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Abstract

Nonparametric estimation of multivariate functions is an important problem in statisti-
cal machine learning with many applications, ranging from nonparametric regression to
nonparametric graphical models. Several authors have proposed to estimate multivariate
functions under the smoothing spline analysis of variance (SSANOVA) framework, which
assumes that the multivariate function can be decomposed into the summation of main
effects, two-way interaction effects, and higher order interaction effects. However, existing
methods are not scalable to the dimension of the random variables and the order of inter-
actions. We propose a LAyer-wiSE leaRning strategy (LASER) to estimate multivariate
functions under the SSANOVA framework. The main idea is to approximate the multivari-
ate function sequentially starting from a model with only the main effects. Conditioned on
the support of the estimated main effects, we estimate the two-way interaction effects only
when the corresponding main effects are estimated to be non-zero. This process is con-
tinued until no more higher order interaction effects are identified. The proposed strategy
provides a data-driven approach for estimating multivariate functions under the SSANOVA
framework. Our proposal yields a sequence of estimators. To study the theoretical prop-
erties of the sequence of estimators, we establish the notion of post-selection persistency.
Extensive numerical studies are performed to evaluate the performance of LASER.
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1. Introduction

Much progress has been made in nonparametric estimation of univariate functions. However,
nonparametric estimation of multivariate functions remains a challenging problem due to the
curse of dimensionality. A number of algorithms were proposed to estimate low-dimensional
multivariate functions, but there are few practical algorithms for estimating multivariate
functions with higher dimension.

To address this issue, many authors proposed to restrict the multivariate function to
some specific model classes. One popular model class is the additive model in which the
high-dimensional multivariate function f(·) is decomposed into the sum of d one-dimensional
functions (Stone, 1985; Hastie and Tibshirani, 1990). To increase the flexibility of the ad-
ditive model to accommodate situation in which interactions among the variables may be
present, Lin (2000) proposed to estimate the multivariate function under the smoothing
spline analysis of variance (SSANOVA) framework. More specifically, Lin (2000) proposed
to decompose the d-dimensional function f(·) as the summation of some constant µ, one-
dimensional functions (main effects), two-dimensional functions (two-way interaction ef-
fects), and so on:

f(x) = µ+

d∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk) + · · · . (1)

We refer the reader to Lin (2000) and Gu (2013) for a detailed discussion of such models.

Most existing methods under the SSANOVA framework truncate (1) to the rth order
interaction effects. Even so, existing methods are computationally intensive and are not
scalable to the dimension of the random variables d and the order of the interaction term
r. For instance, to fit a nonparametric regression model under the SSANOVA framework
with the rth order interaction, it involves simultaneously fitting O(dr) terms and is often
infeasible when both d and r are large (Lin and Zhang, 2006). Thus, one way to reduce
the computation complexity is to consider only the two-way interaction terms and remove
all of the higher order interaction terms from the model (Lin, 2000; Zhang et al., 2004; Lin
and Zhang, 2006; Jeon and Lin, 2006; Yau et al., 2012).

The strong heredity assumption is often used for modeling regression with two-way
interaction effects (Bien et al., 2013; Hao and Zhang, 2014; Haris et al., 2016; Hao et al.,
2018; Radchenko and James, 2010). The strong heredity assumption mandates that both
of the corresponding main effects must be present when an interaction term is included in
the model. Under the strong heredity assumption, Hao and Zhang (2014) and Hao et al.
(2018) proposed approaches that perform variable selection on the main effects, and allow
interactions into the model once the main effects have been identified, in the context of linear
regression. They proved theoretically that the main effects and interactions can be selected
consistently as long as the variables are Gaussian with mean zero. On the other hand,
Bien et al. (2013) and Haris et al. (2016) proposed penalty functions that are specifically
designed for two-way interaction models with sparsity and strong heredity assumption in the
context of linear regression. Similar work has also been done in the context of nonparametric
regression (Radchenko and James, 2010). However, Bien et al. (2013), Haris et al. (2016),
and Radchenko and James (2010) are computationally intractable when d is large since it
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involves modeling
(
d
2

)
terms. We refer the reader to Haris et al. (2016) for a comprehensive

review of the literature.
In this paper, we propose a framework to estimate multivariate functions that take

the form (1) without restricting it to only modeling the two-way interaction terms. We
impose a hierarchical structure on the higher order interaction terms under the SSANOVA
framework. Let J, J ′ ⊆ {1, . . . , d}. Given a d-dimensional function f , we denote fJ as
the |J |th order interaction term in f with variables {xj}j∈J . We impose the hierarchical
structural assumption that

fJ = 0 =⇒ fJ ′ = 0, if J ⊂ J ′. (2)

In other words, we assume that a higher order interaction is not active when some of the
lower order terms containing some variables that belong to the higher order term are not
active. For instance, if the main effect of the jth variable fj = 0, then any higher order term
that involves the jth variable is not active. The hierarchical structural assumption is plau-
sible in many data applications. For instance, in the context of nonparametric regression,
the hierarchical structural assumption implies that the main effects are more important in
modeling the response than the higher order interactions. Therefore, if the leading order in-
teraction function does not have any explanatory power, the higher order interaction terms
should be inactive. The hierarchical assumption in (2) can be thought of as an extension of
the strong heredity assumption to modeling higher order interaction terms.

Under the hierarchical structural assumption, we propose a layer-wise learning algo-
rithm to estimate multivariate functions under the SSANOVA framework. Our algorithm
sequentially estimates the multivariate function starting from the main effects to the higher
order interaction terms. In each step of our algorithm, we utilize the support of the esti-
mated function from the previous step and estimate the function based on the hierarchical
structural assumption in (2). This process is continued until no more higher order interac-
tion effects are active. Instead of fitting the SSANOVA model with d+

(
d
2

)
+ · · ·+

(
d
r

)
terms,

our proposal fits the SSANOVA model with at most d+
(
s1
2

)
+ · · ·+

(
sr−1

r

)
terms, where sk

is the cardinality of the support of the estimated kth order interaction effects. Thus, our al-
gorithm is scalable to modeling higher order interaction terms with large dimension d. Our
proposed framework can be interpreted as an extension of Hao and Zhang (2014) and Hao
et al. (2018) to modeling multivariate functions, as well as modeling higher order interac-
tion effects. Compared to Radchenko and James (2010) that involves modeling all two-way
interaction terms, our approach is a multi-stage procedure and therefore is computationally
efficient and scalable for problems with large dimension d.

To quantify the theoretical properties of our estimator, we propose the notion of post-
selection persistency. We show that conditioned on the support of the estimator obtained
from the (r− 1)th step of the algorithm, the excessive risk between the estimator obtained
from the rth step and the best rth order SSANOVA model converges to zero. Our results
hold without assuming that the true multivariate function takes the form of the SSANOVA
model in (1). In addition, we impose minimal distributional assumptions on the data.

We apply the proposed method to fitting nonparametric regression and graphical mod-
els. For nonparametric graphical models, our proposal is the first feasible approach to learn
the graph without restricting the model to contain only pairwise interaction terms. In
Section 2, we describe the problem setup and define the tensor product space for the func-
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tional component in the SSANOVA decomposition in (1). We then propose the layer-wise
learning algorithm for estimating multivariate function under a generic loss function. We
apply the proposed algorithm to fitting nonparametric regression and graphical models in
Sections 3 and 4, respectively. Numerical studies are performed in Section 5. We close with
a discussion in Section 6. The proofs of the theoretical results are given in the Appendix.

2. Layer-Wise Learning Strategy

We describe the problem setup and define some notation. We then propose the layer-wise
learning strategy for estimating nonparametric functions with high order interactions.

2.1 Problem Setup and Notation

We start with a brief overview of the tensor product space of Sobolev spaces and refer the
reader to Lin (2000) for a detailed review. For any non-negative integer m, the mth order
Sobolev space with a univariate variable xj ∈ [0, 1] is defined as

Hm
j =

{
g
∣∣∣ g(ν) is absolutely continuous for 0 ≤ ν ≤ m− 1; g(m) ∈ L2([0, 1]);

∫ 1

0

g(u)du = 0

}
,

where g(ν) is the νth order derivative of g. The Sobolev norm for function g ∈ Hm
j is defined

as

‖g‖2Hm
j

=
m∑
ν=0

∫ 1

0

[
g(ν)(u)

]2
du.

For notational convenience, let [d] = {1, . . . , d}. Let J ⊆ [d] be an index set with
cardinality |J | = r, and let HJ = ⊗j∈JHm

j be the completed tensor product space of Hm
j

for all j ∈ J . We assume that gJ ∈ HJ . Let α = (α1, . . . , αr)
T be an r-dimensional vector

with integer entries and let ‖α‖1 =
∑r

i=1 αi ≤ m. Let J = {j1, . . . , jr}. The Sobolev norm
for the multivariate function gJ ∈ HJ is defined as

‖gJ‖2HJ
=

∑
α:‖α‖1≤m

‖DαgJ‖2 where Dα =
∂‖α‖1

∂xα1
j1
· · · ∂xαr

jr

. (3)

We define the smoothing spline ANOVA function class as

{1} ⊕
d∑
j=1

Hm
j ⊕

∑
J⊆[d],|J |=2

HJ ⊕
∑

J⊆[d],|J |=3

HJ ⊕ · · · .

Each functional component in the SSANOVA decomposition (1) lies in a subspace in the
orthogonal decomposition of the tensor product space. We define the rth order smoothing
spline ANOVA function class as

H(r) = {1} ⊕
d∑
j=1

Hm
j ⊕

∑
J⊆[d],|J |=2

HJ ⊕ · · · ⊕
∑

J⊆[d],|J |=r

HJ . (4)

The additive model introduced in Stone (1985) is a special case of (4) with r = 1.
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2.2 Layer-Wise Learning Algorithm

We propose the layer-wise learning algorithm to learn a d-dimensional multivariate function
under the SSANOVA framework. Recall from (2) that we assume a hierarchical structure
on the model, i.e., higher order interaction terms are not active when the lower order terms
are not active. To this end, we define some additional notation that will be used throughout
the paper. Given a set S ⊆ {J | J ⊆ [d]}, let |S|max = max{|I| | I ∈ S} be the largest
cardinality among the sets in S. In addition, we define

σ(S) =

I ∣∣∣ |I| = |S|max + 1, I ⊆
⋃

|J |=|S|max, J∈S

J

 .

For example, if S = {{1}, {2}, {3}}, then σ(S) = {{1, 2}, {1, 3}, {2, 3}}. For notational
convenience, we also define δ(S) = S ∪ σ(S) throughout the paper. Thus, in this example,
δ(S) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

The main crux of our proposal is to estimate the multivariate function sequentially
starting from the main effects. Using the support of the estimated function from the previous
step, we estimate the multivariate function by considering higher order terms only when
the lower order terms are estimated to be non-zeros. Let D be the data and let Ln(D, f)
be a generic loss function for estimating f . At the first step of the algorithm, we estimate
the function f subject to f ∈ H(1). In other words, f is assumed to be additive and we
propose to estimate f by

f̂ (1) = argmin
f∈H(1)

Ln(D, f), subject to

d∑
j=1

‖Pj(f)‖2 ≤ τ, (5)

where Pj(f) is the orthogonal projection of f onto Hm
j . The penalty term

∑d
j=1 ‖Pj(f)‖2 ≤

τ can be interpreted as an `1 constraint across components to encourage sparsity, and an `2
constraint within components to encourage smoothness. The tuning parameter τ controls
the number of main effects that are estimated to be non-zero.

