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Abstract

We prove new upper and lower bounds on the VC-dimension of deep neural networks
with the ReLU activation function. These bounds are tight for almost the entire range
of parameters. Letting W be the number of weights and L be the number of layers, we
prove that the VC-dimension is O(WL log(W )), and provide examples with VC-dimension
Ω(WL log(W/L)). This improves both the previously known upper bounds and lower
bounds. In terms of the number U of non-linear units, we prove a tight bound Θ(WU) on
the VC-dimension. All of these bounds generalize to arbitrary piecewise linear activation
functions, and also hold for the pseudodimensions of these function classes.

Combined with previous results, this gives an intriguing range of dependencies of the
VC-dimension on depth for networks with different non-linearities: there is no dependence
for piecewise-constant, linear dependence for piecewise-linear, and no more than quadratic
dependence for general piecewise-polynomial.

Keywords: VC-dimension, pseudodimension, neural networks, ReLU activation function,
statistical learning theory

1. Introduction

Deep neural networks underlie many of the recent breakthroughs in applied machine learn-
ing, particularly in image and speech recognition. These successes motivate a renewed study
of these networks’ theoretical properties.
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Classification is one of the learning tasks in which deep neural networks have been
particularly successful, e.g., for image recognition. A natural foundational question that
arises is: what are the generalization guarantees of these networks in a statistical learning
framework? An established way to address this question is by considering the VC-dimension,
which characterizes uniform convergence of misclassification frequencies to probabilities (see
Vapnik and Chervonenkis, 1971), and asymptotically determines the sample complexity of
PAC learning with such classifiers (see Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989).

Definition 1 (growth function, VC-dimension, shattering) Let H denote a class of
functions from X to {0, 1} (the hypotheses, or the classification rules). For any non-negative
integer m, we define the growth function of H as

ΠH(m) := max
x1,...,xm∈X

|{(h(x1), . . . , h(xm)) : h ∈ H}| .

If |{(h(x1), . . . , h(xm)) : h ∈ H}| = 2m, we say H shatters the set {x1, . . . , xm}. The
Vapnik-Chervonenkis dimension of H, denoted VCdim(H), is the size of the largest shat-
tered set, i.e. the largest m such that ΠH(m) = 2m. If there is no largest m, we define
VCdim(H) =∞.

For a class of real-valued functions, such as those generated by neural networks, a
natural measure of complexity that implies similar uniform convergence properties is the
pseudodimension, introduced by Pollard (1990) (see, e.g., Anthony and Bartlett (1999,
Theorem 19.2)).

Definition 2 (pseudodimension) Let F be a class of functions from X to <. The
pseudodimension of F , written Pdim(F), is the largest integer m for which there exists
(x1, . . . , xm, y1, . . . , ym) ∈ Xm × <m such that for any (b1, . . . , bm) ∈ {0, 1}m there exists
f ∈ F such that

∀i : f(xi) > yi ⇐⇒ bi = 1

For a class F of real-valued functions, we define VCdim(F) := VCdim(sgn(F)), where

sgn(F) := {sgn(f) : f ∈ F}

and sgn(x) = 1[x > 0]. For any class F , clearly VCdim(F) ≤ Pdim(F). If F is the
class of functions generated by a neural network N with a fixed architecture and fixed
activation functions (see Section 1.3 for definitions), then it is not hard to see that indeed
Pdim(F) ≤ VCdim(F ′), where F ′ is the class of functions generated by a certain neural
network with one more parameter and one more layer than N (see Anthony and Bartlett
(1999, Theorem 14.1) for a proof). Therefore, all the results of this paper automatically
apply to the pseudodimensions of neural networks as well, after appropriate adjustments.

The main contribution of this paper is to prove nearly-tight bounds on the VC-dimension
of deep neural networks in which the non-linear activation function is a piecewise linear
function with a constant number of pieces. For simplicity we will henceforth refer to such
networks as “piecewise linear networks”. The activation function that is the most commonly
used in practice is the rectified linear unit, also known as ReLU (see LeCun, Bengio, and
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Hinton, 2015; Goodfellow, Bengio, and Courville, 2016). The ReLU function is defined as
σ(x) = max{0, x}, so it is clearly piecewise linear.

It is particularly interesting to understand how the VC-dimension is affected by the
various attributes of the network: the number W of parameters (i.e., weights and biases),
the number U of non-linear units (i.e., nodes), and the number L of layers. Among all
networks with the same size (number of weights), is it true that those with more layers have
larger VC-dimension?

Such a statement is indeed true, and previously known; however, a tight characterization
of how depth affects VC-dimension was unknown prior to this work.

1.1. Our results

Our first main result is a new VC-dimension lower bound that holds even for the restricted
family of ReLU networks.

Theorem 3 (Main lower bound) There exists a universal constant C such that the fol-
lowing holds. Given any W,L with W > CL > C2, there exists a ReLU network with ≤ L
layers and ≤W parameters with VC-dimension ≥WL log(W/L)/C.

