i = j.

Note that Rs collects the length of the shortest path between every two nodes in supp(M).
The following lemmas are crucial to prove Theorem 26.

Lemma 31 Given two nodes i and j in supp(Σres), suppose that Pij\dsij is non-empty.
Then, the length of every path dij in Pij\dsij is at least dc/2e.

Proof Consider a path dij in Pij\dsij . The subgraph dij ∪ dsij has a cycle. Since the length
of this cycle is at least c, the segment of this cycle that resides in dij should have the length
of at least dc/2e; otherwise dsij is not the shortest path between the nodes i and j. This
implies that the length of dij is at least dc/2e.

Lemma 32 Let M be equal to Id + Σ̃res. The inequalities

∣∣Rij −Rsk′jMik′
∣∣ ≤ (|Pij |0 − 1)

(
‖Σ̃res‖max

)d c
2
e
, (45a)∣∣Rkj −Rsk′jMik′Mik

∣∣ ≤ (|Pkj |0−1)
(
‖Σ̃res‖max

)d c
2
e−1

(45b)

hold if i 6= j, where k′ is the node adjacent to i in dsij and k ∈ N (i)\k′.

Proof First, we show the validity of (45a). Due to (44), one can write

Rij = Rsij +
∑

dij∈Pij\dsij

∏
(m,t)∈dij

Mmt. (46)

If Pij\dsij is empty, then the equation Rij = Rsk′jMik′ and therefore (45a) hold. Now, assume
that Pij\dsij is not empty. Due to Lemma 31, we have

−
(
‖Σ̃res‖max

)d c
2
e
≤

∏
(m,t)∈dij

Mmt ≤
(
‖Σ̃res‖max

)d c
2
e
,

for every dij ∈ Pij\dsij . The above inequalities, together with (46) and the equation

Rsij = Rsk′jMik′ , result in (45a). To prove (45b), define d̂kj as dsij ∪ {(i, k)} (note that d̂kj is
not necessarily equal to dskj). It yields that

Rkj = RsijMik +
∑

dkj∈Pkj\d̂kj

∏
(m,t)∈dkj

Mmt. (47)
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In light of Lemma 31, the length of every path dkj ∈ Pkj\d̂kj is lower bounded by dc/2e−1.
This implies that

−
(
‖Σ̃res‖max

)d c
2
e−1
≤

∏
(m,t)∈dij

Mmt ≤
(
‖Σ̃res‖max

)d c
2
e−1

, (48)

for every dkj ∈ Pkj\d̂kj . Combining RsijMik = Rsk′jMik′Mik with (47) and (48) leads to
the inequality (45b).

Lemma 33 The following inequality holds

deg

1− ‖Σ̃res‖2max

≤ δ,

where δ defined as (17).

Proof The proof is straightforward and is omitted for brevity.

Proof of Theorem 26 Consider the normalized GL and define the following explicit
formula for Ã

Ãij =


1 +

∑
(i,m)∈Eopt

(Σ̃res
im)2

1−(Σ̃res
im)2

if i = j,

−Σ̃res
ij

1−(Σ̃res
ij )2

if (i, j) ∈ Eres,

0 otherwise.

(49)

Let M be equal to Id + Σ̃res. Furthermore, define

ε̃ = δ · (Pmax(supp(Σres))− 1) ·
(
‖Σ̃res‖max

)⌈ c(supp(Σres))
2

⌉
.

In order to prove the theorem, we use the matrix N defined in (43), and first show that
M + N is an ε̃-relaxed inverse of Ã and that the pair (Ã,M + N) satisfies the ε̃-relaxed
KKT conditions.