Let S(1) be the support of f̂ (1), that is, S(1) = {j | Pj(f̂ (1)) 6= 0}. Given the support
S(1), we fit the following model at the second step of our algorithm

f̂ (2) = argmin
f∈H(2),S(f)=δ(S(1))

Ln(D, f),

subject to
∑
j∈S(1)

‖Pj(f)‖22 +
∑

{j1,j2}∈σ(S(1))

‖Pj1j2(f)‖2 ≤ τ,
(6)

where Pj1j2(f) is the orthogonal projection of f onto Hm
j1
⊗Hm

j2
. For notational convenience,

let S(f) be the support of f . At the second step of our algorithm, we update both the main
effects and the second order interactions, with the support of the function constrained on
S(f) = δ(S(1)). Since we have selected the support for the main effects, we use a ridge
penalty to encourage smoothness for the main effects.

More generally, let S(r−1) be the support identified at the (r−1)th step of our proposed
algorithm. Let J ⊆ [d] be an index set and let PJ(f) be the orthogonal projection of f onto
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Algorithm 1 Layer-Wise Learning Method (LASER).

Input: : Data D.
Initialize: S(0) = ∅, σ(S(0)) = {1, . . . , d}, and r = 1.
repeat

1. Update the function with rth order interaction effects:

f̂ (r) = argmin
f∈H(r),S(f)=δ(S(r−1))

Ln(D, f),

subject to
∑

J∈S(r−1)

‖PJ(f)‖22 +
∑

J∈σ(S(r−1))

‖PJ(f)‖2 ≤ τ.

2. Update the support S(r) = S(f̂ (r)).
3. r ← r + 1.

until S(r−1) = S(r).
Output: A sequence of estimators {f̂ (`)}r`=1.

the |J |th order interaction effect space ⊗j∈JHm
j . At the rth step of the algorithm, we fit

the model

f̂ (r) = argmin
f∈H(r),S(f)=δ(S(r−1))

Ln(D, f),

subject to
∑

J∈S(r−1)

‖PJ(f)‖22 +
∑

J∈σ(S(r−1))

‖PJ(f)‖2 ≤ τ.
(7)

We continue this process until no more higher order interaction effects are estimated to
be non-zero. We summarize the proposed method in Algorithm 1. Step 1 in Algorithm 1
depends on a specific loss function Ln(D, f). We will present the details for Step 1 in
the context of nonparametric regression and nonparametric graphical models in Sections 3
and 4, respectively.

2.3 Post-Selection Persistency

We first provide a brief review of the definition of persistency introduced by Greenshtein and
Ritov (2004). We define the risk of some function f as R(f) = E[Ln(D, f)]. An estimator
f̂ is said to be persistent relative to a class of function F if

R(f̂)− inf
f∈F

R(f) = oP (1). (8)

In other words, the risk of the estimator f̂ is consistent to that of the oracle function under
the model class F . In the statistical literature, many authors have shown that the estimators
for various statistical models are persistent (see, for instance, Greenshtein and Ritov, 2004
for the lasso regression, and Ravikumar et al., 2009 for the sparse additive model). However,
most of the existing results on persistency are derived for a single estimator, and not much
work has been done to characterize a sequence of estimators.

We establish the notion of post-selection persistency to characterize the theoretical prop-
erties of a sequence of estimators. Recall from Algorithm 1 that our proposed method
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yields a sequence of estimators {f̂ (`)}r`=1. Also recall that we denote S(r−1) to be the sup-

port of f̂ (r−1). Let F (r) be some function class with support constrained on δ(S(r−1)) =
S(r−1) ∪ σ(S(r−1)). Conditioned on the support S(r−1), we say that f̂ (r) is post-selection
persistent if

R(f̂ (r))− inf
f∈F(r)

R(f) = oP (1). (9)

We will show that our proposed estimators are post-selection persistent in the context of
nonparametric regression and nonparametric graphical models in Sections 3 and 4, respec-
tively.

3. Nonparametric Regression

We apply the layer-wise learning strategy to the setting of nonparametric regression. We
consider a nonparametric regression problem of a univariate response Y ∈ R on a d-
dimensional covariates X ∈ [0, 1]d:

Y = f(x) + ε,

where ε is the random noise variable. It is generally agreed upon in the literature that
estimating a general multivariate function without restricting the function into a smaller
function class F is infeasible.

Hastie and Tibshirani (1990) and Stone (1985) introduced a class of additive models
of the form f(x) =

∑d
j=1 fj(xj), which decomposed the multivariate function f(·) into the

summation of d univariate functions. One caveat of the additive model is the assumption
that there are no interaction terms among the covariates. To address this issue, Lin (2000)
proposed to estimate f(·) by assuming that it takes the form in (1) in the nonparametric
regression setting. However, their proposal is infeasible for high-dimensional problem in
which the number of covariates d and the order of interaction terms are large. Thus, they
truncated (1) to only modeling two-way interaction terms. More specifically, they considered
the following decomposition for f(·):

f(x) = µ+

d∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk).

Several authors have extended the aforementioned models to perform variable selection
and estimation simultaneously (among others, Lin and Zhang, 2006; Ravikumar et al.,
2009). However, Ravikumar et al. (2009) models only the main effects and Lin and Zhang
(2006) is computationally infeasible for large d problems even when they model only the
second order interaction terms. The nonparametric regression literature is vast and we refer
the reader to several recent proposals for more references (see, Tibshirani, 2014; Fan et al.,
2015; Lou et al., 2016).

We now apply the proposed layer-wise learning strategy for fitting a nonparametric
regression. Our proposal is scalable to the dimension of the covariates and does not need
to truncate model (1) to only modeling the two-way interaction terms. We show that the
resulting sequence of estimators from our algorithm is post-selection persistent under the
squared error risk in the high-dimensional setting in which d > n.
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3.1 Method and Optimization Problem

Let (y1,x1), . . . , (yn,xn) be n independent pairs of observations. We assume that the co-
variates x1, . . . ,xn are standardized such that xi ∈ [0, 1]d and that yi = f(xi) + εi with
E[εi] = 0 and E[ε2i ] <∞. The function f(·) is an arbitrary function and is not assumed to
take the form of (1). To approximate the function f(·), we fit the model in (7) with the
squared error loss function Ln(D, f) =

∑n
i=1(yi − f(xi))

2/n. This yields the optimization
problem

minimize
f∈H(r),S(f)=δ(S(r−1))

1

n

n∑
i=1

(yi − f(xi))
2,

subject to
∑

J∈S(r−1)

‖PJ(f)‖22 +
∑

J∈σ(S(r−1))

‖PJ(f)‖2 ≤ τ,
(10)

where τ > 0 is a positive tuning parameter.

It is useful to write the function f(·) in terms of its basis function. Let {φj`, ` = 1, 2, . . .}
denote a uniformly bounded basis with respect to Hm

j . Given J = {j1, . . . , jr}, for any
fJ ∈ HJ , the basis expansion of fJ is

fJ =
∑

1≤k1,...,kr<∞
θk1···krj1···jr φj1k1(xj1) · · ·φjrkr(xjr). (11)

In practice, we approximate (11) by its kth order basis expansion

f̃J =
∑

1≤k1,...,kr≤k
θk1···krj1···jr φj1k1(xj1) · · ·φjrkr(xjr) = φTJ (x)θJ , (12)

where θJ = vec({θk1···krj1···jr }) and φJ(x) = vec({φj1k1(xj1) · · ·φjrkr(xjr)}).
Let ΦJ denote the n×k|J | matrix with rows φJ(x1), . . . ,φJ(xn) and let y = (y1, . . . , yn)T .

We approximate (10) in terms of the kth order basis expansion:

minimize
θJ ,S(f)=δ(S(r−1))

1

n

∥∥∥y − ∑
J∈S(f)

ΦJθJ

∥∥∥2

2
,

subject to
1

n

∑
J∈S(r−1)

‖ΦJθJ‖22 +
1√
n

∑
J∈σ(S(r−1))

‖ΦJθJ‖2 ≤ τ.
(13)

Instead of solving optimization problem in (13) directly, we consider solving the following
problem

minimize
θJ ,S(f)=δ(S(r−1))

1

n

∥∥∥y − ∑
J∈S(f)

ΦJθJ

∥∥∥2

2
+ λ
( 1

n

∑
J∈S(r−1)

‖ΦJθJ‖22 +
1√
n

∑
J∈σ(S(r−1))

‖ΦJθJ‖2
)

(14)

Problems (13) and (14) are equivalent in the sense that for a given tuning parameter λ > 0,
there exists a τ > 0 such that the two problems share the same solution, and vice versa.
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Algorithm 2 Block Coordinate Descent Algorithm for Solving (14).

Initialize θ̂
(0)
J .

repeat
for J ∈ δ(S(r−1)) do

Update the coefficients:

θ̂
(t)
J =

(
ΦT
JΦJ

)−1
(

ΦT
Jy −ΦT

J

∑
J ′∈{δ(S(r−1))\J}

ΦT
J ′ θ̂

(t−1)
J ′

)
.

Penalize the coefficients:

θ̂
(t)
J =


θ̂

(t)
J /(1 + λ) if J ∈ S(r−1),(
1−

√
nλ

2‖ΦJ θ̂
(t)
J ‖2

)
+

θ̂
(t)
J if J ∈ σ(S(r−1)),

where (a)+ = max(0, a).
end for
Update t = t+ 1.

until converge such that
∑

J

∥∥∥θ̂(t)
J − θ̂

(t−1)
J

∥∥∥
2
≤ ε.

It can be verified that when r = 1, (14) is equivalent to the sparse additive model in
Ravikumar et al. (2009).

Since (14) is quadratic in terms of θJ and both the penalty terms are convex, standard
convexity theory implies the existence of a global minimizer. We propose a block coordinate
descent algorithm to solve (14), which details are given in Algorithm 2. The convergence
of block coordinate descent algorithm is studied in Tseng (2001). The derivation of Algo-
rithm 2 is straightforward and hence omitted. In this section, our estimation procedure
and algorithm are designed based on basis representation of the functions. We note that in
principle, other nonparametric methods such as that of Wang et al. (2016) and Benkeser
and van der Laan (2016) can be used to estimate the individual functions in our framework.

3.2 Post-Selection Persistency for Nonparametric Regression

In this section, we show that the sequence of estimators obtained from our proposal is
post-selection persistent. The population version of the optimization problem in (10) is

minimize
f∈H(r),S(f)=δ(S(r−1))

E
[
(Y − f(X))2

]
,

subject to
∑

J∈S(r−1)

E
[
(PJ(f))2

]
+

∑
J∈σ(S(r−1))

√
E [(PJ(f))2] ≤ τ, E [PJ(f)] = 0,

(15)

where the expectation is taken with respect toX and the noise ε. To simplify our theoretical
analysis, let fJ(XJ) = βJgJ(XJ) and consider the following equivalent population problem

9
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minimize
g∈H(r),βJ ,S(g)=δ(S(r−1))

E

Y − ∑
J∈δ(S(r−1))

βJgJ(XJ)

2 ,
subject to

∑
J∈S(r−1)

β2
J +

∑
J∈σ(S(r−1))

|βJ | ≤ τ, E[PJ(g)] = 0, E
[
(PJ(g))2

]
= 1.

(16)

Problems (16) and (15) are equivalent in the sense that their solutions are equivalent.
A similar formulation was also considered in Ravikumar et al. (2009) for sparse additive
models.

