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Abstract

In this paper, the problem of one-bit compressed sensing (OBCS) is formulated as a
problem in probably approximately correct (PAC) learning. It is shown that the Vapnik-
Chervonenkis (VC-) dimension of the set of half-spaces in Rn generated by k-sparse vectors
is bounded below by k(blg(n/k)c+ 1) and above by b2k lg(en)c. By coupling this estimate
with well-established results in PAC learning theory, we show that a consistent algorithm
can recover a k-sparse vector with O(k lg n) measurements, given only the signs of the
measurement vector. This result holds for all probability measures on Rn. The theory is
also applicable to the case of noisy labels, where the signs of the measurements are flipped
with some unknown probability.

1. Introduction

The field of “compressed sensing” has become very popular in recent years, with an explosion
in the number of papers. Stated briefly, the core problem in compressed sensing is to recover
a high-dimensional sparse (or nearly sparse) vector x from a small number of measurements
of x. In the traditional problem formulation, the measurements are linear, consisting of
m real numbers yi = 〈ai, x〉, i = 1, . . . ,m, where the measurement vectors ai ∈ Rn are
chosen by the learner. More recently, attention has focused on so-called one-bit compressed
sensing, referred to hereafter as OBCS in the interest of brevity. In OBCS the measurements
consist, not of the inner products 〈ai, x〉, but rather just the signs of these inner products,
i.e., a “one-bit” representation of these measurements. In much of the OBCS literature,
the vectors ai are chosen at random from some specified probability distribution, often
Gaussian. Because the sign of 〈ai, x〉 is unchanged if x is replaced by any positive multiple
of x, it is obvious that under this model, one can at best aspire to recover the unknown
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vector x only to within a positive multiple, or equivalently, to recover the normalized vector
x/‖x‖2. This limitation can be overcome by choosing the measurements to consist of the
signs of inner products 〈ai, x〉+ bi, where again ai, bi are selected at random.

The current status of OBCS is that while several algorithms have been proposed, theo-
retical analysis is available for only a few algorithms. Moreover, in cases where theoretical
analysis is available, the sample complexity is extremely high. In the present paper, we
interpret OBCS as a problem in probably approximately correct (PAC) learning theory,
which is a well-established branch of statistical learning theory. By doing so, we are able
to draw from the wealth of results that are already available, and thereby address some of
the currently outstanding issues. In PAC learning theory, a central role is played by the
so-called Vapnik-Chervonenkis (VC) dimension of the collection of concepts to be learned.
The principal result of the present paper is that the VC-dimension of the set of half-planes
in Rn generated by k-sparse vectors is bounded below by k lg(n/k) and above by 2k lg(en),
plus some roundoff terms. Using this bound, we are able to establish the following results
for the case where x ∈ Rn has no more than k nonzero components:

• In principle, OBCS is possible whenever the measurement vector (ai, bi) is drawn
at random from any arbitrary probability distribution. Moreover, if a consistent
algorithm1 can be devised, then the number of measurements is O(k lg n).

• There is also a lower bound on the OBCS problem. Specifically, there exists a proba-
bility distribution on Rn such that, if (ai, bi) is drawn at random from this distribution,
then the number of measurements required to learn each k-sparse n-dimensional vector
is bounded below by Ω(k ln(n/k)).

• It is shown that OBCS is possible under random flipping of the signs of the measure-
ments. This finding builds on earlier results on PAC learning with noisy labels.

• If the samples ai are not independent, but are β-mixing, learning is still possible, and
explicit estimates are available for the rate of learning.

The paper is organized as follows: In Section 2, a brief review is given of some recent
papers in OBCS. In Section 3, some parts of PAC learning theory that are relevant to OBCS
are reviewed. In particular, it is shown how OBCS can be formulated as a problem in PAC
learning, so that OBCS can be addressed by finding upper bounds on the VC-dimension of
half-spaces generated by k-sparse vectors. In Section 4, both upper and lower bounds are
derived for the VC-dimension of half-spaces generated by k-sparse vectors. In Section 5,
the case where the sign measurements are flipped at random is examined. Finally, Section
6 contains a discussion of some issues that merit further investigation.

2. Brief Review of One-Bit Compressed Sensing

By now there is a substantial literature regarding the traditional compressed sensing for-
mulation, out of which only a few references are cited here in the interests of brevity.
Book-length treatments of compressed sensing can be found in (Elad, 2010; Foucart and
Rauhut, 2013; Rish and Grabarnik, 2015; Hastie et al., 2015). Amongst these, (Foucart

1. This term is standard in statistical learning theory and is defined later.
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and Rauhut, 2013) contains a thorough discussion of virtually all aspects of compressed
sensing theory. A recent volume (Eldar and Kutyniok, 2012) is a compendium of articles on
a variety of topics. The first paper in this volume (Davenport et al., 2012) is a survey of the
basic results in compressed sensing. Another paper (Negabhan et al., 2012) provides a very
general framework for sparse regression that can be used, among other things, to analyze
compressed sensing algorithms. Each of these papers contains an extensive bibliography.

Throughout this paper, n denotes some fixed and large integer. For x ∈ Rn, let supp(x)
denote the support of a vector, and let Σk denote the set of k-sparse vectors in Rn; that is,

supp(x) := {i : xi 6= 0},Σk := {x ∈ Rn : |supp(x)| ≤ k}.

Suppose x ∈ Rn is k-sparse, that is, x ∈ Σk, where both n and k are known integers with
k � n. The basic problem in compressed sensing is to design an m × n matrix A where
m � n, together with a decoder map ∆ : Rm → Rn such that ∆(Ax) = x for all x ∈ Σk,
that is, x can be recovered exactly from the m-dimensional vector of linear measurements
y = Ax. Variations of the problem include the case where x is not exactly sparse, and/or
y = Ax + η where η is a measurement noise. Given a vector x ∈ Rn, an integer k < n,
define

σk(x, ‖ · ‖1) := min
z∈Σk

‖x− z‖1

to be the k-sparsity index of the vector x. It is clear that x ∈ Σk if and only if σk(x, ‖·‖1) =
0. By far the most popular method for recovering a sparse vector is `1-norm minimization.
If y = Ax+ η, the approach is to define the “decoder” map ∆ : Rm → Rn by

∆(y) = x̂ := argmin
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε, (1)

where ε is a known upper bound on ‖η‖2. In a series of papers by Candès, Tao, Donoho,
and others, it is demonstrated that if the matrix A is chosen so as to satisfy the so-called
Restricted Isometry Property (RIP), then the decoder ∆ defined in (1) produces a good
approximation to x in the following sense: There exist constants C,D that depend on the
measurement matrix A but not on the unknown vector x, such that

‖x̂− x‖1 ≤ Cσk(x, ‖ · ‖1) +Dε.

