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Abstract
This work studies the strong duality of non-convex matrix factorization problems: we show that
under certain dual conditions, these problems and the dual have the same optimum. This has been
well understood for convex optimization, but little was known for non-convex problems. We propose
a novel analytical framework and prove that under certain dual conditions, the optimal solution of the
matrix factorization program is the same as that of its bi-dual and thus the global optimality of the
non-convex program can be achieved by solving its bi-dual which is convex. These dual conditions
are satisfied by a wide class of matrix factorization problems, although matrix factorization is hard
to solve in full generality. This analytical framework may be of independent interest to non-convex
optimization more broadly.

We apply our framework to two prototypical matrix factorization problems: matrix completion
and robust Principal Component Analysis. These are examples of efficiently recovering a hidden
matrix given limited reliable observations. Our framework shows that exact recoverability and strong
duality hold with nearly-optimal sample complexity for the two problems.
Keywords: strong duality, non-convex optimization, matrix factorization, matrix completion,
robust principal component analysis, sample complexity

1. Introduction

Non-convex matrix factorization problems have been an emerging object of study in theoretical
computer science (Balcan et al., 2019, 2018; Arora et al., 2012; Jain et al., 2013; Hardt, 2014; Sun and
Luo, 2015; Moitra, 2016; Razenshteyn et al., 2016; Song et al., 2017, 2019), optimization (Wen et al.,
2012; Shen et al., 2014), machine learning (Bhojanapalli et al., 2016b; Ge et al., 2016, 2015; Jain
et al., 2010; Li et al., 2016; Wang and Xu, 2012), and many other domains (Bouwmans et al., 2018).
In theoretical computer science and optimization, the study of such models has led to significant
advances in provable algorithms that converge to local minima in linear time (Jain et al., 2013; Hardt,
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2014; Sun and Luo, 2015; Agarwal et al., 2017; Allen-Zhu, 2017). In machine learning, matrix
factorization serves as a building block for large-scale prediction and recommendation systems, e.g.,
the winning submission for the Netflix prize (Koren et al., 2009). The matrix factorization problems
can be stated as finding a target matrix X∗ in the form of X∗ = AB, by minimizing the objective
function H(AB) + 1

2‖AB‖2F or H(AB) + 1
2‖A‖

2
F + 1

2‖B‖
2
F over factor matrices A ∈ Rn1×r and

B ∈ Rr×n2 with a known value of r � min{n1, n2}, whereH(·) is some function that characterizes
the desired properties of X∗. Two prototypical examples are matrix completion and robust Principal
Component Analysis (PCA).

This work develops a novel framework to analyze a class of non-convex matrix factorization
problems and show their strong duality, which leads to exact recoverability for matrix completion
and robust PCA via the solutions to convex optimization problems. Strong duality is well understood
for convex optimization, but very few non-convex problems were known to have this property. The
results in this work thus significantly expand the set of non-convex problems with strong duality.
Furthermore, our framework also shows exact recoverability of the two prototypical examples matrix
completion and robust PCA with nearly-optimal sample complexity.

Our work is motivated by several promising areas where our analytical framework for non-convex
matrix factorizations is applicable. The first area is low-rank matrix completion. It has been shown
that a low-rank matrix can be exactly recovered by finding a solution of the form AB that is consistent
with the observed entries (assuming that it is incoherent) (Jain et al., 2013; Sun and Luo, 2015; Ge
et al., 2016). This problem has received a tremendous amount of attention due to its important role
in optimization and its wide applicability in many areas such as quantum information theory and
collaborative filtering (Hardt, 2014; Zhang et al., 2016; Balcan and Zhang, 2016). The second area is
robust PCA, a fundamental problem of interest in data processing. It aims at recovering both the
low-rank and the sparse components exactly from their superposition (Candès et al., 2011; Netrapalli
et al., 2014; Gu et al., 2016; Zhang et al., 2015a, 2016; Yi et al., 2016), where the low-rank component
corresponds to the product of A and B while the sparse component is captured by a proper choice
of function H(·), e.g., the `1 norm (Candès et al., 2011; Awasthi et al., 2016). Besides these two
areas, we believe that our analytical framework can be potentially applied to other non-convex
problems more broadly, e.g., matrix sensing (Tu et al., 2016), dictionary learning (Sun et al., 2017b),
weighted low-rank approximation (Razenshteyn et al., 2016; Li et al., 2016), and deep linear neural
network (Kawaguchi, 2016), which may be of independent interest.

Without assumptions on the structure of the objective function, direct formulations of matrix
factorization problems are NP-hard to optimize in general (Hardt et al., 2014; Zhang et al., 2013).
With standard assumptions on the structure of the problem and with sufficiently many samples,
these optimization problems can be solved efficiently, e.g., by convex relaxation (Candès and Recht,
2009; Chen, 2015; Foygel and Srebro, 2011). Some other methods run local search algorithms
given an initialization close enough to the global solution in the basin of attraction (Jain et al., 2013;
Hardt, 2014; Sun and Luo, 2015; Ge et al., 2015; Jin et al., 2017). However, these methods have
sample complexity significantly larger than the information-theoretic lower bound; see Table 1.1 for
a comparison. The problem becomes even more challenging when the number of samples is small
enough that the sample-based initialization can be far from the desired solution, in which case the
algorithm can run into a local minimum or a saddle point.

Another line of work has focused on studying the loss surface of matrix factorization problems,
providing positive results for approximately achieving global optimality. One nice property in this
line of research is that there is no spurious local minima for specific applications such as matrix
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completion (Ge et al., 2016), matrix sensing (Bhojanapalli et al., 2016b), dictionary learning (Sun
et al., 2017b), phase retrieval (Sun et al., 2016), linear deep neural networks (Kawaguchi, 2016),
etc. However, these results are based on concrete forms of objective functions. Also, even when
any local minimum is guaranteed to be globally optimal, in general it remains NP-hard to escape
high-order saddle points (Anandkumar and Ge, 2016), and additional arguments are needed to show
the achievement of a local minimum. Most importantly, all existing results rely on strong assumptions
on the sample size.

1.1. Our Results

Our work studies a variety of non-convex matrix factorization problems, and the goal is to provide a
unified framework to analyze a large class of matrix factorization problems and to provide efficient
algorithms to achieve global optimum. Our main results show that although matrix factorization
problems are hard to optimize in general, under certain dual conditions the duality gap is zero, and
thus the problem can be converted to an equivalent convex program.

To state the main theorem of our framework, recall that a function H(·) is closed if for each
α ∈ R, the sub-level set {X ∈ Rn1×n2 : H(X) ≤ α} is a closed set. Also, recall the nuclear
norm (a.k.a. trace norm) of a matrix X is ‖X‖∗ =

∑r
i=1 σi(X). Define the r∗-norm to be ‖X‖r∗ =

maxM〈M,X〉 − 1
2‖M‖

2
r where ‖M‖2r =

∑r
i=1 σ

2
i (M) is the sum of the first r largest squared

singular values. Note that both ‖X‖∗ and ‖X‖r∗ are convex functions. Our main results are as
follows.

Theorems 3 and 4 (Strong Duality. Informal). Under certain dual conditions, strong duality holds
for the non-convex optimization problem

(Ã, B̃) = argmin
A∈Rn1×r,B∈Rr×n2

H(AB) +
1

2
‖AB‖2F , (1)

where H(·) is convex and closed. In other words, problem (1) and its bi-dual problem

X̃ = argmin
X∈Rn1×n2

H(X) + ‖X‖r∗, (2)

have exactly the same optimal solutions in the sense that ÃB̃ = X̃.
Similarly, under certain dual conditions, strong duality holds for the non-convex optimization

problem

(Ā, B̄) = argmin
A∈Rn1×r,B∈Rr×n2

H(AB) +
1

2
‖A‖2F +

1

2
‖B‖2F , (3)

where H(·) is convex and closed. In other words, problem (1) and its bi-dual problem

X̄ = argmin
X∈Rn1×n2

H(X) + ‖X‖∗, (4)

have exactly the same optimal solutions in the sense that ĀB̄ = X̄.

Description of Dual Conditions. Intuitively, the dual conditions in the above-mentioned theorems
state that the angle between ∂H(ÃB̃) and the row and column spaces of ÃB̃ is small. In other
words, there is a matrix in the sub-differential set ∂H(ÃB̃) which has almost the same row and
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X		
Primal	Problems	(1)(3)																																							Bi-Duals	(2)(4)			

Strong	Duality	

By	Theorems	3	and	4	
+	Dual	Certificate	
	

Surface	of	(1)(3)	 Surface	of	(2)(4)	

Common	Optimal	Solution	

AB	

Figure 1: Strong duality of matrix factorizations.

column spaces as matrix ÃB̃. For example, we have ∂H(ÃB̃) = Ω for the matrix completion
problem, where Ω represents the subspace of matrices supported on the observed indices. Then the
dual conditions require that there is a matrix which is supported on the observed indices and shares
almost the same row and column spaces as ÃB̃.

Theorem 3 connects the non-convex programs (1) to its convex counterpart (2) via strong duality;
see Figure 1. Note that strong duality rarely holds in the non-convex optimization region: low-rank
matrix approximation (Overton and Womersley, 1992; Zhang et al., 2019) and quadratic optimization
with two quadratic constraints (Beck and Eldar, 2006) are among the few paradigms that enjoy such a
nice property. Given strong duality, the computational issues of the original problem can be overcome
by solving the convex bi-dual problem (2). The theorem connects the regularization 1

2‖AB‖2F to
the r∗ norm ‖X‖r∗. This regularization is of special interest to many matrix factorization problems.
For example, when H(AB) = 1

2‖X‖
2
F − 〈X,AB〉, problem (1) reduces to the PCA problem:

minA,B
1
2‖X −AB‖2F . When H(AB) = 1

2‖X‖
2
F − 〈X,AB〉 + γ‖A‖2F + γ‖B‖2F , problem (1)

reduces to the quadratically regularized PCA problem (Udell et al., 2016): minA,B
1
2‖X−AB‖2F +

γ‖A‖2F + γ‖B‖2F . Our framework of strong duality is then applicable to all these problems.
Furthermore, Theorem 4 also connects the non-convex programs (3) to its convex counterpart

(4): the theorem connects 1
2‖A‖

2
F + 1

2‖B‖
2
F to the nuclear norm ‖X‖∗. This gives new insights

for the nuclear norm relaxation technique commonly used for optimization problems with low rank
constraints from the perspective of strong duality.

The positive results of our framework are complemented by a lower bound to formalize the
hardness of the above problem in general. Assuming that the random 4-SAT problem (Razenshteyn
et al., 2016) is hard (see Conjecture 32), we give a strong negative result for deterministic algorithms.
If also BPP = P (see Section 7 for a discussion), then the same conclusion holds for randomized
algorithms succeeding with probability at least 2/3.

Theorem 10 (Hardness Statement. Informal). Assuming that random 4-SAT is hard on average,
there is a problem in the form of (1) such that any deterministic algorithm achieving (1 + ε)OPT
in the objective function value with ε ≤ ε0 requires 2Ω(n1+n2) time, where OPT is the optimum
and ε0 > 0 is an absolute constant. If BPP = P, then the same conclusion holds for randomized
algorithms succeeding with probability at least 2/3.

Now we turn to the application of our framework. This only requires the verification of the dual
conditions in Theorem 3. We will show that two prototypical problems, matrix completion and robust
PCA, obey the conditions. They belong to the linear inverse problems of form (1) with a proper
choice of function H(·), which aim at exactly recovering a hidden matrix X∗ with rank(X∗) ≤ r
given a limited number of linear observations of it.
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For matrix completion, the linear measurements are of the form {X∗ij : (i, j) ∈ Ω}, where Ω is
the support set which is uniformly distributed among all subsets of [n1]× [n2] of cardinality m. With
strong duality, we can either study the exact recoverability of the primal problem (1), or investigate
the validity of its convex dual (or bi-dual) problem (2). Here we study the former with tools from
geometric functional analysis. Recall that in the analysis of matrix completion, one typically requires
a µ-incoherence condition for a given rank-r matrix X∗ with skinny SVD UΣVT (Recht, 2011;
Candès and Tao, 2010):

‖UTei‖2 ≤
√
µr

n1
for all i ∈ [n1], and ‖VTei‖2 ≤

√
µr

n2
for all i ∈ [n2], (5)

where ei’s are basis vectors with i-th entry equal to 1 and other entries equal to 0. The incoherence
condition claims that information spreads throughout the left and right singular vectors and is standard
in the matrix completion literature. Under this standard condition, we have the following results.

Theorems 6, 7, and 8 (Matrix Completion. Informal). There exist optimization problems for
matrix completion in the forms of (1) and (2) that enjoy strong duality with each other and exactly
recovers X∗ with high probability, provided thatm = O(κ2µ(n1+n2)r log(n1+n2) log2κ(n1+n2))
(for the formulation in Theorem 8) or m = O(µ(n1 + n2)r log2(n1 + n2)) (for the formulation
in Theorem 7), where κ is the condition number of X∗. The sample complexity lower bound is
Ω(µr(n1 + n2) log(n1 + n2)).

To the best of our knowledge, our result is the first to connect convex matrix completion to
non-convex matrix completion, two parallel lines of research that have received significant attention
in the past few years. Table 1.1 compares our results with prior results. Ours match the best known
results but further provide strong duality. Also, our results are achieved by a clean framework for a
class of related problems.

For robust PCA, instead of studying exact recoverability of problem (1) as for matrix completion,
we investigate problem (2) directly. The robust PCA problem is to recover an incoherent low-rank
component X∗ and a sparse component S∗ from their sum (Candès et al., 2011; Agarwal et al., 2012).
We obtain the following theorem for robust PCA.

Theorems 9 (Robust PCA. Informal). There exists a convex optimization formulation for robust
PCA in the form of problem (2) that exactly recovers the incoherent matrix X∗ ∈ Rn1×n2 and
S∗ ∈ Rn1×n2 with high probability, even if rank(X∗) = Θ

(
min{n1,n2}

µ log2 max{n1,n2}

)
and the size of the

support of S∗ is m = Θ(n1n2), where the support set of S∗ is uniformly distributed among all
sets of cardinality m, and the incoherence parameter µ satisfies the incoherence condition (5) and
‖X∗‖∞ ≤

√
µr
n1n2

σr(X
∗).

The bounds in Theorem 9 match the best known results in the robust PCA literature when the
supports of S∗ are uniformly sampled (Candès et al., 2011), while our assumption is arguably more
intuitive; see Section 6. Note that our results hold even when X∗ is close to full rank and a constant
fraction of the entries have noise.

Independently of our work, Ge et al. (2017) developed a framework to analyze the loss surface of
low-rank problems, and applied the framework to matrix completion and robust PCA. For matrix

1. This lower bound is information-theoretic (Candès and Tao, 2010).
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Work Sample Complexity Incoherence

Jain et al. (2013) O
(
κ4µ2r4.5n(1) log n(1) log

(
r‖X∗‖F

ε

))
(5)

Hardt (2014) O
(
µrn(1)(r + log

(
n(1)‖X∗‖F

ε

)
‖X∗‖2F
σ2
r

)
(5)

Ge et al. (2016) O(max{µ6κ16r4, µ4κ4r6}n(1) log2 n(1)) ‖X∗i:‖2≤
µ‖X∗‖F√

n(2)

Sun and Luo (2015) O(rn(1)κ
2 max

{
µ log n(2),

√
n(1)

n(2)
µ2r6κ4

}
(5)

Zheng and Lafferty (2016) O(µr2n(1)κ
2 max(µ, log n(1))) (5)

Gamarnik et al. (2017) O
((
µ2r4κ2 + µr log

(
‖X∗‖F

ε

))
n(1)log

(
‖X∗‖F

ε

))
(5)

Zhao et al. (2015) O
(
µr3n(1) log n(1) log

(
1
ε

))
(5)

Keshavan et al. (2010a) O
(
n(2)r

√
n(1)

n(2)
κ2 max

{
µ log n(2), µ

2r
√

n(1)

n(2)
κ4
})

(5) and (20)

Gross (2011) O(µrn(1) log2 n(1)) (5) and (20)
Chen (2015) O(µrn(1) log2 n(1)) (5)

Ours, Theorem 7 O(κ2µrn(1) log(n(1)) log2κ(n(1))) (5)
Ours, Theorem 8 O(µrn(1) log2 n(1)) (5)
Lower Bound1 Ω(µrn(1) log n(1)) (5)

Table 1: Comparison of matrix completion methods. Here κ = σ1(X∗)/σr(X
∗) is the condition

number of X∗ ∈ Rn1×n2 , ε is the accuracy such that the output X̃ obeys ‖X̃−X∗‖F ≤ ε,
n(1) = max{n1, n2} and n(2) = min{n1, n2}.

completion, their sample complexity is O(κ6µ4r6(n1 + n2) log(n1 + n2)), significantly larger than
our bound. For robust PCA, the number of the outlier entries that their method can tolerate is
O
(
n1n2
µrκ5

)
, but their result is for deterministic outlier entries and thus are not directly comparable

to ours. Zhang et al. (2017) also studied the robust PCA problem using non-convex optimization,
where the outlier entries are also deterministic and the number of outliers that their algorithm can
tolerate is O

(
n1n2
rκ

)
.