Consider the matrix T defined as T = Ã(M +N) and recall that M +N = R. One can
write

Tii =

d∑
m=1

ÃimRmi =

1 +
∑

m∈N (i)

Mim
2

1−Mim
2

− ∑
m∈N (i)

Mim

1−Mim
2Rmi. (50)

Note that since {(m, i)} ∈ Pmi for every m ∈ N (i), we have

Rmi = Mmi +
∑

dmi∈Pmi\{(m,i)}

∏
(r,t)∈dmi

Mrt.
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If Pmi\{(m, i)} is empty, then Rmi = Mmi and Tii = 1. Otherwise, since the length of the
minimum-length cycle is c, the length of every path dmi ∈ Pmi\{(m, i)} is at least c − 1.
This yields that

Mmi − (|Pmi|0 − 1)
(
‖Σ̃res‖max

)c−1
≤ Rmi ≤Mmi + (|Pmi|0 − 1)

(
‖Σ̃res‖max

)c−1
. (51)

Combining (51) and (50) leads to

|Tii−1|≤(|Pmi|0 − 1)
(
‖Σ̃res‖max

)c−1

 ∑
m∈N (i)

Mim

1−Mim
2

≤deg(Pmax−1)
‖Σ̃res‖cmax

1− ‖Σ̃res‖2max

≤ ε̃,

(52)
where the last inequality is due to Lemma 33 and the fact that d c2e ≤ c for c ≥ 3. Now,
consider Tij for a pair (i, j) such that i 6= j. We have

Tij =
d∑

m=1

ÃimRmj =

1 +
∑

m∈N (i)

Mim
2

1−Mim
2

Rij −
∑

m∈N (i)

Mim

1−Mim
2Rmj . (53)

According to Lemma 31, one can write

Rsm′jMim′ − (|Pij |0 − 1)
(
‖Σ̃res‖max

)d c
2
e
≤ Rij ≤ Rsm′jMim′ + (|Pij |0 − 1)

(
‖Σ̃res‖max

)d c
2
e
,

(54a)

Rsm′jMim′Mim−(|Pmj |0−1)
(
‖Σ̃res‖max

)d c
2
e−1
≤Rmj

≤Rsm′jMim′Mim+(|Pmj |0−1)
(
‖Σ̃res‖max

)d c
2
e−1

,

(54b)

where m′ is the node adjacent to i in dsij and m ∈ N (i)\m′. Note that if N (i)\m′ is empty,

then Rij = Rsm′jMim′ and Rmj = Rsm′jMim′Σ̃
res
im. In this case, an argument similar to the

proof of Lemma 15 can be made to show that Tij = 0. Now, assume that N (i)\m′ is not
empty. One can write

|Tij − Fij |
(a)
= |Tij |

(b)

≤ ε̃, (55)

where

Fij =

 1

1−Mim′
2 +

∑
m∈N (i)\m′

Mim
2

1−Mim
2

Rsm′jMim′ −
Mim′

1−Mim′
2R

s
m′j

−
∑

m∈N (i)\m′

Mim
2

1−Mim
2R

s
m′jMim′Mim.

Note that the relation (a) can be verified by the fact that Fij = 0 and the inequality (b)
is obtained by combining (53) with (54a) and (54b). The inequalities (52) and (55) imply
that M +N is an ε̃-relaxed inverse of Ã.
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Now, it will be shown that the pair (Ã,M +N) satisfies the ε̃-relaxed KKT conditions.
Note that Mii + Nii = Mii = Σ̃ii and, hence, (15a) is satisfied. To prove (15b), since
sign(Ãij) = −sign(Mij) = −sign(Σ̃ij), it can be concluded that

Mij +Nij = (Σ̃ij − λ̃ij × sign(Σij)) +Nij = (Σ̃ij + λ̃ij × sign(Ãij)) +Nij ,

for every (i, j) such that i 6= j and Ãij 6= 0. Due to the definition of N and the fact that

(i, j) ∈ supp(M), we have |Nij | ≤ (Pmax − 1)
(
‖Σ̃res‖max

)c−1
. Hence,

|Mij +Nij − (Σ̃ij + λ̃ij × sign(Ãij))| ≤ ε,

for every (i, j) such that i 6= j and Ãij 6= 0. Therefore, the pair (Ã,M +N) satisfies (15b).
Finally, consider a pair (i, j) such that i 6= j and Ãij = 0. One can write

Mij +Nij = Rsij +
∑

dij∈Pij\dsij

∏
(m,t)∈dij

Σ̃res
mt.