Remark 4 Our construction can be augmented slightly to give a neural network with linear
threshold and identity activation functions with the same guarantees.

Remark 5 Our goal in this paper is to give asymptotic lower and upper bounds. However,
one may wonder what is the smallest depth for which we can give a positive lower bound for
the VC-dimension. Our Theorem 11 gives a positive lower bound as soon as the number of
layers is at least 8 (which corresponds to k = 1 in that theorem).

The proof appears in Section 2. Prior to our work, the best known lower bounds were
Ω(WL) (see Bartlett, Maiorov, and Meir, 1998, Theorem 2) and Ω(W logW ) (see Maass,
1994, Theorem 1). We strictly improve both bounds to Ω(WL log(W/L)).

Our proof of Theorem 3 uses the “bit extraction” technique, which was also used
by Bartlett et al. (1998) to give an Ω(WL) lower bound. We refine this technique to
gain the additional logarithmic factor that appears in Theorem 3.

Unfortunately there is a barrier to refining this technique any further. Our next theo-
rem shows the hardness of computing the mod function, implying that the bit extraction
technique cannot yield a stronger lower bound than Theorem 3. Further discussion of this
connection may be found in Remark 14.

Theorem 6 Assume there exists a piecewise linear network with W parameters and L
layers that computes a function f : < → <, with the property that |f(x)− (x mod 2)| < 1/2
for all x ∈ {0, 1, . . . , 2m − 1}. Then we have m = O(L log(W/L)).

The proof of this theorem appears in Section 3. One interesting aspect of the proof is
that it does not use Warren’s lemma (Warren, 1968), which is a mainstay of VC-dimension
upper bounds (see Goldberg and Jerrum, 1995; Bartlett et al., 1998; Anthony and Bartlett,
1999).

Our next main result is an upper bound on the VC-dimension of neural networks with
piecewise polynomial activation functions.
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Theorem 7 (Main upper bound) Consider a neural network architecture with W pa-
rameters and U computation units arranged in L layers, so that each unit has connections
only from units in earlier layers. Let ki denote the number of units at the ith layer. Suppose
that all non-output units have piecewise-polynomial activation functions with p + 1 pieces
and degree no more than d, and the output unit has the identity function as its activation
function.

If d = 0, let Wi denote the number of parameters (weights and biases) at the inputs to
units in layer i; if d > 0, let Wi denote the total number of parameters (weights and biases)
at the inputs to units in all the layers up to layer i (i.e., in layers 1, 2, . . . , i). Define the
effective depth as

L̄ :=
1

W

L∑
i=1

Wi,

and let

R :=

L∑
i=1

ki(1 + (i− 1)di−1) ≤ U + U(L− 1)dL−1. (1)

For the class F of all (real-valued) functions computed by this network and m ≥ L̄W , we
have

Πsgn(F)(m) ≤
L∏
i=1

2

(
2emkip(1 + (i− 1)di−1)

Wi

)Wi

,

and if U > 2 then

VCdim(F) ≤ L+ L̄W log2(4epR log2(2epR)) = O(L̄W log(pU) + L̄LW log d).

In particular, if d = 0, then

VCdim(F) ≤ L+W log2(4epU log2(2epU)) = O(W log(pU));

and if d = 1, then

VCdim(F) ≤ L+ L̄W log2

(
4ep

L∑
i=1

iki log2

(
L∑
i=1

2epiki

))
= O(L̄W log(pU)).

Remark 8 The average depth L̄ is always between 1 and L, and captures how the parame-
ters are distributed in the network: it is close to 1 if they are concentrated near the output
(or if the activation functions are piecewise-constant), while it is of order L if the param-
eters are concentrated near the input, or are spread out throughout the network. Hence,
this suggests that edges and vertices closer to the input have a larger effect in increasing the
VC-dimension, a phenomenon not observed before; and indeed our lower bound construction
in Theorem 3 (as well as the lower bound construction from Bartlett et al. (1998)) considers
a network with most of the parameters near the input.

Remark 9 If we have
∑L

i=1 ki ≤
∑L

i=1Wi, which holds for most network architectures used
in practice, the upper bound on the growth function can be simplified into

Πsgn(F)(m) ≤
(
4emp(1 + (L− 1)dL−1)

)∑Wi
.
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The proofs of Theorem 7 and Remark 9 appear in Section 4. Prior to our work, the
best known upper bounds were O(W 2) (see Goldberg and Jerrum, 1995, Section 3.1) and
O(WL logW+WL2) (see Bartlett et al., 1998, Theorem 1), both of which hold for piecewise
polynomial activation functions with a bounded number of pieces (for the remainder of
this section, assume that p = O(1) throughout); we strictly improve the second bound to
O(WL logW ) for the special case of piecewise linear functions (d = 1). Recall that ReLU
is an example of a piecewise linear activation function. For the case d = 0, an O(W logU)
bound for the VC-dimension was already proved using different techniques by Cover (1968)
and by Baum and Haussler (1989, Corollary 2). Our Theorem 7 implies all of these upper
bounds (except the O(W 2) upper bound of Goldberg and Jerrum) using a unified technique,
and gives a slightly more refined picture of the dependence of the VC-dimension on the
distribution of parameters in a deep network.