In particular, `1-norm minimization recovers x exactly if x ∈ Σk and η = 0. See for example
(Candès and Tao, 2005; Candès et al., 2006; Donoho, 2006a,b), as well as the survey paper
(Davenport et al., 2012) and the comprehensive book (Foucart and Rauhut, 2013). Further,
it is shown in (Candès and Tao, 2005) that if the elements of A are samples of independent
and identically distributed (i.i.d.) normal random variables (denoted by aij ∼ N (0, 1)),
then the resulting normalized matrix (1/

√
m)A satisfies the RIP with probability that can

be made arbitrarily close to one by increasing the number of measurements.

The remainder of the section is devoted to a discussion of the one-bit compressed sensing
(OBCS) problem. One bit compressed sensing is introduced in (Boufounos and Baraniuk,
2008). In that paper, it is assumed that the measurement yi equals the bipolar quantity
yi = sign(〈ai, x〉), as opposed to the real number 〈ai, x〉. Because the measurements remain
invariant if x is replaced by any positive multiple of x, there is no loss of generality in
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assuming that ‖x‖2 = 1. A greedy algorithm called “renormalized fixed point iteration” is
introduced, as follows:

x̂ := argmin
z
‖z‖1 + λ

m∑
i=1

f(|(Y A)i|) s.t. ‖z‖2 = 1,

where y1, . . . , ym are some constants, Y = Diag(y1, . . . , ym), and the regularizing function
f(·) is defined by

f(α) :=

{
α2/2 if α < 0,
0 if α ≥ 0.

The optimization problem is non-convex due to the constraint ‖z‖2 = 1. Only simulations
are provided, but no theoretical results.

In (Gupta et al., 2010), the focus is on recovering the support set of the unknown vector
x from noise-corrupted measurements of the form sign(〈ai, x〉+ ηi), where the noise vector
η consists of pairwise independent Gaussian signals. A non-adaptive algorithm is presented
that makes use of Hoeffding’s inequality applied to the expected value of the covariance of
the signs of two Gaussian random variables. An adaptive algorithm is also presented. In
(Boufounos, 2009), a new greedy algorithm is presented called “matched signed pursuit.”
The optimization problem is not convex; as a result there are no theoretical resuts. The
algorithm is similar to the CoSaMP algorithm for the conventional compressed sensing
problem (Needell and Tropp, 2009).

In (Jacques et al., 2013), the authors introduce a constant

εopt :=
k

2em+ 2k3/2
,

where e denotes the base of the natural logarithm, and show that it is the minimum achiev-
able error no matter what reconstruction method is used. Next, they choose any ε ≥ εopt

and show the following result: Let A ∼ Nm×n(0, 1) consist of mn pairwise independent
normal random variables, and let yi = sign(〈ai, x〉). Fix δ ∈ (0, 1). If the number of
measurements m satisfies

m ≥ 2

ε

(
2k lnn+ 4k ln

17

ε
+ ln

1

δ

)
.

then for every pair x, s ∈ Σk,

sign(Ax) = sign(As) =⇒ ‖x− s‖2 ≤ ε,

with probability ≥ 1− δ. In words, this result means that if we can find a k-sparse vector s
that is consistent with the observation vector y, then s is close to x. In fact, s can be made
as close to x as desired by increasing the number of measurements m. Unfortunately, this
result is not practical because finding such a vector s is equivalent to finding a minimal `0-
norm solution consistent with the observations, which is known to be an NP-hard problem
(Natarajan, 1995).

In (Plan and Vershynin, 2013a), the authors focus on vectors x ∈ Rn that satisfy an
inequality of the form ‖x‖1/‖x‖2 ≤ s. Note that if x is s-sparse, then it satisfies the above
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inequality, though of course the converse is not true. Thus they use the ratio ‖x‖1/‖x‖2
as a proxy for ‖x‖0. They choose measurement vectors ai ∈ Rn according to the Gaussian
distribution, or more generally, any radially invariant distribution; this means that, under
the chosen probability distribution on the vector a ∈ Rn, the normalized vector a/‖a‖2
is uniformly distributed on the sphere Sn−1 ⊆ Rn. With these randomly generated mea-
surement vectors, the measured quantities are yi = sign(〈ai, x〉). The authors propose to
estimate x via

x̂ := argmin
z
‖z‖1 s.t. sign(〈ai, z〉) = yi ∀i,

m∑
i=1

|〈ai, z〉| = m, (2)

where m is the number of measurements. They show that if

ε > C
( s
m

ln(2n/s) ln(2n/m+ 2m/n)
)1/5

for some universal constant C, then with probability ≥ 1 − exp(−cεm) where c is another
universal constant, it is true that ∥∥∥∥ x

‖x‖2
− x̂

‖x̂‖2

∥∥∥∥
2

≤ ε (3)

for all x ∈ Rn such that ‖x‖1/‖x‖2 ≤
√
s. Although this is the first proposed convex

algorithm to recover x, the number of measurement m is O(δ−5). From (3) we see that if
we are able to carry out the `0-norm minimization, then m is O(δ−1). It is still an open
question whether or not a practical algorithm can achieve this optimal dependence on δ
in (3). In (Ai et al., 2014) the theory is extended to non-Gaussian noise signals that are
sub-Gaussian.

In (Plan and Vershynin, 2013b), it is assumed that the measurements yi ∈ {0, 1} are
drawn at random with the property that the expected value E(yi) satisfies

E(yi) = θ(〈ai, x〉),

where θ : R → [−1, 1] is an unknown function. If θ(α) = tanh(α/2), then the problem is
one of logistic regression, whereas if θ(α) = sign(α), then the problem becomes OBCS. A
probabilistic approach is proposed in (Plan and Vershynin, 2013b), which has the advantage
that the resulting optimization problem is convex. However, the disadvantage is that the
number of measurements m is O(δ−6) where δ is the probability that the algorithm may
fail. The large negative exponent of δ makes the algorithm somewhat impractical.

