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Abstract

In this paper we provide a finite-sample and an infinite-sample representer theorem for the
concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert
spaces. These results serve as mathematical foundation for the analysis of machine learn-
ing algorithms based on compositions of functions. As a direct consequence in the finite-
sample case, the corresponding infinite-dimensional minimization problems can be recast
into (nonlinear) finite-dimensional minimization problems, which can be tackled with non-
linear optimization algorithms. Moreover, we show how concatenated machine learning
problems can be reformulated as neural networks and how our representer theorem applies
to a broad class of state-of-the-art deep learning methods.

Keywords: deep kernel learning, representer theorem, artificial neural networks, multi-
layer kernel, regularized least-squares regression

1. Introduction

The interpolation or regression of given function values is one of the main tasks in modern
data mining and machine learning applications. Due to the famous representer theorem for
empirical risk minimization in reproducing kernel Hilbert spaces (RKHS), see e.g. Schölkopf
and Smola (2002); Steinwart and Christmann (2008); Kimeldorf and Wahba (1970), various
algorithms based on finite linear combinations of kernel translates have gained much popu-
larity in the last decade, like, for example, support vector machines (SVMs) and Tikhonov-
regularized least-squares in RKHS. In general, these methods work very well if the underly-
ing problem fits the chosen reproducing kernel space H, e.g. if the given input values stem
from a function g ∈ H. However, if H contains for instance only smooth functions but g
has a kink or a jump, the interpolant or regressor, respectively, in H might not represent
a good approximation to the true function g anymore. Then, if it is not known how to
choose an appropriate kernel K of H a priorily, one usually relies on so-called multiple ker-
nel learning (MKL) algorithms, which try to determine the optimal kernel adaptively, see
e.g. Bach et al. (2004). But while most of these methods allow to learn a suitable kernel by
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simply constructing a linear or convex combination of a given set of input kernels, they still
do not achieve considerably better results than standard a-priori kernel choices for many
applications, see Gönen and Alpaydin (2011).

In recent years, promising new variants of kernel learning methods, namely deep ker-
nel learning and multi-layer-MKL (MLMKL) algorithms have been developed. They have
proven to be very successful in regression and classification tasks. Here, motivated by multi-
layer feed-forward neural networks, a kernel function is concatenated with one or more non-
linear functions in order to achieve a highly flexible new kernel function, see e.g. Cho and
Saul (2009); Damianou and Lawrence (2013); Rebai et al. (2016); Strobl and Visweswaran
(2013); Wilson et al. (2016); Zhuang et al. (2011). The main idea behind this approach is to
combine the flexibility of deep neural networks, in which the feature detection in the data
set is done completely automatically, with the approximation power of kernel methods, in
which a feature map is determined by the chosen kernel. This way, the neural network archi-
tecture learns the optimal kernel that best represents important features of the data for the
task at hand. While first steps towards creating a mathematical framework to analyze deep
neural networks—especially for image classification tasks—have been made in e.g. Mallat
(2016); Mhaskar et al. (2017); Montavon et al. (2017), deep approximation theory for kernel
based approaches is still missing at large. Moreover, the underlying nonlinear minimization
problem is usually tackled by simple gradient descent and heuristic backpropagation algo-
rithms without a thorough theoretical analysis of its properties. An initial cornerstone for
the analysis of chained kernel approximations has been provided by Dinuzzo (2011), where
two-layer kernel networks were considered and their relation to MKL was established. How-
ever, an analysis of deeper kernel networks and their connection to MLMKL has not been
considered so far.

In this paper, we consider the problem of optimal concatenated approximation in re-
producing kernel Hilbert spaces, which will directly lead to a variant of multi-layer kernel
learning problems and will extend the results achieved in Dinuzzo (2011). For this class,
we will prove a representer theorem, which allows us to reduce the nonlinear, potentially
infinite-dimensional optimization problem to a finite-dimensional one. Consequently, stan-
dard nonlinear optimization techniques can be used to tackle this problem. At least to our
knowledge, this is the first derivation of a representer theorem for concatenated function
approximation in the literature. It is also valid for certain types of hidden layer neural
networks and deep SVMs.

The remainder of this paper is organized as follows: In Section 2, we briefly review the
interpolation and the regression problem in an (possibly infinite-dimensional) RKHS and
discuss how the classical representer theorem allows to recast these problems into finite-
dimensional linear equation systems. In Section 3, we introduce the optimal concatenated
approximation problem for arbitrary loss functions and regularizers. We derive a represen-
ter theorem for this problem in the multi-layer case and discuss its relation to deep learning
and multi-layer multiple kernel learning methods. Furthermore, we exemplarily derive al-
gorithms for interpolation and least-squares regression in the two-layer case from it. The
latter will be a natural generalization of the RLS2 method developed in Dinuzzo (2011),
which only deals with a linear outer kernel. Section 4 illustrates the application of our
concatenated interpolation and regression algorithms to two simple examples and serves as
a proof of concept. Finally, we conclude with a summary and an outlook in Section 5.
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2. Interpolation and regression in reproducing kernel Hilbert spaces

In this section we shortly review interpolation and least-squares regression problems, re-
spectively, in an RKHS. To this end, we consider the standard representer theorem and
show how it helps to find an interpolant/regressor.

2.1. Interpolation

Let Ω ⊂ Rd be an open domain and let the pairwise disjoint points X := {x1, . . . ,xN} ⊂ Ω
and the values Y := {y1, . . . , yN} ⊂ R be given. Let furthermore H := H(Ω,R) be a repro-
ducing kernel Hilbert space of real-valued functions on Ω. The minimal norm interpolant
is

f∗X,Y := arg min
f∈H

‖f‖H such that f(xi) = yi ∀ i = 1, . . . , N. (1)

The classical representer theorem, see e.g. Schölkopf and Smola (2002); Steinwart and
Christmann (2008) for scalar-valued functions and Micchelli and Pontil (2005) for vector-
valued functions, now states that f∗X,Y can be written as a finite linear combination of kernel
evaluations in the data, namely

f∗X,Y (x) =

N∑
i=1

α∗iK(xi,x), (2)

where K : Ω × Ω → R denotes the reproducing kernel of H and α∗i ∈ R, i = 1, . . . , N ,
are the corresponding coefficients. For details on RKHS, see Aronszajn (1950). Therefore,
the solution to the possibly infinite-dimensional optimization problem (1) resides in the
N -dimensional span of the functions K(xi, ·), i = 1, . . . , N . To compute the coefficients, we
simply have to solve the system

MX,Xα
∗ = y (3)

of linear equations with

MX,X :=

K(x1,x1) . . . K(x1,xN )
...

. . .
...

K(xN ,x1) . . . K(xN ,xN )

 , α∗ :=

α∗1
...
α∗N

 and y :=

 y1
...
yN

 . (4)

Note that this N × N system admits a unique solution if the kernel K is strictly positive
definite. For example, for Sobolev kernels it can be shown that the condition number of
the system matrix MX,X only grows moderately with the size N provided that the data
points are quasi-uniformly distributed, see de Marchi and Schaback (2010). Moreover,
for infinitely smooth kernel functions (e.g. Gaussian kernels or multiquadrics) it can be
necessary to perform an appropriate basis change before solving the above equation system,
see e.g. Wendland (2005).

2.2. Least-squares regression

In real-world applications, the values yi, i = 1, . . . , N are usually not exactly given, but are
perturbed by some noise term. Therefore, a direct interpolation might no longer be ap-
propriate. In this case, one considers the corresponding regularized least-squares regression

3



Bohn, Griebel and Rieger

problem

fλX,Y := arg min
f∈H

λ‖f‖2H +

N∑
j=1

|f(xi)− yi|2, (5)

where the side condition in (1) is substituted by a penalty term. Here, the Lagrange mul-
tiplier λ weights the importance of the norm minimization against the function evaluation
error. Again, the representer theorem Micchelli and Pontil (2005); Schölkopf and Smola
(2002); Steinwart and Christmann (2008) tells us that fλX,Y is of the form (2), i.e.

fλX,Y (x) =
N∑
i=1

αλiK(xi,x).

This time the coefficients αλi , i = 1, . . . , N , are determined by

(MX,X + λI)αλ = y, (6)

where I denotes the N ×N identity matrix. The size of the Lagrange parameter λ > 0 now
also influences the condition number of the system matrix, i.e. the larger λ is, the smaller
the condition number becomes.

