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Abstract

We present a novel minibatch stochastic optimization method for empirical risk minimiza-
tion of linear predictors. The method efficiently leverages both sub-sampled first-order and
higher-order information, by incorporating variance-reduction and acceleration techniques.
We prove improved iteration complexity over state-of-the-art methods under suitable con-
ditions. In particular, the approach enjoys global fast convergence for quadratic convex ob-
jectives and local fast convergence for general convex objectives. Experiments are provided
to demonstrate the empirical advantage of the proposed method over existing approaches
in the literature.

1. Introduction

We consider the following optimization problem of finite-sums:

min
w
f(w) :=

1

n

n∑

i=1

fi(w), (1)

which arises in many machine learning applications. In this paper, we focus on regu-
larized loss minimization of linear predictors, where fi(w) = `(w>xi; bi) + λ

2 ‖w‖
2. Let

x1, x2, ..., xn ∈ Rd be feature vectors of n data samples, and b1, ..., bn ∈ R or {−1, 1} be
the corresponding target variables of interest. We note that (1) covers many popular mod-
els used in machine learning: for example when `(w>xi; bi) = 1

2(bi − w>xi)2 we obtain
ridge regression; when `(w>xi; bi) = log(1 + exp(−biw>xi)) we obtain `2 regularized lo-
gistic regression. Other examples such as SVMs can also be obtained by setting different
loss functions `(w>xi; bi). The ubiquitousness of such finite-sum optimization problems
and the massive scale of modern datasets motivate significant research effort on efficient
optimization algorithms to solve (1).

We denote w∗ = arg minw f(w) to be the optimum of (1). For any approximate solution
w, we say that it achieves ε-objective suboptimality if f(w) − f(w∗) ≤ ε. For any ε > 0,
the runtime cost of optimization algorithms to find an ε-suboptimal minimizer typically
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depends on the target accuracy ε, as well as the conditions of the problem (1). Throughout
the paper, we use the following notion of strong convexity and smoothness to discuss the
iteration complexity of various optimization algorithms.

Definition 1 A function fi(w) is L-smooth with respect to w if fi(w) is differentiable and
its gradient is L-Lipschitz continuous, i.e. we have

∥∥∇fi(w)−∇fi(w′)
∥∥ ≤ L

∥∥w − w′
∥∥ , ∀w,w′ ∈ Rd.

A function fi(w) is λ-strongly convex with respect to w, if we have

fi(w) ≥ fi(w′) + 〈∇fi(w′), w − w′〉+
λ

2

∥∥w − w′
∥∥2
, ∀w,w′ ∈ Rd.

It is well-known that a consequence of L-smoothness is the following quadratic upper
bound for fi(w):

fi(w) ≤ fi(w′) + 〈∇fi(w′), w − w′〉+
L

2

∥∥w − w′
∥∥2
, ∀w,w′ ∈ Rd.

In recent years there have been significant advances in developing fast optimization
algorithms for (1), and we refer the readers to (Bottou et al., 2016) for a comprehensive
survey of these developments. For large-scale problems in the form of (1), randomized
methods are particularly efficient because of their low per iteration computation. Below
we briefly review two lines of research: i) randomized variance reduced first-order methods;
ii) randomized methods leveraging second-order information. Through out this section we
focus on problems where each function fi(w),∀i ∈ [n] is λ-strongly convex and L-smooth.
For non-strongly convex or non-smooth objectives, we can use regularization or smoothing
technique to reduce it to strongly convex and smooth objectives (Allen-Zhu and Hazan,
2016).

1.1 Variance Reduced First-order Methods

The key technique for developing fast stochastic first-order methods is variance reduction,
which makes the variance of the randomized update direction approching zero when the
iterate gets closer to the optimum. Representative methods of this category include SAG
(Roux et al., 2012), SVRG (Johnson and Zhang, 2013), SDCA (Shalev-Shwartz and Zhang,
2013) and SAGA (Defazio et al., 2014), etc. In order to find a solution that reaches ε-
suboptimality, these methods requires

O
((

n+
L

λ

)
log

(
1

ε

))
(2)

calls to the first-order oracle to compute the gradient of an individual function. In the large
condition number regime (e.g. L

λ > n), by using an acceleration technique (such as Catalyst
(Shalev-Shwartz and Zhang, 2016; Frostig et al., 2015; Lin et al., 2015a), APCG (Lin et al.,
2015b), SPDC (Zhang and Xiao, 2015), Katyusha (Allen-Zhu, 2016), etc), one can further
improve the iteration complexity to

O
((

n+

√
n · L

λ

)
log

(
1

ε

))
. (3)
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Recently, Woodworth and Srebro (2016) provided a first-order oracle lower bound for (1)
which has the same iteration complexity as (3). This means that (3) is not improvable for
general (high dimensional) problems, if the optimization procedure only uses the first order
and proximal oracles of individual functions.

1.2 Leveraging Second-order Information

Second-order information is often useful in improving the convergence of optimization algo-
rithms. However for large-scale problems, obtaining and inverting the exact Hessian matrix
is often computational expensive, making vanilla Newton methods not well suited in solving
(1). Therefore, there have been emerging studies in designing randomized algorithms that
effectively utilize the approximated Hessian information. One line of such research is the sub-
sampled Newton method which approximates the Hessian matrix based on a sub-sampled
minibatch of data. Several work, such as (Byrd et al., 2011; Erdogdu and Montanari, 2015;
Roosta-Khorasani and Mahoney, 2016a,b; Bollapragada et al., 2016), established local lin-
ear convergence rates for different variants of sub-sampled Newton methods, when the size
of the sub-sampled data is large enough. (Xu et al., 2016) considered non-uniform sampling
in constructing the stochastic Hessian matrix, and showed that weighted sampling accord-
ing to individual smoothness or leverage score can help constructing better approximation
of Hessian, which improves the convergence. (Pilanci and Wainwright, 2017) discussed
how to use sketching instead of sub-sampling to approximate the Hessian matrix. All of
the aforementioned methods employ the full first-order gradient, and require calling the
second-order oracle to compute the Hessian and solving a resulting linear system at every
iteration. Therefore the computational complexity (as compared in Table 2 of (Xu et al.,
2016)) are often worse than stochastic algorithms such as SVRG.

Another line of research is to consider randomness in both first and second-order in-
formation to design lower per-iteration cost algorithms. In particular, (Byrd et al., 2016)
considered combining minibatch SGD with Limited-memory BFGS (L-BFGS) (Liu and No-
cedal, 1989) type update. Inspired by this, (Moritz et al., 2016; Gower et al., 2016; Wang
et al., 2017b) proposed to combine variance reduced stochastic gradient with L-BFGS, and
proved linear convergence for strongly convex and smooth objectives. Moreover, experi-
ments in (Moritz et al., 2016; Gower et al., 2016; Wang et al., 2017b) also demonstrated
superior empirical performance of this type of methods. However, theoretically it is hard to
guarantee the quality of approximated Hessian using L-BFGS update, and thus the iteration
complexity obtained by (Moritz et al., 2016; Gower et al., 2016; Wang et al., 2017b) can be
pessimistic, and can be much worse than vanilla SVRG. Moreover, (Qu et al., 2015) proposed
to incorporate curvature information in minibatch SDCA methods, and showed improved
convergence over SDCA, but the method proposed in (Qu et al., 2015) involves solving
a much more expensive subproblem than minibatch SDCA. Therefore the overall runtime
benefit is still unclear. (Gonen et al., 2016) considered ridge regression problems specifically,
and proposed to use sketching to compute the rank-k approximation of the Hessian matrix,
based on which SVRG is ran with preconditioning. (Yang et al., 2016) suggested to use pre-
conditioning as a preprocessing step for general stochastic optimization problems. (Agarwal
et al., 2016) proposed to approximate the inverse Hessian matrix directly by sampling from
its Taylor expansion. In terms of lower bound, (Arjevani and Shamir, 2016) showed under
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some mild algorithmic assumptions, second-order oracle generally cannot improve the oracle
complexity over first-order methods, for very high-dimensional problems.

Though lower bound have been established showing that the iteration complexity of
accelerated SVRG methods cannot be improved in general, the establishments of these lower
bounds are based on constructing very high-dimensional hard problems where dimension d
can be much larger than sample size n. Such pessimistic situations are not consistent with
practice, where second-order information is observed to be very helpful in improving the
convergence speed. Therefore it is still interesting to analyze theoretically how second-order
information can be helpful under suitable conditions, and more importantly, how to design
more efficient methods that make use of possibly noisy second-order information. In this
paper, we make effort in solving empirical risk minimization problems with linear predictors
more efficiently, and make the following contributions:

• We propose a novel approach that combines the advantages of variance-reduced first-
order methods and sub-sampled Newton methods, in a efficient way that does not
require expensive Hessian matrix computation and inversion. The method can be
naturally extended to solve composite optimization problems with non-smooth regu-
larization.

• We theoretically show under certain conditions the proposed approach can improve
state-of-the-art iteration complexity, and empirically demonstrate it can substantially
improve the convergence of existing methods. Note that though we only establish
theoretical guarantees for empirical risk minimization of linear predictors, the methods
it self can be applied to general finite-sum problems.

1.3 Notations

We use [n] to denote the set 1, ..., n. For a vector w ∈ Rd, we use ‖w‖ to denote its `2
norm and ‖w‖1 to denote its `1 norm. For a matrix X, we use ‖X‖2 to denote its spectral
norm and ‖X‖F to denote its Frobenius norm, and λmin(X) to denote its minimum singular
value, and tr(X) to denote the trace of X. We use I to denote an identity matrix. For two
symmetric matrices A and B, we denote A � B if A−B is positive semi-definite. For two
sequences of numbers {an} and {bn}, we say an = O(bn) if an ≤ Cbn for n large enough,
with some positive constant C. We use the notation Õ(·) to hide poly-log factors. We also
use an . bn to denote an = O(bn), an & bn to denote bn = O(an), an � bn to denote
an = O(bn) and bn = O(an).

1.4 Organization

The rest of the paper is organized as follows: we introduce the proposed method in Section 2,
and present the main theoretical results in Section 3. In Section 4 we present the convergence
analysis of inexact minibatch accelerated SVRG update as a key step in proving the main
results, and this analysis might be of independent interest. We provide some empirical
comparisons over existing approaches in Section 5, and conclusions in Section 6. Some
detailed proofs are deferred to the Appendices.
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2. Minibatch Stochastic Variance Reduced Proximal Iterations

In this section we present the proposed approach for minimizing (1), which naturally inte-
grate both noisy first-order and higher-order information in an efficient way.

2.1 Algorithm Description

The high-level description is given in Algorithm 1, which consists of two main innovations:

• simultaneous incorporation of first-order and higher-order information via sub-sampling;

• allowing larger minibatch sizes through acceleration with inexact minimization.

We explain these features in the remaining of this section.

2.1.1 Sampling both First-order and Higher-order Information

We first discuss the main building block of the algorithm. Suppose at iteration t, given the
previous iterate wt−1, we consider the following update rule:

wt = arg min
w

1

b

∑

i∈B̄
fi(w)−

〈
1

b

∑

i∈B̄
∇fi(wt−1), w

〉

+

〈
η

b

∑

i∈Bt
∇fi(wt−1) + η∇f(w̃)− η

b

∑

i∈Bt
∇fi(w̃), w

〉
+
λ̄

2
‖w − wt−1‖2 , (6)

where B̄, Bt are some randomly sampled minibatch from 1, ..., n, both with minibatch size
b; η and λ̄ are stepsize parameters, and w̃ is a “reference” predictor used for reducing
variance. The main feature of updating rule (6) is it considered both noisy first-order and
higher-order information via minibatch sampling. In particular, the term〈η
b

∑
i∈Bt ∇fi(wt−1) + η∇f(w̃)− η

b

∑
i∈Bt ∇fi(w̃), w

〉
and 1

b

∑
i∈B̄ fi(w)−

〈
1
b

∑
i∈B̄∇fi(wt−1), w

〉

in (6) incorporates variance-reduced first-order and noisy higher-order information of the
objective function, respectively. To see this, second-order methods (e.g. Newton methods)
often use the following second-order Taylor approximation of the function:

1

b

∑

i∈B̄
fi(w) ≈1

b

∑

i∈B̄
fi(wt−1) +

〈
1

b

∑

i∈B̄
∇fi(wt−1), w − wt−1

〉

+
1

2
(w − wt−1)>


1

b

∑

i∈B̄
∇2fi(wt−1)


 (w − wt−1) . (7)
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Algorithm 1 MB-SVRP: Minibatch Stochastic Variance Reduced Proximal Iterations.

Parameters η, b, λ̄, ν, ε.
Initialize w̃0 = 0.
Sampling Sampling b items from [n] to form a minibatch B̄.
for s = 1, 2, . . . , S do

Calculate ṽ = 1
n

∑n
i=1∇fi(w̃s−1).

Initialize y0 = w0 = w̃s.
for t = 1, 2, . . . , T do

Sampling b items from [n] to form a minibatch Bt.
Find wt that approximately solve (4) (Option-I) or (5) (Option-II) such that
f̃t(wt)−minw f̃t(w) ≤ ε.

Option-I : f̃t(w) :=
1

b

∑

i∈B̄
fi(w)−

〈
1

b

∑

i∈B̄
∇fi(yt−1), w

〉

+

〈
η

b

∑

i∈Bt
∇fi(yt−1) + ηṽ − η

b

∑

i∈Bt
∇fi(w̃s−1), w

〉
+
λ̄

2
‖w − yt−1‖2 ,

(4)

Option-II : f̃t(w) :=
1

2
(w − yt−1)>


1

b

∑

i∈B̄
∇2fi(yt−1)


 (w − yt−1)

+

〈
η

b

∑

i∈Bt
∇fi(yt−1) + ηṽ − η

b

∑

i∈Bt
∇fi(w̃s−1), w

〉
+
λ̄

2
‖w − yt−1‖2 .

(5)

Update:
yt = wt + ν(wt − wt−1).

end for
Update w̃s = wm.

end for
Return w̃s

If we plug the second-order approximation (7) into (6), we get the update rule as

wt ≈ arg min
w

1

2
(w − wt−1)>


1

b

∑

i∈B̄
∇2fi(wt−1)


 (w − wt−1) +

λ̄

2
‖w − wt−1‖2

+

〈
η

b

∑

i∈Bt
∇fi(wt−1) + η∇f(w̃)− η

b

∑

i∈Bt
∇fi(w̃), w

〉
(8)

=wt−1 − η


1

b

∑

i∈B̄
∇2fi(wt−1) + λ̄I



−1(

1

b

∑

i∈Bt
∇fi(wt−1) +∇f(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
,

(9)

6



Minibatch Stochastic Variance Reduced Proximal Iterations

which can be treated as a variant of sub-sampled Newton method, combined with the
minibatch stochastic gradient with variance reduction. Moreover, when fi(w) is a quadratic
function of w, the approximation (7) is exact (thus Option-I and Option-II in Algorithm 1
are coincident). Therefore the update rule (6) can be treated as a preconditioned minibatch

SVRG update rule, with
(

1
b

∑
i∈B̄∇2fi(wt−1) + λ̄I

)−1
as a precondition matrix. This is

formalized in the proposition below.