In all of the papers discussed until now, the measurement vector yi equals sign(〈ai, x〉) for
suitably generated random vectors ai. As mentioned above, with such a set of measurements
one can at best aspire to recover only the normalized unknown vector x/‖x‖2. In (Knudson
et al., 2016), it is proposed to overcome this limitation by changing the linear measurements
to affine measurements. Specifically, the measurements in (Knudson et al., 2016) are of the
form yi = sign(〈ai, x〉 + bi), where aij ∼ N (0, 1),2 and bi ∼ N (0, τ2) where τ is some

2. Recall that each ai is an n-vector.
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specified constant. If a prior upper bound R for ‖x‖2 is available, then it is possible to
choose τ = R. Then the optimization problem in (2) is modified to3

(x̂, v̂) := argmin
z,v

[‖z‖1 + τ |v|] s.t. sign(〈ai, z〉+ biv) = yi ∀i,
m∑
i=1

|〈ai, z〉+ biv| = m. (4)

It is evident that the above formulation is similar to the formulation in (Plan and Vershynin,
2013a) applied to the augmented vector (x, v) ∈ Rn+1. The following result is shown in
(Knudson et al., 2016, Theorem 4): Fix τ,R, α such that α < min{1, τ/2}. If

m ≥ C

(√
R2 + τ2

α

)5

log2

(
2n

x

)
,

then for all vectors x ∈ Rn with ‖x‖1/‖s‖2 ≤
√
s, the solution (x̂, v̂) to the optimization

problem in (4) satisfies

‖(x̂/v̂)− x‖2 ≤
4
√
R2 + τ2

τ
α,

with a probability exceeding

1− C exp

(
− cαm√

R2 + τ2

)
,

where C and c are universal constants. If R is a known prior upper bound for ‖x‖2, then
one can choose τ = R in the above, in which the bound simplifies to

‖(x̂/v̂)− x‖2 ≤ 4
√

2α.

3. Preliminaries

In this section we present some preliminary results, while the main results are presented
in the next section. As shown below, the one-bit compressed sensing (OBCS) problem can
be naturally formulated as a problem in probably approximately correct (PAC) learning.
In fact, several of the approaches proposed thus far for solving the OBCS problem are
similar to existing methods in PAC learning, but do not take full advantage of the power
and generality of PAC learning theory. Some of the things that “come for free” in PAC
learning theory are: explicit estimates for the number of measurements m, ready extension
to the case where successive measurement vectors ai are not independent but form a β-
mixing process, and ready extension to the case of noisy measurements. The negative is
that the PAC learning approach does not always address the efficiently computability of the
algorithms. In (Valiant, 1984) which launched PAC learning theory, efficient computability
of the algorithm is a central consideration. However, subsequent literature does not always
pay full attention to this aspect.

3. Note that v here equals u/τ in (Knudson et al., 2016, Eq. (6)). Also, since δ is used to denote the
confidence of a PAC learning algorithm later in the paper, we use α instead of δ as in the cited equation.
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3.1. Brief Introduction to the PAC Learning Problem

In this subsection, we give a brief introduction to PAC learning theory. By now the funda-
mentals of PAC learning theory are well-developed, and several book-length treatments are
available, including (Vapnik, 1998; Anthony and Bartlett, 1999; Vidyasagar, 1997, 2003).
The theory encompasses a wide variety of learning situations. However, OBCS is aligned
closely with the most basic version of PAC learning, known as concept learning, which is
formally described next.

The concept learnig problem is formulated over a metric space X (usually taken as Rn
for some integer n), together with the associated Borel σ-algebra S; a collection of sets
C ⊆ S, known as the concept class; and a family P of probability measures on (X,S).
If P = P∗, the set of all probability measures on (X,S), the problem is known as one of
“distribution-free learning.”

Learning takes place as follows: A fixed but unknown set T ∈ C, known as the “target
concept,” is chosen, along with an unknown probability measure P ∈ P. Then random
samples {c1, c2, . . .} are generated independently in accordance with the chosen distribution
P . This is the basic version of PAC learning studied in (Vapnik, 1998; Anthony and Bartlett,
1999; Vidyasagar, 1997). The case where the sample sequence can exhibit dependence, for
example if they come from a Markov process with the stationary distribution P , is studied
in (Vidyasagar, 2003). Using the sample ci, an “oracle” generates a “label” yi ∈ {0, 1}.
In the case of noise-free measurements, yi = IT (ci), where T is the fixed but unknown
target concept, and IT (·) denotes the indicator function of the set T . In the case of noisy
measurements, the label yi equals IT (ci) flipped with an unknown probability α. This
situation is studied in Section 5. After m such samples are drawn and labelled, the available
information {(ci, yi)}mi=1 ∈ (X × {0, 1})m is passed through an “algorithm” to generate a
“hypothesis,” or an approximation to the unknown target concept T . For present purposes,
an “algorithm” is any indexed collection of maps {Am}m≥1 where

Am : (X × {0, 1})m → C.

In other words, an algorithm is any systematic procedure for taking a finite sequence of
labelled samples, and returning an element of the concept class C. The concept

Gm(T ; c) := Am ({(ci, yi)}mi=1)

is called the “hypothesis” generated by the first m samples when the sample sequence is
c = (c1, . . . , cm), and the label sequence is y = (y1, . . . , ym). In the interests of reducing
clutter, we will use Gm in the place of Gm(T ; c) unless the full form is needed for clarity.
Note that Am is a deterministic map, but the hypothesis Gm is random because it depends
on the random learning sequence {ci}.

To measure how well the hypothesis Gm approximates the unknown target concept T ,
we use the generalization error defined by

J(T,Gm) = E[|IT (x)− IGm(x)|, P ]. (5)

Thus J(T,Gm) is the expected value of the difference between the indicator function IT (·)
and the label generated by the oracle with the input IGm(·). Note that both IT and IGm
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assume values in {0, 1}. Hence J(T,Gm) is also the probability that, when a random test
sample x ∈ X is generated in accordance with the probability distribution P , the sample
is misclassified by the hypothesis Gm, in the sense that IT (x) 6= IGm(x). In particular, if
the hypothesis Gm differs from the target concept T by a set of measure zero, then the
generalization error would be zero.

The key quantity in PAC learning theory is the learning rate, defined by

r(m, ε) := sup
P∈P

sup
T∈C

Pm{c ∈ Xm : J(T,Gm) > ε}. (6)

Therefore r(m, ε) is the worst-case measure, over all probability distributions in P and all
target concepts in C, of the set of “bad” samples c = (c1, . . . , cm) for which the corresponding
hypothesis Gm has a generalization error larger than a prespecifie threshold ε. Thus, after
m samples are generated together with their labels, and the hypothesis Gm is generated
using the algorithm, it can be asserted with confidence 1 − r(m, ε) that Gm will correctly
classify the next randomly generated test sample with probability of at least 1− ε.