To compare our upper and lower bounds, let d(W,L) denote the largest VC-dimension
of a piecewise linear network with W parameters and L layers. Theorems 3 and 7 imply
there exist constants c, C such that

c ·WL log(W/L) ≤ d(W,L) ≤ C ·WL logW . (2)

For neural networks arising in practice it would certainly be the case that L is signif-
icantly smaller than W 0.99, in which case our results determine the asymptotic bound
d(W,L) = Θ(WL logW ). On the other hand, in the regime L = Θ(W ), which is merely of
theoretical interest, we also now have a tight bound d(W,L) = Θ(WL), obtained by com-
bining Theorem 3 with results of Goldberg and Jerrum (1995). There is now only a very
narrow regime, say W 0.99 � L � W , in which the bounds of (2) are not asymptotically
tight, and they differ only in the logarithmic factor.

Our final result is an upper bound for VC-dimension in terms of W and U (the number
of non-linear units, or nodes). This bound is tight in the case d = 1 and p = 2, as discussed
in Remark 12.

Theorem 10 Consider a neural network with W parameters and U units with activation
functions that are piecewise polynomials with at most p pieces and of degree at most d. Let
F be the set of (real-valued) functions computed by this network. Then VCDim(sgn(F)) =
O(WU log((d+ 1)p)).

The proof of this result appears in Section 5. The best known upper bound before our
work was O(W 2), implicitly proven for bounded d and p by Goldberg and Jerrum (1995,
Section 3.1). Our theorem improves this to the tight result O(WU).

We can summarize the tightest known results on the VC-dimension of neural networks
with piecewise polynomial activation functions as follows: for classes F of functions com-
puted by the class of networks with L layers, W parameters, and U units with the following
non-linearities, we have the following bounds on VC-dimension:

Piecewise constant. VCdim(F) = Θ(W logW ) (Cover (1968) and Baum and Haussler
(1989) showed the upper bound and Maass (1994) showed the lower bound).

Piecewise linear. c ·WL log(W/L) ≤ VCdim(F) ≤ C ·WL logW (this paper).
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Piecewise polynomial. VCdim(F) = O(WL2 + WL logW ) (Bartlett et al., 1998), and
VCdim(F) = O(WU) (this paper), and VCdim(F) = Ω(WL log(W/L)) (this pa-
per). We note that closing the gap here requires fundamentally new techniques (see
Remark 14).

1.2. Related work

For a general overview on theoretical properties of neural networks, we refer the reader to
the monograph by Anthony and Bartlett (1999). There are various methods, other than
the VC-dimension, for bounding the generalization error of neural networks; see Jakubovitz,
Giryes, and Rodrigues (2018) for a recent survey.

In the reset of this section, we review some previous work studying the impact of depth
on the representational power of neural networks. It has long been known that two-layer
networks with a variety of activation functions can approximate arbitrary continuous func-
tions on compact sets (Hornik, 1991). Sontag (1992) showed that three-layer networks of
linear threshold units can approximate inverses of continuous functions, whereas two-layer
networks cannot. There are several recent papers that aim to understand which functions
can be expressed using a neural network of a given depth and size. There are technical
similarities between our work and these. Two striking papers considered the problem of
approximating a deep neural network with a shallower network. Telgarsky (2016) shows
that there is a ReLU network with L layers and U = Θ(L) units such that any network ap-

proximating it with only O(L1/3) layers must have Ω(2L
1/3

) units; this phenomenon holds
even for real-valued functions. Eldan and Shamir (2016) show an analogous result for a
high-dimensional 3-layer network that cannot be approximated by a 2-layer network except
with an exponential blow-up in the number of nodes.

Very recently, several authors have shown that deep neural networks are capable of
approximating broad classes of functions. Safran and Shamir (2017) show that a suf-
ficiently non-linear C2 function on [0, 1]d can be approximated with ε error in L2 by a
ReLU network with O(polylog(1/ε)) layers and weights, but any such approximation with
O(1) layers requires Ω(1/ε) weights. Yarotsky (2017) shows that any Cn-function on [0, 1]d

can be approximated with ε error in L∞ by a ReLU network with O(log(1/ε)) layers and
O((1ε )

d/n log(1/ε)) weights. Liang and Srikant (2017) show that a sufficiently smooth uni-
variate function can be approximated with ε error in L∞ by a network with ReLU and
threshold gates with Θ(log(1/ε)) layers and O(polylog(1/ε)) weights, but that Ω(poly(1/ε))
weights would be required if there were only o(log(1/ε)) layers; they also prove analogous
results for multivariate functions. Lastly, Cohen, Sharir, and Shashua (2016) draw a con-
nection to tensor factorizations to show that, for a certain family of arithmetic circuits (in
particular, without ReLU non-linearities), the set of functions computable by a shallow
network have measure zero among those computable by a deep networks. For more recent
results on representation power of neural networks, see Grohs, Perekrestenko, Elbrächter,
and Bölcskei (2019) and the references therein.