Let (X, Y ) denote a new pair of independent data and define the predictive risk as

R(f) = E
[
(Y − f(X))2

]
.

In this section, we assume that our estimator f̂ (r) is chosen to minimize the empirical version
of (16). Let

F (r) =

f : f(x) =
∑

J∈δ(S(r−1))

βJgJ(xJ),E[gJ ] = 0, ‖gJ‖HJ
≤ 1,

∑
J∈S(r−1)

β2
J +

∑
J∈σ(S(r−1))

|βJ | ≤ τ

 .

The following theorem establishes that the sequence of estimators is post-selection persis-
tent.

Theorem 1. Let s0 = 1 and let sr−1 be the cardinality of the support S(r−1). Conditioned
on S(r−1), under the square error risk R(f) = E[(Y − f(X))2] and for any 1 ≤ r < 2m, we
have

R(f̂ (r))− inf
f∈F(r)

R(f) = OP

τ2 ·

√
rs2
r−1 log d

n

 .

Thus, if τ = o([n/(rs2
r−1 log d)]1/4), the estimator f̂ (r) is post-selection persistent.

In other words, Theorem 1 states that conditioned on the selected support on the (r −
1)th step of our proposed method, S(r−1), the estimator f̂ (r) converges to the best rth
order approximation of the form (1) with support constrained on δ(S(r−1)). Given the
support S(r−1), the term sr−1 is a fixed constant that is much smaller than n. The proof of
Theorem 1 involves obtaining the bracketing number of some function classes and applying
empirical process tools to obtain an upper bound of the supremum between the empirical
and the expected value of the function. The condition r < 2m in Theorem 1 is needed to
guarantee that the integral of the log bracketing number is well defined. The details are
given in Appendix A.

Theorem 1 holds without assuming that the true regression function f(·) takes the
form of SSANOVA framework in (1). In addition, we do not impose any distributional
assumptions on (Y,X). We recover the persistency result in Ravikumar et al. (2009) for
the sparse additive model as a special case when r = 1 and m = 2.

10
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3.3 From Post-Selection Persistency to Persistency

Post-selection persistency results can serve as motivations for intermediate steps of LASER.
However, the results do not concern properties of the final estimator. In this section, we
establish sufficient conditions such that a post-selection persistency result can be strengthen
into a persistency result for the final estimator. For simplicity, we consider nonparametric
regression models with two-way interaction terms, i.e., f ∈ H(2).

In general, without any conditions on the bivariate functions fjk, it is extremely chal-
lenging to show that the main effects fj can be identified without modeling the two-way
interaction effects. This problem is related to proving model selection consistency under
model misspecification for sparse additive model, and such theoretical results have not been
well established in the literature. In fact, the same problem is not well understood in the
context of linear regression with two-way interaction effects until recently (Hao et al., 2018).

In the following, we impose sufficient conditions on the bivariate functions such that
the active main effects can be identified at the first stage of LASER in the context of
nonparametric regression. Therefore, conditioned on the correctly identified main effects,
the estimator obtained from the second stage is persistent. With some abuse of notation,
let S̄(1) and S̄(2) be two sets containing indices for the underlying active main and bivariate
effects, respectively. Assume that S̄(2) satisfies the hierarchical structural assumption in (2).

Recall from Section 3.1 that we approximate the main effects by its kth order basis
expansion, i.e., θ∗ = argminθ=(θT

1 ,...,θ
T
d )T ‖

∑d
j=1 fj −

∑d
j=1 θ

T
j φj‖22. In the following propo-

sition, our conditions are written in terms of an approximation of both the main and the
partial derivatives of the bivariate function using first order basis expansion. To this end,
we define some additional notation. Given a bivariate function g(x1, x2), let

g(2)(x1, x2)
∣∣
a1,a2

= g(a1, a2) +
∑

j∈{1,2}

(
∂g(a1, a2)

∂xj
(xj − aj) +

1

2

∂2g(a1, a2)

∂x2
j

(xj − aj)2

)
,

and

β∗ = argmin
β=(βT

1 ,...,β
T
d )T

∥∥∥∥ d∑
j=1

fj +
∑
s<t

f
(2)
st

∣∣
1/2,1/2

−
d∑
j=1

βTj φj

∥∥∥∥2

2

.

The following proposition establishes that the true underlying support, S̄(1), is a subset of
the estimated support from first stage of LASER, S(1).

Proposition 1. Assume that f ∈ H(2). Suppose that there exist a positive constant Cmin

such that the minimum eigenvalue λmin(ΦT
S̄(1)ΦS̄(1)) ≥ Cmin > 0. Let ρ∗n = minj∈S̄(1) ‖β∗j ‖∞

and q∗n = ‖
∑

(s,t)∈S̄(2) ∂
2
xsxtfst‖∞. Assume that

√
|S̄(1)|k · q∗n/ρ∗n = o(1),

√
kq∗n/λ = o(1),

and
1

ρ∗n

[√
log(|S̄(1)|k)/n+ |S̄(1)|3/2/k + λ

√
|S̄(1)|k

]
= o(1).

We have P(S(1) ⊇ S̄(1))→ 1.

The proof of Proposition 1 is similar to that of Theorem 2 in Ravikumar et al. (2009):
we provide a sketch proof in Appendix B. Intuitively, the conditions on q∗n states that the
bivariate functions should be sufficiently smooth relative to the signal ρ∗n. As a reviewer
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pointed out, this implies that the bivariate functions should be close to linear, relative to
the main effects. We have removed the incoherence condition in Ravikumar et al. (2009)
and we now allow the active and non-active main effects to be correlated. Relaxing the
imposed assumptions on the bivariate functions is out of the scope of this paper, and we
leave it as an open problem for future research.

4. Nonparametric Graphical Models

Undirected graphical models, also known as Markov random field, have been used exten-
sively to model the conditional dependence relationships among a set of random variables.
In a graph, each node represents a random variable and an edge between two nodes indicates
that the two random variables are conditionally dependent, given all of the other variables.
Let X be a d-dimensional random variable with joint density function of the form

p(x) =
1

Z(f)
exp(−f(x)), (17)

where Z(f) =
∫

exp(−f(x))dx is the partition function such that the density p(x) integrates
to one. By the Hammersley-Clifford theorem, a set of random variables X forms a Markov
random field with respect to a graph G if f(x) takes the form f(x) =

∑
J∈JG fJ(xJ),

where JG is a set of all cliques in G and fJ is the potential function. For a set J ⊆ [d],
if fJ(xJ) 6= 0, then the set of random variables XJ forms a clique and are conditionally
dependent given all of the other variables.

Currently, most of the research on graphical models are limited to the case when the
maximal clique is of size two. This is referred to as the pairwise Markov random field with
the following joint density

p(x) =
1

Z(f)
exp

−
d∑
j=1

fj(xj)−
∑
j<k

fjk(xj , xk)

 . (18)

Under the pairwise Markov random field, the jth and kth random variables are conditionally
independent if and only if fjk(xj , xk) = 0. The pairwise Markov random field in (18) is
fully nonparametric and consists of many recently studied pairwise graphical models as its
special cases.

Example 1. Gaussian graphical models: Let X ∼ Nd(0,Σ) and let Θ = Σ−1 be the
inverse covariance matrix. The Gaussian graphical model has joint density

p(x) ∝ exp

−1

2

d∑
j=1

Θjjx
2
j −

d−1∑
j=1

∑
k>j

Θjkxjxk

 .

Thus, the Gaussian graphical model is a special case of (18) with fjk(xj , xk) = Θjkxjxk and
fj(xj) = 1

2Θjjx
2
j . The Gaussian graphical model is well studied in the literature (see, for

instance, Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2008;
Rothman et al., 2008; Peng et al., 2009; Ravikumar et al., 2011; Cai et al., 2011; Sun and
Zhang, 2013; Tan et al., 2014, 2015; Liu and Luo, 2015; Drton and Maathuis, 2017).

12
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Example 2. Exponential family graphical models: The exponential family graphical model
has joint density

p(x) ∝ exp


d∑
j=1

(t(xj) + C(xj)) +
d−1∑
j=1

∑
k>j

Θjkt(xj)t(xk)

 ,

where t(xj) is a univariate sufficient statistics function, C(xj) is some function of xj spec-
ified by the exponential family distribution, and Θjk is the canonical parameter. Thus, this
is a special case of (18) with fjk(xj , xk) = −Θjkt(xj)t(xk) and fj(xj) = −t(xj) − C(xj).
This model is recently studied by many authors (see, for instance, Yang et al., 2013, 2015;
Tan et al., 2016; Yang et al., 2018; Chen et al., 2014)

Example 3. Nonparanormal graphical models: Let g = {g1, . . . , gd} be a set of monotone
univariate functions. A d-dimensional random vector X has a nonparanormal distribution
X ∼ NPNd(g,Σ) if g(X) ∼ Nd(0,Σ). Let Θ = Σ−1. Then, the nonparanormal graphical
model has joint density

p(x) ∝ exp


d∑
j=1

(
−1

2
Θjjgj(xj)

2 + log
∣∣g′j(xj)∣∣)− d−1∑

j=1

∑
k>j

Θjkgj(xj)gk(xk)

 .

This is a special case of (18) with fjk(xj , xk) = Θjkgj(xj)gk(xk) and fj(xj) = Θjjgj(xj)
2/2−

log |g′j(xj)|. This model is studied in Liu et al. (2009) and Liu et al. (2012).

We consider modeling the Markov random field in (17) under the SSANOVA framework,
that is, the function f(·) can be decomposed as in (1). This general model has been
considered in the literature and an estimate of f(·) can be obtained by optimizing over the
penalized maximum likelihood function (see, for instance, Leonard, 1978; Silverman, 1982;
Gu and Wang, 2003; Jeon and Lin, 2006). However, due to the log-partition function Z(f),
the proposed algorithms are not scalable to large dimension and higher order interaction
terms. To the best of our knowledge, most methods involve truncating the functional
decomposition (1) to only modeling the two-way interaction terms, which corresponds to
pairwise nonparametric graphical models in (18).

In this section, we propose a novel method to estimate nonparametric graphical models
of the form (17) without restricting it to only modeling two-way interaction terms. More
specifically, we are interested in estimating nonparametric graphical models with joint den-
sity function

p(x) =
1

Z(f)
exp(−f(x)) and f(x) = µ+

d∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk) + · · · .