Definition 1 An algorithm {Am} is said to be probably approximately correct (PAC)
if r(m, ε) → 0 as m → ∞, for every fixed ε > 0. The concept class C is said to be PAC
learnable under the family of probability measures P if there exists a PAC algorithm.

The objective of statistical learning theory is to determine conditions under which there
exists a PAC algorithm for a given concept class, and if so, to find upper bounds for the
learning rate r(m, ε).

3.2. OBCS as a Problem in PAC Learning

In order to embed the problem of one-bit compressed sensing into the framework of concept
learning, we proceed as follows. We begin with the case where the measurements are of the
form sign(〈ai, x〉) where the ai are chosen at random according to some arbitrary probability
distribution, which need not be the Gaussian. Observe now that the closed half-space

H(x) := {z ∈ Rn : 〈z, x〉 ≥ 0}

determines the vector x uniquely to within a positive scalar multiple, because x is the normal
to the half-space. Conversely, the vector x uniquely determines the corresponding half-space
H(x), which remains invariant if x is replaced by a positive multiple of x. Thus the OBCS
problem can be posed as that of determining the half-space H(x) given the measurements
sign(〈ai, x〉), i = 1, . . . ,m where the ai are selected at random in accordance with some
probability measure P . Moreover, the one-bit measurement sign(〈ai, x〉) equals 2IH(x)(ai)−
1, where IH(x)(·) denotes the indicator function of the half-space H(x). Therefore, to within
a simple affine transformation, the OBCS problem becomes that of determining an unknown
half-space H(x) from labelled samples (ai, IH(x)(ai)), i = 1, . . . ,m, where the samples ai are
generated at random according to some prespecified probability measure. This is a PAC
learning problem where the underlying space X is Rn, with S being the associated Borel
σ-algebra. The concept class C is the collection of all half-spaces {Hn

k (x)} where

Hn
k (x) = {a ∈ Rn : 〈a, x〉 ≥ 0} (7)
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as x varies over Σk, the set of k-sparse vectors in Rn. The family of probability measures
P can either be a singleton {P} where P is specified a priori, or P∗, the family of all
probability measures on Rn, or anything in-between.

When measurements are of the type sign(〈ai, x〉), it is inherently impossible to determine
the unknown vector x, except to within a positive scalar multiple. This is addressed by
changing the measurements to be of the form sign(〈ai, x〉 + bi), as suggested in (Knudson
et al., 2016). Some slight modifications are required to address this modified formulation.
In this case theunderlying space X is Rn+1, and S is the associated σ-algebra. The concept
class C is the collection of all half-spaces {Hn+1

k } where

Hn+1
k (x) = {(a, b) ∈ Rn+1 : 〈a, x〉+ b ≥ 0} (8)

as x varies over Σk. Finally, the family of probability measures P can either be a singleton
{P} where P is specified a priori, or P∗, the family of all probability measures on Rn, or
anything in-between.

For a given x ∈ Σk, if a ∈ Rn belongs to the half-space Hn
k (x), then the vector (a, 0) ∈

Rn+1 belongs to Hn+1
k (x). However, the half-space Hn+1

k (x) can also contain vectors of the
form (a, b) with b 6= 0.

3.3. Interpretation of the Generalization Error

Suppose P is a probability measure on (X,S), and define the quantity

dP (A,B) := P (A∆B), ∀A,B ∈ S.

Then dP is a pseudometric on S, in that dP satisfies all the axioms of a metric, except that
dP (A∆B) = 0 does not necessarily imply that A = B, only that A∆B has measure zero
under P . In the traditional PAC learning problem formulation, the quantity of interest is
the generalization error defined in (5). It is easy to see that an alternate expression for the
generalization error is

J(T,Gm) = P (A∆B) = dP (A,B).

Therefore the traditional PAC learning formulation does not distinguish between two con-
cept classes that differ by a set of measure zero.

The above discussion explains the limitations of one-bit compressed sensing as described
in (Plan and Vershynin, 2013b). In their case, they choose two vectors in R2, namely x1 =
[ 1 0 ] and x1 = [ 1 0.5 ].4 Their choice for P is the Bernoulli distribution on R2, which is
purely atomic and assigns a weight of 0.25 to the four points (1, 1), (1,−1), (−1, 1), (−1,−1).
Now let us plot the half-planes Hx1 , Hx2 and their symmetric difference, which is the shaded
region shown in Figure 1. Because none of the four points (1, 1), (1,−1), (−1, 1), (−1,−1)
(shown as red circles) belongs to the symmetric difference, x1 and x2 are indistinguishable
in OBCS under this probability measure. In (Plan and Vershynin, 2013a), the authors
conclude that OBCS cannot always recover an unknown vector x, depending on what P is.
Indeed, x1 and x2 would be indistinguishable under any probability measure that assigns
a value of zero to Hx1∆Hx2 . Therefore, one must be careful to draw the right conclusion:
When subsequent theorems in this paper show that OBCS is possible under all probability

4. They append a whole lot of zero components which are neglected here.
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Hx1 Hx2

Figure 1: The half-planes Hx1 , Hx2 , and their symmetric difference.

measures on Rn, including all purely atomic probability measures, what this means is that
if x ∈ Σk, then OBCS will return a vector x̂ such that P (Hx∆Hx̂) = 0 whatever be P , and
not that x = x̂.

Now we examine the relationship of the generalization error J(x̂, x) to a couple of other
quantities that are widely used in OBCS as error measures. First, define

ρ(x̂, x) := E[|sign(〈a, x̂〉)− sign(〈a, x〉)|, P ], (9)

where x is the true vector, x̂ is its estimate. Note that |sign(〈a, x̂〉)− sign(〈a, x〉)| equals 0
or 2. Therefore we can also write

ρ(x̂, x) = 2J(Hx̂, Hx).

Next, we examine the relationship of ρ(x̂, x) to ‖x̂ − x‖2. Without loss of generality it
can be assumed that both x and x̂ have unit Euclidean norm. This can be achieved using
some results from (Goemans and Williamson, 1995). Define

α := min
θ∈[0,2π]

2

π

θ

1− cos θ
> 0.87856. (10)

Then we have the following results.

Lemma 2 Let P be any radially invariant probability measure on Rn, and suppose a ∈ Rn
is drawn at random according to P . Suppose ‖x‖2 = ‖x̂‖2 = 1, and let J(x̂, x) denote the
generalization error defined in (5). Then

‖x̂− x‖22 ≤
4

α
J(x̂, x). (11)

10
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Proof We make use of a couple of results from (Goemans and Williamson, 1995). First,
(Goemans and Williamson, 1995, Lemma 3.2) states that

Pr{sign(〈a, x̂〉) 6= sign(〈a, x〉)} =
1

π
arccos(x̂>x),

Note that
J(x̂, x) = Pr{sign(〈a, x̂〉) 6= sign(〈a, x〉)}.