1.3. Notation

A neural network is defined by an activation function ψ : < → <, a directed acyclic graph,
and a set of parameters: a weight for each edge of the graph, and a bias for each node of
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the graph. Let W denote the number of parameters (weights and biases) of the network,
U denote the number of computation units (nodes), and L denote the length of the longest
path in the graph. We will say that the neural network has L layers.

Layer 0 consists of nodes with in-degree 0. We call these nodes input nodes and they
simply output the real value given by the corresponding input to the network. We assume
that the graph has a single sink node; this is the unique node in layer L, which we call the
output layer. This output node can have predecessors in any layer ` < L. For 1 ≤ ` < L, a
node is in layer ` if it has a predecessor in layer `−1 and no predecessor in any layer `′ ≥ `.
(Note that for example there could be an edge connecting a node in layer 1 with a node in
layer 3.) In the jargon of neural networks, layers 1 through L− 1 are called hidden layers.

The computation of a neural network proceeds as follows. For i = 1, . . . , L, the input
into a computation unit u at layer i is w>x+ b, where x is the (real) vector corresponding
to the outputs of the computational units with a directed edge to u, w is the corresponding
vector of edge weights, and b is the bias parameter associated with u. For layers 1, . . . , L−1,
the output of u is ψ(w>x+ b). For the output layer, we replace ψ with the identity, so the
output is simply w>x+ b. Since we consider VC-dimension, we will always take the sign of
the output of the network, to make the output lie in {0, 1} for binary classification.

A piecewise polynomial function with p pieces is a function f for which there exists
a partition of < into disjoint intervals (pieces) I1, . . . , Ip and corresponding polynomials
f1, . . . , fp such that if x ∈ Ii then f(x) = fi(x). A piecewise linear function is a piecewise
polynomial function in which each fi is linear. The most common activation function
used in practice is the rectified linear unit (ReLU) where I1 = (−∞, 0], I2 = (0,∞) and
f1(x) = 0, f2(x) = x. We denote this function by σ(x) := max{0, x}. The set {1, 2, . . . , n}
is denoted [n].

2. Proof of Theorem 3

The proof of our main lower bound uses the “bit extraction” technique from Bartlett et al.
(1998), who proved an Ω(WL) lower bound. We refine this technique in a key way — we
partition the input bits into blocks and extract multiple bits at a time instead of a single
bit at a time. This yields a more efficient bit extraction network, and hence a stronger
VC-dimension lower bound.

We show the following result, which immediately implies Theorem 3.

Theorem 11 Let r,m, n be positive integers, and let k = dm/re. There exists a ReLU
network with 3 + 5k layers, 2 + n + 4m + k((11 + r)2r + 2r + 2) parameters, m + n input
nodes and m+ 2 + k(5× 2r + r + 1) computational nodes with VC-dimension ≥ mn.

Remark 12 Choosing r = 1 gives a network with W = O(m + n), U = O(m) and VC-
dimension Ω(mn) = Ω(WU). This implies that the upper bound O(WU) given in Theo-
rem 10 is tight.

To prove Theorem 3, assume W , L, and W/L are sufficiently large, and set r =
log2(W/L)/2, m = rL/8, and n = W − 5m2r in Theorem 11. The rest of this section
is devoted to proving Theorem 11.
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Let Sn ⊆ <n denote the standard basis. We shatter the set Sn×Sm. Given an arbitrary
function f : Sn×Sm → {0, 1}, we build a ReLU neural network that takes as input (x1, x2) ∈
Sn × Sm and outputs f(x1, x2). Define n numbers a1, a2, . . . , an ∈ { 0

2m ,
1
2m , . . . ,

2m−1
2m } so

that the ith digit of the binary representation of aj equals f(ej , ei). These numbers will be
used as the parameters of the network, as described below.

Given input (x1, x2) ∈ Sn × Sm, assume that x1 = ej and x2 = ei. The network
must output the ith bit of aj . This “bit extraction approach” was used in Bartlett et al.
(1998, Theorem 2) to give an Ω(WL) lower bound for the VC-dimension. We use a similar
approach but we introduce a novel idea: we split the bit extraction into blocks and extract
r bits at a time instead of a single bit at a time. This allows us to prove a lower bound of
Ω(WL log(W/L)). One can ask, naturally, whether this approach can be pushed further.
Our Theorem 6 implies that the bit extraction approach cannot give a lower bound better
than Ω(WL log(W/L)) (see Remark 14).

The first layer of the network “selects” aj , and the remaining layers “extract” the ith
bit of aj . In the first layer we have a single computational unit that calculates

aj = (a1, . . . , an)>x1 = σ
(

(a1, . . . , an)>x1

)
.

This part uses 1 layer, 1 computation unit, and 1 + n parameters.