Proposition 2 When fi(w),∀i is a quadratic function of w, then the update rule of (4)
and (5) is equivalent to the following preconditioned minibatch SVRG update rule:

wt ← wt−1 − η
(
H̄ + λ̄I

)−1

(
1

b

∑

i∈Bt
∇fi(wt−1) +∇f(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
,

where

H̄ =
1

b

∑

i∈B̄
∇2fi(w)

is the sub-sampled Hessian matrix.

2.1.2 Connection to Existing Methods

Depending on the choice of these parameters, we observe that the update rule of (6) can
be viewed as a generalization of several update rules proposed recently:

• When b = 1, λ̄ → ∞ and η = λ̄
L , the term 1

b

∑
i∈B̄ fi(w) −

〈
1
b

∑
i∈B̄∇fi(wt−1), w

〉
is

negligible, thus (6) reduced to standard SVRG update (Johnson and Zhang, 2013):

wt ← wt−1 −
1

L

(
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)−∇fi(w̃)

)
.

• When b > 1, λ̄, η → ∞, then the term 1
b

∑
i∈B̄ fi(w) −

〈
1
b

∑
i∈B̄∇fi(wt−1), w

〉
in (6)

is negligible as well, (6) reduces to the following update:

wt ← wt−1 −
η

λ̄

(
1

b

∑

i∈Bt
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
,

which recovers the update rule of minibatch semi-stochastic gradient methods (a.k.a
minibatch SVRG) (Konečnỳ et al., 2016).

• When B̄ = Bt, b = 1, η = 1, (6) reduced to stochastic variance reduced proximal
iterations. More specifically, (6) will be reduced to:

wt = arg min
w
fi(w) +

〈
1

n

n∑

i=1

∇fi(w̃)−∇fi(w̃), w

〉
+
λ̄

2
‖w − wt−1‖2 , (10)

by checking the first order optimality condition it is easy to verify that (10) is per-
forming the following update:

wt ← wt−1 −
1

λ̄

(
∇fi(wt) +

1

n

n∑

i=1

∇fi(w̃)−∇fi(w̃)

)
,

7



Wang and Zhang

compared with standard SVRG update with stepsize 1
λ̄

, we see the only difference is
the gradient evaluation on fi is based on “future” iterate wt rather than the current
iterate wt−1 in SVRG. Stochastic proximal iterations based on SAGA method has
been proposed and analyzed in (Defazio, 2016) recently.

• When Bt = B̄, b > 1, η = 1, and w̃ = wt−1, (6) will be reduced to:

wt = arg min
w

1

b

∑

i∈B̄
fi(w) +

〈
1

n

n∑

i=1

∇fi(wt−1)− 1

b

∑

i∈B̄
∇fi(wt−1), w

〉
+
λ̄

2
‖w − wt−1‖2 ,

(11)

(11) covers the update rule of DANE algorithm (Shamir et al., 2014), which is a
communication-efficient distributed optimization algorithm. DANE uses the data on
local machine to form the minibatch B̄ and every round machines communicate the
gradient vector based on their local data. As shown in (Shamir et al., 2014), DANE
is provably communication more efficient than the first-order methods in certain sce-
narios.

• When B̄ = Bt, and we ignore the linear term −
〈

1
b

∑
i∈B̄∇fi(wt−1), w

〉

+
〈η
b

∑
i∈Bt ∇fi(wt−1) + η∇f(w̃)− η

b

∑
i∈Bt ∇fi(w̃), w

〉
, then (6) reduces to the mini-

batch proximal iterations (Li et al., 2014; Wang et al., 2017a):

wt = arg min
w

1

b

∑

i∈Bt
fi(w) +

λ̄

2
‖w − wt−1‖2 .

Such an update allows larger minibatch size than standard minibatch SGD, but with-
out the linear correction term as we considered in (6). For such methods only sublinear
convergence can be established for finite-sum problems.

2.1.3 Large Minibatch Size via Acceleration with Inexact Minimization

Using (6) as the building block, we propose the MB-SVRP (minibatch stochastic variance
reduced proximal iterations) method, which is detailed in Algorithm 1. At the beginning
of the algorithm, we form a minibatch B̄ by sampling from 1, ..., n and fix it for the whole
optimization process1. Then following the SVRG method (Johnson and Zhang, 2013), the
algorithm is divided to multiple stages, indexed by s. At each stage, we iteratively solve a
minimization problem of the form (4) (Option I) or (5) (Option II) based on the randomly
sampled minibatch Bt.

Compared with the simple update rule in (6), the major difference in Algorithm 1 is
that we consider a momentum scheme by maintaining two sequences {wt, yt}, which is
inspired by Nesterov’s acceleration technique (Nesterov, 2004) and its recent SVRG variant
(Nitanda, 2014). The main theoretical advantage over minibatch SVRG without momentum
(Konečnỳ et al., 2016) is that such an acceleration allows us to use a much larger minibatch

1. We can also consider the varying B̄ option by simply setting B̄ = Bt, which makes the algorithm simpler
to implement. In practice, we observe no significant difference between this option and the pre-fixed B̄.
Here we consider fixed B̄ mainly for the sake of simplicity in our theoretical analysis.
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size (up to a size of O(
√
n)) without slowing down the convergence. In comparison the

iteration complexity of standard minibatch SVRG will become worse when the minibatch
size (Konečnỳ et al., 2016) increases. The advantage of allowing larger minibatch size using
acceleration in SVRG type algorithms is in analogy to the situation of stochastic gradient
descent (without variance reduction) type algorithms (Dekel et al., 2012; Cotter et al., 2011;
Lan, 2012).

Since it is often expensive to find the exact minimizer of (4), we consider an approximate
minimizer with objective suboptimality ε. When we choose the appropriate λ̄ for f̃t(w) to
obtain enough strong convexity, the subproblems defined in Option-I and Option-II can
be both be solved to high accuracy efficiently. For example, using SVRG-type algorithms
(Johnson and Zhang, 2013) to solve (4) or (5) allows us to find an approximate solution with
a small suboptimality ε with a constant number of passes over the data in the minibatch
B̄ ∪ Bt, if λ̄ is set appropriately (discussed in details in our theoretical analysis). This
approach avoids Hessian matrix construction and inversion operations, which are often
computationally expensive for large-scale problems. Allowing error in gradient oracle has
been analyzed in several first-order methods (Schmidt et al., 2011; Devolder et al., 2014)
in the batch setting, but has been largely unexplored in stochastic gradient methods. The
recent work of (Wang et al., 2017a) analyzed inexact minibatch proximal updates, which
can be treated as an implicit minibatch stochastic gradient with errors. In Section 4, we
establish convergence rate of inexact, minibatched, accelerated SVRG method, which might
be of independent interest.

2.2 Extension to Composite Minimization

For many methods that try to incorporate second-order information such as sub-sampled
Newton and L-BFGS type algorithms, it is not clear how to extend them to solving non-
smooth composite problems. In contrast, the proposed approach can be easily extended to
handle non-smooth composite minimization problems. Consider the minimization of:

F (w) :=
1

n

n∑

i=1

fi(w) + g(w), (12)

where the component functions fi(w), ∀i ∈ [n] are smooth and strongly convex, and g(w)
is a non-smooth regularizer. For example when g(w) = µ ‖w‖1 and fi(w) = 1

2(bi − w>xi)2,

we get the Lasso objective (Tibshirani, 1996); when g(w) = µ ‖w‖1 + λ
2 ‖w‖

2 and fi(w) =
log(1+exp(−biw>xi)), we get the elastic net regularized logistic regression (Zou and Hastie,
2005).

We can easily modify Algorithm 1 to solve (12). The idea is rather straightforward: at
each inner iteration, rather than (4), we simply solve the following minibatch composite
minimization problem:

wt ≈ arg min
w
F̃t(w) :=

1

ηb

∑

i∈B̄
fi(w)−

〈
1

ηb

∑

i∈B̄
∇fi(yt−1), w

〉

+

〈
1

b

∑

i∈Bt
∇fi(yt−1) + ṽ − 1

b

∑

i∈Bt
∇fi(w̃s−1), w

〉
+

λ̄

2η
‖w − yt−1‖2 + g(w). (13)
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We slightly re-scale the approximated loss term to make sure that the relative weight be-
tween the approximated loss and the regularization term is correct. Since (13) is a standard
finite-sum composite minimization problem, we could apply prox-SVRG or prox-SAGA to
solve (13) efficiently when the term λ̄

2η ‖w − yt−1‖2 has sufficient strong convexity.

3. Convergence Analysis

In this section we present theoretical results for the proposed approach. As declared in
the introduction, we focus on establishing convergence analysis on linear model empirical
risk minimization problems because the Hessian structure is easier to interpret. However,
the algorithms itself can be implemented for solving general finite-sum problems, and the
theory can also be extended to handle such case. For non-qudratic convex objectives, our
convergence analysis is local, i.e. we assume the initial and subsequent solutions are within a
bounded region near the optimum, which is common in the analysis of second-order methods
in optimization (Nesterov, 2004; Boyd and Vandenberghe, 2004). As will be discussed in
the sequel, the size of the region depends on the condition number of the problem, as well
as the Lipschitz parameter of the Hessian. For quadratic objectives, the radius of the region
can be infinite, which implies global fast convergence.

In this section, for simplicity, we focus on the analysis of Option-II in Algorithm 1 which
uses second-order approximation to construct each sub-problem (5). Similar results hold
for Option-I because locally around the optimal solution, the two methods are equivalent.
Note that for linear predictors fi(w) admits the form fi(w) = `(w>xi; bi) + λ

2 ‖w‖, where
the Hessian can be computed as ∇2fi(yt−1) = `′′(y>t−1xi; bi)xix

>
i +λI. Moreover, we do not

need to explicitly maintain the Hessian matrix: when calculating the stochastic gradient
of equation (5), especially the gradient of (1/2)(w − yt−1)>∇2fi(yt−1)(w − yt−1), we get
∇2fi(yt−1)(w − yt−1) = `′′(y>t−1xi; bi)(x

>
i (w − yt−1))xi + λ(w − yt−1), which can be com-

puted in time O(d). Thus approximately solving objective equation (5) would only requires
a few stochastic gradients calculation (or equivalent operations in O(d)), we count total
number of such gradient computation operations as a measure of Algorithms 1’s efficiency
in optimization.

Besides the strong convexity and smoothness, we also need the following Hessian Lips-
chitz condition.

Condition 1 For each loss function `(w>xi; bi), ∀i ∈ [n], its second derivative is M̄ -
Lipschitz, i.e.

|`′′(w>1 xi; bi)− `
′′
(w>2 xi; bi)| ≤ M̄ ‖w1 − w2‖ , ∀w1, w2 ∈ Rd,∀i ∈ [n].

Conditions of Lipschitz Hessians are typically not required for first-order methods such
as SVRG and SAGA, but are typically required for second-order methods, such as Newton
methods and sub-sampled Newton methods. Moreover, Lipschitz Hessians condition is
often satisfied for popular loss functions used in machine learning such as logistic loss and
square loss. We consider the component function in form of convex loss function of linear
predictor: fi(w) = `(w>xi; bi) + λ

2 ‖w‖
2
2. By Condition 1, combined with the condition that

10
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maximum norm of data points are bounded: maxi ‖xi‖2 ≤ D, we know Hessian matrix of
each component loss function fi(w) is M = M̄D + λ-Lipschitz, i.e.

∥∥∇2fi(w1)−∇2fi(w2)
∥∥ ≤M ‖w1 − w2‖ , ∀w1, w2 ∈ Rd,∀i ∈ [n].

For f(w) = (1/n)
∑

i fi(w), we have the following formula of Hessian matrix:

Hλ(w) =
1

n

n∑

i=1

∇2fi(w) =
1

n

n∑

i=1

`
′′
(w>xi; bi)xix>i + λI.

Let Hλ(wt−1) be the Hessian matrix at wt−1, and suppose we have an approximated Hessian

H̄
λ̃
(wt−1) =

1

b

∑

i∈B̄
`
′′
(w>t−1xi; bi)xix

>
i + λ̃I,

the following proposition states that performing the preconditioned minibatch SVRG update
is equivalent to the standard minibatch SVRG in a linear transformed (preconditioned)
space:

Proposition 3 Considering the following minibatch SVRG type update when solving minw f(w):

wt ← wt−1 − ηH̄λ̃
(wt−1)−1

(
1

b

∑

i∈Bt
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
, (14)

which is equivalent to solving a minimization problem with respect to z:

min
z
f(H̄

−1/2

λ̃
(w∗)z)

via the variable transform z = H̄
1/2

λ̃
(w∗)w. Moreover, the update rule (14) is equivalent to

the following update on z:

zt ←zt−1 − η
(

1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)zt−1) +

1

n

n∑

i=1

∇zfi(H̄−1/2

λ̃
(w∗)z̃)− 1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)z̃)

)

+ ηH̄
1/2

λ̃
(w∗)

(
H̄
λ̃
(w∗)−1 − H̄

λ̃
(wt−1)−1

)
(

1

b

∑

i∈Bt
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
.

(15)

With the above proposition, and Proposition 2, we can see that the proposed updates
(4) and (5) are implicitly performing inexact minibatch SVRG update on the following
transformed problem:

min
z
f(H̄

−1/2

λ̃
(w∗)z) :=

1

n

n∑

i=1

`(z>H̄−1/2

λ̃
(w∗)xi; bi) + λ

∥∥∥H̄−1/2

λ̃
(w∗)z

∥∥∥
2
, (16)

11
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by choosing λ̄ = λ̃ − λ. In the following, we focus on discussing the choice of λ̃, and λ̄
can be settled accordingly. As a straightforward extension, it is also easy to see that using
the acceleration technique as Algorithm 1 is equivalent to performing inexact accelerated
minibatch SVRG update, similar to the exact update analyzed in (Nitanda, 2014). The
analysis of inexact algorithms are presented in Section 4.

The benefit of the transformed problem is that when H̄
λ̃
(w∗) ≈ Hλ(w∗), the condition

number of the new problem (16) becomes smaller than that of the original problem. As
a consequence, when the computational cost of update (14) is cheap, we expect improved
convergence and runtime guarantees for solving the original problem. Before analyzing the
condition number, we state the following lemma, which connects the inexactness in w space
when performing the update (8) (and (14)) to the inexactness in z space when performing
the update (15).