Therefore the above is equivalent to

J(x̂, x) =
1

π
arccos(x̂>x).

Second, (Goemans and Williamson, 1995, Lemma 3.4) states that

1

π
arccos(x̂>x) ≥ α

2
(1− x̂>x),

or equivalently

1− x̂>x ≤ 2

α
arccos(x̂>x).

Now note that, when both x̂ and x are unit vectors, we have

‖x̂− x‖22 = ‖x̂‖22 + ‖x‖22 − 2x̂>x = 2(1− x̂>x).

Therefore

‖x̂− x‖22 = 2(1− x̂>x)

≤ 4

α
arccos(x̂>x) =

4

α
J(x̂, x).

3.4. PAC Learning via the Vapnik-Chervonenkis (VC) Dimension

One of the most useful concepts in PAC learning theory is defined next.

Definition 3 A set S ⊆ X of finite cardinality is said to be shattered by the concept class
C if, for every subset B ⊆ S, there exists a concept A ∈ C such that S ∩ A = B. The
Vapnik-Chervonenkis- or VC-dimension of the concept class C is the largest integer d
such that there exists a set S of cardinality d that is shattered by C.

Therefore a concept class C has VC-dimension d if two statements hold: (i) There exists
a set of cardinality d that is shattered by C, and no set of cardinality larger than d is
shattered by C. If there exist sets of arbitarily large cardinality that are shattered by C,
then its VC-dimension is defined to be infinite.

If a concept class has finite VC-dimension, then it is PAC learnable under every prob-
ability distribution on X. An algorithm is said to be consistent if it always produces a

11
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hypothesis that classifies all the training samples correctly. In other words, an algorithm
is consistent if the hypothesis Gm produced by applying the algorithm to the sequence
{(ci, IT (ci))}i≥1 has the property that IT (ci) = IGm(ci) for all i and m. Note that a consis-
tent algorithm always exists if the axiom of choice is assumed. However, in some situations,
it is NP-hard or NP-complete to find a consistent algorithm.

With these notions in place, we have the following very fundamental result.

Theorem 4 ((Blumer et al., 1989); see also (Vidyasagar, 2003, Theorem 7.6)) Suppose
a concept class C has finite VC-dimension. Then C is PAC learnable for every probability
measure on X. Suppose that d is an upper bound for VC-dim(C), and let {Am} be any
consistent algorithm. Moreover, the learning rate is bounded by

r(m, ε) ≤ 2

(
2em

d

)d
2−mε/2,

where e denotes the base of the natural logarithm. Therefore r(m, ε) ≤ δ if

m ≥ max

{
8d

ε
lg

8e

ε
,
4

ε
lg

2

δ

}
(12)

samples are chosen.

Note that the number of samples required to achieve an accuracy of ε with confidence
1 − δ is O((1/ε) ln(1/δ)). However, the main challenge in applying this result is in finding
a consistent algorithm.

Theorem 4 shows that the finiteness of the VC-dimension of a concept class is a sufficient
condition for PAC learnability. The next result shows that the condition is also necessary.

Theorem 5 ((Blumer et al., 1989; Ehrenfeucht et al., 1989); see also (Vidyasagar, 2003,
Theorem 7.7)) Suppose a concept class C has VC-dimension d ≥ 2. Then there exist prob-
ability measures on X such that any algorithm requires at least

m ≥
{
d− 1

32ε
,
1− ε
ε

ln
1

δ

}
(13)

samples, in order to learn to accuracy ε and confidence δ.

4. Estimates of the VC-Dimension

This section contains the main results of the paper, namely, to obtain explicit estimates of
the VC-dimension of half-spaces generated by k-sparse vectors.

Theorem 6 Let Hnk denote the set of half-spaces Hn
k (x) in Rn generated by k-sparse vectors,

as defined in (7). Then

k(blg(n/k)c+ 1) ≤ VC-dim(Hnk ) ≤ b2k lg(ne)c. (14)

12
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Remark: In (Neylon, 2006, Theorem 20), it is shown that if k < 0.45
√
n, then

VC-dim(Hnk ) < 2k lg n.

The right side of (14) can be rewritten as

VC-dim(Hnk ) ≤ 2k(lg n+ lg e) ≈ 2k(lg n+ 1.4).

Clearly, as n becomes larger, the additional term becomes insignificant. Moreover, there is
no restriction on the magnitude of k in Theorem 6, as there is in (Neylon, 2006, Theorem
20). Also, the present Theorem 6 contains a lower bound on the VC-dimension in addition
to an upper bound, which is not previously available in the literature.

Proof We begin with the upper bound in (14). It is shown that if a set U = {u1, . . . , ul} ⊆
Rn is shattered by the collection of half-spacesHnk , then l ≤ b2k lg(en)c. The proof combines
a few ideas that are standard in PAC learning theory, which are stated next.

The first result needed is (Dudley, 1978, Theorem 7.2).5 It states the following: Suppose
that F is a collection of functions mapping a given set Z into R, such that F is a k-
dimensional real vector space over the field R. Define the associated collection of subsets of
X by

Pos(f) := {z ∈ Z : f(z) ≥ 0},Pos(F) := {Pos(f), f ∈ F}.

Then VC-dim(Pos(F)) = k. To apply the above theorem to this particular instance, we
fix the integer k as well as a support set S ⊆ {1, . . . , n} such that |S| = k, and choose
F to be the set of functions {f(z) = 〈z, x〉 : supp(x) ⊆ S}. This family of functions
is clearly a k-dimensional linear space because the adjustable parameter here is the k-
sparse vector x with support in the fixed set S. Therefore it follows that, if we define
HS = {Hn

k (x) : supp(x) ⊆ S}, then VC-dim(HS) = k.

The next result needed is Sauer’s lemma (Sauer, 1972), which states the following:
Suppose C is a collection of subsets of X with finite VC-dimension d, and that U =
{u1, . . . , ul} ⊆ X with l > d. Let C ∩U denote the collection {A∩B : A ∈ C, B ⊆ U}. Then

|C ∩ U | ≤
d∑
i=0

(
l
i

)
≤
(
el

d

)d
,

where e denotes the base of the natural logarithm. Strictly speaking, Sauer’s lemma is
the first inequality, which states that the number of subsets of U that can be generated
by taking intersections with sets in the collection C is bounded by the summation shown.
The second bound is derived in (Blumer et al., 1989). By applying Sauer’s lemma to the
problem at hand, it can be seen that, for a fixed support set S, the number of subsets of U
that can be generated by intersecting with the collection of half-spaces HS is bounded by
(el/k)k, because HS has VC-dimension k. Note that a similar bound is derived in (Jacques
et al., 2013), but without any reference to Sauer’s lemma. Also, the result in (Jacques et al.,
2013) is specifically for collections of half-spaces, whereas Sauer’s lemma is applicable to
completely general collections of sets.