The rest of the network extracts all bits of aj and outputs the ith bit. The extraction
is done in k steps, where in each step we extract the r most significant bits and zero them
out. We will use the following building block for extracting r bits.

Lemma 13 Suppose positive integers r and m are given. There exists a ReLU network
with 5 layers, 5× 2r + r+ 1 units and 11× 2r + r2r + 2r+ 2 parameters that given the real
number b = 0.b1b2 . . . bm (in binary representation) as input, outputs the (r+1)-dimensional
vector (b1, b2, . . . , br, 0.br+1br+2 . . . bm).

Figure 1 shows a schematic of the ReLU network in the above lemma.

Figure 1: The ReLU network used to extract the most significant r bits of a number. Un-
labeled edges indicate a weight of 1 and missing edges indicate a weight of 0.
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Proof Partition [0, 1) into 2r even subintervals. Observe that the values of b1, . . . , br are
determined by knowing which such subinterval b lies in. We first show how to design a two-
layer ReLU network that computes the indicator function for an interval to any arbitrary
precision. Using 2r of these networks in parallel allows us to determine which subinterval b
lies in and hence, determine the bits b1, . . . , br.

For any a ≤ b and ε > 0, observe that the function f(x) := σ(1 − σ(a/ε − x/ε)) +
σ(1 − σ(x/ε − b/ε)) − 1 has the property that, f(x) = 1 for x ∈ [a, b], and f(x) = 0
for x /∈ (a − ε, b + ε), and f(x) ∈ [0, 1] for all x. Thus we can use f to approximate
the indicator function for [a, b], to any desired precision. Moreover, this function can be
computed with 3 layers, 5 units, and 11 parameters as follows. First, computing σ(a/ε−x/ε)
can be done with 1 unit, 1 layer, and 2 parameters. Computing σ(1 − σ(a/ε − x/ε)) can
be done with 1 additional unit, 1 additional layer, and 2 additional parameters. Similarly,
σ(1 − σ(x/ε − b/ε)) can be computed with 2 units, the same 2 layers, and 4 parameters.
Computing the sum can be done with 1 additional layer, 1 additional unit, and 3 additional
parameters. In total, computing f can be done with 3 layers, 5 units, and 11 parameters.
We will choose ε = 2−m−2 because we are working with m-digit numbers.

Thus, the values b1, . . . , br can be generated by adding the corresponding indicator
variables. (For instance, b1 =

∑2r−1
k=2r−1 1[b ∈ [k · 2−r, (k+ 1) · 2−r)].) Finally, the remainder

0.br+1br+2 . . . bm can be computed as 0.br+1br+2 . . . bm = 2rb−
∑r

k=1 2r−kbk.

Now we count the number of layers and parameters: we use 2r small networks that work
in parallel for producing the indicators, each has 3 layers, 5 units and 11 parameters. To
produce b1, . . . , br we need an additional layer, r × (2r + 1) additional parameters, and r
additional units. For producing the remainder we need 1 more layer, 1 more unit, and r+ 2
more parameters.

We use dm/re of these blocks to extract the bits of aj , denoted by aj,1, . . . , aj,m. Ex-
tracting aj,i is now easy, noting that if x, y ∈ {0, 1} then x ∧ y = σ(x + y − 1). So, since
x2 = ei, we have

aj,i =

m∑
t=1

x2,t ∧ aj,t =

m∑
t=1

σ(x2,t + aj,t − 1) = σ

(
m∑
t=1

σ(x2,t + aj,t − 1)

)
.

This calculation needs 2 layers, 1 +m units, and 1 + 4m parameters.

Remark 14 Theorem 6 implies an inherent barrier to proving lower bounds using the “bit
extraction” approach from Bartlett et al. (1998). Recall that this technique uses n binary
numbers with m bits to encode a function f : Sn×Sm → {0, 1} to show an Ω(mn) lower bound
for VC-dimension, where Sk denotes the set of standard basis vectors in <k. The network
begins by selecting one of the n binary numbers, and then extracting a particular bit of that
number. Bartlett et al. (1998) shows that it is possible to take m = Ω(L) and n = Ω(W ),
thus proving a lower bound of Ω(WL) for the VC-dimension. In Theorem 3 we showed
we can increase m to Ω(L log(W/L)), improving the lower bound to Ω(WL log(W/L)).
Theorem 6 implies that to extract just the least significant bit, one is forced to have m =
O(L log(W/L)); on the other hand, we always have n ≤ W . Hence there is no way to
improve the VC-dimension lower bound by more than a constant via the bit extraction
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technique. In particular, for general piecewise polynomial networks, closing the gap between
the O(WL2 + WL logW ) of Bartlett et al. (1998) and Ω(WL logW/L) of this paper will
require a different technique.

3. Proof of Theorem 6

For a piecewise polynomial function < → <, breakpoints are the boundaries between the
pieces. So if a function has p pieces, it has p− 1 breakpoints.