Lemma 4 Let f̃t(w) be the function to be minimized in (8), and w∗t = arg minw f̃t(w) to
be its exact minimizer. Let

z̄t = zt−1−η
(

1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)zt−1) +

1

n

n∑

i=1

∇zfi(H̄−1/2

λ̃
(w∗)z̃)− 1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)z̃)

)
,

be the exact minibatch SVRG update solution in the preconditioned space, and zt = H̄
1/2

λ̃
(w∗)wt

be the actual update in precondition space by approximately solving (8). Let ϑt = 1
b

∑
i∈Bt ∇fi(wt−1)+

1
n

∑n
i=1∇fi(w̃)− 1

b

∑
i∈Bt ∇fi(w̃), We have the following upper bound on ‖zt − z̄t‖:

‖zt − z̄t‖ ≤
√

2(f̃t(wt)− f̃t(w∗t ))(L+ λ̃)

λ+ λ̃
+
ηM ‖wt−1 − w∗‖ ‖ϑt‖

λ̃3/2
.

Remark 5 Lemma 4 states that the inexactness in the minibatch SVRG update in the
z space can be decomposed to two sources, the first source is the fact that we solve the
minimization problem of objective f̃t(w) inexactly, and the second source is the fact that
the Hessian matrix is changing at different locations. Nevertheless, we can fix the z space
that use Hessian matrix at optimum H̄

λ̃
(w∗) as the preconditioner. For quadratic objectives

where M = 0, the second error term becomes zero.

3.1 Improved Condition Number

In this section we analyze the condition number in the “preconditioned” space (16), where
B̄ is sampled uniformly from 1, ..., n. For the analysis, we introduce two notions which
describes the global and local properties of data. The following definitions of effective
dimension and bounded statistical leverage extend the ones defined in (Hsu et al., 2014)
which were used to analyzing the generalization performance of ridge regression.

Definition 6 (Effective dimension) Let the λ1, ..., λd be the top-d eigenvalues of
H0(w∗) = (1/n)

∑n
i=1 `

′′
(w∗>xi; bi)xix>i , define the effective dimension d

λ̃
(for some λ̃ ≥ 0)

of H0(w∗) being

d
λ̃

=
d∑

j=1

λj

λj + λ̃
.

12
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Figure 1: Effective dimension and maximum statistical leverage with different regulariza-
tion parameters λ̃ on some empirical datasets for ridge regression problems.

We see d
λ̃

is a decreasing function of λ̃, and d0 = d when λ̃ = 0. When the spec-

trum of 1
n

∑n
i=1 `

′′
(w∗>xi; bi)xix>i is decaying very fast, the effective dimension d

λ̃
can be

significantly smaller than d for moderate λ̃. The following lemma demonstrated this for
Hessian matrices with fast decaying spectrum, which can be well approximated by low-rank
matrices.

Lemma 7 We have the following upper bound for d
λ̃
:

d
λ̃
≤ min

k

{
k +

∑
j>k λj

λ̃

}
.

As an example of data with fast decaying spectrum, consider generalized linear predictors
in a Hilbert space induced by a Gaussian kernel K(xi, x

′
i) = exp(−‖x− x′i‖2 /(2σ2)) where

σ is a bandwidth parameter. The covariance matrix of the induced feature space has
exponentially decaying eigenvalues with λj ≤ c1 exp(−c2j

2), where c1 and c2 are constants
(Zhang et al., 2015). With exponentially decaying eigenvalues, it is shown in Corollary 5

(Zhang et al., 2015) that d
λ̃
≤ O(

√
log(1/λ̃)) even though the Gaussian kernel maps the

original data to an infinite dimensional space.
The following notion of statistical leverage have been used in regression analysis (Chat-

terjee and Hadi, 2009; Hsu et al., 2014) and matrix approximation (Mahoney et al., 2011).

Definition 8 (Statistical leverage at λ̃) Let H
λ̃
(w∗) = 1

n

∑n
i=1 `

′′
(w∗>xi; bi)xix>i + λ̃I,

we say the statistical leverage of data matrix X is bounded by ρ
λ̃

at λ̃ if

max
i∈[n]

∥∥∥Hλ̃
−1/2(w∗)`

′′
(w∗>xi; bi)

1/2
xi

∥∥∥
√

(1/n)
∑n

j=1

∥∥∥Hλ̃
−1/2(w∗)`′′(w∗>xj ; bj)

1/2
xj

∥∥∥
2
≤ ρ

λ̃
. (17)

13
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For ridge regression problems, the above definition is slightly different from the one used
in (Hsu et al., 2014) in the sense that the empirical Hessian matrix H

λ̃
in (17) is replaced

by the population Hessian matrix E
[
x>i xi

]
+ λ̃I in (Hsu et al., 2014). When the sample

size n is large, the differences in these two definitions are minor. As argued in (Hsu et al.,

2014), when xi is i.i.d. randomly drawn from sub-Gaussian distributions,
(
E
[
x>i xi

])−1/2
xi

is isotropic. In this case the statistical leverage only grows logarithmically with dimension.
For the empirical statistical leverage considered in (17), if we consider the un-regularized
form (when λ̃ = 0), then Definition 8 is closely related to the leverage score used in (Ma-
honey et al., 2011; Drineas and Mahoney, 2017), where the leverage score for xi is defined

as x>i
(

(1/n)
∑

j=1 xjx
>
j

)−1
xi, and thus statistical leverage is just the ratio between “max-

imum leverage score” and “average leverage score”. Though the in worse case ρ
λ̃

can be as
large as

√
n, in many situations it is small. For instance, if the data is generated by ran-

dom Gaussian distributions, or when we apply certain random projections on the data, the
(projected) data matrix is known to have almost uniform leverage scores (i.e. the statistical
leverage parameter in (17) can be upper bounded by O (log d), see Lemma 70 in (Drineas
and Mahoney, 2017) for example).

Our theoretical analysis relies on the condition that the two quantities defined above are
not too large. This condition often holds in practice, as shown in Figure 1, which plots the
effective dimension and the statistical leverage for several real world datasets with varying
regularization parameters.

The convergence of stochastic gradient based algorithms for minimizing the objective
(16) depends on two important quantities: strong convexity and smoothness. The strong
convexity for problem (16) (with respect to z) is

min
z
λmin

(
H̄
−1/2

λ̃
(w∗)

(
1

n

n∑

i=1

`
′′
(z>H̄−1/2

λ̃
(w∗)xi; bi)xix>i + λI

)
H̄
−1/2

λ̃
(w∗)

)
, (18)

which is a property of the overall objective function rather than individual component. How-

ever, we must consider the smoothness parameter for individual function fi(H̄
−1/2

λ̃
(w∗)z)

(with respect to z), which in our context, is

max
i

max
z
λmax

(
H̄
−1/2

λ̃
(w∗)

(
`
′′
(z>H̄−1/2

λ̃
(w∗)xi; bi)xix>i + λI

)
H̄
−1/2

λ̃
(w∗)

)
. (19)

By the variable transformation w = H̄
−1/2

λ̃
(w∗)z, we get `

′′
(z>H̄−1/2

λ̃
(w∗)xi; bi) = `

′′
(w>xi; bi).

Moreover, we consider a local region where w is close to w∗ measured by diameter R:
‖w − w∗‖ ≤ R, and study the local strong convexity and smoothness quantities((18) and
(19)).

Both of these quantities are related to how close is the constructed Hessian approxima-
tion H̄

λ̃
(w∗) to the true Hessian H

λ̃
(w∗) in spectral norm. The following lemma bound this

quantity using matrix concentration.

Lemma 9 If B̄ is formed by uniform sampling with replacement from [n], then we have the
following concentration bound, with probability at least 1− δ,
∥∥∥∥∥∥
H−1

λ̃
(w∗)


1

b

∑

i∈B̄
`
′′
(w∗>xi; bi)xix>i −

1

n

n∑

i=1

`
′′
(w∗>xi; bi)xix>i



∥∥∥∥∥∥

2

≤ 2 log

(
d

δ

)
·

√
ρ2
λ̃
d
λ̃

b
.
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3.1.1 Strong Convexity

Based on above lemma, we have the following lower bound of the strong convexity for (16),
specified in the following lemma.

Lemma 10 If we set λ̃ such that λ̃ ≥ λ, then with probability at least 1−δ over the random
choice of B̄ to form H̄

λ̃
, we have

min
‖w−w∗‖≤R

λmin

(
H̄
−1/2

λ̃
(w∗)Hλ(w)H̄

−1/2

λ̃
(w∗)

)
≥ λ

λ̃

1

1 + 2 log (d/δ)
√

(ρ2
λ̃
d
λ̃
)/b(1 +MR/λ̃) +MR/λ̃

.

3.1.2 Smoothness

Next we explore the local smoothness parameter of (16). Using the variable transform

w = H̄
−1/2

λ̃
(w∗)z, if we consider the individual smoothness parameter (with respect to z)

around the neighborhood of w∗ with diameter R, it can be upper bounded by

max
i∈[n]

max
‖w−w∗‖≤R

λmax

(
H̄
−1/2

λ̃
(w∗)

(
`
′′
(w>xi; bi)xix>i + λI

)
H̄
−1/2

λ̃
(w∗)

)
.

Since

λmax

(
H̄
−1/2

λ̃
(w∗)

(
`
′′
(w>xi; bi)xix>i + λI

)
H̄
−1/2

λ̃
(w∗)

)

≤ λmax

(
H̄
−1/2

λ̃
(w∗)

(
`
′′
(w>xi; bi)xix>i

)
H̄
−1/2

λ̃
(w∗)

)
+ λmax

(
λH̄−1

λ̃
(w∗)

)

≤ `′′(w>xi; bi)x>i H̄−1

λ̃
(w∗)xi +

λ

λ̃
(20)

The most straightforward way to upper bound `
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi is

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi

≤ max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi) ‖xi‖2 λmin(H̄−1

λ̃
(w∗))

= max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi) ‖xi‖2

λ̃
=
L

λ̃
.

In this way, the condition number after preconditioning becomes

O
(

4λ̃

λ
· L
λ̃

)
= O

(
L

λ

)
,

which didn’t show any advantage of using preconditioning. This is not surprising because
it is known that for high dimensional problems, the worse case behavior of second order
methods is no better than that of the first order methods.

In the lemma below, we provide an improved analysis of smoothness which is based on
the notion of effective dimension (Definition 6) and statistical leverage (Definition 8).
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Lemma 11 If we choose λ̃ ≥ λ and b ≥ 16ρ2
λ̃
d
λ̃

log2(d/δ), then with probability at least

1− δ over the random choice of B̄ to form H̄
λ̃
(w∗), we have

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi ≤ 2ρ2

λ̃
d
λ̃

+
MR

λ̃
.

Based on above analysis, we have the following corollary states the local individual smooth-
ness parameter of (16).

Corollary 12 If we choose λ̃ ≥ λ and b ≥ 16ρ2
λ̃
d
λ̃

log2(d/δ), and R ≤ λ̃
M . Then with

probability at least 1−δ over the random choice of B̄ to form H̄
λ̃
(w∗), we have the following

upper bound hold for the local smoothness parameter

max
i∈[n]

max
‖w−w∗‖≤R

λmax

(
H̄
−1/2

λ̃
(w∗)

(
`
′′
(w>xi; bi)xix>i + λI

)
H̄
−1/2

λ̃
(w∗)

)
≤ 2ρ2

λ̃
d
λ̃

+ 2.

Proof Combining (20) and Lemma 11, as well as the conditions of λ̃ and R stated in the
corollary we get the desired results.

Combining Lemma 10 and Corollary 12 we get the following result about the condition
number for (16). If we choose λ̃ and b that satisfy

λ̃ ≥ max

{
λ,
L

b

}
, b ≥ 16ρ2

λ̃
d
λ̃

log2

(
d

δ

)
, R ≤ min

{
1

4ML
,
λ̃

4M

}
,

then with probability at least 1−δ, the condition number for stochastic gradient algorithms

after preconditioning scales as
4ρ2
λ̃
d
λ̃
λ̃

λ , more specifically when λ̃ = max
{
λ, Lb

}
, then the

condition number of (16) can be upper bounded by:

ρ2
λ̃
d
λ̃

max

{
4,

4L

λb

}
,

which improves the original condition number L/λ by a factor of at least Õ(ρ2
λ̃
d
λ̃
/b).

3.2 Improved Runtime Guarantee

Based on the above analysis, we have the following main results stating the iteration com-
plexity of MB-SVRP algorithms on general convex objectives (1).

Theorem 13 Consider Algorithm 1 on problems with L-smooth and λ-strongly convex func-
tions that satisfied Condition 1 with Hessian Lipschitz parameter M . Suppose we sample
minibatch B̄ uniformly from 1, ..., n, and set the tuning parameters as

λ̃ = max

{
λ,
L

b

}
, b � min

{
n, ρ2

λ̃
d
λ̃

(
L

λ

)1/3
}
, η � min

{
b3λ

(ρ2
λ̃
d
λ̃
)2L

,
1

ρ2
λ̃
d
λ̃

}
,
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and suppose we start from the initialization point that is sufficiently close to the optimum:

‖w0 − w∗‖ ≤ R = O
(

λ4

L2M

)
. (21)

Given ε > 0, and let

ε ≤ 1

105
·
(
λ

L

)7

ε. (22)

Then for the MB-SVRP algorithm to find the approximate solution w̃s of (1) that reaches
the expected ε-objective suboptimality

Ef(w̃s)−min
w
f(w) ≤ ε,

we can set

T ≤ O
(

max

{(
L

λ

)1/3

,
ρ2
λ̃
d
λ̃
L

λn2

})
,

and uses S ≤ O (log (1/ε)) total stages in Algorithm 1. Thus the total number of oracle
calls to solve (8) is no more than

O
(

max

{(
L

λ

)1/3

,
ρ2
λ̃
d
λ̃
L

λn2

}
· log

(
1

ε

))
.

Remark 14 There are two source of randomness in Algorithm 1: i) sampling B̄ to form
the precondition minibatch before the iterations begins; ii) sampling Bt during the iterations.
In particular, sampling B̄ affects the new condition number as Section 3.1 analyzed, while
sampling Bt affects the precondition SVRG convergence. We state the results about the
randomness in B̄ in high-probability form as Lemma 10 and Corollary 12; while state the
randomness in Bt in expectation results, it is also possible to obtain high-probability results
for randomness in Bt by using Markov’s inequality, for example as Corollary 1 in (Xiao
and Zhang, 2014).