3. Interpolation and regression with compositions of reproducing kernel
Hilbert spaces

As already mentioned in the introduction, the standard interpolation and regression algo-
rithms in RKHS work well if the samples yi are (perturbed) evaluations of a function g ∈ H,
where the reproducing kernel space H is known in the first place. However, if the appro-
priate RKHS H is unknown, it is advisable to resort to multiple kernel learning methods
or multi-layer multiple kernel learning methods.

We now explain this aspect in more detail and, to this end, motivate a first two-
dimensional, two-layer approach with an example: Let the kernel K of H be a tensor-
product of two univariate Matérn Sobolev kernels of order one on R, see Section 4 for a
definition of this kernel. The corresponding function space H is often also called Sobolev
space of “mixed smoothness” of order one and it is of special importance for e.g. sparse grid
discretizations, see Bungartz and Griebel (2004), and quasi Monte Carlo quadrature, see
Hinrichs et al. (2016). Now, let us consider the continuous function g1(x, y) := (0.1+ |x|)−1,
which has a kink that is perpendicular to the x-axis. It can easily be shown that g1 ∈ H
and, therefore, the interpolant of g1 by a function from H resembles a good approximation
to g1, see Figure 1(a). If we now look at g2(x, y) := (0.1 + |x − y|)−1, which has a kink
along the diagonal with x = y, then g2 /∈ H. Therefore, the interpolant of g2 by a function
in H is a rather bad approximation to g2. This can be seen in Figure 1(b). However, if
we let R−1 be a rotation by 45◦, then g2 ◦ R−1 ∈ H would have an axis-aligned kink like
g1. To use this fact when interpolating g2, we can simply look for the best interpolant in
{f ◦R | f ∈ H} in (1) instead of f ∈ H. This example is illustrated in Figure 1(c). As we
can see, the interpolant in Figure 1(c) is a much better representative for g2 than the one
in Figure 1(b). This example illustrates that, already in the very simple case of employing
a concatenation with a rotation, a two-layer approach can be a good choice to overcome
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(b) yi = g2(xi), f ∈ H
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(c) yi = g2(xi), f ∈ {h ◦R | h ∈ H}

Figure 1: Solutions to (1) in the two-variate tensor-product Matérn-kernel Sobolev space H
of order one, see also Fasshauer and Ye (2011), with 200 uniform samples xi, i = 1, . . . , 200
(marked in black), shown in the domain [−1, 1]2. (a) depicts the solution f ∈ H for values
yi sampled from g1, whereas (b) shows the optimal solution for yi sampled from g2. (c)
presents the best interpolant of type f ◦ R, where f ∈ H and R is a rotation by 45◦

for yi sampled from g2. For reasons of comparability, we restricted our representation to
[−1, 1]2 here, although some data points were mapped outside of this domain by applying
the rotation R and the kernel was defined on the whole R2.

the restrictions of a standard kernel learning algorithm. Let us remark that already this
motivating example exhibits a fundamentally different setting from the one considered in
Dinuzzo (2011) because of the nonlinearity of the outer kernel. While the RLS2 algorithm
introduced there can be interpreted as an MKL variant, where a convex combination of
given kernel functions is computed, we are looking for an inner function, which transforms
the domain in such a way that it is optimal for the (possibly nonlinear) outer kernel.

Now, instead of just considering one layer of simple rotations as in the above example,
we allow for a fully flexible multi-layer kernel learning approach, where we employ arbitrary
functions from reproducing kernel Hilbert spaces in each layer. This approach can success-
fully deal with a much broader class of interpolation and regression problems, see also Rebai
et al. (2016); Zhuang et al. (2011). To this end, we consider concatenated machine learning
problems. We introduce a new representer theorem for the case of multiple concatenations
of functions from RKHS, which allows us to derive the related, finite-dimensional, nonlinear
optimization problem.

3.1. A representer theorem for concatenated kernel learning

In this section, we show how a concatenated representer theorem can be derived for a very
general class of problem types and an arbitrary number L ∈ N of concatenations. For more
details on vector-valued reproducing kernel Hilbert spaces, we refer the reader to Micchelli
and Pontil (2005). For a two-layer variant of this theorem, we refer to Dinuzzo (2011).

Theorem 1 Let H1, . . . ,HL be reproducing kernel Hilbert spaces of functions with finite-
dimensional domains Dl and ranges Rl ⊆ Rdl with dl ∈ N for l = 1, . . . , L such that
Rl ⊆ Dl−1 for l = 2, . . . , L, DL = Ω and R1 ⊆ R. Let furthermore L : R2 → [0,∞] be
an arbitrary loss function and let Θ1, . . . ,ΘL : [0,∞) → [0,∞) be strictly monotonically
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increasing functions. Then, a set of minimizers (fl)
L
l=1 with fl ∈ Hl of

J(f1, . . . , fL) :=
N∑
i=1

L (yi, f1 ◦ . . . ◦ fL(xi)) +
L∑
l=1

Θl

(
‖fl‖2Hl

)
(7)

fulfills fl ∈ Ṽl ⊂ Hl for all l = 1, . . . , L with

Ṽl = span {Kl (fl+1 ◦ . . . ◦ fL (xi) , ·) ekl | i = 1, . . . , N and kl = 1, . . . , dl} ,

where Kl denotes the reproducing kernel of Hl and ekl ∈ Rdl is the kl-th unit vector.

Proof We denote by ΠṼl
and Π⊥

Ṽl
the projector onto Ṽl and its orthogonal complement in

Hl, respectively, for l = 1, . . . , L. First, we note that

fl ◦ fl+1 ◦ . . . ◦ fL(xi) =

dl∑
k=1

(
ΠṼl

(fl) + ΠṼ ⊥l
(fl) ,Kl (fl+1 ◦ . . . ◦ fL(xi), ·) ek

)
Hl

· ek

=

dl∑
k=1

(
ΠṼl

(fl) ,Kl (fl+1 ◦ . . . ◦ fL(xi), ·) ek
)
Hl

· ek

=

dl∑
k=1

(
eTk ΠṼl

(fl) (fl+1 ◦ . . . ◦ fL(xi))
)
· ek

= ΠṼl
(fl) (fl+1 ◦ . . . ◦ fL(xi))

for all i = 1, . . . , N and l = 1, . . . , L. Since this holds for each function in the chain, we can
iterate this process to obtain

fl ◦ fl+1 ◦ . . . ◦ fL(xi) = ΠṼl
(fl) ◦ΠṼl+1

(fl+1) ◦ . . . ◦ΠṼL
(fL) (xi) (8)

for each l = 1, . . . , L. Therefore, we have

J(f1, . . . , fL) =

N∑
i=1

L
(
yi,ΠṼ1

(f1) ◦ . . . ◦ΠṼL
(fL)(xi)

)
+

L∑
l=1

Θl

(
‖ΠṼl

(fl)‖2Hl
+ ‖ΠṼ ⊥l

(fl)‖2Hl

)
≥ J(ΠṼ1

(f1), . . . ,ΠṼL
(fL))

and equality only holds if fl ∈ Ṽl for each l = 1, . . . , L because of the strict monotonicity of
each Θl. This completes the proof.

Note that theorem 1 also holds for

J(f1, . . . , fL) := L (y1, f1 ◦ . . . ◦ fL(x1), . . . , yN , f1 ◦ . . . fL(xN )) +

L∑
l=1

Θl

(
‖fl‖2Hl

)
with arbitrary loss L :

(
R2
)N → [0,∞]. However, the version we proved above is more

consistent with the remainder of this paper. Furthermore, because of (8), we could also
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state an even more general version of Theorem 1 where the loss function L not only depends
on the point evaluations f1◦ . . .◦fL(xi) for i = 1, . . . , N , but also on the intermediate values
fl ◦ . . . ◦ fL(xi) for any l = 2, . . . , L. However, for the sake of readability, we proceed with
(7). Theorem 1 now states that

(f1, . . . , fL) = arg min
f̄l∈Hl
l=1,...,L

J(f̄1, . . . , f̄L) = arg min
f̄l∈Ṽl

l=1,...,L

J(f̄1, . . . , f̄L) (9)

with J from (7). This means that the (possibly) infinite-dimensional optimization problem

arg min
f̄l∈Hl
l=1,...,L

J(f̄1, . . . , f̄L)

can be recast into the finite-dimensional optimization problem

arg min
f̄l∈Ṽl

l=1,...,L

J(f̄1, . . . , f̄L).