Lemma 15 Let f1, . . . , fk : < → < be piecewise polynomials of degree D, and suppose the
union of their breakpoints has size B. Let ψ : < → < be a piecewise polynomial of degree d
with b breakpoints. Let w1, . . . , wk ∈ < be arbitrary. The function g(x) := ψ(

∑
iwifi(x)) is

piecewise polynomial of degree Dd with at most (B + 1)(2 + bD)− 1 breakpoints.

Proof Without loss of generality, assume that w1 = · · · = wk = 1. The function
∑

i fi
has B + 1 pieces. Consider one such interval I. We will prove that it will create at most
2 + bD pieces in g. In fact, if

∑
i fi is constant on I, g will have 1 piece on I. Otherwise,

for any point y, the equation
∑

i fi(x) = y has at most D solutions on I. Let y1, . . . , yb
be the breakpoints of ψ. Suppose we move along the curve (x,

∑
i fi(x)) on I. Whenever

we hit a point (t, yi) for some t, one new piece is created in g. So at most bD new pieces
are created. In addition, we may have two pieces for the beginning and ending of I. This
gives a total of 2 + bD pieces per interval, as required. Finally, note that the number of
breakpoints is one fewer than the number of pieces.

Theorem 6 follows immediately from the following theorem.

Theorem 16 Assume there exists a neural network with W parameters and L layers that
computes a function f : < → <, with the property that |f(x) − (x mod 2)| < 1/2 for all
x ∈ {0, 1, . . . , 2m − 1}. Also suppose the activation functions are piecewise polynomials of
degree at most d ≥ 1, and have at most p ≥ 1 pieces. Then we have

m ≤ L log2(13pd(L+1)/2 ·W/L).

In the special case of piecewise linear functions, this gives m = O(L log(W/L)).

Proof For a node v of the network, let γ(v) count the number of directed paths from the
input node to v. Applying Lemma 15 iteratively gives that for a node v at layer i ≥ 1,
the number of breakpoints is bounded by (6p)idi(i−1)/2γ(v) − 1. Let o denote the output
node. Hence, o has at most (6p)LdL(L−1)/2γ(o) pieces. The output of node o is piecewise
polynomial of degree at most dL. On the other hand, as we increase x from 0 to 2m − 1,
the function x mod 2 flips 2m− 1 many times, which implies the output of o becomes equal
to 1/2 at least 2m − 1 times, thus we get

(6p)LdL(L−1)/2γ(o)× dL ≥ 2m − 1. (3)

10
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Let us now relate γ(o) with W and L. Suppose that, for i ∈ [L], there are Wi edges between
layer i and previous layers. By the AM-GM inequality,

γ(o) ≤
∏
i

(1 +Wi) ≤

(∑
i

1 +Wi

L

)L
≤ (2W/L)L. (4)

Combining Eqs. (3) and (4) gives the theorem.

Telgarsky (2016) showed how to construct a function f which satisfies f(x) = (x mod 2)
for x ∈ {0, 1, . . . , 2m − 1} using a neural network with O(m) layers and O(m) parameters.
By choosing m = k3, Telgarsky showed that any function g computable by a neural network
with Θ(k) layers and O(2k) nodes must necessarily have ‖f − g‖1 > c for some constant
c > 0.

Our theorem above implies a qualitatively similar statement. In particular, if we choose
m = k1+ε, then for any function g computable by a neural network with Θ(k) layers and
O(2k

ε
) parameters, there must exist x ∈ {0, 1, . . . , 2m − 1} such that |f(x)− g(x)| > 1/2.

4. Proof of Theorem 7

The proof of this theorem is very similar to the proof of the upper bound for piecewise
polynomial networks from Bartlett et al. (1998, Theorem 1) but optimized in a few places.
The main technical tool in the proof is a bound on the growth function of a polynomially
parametrized function class, due to Goldberg and Jerrum (1995). It uses an argument
involving counting the number of connected components of semi-algebraic sets. The form
stated here is Bartlett et al. (1998, Lemma 1), which is a slight improvement of a result of
Warren (1968) (the proof can be found in Anthony and Bartlett (1999, Theorem 8.3)).

Lemma 17 Suppose W ≤M and let P1, . . . , PM be polynomials of degree at most D in W
variables. Define

K :=
∣∣{(sgn(P1(a)), . . . , sgn(PM (a))) : a ∈ <W

}∣∣ ,
i.e., K is the number of possible sign vectors attained by the polynomials. Then we have
K ≤ 2(2eMD/W )W .

Proof [of Theorem 7]. For input x ∈ X and parameter vector a ∈ <W , let f(x, a) denote
the output of the network. Then F is simply the class of functions {x 7→ f(x, a) : a ∈ <W }.

Fix x1, x2, . . . , xm in X . We view the parameters of the network, denoted a, as a
collection of W real variables. We wish to bound

K :=
∣∣{(sgn(f(x1, a)), . . . , sgn(f(xm, a))) : a ∈ <W

}∣∣ .
In other words, K is the number of sign patterns that the neural network can output for
the sequence of inputs (x1, . . . , xm). We will prove geometric upper bounds for K, which
will imply upper bounds for Πsgn(F)(m).