Rather than using the penalized maximum likelihood function to estimate f(·), we propose
to estimate f(·) under the score matching loss function proposed in Hyvärinen (2005) and
Hyvärinen (2007), which is independent of the log-partition function Z(f) that is com-
putationally intractable. Thus, our algorithm is scalable to the dimension of the random
variables as well as the size of cliques among the random variables compared to existing pro-
posals. We also show that our proposal is post-selection persistent under the score matching
risk in the high-dimensional setting.
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4.1 Score Matching Loss

The score matching loss function was introduced to estimate densities of the form (17),
which involves a computationally intractable log-partition function Z(f). In the following,
we provide a brief discussion on the score matching loss and refer the reader to Hyvärinen
(2005) and Hyvärinen (2007) for more details. LetX be a d-dimensional continuous random
vector with distribution P and joint density function p(·). For a twice differentiable function
f : Rd → R, we define the Laplacian operator and the gradient of f(·) as

∆f(x) =

d∑
j=1

∂2

∂x2
j

f(x) ∈ R and ∇jf(x) =
∂

∂xj
f(x), (19)

respectively. For a distribution Q with density q(·), Hyvärinen (2005) defined the score
matching loss of Q with respect to P as

1

2

∫
Rd

p(x)‖∇ log p(x)−∇ log q(x)‖22dx. (20)

Equation (20) is also referred to as the Fisher divergence. It can be seen that (20)
is minimized as a function of Q when Q = P, which depends on the true distribution
P. Hyvärinen (2005) showed that under the condition that ‖p(x)∇ log q(x)‖2 → 0 as
‖x‖2 →∞, the score matching loss can be rewritten as∫

Rd

p(x)

[
∆ log q(x) +

1

2
‖∇ log q(x)‖22

]
dx+ C, (21)

where C is a constant that is independent of Q. The term in the integrand (21) is referred
to as the Hyvärinen scoring rule, and no longer depends on the true distribution P and
the log-partition function. Thus, an estimator of f(·) can be obtained by minimizing the
Hyvärinen scoring rule. The statistical properties of the estimator obtained by minimizing
the Hyvärinen scoring rule have been studied in the classical setting in which n > d (among
others, Hyvärinen, 2005, 2007; Forbes and Lauritzen, 2015).

Recently, Lin et al. (2016) proposed to estimate parametric pairwise graphical models
in the high-dimensional setting in which d > n under the score matching loss function.
In addition, in his dissertation, Janofsky (2015) proposed to estimate fully nonparametric
pairwise graphical models as in (18) using the score matching loss function. However, their
proposal is limited to pairwise interactions between two random variables and are not able
to estimate clique of size greater than two in a graph. We now generalize the aforementioned
proposals to accommodate general nonparametric graphical models of the form (17) using
the score matching loss function.

We start with establishing a proper score matching loss function for estimating nonpara-
metric graphical models in (17). In the context of nonparametric graphical model setting,
we consider distribution P that is supported on [0, 1]d. The Hyvärinen scoring rule (21) no
longer applies since it is derived for distribution that is supported on Rd. We now make
a modification to the Hyvärinen scoring rule for densities with support [0, 1]d. To this
end, we define rj(xj) to be a function of xj and r(x) = (r1(x1), . . . , rd(xd))

T . We define
r′(x) = (r′1(x1), . . . , r′d(xd))

T to be the element-wise differentiation of the vector r(x), that

14
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is, r′j(xj) = ∂rj(xj)/∂xj . We define the modified score matching loss of Q with respect to
P as

1

2

∫
[0,1]d

p(x) ‖r(x) ◦ [∇ log p(x)−∇ log q(x)]‖22 dx, (22)

where ◦ is the Hadamard product between two vectors. The following lemma establishes a
scoring rule similar to that of (21) for random variables X ∈ [0, 1]d.

Lemma 1. Assume that the density p(x) for P satisfies the regularity conditions that

lim
xj→0

p(x) · ∇j log q(x)r2
j (xj)→ 0 and lim

xj→1
p(x) · ∇j log q(x)r2

j (xj)→ 0.

for any 1 ≤ j ≤ d. Then, the modified score matching loss can be written as∫
[0,1]d

p(x)S(x, q)dx+ C, where

S(x, q) = 2
(
r(x) ◦ r′(x)

)T ∇ log q(x) + (r(x) ◦ r(x))T ∇2 log q(x) +
1

2
‖r(x) ◦ ∇ log q(x)‖22,

(23)
C is some constant independent of Q, and ∇2 log q(x) is a vector of second order derivative
of x.

The assumption in Lemma 1 requires that rj(xj) → 0 as xj → 0 and xj → 1. One
possible choice of rj is rj(xj) = xj(1 − xj), which was considered in Janofsky (2015) in
the context of pairwise nonparametric graphical models. Thus, an estimate of f(·) for the
nonparametric graphical model (17) can be obtained by minimizing the modified scoring
rule

S(x, f) = −2
d∑
j=1

rj(xj)r
′
j(xj)f

(j)(x)−
d∑
j=1

r2
j (xj)f

(jj)(x) +
1

2

d∑
j=1

r2
j (xj)

(
f (j)(x)

)2
, (24)

where f (j) and f (jj) are the first and second order derivative of f(x) with respect to xj ,
respectively. From (24), we see that the score matching loss function depends only on
∇ log q(x) and ∇2 log q(x), which are free of the log-partition function Z(f).

4.2 Method and Optimization Problem

Let x1, . . . ,xn be n independent and identically distributed observations drawn from P with
support [0, 1]d. To estimate the conditional dependencies among the random variables, we
fit the model in (7) with the score matching loss function Ln(D, f) = 1

n

∑n
i=1 S(xi, f), where

S(xi, f) is as defined in (24).

In the context of graphical models, the main effect fj is always non-zero unless the
jth random variable is uniformly distributed. Thus, we start estimating nonparametric
graphical models with the second step of our algorithm since we do not have to perform
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variable selection for the main effects. This yields the following optimization problem at
the rth step of our proposed algorithm

minimize
f∈H(r),S(f)=δ(S(r−1))

1

n

n∑
i=1

S(xi, f),

subject to
∑

J∈S(r−1)

‖PJ(f)‖22 +
∑

J∈σ(S(r−1))

‖PJ(f)‖2 ≤ τ.
(25)

Similar to Section 3.1, we solve the penalized version of (25) in terms of its basis expan-

sion. To this end, we define additional notation. Let φ
(j)
J (x) and φ

(jj)
J be the first and second

order derivative of φJ(x) with respect to xj , respectively. Similarly, let Φ
(j)
J and Φ

(jj)
J de-

note the n× k|J | matrix with rows φ
(j)
J (x1)T , . . . ,φ

(j)
J (xn)T and φ

(jj)
J (x1)T , . . . ,φ

(jj)
J (xn)T ,

respectively. Writing (25) in terms of its basis expansion yields the optimization problem

minimize
θJ ,S(f)=δ(S(r−1))

1

n

n∑
i=1

Sφ(xi,θ) + λ
( 1

n

∑
J∈S(r−1)

‖ΦJθJ‖22 +
1√
n

∑
J∈σ(S(r−1))

‖ΦJθJ‖2
)
, (26)

where Sφ(xi,θ) is a function of ΦJ ,Φ
(j)
J , and Φ

(jj)
J . Problem (26) is convex and can be

solved directly via the block coordinate descent algorithm (Tseng, 2001).
The block coordinate descent algorithm involves cycling through the updates for θJ for

all J until convergence. Since the loss function 1
n

∑n
i=1 Sφ(xi,θ) is quadratic in θJ , there is

a closed form update for any J ∈ S(r−1). However, for J ∈ σ(S(r−1)), there is no closed form
update for θJ due to the composite function in the group lasso penalty. In the context of
pairwise nonparametric graphical models, Janofsky (2015) proposed to use the alternating
direction method of multiplies algorithm to obtain updates for θJ with J ∈ σ(S(1)). For
higher order terms, a similar algorithm can be used. We omit the details and refer the
reader to Janofsky (2015) for the derivation of the algorithm.

4.3 Post-Selection Persistency for the Nonparametric Graphical Model

We now establish that the sequence of estimators {f̂ (`)}r`=1 obtained from solving (25) is
post-selection persistent under the score matching risk function. For density estimation,
a natural risk function is the distance between two density functions. There are various
measures to quantify the distance between two density functions p and q. One of the most
popular distance measure is the Kullback-Leibler divergence. Since we derive the score
matching loss function based on the Fisher divergence criterion, it is natural to define the
risk function using the Fisher divergence:

R(p, q) =
1

2

∫
[0,1]d

p(x)

∥∥∥∥r(x) ◦ ∇ log
p(x)

q(x)

∥∥∥∥2

2

dx. (27)

The population version of the optimization problem in (25) is

minimize
f∈H(r),S(f)=δ(S(r−1))

E [S(X, f)] ,

subject to
∑

J∈S(r−1)

E
[
(PJ(f))2

]
+

∑
J∈σ(S(r−1))

√
E [(PJ(f))2] ≤ τ, E [PJ(f)] = 0,

(28)
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where the expectation is taken with respect to the random variables X. Similar to Sec-
tion 3.2, we let fJ(XJ) = βJgJ(XJ) and consider the following equivalent population
problem

minimize
g∈H(r),βJ ,S(g)=δ(S(r−1))

E [S(X,β, g)] ,

subject to
∑

J∈S(r−1)

β2
J +

∑
J∈σ(S(r−1))

|βJ | ≤ τ, E[PJ(g)] = 0, E
[
(PJ(g))2

]
= 1.

(29)

For theoretical purposes, at the rth step of LASER, we assume that the estimator is
chosen to minimize the empirical version of (29). Recall that

F (r) =

f : f(x) =
∑

J∈δ(S(r−1))

βJgJ(xJ),E[gJ ] = 0, ‖gJ‖HJ
≤ 1,

∑
J∈S(r−1)

β2
J +

∑
J∈σ(S(r−1))

|βJ | ≤ τ

 .

We consider the following density function class

Q(r) = {q | q ∝ exp(−f(x)), f ∈ F (r)}.

We now state the main theorem on the post-selection persistency property of the estimator
p̂(r) obtained from the rth step of LASER.

Theorem 2. Let p̂(r) ∝ exp(−f̂ (r)) and let sr−1 be the cardinality of the support S(r−1).
Given S(r−1), for any 1 ≤ r < 2(m − 2), p̂(r) is post-selection persistent under the Fisher
divergence risk function

R(p, p̂(r))− inf
q∈Q(r)

R(p, q) = OP

τ2

√
r3s2

r−1 log d

n

 .

Thus, if τ = o([n/(r3s2
r−1 log d)]1/4), then the estimator p̂(r) is post-selection persistent given

S(r−1).

Theorem 2 states that conditioned on the support, S(r−1), the estimator p̂(r) converges
to the best rth order approximation of the form in Q(r). The proof of Theorem 2 is given
in Appendix D.

5. Numerical Studies

We perform numerical studies for both nonparametric regression and nonparametric graph-
ical models.

5.1 Nonparametric Regression

We perform extensive numerical studies to evaluate the performance of our proposal for
fitting multivariate nonparametric regression. In all of our numerical studies, we generate a
training set and a test set. Each model is fit using the training set, and the trained model
is used to predict the response on the test set. To compare the performance across different
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methods, we calculate the sum of squares error between the predicted response and the
true response from the test set. These results are reported in Tables 1—3. In addition, we
report in Appendix F the true and false positive rates for the main effects and interaction
effects, defined as the proportion of correctly estimated active variables and the proportion
of inactive variables that are incorrectly estimated to be active, respectively.

Seven approaches are compared in our numerical studies: our proposal, LASER; the sparse
additive model, SpAM (Ravikumar et al., 2009); the nonparametric additive regression model
with two-way interactions, VANISH (Radchenko and James, 2010); the backtracking method
for modeling high-dimensional linear regression with two-way interaction terms, BT (Shah,
2016); the convex modeling of interactions with strong heredity, FAMILY (Haris et al., 2016);
the regularization approach for high-dimensional quadratic regression, RAMP (Hao et al.,
2018); the oracle approach by assuming that the active variables were known a priori,
ORACLE. In particular, the ORACLE is obtained by fitting nonparametric regression model
(14) using only the active variables with the ridge penalty for smoothness.