Note that in Algorithm 1, we can use SVRG to solve each subproblem in (8). This leads
to the following result.

Corollary 15 Assume that the conditions of Theorem 13 hold. Moreover, if we use SVRG
to solve each subproblem in (8) up to the suboptimality ε, then the total number of gradient
evaluations used in the whole MB-SVRP algorithm can be upper bounded by

O
(
ρ2
λ̃
d
λ̃

max

{(
L

λ

)2/3

,
L

λn

}
· log

(
L

λ

)
· log2

(
1

ε

)
+ n · log

(
1

ε

))
.

We make the following remarks about Theorem 13 and Corollary 15.
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Remark 16 The solution accuracy requirement in (22) (in practice we can monitoring
ε via ‖∇f̃t(w)‖ since f̃t(w) is λ̃-strongly convex) is conservative, but does not affect the
overall iteration complexity because solving (4) and (5) to high precision only introduces an
additional logarithmic factor using SVRG. In practice, we observe that using only one pass
SVRG warm started from previous iterate performs well (please refer to the experiments).

Remark 17 For quadratic objectives, where M = 0, the local fast region defined in (21)
is the whole space, implying global fast convergence for quadratic objectives. Moreover, in
experiments, we observe that even for the general non-quadratic objectives, the proposed
MB-SVRP method also converges fast globally. Therefore the size of the local fast conver-
gence region (21) established here might be too conservative. We leave the investigation on
improving the size of the local fast convergence region to future work.

Remark 18 Corollary 15 states that the iteration complexity of Algorithm 1 is

Õ
(
n+ ρ2

λ̃
d
λ̃

max

{(
L

λ

)2/3

,
L

λn

})
,

where Õ(·) hides the minor poly logarithmic factors. When ρ2
λ̃
d
λ̃

is small so that it can be
treated as a constant, then the iteration complexity of MB-SVRP improves over standard

SVRG by a factor of min
{
n,
(
L
λ

)1/3}
when the condition number L

λ is much larger than n.

Even compared with accelerated methods (such as SVRG equipped with catalyst acceleration
(Shalev-Shwartz and Zhang, 2016; Frostig et al., 2015; Lin et al., 2015a)), it can sometimes
be better (when n < L/λ < n2, see Table 1 for details).

Remark 19 Though the optimal parameter choice stated in Theorem 13 might depend on
the property of the Hessian matrix at w∗, the algorithm actually works for a wide range
of parameters without the knowledge of w∗ because i) for quadratic objectives the Hessian
matrix does not change with w so the optimal parameter choice will not depend on w∗; ii) we
only requires some constants ρ2

λ̃
d
λ̃

to bound certain quantities of the Hessian matrix at w∗,
but do not need exactly where w∗ is; iii) if we are uncertain about the data we can choose
some conservative parameters (as discussed in Section 3.1) to ensure the method converges
at least as fast as vanilla SVRG.

Remark 20 When ρ2
λ̃
d
λ̃

is small such that can be treated as constant, then the optimal
choice of b according to our theory is often smaller than n, except the case where the condi-
tion number is extremely large: L/λ & (n/(ρ2

λ̃
d
λ̃
))3. Moreover, when combine the proposed

approach with Catalyst acceleration as in Section 3.3, the condition number in each proximal
point problem can always be controlled to be not too large, in which case the optimal batch
size b is smaller than n.

Remark 21 MB-SVRP method is able to improve the iteration complexity over SVRG
when ρ2

λ̃
d
λ̃

is small, thus it is also possible to use MB-SVRP itself to solve the minibatch

subproblem (4). Such a nested approach allows us to choose a even smaller λ̃, thus can fur-
ther reduce the dependency on condition number in the iteration complexity. However, this
is at the cost of increasing the dependency on ρ2

λ̃
d
λ̃

and more complicated implementation.
We will leave such investigation to future research.
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3.3 With Catalyst Acceleration

Algorithm 2 Acc-MB-SVRP: Accelerated MB-SVRP method.

Initialize w0 = z0 = 0.
for r = 1, 2, . . . do

Call MB-SVRP algorithm 1 to approximately solve

wr ≈ arg min
w
f(w) +

γ

2
‖w − zr−1‖2 . (23)

Update
zr = wr + νr(wr − wr−1).

end for
Return wr.

Table 1: Comparison of iteration complexity of various finite-sum quadratic optimization
algorithms when effective dimension and statistical leverage are bounded, where
we compare the different relative scale of condition number κ = L/λ and sample
size n, ignoring logarithmic factors.

κ ≤ n κ = n4/3 κ = n3/2 κ = n2 κ = n3

SVRG n n4/3 n3/2 n2 n3

MB-SVRP n ρ2
λ̃
d
λ̃
· n ρ2

λ̃
d
λ̃
· n ρ2

λ̃
d
λ̃
· n3/2 ρ2

λ̃
d
λ̃
· n5/2

Acc-SVRG n n7/6 n5/4 n3/2 n2

Acc-MB-SVRP n
(
ρ2
λ̃
d
λ̃

)1/2
· n

(
ρ2
λ̃
d
λ̃

)1/2
· n

(
ρ2
λ̃
d
λ̃

)1/2
· n5/4

(
ρ2
λ̃
d
λ̃

)1/2
· n7/4

Corollary 15 stated that if the condition number is not too large: L
λ ≤ n5/4, then MB-

SVRP only requires logarithmic passes over data to find a solution with high accuracy.
When the condition number is large, MB-SVRP can still be slow. By using the accelerated
proximal point framework proposed in (Shalev-Shwartz and Zhang, 2016; Frostig et al.,
2015; Lin et al., 2015a), it is possible to obtain an accelerated convergence rate which has
milder dependence on condition number, the algorithm is outlined in Algorithm 2, which
iteratively, approximately call the original algorithm MB-SVRP to solve an augmented
proximal point problem. The main iteration complexity is stated in the theorem below.

Theorem 22 For ill-condition problems where L/λ ≥ n3/2, if we set the parameter γ �
ρ2
λ̃
d
λ̃
L

n3/2 − λ, Algorithm 2 has iteration complexity of

Õ
((

ρ2
λ̃
d
λ̃

)1/2
· n1/4

(
L

λ

)1/2
)
.
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Remark 23 From theorem 22 we see the iteration complexity of accelerated MB-SVRP
grows at a square root rate with respect to the condition number, which is much better than
that of the non-accelerated algorithms, and this is similar to the behavior of accelerated
SVRG algorithms. Moreover, accelerated MB-SVRP improves the iteration complexity of

accelerated SVRG by a factor of n1/4 when
√
ρ2
λ̃
d
λ̃

is small.

4. Convergence Analysis of Inexact Accelerated Minibatch SVRG

Algorithm 3 IMBA-SVRG: Inexact Minibatch Accelerated SVRG Method.

Parameters α =
√
ηλ/2.

Initialize w̃0 = 0.
for s = 1, 2, . . . , S do

Calculate ṽ = 1
n

∑n
i=1∇fi(w̃s−1).

Initialize y0 = w0 = w̃s.
for t = 1, 2, . . . , T do

Sampling b items from [n] to form a minibatch Bt.
Inexact update wt such that

wt = w̄t + ξt, (24)

where:

w̄t = yt−1 − η
(

1

b

∑

i∈Bt
∇fi(yt−1)− 1

b

∑

i∈Bt
∇fi(w̃s−1) + ṽ

)
.

Update

yt = wt +

(
1− α
1 + α

)
(wt − wt−1).

end for
Update w̃s = wm.

end for
Return w̃s

As discussed in Propositions 2 and 3, the proposed MB-SVRP method (Algorithm 1 ) is
essentially perform the inexact minibatch accelerated SVRG updates in the preconditioned

space using H̄
−1/2

λ̃
(w∗) as the preconditioner. Thus, the main results established in Section

3 rely on the analysis for inexact, minibatch, accelerated SVRG update (IMBA-SVRG
Algorithm 3), where in each stochastic step, we allow a small error ξt in the updating. In
this section, we show that as long as the inexactness at each iteration is small enough,
IMBA-SVRG can use a large minibatch size without slowing down the convergence.

Theorem 24 Consider the IMBA-SVRG algorithm. If we choose the stepsize as

η = min

{
b2λ

6400L2
,

1

8L

}
,
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and when the deviation ξt satisfies ∀1 ≤ t ≤ T

‖ξt‖2 ≤
2λ2η3

√
λη

15
(f(w̃s−1)− f(w∗)), (25)

and the number of iterations T satisfies

T ≥ 10

9
√
λη

log(36),

then

E [f(w̃s)− f(w∗)] ≤ 1

2
[f(w̃s−1)− f(w∗)] .

Remark 25 Depending on the relative magnitude of minibatch size b and condition number
L
λ , the overall iteration complexity can be divided into the following two situations.

• b ≤ 20
√

2L
λ . If we choose the stepsize as η = b2λ

6400L2 , and the deviation ξt satis-

fies ∀1 ≤ t ≤ T : ‖ξt‖2 ≤ 2λ2η3
√
λη

15 (f(w̃s−1) − f(w∗)), then E [f(w̃s)− f(w∗)] ≤
1
2 [f(w̃s−1)− f(w∗)] when T ≥ 90L

λb .

• 20
√

2L
λ ≤ b ≤ n. If we choose stepsize as η = 1

8L , and when the deviation ξt sat-

isfies ∀1 ≤ t ≤ T : ‖ξt‖2 ≤ 2λ2η3
√
λη

15 (f(w̃s−1) − f(w∗)), then E [f(w̃s)− f(w∗)] ≤
1
2 [f(w̃s−1)− f(w∗)] when T ≥

√
8L
λ .

A direct consequence of Theorem 24 is the following iteration complexity of IMBA-
SVRG.

Corollary 26 For IMBA-SVRG algorithm, If we choose stepsize as η = min
{

b2λ
6400L2 ,

1
8L

}
,

and when at every state s, the deviation ξt at every iteration satisfies ∀1 ≤ t ≤ T : ‖ξt‖2 ≤
2λ2η3

√
λη

15 (f(w̃s−1)− f(w∗)), then O
(
log
(

1
ε

))
full gradient evaluations and

O
(

max

{
L

λb
,

√
L

λ

}
· log

(
1

ε

))

inexact update steps of form (24) are sufficient to ensure Ef(w̃s)− f(w∗) ≤ ε.

Our convergence proof of IMBA-SVRG relies on the machinery of stochastic estimation
sequence (Lin et al., 2014), which originated from the framework of estimation sequence
developed in (Nesterov, 2004). The details are given in Appendix B.

The main difference between our analysis and that of (Lin et al., 2014) is that we no
longer require the inequalities in estimation sequences hold almost surely. Instead we only
make sure they hold in expectation, and thus the quadratic lower bound used to construct
the stochastic estimation sequence is also different. IMBA-SVRG can be viewed as an
inexact extension of accelerated minibatch SVRG (Nitanda, 2014). Although (Nitanda,
2014) also considered stochastic estimation sequences, here we allow error in the stochastic
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Table 2: List of datasets used in the experiments.
Name #Instances #Features Task

codrna 59,535 8 Classification
covtype 581,012 54 Classification

svmguide3 1,243 21 Classification
synthetic-c 10,000 1,000 Classification

cadata 20,460 8 Regression
spacega 3,107 6 Regression

synthetic-r 20,000 2,000 Regression
year 463,715 91 Regression

Algorithm 4 Practical implementation of MB-SVRP Algorithm used in Experiments.

Parameters: b.
Initialize η = 1

L , ν = 1−√λη
1+
√
λη

, m = dnb e, λ̄ = 1√
b
, w̃0 = 0.

Sampling Sampling b items from [n] to form a minibatch B̄.
for s = 1, 2, . . . do

Calculate ṽ = 1
n

∑n
i=1∇fi(w̃s−1).

Initialize y0 = w0 = w̃s.
for t = 1, 2, . . . , d2n/be do

Sampling b items from [n] to form a minibatch Bt.
Initialize wt = yt−1.
Calculate ũ = η

b

∑
i∈Bt ∇fi(yt−1) + ηṽ − η

b

∑
i∈Bt ∇fi(w̃s−1).

for k = 1, 2, . . . , b do
Sampling Sampling an index ik from B̄.
Update (MB-SVRP-I): wt ← wt−η

(
∇fik(wt)−∇fik(yt−1) + λ̄(wt − yt−1) + ũ

)
.

Update (MB-SVRP-II): wt ← wt−η
(
∇2fik(yt−1)(wt − yt−1) + λ̄(wt − yt−1) + ũ

)
.

end for
Update: yt = wt + ν(wt − wt−1).

end for
Update w̃s = wm.

end for
Return w̃s

gradient update, and thus need to construct a different estimation sequence which takes the
inexactness into consideration. On the other hand, batch (accelerated) gradient methods
with inexact first order oracle have been studied in (Schmidt et al., 2011; Villa et al., 2013;
Devolder et al., 2014), and the analysis of IMBA-SVRG extends these results in the context
of stochastic gradient methods with variance reduction.

5. Experiments
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In this section we compare the proposed MB-SVRP algorithm to several state-of-the-art
methods for minimizing (1). The datasets are summarized in Table 2, most of which can
be download from the LibSVM website2. We also considered a synthetic dataset for each
task, where the data {xi, bi}ni=1 are i.i.d. drawn from the following model:

Regression : bi = 〈xi, w̄〉+ ai, xi ∼ N (0,Σ), ai ∼ N (0, 1), ∀i ∈ [n],

Classification : P (bi = ±1) =
exp(bi〈xi, w̄〉)

1 + exp(bi〈xi, w̄〉)
, xi ∼ N (0,Σ), ∀i ∈ [n],

where entries of w̄ are drawn i.i.d. from N (0, 1). To make the problem ill-conditioned with
fast decaying spectrum, we set Σij = 2−|i−j|/500,∀i, j ∈ [n].

5.1 Empirical Results for Smooth Optimization

We consider ridge regression and logistic regression models for regression and classification

problems, respectively. We normalize the dataset by xi ← xi/
(

maxi ‖xi‖2
)

to ensure

that the maximum norm of data points is 1. Note that the normalization will not change
statistical property of the problem, the purpose here is to make the smoothness parameter
fixed and invariant across different datasets, thus easier for us to set a suitable regularization
parameter λ for the target condition number. We tried three settings of λ, as 1/n, 10−1/n
and 10−2/n to represent different levels of regularization. It is expected that when λ = 1/n,
the SVRG/SAGA/SDCA algorithms should converge very fast since the condition number
is of the same order as sample size n, while for weak regularization case λ = 10−2/n these
algorithms are expected to converge slowly.