11
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For any partition S = {P1, P2, . . . , PN} of the parameter domain <W , clearly we have

K ≤
N∑
i=1

|{(sgn(f(x1, a)), . . . , sgn(f(xm, a))) : a ∈ Pi}| . (5)

We choose the partition in such a way that within each region Pi, the functions f(xj , ·) are
all fixed polynomials of bounded degree, so that each term in this sum can be bounded via
Lemma 17.

The partition is constructed iteratively layer by layer, through a sequence S0,S1, . . . ,SL−1
of successive refinements, with the following properties:

1. We have |S0| = 1 and, for each n ∈ [L− 1],

|Sn|
|Sn−1|

≤ 2

(
2emknp(1 + (n− 1)dn−1)

Wn

)Wn

. (6)

2. For each n ∈ {1, . . . , L}, each element S of Sn−1, each j ∈ [m], and each unit u in
the nth layer, when a varies in S, the net input to u is a fixed polynomial function in
Wn variables of a, of total degree no more than 1 + (n− 1)dn−1 (this polynomial may
depend on S, j and u).

We may define S0 = {<W }, which satisfies property 2 above, since the input to any
node in layer 1 is of the form wTxj + b, which is an affine function of w, b.

Now suppose that S0, . . . ,Sn−1 have been defined, and we want to define Sn. For any
h ∈ [kn], j ∈ [m], and S ∈ Sn−1, let ph,xj ,S(a) denote the function describing the net input
of the hth unit in the nth layer, in response to xj , when a ∈ S. By the induction hypothesis
this is a polynomial with total degree no more than 1 + (n − 1)dn−1, and depends on at
most Wn many variables.

Let {t1, . . . , tp} denote the set of breakpoints of the activation function. For any fixed
S ∈ Sn−1, by Lemma 17, the collection of polynomials{

ph,xj ,S(a)− ti : h ∈ [kn], j ∈ [m], i ∈ [p]}

attains at most
Π := 2(2e(knmp)(1 + (n− 1)dn−1)/Wn)Wn

distinct sign patterns when a ∈ <W . Thus, one can partition <W into this many regions,
such that all these polynomials have the same signs within each region. We intersect all
these regions with S to obtain a partition of S into at most Π subregions. Performing this
for all S ∈ Sn−1 gives our desired partition Sn. Thus, the required property 1 (inequality
(6)) is clearly satisfied.

Fix some S′ ∈ Sn. Notice that, when a varies in S′, all the polynomials{
ph,xj ,S(a)− ti : h ∈ [kn], j ∈ [m], i ∈ [p]}

have the same sign, hence the input of each nth layer unit lies between two breakpoints
of the activation function, hence the output of each nth layer unit in response to an xj

12
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is a fixed polynomial in Wn variables of degree no more than d(1 + (n − 1)dn−1) ≤ ndn.
This implies that the input of every (n + 1)th layer unit in response to an xj is a fixed
polynomial function of Wn+1 variables of degree no more than 1 + ndn. (When d = 0,
this affine function depends only on the Wn+1 parameters in layer n + 1; for d > 0, it is a
polynomial function of all parameters up to layer n+ 1.)

Proceeding in this way we obtain a partition SL−1 of <W such that for each S ∈ SL−1,
the network output in response to any xj is a fixed polynomial of a of degree no more than
1 + (L− 1)dL−1 (recall that the last node just outputs its input), and hence by Lemma 17
again,

|{(sgn(f(x1, a)), . . . , sgn(f(xm, a))) : a ∈ S}| ≤ 2

(
2em(1 + (L− 1)dL−1)

WL

)WL

.

On the other hand, applying (6) iteratively gives

|SL−1| ≤
L−1∏
i=1

2

(
2emkip(1 + (i− 1)di−1)

Wi

)Wi

,

and thus using (5), and since the points x1, . . . , xm were chosen arbitrarily, we obtain

Πsgn(F)(m) ≤
L∏
i=1

2

(
2emkip(1 + (i− 1)di−1)

Wi

)Wi

≤ 2L
(

2emp
∑
ki(1 + (i− 1)di−1)∑

Wi

)∑
Wi

(weighted AM-GM)

= 2L
(

2empR∑
Wi

)∑
Wi

(definition of R in (1)) (7)

For the bound on the VC-dimension, from the definition of VC-dimension we find

2VCdim(F) = Πsgn(F)(VCdim(F)) ≤ 2L
(

2epR ·VCdim(F)∑
Wi

)∑
Wi

Notice that U > 2 implies 2eR ≥ 16, hence Lemma 18 below gives

VCdim(F) ≤ L+ (
∑

Wi) log2(4epR log2(2epR)) = O(L̄W log(pU) + L̄LW log d),

completing the proof.

Lemma 18 Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥ t ≥ 0. Then,
m ≤ t+ w log2(2r log2 r).