In this way, our representer theorem is a direct extension of the classical representer theorem,
see Section 2 and Schölkopf and Smola (2002), to concatenated functions. We obtain that
the solution to (9) is given by a linear combination of at most N basis functions in each
layer. Therefore, the overall number of degrees of freedom in the underlying optimization
problem (9) is given by

#dof =
L∑
l=1

dim
(
Ṽl

)
=

L∑
l=1

N · dl = N ·
(

1 +
L∑
l=2

dl

)
.

According to Theorem 1, we can write f1 as

f1(·) =

N∑
j=1

αjK1 (f2 ◦ . . . ◦ fL(xj), ·)

for some coefficients αj ∈ R. Therefore, the concatenated function h(·) = f1 ◦ . . . ◦ fL(·),
which we are interested in, can be expressed as

h(·) =

N∑
j=1

αjKL(xj , ·)

with the deep kernel

KL(x,y) = K1 (f2 ◦ . . . ◦ fL(x), f2 ◦ . . . ◦ fL(y)) . (10)

Due to the definition of Ṽl for l = 1, . . . , L, the corresponding fl is defined recursively. In
general, it is thus not possible to simply write down a closed formula for KL for arbitrary
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L. To illustrate the structure of the kernel KL, we therefore consider a two-layer exam-
ple with L = 2 in the following. In this case, we obtain Ṽ2 = span{K2(xi, ·)ek2 | i =
1, . . . , N and k2 = 1, . . . , d2}. From Theorem 1, we know that

f2(·) =
N∑
i=1

d2∑
k2=1

ci,k2K2(xi, ·)ek2

for certain coefficients ci,k2 ∈ R. Furthermore, we have that f1 ∈ Ṽ1 = span{K1(f2(xi), ·) |
i = 1, . . . , N} and thus

f1(·) =

N∑
j=1

αjK1

 N∑
i=1

d2∑
k2=1

ci,k2K2(xi,xj)ek2 , ·

 .

The concatenated function is then given by h(·) := f1 ◦ f2(·) =
∑N

j=1 αjK2(xj , ·) with the
composition kernel

K2(x,y) = K1

 N∑
i=1

d2∑
k2=1

ci,k2K2(xi,x)ek2 ,

N∑
i=1

d2∑
k2=1

ci,k2K2(xi,y)ek2

 . (11)

Therefore, instead of considering the infinite-dimensional optimization problem of finding
f1 ∈ H1 and f2 ∈ H2 that minimize

J(f1, f2) =
N∑
i=1

L (yi, f1(f2(xi))) + Θ1

(
‖f1‖2H1

)
+ Θ2

(
‖f2‖2H2

)
,

we can restrict ourselves to finding the N + N · d2 coefficients αj , ci,k2 for i, j = 1, . . . , N
and k2 = 1, . . . , d2.

Note at this point that the problem of finding these coefficients is highly nonlinear
and becomes more complicated for a larger number of layers L. While the corresponding
problem of optimizing the outermost coefficients, i.e. αj for j = 1, . . . , N in our example,
is still convex if the loss L and the penalty terms Θ1,Θ2 are convex, the optimization of
the inner coefficients, i.e. ci,k2 for i = 1, . . . , N and k2 = 1, . . . , d2, is usually not convex
anymore and can have many local minima. Here, finding a global minimum is an issue
because standard (iterative) optimization methods strongly depend on the chosen initial
value and usually just deliver some local minimum.

If the optimization functional J is smooth, one can rely on a Newton-type minimizer
such as BFGS to solve the underlying optimization problem. However, if one deals with
nonsmooth loss functionals or penalty terms, one should resort to specifically designed
stochastic gradient algorithms which fit the problem at hand, see e.g. Reddi et al. (2016).

It remains to note that our representer theorem covers much more than just interpolation
or least-squares regression algorithms. In the same fashion as the standard representer
theorem in Schölkopf and Smola (2002), it can directly be applied to more involved settings
such as regression with a concatenation of support vector machines for instance. To this
end, just choose L to be the ε-insensitive loss function and Θ1(x) = . . . = ΘL(x) = x.
Furthermore, the choice of the additive penalties Θ1, . . . ,ΘL in (7) is rather arbitrary and
one could think of more complex interactions between the penalties for each function fl, l =
1, . . . , L, as long as the arguments in the proof of Theorem 1 remain valid.
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3.2. An infinite-sample representer theorem for concatenated kernel learning

After deriving the representer theorem 1 for the case of multi-layer kernel approximations,
we now extend our results to the case of infinitely many samples. This has to be understood
in analogy to the results in chapter 5 of Steinwart and Christmann (2008), where such an
infinite-sample representer theorem is provided for the single-layer case. Although such a
result can usually not directly be applied to a practical problem unless the distribution of
the data points is known, it can serve as a cornerstone for the analysis of robustness with
respect to a measure change and can lead to a-priori convergence results, see Steinwart and
Christmann (2008). We will restrict the loss function to be an L-times differentiable Nemit-
ski loss for the following theorem. For a definition, we refer to Steinwart and Christmann
(2008) or our appendix, where we define an even more general type of Nemitski vector loss.
Note that, when we refer to convexity or differentiability of Nemitski losses or reproducing
kernels, this should always be understood with respect to the second argument, i.e. dK(x, z)
should be understood as ∂

∂zK(x, z). In the following, we denote by B(X,Y ) the space of
bounded linear operators from X to Y , endowed with the standard operator norm.

Theorem 2 Let H1, . . . ,HL and the domains and ranges of their elements be as in theorem
1 and let λ1, . . . , λL > 0. Let, furthermore, the kernel Kl of Hl fulfill Kl ∈ C1(Dl × Dl)
together with

sup
x∈Dl

‖Kl(x,x)‖2 ≤ cl and sup
x,z∈Dl

‖dKl(x, z)‖B(Dl,Rdl×dl) ≤ cl (12)

for some cl < ∞ and all l = 1, . . . , L. Let P be a distribution on Ω × R1 and let L :
R1 × R → [0,∞) be a convex, P-integrable and 1-times differentiable (w.r.t. the second
variable) Nemitski loss such that the absolute value of the derivative is also a P-integrable
Nemitski loss, which fulfills∣∣∣L(k)(y, z)

∣∣∣ ≤ bk(y) + hk(|z|) for all (y, z) ∈ R1 × R

for some L1,PR1
-integrable1 bk : R1 → [0,∞) and some increasing hk : [0,∞) → [0,∞) for

k = 0, 1. Then, if we assume that a set of minimizers (fl)
L
l=1 with fl ∈ Hl of

J(f1, . . . , fL) :=

∫
Ω×R1

L (y, f1 ◦ . . . ◦ fL(x)) dP(x, y) +

L∑
l=1

λl‖fl‖2Hl
(13)

exists, it fulfills the Bochner-type integral equation

fl(·) = − 1

2λi

∫
Ω×R1

Kl (·, fl+1 ◦ . . . ◦ fL(x))Afl,fl+1,...,fL(x, y) dP(x, y) (14)

for some Afl,fl+1,...,fL ∈ L1,P(Ω×R1;Rl) for all l = 1, . . . , L.

Proof The proof works layer-wise and it is an extension of the proof of theorem 5.8
of Steinwart and Christmann (2008) to the multi-layer case and to Nemitski vector loss

1. Here, PR1 denotes the marginal distribution of P w.r.t. the second variable.

9



Bohn, Griebel and Rieger

functions, see also definition 5. Let gi ∈ Hi be arbitrary for all i = 1, . . . , L. Let G1 :
Ω × R1 → R2 × R1 be defined by G1(x, y) = (g2 ◦ . . . ◦ gL(x), y). Obviously, G1 is a
measurable map and we can define the pushforward G1,?(P) of P onto R2 ×R1. With this
we obtain∫

Ω×R1

L (y, g1 ◦ . . . ◦ gL(x)) dP(x, y) =

∫
R2×R1

L (y, g1(ξ)) dG1,?(P)(ξ, y).

Now, with the functional Jg2,...,gL : H1 → [0,∞) defined by

Jg2,...,gL(g1) :=

∫
R2×R1

L (y, g1(ξ)) dG1,?(P)(ξ, y) + λ1‖g1‖2H1
,

we can reformulate the minimization problem as

min
g1∈H1,...,gL∈HL

J(g1, . . . , gL) = min
g2∈H2,...,gL∈HL

(
min
g1∈H1

Jg2,...,gL(g1)

)
+

L∑
l=2

λl‖gl‖2Hl
.