We compare with SVRG (Johnson and Zhang, 2013), SDCA (Shalev-Shwartz and Zhang,
2013), and SAGA (Defazio et al., 2014), as they represent popular variance reduced opti-
mization algorithms. We also compare with the minibatch version of SVRG and SAGA,
in particular, we compare with a related minibatch accelerated SVRG (MB-SVRG) (Ni-
tanda, 2014), which allows large minibatch size without slowing down convergence; while
for SAGA, we apply the standard minibatch technique for SAGA and get the MB-SAGA
algorithm. For quasi-Newton methods, we compare with L-BFGS with 10 as the limited
memory size, and with line search of stepsize to satisfy the Wolfe condition (Wright and
Nocedal, 1999). For the proposed MB-SVRP method, we implemented both Option I (MB-
SVRP-I) and Option II (MB-SVRP-II), for ridge regression problem, these the two options
are equivalent. At every iteration we simply run one pass of SVRG method initialized with
yt−1, to approximately solve (4). The implementation is summarized in Algorithm 4, where
we fixed many parameters except the minibatch size b as the main tuning parameter. For
SVRG and MB-SVRP method, we set T = d2n/be as suggested in (Johnson and Zhang,
2013). The minibatch size of MB-SVRP are set to be max(min((L/λ)1/3, d), 40) inspired
by theoretical analysis in Section 3, the minibatch size of MB-SVRG and MB-SAGA is
set to be the same as MB-SVRP to demonstrate the direct comparison. In Section 5.3 we
also performed a sensitivity study on the minibatch size b in MB-SVRP algorithm. Other
parameters, such as stepsize in SVRG and SAGA, are tuned to give the fastest convergence.

We use primal objective suboptimality and the number of gradient evaluations as the
evaluation metrics. Since gradient calculations account for the major computing part of

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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first-order optimization methods, it is used as a good estimate (Johnson and Zhang, 2013;
Shalev-Shwartz and Zhang, 2013; Defazio et al., 2014) of the computation cost, and it can be
evaluated independent of specific implementation and computing hardware. Figure 2 and
3 showed the results for `2 regularized logistic regression and ridge regression, respectively,
where we plot how the objective suboptimality f(wt) − f(w∗) decreases as the number of
gradient evaluations divided by sample size (a.k.a. number of effective passes) increases.
We have the following observations:

• When the regularization parameter λ (thus strong convexity) is large enough, all
methods (except L-BFGS and MB-SAGA) converges very fast, typically using less
than 50 passes over data to converges to numerical precision. The slow convergence
of MB-SAGA is due to the usage of minibatch which slow down its computation
efficiency.

• The convergence of L-BFGS is typically the slowest. When λ is large, the advantages
of variance-reduced stochastic methods over L-BFGS are significant.

• When the regularization parameter is small, the proposed MB-SVRP method starts
to show advantages. In particular, when λ = 10−2/n, MB-SVRP is substantially
faster than all other methods compared in our study. We also observed there is only
negligible performance difference between MB-SVRP-I and MB-SVRP-II.

5.2 Empirical Results for Composite Optimization

We also consider empirical comparisons in the setting of non-smooth composition optimiza-
tion problems. We adopted the same datasets used for the smooth optimization problems,
but considered the elastic-net regularized logistic regression and linear regression models
(Zou and Hastie, 2005). Where the objective is in the form of (12) but with a elastic-net
regularization:

g(w) =
λ

2
‖w‖2 + µ ‖w‖1 ,

where µ is set to be 10−1/n. We follow the same settings as in the previous section,
and compare with prox-SVRG (Xiao and Zhang, 2014), prox-SAGA (Defazio et al., 2014),
prox MB-SVRG (Nitanda, 2014), and prox MB-SAGA, but didn’t compare with L-BFGS
because the method is generally only applicable for smooth problems. The results are shown
in Figure 4 and 5, and we have similar observations as those of the smooth optimization
case: all variance-reduced methods converges reasonably fast when λ is large, but when λ
becomes small, the proposed prox MB-SVRP method converges significantly faster because
it effectively leveraged the higher-order information from minibatches.

5.3 Sensitivity Study on the Minibatch Size in MB-SVRP

We also performed a sensitivity study on the minibatch size b, to see how b will affect the
convergence behavior of MB-SVRP method. The experimental setting follows Section 5.1
and 5.2, except that we varying b to be 16, 32, 64, 128 for MB-SVRP, and the regularization
parameter λ is fixed to be 10−2/n. The results were shown in Figure 6, we observed that
MB-SVRP method performed well on a wide range settings of minibatch sizes, and converges
fast than SVRG in most cases.
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6. Conclusion

In this paper, we proposed a novel minibatch stochastic optimization approach for regular-
ized loss minimization in machine learning. This approach efficiently utilizes both variance-
reduced first-order gradients and sub-sampled higher order information, and under suitable
conditions, it can provably improve the iteration complexity over that of the previous state-
of-the-art. Empirical experiments demonstrated that this approach performs well on a
variety of smooth and composite optimization tasks in practice. The minibatch nature of
the algorithm makes it useful for parallel and distributed computing environment, where
additional speed up can be obtained by using many CPU cores for computation.
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Figure 2: Comparison of various optimization algorithms for solving `2 regularized logistic
regression problems.
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Figure 3: Comparison of various optimization algorithms for solving ridge regression prob-
lems.
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Figure 4: Comparison of various optimization algorithms for solving elastic-net regularized
logistic regression problems.
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Figure 5: Comparison of various optimization algorithms for solving elastic-net regularized
regression problems.
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Figure 6: Convergence of MB-SVRP algorithms with various minibatch size b (in parenthe-
ses), compared with SVRG.
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Appendix

The appendix contains proofs of some theorems and lemmas stated in the main paper.

Appendix A. Proofs for Section 3

A.1 Proof of Proposition 3

Proof Let w∗ = arg minw f(w), and z∗ = arg minz f(H̄
−1/2

λ̃
(w∗)z), it is clear that w∗ =

H̄
−1/2

λ̃
(w∗)z∗, which is coincident with the exchange of variable rule z = H̄

1/2

λ̃
(w∗)w. More-

over, since

η

(
1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)zt−1) +

1

n

n∑

i=1

∇zfi(H̄−1/2

λ̃
(w∗)z̃)− 1

b

∑

i∈Bt
∇zfi(H̄−1/2

λ̃
(w∗)z̃)

)

1
= ηH

−1/2

λ̃
(w∗)

(
1

b

∑

i∈Bt
∇fi(H̄−1/2

λ̃
(w∗)zt−1) +

1

n

n∑

i=1

∇fi(H̄−1/2

λ̃
(w∗)z̃)− 1

b

∑

i∈Bt
∇fi(H̄−1/2

λ̃
(w∗)z̃)

)

2
= ηH

−1/2

λ̃
(w∗)

(
1

b

∑

i∈Bt
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
,

where at step 1 we have used the gradient chain rule, at step 2 we used the exchange of

variables z = H̄
1/2

λ̃
(w∗)w. Substitute to (15), and multiplying both sides of above equation

with H̄
−1/2

λ̃
(w∗), we get

wt ← wt−1 − ηH̄λ̃
(wt−1)−1

(
1

b

∑

i∈Bt
∇fi(wt−1) +

1

n

n∑

i=1

∇fi(w̃)− 1

b

∑

i∈Bt
∇fi(w̃)

)
,

which recovers the exact formulation of (14).

A.2 Proof of Lemma 4

Proof We first perform the following decomposition:

‖zt − z̄t‖ ≤ ‖zt − z∗t ‖+ ‖z∗t − z̄t‖ , (26)

then we can bound ‖zt − z∗t ‖ by

‖zt − z∗t ‖ =
∥∥∥H̄1/2

λ̃
(w∗)(wt − w∗t )

∥∥∥ ≤
∥∥H̄

λ̃
(w∗)

∥∥1/2 ‖wt − w∗t ‖ ≤
√
L+ λ̃ ‖wt − w∗t ‖

≤
√

2(f̃t(wt)− f̃t(w∗t ))(L+ λ̃)

λ+ λ̃
, (27)
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where in the last inequality we use the λ + λ̃-strong convexity of f̃t(w). For the term
‖z∗t − z̄t‖, we can bounded it using Hessian Lipschitz property,

‖z∗t − z̄t‖ =

∣∣∣∣
∣∣∣∣ηH̄

1/2

λ̃
(w∗)

(
H̄
λ̃
(w∗)−1 − H̄

λ̃
(wt−1)−1

)
ϑt

∣∣∣∣
∣∣∣∣

≤η
∣∣∣∣
∣∣∣∣
(
H̄
λ̃
(w∗)−1/2H̄

λ̃
(wt−1)−1

) (
H̄
λ̃
(w∗)− H̄

λ̃
(wt−1)

) ∣∣∣∣
∣∣∣∣ ‖ϑt‖

≤ η

λ̃3/2
M ‖wt−1 − w∗‖ ‖ϑt‖ . (28)

Combining (26), (27) and (28) finishes the proof.

A.3 Proof of Lemma 7

Proof We first decompose the terms
λj

λj+λ̃
into two parts, the first one contains indexes

smaller or equal than k and the second part contains indexes larger than k, then we upper
bound these two parts get obtain the stated results.

d
λ̃

=
∑

j

λj

λj + λ̃
= min

k




∑

j≤k

λj

λj + λ̃
+
∑

j>k

λj

λj + λ̃





≤min
k




∑

j≤k

λj + λ̃

λj + λ̃
+
∑

j>k

λj

λ̃



 = min

k

{
k +

∑
j>k λj

λ̃

}

A.4 Proof of Lemma 9

Proof For j = 1, ..., b, define random matrix

vj =
1

b

(
H
−1/2

λ̃
(w∗)`

′′
(w∗>xk; bk)xkx

>
kH

−1/2

λ̃
(w∗)− 1

n

n∑

i=1

H
−1/2

λ̃
(w∗)`

′′
(w∗>xi; bi)xix>i H

−1/2

λ̃
(w∗)

)
,

with probability 1/n,∀k ∈ [n]. It is easy to check that E [vj ] = 0, and

‖vj‖ ≤
1

b

(∥∥∥H−1/2

λ̃
(w∗)`

′′
(w∗>xk; bk)xkx

>
kH

−1/2

λ̃
(w∗)

∥∥∥
)

+
1

b

(∥∥∥∥∥
1

n

n∑

i=1

H
−1/2

λ̃
(w∗)`

′′
(w∗>xi; bi)xix>i H

−1/2

λ̃
(w∗)

∥∥∥∥∥

)

≤1

b

(
2 max
i∈[n]

`
′′
(w∗>xi; bi)x>i H

−1

λ̃
(w∗)xi

)
≤

2ρ2
λ̃

b

(
1

n

n∑

i=1

`
′′
(w∗>xi; bi)x>i H

−1

λ̃
(w∗)xi

)

=
2ρ2

λ̃

b
tr

(
H−1

λ̃
(w∗)

(
1

n

n∑

i=1

`
′′
(w∗>xi; bi)xix>i

))
=

2ρ2
λ̃
d
λ̃

b
.
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for the expected second order moment, denote x̃k = (`
′′
(w∗>xk; bk))1/2H

−1/2

λ̃
(w∗)xk we

have

∥∥E
[
v2
j

]∥∥ =

∥∥∥∥∥∥
1

nb2

n∑

k=1

(
x̃kx̃

>
k −

1

n

n∑

i=1

x̃ix̃
>
i

)2
∥∥∥∥∥∥

=

∥∥∥∥∥∥
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nb2

n∑
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

(
x̃kx̃

>
k

)2
− 2

(
x̃kx̃

>
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)( 1

n

n∑
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x̃ix̃
>
i

)
+

(
1

n

n∑
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x̃ix̃
>
i

)2

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∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

nb2
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(
x̃kx̃

>
k

)2
− 2

b2

(
1

n

n∑
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x̃ix̃
>
i

)2

+
1

b2

(
1

n

n∑
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x̃ix̃
>
i

)2
∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

nb2

n∑

k=1

(
x̃kx̃

>
k

)2
− 1

b2

(
1

n

n∑

i=1

x̃ix̃
>
i

)2
∥∥∥∥∥∥

≤
∥∥∥∥∥

1

nb2

n∑

k=1

(
x̃kx̃

>
k

)2
∥∥∥∥∥ ≤

∥∥∥∥∥
ρ2
λ̃
d
λ̃

b2

(
1

n

n∑

k=1

x̃kx̃
>
k

)∥∥∥∥∥

=
ρ2
λ̃
d
λ̃

b2

∥∥∥∥∥H
−1/2

λ̃
(w∗)

(
1

n

n∑

i=1

`
′′
(w∗>xi; bi)xix>i

)
H
−1/2

λ̃
(w∗)

∥∥∥∥∥

≤
ρ2
λ̃
d
λ̃

b2
.

Thus

∥∥∥∥∥∥

b∑

j=1

E
[
v2
j

]
∥∥∥∥∥∥
≤
ρ2
λ̃
d
λ̃

b
,

using Lemma 35, we know

P



∥∥∥∥∥∥
H
−1/2

λ̃
(w∗)


1

b

∑

i∈B̄
`
′′
(w∗>xi; bi)xix>i −

1

n

n∑

i=1

`
′′
(w∗>xi; bi)xix>i


H

−1/2

λ̃
(w∗)

∥∥∥∥∥∥
2

≥ t




= P



∥∥∥∥∥∥

b∑

j=1

vj

∥∥∥∥∥∥
≥ t


 ≤ d exp

(
−t2/2

ρ2
λ̃
d
λ̃
/b+ 2ρ2

λ̃
d
λ̃
t/(3b)

)
,

setting t = 2 log
(
d
δ

)
·
√

ρ2
λ̃
d
λ̃

b we conclude the proof.
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A.5 Proof of Lemma 10

Proof When λ̃ ≥ λ, we know

λmin(H̄
−1/2

λ̃
(w∗)Hλ(w)H̄

−1/2

λ̃
(w∗))

≥ λmin

(
H̄
−1/2

λ̃
(w∗)

(
λ

λ̃

(
1

n

n∑

i=1

`′′(w>xi; bi)xix>i

)
+ λI

)
H̄
−1/2

λ̃
(w∗)

)

=
λ

λ̃
λmin(H̄

−1/2

λ̃
(w∗)H

λ̃
(w)H̄

−1/2

λ̃
(w∗)).