5. Note that the definition of VC-dimension used in this reference is the VC-dimension as defined in Defi-
nition 3 plus one.

13
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Now observe that Hnk is just the union of the collections HS as S ranges over all subsets
of {1, . . . , n} with |S| = k. The number of such sets S is the combinatorial parameter n
choose k, which is bounded by nk.6 Moreover, for each fixed support set S, the collection
of subsets HS ∩ U has cardinality no larger than (en/k)k, as shown above. Therefore

|Hnk ∩ U | ≤
(
n
k

)(
el

k

)k
≤
(
nel

k

)k
.

The final step in the proof comes from (Vidyasagar, 2003, Lemma 4.6), which states the
following (see specifically item 2 of this lemma): Suppose α, β > 0, αβ > 4 and l ≥ 1. Then

l ≤ α lg(βl) =⇒ l < 2α lg(αβ). (15)

In the present instance, the collection of sets Hnk ∩ U has cardinality no larger (nel/k)k,
whereas U has 2l subsets in all. Therefore, if U is shattered by the collection Hnk , then we
must have

2l ≤
(
nel

k

)k
,

or, after taking binary logarithms,

l ≤ k lg
nel

k
,

which is of the form (15) with α = k, β = ne/k. Substituting these values into (15) leads
to the conclusion that

l ≤ 2k lg(ne),

provided αβ = ne ≥ 4, which holds if n ≥ 2. Because l is an integer, we can replace the
right side by its integer part, which leads to the upper bound in (14).

Now we turn our attention to the lower bound. First we consider the simple case
where k = 1. Given n, define l = blg nc + 1, so that n ≥ 2l−1. The first step is to show
that the set of half-spaces Hn1 generated by “one-sparse vectors” has VC-dimension l. Let
s = l− 1 = blg nc, and enumerate the 2s bipolar row vectors in {−1, 1}s in some order, call
them v1, . . . v2s . Now define the n× l matrix

M =


1 v1
...

...
1 v2s

0(n−2s)×1 0(n−2s)×s

 ∈ Rn×l. (16)

In other words, the matrix M has a first column of ones, and then the 2s bipolar vectors in
{−1, 1}s in some order, padded by a block of zeros in case n > 2l−1. As we shall see below,
the “padding” is not used. Now define U = {u0, u1, . . . , us} denote the s+ 1 = l columns of
the matrix M . Note that for notational convenience we start numbering the columns with
0 rather than 1. It is claimed that the collection of half-spaces Hn1 shatters this set U , thus
showing that VC-dim(Hn1 ) ≥ l.

6. Actually nk is a pretty crude estimate, but as we shall see, it is good enough.
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To show that the set U is shattered, let B ⊆ U be an arbitrary subset. Thus B consists
of some columns of the matrix M . We examine two cases separately. First, suppose u0 ∈ B.
Then we associate a unique integer r between 1 and 2s as follows. Define a bipolar vector
iB ∈ {−1, 1}s by ij = 1 if uj ∈ B, and ij = −1 if uj 6∈ B. This bipolar vector iB must be
one of the vectors v1, . . . , v2s . Let r be the unique integer such that iB = vr. Define the
vector x ∈ Rn such that xr = 1, and the remaining elements of x are all zero, and note
that x ∈ Σ1. Then 〈u0, x〉 = 1, while 〈uj , x〉 = 1 if uj ∈ B and 〈uj , x〉 = −1 if uj 6∈ B.
Therefore the associated half-space H(x) includes precisely the elements of the specified
set B. Next, suppose u0 6∈ B; in this case we basically flip the signs. Thus the bipolar
vector iB ∈ {−1, 1}s is chosen such that ij = −1 if uj ∈ B, and ij = 1 if uj 6∈ B. If this
bipolar vector corresponds to row r in the ordering of {−1, 1}s, we choose x ∈ Σ1 to have
a −1 in row r and zeros elsewhere. This argument shows that the set Hn1 generated by all
one-sparse vectors x has VC-dimension of at least blg nc + 1, which is consistent with the
left side of (14) when k = 1.

To extend the above argument to general values of k, suppose n and k are specified,
and define l = blg(n/k)c + 1 and s = l − 1 = blg(n/k)c. Then n/k ≥ 2s, or equivalently,
n ≥ k2s. Define matrices M1, . . . ,Mk ∈ {−1, 1}2s×l in analogy with (16). Then define a
matrix M ∈ {0, 1}n×kl as a block-diagonal matrix containing M1, . . . ,Mk on the diagonal
blocks, padded by an appropriate number of zero rows so that the number of rows equals
n. In other words, M has the form

M =


M1 02s×l . . . 02s×l

02s×l M2 . . . 02s×l
...

...
...

...
02s×l . . . 02s×l Mk

0(n−k2s)×kl

 ∈ Rn×kl.

Define U to be the set of columns of the matrixM , and note that |U | = kl = k(blg(n/k)c+1).
It is now shown that the set U is shattered by the collection Hnk of half-spaces generated
by k-sparse vectors. Partition U as U1 ∪ U2 ∪ . . . ∪ Uk, where each Ui consists of l column
vectors. Then any specified subset B ⊆ U can be expressed as a union B1 ∪ · · · ∪Bk where
Bi ⊆ Ui for each i. Now it is possible to mimic the arguments of the previous paragraph to
show that the set U can be shattered by the collection of half-spaces Hnk . For each subset
Bi, identify an integer ri between 1 and 2s such that the bipolar vector iBi is the ri-th in
the enumeration of {−1, 1}s. For each index i between 1 and k, let xi ∈ R2s contain a 1 in
row ri and zeros elsewhere. Define x ∈ Rn by stacking x1 through xk, followed by n− k2s

zeros. This shows that it is possible to shatter a set of cardinality k(1 + blg(n/k)c), which
is the right inequality in (14).