Our proposal LASER, SpAM, VANISH, and ORACLE are nonparametric. LASER involves
fitting the nonparametric regression model (14) sequentially. In each step of Algorithm 1,
we select the tuning parameter using a five-fold cross-validation on the training data set.
Algorithm 1 is stopped when there is no more higher order interaction terms to be estimated.
We fit LASER using the kth basis expansion with k = 3. Note that the solution for SpAM can
be obtained from the first layer of LASER. For VANISH, we simply use the default setting as
in Radchenko and James (2010) and select the tuning parameter with cross-validation. For
ORACLE, we select the tuning parameter that yields the smallest sum of squares error on the
test set. In other words, ORACLE serves as a gold standard for nonparametric regression. The
FAMILY, RAMP, and BT are sparse high-dimensional linear regression with two-way interaction
terms. The tuning parameters for RAMP are selected using the extended BIC described in
Hao et al. (2018). For FAMILY and BT, we consider a fine grid of tuning parameters and
report the best results. In other words, we are giving unfair advantage to FAMILY and BT.

Most methods that estimate pairwise interaction terms are not computationally feasi-
ble for high-dimensional problem when d is large. Therefore, we consider both the low-
dimensional and high-dimensional settings in Sections 5.1.1 and 5.1.2, respectively. We
then perform numerical studies to assess how correlation among the covariates affects the
performance of LASER in Section 5.1.3.

5.1.1 Low-Dimensional Setting with Two-Way Interactions

In our simulation studies, we generate ε ∼ N(0, 1) and each element of X from a uniform
distribution on the interval [0, 1]. We consider the following regression models with d = 30
covariates and n = {200, 400}:

A1 — A linear regression model with two-way interaction terms:

y = x1 + x2 + x3 + 5x1x2 − 2x1x3 + 5x2x3 + ε.
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A2 — A non-linear regression model with two-way interaction terms (product of two indi-
vidual functions):

f1(z) =
√

2 [sin(6z)− 0.0066] , f2(z) =
√

11[(2z − 1)2 − 1/3],

f3(z) =
√

12(z − 1/2), f4(z) =
√

16.6[exp(−5z)− 0.2],

f5(z) =
√

50[1/(1 + z)− 0.69],

y =

4∑
j=1

fj(xj) + f3(x1)f3(x2) + f5(x2)f4(x4) + f3(x3)f4(x4) +
√

0.5ε,

where the constants are designed such that each function has mean zero and variance
approximately one.

A3 — A non-linear regression model with two-way interaction terms (bivariate functions
that cannot be decomposed as product of two individual functions):

y =

3∑
j=1

fj(xj) +
√

19(
√
x1x2 − 4/9) +

√
50[exp(−5x2x3)− 0.438] +

√
0.5ε,

where fj(xj) is as defined in Scenario A2.

The results, averaged over 200 data sets, are reported in Table 1.

Table 1: The sum of squares error (standard error) out of 200 test samples for the three
different scenarios in Section 5.1.1, averaged over 200 data sets. The results are
for models trained with n training samples. Numbers are rounded to the nearest
integer.

Scenario A1 Scenario A2 Scenario A3

n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

FAMILY 273 (2) 255 (2) 825 (10) 615 (7) 412 (3) 379 (3)
BT 216 (1) 203 (2) 766 (14) 751 (13) 411 (3) 407 (3)
RAMP 216 (2) 207 (2) 848 (21) 672 (22) 333 (9) 300 (9)
SpAM 323 (3) 296 (2) 825 (10) 743 (10) 91 (1) 84 (1)
VANISH 289 (3) 234 (2) 123 (3) 83 (1) 84 (1) 74 (1)
LASER 279 (4) 226 (2) 124 (4) 84 (1) 75 (1) 63 (1)
ORACLE 246 (2) 216 (2) 91 (1) 76 (1) 64 (1) 59 (1)

From Table 1, we see that BT and RAMP have the best performance in Scenario A1.
This is not surprising since BT and RAMP are designed for modeling linear regression with
two-way interaction terms. Both BT and RAMP outperform FAMILY that models the two-way
interaction terms using a hierarchical penalty. For the nonparametric methods, SpAM has the
highest sum of squares error since the true model contains two-way interaction terms that
SpAM fails to model. VANISH and LASER have similar performance, and perform significantly
better than SpAM. As we increase the sample size from n = 200 to n = 400, we see that
the performance of LASER becomes more comparable to that of ORACLE, BT, and RAMP. For
Scenarios A2—A3, FAMILY, RAMP, and BT have the highest sum of squares error since these
methods are intended for modeling linear regression. Again, VANISH and LASER have similar
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performance, and outperform SpAM. In summary, LASER is able to adaptively estimate the
higher order terms accurately in both linear and non-linear regression settings.

5.1.2 High-Dimensional Setting with Three-Way Interactions

In this section, we consider the high-dimensional setting in which the number of variables d is
potentially larger than the number of observations. FAMILY and VANISH are computationally
infeasible since there are a total of d+

(
d
2

)
parameters and functions to estimate. Moreover,

we consider settings with a three-way interaction effect to illustrate the flexibility of our
proposal compared to existing methods such as BT and RAMP that are limited to modeling
two-way interaction terms. We generate ε and X as in Section 5.1.1. We consider three
regression models with d = {200, 400} covariates and n = {350, 700}:

B1 — A linear regression model with three-way interaction terms:

y = x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 25x1x2x3 +
√

0.5ε.

B2 — A non-linear regression model with three-way interaction terms (product of individ-
ual functions):

y =

3∑
j=1

fj(xj) + f3(x1)f3(x2) + f5(x2)f4(x3) + f1(x1)f4(x3) + 25(x1x2x3 − 1/8) +
√

0.5ε,

where fj(·) is as defined in Scenario A2.

B3 — A non-linear regression model with three-way interaction terms (bivariate functions
that cannot be decomposed as product of two individual functions):

y =

3∑
j=1

fj(xj) +
√

19(
√
x1x2 − 4/9) +

√
50[exp(−5x2x3)− 0.438]

+ f3(x1)f4(x3) + 25(x1x2x3 − 1/8) +
√

0.5ε,

where fj(·) is as defined in Scenario A2.

The results, averaged over 200 data sets, are reported in Table 2.
From Table 2, we see that LASER has the best performance across all scenarios since it

is the only method that models the three-way interaction term. The sum of squares error
is quite close to that of ORACLE even in the high-dimensional setting when n = 350 and
d = 400. As we increase the sample size, we see that the performance of LASER becomes
more similar to that of ORACLE.

5.1.3 Two-Way Interactions With Correlated Data

In this section, we assess the performance of LASER when the covariates X are correlated.
We generate ε ∼ N(0, 1) and X ∼ Nd(0,Σ), where Σjk = ρ|j−k| for 1 ≤ j, k ≤ d. For
Scenario C2, we normalize the covariates such that the observed values lie within the unit
interval. We consider the following regression models with d = 30, n = 200, and ρ =
{0, 0.2, 0.4, 0.6, 0.8}:

20



LASER: Layer-Wise Learning Strategy

Table 2: The sum of squares error (standard error) out of 200 test samples for the three
different scenarios in Section 5.1.2, averaged over 200 data sets. The results are
for models trained with n training samples. Numbers are rounded to the nearest
integer.

Scenario B1 Scenario B2 Scenario B3

n = 350 n = 700 n = 350 n = 700 n = 350 n = 700

BT 134 (1) 127 (1) 543 (6) 513 (5) 570 (5) 539 (4)
RAMP 128 (1) 125 (1) 336 (6) 309 (3) 308 (4) 291 (3)

d = 200 SpAM 745 (11) 663 (9) 2203 (28) 2008 (21) 876 (13) 780 (10)
LASER 95 (4) 71 (2) 149 (11) 102 (3) 127 (7) 82 (2)
ORACLE 73 (1) 62 (1) 107 (3) 90 (2) 86 (1) 72 (1)

BT 136 (1) 128 (1) 548 (6) 521 (6) 578 (5) 550 (5)
RAMP 127 (1) 124 (1) 402 (9) 309 (4) 339 (7) 288 (3)

d = 400 SpAM 755 (11) 670 (9) 2224 (30) 2017 (24) 896 (13) 792 (11)
LASER 97 (3) 70 (1) 166 (11) 95 (2) 122 (6) 80 (2)
ORACLE 74 (1) 62 (1) 109 (3) 87 (2) 87 (1) 71 (1)

C1 — A linear regression model with two-way interaction terms:

y = x1 + x6 + x11 + 0.5x1x6 − 0.5x1x11 + 0.5x6x11 + ε.

C2 — A non-linear regression model with two-way interaction terms:

y =

4∑
j=1

fj(xj) + f3(x1)f3(x6) + f5(x6)f4(x16) + f3(x11)f4(x16) +
√

0.5ε,

where the fj(·) is as defined in Scenario A2.

The results, averaged over 200 data sets, are reported in Table 3. From Table 3, we see that
LASER and ORACLE have similar sum of squares error. Moreover, LASER outperforms SpAM

significantly. These results suggest that LASER is able to select the important main effects
and interaction effects even when there are correlation among covariates.

5.2 Nonparametric Graphical Models

In this section, we perform some numerical studies to estimate nonparametric graphical
models. We compare LASER to the graphical lasso (glasso) which estimate pairwise
Gaussian graphical models (Friedman et al., 2008). We also consider the proposal of Liu
et al. (2012) (kendall), a semiparametric approach for estimating nonparanormal graphical
models. To evaluate the performance across different methods, we define the true positive
rate as the proportion of correctly identified non-zeros, and the false positive rate as the
proportion of zeros that are incorrectly identified to be non-zeros. In addition, we illustrate
the main advantage of LASER in a stock price data by modeling three way cliques that
quantify conditional dependencies among three variables, conditioned on the others.

Since existing approaches are limited to estimating pairwise graphical models, to com-
pare across different methods, we first perform some numerical studies to estimate pairwise
graphical models. In his dissertation, Janofsky (2015) has also conducted some simulation
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Table 3: The sum of squares error (standard error) out of 200 test samples for the two
scenarios in Section 5.1.3, averaged over 200 data sets. The results are for models
trained with n = 200 training samples with d = 30 covariates. Numbers are
rounded to the nearest integer.

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

FAMILY 236 (2) 236 (2) 235 (2) 236 (2) 240 (2)
BT 218 (2) 217 (2) 217 (2) 218 (2) 217 (1)
RAMP 210 (1) 209 (2) 209 (1) 210 (1) 215 (2)

Scenario C1 SpAM 448 (5) 452 (5) 448 (5) 431 (5) 355 (4)
VANISH 731 (17) 852 (66) 749 (28) 745 (21) 621 (25)
LASER 345 (7) 353 (7) 348 (8) 340 (5) 339 (4)
ORACLE 309 (5) 314 (6) 312 (7) 305 (6) 301 (5)

FAMILY 309 (5) 315 (6) 306 (5) 318 (5) 328 (5)
BT 254 (4) 261 (5) 250 (4) 247 (5) 225 (5)
RAMP 250 (6) 261 (7) 256 (6) 254 (6) 269 (9)

Scenario C2 SpAM 213 (4) 224 (6) 216 (5) 214 (5) 191 (4)
VANISH 379 (15) 393 (17) 403 (19) 413 (22) 452 (22)
LASER 137 (3) 143 (5) 140 (4) 141 (4) 156 (4)
ORACLE 117 (3) 122 (4) 119 (4) 122 (4) 120 (4)

studies to assess the performance of pairwise nonparametric graphical models using the
score matching approach. More specifically, we consider two different simulation settings:

1. Gaussian graphical models: we simulate X ∼ N(0,Σ), where Σ is generated such
that (Σ−1)jk = 0.4 for |k − j| = 1, (Σ−1)jj = 1, and setting the other elements to
zero.