1.2. Our Techniques

Reduction to Low-Rank Approximation. Our results are inspired by the low-rank approximation
problem:

min
A∈Rn1×r,B∈Rr×n2

1

2
‖ − Λ̃−AB‖2F . (6)

We know that all local solutions of (6) are globally optimal (see Lemma 1) and that strong duality
holds for any given matrix −Λ̃ ∈ Rn1×n2 (Grussler et al., 2016). To extend this property to our
more general problem (1), our main insight is to reduce problem (1) to the form of (6) using the `2-
regularization term. While some prior work attempted to apply a similar reduction, their conclusions
either depended on unrealistic conditions on local solutions, e.g., all local solutions are rank-
deficient (Haeffele et al., 2014; Grussler et al., 2016), or their conclusions relied on strong assumptions
on the objective functions, e.g., that the objective functions are twice-differentiable (Haeffele and
Vidal, 2015). For example, the conditions that all local solutions are rank-deficient break down even
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for the PCA problem, and the assumptions that the objective function is twice-differential preclude
H(·) in (1) and (3) from encoding hard constraints. Instead, our general results formulate strong
duality via the existence of a dual certificate Λ̃. For concrete applications, the existence of a dual
certificate is then converted to mild assumptions, e.g., that the number of measurements is sufficiently
large and the positions of measurements are randomly distributed. We will illustrate the importance
of randomness below.

The Blessing of Randomness. The desired dual certificate Λ̃ may not exist in the deterministic
world. A hardness result (Razenshteyn et al., 2016) shows that for the problem of weighted low-
rank approximation, which can be cast in the form of (1), without some randomization in the
measurements made on the underlying low rank matrix, it is NP-hard to achieve a good objective
value, not to mention to achieve strong duality. A similar result was shown for deterministic matrix
completion (Hardt and Moitra, 2013). Thus we should utilize randomness to analyze the existence
of a dual certificate. For specific applications such as matrix completion, the assumption that the
measurements are random is standard, under which, the angle between the space Ω (the space of
matrices which are consistent with observations) and the space T (the space of matrices which are
low-rank) is small with high probability, namely, X∗ is almost the unique low-rank matrix that is
consistent with the measurements. Thus, our dual certificate can be represented as another form of a
convergent Neumann series concerning the projection operators on the spaces Ω and T ; otherwise, the
same construction of Neumann series may diverge as the norm concerning the projection operators
on the spaces Ω and T is larger than 1 in the deterministic worst case. The remainder of the proof is
to show that such a construction obeys the dual conditions. To show this, we use the fact that the
subspace Ω and the complement space T ⊥ are almost orthogonal when the sample size is sufficiently
large. This implies the projection of our dual certificate on the space T ⊥ has a very small norm,
which exactly matches the dual conditions.

 

Ω⊥ 

0 

Set 𝒟𝑠(𝐗∗) 

) 

null(A) 

0 𝐷𝒮(𝐗∗) 

) 
𝕊𝑛1×𝑛2−1 𝐷𝒮(𝐗∗)  ∩ 𝕊𝑛1×𝑛2−1 

 

) 

Figure 2: Feasibility.

Non-Convex Geometric Analysis. Strong duality implies that
the primal problem (1) and its bi-dual problem (2) have exactly the
same solutions in the sense that ÃB̃ = X̃. Thus, to show exact re-
coverability of linear inverse problems such as matrix completion
and robust PCA, it suffices to study either the non-convex primal
problem (1) or its convex counterpart (2). Here we do the former
analysis for matrix completion. We mention that traditional tech-
niques Candès and Tao (2010); Recht (2011); Chandrasekaran
et al. (2012) for convex optimization break down for our non-
convex problem, since the subgradient of a non-convex objective
function may not even exist Boyd and Vandenberghe (2004). In-
stead, we apply tools from geometric analysis Vershynin (2009)
to analyze the geometry of problem (1). Our non-convex geo-
metric analysis is in stark contrast to prior techniques of convex
geometric analysis Vershynin (2015) where convex combinations
of non-convex constraints were used to define the Minkowski functional (e.g., in the definition of
atomic norm) while our method uses the non-convex constraint itself.

For matrix completion, problem (1) has two hard constraints: (a) the rank of the output matrix
should be no larger than r, as implied by the form of AB; (b) the output matrix should be consistent
with the sampled measurements, i.e., PΩ(AB) = PΩ(X∗). We study the feasibility condition of
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Figure 3: New analytical framework in this paper.

problem (1) from a geometric perspective: ÃB̃ = X∗ is the unique optimal solution to problem (1) if
and only if starting from X∗, either the rank of X∗+D or ‖X∗+D‖F increases for all directions D’s
in the constraint set Ω⊥ = {D ∈ Rn1×n2 : PΩ(X∗ + D) = PΩ(X∗)}. This can be geometrically
interpreted as the requirement that the set DS(X∗) = {X−X∗ ∈ Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤
‖X∗‖F } and the constraint set Ω⊥ must intersect uniquely at 0 (see Figure 2). This can then be
shown by a dual certificate argument.

Putting Things Together. We summarize our new analytical framework with Figure 3.

Other Techniques. An alternative method is to investigate the exact recoverability of problem (2)
via standard convex analysis. We find that the sub-differential of our induced function ‖ · ‖r∗ has
similar properties as that of the nuclear norm. With this observation, we prove the validity of robust
PCA in the form of (2) by combining this property of ‖ · ‖r∗ with standard techniques from (Candès
et al., 2011).

1.3. Paper Organization

Section 2 reviews related work and Section 3 defines the notations. The main theorems for our
framework are presented in Section 4. Their applications to matrix completion are in Section 5,
and those to robust PCA are in Section 6. The computational aspects of the problem are discussed
in Section 7, and experimental results on synthetic and real data sets are presented in Section 8.
Section 9 concludes the paper. For clarity of presentation, some proofs in our analysis are deferred to
the appendix.

2. Related Work

Non-convex matrix factorization is a popular topic studied in theoretical computer science (Jain et al.,
2013; Hardt, 2014; Sun and Luo, 2015; Razenshteyn et al., 2016), machine learning (Bhojanapalli
et al., 2016b; Ge et al., 2016, 2015; Jain et al., 2010; Li et al., 2016), and optimization (Wen et al.,
2012; Shen et al., 2014). We review several lines of research on studying the global optimality of
such optimization problems.

Global Optimality of Matrix Factorization. While lots of matrix factorization problems have
been shown to have no spurious local minima, they either require additional conditions on the
local minima, or are based on particular forms of the objective function. Specifically, Bach et al.
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(2008) and Journée et al. (2010) proved that X = AAT is a global minimizer of F (X), if A is
a rank-deficient local minimizer of F (AAT ) and F (X) is a twice differentiable convex function.
Haeffele and Vidal (2015) further extended this result by allowing a more general form of objective
function F (X) = G(X) +H(X), where G is a twice differentiable convex function with compact
level set and H is a proper convex function such that F is lower semi-continuous. However, a major
drawback of this line of research is that these result fails when the local minimizer is of full rank.

Matrix Completion. Matrix completion is a prototypical example of matrix factorization. One
line of work on matrix completion builds on convex relaxation (e.g., Srebro and Shraibman (2005);
Candès and Recht (2009); Candès and Tao (2010); Recht (2011); Chandrasekaran et al. (2012);
Negahban and Wainwright (2012)), which achieve nearly optimal sample complexity. However, the
computational complexity is relatively high compared with the non-convex methods. Recently, Ge
et al. (2016) showed that matrix completion has no spurious local optimum, when |Ω| is sufficiently
large and the matrix Y is incoherent. The result is only for positive semi-definite matrices and their
sample complexity is not optimal. Independently of our work, Ge et al. (2017) developed a framework
to analyze the loss surface of low-rank problems, and applied the framework to matrix completion and
robust PCA. For matrix completion, their sample complexity is O(κ6µ4r6(n1 + n2) log(n1 + n2)),
significantly larger than our bound.

Another line of work is built upon good initialization for global convergence. Recent attempts
showed that one can first compute some form of initialization (e.g., by singular value decomposition)
that is close to the global minimizer and then use non-convex approaches to reach global optimality,
such as alternating minimization, block coordinate descent, and gradient descent (Keshavan et al.,
2010b,a; Jain et al., 2013; Keshavan, 2012; Hardt, 2014; Bhojanapalli et al., 2016a; Zheng and
Lafferty, 2015; Zhao et al., 2015; Tu et al., 2016; Chen and Wainwright, 2015; Sun and Luo, 2015).
The advantage of such line of research is that the computational complexity is low compared with
convex relaxation based approach, but the sample complexity is relatively high. In our result, we try
to bridge these two lines of research, under the same sample complexity as the best-known result of
matrix completion (Chen, 2015).

Robust PCA. Robust PCA is also a prototypical example of matrix factorization. The goal is to re-
cover both the low-rank and the sparse components exactly from their superposition (Chandrasekaran
et al., 2011; Candès et al., 2011; Netrapalli et al., 2014; Gu et al., 2016; Zhang et al., 2015a, 2016;
Yi et al., 2016). It has been widely applied to various tasks, such as video denoising, background
modeling, image alignment, photometric stereo, texture representation, subspace clustering, and
spectral clustering.

There are typically two settings in the robust PCA literature: (a) the support set of the sparse
matrix is uniformly sampled (Chandrasekaran et al., 2011; Candès et al., 2011; Zhang et al., 2016);
b) the support set of the sparse matrix is deterministic, but the non-zero entries in each row or column
of the matrix cannot be too large (Yi et al., 2016; Ge et al., 2017). In this work, we discuss the first
case. Our framework provides results that match the best known work in setting (a) (Candès et al.,
2011). For setting b), Ge et al. (2017) studied the robust PCA and the number of the outlier entries
that their method can tolerate is O

(
n1n2
µrκ5

)
, but their result is for deterministic outlier entries and

thus are not directly comparable to ours. Zhang et al. (2017) also studied the robust PCA problem
using non-convex optimization, where the outlier entries are also deterministic and the number of
outliers that their algorithm can tolerate is O

(
n1n2
rκ

)
.
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Other Matrix Factorization Problems. Matrix sensing is another typical matrix factorization
problem (Chandrasekaran et al., 2012; Jain et al., 2013; Zhao et al., 2015). Bhojanapalli et al. (2016b),
Park et al. (2017) and Tu et al. (2016) showed that the matrix recovery model minA,B

1
2‖A(AB−

Y)‖2F , achieves optimality for every local minimum, if the operatorA satisfies the restricted isometry
property. They further gave a lower bound and showed that the unstructured operator A may easily
lead to a local minimum which is not globally optimal.

Some other matrix factorization problems are also shown to have nice geometric properties such
as the property that all local minima are global minima. Examples include dictionary learning (Sun
et al., 2017b), phase retrieval (Sun et al., 2016), and linear deep neural networks (Kawaguchi, 2016).
In multi-layer linear neural networks where the goal is to learn a multi-linear projection X∗ =

∏
i Wi,

each Wi represents the weight matrix that connects the hidden units in the i-th and (i+ 1)-th layers.
The study of such linear models can help the theoretical understanding of the loss surface of deep
neural networks with non-linear activation functions (Kawaguchi, 2016; Choromanska et al., 2015).
In dictionary learning, we aim to recover a dictionary matrix A from a given signal X in the form
of X = AB, provided that the representation coefficient B is sufficiently sparse. This problem
centers around solving a non-convex matrix factorization problem with a sparsity constraint on
the representation coefficient B (Bach et al., 2008; Sun et al., 2017b,a; Arora et al., 2014). Other
high-impact examples of matrix factorization models range from the classic unsupervised learning
problems like PCA, independent component analysis, and clustering, to the more recent problems
such as non-negative matrix factorization, weighted low-rank matrix approximation, sparse coding,
tensor decomposition (Bhaskara et al., 2014; Anandkumar et al., 2014), subspace clustering (Zhang
et al., 2015b, 2014), etc. Applying our framework to these other problems is left for future work.

Atomic Norms. The atomic norm is a recently proposed function for linear inverse problems (Chan-
drasekaran et al., 2012). Many well-known norms, e.g., the `1 norm and the nuclear norm, serve
as special cases of atomic norms. It has been widely applied to the problems of compressed
sensing (Tang et al., 2013), low-rank matrix recovery (Candès and Recht, 2013), blind deconvolu-
tion (Ahmed et al., 2014), etc. The norm is defined by the Minkowski functional associated with the
convex hull of a set A: ‖X‖A = inf{t > 0 : X ∈ tA}. In particular, if we set A to be the convex
hull of the infinite set of unit-`2-norm rank-one matrices, then ‖ · ‖A equals to the nuclear norm.
We mention that our objective term ‖AB‖F in problem (1) is similar to the atomic norm, but with
slight differences: unlike the atomic norm, we set A to be the infinite set of unit-`2-norm matrices
for rank(X) ≤ r. This leads to better sample complexity guarantees than the atomic-norm based
methods.

Comparison with Our Work. Despite a large amount of works on matrix factorizations and
their convex relaxation, few works study the connection between them. Hereby, we emphasize
the difference between exact recoverability and tightness of convex relaxation: exact recoverability
studies whether one algorithm can exactly recover the underlying matrix, while the tightness of convex
relaxation characterizes the connection between non-convex problem and its convex counterpart. The
standard proof technique only focuses on the former problem for both matrix completion and robust
PCA. In contrast, this work explores the latter problem and bridges the gap between the non-convex
matrix factorization and its convex counterpart.
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3. Notations

We will use calligraphy to represent a set, bold capital letters to represent a matrix, bold lower-case
letters to represent a vector, and lower-case letters to represent scalars. Specifically, we denote
by X∗ ∈ Rn1×n2 the underlying matrix. We use X:t ∈ Rn1×1 (Xt: ∈ R1×n2) to indicate the t-th
column (row) of X. The entry in the i-th row, j-th column of X is represented by Xij . The condition
number of X is κ = σ1(X)/σr(X). We let n(1) = max{n1, n2} and n(2) = min{n1, n2}. For
SVD UΣV> of matrix X, we define svdr(X) = U:,1:rΣ(1:r):(1:r)V

>
:,1:r. For a function H(M)

on an input matrix M, its conjugate function H∗ is defined by H∗(Λ) = maxM〈Λ,M〉 −H(M).
Furthermore, let H∗∗ denote the conjugate function of H∗.

We will frequently use rank(X) ≤ r to constrain the rank of X. This can be equivalently
represented as X = AB, by restricting the number of columns of A and rows of B to be r. For
norms, denote by ‖X‖F =

√∑
ij X2

ij the Frobenius norm of matrix X. Let σ1(X) ≥ σ2(X) ≥
... ≥ σr(X) be the non-zero singular values of X. The nuclear norm (a.k.a. trace norm) of
X is defined by ‖X‖∗ =

∑r
i=1 σi(X), and the operator norm of X is ‖X‖ = σ1(X). Denote

by ‖X‖∞ = maxij |Xij |. Define the r∗-norm to be ‖X‖r∗ = maxM〈M,X〉 − 1
2‖M‖

2
r where

‖M‖2r =
∑r

i=1 σ
2
i (M) is the sum of the first r largest squared singular values. For two matrices A

and B of equal dimensions, we denote by 〈A,B〉 =
∑

ij AijBij . We denote by ∂H(X) = {Λ ∈
Rn1×n2 : H(Y) ≥ H(X) + 〈Λ,Y −X〉 for any Y} the sub-differential of function H evaluated

at X. We define the indicator function of convex set C by IC(X) =

{
0, if X ∈ C;
+∞, otherwise.