Theorem 6 is applicable to the case where measurements are of the form sign(〈ai, x〉).
Such measurements can at best lead to the recovery of the direction of a k-sparse vector
x, but not its magnitude. In situations where it is desired to recover a sparse vector in its
entirety, the measurements are changed to

yi = sign(〈ai, x〉+ biθ), (17)
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where x varies over Σk ⊆ Rn and θ ∈ R. The concept class in this case is given by

Hn+1
k (x, θ) = {(a, b) ∈ Rn+1 : 〈a, x〉+ bθ ≥ 0}. (18)

By inspecting the equation (17), we deduce that

Hnk (x) ⊆ Hn+1
k (x) ⊆ Hn+1

k+1([x θ]>), (19)

where x ∈ Σk and θ ∈ R so that the vector [x θ]> is k + 1-sparse. We are now ready to
state a bound on the VC-dimenstion of the collection of half-spaces Hn+1

k .

Theorem 7 Let Hn+1
k denote the set of half-spaces Hn

k (x) in Rn as defined in (17). Then

k(1 + blg(n/k)c) ≤ VC-dim(Hn+1
k ) ≤ b2(k + 1) lg(e(n+ 1))c. (20)

Proof From (19) we conclude that

VC-dim(Hn
k ) ≤ VC-dim(Hn+1

k ) ≤ VC-dimHn+1
k+1 ([x θ]>),

then the desired result follows Theorem 6.

5. OBCS with Noisy Measurements

In this section we study the one-bit compressed sensing problem when the information
available to the learner is a randomly “flipped” version of the true output sign(〈ai, x〉)
or sign(〈ai, x〉 + bi), where x is an unknown k-sparse vector. A study of the problem of
PAC learning with noisy measurements was initiated in (Valiant, 1985), shortly after the
publication of (Valiant, 1984). Over the years several different models of PAC learning with
noisy labels have been studied. Rather than present an exhaustive listing of these, we focus
on just a few papers that are most germane to the version of the problem studied here.

In the case of noise-free measurements, the results on learnability were stated in terms
of a consistent algorithm, which always exists if one were to assume the axiom of choice.
In contrast, in the case where the labels are noisy, it might not be possible to construct a
hypothesis that is consistent with the data. Therefore the notion of consistency is replaced
by the notion of minimizing empirical risk. Suppose we are given a labelled sample sequence
{(ci, yi) ∈ X × {0, 1}}i≥1. Suppose F ∈ C is a hypothesis. Then the empirical risk of the
hypothesis with respect to this labelled sequence, after m samples, is defined as

Ĵm(T, F ) :=
1

m

m∑
i=1

|yi − IF (ci)|. (21)

Definition 8 An algorithm {Am}m≥1is said to minimize empirical risk, or to be a
MER algorithm, if for all sample sequences {(ci, yi) ∈ X×{0, 1}}i≥1, and all integers m,
it is the case that

Ĵm(Gm) = min
F∈C

Ĵm(F ), (22)

where
Gm = Am((c1, y1), . . . (cm, ym))

is the output of the algorithm after m samples, given the sequence {(ci, yi) ∈ X×{0, 1}}i≥1.
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Note that if the labels are noise-free, then yi = IT (ci), and

Ĵm(T, F ) :=
1

m

m∑
i=1

|IT (ci)− IF (ci)|

is the empirical estimate of the distance DP (T, F ). In this case, a MER algorithm becomes
a consistent algorithm.

We begin by summarizing some relevant results from (Angluin and Laird, 1988). In this
paper, the probability of a 1 turning into 0 is assumed to be the same as the probability of a
0 turning into a 1; call it α. Clearly α must be < 0.5 in order for the problem to be learnable,
because if the labels are flipped with probability 0.5, then the labels are pure noise and do
not convey any information. In this paper, it is not assumed that the flipping probability
α is known; rather, it is assumed that an upper bound ᾱ < 0.5 for α is known. Moreover, a
procedure is given for generating such an upper bound. Suppose ε, δ ∈ (0, 1) are specified,
where ε is the accuracy and δ is the confidence, and the objective is to choose the number
of samples m to be sufficiently large that r(m, ε) ≤ δ, where the learning rate r(m, ε) is
defined in (6). The procedure given in this paper generates an upper bound ᾱ < 0.5 for α
with confidence ≥ 1− δ/2 using r = 1 + dlg[(1− 2α)−1]e rounds. In case the concept class
C has finite cardinality, say |C| ≤ N , then the following result can be established.

Theorem 9 (See (Angluin and Laird, 1988, Theorem 2).) Given ε, δ > 0, draw

m ≥ 2

ε2(1− 2ᾱ)2
ln

2N

δ
(23)

i.i.d. samples according to an unknown probability measure P ∈ P∗. Let T ∈ C be any
unknown target concept, and let Gm denote the output of a MER algorithm based on m
noisy labels. Then

sup
P∈P∗

max
T∈C

Pm{x ∈ Xm : dP (Gm, T ) ≥ ε} ≤ δ. (24)

If an infinite concept class C has finite VC-dimension, then for each ε > 0 and P ∈ P∗,
C has a finite ε-cover with respect to the metric dP , whose cardinality does not depend on
P ∈ P∗. Using this fact and Theorem 9, it is possible to prove bounds analogous to those
in (25) for concept classes with finite VC-dimension. This is done in (Laird, 1988).

Next we discuss the paper (Natarajan et al., 2013). In this paper, the probability of
a 1 becoming 0 is not assumed to equal the probability of a 0 becoming a 1. However,
it is assumed that both probabilities are known. This allows the authors to construct an
unbiased estimator for the true label, which may not be possible if only bounds for these
probabilities are known.

Finally, we mention in passing the paper (Simon, 1996), even though the learning prob-
lem studied there is more general than the one studied here. Let F ⊆ [0, 1]X be a family
of functions mapping X into [0, 1], and let f ∈ F be fixed but unknown. Let P ∈ P∗(X)
be an unknown probability measure on X, and generate samples x1, . . . , xm in X that are
i.i.d. according to P . For each sample xj , a corresponding label lj ∈ {0, 1} is generated
according to

lj =

{
1, w.p. f(xj),
0, w.p. 1− f(xj).
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From the data {(xj , lj)}mi=1, the objective is to cconstruct an approximation to f(·).
Now we come to the objective of the present section. By focusing on the prediction error

(defined below) instead of the distance dP (Gm, T ), it is possible to streamline the statement
of the theorem.