Since G1 leaves the second argument unchanged, it directly follows from the P-integrability
that L is also a G1,?(P)-integrable Nemitski loss. Therefore, the application of the infinite-
sample representer theorem 5.8 in Steinwart and Christmann (2008) states that the mini-
mizer g?1 of Jg2,...,gL can be written as

g?1(·) =− 1

2λ1

∫
R2×R1

L(1) (y, g?1(ξ))K1(·, ξ) dG1,?(P)(ξ, y)

=− 1

2λ1

∫
Ω×R1

L(1) (y, g?1 ◦ g2 ◦ . . . ◦ gL(x))K1(·, g2 ◦ . . . ◦ gL(x)) dP(x, y),

where L(1) denotes the first derivative of L w.r.t. the second argument. For the choice
gi = fi for i = 2, . . . , L, we obtain the minimizer f1 = g?1. Note that f1 is continuous and
‖f1‖∞ := supx∈D1

|f1(x)| <∞ since H1 ↪→ C(D1) follows directly by (12). Therefore, (14)
is true for l = 1 since

|Af1,...,fL(·)| :=
∣∣∣L(1) (y, f1 ◦ f2 ◦ . . . ◦ fL(·))

∣∣∣ ≤ b1(y) + h1 (|f1 ◦ f2 ◦ . . . ◦ fL(·)|)
≤ b1(y) + h1 (‖f1‖∞)

is in L1,P since b1 ∈ L1,PR1
(R1).

To tackle the next layer, we define L̃ : R1 ×R2 → [0,∞) by

L̃(y,z) := L(y, f1(z)).

We proceed by showing that L̃ is a P-integrable and 1-times differentiable Nemitski vector
loss. Then we show that we can use analogous techniques as in Steinwart and Christmann
(2008)—but for vector-valued functions—to ensure the representation (14) for l = 2. These
arguments can then be iterated until we reach the innermost layer and the proof is com-
pleted. Since the details are quite technical, we outsourced them into appendix A.

Theorem 2 states that the solution fl in the l-th layer of (13) is an element of the range of

10
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the integral operator defined by the kernel Kl (·, fl+1 ◦ . . . ◦ fL(·)) : Dl × Ω→ Rdl×dl . Note
that the statement of theorem 1 can be derived by choosing a sum of finitely many Dirac
measures δxi,yi as P in theorem 2. In this special case, the result boils down to fl being in
the span of the kernel evaluations in the data points.

Note furthermore that—in contrast to the finite sample case—fl is defined as a convo-
lution with the asymmetric kernel in (14). This can be interpreted as a smoothing step
for many kernel choices. In this sense, we can expect the solutions fl of (13) to employ
a higher degree of smoothness than in the case of (7), where the solutions are only finite
linear combinations of kernels. However, this of course comes at the cost of the regularity
condition on the kernels in the requirements of theorem 2.

3.3. Relation to neural networks and deep learning

We now come back to the finite sample case in this section and discuss the relation of
our representer theorem 1 to two of the most common approaches in deep learning with
kernels, namely multi-layer multiple kernel learning (MLMKL) and deep kernel networks
(DKN), see e.g. Cho and Saul (2009); Damianou and Lawrence (2013); Rebai et al. (2016);
Strobl and Visweswaran (2013); Wilson et al. (2016); Zhuang et al. (2011). For reasons of
simplicity, we restrict ourselves to the two-layer case L = 2 here.

3.3.1. Relation to hidden layer neural networks

Let us first illustrate how our approach can be encoded as a hidden layer feed-forward
neural network. The idea behind artificial neural networks is the same as for multi-layer
kernel learning, namely using concatenations of functions to compute good approximations.
More precisely, the so-called universal approximation theorem states that already a two-
layer neural network can approximate any continuous function arbitrarily well, see Cybenko
(1989); Hornik (1991). For more details on artificial neural networks and deep learning, we
refer the reader to Goodfellow et al. (2016).

As mentioned in the two-layer case above, we are aiming to find a function h(·) =
f1 ◦ f2(·) =

∑N
j=1 αjK2(xj , ·) with f1 ∈ H1 and f2 ∈ H2 and associated K1 and K2,

respectively, where the kernel K2 is given by (11). The construction of h can be easily
encoded as a feed-forward neural network with one hidden layer if K1 is a radial basis
function (RBF) kernel for instance2. We illustrate3 the case d2 = 1 with an RBF kernel
K1(z1, z2) = a(|z1 − z2|) for some function a : R → R in Figure 2. The first layer is
split into the input layer with values K2(xi,x) for i = 1, . . . , N and an artificial “always
on” layer with neuron-clusters that supply the constant values K2(xi,xj) with weights −cj
for i, j = 1, . . . , N . Note that the i-th cluster K2(xi,xj) of the “always on” layer is only
connected to the i-th neuron of the hidden layer. Note furthermore that the inputs K2(xi,x)
can also easily be computed by a neural network with fixed weights if K2 is a radial basis

2. For many other types of kernels, e.g. tensor products of RBF kernels, one can still construct a more
complex Sigma-Pi neural network for the computation of the output values.

3. Note that we only choose d2 = 1 for illustrative reasons. For d2 > 1, a neural network can be built
analogously with an additional hidden layer to compute the norm of the difference of d2-dimensional
vectors. However, this additional layer, which just computes ‖x − y‖2 for given x and y, has fixed
weights and does not play any role for the optimization of the neural network.

11
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K2(x1,x)

...

K2(xN ,x)

——————

K2(x1,xj)

...

K2(xN ,xj)

...
f1(f2(x)) Output

c1

cN

c1

cN

−cj

−cj

α1

αN

Hidden
layer

Activation
function a

Input
layer

Output
layer

Always On
Neurons

Figure 2: A hidden layer, feed-forward neural network to simulate the concatenation of two
functions f1 and f2 from reproducing kernel Hilbert spaces. For reasons of readability, we
choose d2 = 1 and write ci := ci,1. The outer kernel is K1(z1, z2) = a(|z1 − z2|). Note that
the i-th artificial “always on” neuron-cluster in the lower half of the first layer is written as
K2(xi,xj), which stands for N single neurons with values K2(xi,x1), . . . ,K2(xi,xN ). The
cluster K2(xi,xj) is only connected to the i-th neuron of the hidden layer with weights −cj
(red lines). This means that the value

∑N
j=1−cjK2(xi,xj) is forwarded to the i-th neuron

of the hidden layer.

kernel. If we consider a “deeper” concatenation, we would need a deeper neural network
with additional layers, i.e. for f1 ◦ . . . ◦ fL, we need L− 1 hidden layers.

3.3.2. Relation to multi-layer multiple kernel learning

The common idea in MLMKL methods is to learn a kernel K̃, which consists of a chain of
linear combinations of functions and an inner kernel, e.g.

K̃(x,y) =

n1∑
`=1

ν1,`k1,`

(
n2∑
i=1

ν2,iK2,i(x,y)

)

in the two-layer case, where k1,` are real-valued functions for ` = 1, . . . , n1 and K2,i are
different scalar-valued kernels for i = 1, . . . , n2. Note that the functions k1,` are chosen
such that K̃ is still a kernel. In the case of linear k1,`, Dinuzzo (2011) has shown that
the resulting algorithm becomes a standard MKL procedure and can be interpreted as a
two-layer kernel network with a linear outer kernel. However, for arbitrary k1,` this is not

12
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the case and we are dealing with a true MLMKL approach. The specific MLMKL algorithm
then aims to find the optimal values for the coefficients ν1,`, ν2,i in order to determine the
best K̃ for a regression of the given data X and Y with e.g. a support vector regression
algorithm. Note that the kernels and the k-functions are usually chosen heuristically, e.g. as
polynomials, Gaussians, sigmoidals, etc., see Rebai et al. (2016); Zhuang et al. (2011).

To apply our result to the two-layer MKL method above, let us consider the case n1 = 1
and n2 = N . We set ν1,1 = 1 without loss of generality. We let the outer function
k1,1(z) = a(|z|) be the radial basis function used for the outer kernel (i.e. middle layer) in
Figure 2. Furthermore, we set

K2,i(x,y) := K2(xi,x)−K2(xi,y).