If Pij\dsij is empty, a set of inequalities similar to (25) and (26) can be obtained to prove
(15c). Now, assume that Pij\dsij is not empty. The length of dsij is at least 2 since there

is no direct edge between nodes i and j. Hence, |Rsij | ≤ ‖Σ̃res‖2max. Furthermore, due to
Lemma (31), the length of every path dij ∈ Pij\dsij is at least dc/2e. This leads to

|Mij +Nij | ≤ ‖Σ̃res‖2max + (Pmax − 1)
(
‖Σ̃res‖max

)d c
2
e

≤ min
k 6=l

(k,l) 6∈supp(Σres)

(λ̃kl − |Σ̃res
kl |) + (Pmax − 1)

(
‖Σ̃res‖max

)d c
2
e

≤ λ̃ij − |Σ̃res
ij |+ (Pmax − 1)

(
‖Σ̃res‖max

)d c
2
e
,

where the last inequality follows from Condition (2-ii) in the theorem. Therefore,

|Mij+Nij−Σ̃ij |≤|Mij+Nij |+|Σ̃ij | ≤ λ̃ij − |Σ̃res
ij |+ |Σ̃res

ij |+ (Pmax − 1)
(
‖Σ̃res‖max

)d c
2
e

≤ λ̃ij + ε̃.

This shows that (Ã,M+N) indeed satisfies the ε̃-relaxed KKT conditions for the normalized
GL. Finally, we consider the explicit solution A defined as (13). The following statements
hold:

1. the matrix D1/2(M +N)D1/2 is ε-relaxed inverse of A. To see this, note that

A
(
D1/2(M +N)D1/2

)
= D−1/2ÃD−1/2D1/2(M +N)D1/2

= D−1/2TD1/2

= Id + E,

where ‖E‖max ≤
√

Σmax
Σmin

ε̃ ≤ ε.
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2. The pair (A,D1/2(M +N)D1/2) satisfies the ε-relaxed KKT conditions. Note that it
is already shown that (Ã,M +N) satisfies the following inequalities

(M +N)ij = Σ̃ij if i = j, (56a)∣∣∣(M +N)ij −
(

Σ̃ij + λ̃ij × sign(Ãij)
)∣∣∣ ≤ ε̃ if Ãij 6= 0, (56b)∣∣∣(M +N)ij − Σ̃ij

∣∣∣ ≤ λ̃ij + ε̃ if Ãij = 0. (56c)

Replacing M + N with D1/2(M + N)D1/2 and modifying (56) accordingly, one can
verify that (A,D1/2(M + N)D1/2) satisfies ε-relaxed KKT conditions for the GL,
where

ε = max

{
Σmax,

√
Σmax

Σmin

}
ε̃.

This completes the proof. �

Proof of Theorem 27 Due to Theorem 26, the equation

D1/2(M +N)D1/2 = A−1 +A−1E (57)

holds for every λ greater than or equal to λ0, where ‖E‖max ≤ ε. Since the pair (A,D1/2(M+
N)D1/2) satisfies the ε-relaxed KKT conditions, it follows from (57) that

(A)−1
ij = Σij − (A−1E)ij = Σ̂ij if i = j, (58a)

(A)−1
ij = Σij + tijε− (A−1E)ij︸ ︷︷ ︸

Σ̂ij

+λ× sign(Aij) if Aij 6= 0, (58b)

Σij + sijε−(A−1E)ij︸ ︷︷ ︸
Σ̂ij

−λ ≤ (A)−1
ij ≤ Σij + sijε−(A−1E)ij︸ ︷︷ ︸

Σ̂ij

+λ if Aij = 0, (58c)

for some numbers tij and sij in the interval [−1, 1]. To complete the proof, it suffices to
show that the matrix F defined as

Σij − Σ̂ij = Fij =


−(A−1E)ij if i = j,
tijε−(A−1E)ij if Aij 6= 0,
sijε−(A−1E)ij if Aij = 0

(59)

satisfies the inequality ‖F‖2 ≤ dmax (1/µmin(A) + 1) ε. To this end, it is enough to prove
that ‖A−1E‖2 ≤ (dmax/µmin(A))ε, since ‖F −A−1E‖2 ≤ dmax(A)ε. One can write