2. Nonparametric graphical models: we simulate the data from the joint density

p(x) ∝ exp

− d∑
j=1

xj −
∑
j<k

βjkx
2
jx

2
k

 , (30)

where βjk = 1 for |k − j| = 1 and βjk = 0 otherwise. Noting that the conditional
distribution for each variable on the others is Gaussian, we employ a Gibbs sampler
to simulate data from (30).

All of the aforementioned methods involve a sparsity tuning parameter. We applied a
fine grid of tuning parameter values for all methods to obtain the curves in Figure 1. For
Gaussian and nonparametric graphical models, we present results for n = 100 and p = 25,
and n = 300 and p = 25, respectively. Results are averaged over 200 data sets.

For Gaussian graphical models, we see from Figure 1 that the graphical lasso and the
proposal of Liu et al. (2012) outperform LASER when n = 100. This is not surprising since
both of the methods are developed based on the Gaussian assumption and Gaussian copula
assumption, whereas LASER is entirely nonparametric. We essentially loses some efficiency
relative to the parametric and semiparametric approaches when the parametric and semi-
parametric assumptions are satisfied. For nonparametric graphical models, both Friedman
et al. (2008) and Liu et al. (2012) are no longer able to estimate the graph accurately since
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Figure 1: True and false positive rates, averaged over 200 data sets, for pairwise Gaussian
and nonparametric graphical models. Left panel: Gaussian graphical models with
n = 100 and d = 25. The curves are obtained by varying the tuning parameter.
Right panel: nonparametric graphical models with n = 300 and d = 25.

the joint density in (30) is clearly not multivariate Gaussian. Their performances are simi-
lar to random guess even when we increase n by two-fold. LASER clearly outperforms the
parametric approaches in this case. In conclusion, we sacrifice some performance in the
parametric setting to gain flexibility in modeling nonparametric graphical models.

Next, we illustrate the main advantage of LASER by modeling three-way cliques that
quantify conditional dependencies among three variables, conditioned on all of the other
variables. To this end, we analyze the stock price data from Yahoo! Finance, which consists
of daily closing prices for stocks in the S&P 500 index between January 1, 2003 and January
1, 2008. Stocks that are not consistently listed in the S&P 500 index during this time period
are removed, leaving us with n = 1258 daily closing prices with 452 stocks. In this study, we
categorize the stocks into six Global Industry Classification Standard sectors: Financials,
Energy, Health Care, Information Technology, Materials, and Utilities.

The goal of our analysis is to understand the conditional dependence relationships among
the six sectors. More specifically, we seek to learn the three-way conditional dependence
relationships among the d = 6 sectors by modeling the three-way interaction terms in (17).
Note that existing approaches for modeling graphical models in the literature are not able
to model three-way cliques.

We first estimate a nonparametric graphical model with two-way interaction terms,
corresponding to pairwise conditional dependencies. For the ease of interpretation, we
pick the tuning parameter λ such that there are six edges in the estimated conditional
independence graph. The results are summarized in Figure 2(a). We see that the three pairs
of sectors “health care—materials”, “health care—financials”, and “financials—materials”
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are conditionally dependent, given the other sectors. However, since we are estimating only
the second order term at the second step of LASER, we cannot conclude that the three
sectors financials, materials, and health care are jointly conditionally dependent.

To assess whether the three sectors are jointly conditionally dependent, we proceed to
the next step of LASER for estimating three way interaction terms. We use the same
tuning parameter to fit the model at the second step. The results are shown in Figure 2(b).
Since the three way interaction term for health care, materials, and financials is estimated
to be non-zero, we conclude that the three sectors are jointly conditionally dependent.
Similar results hold for the sectors financials, materials, and information technology. Finally,
LASER is terminated since there is no potential four way interaction terms to be estimated.

(a) Pairwise Conditional Dependence (b) Three−way Conditional Dependence

Health Care

Information Technology

Materials

Utilities

Financials

Energy

Figure 2: Estimated Conditional Dependence Graphs using the proposed method. Panel
(a): Estimated pairwise conditional dependence relationships between two vari-
ables, conditioned on the others. Panel (b): Estimated three-way conditional
dependence relationships among three variables, conditioned on the others.

6. Discussion

In this paper, we propose a layer-wise learning strategy (LASER) for fitting multivariate
function under the SSANOVA framework. LASER provides a computationally feasible
framework for estimating SSANOVA models with higher order interaction effects. In addi-
tion, we have shown that the estimators obtained from LASER is post-selection persistent.
We illustrate LASER in the context of nonparametric regression and nonparametric graph-
ical models problems. In the graphical modeling literature, most work have focused on
estimating pairwise graphical models, which corresponds to estimating the conditional de-
pendence relationships between pairs of variables. LASER provides an alternative way
to estimate conditional dependence relationships among a set of more than two variables.
More generally, LASER can be easily applied to other problems that involves estimating
multivariate function such as the generalized nonparametric regression.

In the context of lasso regression with two-way interaction terms, Shah (2016) considered
the scenario in which the main effects are useful for prediction only when certain two-
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way interaction effects are present. In this case, two-stage methods that perform variable
screening on the main effects at the first stage, and then include the interaction effects
based on the identified main effects may fail to identify some important covariates. To
address this issue, Shah (2016) proposed a backtracking algorithm. The main idea is to
first select a few variables that are most correlated with the response, and then include its
corresponding interaction effects into the model. This process is repeated until no more
variables are included in the model.

As a reviewer pointed out, the backtracking algorithm of Shah (2016) can be modified
to accommodate higher order terms in the context of nonparametric regression. The main
idea is as follows: (i) select a few univariate functions that are most highly predictive of
the response by fitting the additive model for the main effects; (ii) include its associated
two-way interaction effects, and subsequently the higher order interaction effects into the
model; (iii) repeat (i) and (ii) until no more variables are included in the model. It is out of
the scope of this paper to study such an extension carefully and we leave it for future work.
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Appendix A. Proof of Theorem 1

Let S(r−1) be the support of f̂ (r−1) and recall from (9) that conditional on the support
S(r−1), f̂ (r) is post-selection persistent if

R(f̂ (r))− inf
f∈F(r)

R(f) = oP (1), where

F (r) =

f : f(x) =
∑

J∈δ(S(r−1))

βJgJ(xJ),E[gJ ] = 0, ‖gJ‖HJ
≤ 1,

∑
J∈S(r−1)

β2
J +

∑
J∈σ(S(r−1))

|βJ | ≤ τ

 .

For notational convenience, let f∗ = arg inff∈F(r) R(f). The goal is to show that R(f̂ (r))−
R(f∗) = oP (1).

Under the squared error loss, we define the risk R(f) and empirical risk R̂(f) as

R(f) = E[(Y − f(X))2] and R̂(f) =
1

n

n∑
i=1

(yi − f(xi))
2,

respectively. By the definition of f∗, we have R(f∗) ≤ R(f̂ (r)). Thus, by the triangle
inequality, we have

0 ≤ R(f̂ (r))−R(f∗) ≤ R(f̂ (r))− R̂(f̂ (r)) + R̂(f̂ (r))−R(f∗)

≤ |R(f̂ (r))− R̂(f̂ (r))|+ |R̂(f∗)−R(f∗)|

≤ 2 sup
f∈F(r)

|R̂(f)−R(f)|,
(31)
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where the third inequality holds by the definition that f̂ (r) is the minimizer of R̂(f), that
is, R̂(f̂ (r)) ≤ R̂(f∗). Thus, it suffices to obtain an upper bound on supf∈F(r) |R̂(f)−R(f)|.

Let Jr = δ(S(r−1)) ∪ {∅}. With some abuse of notation, we write gJ(xJ) = y when J
is an empty set. In addition, when f(x) =

∑
J∈δ(S(r−1)) βJgJ(xJ), we also write the risk

function as R(β, g). Then, for any f ∈ F (r), the risk and empirical risk can be rewritten as

R(β, g) =
∑

J,J ′∈Jr

βJβJ ′E[gJ(XJ)gJ ′(XJ ′)] and R̂(β, g) =
1

n

n∑
i=1

∑
J,J ′∈Jr

βJβJ ′gJ(xiJ)gJ ′(xiJ ′),

respectively. Thus, for all (β, g), we have

|R̂(β, g)−R(β, g)| ≤

(∑
J∈Jr

|βJ |

)2

max
J∈Jr

sup
gJ∈HJ ,gJ′∈HJ′

(En − E)[gJgJ ′ ],

where En[gJgJ ′ ] = n−1
∑n

i=1 gJ(xiJ)gJ ′(xiJ ′). Let sr−1 be the cardinality of the set S(r−1).
We have (∑

J∈Jr

|βJ |

)2

≤ 2

 ∑
J∈S(r−1)

|βJ |

2

+ 2

 ∑
J∈σ(S(r−1))

|βJ |

2

≤ 2sr−1

 ∑
J∈S(r−1)

β2
J

2

+ 2τ2 ≤ (2sr−1 + 2)τ2,

(32)

where we use the inequality 2ab ≤ a2 + b2 for any a > 0 and b > 0, and the constrained in
the function class.

To obtain an upper bound, we begin with some notation. For a function class F and
for any measure Q, the L∞ bracketing number N[ ](F , L∞(Q), ε) is defined as the smallest
number of pairs B = {(l1, u1), . . . , (lk, uk)} such that ‖uj − lj‖∞ ≤ ε for 1 ≤ j ≤ k, and
such that for every f ∈ F , there exists (l, u) ∈ B such that l ≤ f ≤ u. Define the function
class

W = {gJgJ ′ | gJ ∈ HJ , gJ ′ ∈ HJ ′ , ‖gJ‖HJ
≤ 1, ‖gJ ′‖HJ′ ≤ 1, J, J ′ ∈ Jr}. (33)

By Lemma 4, we have

logN[ ](W, L∞(Q), ε) ≤ C(r log d+ ε−r/m), (34)

where C > 0 is some constant. By Corollary 19.35 of Van der Vaart (2000) and (34), we
obtain

E

(
max
J∈Jr

sup
gJ∈HJ ,gJ′∈HJ′

(En − E)[gJgJ ′ ]

)
≤ C√

n

∫ C

0

√
logN[ ](W, L∞(Q), ε)dε

≤ C√
n

∫ C

0

√
r log d+ ε−r/mdε

≤ C√
n

∫ C

0

√
r log d+ ε−r/2mdε

≤ C
√
r log d

n
,

(35)
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where the third inequality follows from the fact that
√
a+ b ≤

√
a+
√
b, the last inequality

follows from the assumption that r < 2m, and C is a constant that may vary line to line.
By an application of Markov’s inequality, we have

max
J∈Jr

sup
gJ∈HJ ,gJ′∈HJ′

(En − E)[gJgJ ′ ] = OP

(√
r log d

n

)
. (36)

Combining the above with (32), we have that for all (β, g),

|R̂(β, g)−R(β, g)| = OP

τ2

√
rs2
r−1 log d

n

 ,

as desired.