Note that the K2,i are no longer kernels anymore in this setting. However, they are now
directly connected to our concatenated function learning approach since

K̃(x,y) = k1,1

(
N∑
i=1

ν2,iK2,i(x,y)

)
= a

(∣∣∣∣∣
N∑
i=1

ν2,iK2(xi,x)− ν2,iK2(xi,y)

∣∣∣∣∣
)

= K1

(
N∑
i=1

ν2,iK2(xi,x),

N∑
i=1

ν2,iK2(xi,y)

)
= K2 (x,y)

from (11) with ci = ν2,i and the kernels K1 and K2 used in Figure 2. Altogether, we thus see
that an MLMKL algorithm with these parameters already determines the optimal solution
(provided that the right hand side of (9) is solved exactly) among all functions of type
h = f1 ◦ f2 with f1 ∈ H1 and f2 ∈ H2 according to Theorem 1. This way, our representer
theorem for concatenated functions directly applies to a special case of MLMKL networks.
Note however that a generalization of our arguments to more layers, i.e. L > 2, is not
straightforward for MLMKL.

3.3.3. Relation to deep kernel learning approaches

The class of DKN methods consists of algorithms which build a kernel by nonlinearly trans-
forming the input vectors before applying an outer kernel function. This is in contrast to
the MLMKL approach, where only the innermost function is a two-variate kernel and its
evaluations are modified by some nonlinear outer functions. The models in this class range
from simple feature map powers for some function Ψ, i.e.

K̃(x, y) = Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
L−1 times

(x) ·Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
L−1 times

(y),

see Cho and Saul (2009), to more general variants like

K̃(x, y) = K (f2 ◦ . . . ◦ fL(x), f2 ◦ . . . ◦ fL(y))

with nonlinear functions f2, . . . , fL, see Wilson et al. (2016). If we assume that fl ∈ Hl for
l = 2, . . . , L stem from reproducing kernel Hilbert spaces with associated kernels Kl, we can
apply Theorem 1 to this approach and obtain that each fl can be written as a finite linear
combination of evaluations of the kernel Kl. Thus, we can directly apply our representer
theorem for L-layer DKN algorithms.
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3.4. The two-layer interpolation problem

After analyzing the general multi-layer kernel concatenation problem in Theorem 1, we now
have a closer, more detailed look at the main component of it, namely the concatenation
of two functions. To this end, we specifically consider the interpolation problem for L = 2.
This simple, illustrative setting gives further insights into the way concatenation works in
machine learning problems.

3.4.1. Definition of the problem

We slightly adapt our notation to this special case to obtain a direct relation to the single-
layer interpolation problem from Section 2. To this end, let D := d2 and consider the
domain Φ := D1 ⊆ RD together with the two function spaces

H (Φ,R) := H1 ⊂ C(Φ) := {f : Φ→ R | f continuous} – “outer” space,

H (Ω,Φ) := H2 ⊂
{
g = (g1, . . . , gD)T : Ω→ Φ | g continuous

}
– “inner” space.

Both spaces are supposed to be reproducing kernel Hilbert spaces, i.e. there is an (outer)
kernel K := K1 : Φ× Φ→ R for H (Φ,R) such that

K (x, ·) ∈ H (Φ,R) for all x ∈ Ω,

f (x) = (f,K (x, ·))H(Φ,R) for all x ∈ Ω and all f ∈ H (Φ,R) .

The function space H (Ω,Φ) is assumed to be a vector-valued RKHS, i.e. there is an (inner)
kernel K : Ω× Ω→ RD×D such that

K (x, ·) c ∈H (Ω,Φ) for all x ∈ Ω and all c ∈ RD,
cTg (x) = (g,K (x, ·) c)H(Ω,Φ) for all x ∈ Ω, all c ∈ RD and all g ∈H (Ω,Φ) .

To formulate the concatenated interpolation problem in the spirit of (1), we have to
define an appropriate functional and propose an appropriate search set for the minimization
task. To this end, we consider the functional J : H (Φ,R)×H (Ω,Φ)→ R given by

J (f, g) := ‖f‖2H(Φ,R) + ‖g‖2H(Ω,Φ) ,

which penalizes the norms of both the outer and the inner function, and the admissible set

AX,Y := {(f, g) ∈ H (Φ,R)×H (Ω,Φ) | f ◦ g (xj) = yj 1 ≤ j ≤ N} ,

i.e. the set of all concatenations of functions from H (Φ,R) and H (Ω,Φ) which interpolate
the data. With this notation, we can define the following variational optimization problem

J (f, g)→ min for (f, g) ∈ AX,Y (P)

As explained in Section 2, the solution f∗X,Y to the standard interpolation problem (1)
can be computed by solving the system (3) of linear equations for a given set of fixed and
pairwise disjoint input data points X := {x1, . . . ,xN}. Therefore, if we assume for a mo-
ment the inner function g in (P) to be fixed and Z := g(X) = {zi = g(xi) | i = 1, . . . , N},
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then we obtain that the solution f∗Z,Y to (1) with data points Z is the only admissible
minimizer of the concatenated interpolation problem (P), i.e.

f∗Z,Y = arg min
f∈{h∈H(Φ,R)|(h,g)∈AX,Y }

‖f‖2H(Φ,R).

Note that the coefficients α∗ ∈ RN of f∗Z,Y =
∑N

i=1 α
∗
iK(zi, ·) can be computed by solving

the system
MZ,Zα

∗ = y

and the value of the optimal energy, i.e. the squared norm, is given by∥∥f∗Z,Y ∥∥2

H(Φ,R)
= α∗TMZ,Zα

∗ = yTM−1
Z,Zy.

3.4.2. Application of the representer theorem

In order to rewrite the concatenated interpolation problem (P) into an unconstrained min-
imization problem by applying the above result, we first have to discuss what happens if
g (xj) = g (xk) for two indices j 6= k. If equality holds also for the corresponding values
from Y , i.e. yj = yk, we can simply remove the pair (xj , yj) ∈ X × Y from the input data
and with it also the corresponding condition from the admissible set. However, if yj 6= yk,
there cannot be an f ∈ H (Φ,R) such that (f, g) ∈ AX,Y . In this case, we simply set
J (f, g) = ∞. Using this convention, we can recast (P) into the unrestricted optimization
problem

J
(
f∗g(X),Y , g

)
= yTM−1

g(X),g(X)y + ‖g‖2H(Ω,Φ) → min for g ∈H (Ω,Φ) . (uP)

Therefore, we only have to consider the minimization with respect to g ∈ H (Ω,Φ) since
the optimal outer function f∗g(X),Y is completely determined by the inner function values

g(X) and Y .
Note that the side condition g (xj) 6= g (xk) for j 6= k can also be enforced by adding a

penalty term of type
∑

i<jW
(
‖g(xi)− g(xj)‖22

)
to J , where W is a smooth function with

W (0) = ∞, e.g. W (x) = coth(x). This can also remedy the problem of small condition
numbers ofMg(X),g(X) for large sample sizes since it maximizes distances between the point
evaluations of g. Adding this to (uP), we obtain

Jγ

(
f∗g(X),Y , g

)
:= J

(
f∗g(X),Y , g

)
+ γ

∑
1≤i<j≤N

coth
(
‖g(xi)− g(xj)‖22

)
(15)

→ min for g ∈H (Ω,Φ) .

However, since using J0 = J in our experiments in Section 4 works out already well and
the side condition does not seem to affect the results for moderate sample sizes, we restrict
ourselves to the problem (uP) in the following.

Although the above considerations seem to simplify the concatenated interpolation prob-
lem, we still have to solve a highly nonlinear optimization problem over the (possibly)
infinite-dimensional RKHS H (Ω,Φ). Nonetheless, by applying Theorem 1 to the unre-
stricted concatenated interpolation problem (uP), we can restrict the search space H (Ω,Φ)
to the span of the kernel translates in the input data.
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Corollary 3 Let VX := span{K(xi, ·)ej | i = 1, . . . , N and j = 1, . . . , D}, where ej de-
notes the j-th unit vector in RD. Then, the solution g∗ to the unconstrained concatenated
interpolation problem (uP) fulfills g∗ ∈ VX .

Proof We apply Theorem 1 with L = 2, Θ1(x) = Θ2(x) = x and

L (yi, f ◦ g(xi)) =

{
0 if f ◦ g(xi) = yi
∞ else,

which exactly resembles the interpolation problem (uP).