For any

non-empty set C, denote by cone(C) = {tX : X ∈ C, t ≥ 0}.
We denote by Ω the set of indices of observed entries, and Ω⊥ its complement. Without

confusion, Ω also indicates the linear subspace formed by matrices with entries in Ω⊥ being 0.
We denote by PΩ : Rn1×n2 → Rn1×n2 the orthogonal projector to the subspace Ω. We will
consider a single norm for these operators, namely, the operator norm denoted by ‖A‖ and defined
by ‖A‖ = sup‖X‖F=1 ‖A(X)‖F . For any orthogonal projection operator PT to any subspace
T , we know that ‖PT ‖ = 1 whenever dim(T ) 6= 0. For distributions, denote by N (0, 1) the
standard Gaussian distribution, Uniform(m) the uniform distribution of cardinality m, and Ber(p)
the Bernoulli distribution with success probability p.

4. Strong Duality of Matrix Factorizations: A New Analytical Framework

This section develops a novel framework to analyze non-convex matrix factorization problems.
The framework can be applied to different specific problems and leads to nearly optimal sample
complexity guarantees.

4.1. 1
2‖AB‖2F Regularization

We first study the 1
2‖AB‖2F -regularized matrix factorization problem

(P) min
A∈Rn1×r,B∈Rr×n2

F (A,B) = H(AB) +
1

2
‖AB‖2F , H(·) is convex and closed.

We will show in this section that under suitable conditions the duality gap between (P) and its dual
(bi-dual) problem is zero, so problem (P) can be converted to an equivalent convex problem.

11
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First, we consider an easy case where H(AB) = 1
2‖Ŷ‖

2
F − 〈Ŷ,AB〉 for a fixed Ŷ, leading to

the objective function 1
2‖Ŷ −AB‖2F . For this case, we establish the following lemma. Its proof is

basically to calculate the gradient of f(A,B) and let it equal to zero (Srebro, 2004); see Appendix A
for details.

Lemma 1 For any given matrix Ŷ, any local minimum of f(A,B) = 1
2‖Ŷ −AB‖2F is globally

optimal, given by svdr(Ŷ). The objective function f(A,B) around any saddle point has a negative
second-order directional curvature. Moreover, f(A,B) has no local maximum.

Now we turn to the general case. Given Lemma 1, we can reduce F (A,B) to the form 1
2‖Ŷ −

AB‖2F for some Ŷ plus an extra term:

F (A,B) =
1

2
‖AB‖2F +H(AB)

=
1

2
‖AB‖2F +H∗∗(AB)

= max
Λ

1

2
‖AB‖2F + 〈Λ,AB〉 −H∗(Λ)

= max
Λ

1

2
‖ −Λ−AB‖2F −

1

2
‖Λ‖2F −H∗(Λ)

, max
Λ

L(A,B,Λ),

(7)

where we define
L(A,B,Λ) ,

1

2
‖ −Λ−AB‖2F −

1

2
‖Λ‖2F −H∗(Λ)

as the Lagrangian of problem (P),2 and the second equality in Eqn. (7) holds because H is closed
and convex with respect to the argument AB.

By Lemma 1 and the definition of L(A,B,Λ), for any fixed value of Λ, any local minimum
of L(A,B,Λ) is globally optimal, because minimizing L(A,B,Λ) is equivalent to minimizing
1
2‖ −Λ−AB‖2F for a fixed Λ.

So the remaining part of our analysis is to choose a proper Λ̃ for a solution (Ã, B̃) of problem
(P), such that (Ã, B̃, Λ̃) is a primal-dual saddle point of L(A,B,Λ), which then implies strong
duality. For this, we introduce the following condition.

Condition 1 For a solution (Ã, B̃) to problem (P), there exists a Λ̃ ∈ ∂XH(X)|
X=ÃB̃

such that

−ÃB̃B̃T = Λ̃B̃T and ÃT (−ÃB̃) = ÃT Λ̃. (8)

Explanation of Condition 1. We note that∇AL(A,B,Λ) = ABBT+ΛBT and∇BL(A,B,Λ) =
ATAB+ATΛ for a fixed Λ. In particular, if we set Λ to be the Λ̃ in (8), then∇AL(A, B̃, Λ̃)|

A=Ã
=

0 and ∇BL(Ã,B, Λ̃)|
B=B̃

= 0. So Condition 1 implies that (Ã, B̃) is either a saddle point or
a local minimizer of L(A,B, Λ̃) as a function of (A,B) for the fixed Λ̃. The following lemma
states that if (Ã, B̃) is indeed a local minimizer, then (Ã, B̃, Λ̃) is a primal-dual saddle point of
L(A,B,Λ) and strong duality holds.

2. One can easily check that L(A,B,Λ) = minM L′(A,B,M,Λ), where L′(A,B,M,Λ) is the Lagrangian of the
constraint optimization problem minA,B,M

1
2
‖AB‖2F +H(M), s.t. M = AB. With a little abuse of notation, we

call L(A,B,Λ) the Lagrangian of the unconstrained problem (P) as well.
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Lemma 2 (Dual Certificate) Let (Ã, B̃) be a solution to problem (P). If there exists a dual certifi-
cate Λ̃ satisfying Condition 1 and the pair (Ã, B̃) is a local minimizer of L(A,B, Λ̃) for the fixed
Λ̃, then strong duality holds. Moreover, we have the relation ÃB̃ = svdr(−Λ̃).

Proof We begin by showing that (Ã, B̃, Λ̃) is a primal-dual saddle point of L(A,B,Λ). By the
assumption of the lemma, (Ã, B̃) is a local minimizer of L(A,B, Λ̃) = 1

2‖ − Λ̃−AB‖2F + c(Λ̃),
where c(Λ̃) is a function that is independent of A and B. So according to Lemma 1, (Ã, B̃) =
argminA,B L(A,B, Λ̃), namely, (Ã, B̃) globally minimizes L(A,B,Λ) when Λ is fixed to Λ̃.
Furthermore, Λ̃ ∈ ∂XH(X)|

X=ÃB̃
implies that ÃB̃ ∈ ∂ΛH

∗(Λ)|
Λ=Λ̃

by the convexity of function
H , meaning that 0 ∈ ∂ΛL(Ã, B̃,Λ). So Λ̃ = argmaxΛ L(Ã, B̃,Λ) due to the concavity of
L(Ã, B̃,Λ) w.r.t. variable Λ. Thus (Ã, B̃, Λ̃) is a primal-dual saddle point of L(A,B,Λ).

Now we prove the strong duality. By the fact that F (A,B) = maxΛ L(A,B,Λ) and that
Λ̃ = argmaxΛ L(Ã, B̃,Λ), we have

F (Ã, B̃) = L(Ã, B̃, Λ̃) ≤ L(A,B, Λ̃), ∀A,B.

where the inequality holds because (Ã, B̃, Λ̃) is a primal-dual saddle point of L. So on the one hand,
we have

min
A,B

max
Λ

L(A,B,Λ) = F (Ã, B̃) ≤ min
A,B

L(A,B, Λ̃) ≤ max
Λ

min
A,B

L(A,B,Λ).

On the other hand, by weak duality,

min
A,B

max
Λ

L(A,B,Λ) ≥ max
Λ

min
A,B

L(A,B,Λ).

Therefore, minA,B maxΛ L(A,B,Λ) = maxΛ minA,B L(A,B,Λ), i.e., strong duality holds.
Finally,

ÃB̃ = argmin
AB

L(A,B, Λ̃)

= argmin
AB

1

2
‖ − Λ̃−AB‖2F −

1

2
‖Λ̃‖2F −H∗(Λ̃)

= argmin
AB

1

2
‖ − Λ̃−AB‖2F

= svdr(−Λ̃),

as desired.

This lemma then leads to the following theorem.

Theorem 3 Let (Ã, B̃) denote an optimal solution of problem (P). Define a matrix space

T , {ÃXT + YB̃, X ∈ Rn2×r, Y ∈ Rn1×r}. (9)

Then strong duality holds for problem (P), provided that

(1) Λ̃ ∈ ∂H(ÃB̃) , Ψ, (2) PT (−Λ̃) = ÃB̃, (3) ‖PT ⊥Λ̃‖ < σr(ÃB̃). (10)
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Figure 4: Geometry of dual condition (10) for general matrix factorization problems.

Proof The proof idea is to construct a dual certificate Λ̃ so that the conditions in Lemma 2 hold. It
suffices for Λ̃ to satisfy the following:

(a) Λ̃ ∈ ∂H(ÃB̃), (by Condition 1)

(b) (ÃB̃ + Λ̃)B̃T = 0 and ÃT (ÃB̃ + Λ̃) = 0, (by Condition 1)

(c) ÃB̃ = svdr(−Λ̃). (by the local minimizer assumption and Lemma 1)

(11)

It turns out that for any matrix M ∈ Rn1×n2 , PT ⊥M = (I − ÃÃ†)M(I − B̃B̃†) and so
‖PT ⊥M‖ ≤ ‖M‖, a fact that we will frequently use in the sequel. Denote by U the left singular
space of ÃB̃ and V the right singular space. Then the linear space T can be equivalently represented
as T = U + V . Therefore, T ⊥ = (U + V)⊥ = U⊥ ∩ V⊥.

With this, we will show the conditions in (11) are equivalent to those in (10). Condition (b)
implies ÃB̃ + Λ̃ ∈ Null(ÃT ) = Col(Ã)⊥ and ÃB̃ + Λ̃ ∈ Row(B̃)⊥ (so ÃB̃ + Λ̃ ∈ T ⊥),
and vice versa. Condition (c) ÃB̃ = svdr(−Λ̃) implies that for an orthogonal decomposi-
tion −Λ̃ = ÃB̃ + E, where ÃB̃ ∈ T , and E ∈ T ⊥, we have ‖E‖ < σr(ÃB̃). Conversely,
‖E‖ < σr(ÃB̃) and condition (b) imply ÃB̃ = svdr(−Λ̃). Therefore, the conditions in (10) are
equivalent to the conditions in (11), which imply the conditions in Lemma 2 and give strong duality
as desired.

To show the dual condition in Theorem 3, intuitively, we need to show that the angle θ between
the subspaces T and Ψ is small (see Figure 4) for a specific function H(·). In Section 5, we will
demonstrate applications that, with randomness, obey this dual condition with high probability.

4.2. 1
2‖A‖

2
F + 1

2‖B‖
2
F Regularization

We now study another class of matrix factorization problems

(P’) min
A∈Rn1×r,B∈Rr×n2

F (A,B) = H(AB) +
1

2
‖A‖2F +

1

2
‖B‖2F , H(·) is convex and closed.

The analysis is similar to the analysis in Section 4.1. To see this, we first note that 1
2‖A‖

2
F + 1

2‖B‖
2
F

has a natural variational form of the nuclear norm:

‖AB‖∗ = min
A′∈Rn1×r,B′∈Rr×n2 ,A′B′=AB

1

2
‖A′‖2F +

1

2
‖B′‖2F .
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Therefore, problem (P’) is equivalent to

(P”) (Ā, B̄) = argmin
A∈Rn1×r,B∈Rr×n2

F (A,B) = H(AB) + ‖AB‖∗, H(·) is convex and closed.

Thus we can analyze problem (P”) as in Section 4.1. More specifically, we have the following result.

Theorem 4 Let (Ā, B̄) denote an optimal solution of problem (P”). Let UΣV> denote the skinny
SVD of ĀB̄. Define a matrix space

T , {UXT + YVT , X ∈ Rn2×r, Y ∈ Rn1×r}. (12)

If there exists a dual certificate Λ̃ such that

(a) Λ̃ ∈ ∂H(ĀB̄) , Ψ,

(b) PT (−Λ̃) = UV>,

(c) ‖PT ⊥(−Λ̃)‖ < 1

2
,

(13)

then strong duality holds for problems (P”) and (P’).

Remark 5 There is a key difference between Theorem 4 and the standard optimality result by Candès
and Recht (2009). On one hand, Theorem 4 shows that under certain conditions, the non-convex
matrix completion and its convex counterpart share a common global optimality, i.e., the strong
duality. On the other hand, the standard optimality result in Lemma 3.1 of (Candès and Recht, 2009)
studies the conditions under which the convex matrix completion exactly recovers the underlying
low-rank matrix. Their lemma does not concern about the non-convex matrix completion formulation.

Proof We note that

F (A,B) = ‖AB‖∗ +H(AB)

= ‖AB‖∗ +H∗∗(AB)

= ‖AB‖∗ + max
Λ∈Rn1×n2

〈Λ,AB〉 −H∗(Λ)

= max
Λ∈Rn1×n2

‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ)

= max
Λ∈Rn1×n2

L(A,B,Λ),

where the second equality holds because H(·) is closed and convex with respect to the argument AB
and the third equality holds by the definition of conjugate function. To prove Theorem 4, we need
the following two claims.

Claim 1 Λ̃ = argmaxΛ L(Ā, B̄,Λ).

Proof We only need to show 0 ∈ ∂ΛL(Ā, B̄, Λ̃) = ĀB̄ − ∂ΛH
∗(Λ̃), because L(Ā, B̄,Λ)

is a concave function of Λ for the fixed Ā and B̄. Note that ĀB̄ ∈ ∂ΛH
∗(Λ̃) is implied by

Λ̃ ∈ ∂H(ĀB̄) by the convexity of function H(·). Therefore, condition (a) immediately implies
Λ̃ = argmaxΛ L(Ā, B̄,Λ).
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Claim 2 (Ā, B̄) = argminA,B L(A,B, Λ̃).

Proof First, we have

argmin
A∈Rn1×r,B∈Rr×n2

L(A,B, Λ̃) = argmin
A,B

‖AB‖∗ − 〈−Λ̃,AB〉 −H∗(Λ̃)

= argmin
A,B

‖AB‖∗ − 〈−Λ̃,AB〉

= argmin
A,B

r∑
i=1

σi(AB)− 〈−Λ̃,AB〉,

where the first step follows by definition of L(A,B, Λ̃), the second step follows since Λ is fixed, the
third step follows by definition of nuclear norm.

Using conditions (b) and (c) in (13), −Λ̃ can be rewritten as

−Λ̃ = UVT︸ ︷︷ ︸
in space T with eigenvalues 1

+ PT ⊥(−Λ̃)︸ ︷︷ ︸
in space T ⊥ with eigenvalues <1/2

,

which implies ∀i ∈ [r], σi(−Λ̃) = 1.
Using von Neumann’s trace inequality (see Lemma 25), we can show

min
A,B

r∑
i=1

σi(AB)− 〈−Λ̃,AB〉 ≥ min
A,B

r∑
i=1

σi(AB)−
r∑
i=1

σi(−Λ̃)σi(AB)

= min
A,B

r∑
i=1

σi(AB)−
r∑
i=1

σi(AB) by σi(−Λ) = 1,∀i ∈ [r]

= 0.

Therefore, on the one hand, we already have

min
A∈Rn1×r,B∈Rr×n2

L(A,B, Λ̃) ≥ −H∗(Λ̃).

On the other hand, according to definition of Ā, B̄, and −Λ̃,

L(Ā, B̄, Λ̃) = ‖ĀB̄‖∗ − 〈−Λ̃, ĀB̄〉 −H∗(Λ̃)

= −H∗(Λ̃).

Thus, we can conclude that (Ā, B̄) = argminA,B L(A,B, Λ̃).

Claim 1 and Claim 2 together show that (Ā, B̄, Λ̃) is a primal-dual saddle point of the Lagrangian
L(A,B,Λ).

We now prove the strong duality. By the fact that F (A,B) = maxΛ L(A,B,Λ) and that
Λ̃ = argmaxΛ L(Ā, B̄,Λ), we have

F (Ā, B̄) = L(Ā, B̄, Λ̃) ≤ L(A,B, Λ̃), ∀A,B,
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where the inequality holds because (Ā, B̄, Λ̃) is a primal-dual saddle point of L(·, ·, ·). So on the
one hand, we have

min
A,B

max
Λ

L(A,B,Λ) = F (Ā, B̄) ≤ min
A,B

L(A,B, Λ̃) ≤ max
Λ

min
A,B

L(A,B,Λ).