Appendix B. Proof of Proposition 1

The proof of Proposition 1 is similar to that of the proof of Theorem 2 in Ravikumar et al.
(2009). The main difference is that we have additional bivariate interaction terms in the true
underlying model. Recall that S(1) is the support of the estimator obtained from solving
(14) with r = 1. Recall from Section 3.1 that we approximate the main effects fj by its

kth order basis expansion, i.e., f̃j =
∑k

l=1 θ
l
jφjl(xj) = θTj φj(xj). Let θ∗j be the underlying

coefficients corresponding to the kth order basis expansion of the main effects. To simplify
the notation, we let S = S̄(1).

Let ΦS be the n × k|S| matrix with rows φS(x1), . . . ,φS(xn), where φS(·) is obtained
by concatenating φj(·) for all j ∈ S. Similarly, θ∗S is obtained by concatenating θ∗j for all
j ∈ S. Recall that we denote the projection operator PS̄(2)f =

∑
(s,t)∈S̄(2) fst. We now

consider a second order Taylor expansion of fst at (1/2, 1/2) for each (s, t) ∈ S̄(2):

fst(xs, xt) =fst(0.5, 0.5) +
∑

j∈{s,t}

(
∂xjfst(0.5, 0.5)(xj − 0.5) +

1

2
∂2
xjfst(0.5, 0.5)(xj − 0.5)2

)
+ ∂2

xsxtfst(0.5 + η(xs − 0.5), 0.5 + η(xt − 0.5))(xs − 0.5)(xt − 0.5), (37)

where η ∈ [0, 1]. Since ΦS is the design matrix generated from B-spline polynomials, we
can represent the vector u := (PS̄(2)f(x1), . . . , PS̄(2)f(xn))T as u = ΦSγ

∗
S + ∆, where the

ith entry of ΦSγ
∗
S represents the leading terms in (37) and γ∗S is the corresponding basis

coefficients vector:

[ΦSγ
∗
S ]i =

∑
(s,t)∈S̄(2)

[
fst(0.5, 0.5)+

∑
j∈{s,t}(∂xj

fst(0.5, 0.5)(xij−0.5)+ 1
2∂

2
xj
fst(0.5, 0.5)(xij−0.5)2)

]
.

The remainder ∆ corresponds to the last term in (37), i.e., for each i = 1, . . . , n,

∆i =
∑

(s,t)∈S̄(2) ∂
2
xsxtfst(0.5 + η(xis − 0.5), 0.5 + η(xit − 0.5))(xis − 0.5)(xit − 0.5).

Thus, ‖∆‖∞ ≤ q∗n, where q∗n := ‖
∑

(s,t)∈S̄(2) ∂
2
xsxtfst‖∞.

Denote ΣSS = 1
nΦT

SΦS . Let ε = (ε1, . . . , εn)T , and let v = y −ΦS(θ∗S + γ∗S) −∆ − ε
denote the error due to finite truncation of the orthogonal basis. Compared to the proof of
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Theorem 2 in Ravikumar et al. (2009), we have an additional term ∆. Therefore, following
the same proof, we have

‖θ̂S − θ∗S − γ∗S‖∞ ≤
∥∥∥∥Σ−1

SS

(
1

n
ΦT
Sε

)∥∥∥∥
∞

+

∥∥∥∥Σ−1
SS

(
1

n
ΦT
S (v + ∆)

)∥∥∥∥
∞

+ λ‖Σ−1
SS ĝS‖∞, (38)

where θS and ĝS are subvectors of the estimator in (14) for r = 1 and the gradient of the
penalty in (14) for r = 1, respectively. If we can show that

‖θ̂S − β∗S‖∞ <
1

2
min
j∈S
‖θ∗j + γ∗j ‖∞ =

1

2
min
j∈S
‖β∗j ‖∞ = ρ∗n,

then ‖θ̂j‖∞ > 0 for each j ∈ S, i.e., S(1) ⊇ S. Therefore, it suffices to show that the right
hand side of (38) is smaller than ρ∗n. Compared to the right hand side of Equation (83) in
Ravikumar et al. (2009), we only have an additional term ‖Σ−1

SS( 1
nΦT

S∆)‖∞ in (38).

Since ‖∆‖∞ ≤ q∗n, we can bound ‖Σ−1
SS( 1

nΦT
S∆)‖∞ following the same procedure as

‖Σ−1
SS( 1

nΦT
Sv)‖∞. According to Equations (99) and (111) in Ravikumar et al. (2009), if√

|S̄(1)|kq∗n/ρ∗n = o(1) and
√
kq∗n/λ = o(1), terms related to ∆ will be dominated by terms

related to ε and v, and the remaining proof in Ravikumar et al. (2009) follows through.

Appendix C. Proof of Lemma 1

Recall from Section 4.3 that we define r′(x) to be the element-wise differentiation of the
vector r(x). Also, recall from (22) that the modified Fisher divergence is defined as

1

2

∫
[0,1]d

p(x) ‖r(x) ◦ [∇ log p(x)−∇ log q(x)]‖22 dx = T1 + T2 + T3, where (39)

T1 =
1

2

∫
[0,1]d

p(x)‖r(x) ◦ ∇ log q(x)‖22dx,

T2 = −
∫

[0,1]d
p(x) (r(x) ◦ ∇ log p(x))T (r(x) ◦ ∇ log q(x)) dx,

T3 =
1

2

∫
[0,1]d

p(x)‖r(x) ◦ ∇ log p(x)‖22dx.

By some algebraic manipulation, we have

T2 = −
∫

[0,1]d
p(x) (r(x) ◦ ∇ log p(x))T (r(x) ◦ ∇ log q(x)) dx

= −
∫

[0,1]d
(∇p(x))T (r(x) ◦ r(x)) ◦ ∇ log q(x)dx

=

d∑
j=1

[
−p(x)∇j log q(x)r2

j (xj)
∣∣1
0

+

∫
[0,1]d

p(x)
∂

∂xj

{
r2
j (xj)∇j log q(x)

}
dx

]

=

∫
[0,1]d

p(x)
[(

2r(x) ◦ r′(x)
)T ∇ log q(x) + (r(x) ◦ r(x))T ∇2 log q(x)

]
dx
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where the second equality uses the fact that ∇ log p(x) = ∇p(x)/p(x), the third equality
holds using integration by parts, and the last equality holds by the assumption that

lim
xj→0

p(x) · ∇j log q(x)r2
j (xj)→ 0 and lim

xj→1
p(x) · ∇j log q(x)r2

j (xj)→ 0.

Since T3 is independent of q(x), we obtain

F (p, q) =

∫
[0,1]d

p(x)S(x, q)dx+ C

with

S(x, q) = 2
(
r(x) ◦ r′(x)

)T ∇ log q(x) + (r(x) ◦ r(x))T ∇2 log q(x) +
1

2
‖r(x) ◦ ∇ log q(x)‖22,

and C is a constant that does not depend on q(x).

Appendix D. Proof of Theorem 2

Recall that we define the risk function as the Fisher’s divergence between two densities

R(p, q) =
1

2

∫
[0,1]d

p(x)

∥∥∥∥r(x) ◦ ∇ log
p(x)

q(x)

∥∥∥∥2

2

dx.

For notational convenient, let q∗ = arg infq∈Q(r) R(p, q) be the oracle estimator and let

p̂(r) ∝ exp(−f̂ (r)). The goal is to show that R(p, p̂(r))−R(p, q∗) = oP (1). By Lemma 1, the
difference between the two risk functions can be rewritten as

R(p, p̂(r))−R(p, q∗) = E[S(X, p̂(r))]− E[S(X, q∗)],

since the constant term in Lemma 1 is independent of q. By an argument similar to (31),
we have

0 ≤ E[S(X, p̂(r))]− E[S(X, q∗)]

≤

∣∣∣∣∣E[S(X, p̂(r))]− 1

n

n∑
i=1

S(xi, p̂
(r))

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

S(xi, q
∗)− E[S(X, q∗)]

∣∣∣∣∣
≤ 2 sup

q∈Q(r)

∣∣∣∣∣ 1n
n∑
i=1

S(xi, q)− E[S(X, q)]

∣∣∣∣∣ ,
where the second inequality holds from the fact that p̂(r) is a minimizer of n−1

∑n
i=1 S(xi, q).

Thus, it suffices to establish the rate of convergence for the above quantity.
Let Jr = δ(S(r−1))∪{∅}. Recall that for any f ∈ F (r), we have f(x) =

∑
J∈Jr βJgJ(xJ).

Then, S(x, q) can be rewritten as

S(x, q) = 2(r(x) ◦ r(x))T∇ log q(x) + (r(x) ◦ r(x))T∇2 log q(x) +
1

2
‖r(x) ◦ ∇ log q(x)‖22

= −2

d∑
j=1

∑
J∈Jr

rjr
′
jβJg

(j)
J −

d∑
j=1

∑
J∈Jr

r2
jβJg

(jj)
J +

1

2

d∑
j=1

∑
J∈Jr

∑
J ′∈Jr

r2
jβJβJ ′g

(j)
J g

(j)
J ′ ,
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where we denote g
(j)
J and g

(jj)
J as the first and second order derivatives of gJ with respect

to Xj , respectively. For notational convenience, we suppress the dependencies of x in rj(·)
and gJ(·), and use the fact that g

(j)
J = 0 if j /∈ J .

Thus, for any q ∈ Q(r), we have∣∣∣∣∣ 1n
n∑
i=1

S(xi, q)− E[S(X, q)]

∣∣∣∣∣ ≤ 2I1 + I2 + I3,

where the three terms are

I1 = max
J∈Jr

sup
gJ∈HJ

∣∣∣∣∣∣
d∑
j=1

∑
J∈Jr

βJ(En − E)[rjr
′
jg

(j)
J ]

∣∣∣∣∣∣ ,
I2 = max

J∈Jr
sup
gJ∈HJ

∣∣∣∣∣∣
d∑
j=1

∑
J∈Jr

βJ(En − E)[r2
j g

(jj)
J ]

∣∣∣∣∣∣ ,
I3 = max

J,J ′∈Jr
sup

gJ∈HJ ,gJ′∈HJ′

∣∣∣∣∣∣
d∑
j=1

∑
J∈Jr

∑
J ′∈Jr

βJβJ ′(En − E)[r2
j g

(j)
J g

(j)
J ′ ]

∣∣∣∣∣∣ .
We now obtain upper bounds for I1, I2, and I3 separately. To this end, we define three
function classes

W1 =
{
rjr
′
jg

(j)
J | ‖gJ‖HJ

≤ 1, J ∈ Jr, j ∈ [d]
}
,

W2 =
{
r2
j g

(jj)
J | ‖gJ‖HJ

≤ 1, J ∈ Jr, j ∈ [d]
}
,

W3 =
{
r2
j g

(j)
J g

(j)
J ′ | ‖gJ‖HJ

≤ 1, ‖gJ ′‖HJ′ ≤ 1, J, J ′ ∈ Jr, j ∈ [d]
}
.

Upper bound for I1: We first note that

I1 ≤ r

(∑
J∈Jr

|βJ |

)
max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

∣∣∣(En − E)[rjr
′
jg

(j)
J ]
∣∣∣ ,

since
∑d

j=1 g
(j)
J can be expressed as the sum of a maximum of r terms for any J ∈ Jr.

By Lemma 5, the bracketing number for the function class W1 is

logN[ ](W1, L
∞(Q), ε) ≤ C(r log d+ ε−r/(m−1)).

Following the arguments in (35), we have

E

(
max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

(En − E)[rjr
′
jg

(j)
J ]

)
≤ C

√
r log d

n
.