Due to Corollary 3, we can recast the unrestricted concatenated interpolation problem (uP)
into

J
(
f∗g(X),Y , g

)
= yTM−1

g(X),g(X)y + ‖g‖2H(Ω,Φ) → min for g ∈ VX ⊂H (Ω,Φ) . (uP-X)

This is a nonlinear, finite-dimensional and unrestricted optimization problem. We fix
the basis {K (xj , ·) e` | (j, `) ∈ I} with I :=

{
(j, `) ∈ N2 | 1 ≤ j ≤ N, 1 ≤ ` ≤ D

}
to solve

(uP-X). Then, the optimal solution can be written as

g∗(·) =
∑

(j,`)∈I

c∗j,`K (xj , ·) e`. (16)

In order to express the minimization problem (uP-X) with respect to the coefficients c∗ =(
c∗1,1, . . . , c

∗
N,D

)T
, we introduce QX,X (c) := Mg(X),g(X), i.e.

QX,X (c) =

K
 ∑

(j,`)∈I

cj,`K (xj ,xn) e`,
∑

(j,`)∈I

cj,`K (xj ,xm) e`


1≤n,m≤N

(17)

and the corresponding quadratic form

Q : RND → R, c 7→ yTQX,X (c)−1 y.

Furthermore, to express ‖g∗‖2H(Ω,Φ) with respect to c∗, we need

N : RND → R, c 7→
N∑

j,k=1

 cj,1...
cj,D


T

K (xj ,xk)

 ck,1...
ck,D

 . (18)

Finally, we obtain the finite-dimensional optimization problem

c∗ = arg min
c∈RND

Q (c)︸ ︷︷ ︸
‖f∗

g(X),Y
‖2
H(Φ,R)

+ N (c)︸ ︷︷ ︸
‖g‖2

H(Ω,Φ)

. (Int)
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3.4.3. Solving the minimization problem

The unconstrained problem (Int) is highly nonlinear because the coefficients cj,` are trans-
formed by the outer kernel function K. It can be tackled by any suitable iterative opti-
mization algorithm. If the kernels K and K are differentiable, a quasi-Newton approach is
appropriate. If this is not the case, a derivative-free optimizer should be chosen.

Note that we can restrict the minimization in (Int) to a compact subset of RND with-
out loss of generality. To this end, let K ∈ RND×ND be the N × N matrix of matrices
K(xi,xj) ∈ RD×D and note that

Q(c) +N (c) ≥ 0 + λmin (K) · ‖c‖22
‖c‖2→∞−→ ∞,

where λmin (K) > 0 denotes the smallest eigenvalue of K. Therefore, we can restrict
our search to the compact set A :=

{
c ∈ RND | ‖c‖2 ≤ C

}
for a large enough C > 0.

Unfortunately, we cannot directly obtain the existence of a minimizer from this since (Int)
is not continuous. However, if we add a smooth term

Pγ(c) = γ
∑

1≤m<n≤N
coth

(
‖g(xm)− g(xn)‖22

)

= γ
∑

1≤m<n≤N
coth

∥∥∥∥∥∥
∑

(j,`)∈I

cj,` (K (xj ,xm)−K (xj ,xn)) e`

∥∥∥∥∥∥
2

2

 ,

which is equivalent to (15), for γ > 0, we can deduce the existence of a minimizer with
the direct method from the calculus of variations. To this end, note that for a minimizing
sequence (ci)

∞
i=1 of Q + N + Pγ , there necessarily exist i0 ∈ N and C0 > 0 such that all

mutual squared distances ‖g(xm)− g(xn)‖22 with 1 ≤ m < n ≤ N are larger than C0 for
all ci with i > i0. Therefore, we can restrict the minimization to the compact subdomain

A ∩
{
c ∈ RND | ‖g(xm)− g(xn)‖22 ≥ C0 for 1 ≤ m < n ≤ N

}
,

on whichQ+N+Pγ is continuous, and the existence of a minimizer follows. Nevertheless, as
we explained above, the critical condition Pγ(c) =∞ is practically never met for moderate
data set sizes and, therefore, it is safe to assume that there also exists a minimizer for (Int).
Note however that, depending on the kernels and the data at hand, there usually might exist
many minimizers and the solution to (Int) might not be unique. To reduce the chance of
getting stuck in a local minimum, we propose to restart the minimization procedure several
times with different starting values for c∗.

Since we will be dealing with differentiable kernel functions in Section 4 and since the
derivatives of these kernels can be computed explicitly, we propose a BFGS minimization
algorithm to solve (Int). To this end, note that the only derivatives we need are essentially
the derivative of the inverse of QX,X(c), i.e.

∂

∂cm,n
Q−1
X,X(c) = −Q−1

X,X(c)
∂

∂cm,n
QX,X(c)Q−1

X,X(c),
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and the derivative of QX,X(c). The latter consists of the derivative of the outer kernel K,
which is known analytically for all kernel choices that we discuss in Section 4, and

∂

∂cm,n
g(x) =

∂

∂cm,n

∑
(j,`)∈I

cj,`K (xj ,x) e` = K (xm,x) en

for each (m,n) ∈ I. The overall computational cost complexity for one BFGS step, i.e. the
evaluation of Q,N and their derivatives, is bounded by O

(
N3D + (ND)2

)
.

3.5. Two-layer Least-squares regression

After the discussion of the two-layer interpolation problem in the last section, we now
consider the regularized two-layer least-squares problem in more detail. This is a natural
extension of the two-layer least-squares problem RLS2 considered in Dinuzzo (2011) to the
case of nonlinear outer kernels.

3.5.1. Definition of the problem

For concatenated, regularized least-squares regression, the minimization task changes to

Jλ,µ (f, g) :=
N∑
j=1

|f ◦ g (xj)− yj |2 +λ ‖f‖2H(Φ,R) + µ ‖g‖2H(Ω,Φ) (R)

→ min for f ∈ H (Φ,R) , g ∈H (Ω,Φ)

with λ, µ > 0, which is in the same fashion as the standard least-squares regression problem
(5).

Analogously to our considerations in Section 3.4, we find that, for fixed inner points
Z = g(X) ⊂ Φ, the function fλZ,Y , see (5), is the solution of the problem

N∑
j=1

|f(zj)− yj |2 + λ ‖f‖2H(Φ,R) → min for f ∈ H (Φ,R) .

The corresponding coefficients αλ ∈ RN with respect to the basis {K(zj , ·) | j = 1, . . . , N}
are computed by solving

(MZ,Z + λI)αλ = y.

Therefore, each of the terms of the optimal energy can be expressed as

∥∥∥fλZ,Y ∥∥∥2

H(Φ,R)
= αλ

T
MZ,Zα

λ = yT (MZ,Z + λI)−1MZ,Z (MZ,Z + λI)−1 y,

N∑
j=1

∣∣∣fλZ,Y (zj)− yj
∣∣∣2 =

∥∥∥MZ,Zα
λ − y

∥∥∥2

2
=
∥∥∥(I −MZ,Z (MZ,Z + λI)−1

)
y
∥∥∥2

2
.
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3.5.2. Application of the representer theorem

Analogously to (uP), we can use

Jλ,µ

(
fλg(X),Y , g

)
= λyT

(
Mg(X),g(X) + λI

)−1
Mg(X),g(X)

(
Mg(X),g(X) + λI

)−1
y

+ µ ‖g‖2H(Ω,Φ) +
∥∥∥(I −Mg(X),g(X)

(
Mg(X),g(X) + λI

)−1
)
y
∥∥∥2

2
(19)

to reformulate (R) as

Jλ,µ

(
fλg(X),Y , g

)
→ min for g ∈H (Ω,Φ) . (uR)

Corollary 4 The solution gλ,µ to the unconstrained concatenated regression problem (uR)
fulfills gλ,µ ∈ VX .

Proof We apply Theorem 1 with L = 2, Θ1(x) = λ · x, Θ2(x) = µ · x and

L (yi, f ◦ g(xi)) = |f ◦ g (xi)− yi|2 ,

which resembles the regression problem (R).