On the other hand, by weak duality,

min
A,B

max
Λ

L(A,B,Λ) ≥ max
Λ

min
A,B

L(A,B,Λ).

Therefore, minA,B maxΛ L(A,B,Λ) = maxΛ minA,B L(A,B,Λ), i.e., strong duality holds.

Similarly as for Theorem 3, to show the dual condition in Theorem 4, we need to show that the
angle θ between the subspaces T and Ψ is small for a specific functionH(·). We will also demonstrate
how randomness implies this dual condition with high probability in concrete applications.

5. Matrix Completion

In matrix completion, there is a hidden matrix X∗ ∈ Rn1×n2 with rank at most r. We are given
measurements {X∗ij : (i, j) ∈ Ω}, where Ω ∼ Uniform(m), i.e., Ω is sampled uniformly at random
from all subsets of [n1] × [n2] of cardinality m. The goal is to exactly recover X∗ with high
probability. Here we apply our unified framework in Section 4 to matrix completion, by setting
H(·) = I{M:PΩ(M)=PΩ(X∗)}(·). (Recall that IC is the indicator function of the set C.)

A quantity governing the difficulties of matrix completion is the incoherence parameter µ.
Intuitively, matrix completion is possible only if the information spreads evenly throughout the
low-rank matrix. This intuition is captured by the incoherence conditions. Formally, denote by
UΣVT the skinny SVD of a fixed n1×n2 matrix X of rank r. The µ-incoherence condition (5) was
introduced for the low-rank matrix X (Candès et al., 2011; Candès and Recht, 2009; Recht, 2011;
Zhang et al., 2016). For this condition, it can be shown that 1 ≤ µ ≤ n(1)

r . It holds for many random
matrices with incoherence parameter µ about

√
r log n(1) (Keshavan et al., 2010a).

We have two positive results for matrix completion, which are achieved via efficient algorithms
by applying Theorem 3 and Theorem 4, respectively.

Before proceeding, we first cite a lower bound from prior work. It shows that our two positive
results are nearly optimal.

Theorem 6 (Information-Theoretic Lower Bound. Candès and Tao (2010), Theorem 1.7) De-
note by Ω ∼ Uniform(m) the support set uniformly distributed among all sets of cardinality m.
Suppose that m ≤ cµn(1)r log n(1) for an absolute constant c. Then there exist infinitely many
n1×n2 matrices X′ of rank at most r obeying µ-incoherence (5) such that PΩ(X′) = PΩ(X∗), with
probability at least 1− n−10

(1) .

Our first positive result converts a non-convex rank-constrained problem to a convex optimization
problem, which can be efficiently solved. The proof is simply by applying Theorem 3, so the details
are deferred to Appendix D.

Theorem 7 (Efficient Matrix Completion I) Let Ω ∼ Uniform(m) be the support set uniformly
distributed among all sets of cardinality m. Denote the condition number of matrix X∗ as κ =
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σ1(X∗)/σr(X
∗). Let (Ã, B̃) ∈ Rn1×r × Rr×n2 denote the output of the non-convex matrix factor-

ization problem

min
A∈Rn1×r,B∈Rr×n2

1

2
‖AB‖2F , s.t. PΩ(AB) = PΩ(X∗). (14)

Then there are absolute constants c and c0 such that with probability at least 1− cn−10, the strong
duality X∗ = ÃB̃ = X̃ holds, provided that m ≥ cκ2µrn(1) log2κ(n(1)) log(n(1)) and X∗ obeys
µ-incoherence (5), where X̃ is the output of the nuclear norm minimization

min
X∈Rn1×n2

‖X‖r∗, s.t. PΩ(X) = PΩ(X∗). (15)

Proof Sketch. We first show that the problem

(Ã, B̃) = argmin
A,B

1

2
‖AB‖2F , s.t. PΩ(AB) = PΩ(X∗),

exactly recovers X∗, i.e., ÃB̃ = X∗, with the optimal sample complexity (see Appendix D). So
if strong duality holds, this non-convex optimization problem can be equivalently converted to the
convex program (15), proving Theorem 7.

It now suffices to apply our unified framework in Section 4 to prove the strong duality. We show
that the dual condition in Theorem 3 holds with high probability by the following arguments. Let
(Ã, B̃) be a global solution to problem (15). For H(X) = I{M∈Rn1×n2 : PΩM=PΩX∗}(X), we have

Ψ = ∂H(ÃB̃) = {G ∈ Rn1×n2 : 〈G, ÃB̃〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗}
= {G ∈ Rn1×n2 : 〈G,X∗〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗} = Ω,

where the third equality holds since ÃB̃ = X∗. Then we only need to show

(1) Λ̃ ∈ Ω, (2) PT (−Λ̃) = ÃB̃, (3) ‖PT ⊥Λ̃‖ < 2

3
σr(ÃB̃). (16)

It is interesting to see that dual condition (16) can be satisfied if the angle θ between subspace Ω
and subspace T is very small; see Figure 4. When the sample size |Ω| becomes larger, the angle θ
becomes smaller (e.g., when |Ω| = n1n2, the angle θ is zero as Ω = Rn1×n2). We show that the
sample size m ≥ Ω(κ2µrn(1) log2κ(n(1)) log(n(1))) is a sufficient condition for condition (16) to
hold. �

Our second result further improves the sample complexity of Theorem 7 by applying Theorem 4.
The reduced sample complexity matches the best known result, which was achieved by nuclear norm
minimization. However, the strong duality is new here, which illustrates the reason why nuclear
norm works for matrix completion from another viewpoint of non-convex optimization. The proof is
deferred to Appendix E.

Theorem 8 (Efficient Matrix Completion II) Let Ω ∼ Uniform(m) be the support set uniformly
distributed among all sets of cardinality m. Let (Ã, B̃) ∈ Rn1×r × Rr×n2 denote the output of the
non-convex matrix factorization problem

min
A∈Rn1×r,B∈Rr×n2

1

2
‖A‖2F +

1

2
‖B‖2F , s.t. PΩ(AB) = PΩ(X∗), (17)
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Then there are absolute constants c and c0 such that with probability at least 1− cn−10, the strong
duality X∗ = ÃB̃ = X̃ holds, provided that m ≥ c0µrn(1) log2 n(1) and X∗ obeys µ-incoherence
(5), where X̃ is the output of the nuclear norm minimization

min
X∈Rn1×n2

‖X‖∗, s.t. PΩ(X) = PΩ(X∗). (18)

6. Robust Principal Component Analysis

This section develops our theory for robust PCA based on our framework. In the problem of robust
PCA, we are given an observed matrix of the form D = X∗ + S∗, where X∗ is the ground-truth
matrix which is incoherent and low rank, and S∗ is the corruption matrix which is sparse. The goal is
to recover the hidden matrices X∗ and S∗ from the observation D. We set H(X) = λ‖D−X‖1.

To make the information spreads evenly throughout the matrix, the matrix cannot have one entry
whose absolute value is significantly larger than other entries. Candès et al. (2011) introduced an
extra incoherence condition (Recall that X∗ = UΣVT is the skinny SVD of X∗)

‖UVT ‖∞ ≤
√

µr

n1n2
. (19)

In this work, we make the following incoherence assumption for robust PCA instead of (19):

‖X∗‖∞ ≤
√

µr

n1n2
σr(X

∗). (20)

Note that condition (20) is very similar to the incoherence condition (19) for the robust PCA problem,
but the two notions are not directly comparable. On the other hand, the condition (20) has an intuitive
explanation, namely, that the entries must scatter almost uniformly across the low-rank matrix.

We have the following results for robust PCA.

Theorem 9 (Robust PCA) Suppose X∗ is an n1 × n2 matrix of rank r, and obeys incoherence (5)
and (20). Assume that the support set Ω of S∗ is uniformly distributed among all sets of cardinality
m. Then with probability at least 1− cn−10

(1) , the output of the optimization problem

(X̃, S̃) = argmin
X,S

‖X‖r∗ + λ‖S‖1, s.t. D = X + S,

with λ = σr(X∗)√
n(1)

is exact, namely, X̃ = X∗ and S̃ = S∗, provided that rank(X∗) ≤ ρr
n(2)

µ log2 n(1)
and

m ≤ ρsn1n2, where c, ρr, and ρs are all positive absolute constants, and function ‖ · ‖r∗ is given by
(21).

The bounds on the rank of X∗ and the sparsity of S∗ in Theorem 9 match the best known results for
robust PCA in prior work when we assume the support set of S∗ is sampled uniformly (Candès et al.,
2011).
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7. Computational Aspects

Computational Efficiency. We discuss our computational efficiency given that we have strong
duality. We note that the dual and bi-dual of primal problem (P) are given by (see Appendix H.1)

(Dual, D1) max
Λ∈Rn1×n2

−H∗(Λ)− 1

2
‖Λ‖2r , where ‖Λ‖2r =

r∑
i=1

σ2
i (Λ),

(Bi-Dual, D2) min
M∈Rn1×n2

H(M) + ‖M‖r∗, where ‖M‖r∗ = max
X
〈M,X〉 − 1

2
‖X‖2r .

(21)

and the dual and bi-dual of primal problem (P”) are given by (see Appendix H.2)

(Dual, D1”) max
‖Λ‖≤1

−H∗(Λ),

(Bi-Dual, D2”) min
M∈Rn1×n2

H(M) + ‖M‖∗.

Problems (D1), (D1”) and (D2), (D2”) can be solved efficiently due to their convexity. In
particular, Grussler et al. (2016) provided a computationally efficient algorithm to compute the
proximal operators of functions 1

2‖ · ‖
2
r and ‖ · ‖r∗. Hence, there exist algorithms that can find

global minimum up to an ε error in function value in time poly(1/ε), e.g., the Douglas-Rachford
algorithm (He and Yuan, 2012).

Computational Lower Bounds. Unfortunately, strong duality does not always hold for general
non-convex problems (P) (and (P’)). Here we present a very strong lower bound based on the random
4-SAT hypothesis. This is by now a fairly standard conjecture in complexity theory (Feige, 2002)
and gives us constant factor inapproximability of problem (P) (and (P’)) for deterministic algorithms,
even those running in exponential time.

If we additionally assume that BPP = P, where BPP is the class of problems which can be
solved in probabilistic polynomial time, and P is the class of problems which can be solved in
deterministic polynomial time, then the same conclusion holds for randomized algorithms. This is
also a standard conjecture in complexity theory, as it is implied by the existence of certain strong
pseudo-random generators or if any problem in deterministic exponential time has exponential
size circuits (Impagliazzo and Wigderson, 1997). Therefore, any sub-exponential time algorithm
achieving a sufficiently small constant factor approximation to problem (P) (and (P’)) in general
would imply a major breakthrough in complexity theory.

The lower bound is proved by a reduction from the Maximum Edge Bi-clique problem (Ambühl
et al., 2011). The details are presented in Appendix G.

Theorem 10 (Computational Lower Bound) Assume the hardness of Random 4-SAT (See Conjec-
ture 32 in Appendix G). Then there exists an absolute constant ε0 > 0 for which any deterministic
algorithm achieving (1 + ε)OPT in the objective function value for problem (P) (and (P’)) with
ε ≤ ε0, requires 2Ω(n1+n2) time, where OPT is the optimum. If in addition, BPP = P, then the same
conclusion holds for randomized algorithms succeeding with probability at least 2/3.

It is clear that the bi-dual is typically solvable in polynomial time. Thus, the hardness result
implies that (a) under certain circumstances, strong duality does not hold, and (b) the original problem
is hard, while the bi-dual is easy.
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Figure 5: Exact recoverability of matrix completion with varying ranks and sample sizes. White
Region: nuclear norm minimization succeeds. White and Gray Regions: r∗ minimiza-
tion succeeds. Black Region: both algorithms fail. It shows that the success region of r∗

minimization slightly contains that of the nuclear minimization method.

8. Experiments

In this section, we will present our experimental results.

8.1. Experiments on Synthetic Data

We verify the exact recoverability of the r∗ minimization (15) and the nuclear norm minimization
(18) on the matrix completion problem by experiments on the synthetic data. The synthetic data are
generated as follows. We construct the ground-truth matrix X∗ = AB as a product of matrices A of
size n× r and B of size r×n, whose entries are i.i.d. N (0, 1). We then uniformly sample m entries
from X∗ as the observations. For each size of the problem (X∗ is 100× 100 or 200× 200), we test
with different rank ratios r/n and observation ratios m/n2. Each set of parameters is run 5 times,
and the algorithm is said to succeed if ‖X̃−X∗‖F /‖X∗‖F ≤ 10−3 for all five experiments, where
X̃ is the output of the algorithms. We set the parameter r in r∗ minimization (15) as the true rank,
and use the Augmented Lagrange Multiplier Method (Chen et al., 2009) for optimization, where the
proximal map of r∗ norm is computed as in (Grussler et al., 2016).

The two figures in Figure 5 plots the fraction of exact recoveries: the white region represents the
exact recovery by nuclear norm minimization, the white+gray region represents the exact recovery
by r∗ minimization (15), and the black region indicates the failure for both algorithms. It is clear that
both algorithms succeed for a wide range of parameters. The success region of r∗ minimization is
slightly larger and contains the success region of the nuclear norm minimization for both 100× 100
and 200× 200 matrix completion problems.

8.2. Experiments on Real Data

To verify the performance of the algorithms on real data, we conduct experiments on the Hopkins 155
data set. This data set consists of 155 tasks/matrices, each of which consists of multiple data points
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m = 0.05n1n2 m = 0.1n1n2

#Task Size Nuclear r∗ Nuclear r∗

Average over all 155 tasks – 0.8249 0.8114 0.5689 0.5409
#1 59× 459 0.7438 0.5948 0.5115 0.5117
#2 49× 482 0.8235 0.6564 0.6371 0.5919
#3 49× 153 0.7803 0.9174 0.5386 0.5386
#4 49× 379 0.8500 0.9583 0.7287 0.7691
#5 49× 432 0.8174 0.6353 0.4476 0.4477

Table 2: Relative error by matrix completion algorithms on the Hopkins 155 data set.

drawn from 2 or 3 moving objects. The trajectory of each object lies in a low-dimensional subspace,
so the matrix for each task is supposed to be approximately low rank. We uniformly sample m entries
from the matrix as our observations and run the matrix completion algorithms. The parameter r in
the r∗ minimization is set as the number of moving objects which is known to us in the data set.

Table 8.2 shows the the relative errors ‖X̂−X∗‖F /‖X∗‖F of the nuclear norm minimization
(18) and r∗ minimization (15). On average, r∗ minimization slightly outperforms the competitor,
while sometimes the nuclear norm minimization is better. Table 8.2 also shows the errors on the
first five tasks in the data set. It shows that when the number of observations is relatively large (10%
observations or higher), the performance of the two algorithms are competitive to each other. When
the number of observations is small (5% observed entries), there is a larger variance, but on average
r∗ minimization has an slight advantage.

9. Conclusions

This paper studied the strong duality of non-convex matrix factorization problems. It was shown
that under certain dual conditions, a wide class of non-convex matrix factorization problems and
their dual have the same optimum. This strong duality phenomenon is rarely discovered in the
previous work. Hardness results were provided to show that strong duality is impossible without the
randomness of sampling. The analytical framework may be of independent interest to non-convex
optimization more broadly.

The proposed framework was applied to two prototypical matrix factorization problems in
the machine learning community: matrix completion and robust PCA. This gave several efficient
algorithms with nearly optimal sample complexity bounds which match the best-known previous
results and also illustrated why the nuclear norm technique works from the new viewpoint of
non-convex optimization.
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A. Proof of Lemma 1

Lemma 1 (Restated). For any given matrix Ŷ, any local minimum of f(A,B) = 1
2‖Ŷ −AB‖2F is

globally optimal, given by svdr(Ŷ). The objective function f(A,B) around any saddle point has a
negative second-order directional curvature. Moreover, f(A,B) has no local maximum.
Proof We have that (A,B) is a critical point of f(A,B) if and only if ∇Af(A,B) = 0 and
∇Bf(A,B) = 0, or equivalently,

ABBT = ŶBT and ATAB = AT Ŷ. (22)

Note that for any fixed matrix A (respectively B), the function f(A,B) is convex in the coefficients
of B (respectively A).

To prove the desired lemma, we need the following claim.