Further more we can lower bound λmin(H̄
−1/2

λ̃
(w∗)H

λ̃
(w)H̄

−1/2

λ̃
(w∗)) by

λmin(H̄
−1/2

λ̃
(w∗)H

λ̃
(w)H̄

−1/2

λ̃
(w∗))

= λmin(H̄−1

λ̃
(w∗)H

λ̃
(w))

=
1

λmax(H−1

λ̃
(w)H̄

λ̃
(w∗))

≥ 1

λmax(H−1

λ̃
(w)H

λ̃
(w)) + λmax(H−1

λ̃
(w)(H

λ̃
(w)− H̄

λ̃
(w∗)))

≥ 1

1 + λmax(H−1

λ̃
(w)(H

λ̃
(w∗)− H̄

λ̃
(w∗))) + λmax(H−1

λ̃
(w)(H

λ̃
(w)−H

λ̃
(w∗)))

, (29)

For the term λmax(H−1

λ̃
(w)(H

λ̃
(w∗)− H̄

λ̃
(w∗))), we have the following decomposition:

λmax(H−1

λ̃
(w)(H

λ̃
(w∗)− H̄

λ̃
(w∗))) ≤λmax(H−1

λ̃
(w∗)(H

λ̃
(w∗)− H̄

λ̃
(w∗)))

+ λmax((H−1

λ̃
(w∗)−H−1

λ̃
(w))(H

λ̃
(w∗)− H̄

λ̃
(w∗)))

(30)

since with probability at least 1− δ, we have

λmax(H−1

λ̃
(w∗)(H

λ̃
(w∗)− H̄

λ̃
(w∗))) ≤ 2 log

(
d

δ

)√ρ2
λ̃
d
λ̃

b
, (31)

and

λmax((H−1

λ̃
(w∗)−H−1

λ̃
(w))(H

λ̃
(w∗)− H̄

λ̃
(w∗)))

= λmax((H
λ̃
(w∗)−H

λ̃
(w))H−1

λ̃
(w)H−1

λ̃
(w∗)(H

λ̃
(w∗)− H̄

λ̃
(w∗)))

≤ λmax(H
λ̃
(w∗)−H

λ̃
(w))2 log

(
d

δ

)√ρ2
λ̃
d
λ̃

b
· 1

λ̃

≤ M ‖w − w∗‖
λ̃

· 2 log

(
d

δ

)√ρ2
λ̃
d
λ̃

b
, (32)
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using the results of Lemma (9), and also Lipschitz Hessian property (Condition 1). More-
over,

λmax(H−1

λ̃
(w)(H

λ̃
(w)−H

λ̃
(w∗))) ≤ λmax(H

λ̃
(w)−H

λ̃
(w∗))

λ̃
≤ M ‖w − w∗‖

λ̃
. (33)

Combining (29), (31), (32), (33) we have with probability at least 1− δ

min
‖w−w∗‖≤R

λmin(H̄
−1/2

λ̃
(w∗)Hλ(w)H̄

−1/2

λ̃
(w∗)) ≥ λ

λ̃
· 1

1 + 2 log
(
d
δ

)√ρ2
λ̃
d
λ̃

b + 2 log
(
d
δ

)√ρ2
λ̃
d
λ̃

b · MR

λ̃
+ MR

λ̃

,

which finishes the proof.

A.6 Proof of Lemma 11

Proof First we perform the following decomposition:

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi ≤max

i∈[n]
max

‖w−w∗‖≤R
|`′′(w>xi; bi)− `

′′
(w∗>xi; bi)|x>i H̄−1

λ̃
(w∗)xi

+ max
i∈[n]

`
′′
(w∗>xi; bi)x>i H̄

−1

λ̃
(w∗)xi,

where

max
i∈[n]
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‖w−w∗‖≤R

|`′′(w>xi; bi)− `
′′
(w∗>xi; bi)|x>i H̄−1

λ̃
(w∗)xi ≤max

i∈[n]
M̄Rx>i H̄

−1

λ̃
(w∗)xi

≤M̄RD

λ̃
=
MR

λ̃
.

Thus we have

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi ≤ max

i∈[n]
`
′′
(w∗>xi; bi)x>i H̄

−1

λ̃
(w∗)xi +

MR

λ̃
.

Then we relate x>i H̄
−1

λ̃
(w∗)xi to x>i H

−1

λ̃
(w∗)xi, for this purpose, we first upper bound

λmax

(
H̄
−1/2

λ̃
(w∗)H

λ̃
(w∗)H̄−1/2

λ̃
(w∗)

)
. By Lemma 9, when b ≥ 16ρ2

λ̃
d
λ̃

log2(d/δ) we have

∥∥∥H−1

λ̃
(w∗)(H

λ̃
(w∗)− H̄

λ̃
(w∗))

∥∥∥
2
≤ 2 log

(
d

δ

)√ρ2
λ̃
d
λ̃

b
≤ 1

2
,

thus

λmax

(
H̄
−1/2

λ̃
(w∗)H

λ̃
(w∗)H̄−1/2

λ̃
(w∗)

)
=

1

λmin

(
H−1

λ̃
(w∗)H̄

λ̃
(w∗)

)

≤ 1

1−
∥∥∥H−1

λ̃
(w∗)(H

λ̃
(w∗)− H̄

λ̃
(w∗))

∥∥∥
2

≤ 1

1− 1/2
≤ 2.
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Then we bound maxi∈[n] `
′′
(w∗>xi; bi)x>i H̄

−1

λ̃
(w∗)xi through maxi∈[n] `

′′
(w∗>xi; bi)x>i H

−1

λ̃
(w∗)xi,

because

x>i H̄
−1

λ̃
(w∗)xi =x>i H

−1

λ̃
(w∗)xi + x>i

(
H̄−1

λ̃
(w∗)−H−1

λ̃
(w∗)

)
xi

=x>i H
−1

λ̃
(w∗)xi + x>i H

−1/2

λ̃
(w∗)

(
H

1/2

λ̃
(w∗)H̄−1

λ̃
(w∗)H1/2

λ̃
(w∗)− I

)
H
−1/2

λ̃
(w∗)xi

≤x>i H−1

λ̃
(w∗)xi + λmax

(
H

1/2

λ̃
(w∗)H̄−1

λ̃
(w∗)H1/2

λ̃
(w∗)− I

)
x>i H

−1

λ̃
(w∗)xi

1

≤2x>i H
−1

λ̃
(w∗)xi,

where in step 1 we used the fact that

λmax

(
H

1/2

λ̃
(w∗)H̄−1

λ̃
(w∗)H1/2

λ̃
(w∗)− I

)

≤ max
{
|λmax(H

1/2

λ̃
(w∗)H̄−1

λ̃
(w∗)H1/2

λ̃
(w∗))− 1|, |λmin(H

1/2

λ̃
(w∗)H̄−1

λ̃
(w∗)H1/2

λ̃
(w∗))− 1|

}

= max
{
|λmax(H̄−1

λ̃
(w∗)H

λ̃
(w∗))− 1|, |λmin(H̄−1

λ̃
(w∗)H

λ̃
(w∗))− 1|

}
≤ 1.

Based on the definition of effective dimension (Definition 6) and condition of bounded
statistical leverage (Assumption 8), we can bound the smoothness as

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi ≤2 max

i∈[n]
`
′′
(w∗>xi; bi)x>i H

−1

λ̃
(w∗)xi +

MR

λ̃

≤2ρ2
λ̃

(
1

n

n∑

i=1

`
′′
(w∗>xi; bi)x>i H

−1

λ̃
(w∗)xi

)
+
MR

λ̃

1
=2ρ2

λ̃

(
1

n

n∑

i=1

tr(`
′′
(w∗>xi; bi)xix>i H

−1

λ̃
(w∗))

)
+
MR

λ̃
,

where in step 1 we have used the fact that tr(ABC) = tr(CAB) for any A,B,C. Further-
more we have

2ρ2
λ̃

(
1

n

n∑

i=1

tr(`
′′
(w∗>xi; bi)xix>i H

−1

λ̃
(w∗))

)
=2ρ2

λ̃

(
tr

(
1

n

∑

i

`
′′
(w∗>xi; bi)xix>i H

−1

λ̃
(w∗)

))

=2ρ2
λ̃

(
tr

((
1

n

∑

i

`
′′
(w∗>xi; bi)xix>i

)
H−1

λ̃
(w∗)

))

=2ρ2
λ̃

d∑

j=1

λj

λj + λ̃
= 2ρ2

λ̃
d
λ̃
.

Combining above analysis, we get

max
i∈[n]

max
‖w−w∗‖≤R

`
′′
(w>xi; bi)x>i H̄

−1

λ̃
(w∗)xi ≤ 2ρ2

λ̃
d
λ̃

+
MR

λ̃
,

which concludes the proof.
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A.7 Proof of Theorem 13

Proof Since we choose λ̃ at the scale of λ̃ = max
{
λ, Lb

}
, then we can apply Lemma 10

and Lemma 11 to verify that the new condition number after “preconditioning” will be

max

{
4ρ2

λ̃
d
λ̃
,
4Lρ2

λ̃
d
λ̃

λb

}
,

applying Corollary 26 we know as long as the inexactness condition (25) is satisfied, we
requires O

(
log
(

1
ε

))
full gradient evaluations and

max {Csb, Clb} ·
10

9
log(36) log

(
1

ε

)
(34)

total calls of approximate minimization of (8) to ensure Ef(w̃s) − f(w∗) ≤ ε, where the
factors Csb, Clb are

Csb =O
(

max

{
240

b
,
240L

λb2

}
· ρ2

λ̃
d
λ̃

)
,

Clb =O
(

max

{
2
√

6, 2
√

6

√
L

λb

}
·
√
ρ2
λ̃
d
λ̃

)
,

which represent the cases of small and large minibatch sizes, respectively. Since λ̃ ≥ L
b , then

the condition number of (8) is never larger than L

λ̃
≤ L · bL = b, we know from Lemma 36,

when applying SVRG to solve (8), to reach some point of which objective the suboptimality
of (8) satisfies

f̃t(wt)−min
w
f̃t(w) ≤ 1

105
·
(
λ

L

)7

ε, (35)

the following number of gradient calls sufficient:

C · b · log

(
L

λ

)
· log

(
1

ε

)
, (36)

for some universal constant C. On the other hand, for every subproblem (8), if (35) is
satisfied, applying Lemma 4 and Lemma 33 we know the gradient error in IMBA-SVRG
(Algorithm 3)in the preconditioned space can be upper bounded by

‖ξt‖2 ≤
(
λ

L

)6

· 2ε

105
+
η2M2R2L

λ̃4
(f(w̃s−1)− f(w∗)),

thus condition (25) in Theorem 24 is satisfied. Combining (34) and (36) we know the total
number of gradient calls:

n · log

(
1

ε

)
+

10C

9
log(36) ·max {Csb, Clb} · b · log

(
L

λ

)
· log2

(
1

ε

)
(37)
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is sufficient to obtain a solution such that Ef(w̃s)− f(w∗) ≤ ε is satisfied. Next we choose
b such that the total iteration complexity of above expression is minimized. Start from
here we will ignore the constants before these factors for simplicity, we know the term
max {Csb, Clb} · b is of order

O


max



ρ

2
λ̃
d
λ̃
,
ρ2
λ̃
d
λ̃
L

λb
,

√
ρ2
λ̃
d
λ̃
Lb

λ






 ,

when n & ρ2
λ̃
d
λ̃

(
L
λ

)1/3
, we can choose b � ρ2

λ̃
d
λ̃

(
L
λ

)1/3
, then max {Csb, Clb} · b is of order

O
(

max

{
ρ2
λ̃
d
λ̃
,

(
L

λ

)2/3

, ρ2
λ̃
d
λ̃

(
L

λ

)2/3
})

= O
(
ρ2
λ̃
d
λ̃

(
L

λ

)2/3
)
, (38)

when n . ρ2
λ̃
d
λ̃

(
L
λ

)1/3
, we can choose b � n, in which case max {Csb, Clb} · b can be upper

bounded by

O


max




ρ2
λ̃
d
λ̃
L

λn
,

√
ρ2
λ̃
d
λ̃
Ln

λ






 = O

(
ρ2
λ̃
d
λ̃
L

λn

)
, (39)

Combining (37), (38) and (39), we know the total number of individual function gradient
calls to reach ε-suboptimality is

O
(
κ̃ · log

(
L

λ

)
· log2

(
1

ε

)
+ n · log

(
1

ε

))
,

where

κ̃ = max

{
ρ2
λ̃
d
λ̃

(
L

λ

)2/3

,
ρ2
λ̃
d
λ̃
L

λn

}
,

which finishes the proof.

A.8 Proof of Theorem 22

Proof Applying the theory of catalyst acceleration (Lemma 37) we know onlyO
((√

λ+γ
λ

)
log
(

1
ε

))

calls of MB-SVRP is sufficient to reach ε-objective suboptimality, as long as each iterate wr
satisfies

f(wr) +
γ

2
‖wr − zr−1‖2 ≤ min

w
f(w) +

γ

2
‖w − zr−1‖2 +

λε

3600(λ+ γ)

(
1− 9

10

√
λ

λ+ γ

)
.

Moreover, according to Theorem 13, the iteration complexity of solving a λ + γ strongly
convex problem (23) is

Õ
(
n+ max

{
ρ2
λ̃
d
λ̃

(
L

(λ+ γ)

)2/3

,
ρ2
λ̃
d
λ̃
L

(λ+ γ)n

})
,
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combining these two results we know the total iteration complexity of Algorithm 2 can be
upper bounded by

Õ



(√

λ+ γ

λ

)
n+ max





(
ρ2
λ̃
d
λ̃
L

(λ+ γ)

)2/3

,
ρ2
λ̃
d
λ̃
L

(λ+ γ)n








 ,

When
ρ2
λ̃
d
λ̃
L

λ ≥ n3/2, if we choose

γ =
ρ2
λ̃
d
λ̃
L

n3/2
− λ,

we obtain the iteration complexity can be upper bounded by

Õ





√
ρ2
λ̃
d
λ̃
L

n3/2λ


 · n


 = Õ

(√
ρ2
λ̃
d
λ̃
· n1/4

(
L

λ

)1/2
)
,

which concludes the proof.

Appendix B. Proofs for Section 4

In this appendix, we describe the stochastic estimation sequence approach for inexact ac-
celerated minibatch SVRG in Section 4, and provide the detailed analysis.

B.1 Stochastic Estimation Sequences

We introduce the following definition.

Definition 27 (Stochastic estimation sequence) A sequence of pairs {Vt(w), θt}t≥0 is
called an estimation sequence of the function f(w) if θt > 0 and for any w ∈ Rd, t ≥ 0 we
have

Vt(w) ≤ (1− θt)f(w) + θtV0(w), (40)

if {Vt(w)}t≥0 is a sequence of random functions, we call the sequence of pairs {Vt(w), θt}t≥0

a stochastic estimation sequence if (40) holds in expectation, i.e.

E [Vt(w)] ≤ (1− θt)f(w) + θtV0(w).