Hence, as for interpolation, we obtain a representer theorem for concatenated least-squares
regression, which allows us to replace the infinite-dimensional optimization problem (R)
with the finite-dimensional problem

Jλ,µ

(
fλg(X),Y , g

)
→ min for g ∈ VX ⊂H (Ω,Φ) . (uR-X)

Finally, we want to express (uR-X) in terms of the coefficients cλ,µ =
(
cλ,µ1,1 , . . . , c

λ,µ
N,D

)T
of gλ,µ with respect to the basis {K (xj , ·) e` | (j, `) ∈ I}. To this end, we set A :=(
QX,X (c) + λI

)−1
and define the quadratic forms

Qλ : RND → R, c 7→ λ · yTAQX,X (c)Ay,

N µ : RND → R, c 7→ µ · N (c) and

Cλ : RND → R, c 7→ yT
(
I −QX,X (c)A

)T (
I −QX,X (c)A

)
y

with the help of (17) and (18). Subsequently, we arrive at the optimization problem

cλ,µ = arg min
c∈RND

Qλ (c) +N µ (c) + Cλ (c) , (Reg)

which is the equivalent to (uR-X).
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3.5.3. Solving the minimization problem

Note that the existence of a minimizer follows by similar arguments as in the previous
section for the interpolation problem, i.e.

Qλ (c) +N µ (c) + Cλ (c) ≥ µ · λmin (K) · ‖c‖22
‖c‖2→∞−→ ∞

and we can thus restrict the search for a minimizer to a compact subset of RND. For
regression we need the inverse of QX,X(c) + λI to compute Qλ, which is positive definite
for every λ > 0 and, therefore, there are no pathological cases as in the interpolation
setting. Thus, the functions Qλ,N µ, Cλ are continuous and the minimization of (Reg) over
a compact subset of RND has a minimizer. Nevertheless, also in this case the minimizer is
not necessarily unique.

While the optimization for the coefficients in the RLS2 algorithm proposed in Dinuzzo
(2011) boils down to a simplex-constrained linear least-squares problem, we have to deal
with a high degree of nonlinearity here. Nevertheless, if the kernel functions are differen-
tiable, we can again—as in the interpolation case—employ a BFGS algorithm with several
restarts to approximately find the optimal coefficients cλ,µ. To this end, note that Qλ and
N µ can be computed similarly as Q and N in the interpolation case. Furthermore, also the
derivative of Cλ can be computed with the same techniques since we essentially only need
the derivatives of QX,X(c) and

(
QX,X (c) + λI

)−1
. While the number of terms is larger

than in the interpolation case, the asymptotic computational runtime is still bounded by
O
(
N3D + (ND)2

)
. Furthermore, the condition number of the matrix QX,X (c) + λI is

smaller than the one of QX,X , which had to be inverted for interpolation. Therefore, com-

puting Qλ(c) with an iterative solver for the application of
(
QX,X (c) + λI

)−1
needs fewer

computational steps than computing Q(c) in the interpolation case.

Finally, let us remark that for both interpolation and least-squares regression there
exists another possibility to obtain a finite-dimensional optimization problem from (P) and
(R), respectively, without using the representer theorem. We could discretize the functions
f1 ∈ H1 and f2 ∈ H2 by f̃1 ∈ V1 and f̃2 ∈ V2 with finite-dimensional spaces V1, V2, see
e.g. Bohn and Griebel (2017) for an error analysis of this scenario for single-layer regression.
However, when following this approach, the choice of the specific discretization can severely
influence the results of the minimization. Furthermore, we are limited by the size of the
dimensions of the discretization spaces V1, V2, which influences the computational costs for
solving the underlying optimization problem.

4. The effects of concatenated learning

This section serves to illustrate the main operating principle behind the concatenated in-
terpolation and regression algorithms presented in the previous section. Note that our brief
considerations in this section are not meant to provide a thorough numerical analysis of
the performance of the algorithms but are rather thought to aid the understanding of their
internal mechanisms. For benchmarks of highly performant variants of our basic algorithms
on real-world data we refer the interested reader to Damianou and Lawrence (2013); Rebai
et al. (2016); Zhuang et al. (2011).
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4.1. Kernel choice

For reasons of simplicity, we will stick to the two-layer case and to outer function spaces
H (Φ,R) with associated kernel K which are defined on the whole space RD. This way, the
image Φ of the inner function space is automatically contained in the domain of the outer
function space. Furthermore, if not stated otherwise, we assume that the matrix-valued
kernel K : Ω× Ω→ RD×D of the inner RKHS can be written as

K(x,y) = KI(x,y) · diag(a) (20)

for some weight vector a ∈ RD+ . Here, diag(a) denotes the diagonal matrix A with Aii = ai
and KI : Ω× Ω→ R is a scalar-valued kernel function.

Possible outer and inner kernel functions K and KI are the polynomial kernel

KPoly,p(x,y) :=
(
xTy + 1

)p
,

the Gaussian kernel

KGauss,σ(x,y) := exp

(
−‖x− y‖

2

2σ2

)
and the tensor-product Matérn kernel

KTensorMatérn,s(x,y) :=

d∏
i=1

κ 2s−1
2

(|xi − yi|) · |xi − yi|
2s−1

2 .

where κα denotes the modified (hyperbolic) Bessel function of the second kind with parame-
ter α. Note that the latter characterizes the Sobolev space of dominating mixed smoothness
of order s ∈ N, see e.g. Fasshauer and Ye (2011); Griebel and Harbrecht (2014) for a bi-
variate version. These Sobolev spaces play an important role for hyperbolic cross or sparse
grid approximations for instance, see e.g. Bungartz and Griebel (2004). Note that the
Gaussian kernel is already a tensor product kernel by nature.

4.2. Experiment design

Let us choose Ω = [−1, 1]2. We will evaluate our method for the two test functions

h1 : Ω→ R h1(x, y) := (0.1 + |x− y|)−1

h2 : Ω→ R h2(x, y) :=

{
1 if x · y > 3

20
0 else

.

The function h1 employs a kink-like structure along the diagonal of the domain, while
h2 represents an indicator function with a jump. Neither of these two functions is an
element of a reproducing kernel space spanned by any of the above kernel functions for
arbitrary parameters p, s ∈ N, σ ∈ (0,∞). Therefore they cannot be approximated too well
by a single-layer method. The approximation of such functions with kinks or jumps by (a
composition of) smooth functions plays an important role in applications from econometrics,
finance or two-phase flow problems for example.

We choose D = d = 2, i.e. Ω,Φ ⊂ R2, and a = (1 1)T . Then, we independently draw
N = 100 random equidistributed points {x1, . . . ,xN} ⊂ Ω and set yi := h∗(xi)+εi for all i =
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1, . . . , N for the function h∗ ∈ {h1, h2}. Here, εi are additive noise perturbations which are
drawn i.i.d. according to a centered Gaussian distribution with standard deviation 0.01. To
solve (Int) or (Reg), respectively, we use a BFGS algorithm with random initialization of the
coefficient vector c of the inner function, see also (16). As the goal functions employ many
local minima, we run the algorithm sufficiently many times to achieve a good approximation
to the global minimum. It turned out that 64 runs were sufficient for our case of 100 data
points in 2 dimensions. From the 64 runs we pick the vector c (and with this the functions f
and g) for which the smallest goal function value in (Int) or (Reg), respectively, is achieved.

To be able to compare our computed f(g(·)), which approximates the true solution
f∗g(X),Y (g∗ (·)) or fλg(X),Y

(
gλ,µ(·)

)
, respectively, to the result of a standard kernel inter-

polation/regression, we also calculate the interpolant/regressor w ∈
{
f∗X,Y , f

λ
X,Y

}
. This

resembles the solution to (1) or (5), respectively, for the reproducing kernel Hilbert space
H(Ω,R) which employs the same kernel type and parameters as H (Φ,R) but on the domain
Ω instead of Φ. We then define ti, i = 1, . . . , nt, as the points of a uniform grid of meshwidth
1
50 over Ω = [−1, 1]2, i.e. nt = 1012, and consider the pointwise error

| (f ◦ g − h∗) (ti)| and | (w − h∗) (ti)|,

which we visualize in a two-dimensional contour plot.

4.2.1. Interpolation

We first compare the results for two-layer interpolation, see (Int), with the results for
single-layer interpolation, see (1). To this end, we choose an outer Matérn kernel K =
KTensorMatérn,s with s = 1 and an inner polynomial kernel KI = KPoly,p with p = 1 or
p = 2. In Figure 3 we display the pointwise errors. We observe that there is a visible
improvement in the error when dealing with two-layer interpolation instead of single-layer
interpolation. While the benefits of two-layer interpolation are already observable for the
test function h2, they become even more obvious for h1. As explained in the beginning of
Section 3, the fact that the kink of h1 is not parallel to a coordinate axis poses a problem
when dealing with the tensor-product kernel. Since a linear transformation (rotation) would
suffice to remedy this problem, the polynomial kernel of degree p = 1 already suffices to
obtain a better error behavior. Therefore, p = 2 can already lead to a small overfitting
effect as we observe in Figure 3. Nevertheless, the error is still significantly better than in
the single-layer case. In the case of h2, however, we have a jump along two nonlinear curves.
Here, p = 2 seems to be more appropriate to deal with this problem. Overall, we come to the
conclusion that interpolation in reproducing kernel Hilbert spaces can significantly benefit
from a two-layer approach if the reproducing kernel at hand does not suit the underlying
function.