Claim 3 If two matrices A and B define a critical point of f(A,B), then the global mapping
M = AB is of the form

M = PAŶ,

with A satisfying
AA†ŶŶT = AA†ŶŶTAA† = ŶŶTAA†. (23)

Proof If A and B define a critical point of f(A,B), then (22) holds and the general solution to (22)
satisfies

B = (ATA)†AT Ŷ + (I−A†A)L, (24)

for some matrix L. So M = AB = A(ATA)†AT Ŷ = AA†Ŷ = PAŶ by the property of the
Moore-Penrose pseudo-inverse A† = (ATA)†AT .

By (22), we also have

ABBTAT = ŶBTAT or equivalently MMT = ŶMT .

Plugging in the relation M = AA†Ŷ, (A) can be rewritten as

AA†ŶŶTAA† = ŶŶTAA†.

Note that the matrix AA†ŶŶTAA† is symmetric. Thus

AA†ŶŶT = AA†ŶŶTAA†,

as desired.

To prove Lemma 1, we also need the following claim.
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Claim 4 Denote by I = {i1, i2, ..., ir} any ordered r-index set (ordered by λij , j ∈ [r] from
the largest to the smallest) and λi, i ∈ [n1], the eigenvalues of ŶŶT ∈ Rn1×n1 with p distinct
values. Let UI = [ui1 ,ui2 , ...,uir ] denote the matrix formed by the orthonormal eigenvectors U =
[u1,u2, ...,un1 ] of ŶŶT ∈ Rn1×n1 associated with the ordered p eigenvalues, whose multiplicities
are m1,m2, ...,mp (m1 +m2 + ...+mp = n1). Then two matrices A and B define a critical point
of f(A,B) if and only if there exists an ordered r-index set I, an invertible matrix C, and an r × n
matrix L such that

A = (UD):IC and B = A†Ŷ + (I−A†A)L, (25)

where D is a p-block-diagonal matrix with each block equal to the orthogonal projector of dimension
mi. For such a critical point, we have

AB = PAŶ,

f(A,B) =
1

2

(
tr(ŶŶT )−

∑
i∈I

λi

)
=

1

2

∑
i 6∈I

λi. (26)

Proof Note that ŶŶT is a real symmetric covariance matrix. So it can always be represented
as UΛUT , where U ∈ Rn1×n1 is an orthonormal matrix consisting of eigenvectors of ŶŶT and
Λ ∈ Rn1×n1 is a diagonal matrix with non-increasing eigenvalues of ŶŶT .

If A and B satisfy (25) for some C, L, and I, then

ABBT = ŶBT and ATAB = AT Ŷ,

which is (22). So A and B define a critical point of f(A,B).
For the converse, notice that

PUTA = UTA(UTA)† = UTAA†U = UTPAU,

or equivalently, PA = UPUTAUT . Thus (23) yields

UPUTAUTUΛUT = UΛUTUPUTAUT ,

or equivalently, PUTAΛ = ΛPUTA. Notice that Λ ∈ Rn1×n1 is a diagonal matrix with p distinct
eigenvalues of ŶŶT . So PUTA is a block-diagonal matrix with p blocks, each of which is an
orthogonal projector of dimension mi, corresponding to the eigenvalues λi, i ∈ [p]. Therefore, there
exists an index set I such that PUTA = D:ID

T
:I , where D is a block-diagonal matrix. It follows that

PA = UPUTAUT = UD:ID
T
:IU

T = (UD):I(UD)T:I .

Since the column space of A coincides with the column space of (UD):I , A is of the form
A = (UD):IC, and B is given by (24). Thus AB = A(ATA)†AT Ŷ + A(I−A†A)L = PAŶ
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and

f(A,B) =
1

2
‖Ŷ −AB‖2F

=
1

2
‖Ŷ − PAŶ‖2F

=
1

2
‖PA⊥Ŷ‖2F

=
1

2

∑
i 6∈I

λi.

So the local minimizer of f(A,B) is given by (25) with I = Φ, which is globally optimal
according to (26), where Φ is the index set corresponding to the r largest eigenvalues of ŶŶT . We
then show that when I consists of other combinations of indices of eigenvalues, i.e., I 6= Φ, the
corresponding pair (A,B) given by (25) is a strict saddle point.

Claim 5 If I 6= Φ, then the pair (A,B) given by (25) is a strict saddle point.

Proof Let i ∈ Φ but i 6∈ I, and denote by UD = R. It is enough to slightly perturb the column
space of A towards the direction of an eigenvector of λi. More precisely, fix two indices i and j such
that i ∈ Φ, i 6∈ I, and j is the largest index in I. For any ε, let R̃:j = (1 + ε2)−1/2(R:j + εR:i).
Notice that i 6∈ I. Thus R̃T

:jR̃:j = I. Let Ã = R̃IC and B̃ = Ã†Y + (I − Ã†Ã)L. A direct
calculation shows that

f(Ã, B̃) = f(A,B)− ε2(λi − λj)/(2 + 2ε2).

Hence,

lim
ε→0

f(Ã, B̃)− f(A,B)

ε2
= −1

2
(λi − λj) < 0.

Note that all critical points of f(A,B) are in the form of (25), and if I 6= Φ, the pair (A,B) given
by (25) is a strict saddle point, while if I = Φ, then the pair (A,B) given by (25) is a local minimum.
We conclude that f(A,B) has no local maximum. The proof is completed.

B. Existence of Dual Certificate for Matrix Completion I

Let Ã ∈ Rn1×r and B̃ ∈ Rr×n2 such that ÃB̃ = X∗. Then we have the following lemma.

Lemma 11 Let Ω ∼ Uniform(m) be the support set uniformly distributed among all sets of cardi-
nality m. Suppose that m ≥ cκ2µn(1)r log n(1) log2κ n(1) for an absolute constant c and X∗ obeys
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µ-incoherence (5). Then there exists Λ̃ such that

(1) Λ̃ ∈ Ω,

(2) PT (−Λ̃) = ÃB̃,

(3) ‖PT ⊥Λ̃‖ < 2

3
σr(ÃB̃).

(27)

with probability at least 1− n−10
(1) .

The rest of the section is devoted to the proof of Lemma 11. We begin with the following lemma.

Lemma 12 If we can construct an Λ such that

(a) Λ ∈ Ω,

(b) ‖PT (−Λ)− ÃB̃‖F ≤
√

r

3n2
(1)

σr(ÃB̃),

(c) ‖PT ⊥Λ‖ < 1

3
σr(ÃB̃),

(28)

then we can construct an Λ̃ such that Eqn. (27) holds with probability at least 1− n−10
(1) .

Proof To prove the lemma, we first claim the following theorem.

Theorem 13 (Candès and Recht (2009), Theorem 4.1) Assume that Ω is sampled according to
the Bernoulli model with success probability p = Θ( m

n1n2
), and incoherence condition (5) holds.

Then there is an absolute constant CR such that for β > 1, we have

‖p−1PT PΩPT − PT ‖ ≤ CR

√
βµn(1)r log n(1)

m
, ε,

with probability at least 1− 3n−β provided that CR
√

βµn(1)r logn(1)

m < 1.

Suppose that Condition (28) holds. Let Y = Λ̃−Λ ∈ Ω be the perturbation matrix between Λ and Λ̃
such that PT (−Λ̃) = ÃB̃. Such a Y exists by setting Y = PΩPT (PT PΩPT )−1(PT (−Λ)− ÃB̃).
So ‖PTY‖F ≤

√
r

3n2
(1)

σr(ÃB̃). We now prove Condition (3) in Eqn. (27). Observe that

‖PT ⊥Λ̃‖ ≤ ‖PT ⊥Λ‖+ ‖PT ⊥Y‖

≤ 1

3
σr(ÃB̃) + ‖PT ⊥Y‖.

(29)

So we only need to show ‖PT ⊥Y‖ ≤ 1
3σr(ÃB̃).

Before proceeding, we begin by introducing a normalized version QΩ : Rn1×n2 → Rn1×n2 of
PΩ:

QΩ = p−1PΩ − I.
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With this, we have
PT PΩPT = pPT (I +QΩ)PT .

Note that for any operator P : T → T , we have

P−1 =
∑
k≥0

(PT − P)k whenever ‖PT − P‖ < 1.

So according to Theorem 13, the operator p(PT PΩPT )−1 can be represented as a convergent
Neumann series

p(PT PΩPT )−1 =
∑
k≥0

(−1)k(PTQΩPT )k,

because ‖PTQΩPT ‖ ≤ ε < 1
2 once m ≥ Cµn(1)r log n(1) for a sufficiently large absolute constant

C. We also note that
p(PT ⊥QΩPT ) = PT ⊥PΩPT ,

because PT ⊥PT = 0. Thus

‖PT ⊥Y‖ = ‖PT ⊥PΩPT (PT PΩPT )−1(PT (−Λ)− ÃB̃))‖

= ‖PT ⊥QΩPT p(PT PΩPT )−1((PT (−Λ)− ÃB̃))‖

= ‖
∑
k≥0

(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)− ÃB̃))‖

≤
∑
k≥0

‖(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)− ÃB̃))‖F

≤ ‖QΩ‖
∑
k≥0

‖PTQΩPT ‖k‖PT (−Λ)− ÃB̃))‖F

≤ 4

p
‖PT (−Λ)− ÃB̃)‖F

≤ Θ
(n1n2

m

)√ r

3n2
(1)

σr(ÃB̃)

≤ 1

3
σr(ÃB̃)

with high probability. The proof is completed.

It thus suffices to construct a dual certificate Λ such that all conditions in (28) hold. To this end,
partition Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωb into b partitions of size q. By assumption, we may choose

q ≥ 128

3
Cβκ2µrn(1) log n(1) and b ≥ 1

2
log2κ

(
242n2

(1)κ
2
)

for a sufficiently large constant C. Let Ωj ∼ Ber(q) denote the set of indices corresponding to the
j-th partitions. Define W0 = ÃB̃ and set Λk = n1n2

q

∑k
j=1 PΩj (Wj−1), Wk = ÃB̃− PT (Λk)

for k = 1, 2, ..., b. Then by Theorem 13,

‖Wk‖F =

∥∥∥∥Wk−1 −
n1n2

q
PT PΩk(Wk−1)

∥∥∥∥
F

=

∥∥∥∥(PT − n1n2

q
PT PΩkPT

)
(Wk−1)

∥∥∥∥
F

≤ 1

2κ
‖Wk−1‖F .

27



BALCAN, LIANG, SONG, WOODRUFF, AND ZHANG

So it follows that ‖ÃB̃ − PT (Λb)‖F = ‖Wb‖F ≤ (2κ)−b‖W0‖F ≤ (2κ)−b
√
rσ1(ÃB̃) ≤√

r
242n2

(1)

σr(ÃB̃).

The following lemma together implies the strong duality of (15) straightforwardly.

Lemma 14 Under the assumptions of Theorem 7, the dual certification Λb obeys the dual condition
(28) with probability at least 1− n−10

(1) .

Proof It is well known that for matrix completion, the Uniform model Ω ∼ Uniform(m) is equivalent
to the Bernoulli model Ω ∼ Ber(p), where each element in [n1]× [n2] is included with probability
p = Θ(m/(n1n2)) independently; see Section I for a brief justification. By the equivalence, we can
suppose Ω ∼ Ber(p).

To prove Lemma 14, as a preliminary, we need the following lemmas.

Lemma 15 (Chen (2015), Lemma 2) Suppose Z is a fixed matrix. Suppose Ω ∼ Ber(p). Then
with high probability,

‖(I − p−1PΩ)Z‖ ≤ C ′0

 log n(1)

p
‖Z‖∞ +

√
log n(1)

p
‖Z‖∞,2

 ,

where C ′0 > 0 is an absolute constant and

‖Z‖∞,2 = max

max
i

√∑
b

Z2
ib,max

j

√∑
a

Z2
aj

 .

Lemma 16 (Candès et al. (2011), Lemma 3.1) Suppose Ω ∼ Ber(p) and Z is a fixed matrix. Then
with high probability,

‖Z− p−1PT PΩZ‖∞ ≤ ε‖Z‖∞,

provided that p ≥ C0ε
−2(µr log n(1))/n(2) for some absolute constant C0 > 0.

Lemma 17 (Chen (2015), Lemma 3) Suppose that Z is a fixed matrix and Ω ∼ Ber(p). If p ≥
c0µr log n(1)/n(2) for some c0 sufficiently large, then with high probability,

‖(p−1PT PΩ − PT )Z‖∞,2 ≤
1

2

√
n(1)

µr
‖Z‖∞ +

1

2
‖Z‖∞,2.

Observe that by Lemma 16,

‖Wj‖∞ ≤
(

1

2

)j
‖ÃB̃‖∞,

and by Lemma 17,

‖Wj‖∞,2 ≤
1

2

√
n(1)

µr
‖Wj−1‖∞ +

1

2
‖Wj−1‖∞,2.
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So

‖Wj‖∞,2

≤
(

1

2

)j√n(1)

µr
‖ÃB̃‖∞ +

1

2
‖Wj−1‖∞,2

≤ j
(

1

2

)j√n(1)

µr
‖ÃB̃‖∞ +

(
1

2

)j
‖ÃB̃‖∞,2.

Therefore,

‖PT ⊥Λb‖

≤
b∑

j=1

‖n1n2

q
PT ⊥PΩjWj−1‖

=
b∑

j=1

‖PT ⊥(
n1n2

q
PΩjWj−1 −Wj−1)‖

≤
b∑

j=1

‖(n1n2

q
PΩj − I)(Wj−1)‖.

Let p denote Θ
(

q
n1n2

)
. By Lemma 15,

‖PT ⊥Λb‖

≤ C ′0
log n(1)

p

b∑
j=1

‖Wj−1‖∞ + C ′0

√
log n(1)

p

b∑
j=1

‖Wj−1‖∞,2

≤ C ′0
log n(1)

p

b∑
j=1

(
1

2

)j
‖ÃB̃‖∞

+ C ′0

√
log n(1)

p

b∑
j=1

[
j

(
1

2

)j√n(1)

µr
‖ÃB̃‖∞ +

(
1

2

)j
‖ÃB̃‖∞,2

]

≤ C ′0
log n(1)

p
‖ÃB̃‖∞ + 2C ′0

√
log n(1)

p

√
n(1)

µr
‖ÃB̃‖∞ + C ′0

√
log n(1)

p
‖ÃB̃‖∞,2.

Setting ÃB̃ = X∗, we note the facts that (we assume WLOG n2 ≥ n1)

‖X∗‖∞,2 = max
i
‖eTi UΣVT ‖2 ≤ max

i
‖eTi U‖σ1(X∗) ≤

√
µr

n1
σ1(X∗) ≤

√
µr

n1
κσr(X

∗),

and that

‖X∗‖∞ = max
ij
〈X∗, eieTj 〉 = max

ij
〈UΣVT , eie

T
j 〉 = max

ij
〈eTi UΣ, eTj V〉

≤ max
ij
‖eTi UΣVT ‖2‖eTj V‖2 ≤ max

j
‖X∗‖∞,2‖eTj V‖2 ≤

µrκ
√
n1n2

σr(X
∗).
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Substituting p = Θ
(
κ2µrn(1) log(n(1)) log2κ(n(1))

n1n2

)
, we obtain ‖PT ⊥Λb‖ < 1

3σr(X
∗). The proof is

completed.

C. Subgradient of the r∗ Function

Lemma 18 Let UΣVT be the skinny SVD of matrix X∗ of rank r. The subdifferential of ‖ · ‖r∗
evaluated at X∗ is given by

∂‖X∗‖r∗ = {X∗ + W : UTW = 0,WV = 0, ‖W‖ ≤ σr(X∗)}. (30)

Proof Note that for any fixed function f(·), the set of all optimal solutions of the problem

f∗(X∗) = max
Y
〈X∗,Y〉 − f(Y) (31)

form the subdifferential of the conjugate function f∗(·) evaluated at X∗. Set f(·) to be 1
2‖ · ‖

2
r and

notice that the function 1
2‖ · ‖

2
r is unitarily invariant. By Von Neumann’s trace inequality, the optimal

solutions to problem (31) are given by

[U,U⊥]Diag([σ1(Y), ..., σr(Y), σr+1(Y), ..., σn(2)
(Y)])[V,V⊥]T ,

where {σi(Y)}n(2)

i=r+1 can be any value no larger than σr(Y) and {σi(Y)}ri=1 are given by the
optimal solution to the problem

max
{σi(Y)}ri=1

r∑
i=1

σi(X
∗)σi(Y)− 1

2

r∑
i=1

σ2
i (Y).