To make the problem formulation precise, we use the notation in Section 3.1, whereby
X is a set, S is a σ-algebra of subsets of X, and P is a probability measure on X. To
incorporate the randomness, we enlarge X by defining XN = X × {0, 1} as the sample
space; define SN to be the σ-algebra of subsets in XN generated by cylinder sets of the
form S × {0} and S × {1} for all S ∈ S; and define a probability measure PN on XN by
defining

PN (S × {0}) = (1− α)P (S), PN (S × {1}) = αP (S). (25)

Let (c, L) denote a typical element in the sample space XN . Then

Pr{L = 0} = PN (X × {0}) = 1− α,Pr{L = 1} = PN (X × {1}) = α.

Here the event L = 0 corresponds to the label not being flipped, while the event L = 1
corresponds to the label being flipped. It is clear that PN is a product measure, so that the
flipping of labels is independent of the generation of training samples.

Learning takes place as follows: Independent samples {(ci, ωi) ∈ X × {0, 1}}i≥1 are
generated in accordance with the above probability measure PN . Let T be a fixed but
unknown target concept. Then for each i, a label yi is generated as

yi = |IT (ci)− ωi|. (26)

This is equivalent to saying that yi = IT (ci) with probability 1−α and yi = 1− IT (ci) with
probability α. As before, an algorithm is an indexed family of maps Am : (X×{0, 1})m → C
for each m ≥ 1. The algorithm Am is applied to the set of labelled samples {(ci, yi)}mi=1,
giving rise to a hypothesis Gm.

To assess how well a hypothesis F (however it is derived) approximates the unknown
target concept T , we generate a random test input x ∈ X according to P , and then predict
that the oracle output on x will be IF (x). The error criterion therefore is the prediction
error, and equals

JN (T, F ) := E[|f(IT (x))− IF (x)|, PN ], (27)

where f(IT (x)) is the noisy label and IF (x) is the indicator function of F . The premise in
the above definition is that, while the oracle output is noisy, our prediction is not noisy.

Note that, for a given x ∈ X, the quantity |f(IT (x)) − IF (x)| equals |IT (x) − IF (x)|
with probability 1− α, and equals 1− |IT (x)− IF (x)| with probabilty α. Therefore

JN (T, F ) =

∫
X

[(1− α)|IT (x)− IF (x)|+ α(1− |IT (x)− IF (x)|)]P (dx)

= α+ (1− 2α)

∫
X
|IT (x)− IF (x)|P (dx)

= α+ (1− 2α)dP (T, F ). (28)

Therefore, if we were to define the minimum achievable prediction error J∗N (T ) as

J∗N (T ) = min
F∈C

JN (T, F ),
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then J∗N (T ) = α for each T ∈ C. Therefore, to quantify the performance of a learning
algorithm, we compare the actual prediction error JN (Gm, T ) with J∗N (T ), where Gm is the
output of the algorithm based on m samples. With these observations, we can state the
following result.

Theorem 10 Suppose C is a concept class of subsets of X with VC-dim(C) ≤ d, and let
T ∈ C be a fixed but unknown target concept. Suppose P ∈ P∗ is a fixed but unknown
probability measure on X, c1, . . . , cm ∈ X are i.i.d. samples drawn according to P , and let
Gm be the output of a MER algorithm. Then

Pr{JN (T,Gm) > J∗N (T ) + ε} ≤ c(m, ε), (29)

where

c(m, ε) =

[
4

(
0.2em

d

)10d

+ 1

]
exp(−0.08mε2). (30)

Because the estimates derived above are broadly similar to those in (Angluin and Laird,
1988; Laird, 1988), we omit the proof of Theorem 10. The proof can be found in (Ahsen
and Vidyasagar, 2017).

Note that the bound for the learning rate in Theorem 10 is qualitatively similar to that
in Theorem 4. Therefore the bound (30) can be used to show the following: The quantity
Pr{JN (T,Gm) > J∗N (T ) + ε} can be made smaller than a specified constant δ by choosing

m ≥ max{O((1/ε) lg(1/ε)), O((1/ε) lg(1/δ))} (31)

samples.
Note that the error rate α does not appear explicitly in the right side of (30). However,

if we examine (28), we see that α does appear in the estimate for the error dP (Gm, T ).
Specifically

dP (Gm, T ) =
JN (Gm, T )− J∗N (T )

1− 2α
.

Therefore
dP (Gm, T ) ≤ ε ⇐⇒ JN (Gm, T )− J∗N (T ) ≤ (1− 2α)ε. (32)

Substituting this into Theorem 10 gives the following estimate.

Corollary 11 Let all symbols be as in Theorem 10. Then

Pr{dP (Gm, T ) ≥ ε} ≤ c(m, (1− 2α)ε) = c(m, ε̄), (33)

where ε̄ = (1− 2α)ε), and c(·, ·) is defined in (30).

In view of Corollary 11, we infer that, in order to make the quantity Pr{dP (Gm, T ) ≥ ε}
smaller than a specified constant δ, it is sufficient to choose

m ≥ max{O((1/ε̄) lg(1/ε̄)), O((1/ε̄) lg(1/δ))} (34)

samples. Thus, for a fixed mislabelling probability α, the rate of growth of the sample
complexity with respect to ε and δ is of the same order as in the noise-free case. However,
as α→ 0.5−, the constant under the O symbol becomes larger and larger.

Note that Corollary 11 continues to hold if α is replaced by any upper bound for α.
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6. Discussion

In this paper, the problem of one-bit compressed sensing (OBCS) has been formulated as a
problem in probably approximately correct (PAC) learning theory. In particular, it has been
shown that the VC-dimension of the set of half-spaces in Rn generated by k-sparse vectors
is bounded by O(k lg n). Therefore, in principle at least, the OBCS problem can be solved
using only O(k lg n) samples. This is possible in principle even when the measurements
are corrupted by noise, except that as the mislabelling probability α approaches 0.5, the
constant under the O symbol becomes larger and larger. However, in general, it is NP-
hard to find a consistent algorithm when measurements are free from noise, and to find an
algorithm that minimizes empirical risk when measurements are noisy.

One of the main advantages of formulating OBCS as a problem in PAC learning is that
extending these results to the case where the samples {ai} (or {(ai, bi)} as the case may be)
are not i.i.d. essentially “comes for free.” It is now known that, if a concept class has finite
VC-dimension, then empirical means converge to their true values not only for i.i.d. samples
{ai} (or {(ai, bi)} as the case may be), but also when the samples come from a β-mixing
stochastic process, e.g., from a Markov process. The convergence result is established in
(Nobel and Dembo, 1993), and explicit rates of convergence are proved in (Karandikar and
Vidyasagar, 2002). As it is fairly straight-forward to adapt the various theorems given here
to the case of β-mixing processes using the above-mentioned results, the details are omitted.
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