‖A−1E‖2 ≤ ‖A−1‖2‖E‖2 ≤ dmax(A)‖A−1‖2‖E‖max =

(
dmax(A)

µmin(A)

)
ε,

which shows the validity of (18).
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Next, we prove the inequality (19). The following chain of inequalities hold

− log det(A) + trace(Σ̂A) + λ‖A‖1,off = − log det(A) + trace(ΣA) + λ‖A‖1,off︸ ︷︷ ︸
f(A)

+ trace((Σ̂− Σ)A)

(a)

≤ − log det(Sopt) + trace(Σ̂Sopt) + λ‖Sopt‖1,off

= − log det(Sopt) + trace(ΣSopt) + λ‖Sopt‖1,off︸ ︷︷ ︸
f∗

+ trace((Σ̂− Σ)Sopt),

where (a) is due to the fact that A is optimal for the GL with the perturbed sample
covariances. This implies that

f(A)− f∗ ≤ trace((Σ̃− Σ)(Sopt −A))

≤ ‖Σ̃− Σ‖2(‖Sopt‖2 + ‖A‖2)

≤
(
µmax(A) + µmax(Sopt)

)
dmax(A)

(
1

µmin(A)
+ 1

)
ε.

�
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Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling.
Inverse Problems, 23(3):969–985, 2007.

Thomas Frederick Coleman and Yuying Li, editors. Large-scale numerical optimization,
volume 46. SIAM, 1990.

41

http://pems.dot.ca.gov


Fattahi and Sojoudi

Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76(2):373–397, 2014.

Jianqing Fan and Jinchi Lv. A selective overview of variable selection in high dimensional
feature space. Statistica Sinica, 20(1):101, 2010.

Makan Fardad, Fu Lin, and Mihailo R. Jovanović. Sparsity-promoting optimal control for
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Nicole Krämer, Juliane Schäfer, and Anne-Laure Boulesteix. Regularized estimation of
large-scale gene association networks using graphical gaussian models. BMC bioinfor-
matics, 10(1):384, 2009.

Han Liu, Kathryn Roeder, and Larry Wasserman. Stability approach to regularization se-
lection (stars) for high dimensional graphical models. In Advances in Neural Information
Processing Systems, pages 1432–1440, 2010.

Rahul Mazumder and Trevor Hastie. Exact covariance thresholding into connected compo-
nents for large-scale graphical lasso. Journal of Machine Learning Research, 13:781–794,
2012.

Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Foun-
dations and Trends R© in Theoretical Computer Science, 1(2):117–236, 2005.

42



Graphical Lasso and Thresholding

Habibollah Nassiri and Rafegh Aghamohammadi. A new analytic neuro-fuzzy model for
work zone capacity estimation. Transportation Research Board 96th Annual Meeting, 17
(06061), 2017.

Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. Gap safe screening
rules for sparse multi-task and multi-class models. In Advances in Neural Information
Processing Systems, pages 811–819, 2015.

Lishan Qiao, Songcan Chen, and Xiaoyang Tan. Sparsity preserving projections with ap-
plications to face recognition. Pattern Recognition, 43(1):331–341, 2010.

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, and Bin Yu. High-
dimensional covariance estimation by minimizing l1-penalized log-determinant diver-
gence. Electronic Journal of Statistics, 5:935–980, 2011.

Somayeh Sojoudi. Equivalence of graphical lasso and thresholding for sparse graphs. Journal
of Machine Learning Research, 17(115):1–21, 2016.

Somayeh Sojoudi and John Doyle. Study of the brain functional network using synthetic
data. 52nd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 350–357, 2014.

Shiliang Sun, Rongqing Huang, and Ya Gao. Network-scale traffic modeling and forecasting
with graphical lasso and neural networks. Journal of Transportation Engineering, 138(11):
1358–1367, 2012.

Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan
Taylor, and Ryan J Tibshirani. Strong rules for discarding predictors in lasso-type prob-
lems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2):
245–266, 2012.

Lieven Vandenberghe and Martin S. Andersen. Chordal graphs and semidefinite optimiza-
tion. Foundations and Trends R© in Optimization, 1(4):241–433, 2015.
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