The solution is unique such that σi(Y) = σi(X
∗), i = 1, 2, ..., r. The proof is complete.

D. Proof of Theorem 7

We will prove Theorem 7 in this section.

D.1. Exact Recoverability of Non-Convex Formulation

Theorem 19 (Uniqueness of Solution) Let Ω ∼ Uniform(m) be the support set uniformly dis-
tributed among all sets of cardinality m. Suppose that m ≥ cκ2µn(1)r log n(1) log2κ n(1) for an
absolute constant c and X∗ obeys µ-incoherence (5). Then X∗ is the unique solution of non-convex
optimization

min
A,B

1

2
‖AB‖2F , s.t. PΩ(AB) = PΩ(X∗),

with probability at least 1− n−10
(1) .
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Proof We note that a recovery result under the Bernoulli model automatically implies a corresponding
result for the uniform model Candès et al. (2011); see Section I for the details. So in the following,
we assume the Bernoulli model.

Consider the feasibility of the matrix completion problem:

Find a matrix X ∈ Rn1×n2 such that PΩ(X) = PΩ(X∗), ‖X‖F ≤ ‖X∗‖F , rank(X) ≤ r.
(32)

Note that if X∗ is the unique solution of (32), then X∗ is the unique solution of (14). We now show
the former. Our proof first identifies a feasibility condition for problem (32), and then shows that
X∗ is the only matrix that obeys this feasibility condition when the sample size is large enough. We
denote by

DS(X∗) = {X−X∗ ∈ Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤ ‖X∗‖F },

and
T = {UXT + YVT , X ∈ Rn2×r, Y ∈ Rn1×r},

where UΣVT is the skinny SVD of X∗.
We have the following proposition for the feasibility of problem (32).

Proposition 20 (Feasibility Condition) X∗ is the unique feasible solution to problem (32) ifDS(X∗)∩
Ω⊥ = {0}.

Proof Notice that problem (32) is equivalent to another feasibility problem

Find a matrix D ∈ Rn1×n2 such that rank(X∗ + D) ≤ r, ‖X∗ + D‖F ≤ ‖X∗‖F , D ∈ Ω⊥.

Suppose that DS(X∗) ∩ Ω⊥ = {0}. Since rank(X∗ + D) ≤ r and ‖X∗ + D‖F ≤ ‖X∗‖F are
equivalent to D ∈ DS(X∗), and note that D ∈ Ω⊥, we have D = 0, which means X∗ is the unique
feasible solution to problem (32).

The remainder of the proof is to show DS(X∗) ∩ Ω⊥ = {0}. To proceed, we note that

DS(X∗) =

{
X−X∗ ∈ Rn1×n2 : rank(X) ≤ r, 1

2
‖X‖2F ≤

1

2
‖X∗‖2F

}
⊆ {X−X∗ ∈ Rn1×n2 : ‖X‖r∗ ≤ ‖X∗‖r∗}

(
since

1

2
‖Y‖2F = ‖Y‖r∗ for any rank-r matrix

)
, DS∗(X∗).

We now show that
DS∗(X∗) ∩ Ω⊥ = {0}, (33)

when m ≥ cκ2µrn(1) log2κ(n(1)) log(n(1)), which will prove DS(X∗) ∩ Ω⊥ = {0} as desired.
By Lemma 11, there exists a Λ such that

(1) Λ ∈ Ω,

(2) PT (−Λ) = X∗,

(3) ‖PT ⊥Λ‖ < 2

3
σr(X

∗).
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Consider any D ∈ Ω⊥ such that D 6= 0. By Lemma 18, for any W ∈ T ⊥ and ‖W‖ ≤ σr(X∗),

‖X∗ + D‖r∗ ≥ ‖X∗‖r∗ + 〈X∗ + W,D〉.

Since 〈W,D〉 = 〈PT ⊥W,D〉 = 〈W,PT ⊥D〉, we can choose W such that

〈W,D〉 = σr(X
∗)‖PT ⊥D‖∗.

Then

‖X∗ + D‖r∗ ≥ ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗ + Λ,D〉 (since Λ ∈ Ω and D ∈ Ω⊥)

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗ + PTΛ,D〉+ 〈PT ⊥Λ,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥Λ,D〉 (by condition (2))

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥PT ⊥Λ,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥Λ,PT ⊥D〉

≥ ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ − ‖PT ⊥Λ‖‖PT ⊥D‖∗ (by Hölder’s inequality)

≥ ‖X∗‖r∗ +
1

3
σr(X

∗)‖PT ⊥D‖∗ (by condition (3)).

So if T ∩ Ω⊥ = {0}, since D ∈ Ω⊥ and D 6= 0, we have D 6∈ T . Therefore,

‖X∗ + D‖r∗ > ‖X∗‖r∗

which then leads to DS∗(X∗) ∩ Ω⊥ = {0}.
The rest of proof is to show that T ∩ Ω⊥ = {0}. We have the following lemma.

Lemma 21 Assume that Ω ∼ Ber(p) and the incoherence condition (5) holds. Then with probability
at least 1− n−10

(1) , we have ‖PΩ⊥PT ‖ ≤
√

1− p+ εp, provided that p ≥ C0ε
−2(µr log n(1))/n(2),

where C0 is an absolute constant.

Proof If Ω ∼ Ber(p), we have, by Theorem 13, that with high probability

‖PT − p−1PT PΩPT ‖ ≤ ε,

provided that p ≥ C0ε
−2 µr logn(1)

n(2)
. Note, however, that since I = PΩ + PΩ⊥ ,

PT − p−1PT PΩPT = p−1(PT PΩ⊥PT − (1− p)PT )

and, therefore, by the triangle inequality

‖PT PΩ⊥PT ‖ ≤ εp+ (1− p).

Since ‖PΩ⊥PT ‖2 ≤ ‖PT PΩ⊥PT ‖, the proof is completed.

We note that ‖PΩ⊥PT ‖ < 1 implies Ω⊥ ∩ T = {0}. The proof of latter part of the theorem is
completed.
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D.2. Strong Duality

We have shown in Theorem 19 that the problem (Ã, B̃) = argminA,B
1
2‖AB‖2F , s.t.PΩ(AB) =

PΩ(X∗), exactly recovers X∗, i.e., ÃB̃ = X∗, with nearly optimal sample complexity. So if strong
duality holds, this non-convex optimization problem can be equivalently converted to the convex
program (15). Then Theorem 7 is straightforward from strong duality.

It now suffices to apply our unified framework in Section 4 to prove the strong duality. Let

H(X) = I{M∈Rn1×n2 : PΩM=PΩX∗}(X)

in Problem (P), and let (Ã, B̃) be a global solution to the problem. Then by Theorem 19, ÃB̃ = X∗.
For Problem (P) with this special H(X), we have

Ψ = ∂H(ÃB̃) = {G ∈ Rn1×n2 : 〈G, ÃB̃〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗}
= {G ∈ Rn1×n2 : 〈G,X∗〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗} = Ω,

where the third equality holds since ÃB̃ = X∗. Combining with Lemma 11 shows that the dual
condition in Theorem 3 holds with high probability, which leads to strong duality and thus proving
Theorem 7.

E. Proof of Theorem 8

Given support set Ω ⊂ [n1]×[n2] and rank-r matrix X∗ ∈ Rn1×n2 , define the following optimization
problem

min
A∈Rn1×r,B∈Rr×n2

‖AB‖∗, s.t. PΩ(AB) = PΩ(X∗). (34)

We have the following lemma.

Lemma 22 For any fixed support set Ω and rank-r matrix X∗ ∈ Rn1×n2 , problem (17) and the
non-convex problem (34) have the same solution, i.e.,

ÃB̃ = ĀB̄,

where Ã, B̃ is the optimal solution of (17) and ĀB̄ is the optimal solution of (34).

Proof First, introduce another optimization problem as a connection between the two in the lemma.
For any matrix Z ∈ Rn1×n2 of rank at most r, we consider the following optimization problem

min
A∈Rn1×r,B∈Rr×n2

1

2
‖A‖2F +

1

2
‖B‖2F , (35)

s.t. AB = Z,

PΩ(AB) = PΩ(X∗).

We want to show that the optimal cost of objective function (35) is ‖Z‖∗ and the minimum is achieved
when ‖A‖F = ‖B‖F . Denote by UΣV> the skinny SVD of matrix Z = AB.
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On one hand, we have

‖Z‖∗ = tr(Σ)

= tr(U>UΣV>V) ( by U>U = I,V>V = I ∈ Rr×r)
= tr(U>ABV) ( by UΣV> = Z = AB)

≤
r∑
i=1

σi(U
>A) · σi(BV) ( by trace inequality)

≤ 1

2
‖U>A‖2F +

1

2
‖BV‖2F (∀a, b : ab ≤ 1

2
(a2 + b2))

=
1

2
‖A‖2F +

1

2
‖B‖2F .

Therefore, ‖Z‖∗ ≤ minA,B, s.t. AB=Z,PΩ(AB)=PΩ(X∗)
1
2‖A‖

2
F + 1

2‖B‖
2
F for any matrix Z ∈ Rn1×n2

satisfies that rank(Z) ≤ r and PΩ(Z) = PΩ(X∗).
On the other hand, taking A = UΣ1/2 and B = Σ1/2V>, we can verify these properties

AB = UΣ1/2Σ1/2V> = UΣV> = Z,

PΩ(AB) = PΩ(X∗),

‖A‖F = ‖Σ1/2‖F = ‖B‖F ,
1

2
‖A‖2F +

1

2
‖B‖2F = ‖Σ1/2‖2F = ‖Z‖∗.

Thus (35) holds and the minimum is achieved when ‖A‖F = ‖B‖F .
We now prove Lemma 22 by contradiction. Assume for contradiction that (A∗,B∗) is a solution

to (34) such that ‖A∗‖F = ‖B∗‖F (for any solution (Ā, B̄) to problem (34), we can always find the
pair (A∗,B∗) such that A∗B∗ = ĀB̄ and ‖A∗‖F = ‖B∗‖F ), while it is not a solution to (17). So
there exists (A′,B′) such that PΩ(A′B′) = PΩ(X∗) and

‖A′B′‖∗ =
1

2
‖A′‖2F +

1

2
‖B′‖2F (by Problem 35)

<
1

2
‖A∗‖2F +

1

2
‖B∗‖2F (by (A′,B′) is not a solution to Problem 17)

= ‖A∗B∗‖∗, (by Problem 35)

which is contradictory with the optimality of (A∗,B∗) to problem (34).
Similarly, assume for contradiction that (A∗,B∗) is a solution to (17), while it is not a solution

to (34). So there exists (A′,B′) such that PΩ(A′B′) = PΩ(X∗) and

1

2
‖A′‖2F +

1

2
‖B′‖2F = ‖A′B′‖∗

< ‖A∗B∗‖∗

=
1

2
‖A∗‖2F +

1

2
‖B∗‖2F ,

which is contradictory with the optimality of (A∗,B∗) to problem (17). The proof is completed.

Before proceeding, we provide the definition of a matrix space.
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Definition 23 Given matrices Ā ∈ Rn1×r and B̄ ∈ Rr×n2 , we denote by T , {ĀX> + YB̄ :
X ∈ Rn2×r, Y ∈ Rn1×r} a matrix space. For any matrix M ∈ Rn1×n2 , we have

PTM = ĀĀ†M + MB̄B̄† − ĀĀ†MB̄B̄†,

and

PT ⊥M = (I− ĀĀ†)M(I− B̄B̄†).

Let UΣV> be the skinny SVD of matrix ĀB̄. Denote by U = {UX> : X ∈ Rn2×r} and
V = {YV> : Y ∈ Rn1×r}. Then the linear space T can be equivalently represented as T = U + V .
Therefore, T ⊥ = (U + V)⊥ = U⊥ ∩ V⊥.

The following lemma is a restated result of Theorem 4 for the matrix completion problem. For
completeness, we include its proof here.

Lemma 24 (Dual Certificate) Let (Ā, B̄) be a solution of problem (34). Let UΣV> denote the
skinny SVD of ĀB̄. If there exists a dual certificate Λ̃ such that

(a) Λ̃ ∈ Ω,

(b) PT (−Λ̃) = UV>,

(c) ‖PT ⊥(−Λ̃)‖ < 1

2
,

(36)

then strong duality holds, i.e., problem (18) and problem (17) have the same solution.

Proof For any convex set C, we define indicator function IC : Rn1×n2 → R such that

IC(X) =

{
0, if X ∈ C;
+∞, otherwise.

We set C to be {X : PΩ(X) = PΩ(X∗),X ∈ Rn1×n2}, and define function H : Rn1×n2 → R such
that for any X, H(X) = IC(X).

Then problem (34) can be equivalently represented by

(Ā, B̄) = argmin
A∈Rn1×r,B∈Rr×n2

F (A,B) = ‖AB‖∗ +H(AB).

Define L(A,B,Λ) to be ‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ). Then we have

F (A,B) = ‖AB‖∗ +H(AB)

= ‖AB‖∗ +H∗∗(AB)

= ‖AB‖∗ + max
Λ∈Rn1×n2

〈Λ,AB〉 −H∗(Λ)

= max
Λ∈Rn1×n2

‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ)

= max
Λ∈Rn1×n2

L(A,B,Λ),
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where the second equality holds because H(·) is closed and convex with respect to the argument AB
and the third equality holds by the definition of the conjugate function.

We first show that (Ā, B̄, Λ̃) is a primal-dual saddle point of the Lagrangian L(A,B,Λ),
namely, Λ̃ = argmaxΛ L(Ā, B̄,Λ) and (Ā, B̄) = argminA,B L(A,B, Λ̃). Using Claim 6, we
have Λ̃ = argmaxΛ L(Ā, B̄,Λ). Using Claim 7, we have (Ā, B̄) = arg minA,B L(A,B, Λ̃).
Therefore, (Ā, B̄, Λ̃) is a primal-dual saddle point of the Lagrangian L(A,B,Λ).

We now prove the strong duality. By the fact that F (A,B) = maxΛ L(A,B,Λ) and that
Λ̃ = argmaxΛ L(Ā, B̄,Λ), we have

F (Ā, B̄) = L(Ā, B̄, Λ̃) ≤ L(A,B, Λ̃), ∀A,B.

where the inequality holds because (Ā, B̄, Λ̃) is a primal-dual saddle point of L(·, ·, ·). So on the
one hand, we have

min
A,B

max
Λ

L(A,B,Λ) = F (Ā, B̄) ≤ min
A,B

L(A,B, Λ̃) ≤ max
Λ

min
A,B

L(A,B,Λ).

On the other hand, by weak duality,

min
A,B

max
Λ

L(A,B,Λ) ≥ max
Λ

min
A,B

L(A,B,Λ).

Therefore, minA,B maxΛ L(A,B,Λ) = maxΛ minA,B L(A,B,Λ), i.e., strong duality holds.

Claim 6 Λ̃ = argmaxΛ L(Ā, B̄,Λ).

Proof We only need to show 0 ∈ ∂ΛL(Ā, B̄, Λ̃) = ĀB̄ − ∂ΛH
∗(Λ̃), because L(Ā, B̄,Λ)

is a concave function of Λ for the fixed Ā and B̄. Note that ĀB̄ ∈ ∂ΛH
∗(Λ̃) is implied by

Λ̃ ∈ ∂H(ĀB̄) by the convexity of function H(·), and

∂H(ĀB̄) = {G ∈ Rn1×n2 : 〈G, ĀB̄〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗}
= {G ∈ Rn1×n2 : 〈G, ĀB̄〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩ(ĀB̄)}
= Ω.

Therefore, condition (a) immediately implies Λ̃ = argmaxΛ L(Ā, B̄,Λ).

Claim 7 (Ā, B̄) = argminA,B L(A,B, Λ̃).

Proof To see (Ā, B̄) = argminA,B L(A,B, Λ̃) for the fixed Λ̃ with conditions (b) and (c), we
have

argmin
A∈Rn1×r,B∈Rr×n2

L(A,B, Λ̃) = argmin
A,B

‖AB‖∗ − 〈−Λ̃,AB〉 −H∗(Λ̃)

= argmin
A,B

‖AB‖∗ − 〈−Λ̃,AB〉

= argmin
A,B

r∑
i=1

σi(AB)− 〈−Λ̃,AB〉
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where the first step follows by definition of L(A,B, Λ̃), the second step follows by Λ is fixed, the
third step follows by definition of nuclear norm.