The following lemma is a generalized version of Lemma 1 in (Lin et al., 2014), which shows
if we can construct upper bound of E [f(wt)] using E [Vt(w)], then we get convergence of
E [f(wt)].

Lemma 28 Suppose {Vt(w), θt}t≥0 is a stochastic estimation sequence of the function f(w).
Let w∗ be the minimizer of f(w). If there are sequences of random variables {wt}t≥0 and
{εt}t≥0 in Rd, {δt}t≥0 in R such that

E [f(wt)] ≤ min
w
{E [Vt(w)]}+ E [δt] (41)
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holds for all t ≥ 0, then

E [f(wt)]− f(w∗) ≤ θt(V0(w∗)− f(w∗)) + E [δt] .

The following lemma constructs a concrete stochastic estimation sequence.

Lemma 29 Assume f(w) = 1
n

∑n
i=1 fi(w), where each fi(w) is λ-strongly convex and L-

smooth. Suppose that

• V0(w) is an arbitrary deterministic function on Rd;

• {αt}t≥0 is a sequence that satisfies αt ∈ (0, 1),∀t ≥ 0, and
∑∞

t=0 αt =∞.

• {yt}∞t=0 is an arbitrary sequence in Rd;

• Define {vt}t≥1 as:

vt =
1

b

∑

i∈Bt
∇fi(yt−1)− 1

b

∑

i∈Bt
∇fi(w̃s−1) +

1

n

n∑

i=1

∇fi(w̃s−1).

Define the sequence {wt}t≥0 and {Vt(w)}t≥0 as follows. Let y0 = w0 and wt be arbitrary
vector in Rd such that

wt = yt−1 − ηvt + ξt,

where the stepsize η satisfies 0 < η ≤ 1
L . Let

Vt(w) =(1− αt−1)Vt−1(w)

+ αt−1

(
1

b

∑

i∈Bt
fi(yt−1) +

〈
vt −

ξt
η
, w − yt−1

〉
+
λ

4
‖w − yt−1‖2 −

‖ξt‖2
λη2

)
, (42)

let θ0 = 1, and θt = (1−αt−1)θt−1, ∀t ≥ 1. Then the sequence {Vt(w), θt}t≥0 is a stochastic
estimation sequence of f(w).

By above construction, we know Vt(w) is a quadratic function, its minimizer and minimum
value has the following iterative form:

Lemma 30 Define ∀t ≥ 0:
V ∗t = min

w
Vt(w),

suppose we choose the function V0(w) in Lemma 29 as

V0(w) = V ∗0 +
λ

4
‖w − z0‖2 ,

with V ∗0 = f(z0), ε0 = 0 and δ0 = 0 for z0 = w0. Then the sequence {Vt(w)}t≥0 defined in
42 can be written as

Vt(w) = V ∗t +
λ

4
‖w − zt‖2 , (43)
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where the sequences {V ∗t }, {zt} are defined recursively as:

zt =(1− αt−1)zt−1 + αt−1yt−1 −
2αt−1

λ

(
vt −

ξt
η

)
, (44)

V ∗t =(1− αt−1)V ∗t−1 +
αt−1(1− αt−1)λ

4
‖zt−1 − yt−1‖2 + αt−1(1− αt−1)

〈
vt −

ξt
η
, zt−1 − yt−1

〉

− α2
t−1

λ
‖vt‖2 +

αt−1

b

∑

i∈Bt
fi(yt−1)− (αt−1 + α2

t−1) ‖ξt‖2
λη2

+
2α2

t−1

λη
〈ξt, vt〉. (45)

The following lemma establishes a connection between zt, yt, wt when zt is updated as
(44), and yt, wt is updated as Algorithm 3.

Lemma 31 Based on the updating rule of zt in (44), if we choose αt = α =
√

λη
2 ,∀t ≥ 0,

we have the following inequalities hold for all t ≥ 0:

zt − yt =
1

α
(yt − wt).

The following lemma gives concrete expression of δt such that for the IMBA-SVRG
algorithm, the condition (41) in Lemma 28 is satisfied.

Lemma 32 Suppose we choose ∀t ≥ 0

αt = α =

√
λη

2
,

and the stepsize η satisfying η ≤ 1
8L , we have ∀t ≥ 0

E [f(wt)] ≤ E [V ∗t ] + E [δt] ,

where δ0 = 0 and ∀t ≥ 1:

δt =

(
1−

√
λη

2

)
δt−1 +

(
η ‖vt −∇f(yt−1)‖2 − (1−

√
λη/2)λ√

2λη
‖yt−1 − wt−1‖2 +

1

4λ2η3
‖ξt‖2

)
.

The lemma below bounds the term E
[
η ‖vt −∇f(yt−1)‖2 − (1−

√
λη/2)λ√
2λη

‖yt−1 − wt−1‖2
]
.

Lemma 33 Suppose Bt is constructed by uniform sampling with or without replacement,
we have the following inequality holds:

E

[
η ‖vt −∇f(yt−1)‖2 − (1−

√
λη/2)λ√

2λη
‖yt−1 − wt−1‖2

]

≤ 8ηL

b
(f(wt−1)− f(w∗) + f(w̃s−1)− f(w∗)) +

(
2ηL2

b
− (1−

√
λη/2)λ√

2λη

)
‖yt−1 − wt−1‖2 .
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Based on above lemma, by carefully choosing the stepsize η, we get the following lemma
which is important to obtain iteration complexity for IMBA-SVRG.

Lemma 34 If we choose the stepsize satisfying

η ≤ min

{
b2λ

6400L2
,

1

8L

}

then the following inequality holds ∀t ≥ 0:

Ef(wt)− f(w∗) ≤
(

1−
√
λη

2

)t
(V0(w∗)− f(w∗))

+ E




t∑

k=1

(
1−

√
λη

2

)t−k (
1

4λ2η3
‖ξk‖2 +

8ηL

b
(f(wk−1) + f(w̃s−1)− 2f(w∗))

)
 ,

B.2 Proof of Lemma 28

Proof Since

E [f(wt)] ≤min
w
{E [Vt(w)]}+ E [δt]

≤E [Vt(w
∗)] + E [δt]

≤(1− θt)f(w∗) + θtV0(w∗) + E [δt] ,

subtracting both sides by f(w∗) finishes the proof.

B.3 Proof of Lemma 29

Proof We proceed the proof by induction. When t = 0, we have

V0(w) = (1− θ0)f(w) + θ0V0(w) = V0(w),

suppose

E [Vt−1(w)] ≤ (1− θt−1)f(w) + θt−1V0(w)
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is true for some t ≥ 1, then for E [Vt(w)], since E [vt] = ∇f(yt−1),we have

E [Vt(w)] =(1− αt−1)E [Vt−1(w)]

+ αt−1E

[(
1

b

∑

i∈Bt
fi(yt−1) +

〈
vt −

ξt
η
, w − yt−1

〉
+
λ

4
‖w − yt−1‖2 −

‖ξt‖2
λη2

)]

=(1− αt−1)E [Vt−1(w)]

+ αt−1

(
f(yt−1) + 〈∇f(yt−1), w − yt−1〉+

λ

4
‖w − yt−1‖2 −

〈
ξt
η
, w − yt−1

〉
− ‖ξt‖

2

λη2

)

1

≤(1− αt−1)E [Vt−1(w)] + αt−1

(
f(yt−1) + 〈∇f(yt−1), w − yt−1〉+

λ

2
‖w − yt−1‖2

)

2

≤(1− αt−1)(1− θt−1)f(w) + (1− αt−1)θt−1V0(w) + αt−1f(w)

=(1− (1− αt−1)θt−1)f(w) + (1− αt−1)θt−1V0(w)

=(1− θt)f(w) + θtV0(w),

which concludes the proof, where at step 1 we used the inequality −〈v1, v2〉−‖v2‖2 ≤ ‖v1‖
2

4
,at step 2 we used the inductive hypothesis and the fact that f(w) is λ-strongly convex.

B.4 Proof of Lemma 30

Proof We proceed the proof by induction, when t = 0 this is true by construction. Suppose
for some t ≥ 1 the following holds:

Vt−1(w) = V ∗t−1 +
λ

4
‖w − zt−1‖2 ,

then at time t, we have

Vt(w) =(1− αt−1)Vt−1(w)

+ αt−1

(
1

b

∑

i∈Bt
fi(yt−1) +

〈
vt −

ξt
η
, w − yt−1

〉
+
λ

4
‖w − yt−1‖2 −

‖ξt‖2
λη2

)

=(1− αt−1)V ∗t−1 +
(1− αt−1)λ

4
‖w − zt−1‖2 +

αt−1λ

4
‖w − yt−1‖2 + αt−1

〈
vt −

ξt
η
, w

〉

+
αt−1

b

∑

i∈Bt
fi(yt−1)− αt−1

〈
vt −

ξt
η
, yt−1

〉
− αt−1 ‖ξt‖2

λη2
,

by first order optimality condition, it is clear that the minimizer of Vt(w): zt satisfies the
following:

(1− αt−1)λ(zt − zt−1) + αt−1λ(zt − yt−1) + 2αt−1

(
vt −

ξt
η

)
= 0,
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from above we obtain the recursive form of zt as (44) defines. Plug in (44) to (42) we get

V ∗t =Vt(zt) = (1− αt−1)V ∗t−1 +
(1− αt−1)λ

4
‖zt − zt−1‖2 +

αt−1λ

4
‖zt − yt−1‖2 + αt−1

〈
vt −

ξt
η
, zt

〉

+
αt−1

b

∑

i∈Bt
fi(yt−1)− αt−1

〈
vt −

ξt
η
, yt−1

〉
− αt−1 ‖ξt‖2

λη2

=(1− αt−1)V ∗t−1 +
(1− αt−1)λ

4

∥∥∥∥αt−1(yt−1 − zt−1)− 2αt−1

λ

(
vt −

ξt
η

)∥∥∥∥
2

+
αt−1

b

∑

i∈Bt
fi(yt−1)

+
αt−1λ

4

∥∥∥∥(1− αt−1)(zt−1 − yt−1)− 2αt−1

λ

(
vt −

ξt
η

)∥∥∥∥
2

− αt−1 ‖ξt‖2
λη2

+ αt−1

〈
vt −

ξt
η
, (1− αt−1)(zt−1 − yt−1)− 2αt−1

λ

(
vt −

ξt
η

)〉

=(1− αt−1)V ∗t−1 +
αt−1(1− αt−1)λ

4
‖zt−1 − yt−1‖2 + αt−1(1− αt−1)

〈
vt −

ξt
η
, zt−1 − yt−1

〉

− α2
t−1

λ
‖vt‖2 +

αt−1

b

∑

i∈Bt
fi(yt−1)− (αt−1 + α2

t−1) ‖ξt‖2
λη2

+
2α2

t−1

λη
〈ξt, vt〉,

which verified (45).

B.5 Proof of Lemma 31

Proof We prove by induction, when t = 0 it is obviously true, suppose it is true for
t− 1, ∀t ≥ 1, i.e.

zt−1 − yt−1 =
1

α
(yt−1 − wt−1),

for iteration t, based on (44) we have

zt − yt =(1− α)zt−1 + αyt−1 −
2α

λ

(
vt −

ξt
η

)
− yt

=(1− α)(zt−1 − yt−1) + yt−1 −
2α

λ

(
vt −

ξt
η

)
− yt

1
=

1− α
α

(yt−1 − wt−1) + yt−1 −
2α

λ

(
vt −

ξt
η

)
− yt

=
1

α

(
yt−1 −

2α2

λ

(
vt −

ξt
η

))
− 1− α

α
wt−1 − yt

2
=

1

α
wt −

1− α
α

wt−1 − yt
3
=

1

α

(
wt +

1− α
1 + α

(wt − wt−1)− wt
)

4
=

1

α
(yt − wt),
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which concludes the proof, where step 1 used the inductive hypothesis, step 2 used the
update rule of wt in Algorithm 3, step 3 and 4 used the update rule of yt in Algorithm 3.

B.6 Proof of Lemma 32

Proof We prove by induction, when t = 0, it is true that

f(w0) ≤ V ∗0 = f(z0) = f(w0),

suppose

E [f(wt−1)] ≤ E
[
V ∗t−1

]
+ E [δt−1] , (46)

for some t ≥ 1, then based on smoothness, we know

f(wt) ≤ f(yt−1) + 〈∇f(yt−1), wt − yt−1〉+
L

2
‖wt − yt−1‖2 ,

thus

V ∗t =(1− αt−1)V ∗t−1 +
αt−1(1− αt−1)λ

4
‖zt−1 − yt−1‖2

+ αt−1(1− αt−1)

〈
vt −

ξt
η
, zt−1 − yt−1

〉

− α2
t−1

λ
‖vt‖2 +

αt−1

b

∑

i∈Bt
fi(yt−1)− (αt−1 + α2

t−1) ‖ξt‖2
λη2

+
2α2

t−1

λη
〈ξt, vt〉.

Hence we have

E [f(wt)− V ∗t ] ≤ E
[
f(yt−1) + 〈∇f(yt−1), wt − yt−1〉+

L

2
‖wt − yt−1‖2

]

− E
[
(1− α)V ∗t−1 −

α(1− α)λ

4
‖zt−1 − yt−1‖2 − α(1− α)

〈
vt −

ξt
η
, zt−1 − yt−1

〉]

+ E

[
α2

λ
‖vt‖2 −

α

b

∑

i∈Bt
fi(yt−1) +

(α+ α2) ‖ξt‖2
λη2

− 2α2

λη
〈ξt, vt〉

]

1
= E

[
(1− α)(f(yt−1)− V ∗t−1 + 〈vt, wt−1 − yt−1〉)− 〈∇f(yt−1), ηvt − ξt〉+

η

2
‖vt‖2

]

+ E

[
L

2
‖ηvt − ξt‖2 −

(1− α)λ

4α
‖yt−1 − wt−1‖2 +

(α+ α2) ‖ξt‖2
λη2

]

+ E
[
−2α2

λη
〈ξt, vt〉 − (1− α)

〈
ξt
η
, wt−1 − yt−1

〉]

2

≤ E
[
(1− α)(f(yt−1)− V ∗t−1 + 〈vt, wt−1 − yt−1〉)− 〈∇f(yt−1), ηvt − ξt〉+

9η

16
‖vt‖2

]

+ E
[
L

2
‖ηvt − ξt‖2 +

(
2α

λη2
+

16α4

λ2η3
+

(1− α)

2λη2

)
‖ξt‖2

]

+ E
[(

(1− α)λ

2
− (1− α)λ

4α

)
‖wt−1 − yt−1‖2

]
(47)
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where at step 1 we used the fact of updating rule

wt = yt−1 − ηvt + ξt,

as well as Lemma 31, and E
[

1
b

∑
i∈Bt fi(yt−1)

]
= f(yt−1); and at step 2 we used the

following two inequalities:

∣∣∣∣(1− α)

〈
ξt
η
, wt−1 − yt−1

〉∣∣∣∣ ≤
(1− α)λ

2
‖yt−1 − wt−1‖2 +

(1− α)

2λη2
‖ξt‖2 ,

∣∣∣∣
2α2

λη
〈ξt, vt〉

∣∣∣∣ ≤
η

16
‖vt‖2 +

16α4

λ2η3
‖ξt‖2

Since

E
[
f(yt−1)− V ∗t−1 + 〈vt, wt−1 − yt−1〉

]
=E

[
f(yt−1)− V ∗t−1 + 〈∇f(yt−1), wt−1 − yt−1〉

]

1

≤E
[
f(wt−1)− λ

2
‖wt−1 − yt−1‖2 − V ∗t−1

]

2

≤E
[
δt−1 −

λ

2
‖wt−1 − yt−1‖2

]
, (48)

where at step 1 we used the λ-strong convexity of f(w), at step 2 we used the inductive
hypothesis (46). Combining (47) and (48) we obtain

E [f(wt)− V ∗t ] ≤ (1− α)δt−1 − E
[

(1− α)λ

4α
‖yt−1 − wt−1‖2

]

+ E
[
L

2
‖ηvt − ξt‖2 +

9η

16
‖vt‖2 − 〈∇f(yt−1), ηvt − ξt〉+

(
2α

λη2
+

16α4

λ2η3
+

(1− α)

2λη2

)
‖ξt‖2

]
.