Proof We would like to show that 2x > 2t(xr/w)w for all x > t + w log2(2r log2 r) =: m.
Let f(x) := x− t−w log2(xr/w). To show that f(x) > 0 for all x > m, we need only show
that f(m) ≥ 0 and f ′(x) > 0 for all x ≥ m. First, f(m) ≥ 0 if and only if

w log2(2r log2 r)− w log2(mr/w) ≥ 0,

13
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if and only if
(2r log2 r)− (mr/w) ≥ 0,

if and only if
2 log2 r − (t+ w log2(2r log2 r))/w ≥ 0,

if and only if
2 log2 r − t/w − log2(2r log2 r) ≥ 0,

if and only if
r2/2 log2 r ≥ 2t/w,

which holds since r ≥ 16 and t/w ≤ 1. Finally, for x ≥ m, we have f ′(x) ≥ 0 if and only if

1− w/(x ln(2)) ≥ 0

if and only if
x ≥ w/ ln 2,

which holds since r ≥ 16 implies x ≥ m ≥ w log2(2r log2 r) > w/ ln 2.

Proof [of Remark 9]. Note that
∑
ki ≤

∑
Wi implies L ≤

∑
Wi, hence from (7) we have

Πsgn(F)(m) ≤ 2L
(

2empR∑
Wi

)∑
Wi

≤
(

4emp(1 + (L− 1)dL−1)
∑
ki∑

Wi

)∑
Wi

(L ≤
∑

Wi)

≤
(
4emp(1 + (L− 1)dL−1)

)∑Wi
(
∑

ki ≤
∑

Wi).

5. Proof of Theorem 10

The idea of the proof is that the sign of the output of a neural network can be expressed as
a Boolean formula where each predicate is a polynomial inequality. For example, consider
the following toy network, where the activation function of the hidden units is a ReLU.

The sign of the output of the network is sgn(y) = sgn(w3σ(w1x) + w4σ(w2x)). Define
the following Boolean predicates: p1 = (w1x > 0), p2 = (w2x > 0), q1 = (w3w1x > 0),
q2 = (w4w2x > 0), and q3 = (w3w1x+ w4w2x > 0). Then, we can write

sgn(y) = (¬p1 ∧ ¬p2 ∧ 0) ∨ (p1 ∧ ¬p2 ∧ q1) ∨ (¬p1 ∧ p2 ∧ q2) ∨ (p1 ∧ p2 ∧ q3).

14
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A theorem of Goldberg and Jerrum states that any class of functions that can be ex-
pressed using a relatively small number of distinct polynomial inequalities has small VC-
dimension.

Theorem 19 (Theorem 2.2 of Goldberg and Jerrum (1995)) Let k, n be positive in-
tegers and f : <n × <k → {0, 1} be a function that can be expressed as a Boolean formula
containing s distinct atomic predicates where each atomic predicate is a polynomial inequal-
ity or equality in k + n variables of degree at most d. Let F = {f(·, w) : w ∈ <k}. Then
VCDim(F) ≤ 2k log2(8eds).

Proof [of Theorem 10]. Consider a neural network with W weights and U computation
units, and assume that the activation function ψ is piecewise polynomial of degree at most
d with p pieces. To apply Theorem 19, we will express the sign of the output of the network
as a Boolean function consisting of less than 2(1 + p)U atomic predicates, each being a
polynomial inequality of degree at most max{U + 1, 2dU}.

Since the neural network graph is acyclic, it can be topologically sorted. For i ∈ [U ],
let ui denote the ith computation unit in the topological ordering. The input to each
computation unit u lies in one of the p pieces of ψ. For i ∈ [U ] and j ∈ [p], we say “ui is in
state j” if the input to ui lies in the jth piece.

For u1 and any j, the predicate “u1 is in state j” is a single atomic predicate which
is the quadratic inequality indicating whether its input lies in the corresponding interval.
So, the state of u1 can be expressed as a function of p atomic predicates. Conditioned on
u1 being in a certain state, the state of u2 can be determined using p atomic predicates,
which are polynomial inequalities of degree at most 2d + 1. Consequently, the state of
u2 can be determined using p + p2 atomic predicates, each of which is a polynomial of
degree at most 2d + 1. Continuing similarly, we obtain that for each i, the state of ui
can be determined using p(1 + p)i−1 atomic predicates, each of which is a polynomial of
degree at most di−1 +

∑i−1
j=0 d

j . Consequently, the state of all nodes can be determined

using less than (1 + p)U atomic predicates, each of which is a polynomial of degree at most
dU−1 +

∑U−1
j=0 d

j ≤ max{U + 1, 2dU} (the output unit is linear). Conditioned on all nodes
being in certain states, the sign of the output can be determined using one more atomic
predicate, which is a polynomial inequality of degree at most max{U + 1, 2dU}.

In total, we have less than 2(1 + p)U atomic polynomial-inequality predicates and each
polynomial has degree at most max{U + 1, 2dU}. Thus, by Theorem 19, we get an upper
bound of 2W log2(16e · max{U + 1, 2dU} · (1 + p)U ) = O(WU log((1 + d)p)) for the VC-
dimension.
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