Similar to the proof of (36), we obtain

max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

(En − E)[rjr
′
jg

(j)
J ] = OP

(√
r log d

n

)
.
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Similar to (32), we have ∑
J∈Jr

|βJ | ≤
√

2sr−1 + 2τ,

which implies that I1 = OP (τ
√

(r3sr−1 log d)/n).

Upper bound for I2: We have

I2 ≤ r

(∑
J∈Jr

|βJ |

)
max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

∣∣∣(En − E)[r2
j g

(jj)
J ]

∣∣∣ .
By Lemma 5, the bracketing number for the function class W2 is

logN[ ](W2, L
∞(Q), ε) ≤ C(r log d+ ε−r/(m−2)).

Following the arguments for the upper bound on I1, we have

max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

(En − E)[r2
j g

(jj)
J ] = OP

(√
r log d

n

)

and that I2 = OP (τ
√

(r3sr−1 log d)/n).

Upper bound for I3: To obtain an upper bound for I3, we have

I3 ≤ r

(∑
J∈Jr

|βJ |

)2

max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

∣∣∣(En − E)[r2
j g

(jj)
J ]

∣∣∣ .
Similar to (32), we have (∑

J∈Jr

|βJ |

)2

≤ (2sr−1 + 2)τ2.

By an application of Lemma 5, the bracketing number for the function class W3 is

logN[ ](W3, L
∞(Q), ε) ≤ C(r log d+ ε−r/(m−1)).

Thus, following the same arguments for the upper bound on I1, we have

max
j∈[d]

max
J∈Jr

sup
gJ∈HJ

∣∣∣(En − E)[r2
j g

(jj)
J ]

∣∣∣ = OP

(√
r log d

n

)
,

which implies that I3 = OP (τ2
√

(r3s2
r−1 log d/n)).

Combining the upper bounds on I1, I2, and I3, we have

R(p, p̂(r))−R(p, q∗) = OP

τ2

√
r3s2

r−1 log d

n

 ,

as desired.
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Appendix E. Auxiliary Results on Bracketing Number

In this section, we provide some technical results on bracketing number for some function
classes. Lemma 2 provides the bracketing number of the Sobolev space. Lemma 3 provides
an upper bound on the bracketing number for function classes generated from the product
and addition of two function classes. With applications of Lemmas 2 and 3, we obtain upper
bounds on bracketing number for function classes arise in the proof of Theorems 1 and 2.

Lemma 2 (Corollary 1 in Nickl and Pötscher, 2007). Let Ω be a bounded, convex subset of
Rr with non-empty interior and Q(Ω) < ∞ for some measure Q. Denote Bm(Ω) = {f ∈
Hm(Ω) | ‖f‖Hm ≤ 1}. There exists a constant K such that

logN[ ](Bm(Ω), L∞(Q), ε) ≤ K · ε−r/m.

Lemma 3 (Lemma 9.24 in Kosorok, 2007). Let F1 and F2 be two function classes. Define
‖F`‖∞ = sup

f∈F`

‖f‖∞ for ` = 1, 2 and U = ‖F1‖∞ ∨ ‖F2‖∞. For the function classes

F+ = {f1 + f2 | f1 ∈ F1, f2 ∈ F2} and F× = {f1f2 | f1 ∈ F1, f2 ∈ F2}, we have for any
ε ∈ (0, 1),

N[ ](F+, L∞(Q), ε) ≤ N[ ](F1, L∞(Q), ε) · N[ ](F2, L∞(Q), ε),

N[ ](F×, L∞(Q), ε) ≤ N[ ](F1, L∞(Q), ε/U) · N[ ](F2, L∞(Q), ε/U).

Together with Lemmas 2 and 3, we can now obtain the bracketing number

W =
{
gJgJ ′ | gJ ∈ HJ , gJ ′ ∈ HJ ′ , ‖gJ‖HJ

≤ 1, ‖gJ ′‖HJ′ ≤ 1, J, J ′ ∈ Jr
}

as defined in (33). The result is summarized in the following lemma.

Lemma 4. For any measure Q and ε > 0, there exists a constant C > 0 such that

logN[ ](W, L∞(Q), ε) ≤ C(r log d+ ε−r/m).

Proof. Let J be an index set with |J | ≤ r. For a given J , By Lemma 2, the covering number
for the function class W(J) = {gJ | gJ ∈ HJ , ‖gJ‖HJ

≤ 1} is

logN[ ](W(J), L∞(Q), ε) ≤ K · ε−r/m.

By an application of Lemma 3, there exists a constant C > 0 such that

logN[ ](W, L∞(Q), ε) ≤ log

((
d

r

)
· [N[ ](W(J), L∞(Q), ε)]2

)
≤ r log d+ 2Kε−r/m ≤ C(r log d+ ε−r/m).

The term r log d is an upper bound of the log cardinality of Jr.

Next, we obtain the bracketing number for the following function classes:

W1 =
{
rjr
′
jg

(j)
J | ‖gJ‖HJ

≤ 1, J ∈ Jr, j ∈ [d]
}
,

W2 =
{
r2
j g

(jj)
J | ‖gJ‖HJ

≤ 1, J ∈ Jr, j ∈ [d]
}
,

W3 =
{
r2
j g

(j)
J g

(j)
J ′ | ‖gJ‖HJ

≤ 1, ‖gJ ′‖HJ′ ≤ 1, J, J ′ ∈ Jr, j ∈ [d]
}
.

32



LASER: Layer-Wise Learning Strategy

Lemma 5. For any measure Q and ε > 0, there exists a constant C > 0 such that

logN[ ](W1, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−1)),

logN[ ](W2, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−2)),

logN[ ](W3, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−1)).

Proof. For a given index set J with |J | ≤ r, we have ‖gJ‖HJ
≤ 1 by the definition of the

function classes W1, W2, and W3. This implies that ‖g(j)
J ‖HJ

≤ 1, and that g
(j)
J ∈ Bm−1.

By Lemma 2, the log bracketing number for the function class {g(j)
J | g

(j)
J ∈ Bm−1} is upper

bounded by Kε−r/(m−1). Since rj and r′j are both fixed and bounded functions on [0, 1], by
Lemma 3, we have

logN[ ](W1, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−1)),

where the term r log d arises from the upper bound on the log cardinality of Jr.
Similarly, since ‖gJ‖HJ

≤ 1, we have ‖g(jj)
J ‖HJ

≤ 1, and that g
(jj)
J ∈ Bm−2. By Lemma 2,

for a given index set J with |J | ≤ r, the log bracketing number for the function class

{g(j)
J | g(j)

J ∈ Bm−2} is upper bounded by Kε−r/(m−2). Following the same argument, we
have

logN[ ](W2, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−2)).

For two given index set J and J ′ with |J | ≤ r and |J ′| ≤ r, the function class {g(j)
J g

(j)
J ′ |

g
(j)
J , g

(j)
J ′ ∈ Bm−1} is upper bounded by 2Kε−r/(m−1) by an application of Lemmas 2 and 3.

Similarly, since rj is fixed and bounded function on [0, 1], by Lemma 3, there exists a
constant C > 0 such that

logN[ ](W3, L∞(Q), ε) ≤ C · (r log d+ ε−r/(m−1)).

Appendix F. Results on Model Selection for Numerical Studies in
Section 5.1

As noted in Sections 3.2 and 3.3, it is vital for LASER to include all of the active main effects
and the lower-order interaction effects to achieve persistency. In this section, we assess the
model selection performance of LASER by reporting the true and false positive rates. We
consider the simulation studies in Sections 5.1.1 and 5.1.2. The results, averaged over 100
replications, are summarized in Tables 4—6. Note that the results for FAMILY are omitted
since FAMILY is outperformed by both BT and RAMP in terms of sum of squared error.

In the low-dimensional setting, we see from Table 4 that LASER has true positive rate of
one for all scenarios. This illustrates that LASER is persistent for Scenarios A1—A3 since it
is able to identify all of the active main effects before estimating the second-order interaction
terms. We notice that BT tends to have high false positive rate on all scenarios, and that
RAMP has a low true positive rate for Scenarios A2 and A3 when the active variables are
non-linear. LASER has high TPRs for all scenarios for the interaction effects. Moreover, it
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achieves a TPR of approximately one for Scenario A3 when other methods fail. SPAM has
NAs on the interaction effects since it estimates only the main effects. Similar results are
observed for the high-dimensional setting in Tables 5 and 6. The results for VANISH are
omitted for the high-dimensional setting due to computational reasons.

Table 4: The true and false positive rates (TPR and FPR) for the main effects and the
second-order interaction effects for three different scenarios in Section 5.1.1, aver-
aged over 100 data sets. The results are for models trained with n training samples
and d = 30 variables. Most of the standard errors are approximately zero and are
omitted.

n = 200 n = 400

Main Effects Interaction Effects Main Effects Interaction Effects

TPR FPR TPR FPR TPR FPR TPR FPR

BT 1 0.861 0.977 0.013 1 0.922 1 0.017
RAMP 1 0.004 0.663 0.001 1 0.005 0.690 0.001

Scenario A1 SPAM 1 0.077 NA NA 1 0.039 NA NA
VANISH 1 0.001 0.537 0 1 0.001 0.759 0
LASER 1 0.077 0.940 0.008 1 0.039 0.990 0.006

BT 0.903 0.546 0.497 0.015 0.920 0.620 0.480 0.019
RAMP 0.8 0.043 0.227 0.002 0.830 0.012 0.493 0.005

Scenario A2 SPAM 1 0.039 NA NA 1 0.035 NA NA
VANISH 1 0.001 1 0.001 1 0.001 1 0
LASER 1 0.039 1 0.016 1 0.035 1 0.013

BT 0.677 0.304 0.120 0.009 0.793 0.460 0.145 0.013
RAMP 0.427 0.058 0.005 0.003 0.613 0.087 0.155 0.005

Scenario A3 SPAM 1 0.068 NA NA 1 0.039 NA NA
VANISH 0.967 0.001 0.420 0.001 1 0.001 0.365 0.001
LASER 1 0.068 0.985 0.008 1 0.039 1 0.007
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Table 5: The true and false positive rates (TPR and FPR) for the main effects and the
second-order interaction effects for three different scenarios in Section 5.1.2, aver-
aged over 100 data sets. The results are for models trained with n training samples
and d = 200. Most of the standard errors are approximately zero and are omitted.

n = 350 n = 700

Main Effects Interaction Effects Main Effects Interaction Effects

TPR FPR TPR FPR TPR FPR TPR FPR

BT 1 0.477 0.997 0.001 1 0.502 0.973 0.001
RAMP 1 0.001 1 0 1 0.001 1 0

Scenario B1 SPAM 1 0.003 NA NA 1 0.003 NA NA
LASER 1 0.003 1 0.001 1 0.003 1 0.001
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Table 6: The true and false positive rates (TPR and FPR) for the main effects and the
second-order interaction effects for three different scenarios in Section 5.1.2, aver-
aged over 100 data sets. The results are for models trained with n training samples
and d = 400. Most of the standard errors are approximately zero and are omitted.

n = 350 n = 700

Main Effects Interaction Effects Main Effects Interaction Effects

TPR FPR TPR FPR TPR FPR TPR FPR

BT 1 0.208 1 0 1 0.435 0.99 0.001
RAMP 1 0 1 0 1 0.001 1 0

Scenario B1 SPAM 1 0.002 NA NA 1 0.002 NA NA
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LASER 1 0.002 1 0.001 1 0.001 1 0.001
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