(49)

Next we bound the third term on the right hand side, since

L

2
‖ηvt − ξt‖2 +

9η

16
‖vt‖2 − 〈∇f(yt−1), ηvt + ξt〉

1

≤ Lη2 ‖vt‖2 + L ‖ξt‖2 +
9η

16
‖vt‖2 − 〈∇f(yt−1), ηvt − ξt〉

=
η

2
‖vt −∇f(yt−1)‖2 − η

2
‖∇f(yt−1)‖2

+
(
Lη2 +

η

16

)
‖vt‖2 + 〈∇f(yt−1), ξt〉+ L ‖ξt‖2

2

≤ η

2
‖vt −∇f(yt−1)‖2 − η

2
‖∇f(yt−1)‖2

+
(

2Lη2 +
η

8

)
(‖vt −∇f(yt−1)‖2 + ‖∇f(yt−1)‖2)

+
η

8
‖∇f(yt−1)‖2 +

2

η
‖ξt‖2 + L ‖ξt‖2 ,
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where at step 1 we used ‖v1 + v2‖2 ≤ 2(‖v1‖2 + ‖v2‖2), and at step 2 we used it again and
also the inequality 2|〈v1, v2〉| ≤ ‖v1‖2 + ‖v2‖2. Thus we know when η ≤ 1

8L , we have

L

2
‖ηvt − ξt‖2 +

9η

16
‖vt‖2 − 〈∇f(yt−1), ηvt + ξt〉 (50)

≤
(η

2
+ 2Lη2 +

η

8

)
‖vt −∇f(yt−1)‖2 +

(
L+

2

η

)
‖ξt‖2

−
(η

2
− η

8
− η

8
− 2Lη2

)
‖∇f(yt−1)‖2

≤ η ‖vt −∇f(yt−1)‖2 +
3

η
‖ξt‖2 . (51)

Combining (49) and (51) we obtain

E [f(wt)− V ∗t ] ≤(1− α)δt−1 + E
[
η ‖vt −∇f(yt−1)‖2 − (1− α)λ

4α
‖yt−1 − wt−1‖2

]

+ E
[(

2α

λη2
+

16α4

λ2η3
+

(1− α)

2λη2
+

3

η

)
‖ξt‖2

]
, (52)

also since

α =

√
λη

2
≤ 1

4

√
λ

L
≤ 1

4
,

we know

2α

λη2
+

16α4

λ2η3
+

(1− α)

2λη2
+

3

η
≤ 1

16λ2η3
+

1

16λ2η3
+

1

16λ2η3
+

3

64λ2η3
≤ 1

4λ2η3
,

combining the inequality above and (52), then substituting α =
√

λη
2 finishes the proof.

B.7 Proof of Lemma 33

Proof The proof follows the strategy in (Johnson and Zhang, 2013; Nitanda, 2014). First,
based on the minibatch sampling (here for simplicity we only consider sampling with re-
placement, for sampling without replacement, the bound below can be tightened by a factor
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of n−b
n−1 , see, e.g. Section 2.8 of (Lohr, 2009)) we know

E
[
‖vt −∇f(yt−1)‖2

]
=

1

b2
E


∑

j∈Bt
‖∇fj(yt−1)−∇f(yt−1)− (∇fj(w̃s−1)−∇f(w̃s−1))‖2




1

≤ 1

b2
E


∑

j∈Bt
‖∇fj(yt−1)−∇fj(w̃s−1)‖2




2

≤ 2

b2
E


∑

j∈Bt
(‖∇fj(yt−1)−∇fj(wt−1)‖2 + ‖∇fj(w̃s−1)−∇fj(wt−1)‖2)




3

≤ 4

b2
E


∑

j∈Bt
(‖∇fj(w̃s−1)−∇fj(w∗)‖2) + ‖∇fj(w∗)−∇fj(wt−1)‖2)




+
2L2

b
‖yt−1 − wt−1‖2

4

≤8L

b
(f(wt−1)− f(w∗) + f(w̃s−1)− f(w∗)) +

2L2

b
‖yt−1 − wt−1‖2 ,

where at step 1 we used E ‖v − Ev‖2 ≤ E ‖v‖2, at step 2 we used ‖v1 + v2‖2 ≤ 2(‖v1‖2 +
‖v2‖2), at step 3 we used it again along with the L-smoothness of fj(w), at step 4 we used
standard results in SVRG analysis, e.g. Lemma 1 of (Xiao and Zhang, 2014). Substituting
above into the term

E
[
η ‖vt −∇f(yt−1)‖2 − (1−

√
λη/2)λ√
2λη

‖yt−1 − wt−1‖2
]

concludes the proof.

B.8 Proof of Lemma 34

Proof Combining Lemma 32 and 33, we have

δt =

(
1−

√
λη

2

)
δt−1 (53)

+

(
η ‖vt −∇f(yt−1)‖2 − (1−

√
λη/2)λ√

2λη
‖yt−1 − wt−1‖2 +

1

4λ2η3
‖ξt‖2

)

≤
(

1−
√
λη

2

)
δt−1 +

(
1

4λ2η3
‖ξt‖2 +

8ηL

b
(f(wt−1) + f(w̃s−1)− 2f(w∗))

)

+

(
2ηL2

b
− (1−

√
λη/2)λ√

2λη

)
‖yt−1 − wt−1‖2 . (54)

First we verify the factor before ‖yt−1 − wt−1‖2 is non positive, since 1− ηλ ≥ 1− λ
8L ≥ 1

2 ,
then

2ηL2

b
·

√
2λη

(1−
√
ηλ/2)λ

≤ 4η3/2L2

b
√
λ
≤ min

{
b2λ

128000L
,
L1/2

4b
√
λ

}
≤ 1,
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where the last inequality is true because

b2λ

128000L

(
L1/2

4b
√
λ

)2

≤ 1,

thus we must have min
{

b2λ
128000L ,

L1/2

4b
√
λ

}
≤ 1 otherwise it leads to a contradiction. Thus

2ηL2

b −
(1−
√
ηλ/2)λ√
2ηλ

≤ 0, combining with (54), we have

δt ≤
(

1−
√
λη

2

)
δt−1 +

(
1

4λ2η3
‖ξt‖2 +

8ηL

b
(f(wt−1) + f(w̃s−1)− 2f(w∗))

)
,

applying above inequality recursively, we get

δt ≤
t∑

k=1

(
1−

√
λη

2

)t−k (
1

4λ2η3
‖ξk‖2 +

8ηL

b
(f(wk−1) + f(w̃s−1)− 2f(w∗))

)
,

then applying Lemma 28 and Lemma 32 concludes the proof.

B.9 Proof of Theorem 24

Proof We prove this theorem by induction, note that when b ≤ 20
√

2L
λ , it is clear that

8ηL

b
≤ b2λ

6400L2
· 8L

b
=

λb

800L
=

√
ηλ

10
,

and when b ≥ 20
√

2L
λ ,

8ηL

b
=

1

b
≤
√
λ

20
√

2L
=

√
ηλ

10
,

thus in both cases we have 8ηL
b ≤

√
ηλ

10 , thus

t∑

k=1

(
1−

√
λη

2

)t−k (
8ηL

b

)
≤ 1

10

t∑

k=1

(
1−

√
λη

2

)t−k√
λη

≤ 1

10

∞∑

k=1

(
1−

√
λη

2

)k√
λη ≤

√
2

10
.

By Lemma 34 we know

Ef(wt)− f(w∗) ≤
(

1−
√
λη

2

)t
(V0(w∗)− f(w∗)) +

√
2(f(w̃s−1)− f(w∗))

10
(55)

+ E




t∑

k=1

(
1−

√
λη

2

)t−k (
1

4λ2η3
‖ξk‖2 +

√
λη

10
(f(wk−1)− f(w∗))

)
 ,

(56)
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also when ∀k ∈ [t],

‖ξk‖2 ≤
2λ2η3

√
λη

15
(f(w̃s−1)− f(w∗)),

we know

t∑

k=1

(
1−

√
λη

2

)t−k (
1

4λ2η3
‖ξk‖2

)
≤ 1

30

t∑

k=1

(
1−

√
λη

2

)t−k√
λη(f(w̃s−1)− f(w∗))

≤ 1

30

∞∑

k=1

(
1−

√
λη

2

)k√
λη(f(w̃s−1)− f(w∗))

≤(f(w̃s−1)− f(w∗))
20

. (57)

Combining (56) and (57), we have

Ef(wt)− f(w∗) ≤
(

1−
√
λη

2

)t
(V0(w∗)− f(w∗)) +

(f(w̃s−1)− f(w∗))
5

+ E




t∑

k=1

(
1−

√
λη

2

)t−k (√
λη

10
(f(wk−1)− f(w∗))

)
 ,

denote At be the right hand side on above inequality, i.e.

At =

(
1−

√
λη

2

)t
(V0(w∗)− f(w∗)) +

(f(w̃s−1)− f(w∗))
5

+ E




t∑

k=1

(
1−

√
λη

2

)t−k (√
λη

10
(f(wk−1)− f(w∗))

)


=

(
1−

√
λη

2

)

(

1−
√
λη

2

)t−1

(V0(w∗)− f(w∗)) +
(f(w̃s−1)− f(w∗))

5




+

(
1−

√
λη

2

)
E



t−1∑

k=1

(
1−

√
λη

2

)t−1−k (√
λη

10
(f(wk−1)− f(w∗))

)


+

√
λη

5
√

2
(f(w̃s−1)− f(w∗)) +

√
λη

10
(f(wt−1)− f(w∗))

1

≤
(

1−
√
λη

2

)
At−1 +

√
λη

5
√

2
A0 +

√
λη

10
At−1

=

(
1− 9

√
λη

10

)
At−1 +

√
λη

5
√

2
A0,
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where at step 1 we used the fact that f(w̃s−1)− f(w∗) ≤ A0, and f(wt−1)− f(w∗) ≤ At−1,
applying above inequality recursively we get

At ≤
(

1− 9
√
λη

10

)t
A0 +

√
λη

5
√

2

t−1∑

k=0

(
1− 9

√
λη

10

)k
A0

≤
(

1− 9
√
λη

10

)t
A0 +

√
λη

5
√

2

∞∑

k=0

(
1− 9

√
λη

10

)k
A0 ≤

((
1− 9

√
λη

10

)t
+

2

9

)
A0,

thus we know when t ≥ 10
9
√
λη

log(36), we have

At ≤
(

1

36
+

2

9

)
A0 =

1

4
A0,

also since

A0 = V0(w∗)− f(w∗) = f(w̃s−1)− f(w∗) +
λ

2
‖w̃s−1 − w∗‖

1

≤ 2(f(w̃s−1)− f(w∗)),

where at step 1 we used the λ-strong convexity of f(w). Combine above two inequality we
get when t ≥ 10

9
√
λη

log(36), the expected objective suboptimality is halved:

Ef(wt)− f(w∗) ≤ At ≤
1

4
A0 ≤

1

2
(f(w̃s−1)− f(w∗)),

which concludes the proof.

Appendix C. Collections of Tools in the Analysis

Lemma 35 (Matrix Bernstein, Theorem 1.4 of (Tropp, 2012) rephrased) Let X1, ..., Xk

be some independent, self-adjoint random matrices with dimension d, and assume each
random matrix satisfies:

EXk = 0 and ‖Xk‖ ≤ R almost surely.

Then, for all t ≥ 0,

P

(∥∥∥∥∥
∑

k

Xk

∥∥∥∥∥ ≥ t
)
≤ d exp

( −t2/2
σ2 +Rt/3

)

where

σ2 :=

∥∥∥∥∥
∑

k

E(X2
k)

∥∥∥∥∥ .

Lemma 36 (Iteration complexity of SVRG, Corollary 1 of (Xiao and Zhang, 2014)
rephrased) If we apply SVRG to any finite-sum optimization objective f(w) where each
individual function is λ-strongly convex and L-smooth, then there are universal constant C
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such that for any target accuracy ε, and success probability 1 − δ, SVRG is able to find a
solution that satisfies ε objective suboptimality using

C ·
(
n+

L

λ

)
log
(ε0

δε

)

first order oracle calls of individual functions, where n is the total number of individual
functions in f(w), ε0 is the initial objective suboptimality.

Lemma 37 (Iteration complexity of catalyst acceleration, Theorem 3.1 of (Lin et al.,
2015a) rephrased) For any λ-strongly convex and L-smooth function f(w), If the minimiza-
tion step of (23) satisfies

f(wr)−
γ

2
‖wr − zr−1‖−min

w

(
f(w) +

γ

2
‖w − zr−1‖

)
≤ 2

9
(f(w0)−f(w∗))

(
1− 9

10

√
λ

λ+ γ

)r
,

then if we initialize ν0 =
√

λ
λ+γ and set νr such that ν2

r = (1−νr)ν2
r−1 +(λνr)/(λ+γ), then

the sequences {wr} in Algorithm 2 satisfies

f(wr)− f(w∗) ≤ 800(λ+ γ)

λ

(
1− 9

10

√
λ

λ+ γ

)r+1

(f(w0)− f(w∗)).
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