Using conditions (b) and (c) in Eqn. (36), we can rewrite −Λ̃ as follows,

−Λ̃ = UV>︸ ︷︷ ︸
in space T with eigenvalues 1

+ PT ⊥(−Λ̃)︸ ︷︷ ︸
in space T ⊥ with eigenvalues <1/2

,

which implies ∀i ∈ [r], σi(−Λ̃) = 1.
We also need the following von Neumann’s trace inequality.

Lemma 25 (von Neumann’s trace inequality, Lin and Zhang (2017)) For any matrices A,B ∈
Rm×n (m ≤ n), tr(A>B) ≤

∑m
i=1 σi(A)σi(B). The equality holds if and only if there exists col-

umn orthonormal matrices U and V such that A = UDiag(σ(A))V> and B = UDiag(σ(B))V>

are the SVDs of A and B, simultaneously.

Using von Neumann’s trace inequality, we can show

min
A,B

r∑
i=1

σi(AB)− 〈−Λ̃,AB〉 ≥ min
A,B

r∑
i=1

σi(AB)−
r∑
i=1

σi(−Λ̃)σi(AB)

= min
A,B

r∑
i=1

σi(AB)−
r∑
i=1

σi(AB) (by σi(−Λ) = 1,∀i ∈ [r])

= 0,

Therefore, on one hand, we already have

min
A∈Rn1×r,B∈Rr×n2

L(A,B, Λ̃) ≥ −H∗(Λ̃).

On the other hand, according to definition of A,B and −Λ̃, we can show

L(Ā, B̄, Λ̃) = ‖ĀB̄‖∗ − 〈−Λ̃, ĀB̄〉 −H∗(Λ̃)

= −H∗(Λ̃).

Thus, we can conclude (Ā, B̄) = argminA,B L(A,B, Λ̃).

To show the dual condition in Lemma 24, intuitively, we need to show that the angle θ between
subspace T and Ψ is small (see Figure 4) for a specific function H(·).

The proof of the dual conditions is similar to that in Appendix D, with some slight differences.
We include the proof for completeness.

Lemma 26 If we can construct an Λ such that

(a) Λ ∈ Ω,

(b) ‖PT (−Λ)−UV>‖F ≤
√

r

3n2
(1)

,

(c) ‖PT ⊥Λ‖ < 1

3
,

(37)

then we can construct an Λ̃ such that (36) holds with probability at least 1− n−10
(1) .
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Proof Suppose that Condition (37) holds. Let Y = Λ̃−Λ ∈ Ω be the perturbation matrix between Λ
and Λ̃ such thatPT (−Λ̃) = ÃB̃. Such a Y exists by setting Y = PΩPT (PT PΩPT )−1(PT (−Λ)−
UV>). So ‖PTY‖F ≤

√
r

3n2
(1)

. We now prove Condition (3) in (36). Observe that

‖PT ⊥Λ̃‖ ≤ ‖PT ⊥Λ‖+ ‖PT ⊥Y‖

≤ 1

3
σr(UV>) + ‖PT ⊥Y‖.

(38)

So we only need to show ‖PT ⊥Y‖ ≤ 1
3 .

Before proceeding, we begin by introducing QΩ : Rn1×n2 → Rn1×n2 , which is a normalized
version of PΩ, defined as

QΩ = p−1PΩ − I.

With this, we have
PT PΩPT = pPT (I +QΩ)PT .

Note that for any operator P : T → T , we have

P−1 =
∑
k≥0

(PT − P)k whenever ‖PT − P‖ < 1.

So according to Theorem 13, the operator p(PT PΩPT )−1 can be represented as a convergent
Neumann series

p(PT PΩPT )−1 =
∑
k≥0

(−1)k(PTQΩPT )k,

because ‖PTQΩPT ‖ ≤ ε < 1
2 once m ≥ Cµn(1)r log n(1) for a sufficiently large absolute constant

C. We also note that
p(PT ⊥QΩPT ) = PT ⊥PΩPT ,

because PT ⊥PT = 0. Thus

‖PT ⊥Y‖ = ‖PT ⊥PΩPT (PT PΩPT )−1(PT (−Λ)−UV>))‖
= ‖PT ⊥QΩPT p(PT PΩPT )−1((PT (−Λ)−UV>))‖

= ‖
∑
k≥0

(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)−UV>))‖

≤
∑
k≥0

‖(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)−UV>))‖F

≤ ‖QΩ‖
∑
k≥0

‖PTQΩPT ‖k‖PT (−Λ)−UV>))‖F

≤ 4

p
‖PT (−Λ)−UV>)‖F

≤ Θ
(n1n2

m

)√ r

3n2
(1)

≤ 1

3
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with high probability. The proof is completed.

It thus suffices to construct a dual certificate Λ such that all conditions in (37) hold. The proof
follows from (Recht, 2011). Partition Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωb into b partitions of size q. By
assumption, we may choose

q ≥ 128

3
Cβµrn(1) log n(1) and b ≥ 1

2
log
(

242n2
(1)

)
for a sufficiently large constant C. Let Ωj ∼ Ber(q) denote the set of indices corresponding to the j-
th partitions. Define W0 = UV> and set Λk = n1n2

q

∑k
j=1 PΩj (Wj−1), Wk = UV> − PT (Λk)

for k = 1, 2, ..., b. Then by Theorem 13,

‖Wk‖F =

∥∥∥∥Wk−1 −
n1n2

q
PT PΩk(Wk−1)

∥∥∥∥
F

=

∥∥∥∥(PT − n1n2

q
PT PΩkPT

)
(Wk−1)

∥∥∥∥
F

≤ 1

2κ
‖Wk−1‖F .

So it follows that ‖Wb‖F ≤ (2κ)−b‖W0‖F ≤ (2κ)−b
√
r ≤

√
r

242n2
(1)

.

The following lemma together implies the strong duality of (18) straightforwardly.

Lemma 27 Under the assumptions of Theorem 8, the dual certification Wb obeys the dual condition
(37) with probability at least 1− n−10

(1) .

Proof It is well known that for matrix completion, the Uniform model Ω ∼ Uniform(m) is equivalent
to the Bernoulli model Ω ∼ Ber(p), where each element in [n1]× [n2] is included with probability
p = Θ(m/(n1n2)) independently; see Appendix I for a brief justification. By the equivalence, we
can suppose Ω ∼ Ber(p).

Observe that by Lemma 16,

‖Wj‖∞ ≤
(

1

2

)j
‖UV>‖∞,

and by Lemma 17,

‖Wj‖∞,2 ≤
1

2

√
n(1)

µr
‖Wj−1‖∞ +

1

2
‖Wj−1‖∞,2.

Combining the two leads to

‖Wj‖∞,2

≤
(

1

2

)j√n(1)

µr
‖UV>‖∞ +

1

2
‖Wj−1‖∞,2

≤ j
(

1

2

)j√n(1)

µr
‖UV>‖∞ +

(
1

2

)j
‖UV>‖∞,2.
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Therefore,

‖PT ⊥Λb‖

≤
b∑

j=1

‖n1n2

q
PT ⊥PΩjWj−1‖

=
b∑

j=1

‖PT ⊥(
n1n2

q
PΩjWj−1 −Wj−1)‖

≤
b∑

j=1

‖(n1n2

q
PΩj − I)(Wj−1)‖.

Let p denote Θ
(

q
n1n2

)
. By Lemma 15,

‖PT ⊥Λb‖

≤ C ′0
log n(1)

p

b∑
j=1

‖Wj−1‖∞ + C ′0

√
log n(1)

p

b∑
j=1

‖Wj−1‖∞,2

≤ C ′0
log n(1)

p

b∑
j=1

(
1

2

)j
‖UV>‖∞

+ C ′0

√
log n(1)

p

b∑
j=1

[
j

(
1

2

)j√n(1)

µr
‖UV>‖∞ +

(
1

2

)j
‖UV>‖∞,2

]

≤ C ′0
log n(1)

p
‖UV>‖∞ + 2C ′0

√
log n(1)

p

√
n(1)

µr
‖UV>‖∞ + C ′0

√
log n(1)

p
‖UV>‖∞,2.

We note the facts that (assume without loss of generality that n2 ≥ n1)

‖UV>‖∞,2 = max
i
‖eTi UVT ‖2 = max

i
‖eTi U‖2 ≤

√
µr

n1
,

and that

‖UV>‖∞ = max
ij
〈UV>, eie

T
j 〉 = max

ij
〈eTi U, eTj V〉

≤ max
ij
‖eTi U‖2‖eTj V‖2 ≤

µr
√
n1n2

.

Substituting p = Θ
(
µrn(1) log2(n(1))

n1n2

)
, we obtain ‖PT ⊥Λ̃‖ < 1

3 . The proof is completed.

We note that the bi-dual problem of problem (34) is problem (18); see Appendix H.2 for the
details. By Lemmas 24, 26 and 27, we have ÃB̃ = X̃. We also notice from Theorem 1 of Chen
(2015) that X̃ = X∗. The proof of Theorem 8 is then completed.
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F. Proof of Theorem 9

Theorem 9 (Robust PCA. Restated). Suppose X∗ is n1 × n2, obeys incoherence (5) and (20).
Assume that the support set Ω of S∗ is uniformly distributed among all sets of cardinality m. Then
with probability at least 1− cn−10

(1) , the output of the optimization problem

(X̃, S̃) = argmin
X,S

‖X‖r∗ + λ‖S‖1, s.t. D = X + S, (39)

with λ = σr(X∗)√
n(1)

is exact, i.e., X̃ = X∗ and S̃ = S∗, provided that rank(X∗) ≤ ρrn(2)

µ log2 n(1)
and m ≤

ρsn1n2, where c, ρr, and ρs are all positive absolute constants, and function ‖ · ‖r∗ is given by (21).

F.1. Dual Certificates

Lemma 28 Assume that ‖PΩPT ‖ ≤ 1/2 and λ < σr(X
∗). Then (X∗,S∗) is the unique solution to

problem (9) if there exists a pair (W,F) for which

X∗ + W = λ(sign(S∗) + F + PΩK),

where W ∈ T ⊥, ‖W‖ ≤ σr(X∗)
2 , F ∈ Ω⊥, ‖F‖∞ ≤ 1

2 , and ‖PΩK‖F ≤ 1
4 .

Proof Let (X∗ + H,S∗ −H) be any optimal solution to problem (39). By the definition of the
subgradient, the inequality follows

‖X∗ + H‖r∗ + λ‖S∗ −H‖1
≥ ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ + W∗,H〉 − λ〈sign(S∗) + F∗,H〉
= ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ − λsign(S∗),H〉+ 〈W∗,H〉 − λ〈F∗,H〉
= ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ − λsign(S∗),H〉+ σr(X

∗)‖PT ⊥H‖∗ + λ‖PΩ⊥H‖1
= ‖X∗‖r∗ + λ‖S∗‖1 + 〈λF + λPΩK−W,H〉+ σr(X

∗)‖PT ⊥H‖∗ + λ‖PΩ⊥H‖1

= ‖X∗‖r∗ + λ‖S∗‖1 +
σr(X

∗)

2
‖PT ⊥H‖∗ +

λ

2
‖PΩ⊥H‖1 −

λ

4
‖PΩH‖F .

We note that

‖PΩH‖F ≤ ‖PΩPTH‖F + ‖PΩPT ⊥H‖F

≤ 1

2
‖H‖F + ‖PT ⊥H‖F

≤ 1

2
‖PΩH‖F +

1

2
‖PΩ⊥H‖F + ‖PT ⊥H‖F ,

which implies that λ4‖PΩH‖F ≤ λ
4‖PΩ⊥H‖F + λ

2‖PT ⊥H‖F ≤ λ
4‖PΩ⊥H‖1 + λ

2‖PT ⊥H‖∗. There-
fore,

‖X∗ + H‖r∗ + λ‖S∗ −H‖1 ≥ ‖X∗‖r∗ + λ‖S∗‖1 +
σr(X

∗)− λ
2

‖PT ⊥H‖∗ +
λ

4
‖PΩ⊥H‖1

≥ ‖X∗ + H‖r∗ + λ‖S∗ −H‖1 +
σr(X

∗)− λ
2

‖PT ⊥H‖∗ +
λ

4
‖PΩ⊥H‖1,
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where the second inequality holds because (X∗ + H,S∗ −H) is optimal. Thus H ∈ T ∩ Ω. Note
that ‖PΩPT ‖ < 1 implies T ∩ Ω = {0}. This completes the proof.

According to Lemma 28, to show the exact recoverability of problem (39), it is sufficient to find
an appropriate W for which

W ∈ T ⊥,
‖W‖ ≤ σr(X∗)

2 ,

‖PΩ(X∗ + W − λsign(S∗))‖F ≤ λ
4 ,

‖PΩ⊥(X∗ + W)‖∞ ≤ λ
2 .

(40)

F.2. Dual Certification by Least Squares and the Golfing Scheme

The remainder of the proof is to construct W such that the dual condition (40) holds true. Before
introducing our construction, we assume Ω ∼ Ber(p), or equivalently Ω⊥ ∼ Ber(1 − p), where
p is allowed be as large as an absolute constant. Note that Ω⊥ has the same distribution as that
of Ω1 ∪ Ω2 ∪ ... ∪ Ωj0 , where the Ωj’s are drawn independently with replacement from Ber(q),
j0 = dlog n(1)e, and q obeys p = (1 − q)j0 (q = Ω(1/ log n(1)) implies p = O(1)). We construct
W based on such a distribution.

Our construction separates W into two terms: W = WL + WS . To construct WL, we apply
the golfing scheme introduced in (Gross, 2011; Recht, 2011). Specifically, WL is constructed by an
inductive procedure:

Yj = Yj−1 + q−1PΩjPT (X∗ −Yj−1), Y0 = 0,

WL = PT ⊥Yj0 .
(41)

To construct WS , we apply the method of least squares by Candès et al. (2011), which is

WS = λPT ⊥
∑
k≥0

(PΩPT PΩ)ksign(S∗). (42)

Note that ‖PΩPT ‖ ≤ 1/2. Thus ‖PΩPT PΩ‖ ≤ 1/4 and the Neumann series in (42) is well-defined.
Observe that PΩWS = λ(PΩ−PΩPT PΩ)(PΩ−PΩPT PΩ)−1sign(S∗) = λsign(S∗). So to prove
the dual condition (40), it suffices to show that

(a) ‖WL‖ ≤ σr(X
∗)

4
,

(b) ‖PΩ(X∗ + WL)‖F ≤
λ

4
,

(c) ‖PΩ⊥(X∗ + WL)‖∞ ≤
λ

4
,

(43)

and

(d) ‖WS‖ ≤ σr(X
∗)

4
,

(e) ‖PΩ⊥WS‖∞ ≤
λ

4
.

(44)
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F.3. Proof of Dual Conditions

Since we have constructed the dual certificate W, the remainder is to show that W obeys dual
conditions (43) and (44) with high probability. We have the following.

Lemma 29 Assume Ωj ∼ Ber(q), j = 1, 2, ..., j0, and j0 = 2dlog n(1)e. Then under the other
assumptions of Theorem 9, WL given by (41) obeys dual condition (43).

Proof Let Zj = PT (X∗ −Yj) ∈ T . Then we have

Zj = PT Zj−1 − q−1PT PΩjPT Zj−1 = (PT − q−1PT PΩjPT )Zj−1,

and Yj =
∑j

k=1 q
−1PΩkZk−1 ∈ Ω⊥. We set q = Ω(ε−2µr log n(1)/n(2)).

Proof of (a). It holds that

‖WL‖ = ‖PT ⊥Yj0‖ ≤
j0∑
k=1

‖q−1PT ⊥PΩkZk−1‖

=

j0∑
k=1

‖PT ⊥(q−1PΩkZk−1 − Zk−1)‖

≤
j0∑
k=1

‖q−1PΩkZk−1 − Zk−1‖

≤ C ′0

 log n(1)

q

j0∑
k=1

‖Zk−1‖∞ +

√
log n(1)

q

j0∑
k=1

‖Zk−1‖∞,2

 . (by Lemma 15)

We note that by Lemma 16 and Lemma 17, respectively,

‖Zk−1‖∞ ≤
(

1

2

)k−1

‖Z0‖∞,

‖Zk−1‖∞,2 ≤
1

2

√
n(1)

µr
‖Zk−2‖∞ +

1

2
‖Zk−2‖∞,2.

Therefore,

‖Zk−1‖∞,2 ≤
(

1

2

)k−1√n(1)

µr
‖Z0‖∞ +

1

2
‖Zk−2‖∞,2

≤ (k − 1)

(
1

2

)k−1√n(1)

µr
‖Z0‖∞ +

(
1

2

)k−1

‖Z0‖∞,2,
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and so we have

‖WL‖ ≤ C ′0
[

log n(1)

q

j0∑
k=1

(
1

2

)k−1

‖Z0‖∞

+

√
log n(1)

q

j0∑
k=1

(
(k − 1)

(
1

2

)k−1√n(1)

µr
‖Z0‖∞+

(
1

2

)k−1

‖Z0‖∞,2

)]

≤ 2C ′0

 log n(1)

q
‖X∗‖∞ +

√
n(1) log n(1)

qµr
‖X∗‖∞ +

√
log n(1)

q
‖X∗‖∞,2


≤ 2C0

[
n(2)

µr
‖X∗‖∞ +

√
n1n2

µr
‖X∗‖∞ +

√
n(2)

µr
‖X∗‖∞,2

]
(since q = Ω(µr log n(1))/n(2))

≤ σr(X
∗)

4
, (by incoherence (20))

where we have used the fact that

‖X∗‖∞,2 ≤
√
n(1)‖X∗‖∞ ≤

√
µr

n(2)
σr(X

∗).

Proof of (b). Because Yj0 ∈ Ω⊥, we have PΩ(X∗ + PT ⊥Yj0) = PΩ(X∗ − PTYj0) = PΩZj0 . It
then follows from Theorem 13 that

‖Zj0‖F ≤ tj0‖X∗‖F
≤ tj0

√
n1n2‖X∗‖∞

≤ tj0
√
n1n2

√
µr

n1n2
σr(X

∗)

≤ λ

8
. (tj0 ≤ e−2 logn(1) ≤ n−2

(1))

Proof of (c). By definition, X∗+WL = Zj0 +Yj0 . Since we have shown ‖Zj0‖F ≤ λ/8, it suffices
to prove ‖Yj0‖∞ ≤ λ/8. We have

‖Yj0‖∞ ≤ q−1
j0∑
k=1

‖PΩkZk−1‖∞

≤ q−1
j0∑
k=1

εk−1‖X∗‖∞ (by Lemma 16)

≤
n(2)ε

2

C0µr log n(1)

√
µr

n1n2
σr(X

∗) (by incoherence (20))

≤ λ

8
,

if we choose ε = C
(
µr(logn(1))

2

n(2)

)1/4

for an absolute constant C. This can be true once the constant
ρr is sufficiently small.
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We now prove that WS given by (42) obeys dual condition (44).

Lemma 30 Assume Ω ∼ Ber(p). Then under the other assumptions of Theorem 9, WS given by
(42) obeys dual condition (44).

Proof According to the standard de-randomization argument (Candès et al., 2011), it is equivalent
to studying the case when the signs δij of S∗ij are independently distributed as

δij =


1, w.p. p/2,
0, w.p. 1− p,
−1, w.p. p/2.

Proof of (d). Recall that

WS = λPT ⊥
∑
k≥0

(PΩPT PΩ)ksign(S∗)

= λPT ⊥sign(S∗) + λPT ⊥
∑
k≥1

(PΩPT PΩ)ksign(S∗).

To bound the first term, we have ‖sign(S∗)‖ ≤ 4
√
n(1)p as shown in (Vershynin, 2010). So

‖λPT ⊥sign(S∗)‖ ≤ λ‖sign(S∗)‖ ≤ 4
√
pσr(X

∗) ≤ σr(X∗)/8.
We now bound the second term. Let G =

∑
k≥1(PΩPT PΩ)k, which is self-adjoint, and denote

by Nn1 and Nn2 the 1
2 -nets of Sn1−1 and Sn1−1 of sizes at most 6n1 and 6n2 , respectively (Ledoux,

2005). Vershynin (2010) has shown that

‖G(sign(S∗))‖ = sup
x∈Sn2−1,y∈Sn1−1

〈G(yxT ), sign(S∗)〉

≤ 4 sup
x∈Nn2 ,y∈Nn1

〈G(yxT ), sign(S∗)〉.

Consider the random variable X(x,y) = 〈G(yxT ), sign(S∗)〉 which has zero expectation. By
Hoeffding’s inequality, we have

Pr(|X(x,y)| > t|Ω) ≤ 2 exp

(
− 2t2

‖G(xyT )‖2F

)
≤ 2 exp

(
− 2t2

‖G‖2

)
.

Therefore, by a union bound,

Pr(‖G(sign(S∗))‖ > t|Ω) ≤ 2× 6n1+n2 exp

(
− t2

8‖G‖2

)
.

Note that conditioned on the event {‖PΩPT ‖ ≤ σ}, we have ‖G‖ =
∥∥∥∑k≥1(PΩPT PΩ)k

∥∥∥ ≤ σ2

1−σ2 .
So

Pr(λ‖G(sign(S∗))‖ > t)

≤ 2× 6n1+n2 exp

(
− t2

8λ2

(
1− σ2

σ2

)2
)

Pr(‖PΩPT ‖ ≤ σ) + Pr(‖PΩPT ‖ > σ).

The following lemma guarantees that event {‖PΩPT ‖ ≤ σ} holds with high probability for a very
small absolute constant σ.
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Lemma 31 (Candès et al. (2011), Corollary 2.7) Suppose that Ω ∼ Ber(p) and incoherence (5)
holds. Then with probability at least 1 − n−10

(1) , ‖PΩPT ‖2 ≤ p + ε, provided that 1 − p ≥
C0ε

−2µr log n(1)/n(2) for an absolute constant C0.

Setting t = σr(X∗)
8 , this completes the proof of (d).

Proof of (e). Recall that WS = λPT ⊥
∑

k≥0(PΩPT PΩ)ksign(S∗) and so

PΩ⊥WS = λPΩ⊥(I − PT )
∑
k≥0

(PΩPT PΩ)ksign(S∗)

= −λPΩ⊥PT
∑
k≥0

(PΩPT PΩ)ksign(S∗).

Then for any (i, j) ∈ Ω⊥, we have

WS
ij = 〈WS , eie

T
j 〉 =

〈
λsign(S∗),−

∑
k≥0

(PΩPT PΩ)kPΩPT (eie
T
j )

〉
.

Let X(i, j) = −
∑

k≥0(PΩPT PΩ)kPΩPT (eie
T
j ). By Hoeffding’s inequality and a union bound,

Pr

(
sup
ij
|WS

ij | > t|Ω

)
≤ 2

∑
ij

exp

(
− 2t2

λ2‖X(i, j)‖2F

)
.

We note that conditioned on the event {‖PΩPT ‖ ≤ σ}, for any (i, j) ∈ Ω⊥,

‖X(i, j)‖F ≤
1

1− σ2
σ‖PT (eie

T
j )‖F

≤ 1

1− σ2
σ
√

1− ‖PT ⊥(eieTj )‖2F

=
1

1− σ2
σ
√

1− ‖(I−UUT )ei‖22‖(I−VVT )ej‖22

≤ 1

1− σ2
σ

√
1−

(
1− µr

n1

)(
1− µr

n2

)
≤ 1

1− σ2
σ

√
µr

n1
+
µr

n2
.

Then unconditionally,

Pr

(
sup
ij
|WS

ij | > t

)
≤2n1n2 exp

(
−2t2

λ2

(1− σ2)2n1n2

σ2µr(n1 + n2)

)
Pr(‖PΩPT ‖ ≤ σ)

+ Pr(‖PΩPT ‖ > σ).

By Lemma 31 and setting t = λ/4, the proof of (e) is completed.
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G. Proof of Theorem 10

Our computational lower bound for problem (P) (and (P’)) assumes the average-case hardness of
SAT, which has been used in (Razenshteyn et al., 2016; Song et al., 2019).

Conjecture 32 (Random 4-SAT, Razenshteyn et al. (2016)) Let c > ln 2 be a constant. Consider
a random 4-SAT formula on n variables in which each clause has 4 literals, and in which each of
the 16n4 clauses is picked independently with probability c/n3. Then any algorithm which always
outputs 1 when the random formula is satisfiable, and outputs 0 with probability at least 1/2 when
the random formula is unsatisfiable, must run in 2c

′n time on some input, where c′ > 0 is an absolute
constant.

Based on Conjecture 32, we have the following computational lower bound for problem (P) (and
(P’)). We show that problem (P) (and (P’)) is in general hard for deterministic algorithms. If we
additionally assume BPP = P, then the same conclusion holds for randomized algorithms with high
probability.

Theorem 10 (Computational Lower Bound. Restated). Assume Conjecture 32. Then there exists an
absolute constant ε0 > 0 for which any algorithm that achieves (1 + ε)OPT in objective function
value for problem (P) (and (P’)) with ε ≤ ε0, and with constant probability, requires 2Ω(n1+n2) time,
where OPT is the optimum. If in addition, BPP = P, then the same conclusion holds for randomized
algorithms succeeding with probability at least 2/3.
Proof Theorem 10 is proved by using the hypothesis that random 4-SAT is hard to show hardness of
the Maximum Edge Biclique problem for deterministic algorithms. The same construction is used
for both problem (P) and problem (P’), so we only present the proof for the former in the following.

Definition 33 (Maximum Edge Biclique) The problem is

Input: An n-by-n bipartite graph G.

Output: A k1-by-k2 complete bipartite subgraph of G, such that k1 · k2 is maximized.

Goerdt and Lanka (2004) showed that under the random 4-SAT assumption there exist two
constants 1 > ε1 > ε2 > 0 such that no efficient deterministic algorithm is able to distinguish between
bipartite graphs G(U, V,E) with |U | = |V | = n which have a clique of size ≥ (n/16)2(1 + ε1) and
those in which all bipartite cliques are of size ≤ (n/16)2(1 + ε2). The reduction uses a bipartite
graph G with at least tn2 edges with large probability, for a constant t.

Given a bipartite graph G(U, V,E), define H(·) as follows. Define the matrix Y and W:
Yij = 1 if edge (Ui, Vj) ∈ E, Yij = 0 if edge (Ui, Vj) 6∈ E; Wij = 1 if edge (Ui, Vj) ∈ E, and
Wij = poly(n) if edge (Ui, Vj) 6∈ E. Choose a large enough constant β > 0 and let H(AB) =
β
∑

ij W2
ij(Yij − (AB)ij)

2. Now, if there exists a biclique in G with at least (n/16)2(1 + ε1)

edges, then the number of remaining edges is at most tn2 − (n/16)2(1 + ε1), and so the solution
to minH(AB) + 1

2‖AB‖2F has cost at most β[tn2 − (n/16)2(1 + ε1)] + n2. On the other hand,
if there does not exist a biclique that has more than (n/16)2(1 + ε2) edges, then the number of
remaining edges is at least (n/16)2(1 + ε2), and so any solution to minH(AB) + 1

2‖AB‖2F has
cost at least β[tn2 − (n/16)2(1 + ε2)]. Choose β large enough so that β[tn2 − (n/16)2(1 + ε2)] >
β[tn2−(n/16)2(1+ε1)]+n2. This combined with the result in (Goerdt and Lanka, 2004) completes
the proof for deterministic algorithms.
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To rule out randomized algorithms running in time 2α(n1+n2) for some function α of n1, n2

for which α = o(1), observe that we can define a new problem which is the same as problem (P)
except the input description of H is padded with a string of 1’s of length 2(α/2)(n1+n2). This string is
irrelevant for solving problem (P) but changes the input size to N = poly(n1, n2) + 2(α/2)(n1+n2).
By the argument in the previous paragraph, any deterministic algorithm still requires 2Ω(n) = Nω(1)

time to solve this problem, which is super-polynomial in the new input size N . However, if a
randomized algorithm can solve it in 2α(n1+n2) time, then it runs in poly(N) time. This contradicts
the assumption that BPP = P. This completes the proof.

H. Dual and Bi-Dual Problems

In this section, we will present the dual and bi-dual problems of r∗ minimization and nuclear norm
minimization, respectively.

H.1. r∗ Minimization

We derive the dual and bi-dual problems of non-convex program (P). According to (7), the primal
problem (P) is equivalent to

min
A,B

max
Λ

1

2
‖ −Λ−AB‖2F −

1

2
‖Λ‖2F −H∗(Λ).

Therefore, the dual problem is given by

max
Λ

min
A,B

1

2
‖ −Λ−AB‖2F −

1

2
‖Λ‖2F −H∗(Λ)

= max
Λ

1

2

n(2)∑
i=r+1

σ2
i (−Λ)− 1

2
‖Λ‖2F −H∗(Λ)

= max
Λ
−1

2
‖Λ‖2r −H∗(Λ), (D1)

where ‖Λ‖2r =
∑r

i=1 σ
2
i (Λ). The bi-dual problem is derived by

min
M

max
Λ,Λ′
−1

2
‖Λ‖2r −H∗(Λ′) + 〈M,Λ′ −Λ〉

= min
M

max
−Λ

[
〈M,−Λ〉 − 1

2
‖ −Λ‖2r

]
+ max

Λ′

[
〈M,Λ′〉 −H∗(Λ′)

]
= min

M
‖M‖r∗ +H(M), (D2)

where ‖M‖r∗ = maxX〈M,X〉 − 1
2‖X‖

2
r is a convex function, and the argument H(M) =

maxΛ′ [〈M,Λ′〉 −H∗(Λ′)] holds by the definition of conjugate function.
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H.2. Nuclear Norm Minimization

In this section, we derive the dual and bi-dual problems of non-convex program (34). First note that

min
A,B
‖AB‖∗ +H(AB)

= min
A,B
‖AB‖∗ +H∗∗(AB)

= min
A,B

max
Λ
‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ).

Therefore, the dual problem is given by

max
Λ

min
A,B
‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ)

= max
‖Λ‖≤1

−H∗(Λ), (D1”)

where ‖Λ‖ ≤ 1 because otherwise, minA,B ‖AB‖∗ + 〈Λ,AB〉 −H∗(Λ) = −∞ while we would
like to maximize it over all Λ.

The bi-dual problem is derived by

min
M

max
‖Λ‖≤1,Λ′

−H∗(Λ′) + 〈M,Λ′ −Λ〉

= min
M

max
‖−Λ‖≤1

〈M,−Λ〉+ max
Λ′

[
〈M,Λ′〉 −H∗(Λ′)

]
= min

M
‖M‖∗ +H(M), (D2”)

where H(M) = maxΛ′ [〈M,Λ′〉 −H∗(Λ′)] holds by the definition of conjugate function, and
‖M‖∗ = max‖−Λ‖≤1〈M,−Λ〉 because ‖ · ‖∗ and ‖ · ‖ are a pair of dual norms.

I. Equivalence of Bernoulli and Uniform Models

We begin by arguing that a recovery result under the Bernoulli model with some probability automat-
ically implies a corresponding result for the uniform model with at least the same probability. The
argument follows Section 7.1 of Candès et al. (2011). For completeness, we provide the proof here.

Denote by PrUnif(m) and PrBer(p) probabilities calculated under the uniform and Bernoulli
models and let “Success” be the event that the algorithm succeeds. We have

PrBer(p)(Success) =

n1n2∑
k=0

PrBer(p)(Success | |Ω| = k) PrBer(p)(|Ω| = k)

≤
m∑
k=0

PrUnif(k)(Success | |Ω| = k) PrBer(p)(|Ω| = k) +

n1n2∑
k=m+1

PrBer(p)(|Ω| = k)

≤ PrUnif(m)(Success) + PrBer(p)(|Ω| > m),

where we have used the fact that for k ≤ m, PrUnif(k)(Success) ≤ PrUnif(m)(Success), and that the
conditional distribution of |Ω| is uniform. Thus

PrUnif(m)(Success) ≥ PrBer(p)(Success)− PrBer(p)(|Ω| > m).

Take p = m/(n1n2)− ε, where ε > 0. The conclusion follows from PrBer(p)(|Ω| > m) ≤ e−
ε2n1n2

2p .
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