4.2.2. Regression

Now we have a look at solving the least-squares regression problem (Reg). To determine
the optimal parameters λ and µ, we run a 5-fold cross-validation on the input data for all
possible choices λ, µ ∈ {2−2t+1 | t = 1, . . . , 10}. Subsequently, we use the parameter pair
(λ, µ) for which the smallest function value of (Reg) is achieved and run the regression
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Figure 3: The pointwise error for standard interpolation with w = f∗X,Y (left) and for
concatenated interpolation with outer kernel KTensorMatérn,1 and inner kernel KPoly,1 (mid)
or KPoly,2 (right), respectively. We plotted both, the error for h1 (top) and h2 (bottom). The
color scale ranges from blue (0% error) to red (more than 10% error), where the percentage
has to be understood with respect to the ‖ · ‖L∞ norm of h1 or h2, respectively.

algorithm on the whole input data set to obtain our final results. We compare the two-layer
case with the single-layer regression, see also (5), with the parameter λ, which achieves the
smallest error, i.e. we compare to the best possible single-layer solution.

Since the results for interpolation and least-squares regression with the same kernel
choices as above happen to be similar, we employ an outer kernel of Gaussian type K =
KGauss,σ with σ = 0.1 instead of Matérn type here. For the inner kernel we again choose
KI = KPoly,p with p = 1, 2. As we observe in Figure 4, there is a significant improvement
of the two-layer approach over the single-layer one. Note that we deliberately employ the
kernel width σ = 0.1, which appears to be too small for single-layer regression. However,
the two-layer approach seems to remedy this bad choice automatically by adjusting the
inner transformation accordingly. In this regard, the algorithm can also be understood as
an implicit hyperparameter tuner.

4.2.3. Linear outer kernel

In this section, we again want to emphasize the difference of our approach, which allows for
nonlinear outer kernels, to the MKL-type RLS2 algorithm of Dinuzzo (2011), where only a
linear outer kernel is considered and the inner kernel is given by a diagonal matrix with its
entries being different scalar-valued (nonlinear) kernels. To this end, we run our two-layer
least-squares regression approach for the following two settings:

(1) Outer polynomial kernel K = KPoly,1 of order 1, inner mixture kernel K(x,y),

(2) Outer Matérn kernel K = KTensorMatérn,1 of order 1, inner mixture kernel K(x,y).
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Figure 4: The pointwise error for standard least-squares with w = fλX,Y (left) and for
concatenated least-squares with outer kernel KGauss,0.1 and inner kernel KPoly,1 (mid) or
KPoly,2 (right), respectively. We plotted both, the error for h1 (top) and h2 (bottom). The
color scale ranges from blue (0% error) to red (more than 10% error), where the percentage
has to be understood with respect to the ‖ · ‖L∞ norm of h1 or h2, respectively.

For the inner mixture kernel, we deviate from (20) and from D = 2 here. To this end, we
set D = 5 and use a diagonal kernel K with different scalar-valued kernels as entries. For
the five scalar-valued kernels we choose three Gaussian kernels KGauss,σ with σ = 0.1, 1, 10
and two polynomial kernels KPoly,p with p = 1, 2. Setting (1) serves to represent the RLS2
algorithm4, where similar choices for the inner kernel have been made, see Dinuzzo (2011).
To determine the optimal parameters λ, µ ∈ {10−2t+1 | t = 1, . . . , 6}, we again run a 5-
fold crossvalidation5. The results can be found in figure 5. As we have already seen for
interpolation, the structure of the function h1 admits a good representation by a two-layer
kernel discretization of type (2). However, despite the quite generic choice of the inner
kernel in setting (1), the two-layer kernel approach with a linear outer kernel is not able
to find a good representation of the function. This shows that a nonlinear choice for the
outer kernel can be necessary to find suitable approximations by the two-layer algorithm.
Although the results do not differ that much for h2, we again see that there is a slight
advantage in approximating with a nonlinear outer kernel.

4. Note however that we did not use a diagonal scaling of the linear kernel and our optimization algorithm
is different from the one used in Dinuzzo (2011), which is adjusted to the problem with a linear outer
kernel.

5. Note that we scan a coarser (but wider) range than in the previous section, which seemed to be appro-
priate here.
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Figure 5: The pointwise error for standard least-squares with Matérn kernel and w = fλX,Y
(left) and for concatenated least-squares with setting (1) (mid) and setting (2) (right) from
section 4.2.3. We plotted both, the error for h1 (top) and h2 (bottom). The color scale
ranges from blue (0% error) to red (more than 10% error), where the percentage has to be
understood with respect to the ‖ · ‖L∞ norm of h1 or h2, respectively.

4.3. Transformation by the inner function

To get a better impression on how the two-layer algorithms work, we exemplarily inspect
the inner function g in the case of interpolation with K = KTensorMatérn,s for s = 1 and
KI = KPoly,p for p = 1 or p = 2, i.e. for the setting from Section 4.2.1. To this end,
we depict isotropic grid points in Ω = [−1, 1]2 and have a look at how these points are
transformed by g in Figure 6.

We observe that for h1 in both cases p = 1 and p = 2, the inner function aligns the kink
almost perpendicular to the y-axis. Therefore, one can easily characterize the kink by the
y-coordinate after the inner transformation. This reduces the original two-dimensional kink
description x−y = 0 to just the one-dimensional description y = 0. While the function with
the kink along the diagonal does not reside in the tensor-product Matérn space of order 1,
which corresponds to the outer kernel in this example, a function with a kink parallel to
one of the coordinate axes does. Therefore, the inner function g transforms the domain in
such a way that the result resides in the RKHS to which the outer function belongs.

Considering the test function h2, we see that a linear inner transformation, i.e. p = 1,
essentially just rotates and shears the domain and does not change the alignment of the
jump very much. However, in the case p = 2, the inner function g manages to transform
the domain in such a way that the jump is now almost parallel to the y-axis. We observe
that the pointwise errors in Figure 3 really benefit from this transformation and the jump
is resolved almost perfectly. Overall, we see that the inner function g tries to align the
features of the original test function in such a way that they can be easily resolved by the
outer function f .
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Figure 6: The transformation of the isotropic grid points (left) by the inner function with
p = 1 (mid) and p = 2 (right). The underlying problem is interpolation of h1 (top) and h2

(bottom) for the outer kernel KTensorMatérn,1 and the inner kernel KPoly,p. The color scale
represents the values of h1 or h2, respectively.

5. Conclusion

In this paper, we presented both a finite- and an infinite-sample representer theorem for con-
catenated machine learning problems. In the finite-sample case, the statement essentially
boils down to the fact that the a priori infinite-dimensional optimization problem, which ap-
pears when dealing with function compositions from reproducing kernel Hilbert spaces, can
be recast into a finite-dimensional optimization problem, where we only have to deal with at
most N kernel translates in each layer of the composition. Here, N denotes the number of
input data points. In the infinite-sample case, we derived an analogous result stating that
the solution in each layer is an element of the image space of the integral operator defined by
the corresponding kernel evaluated at the innermost functions. We introduced a simple neu-
ral network architecture, which represents the concatenated functions we are dealing with.
Furthermore, we established a connection between our representer theorem and two types
of state-of-the-art deep learning algorithms, namely multi-layer multiple kernel learning and
deep kernel networks. Finally, we presented a detailed analysis on a two-layer interpola-
tion and a two-layer least-squares regression algorithm, which can directly be derived from
our representer theorem. We illustrated the operating principles of these algorithms with
the help of two artificial test functions and explained why the two-layer approach is able to
remedy the shortcomings of a single-layer variant. Furthermore, we highlighted that the use
of a nonlinear outer kernel, instead of a linear one as in Dinuzzo (2011), can be inevitable
to obtain good two-layer approximations. Nevertheless, the nonlinearity of the outer layer
makes the numerical treatment of the underlying optimization problem more difficult.

While we presented specific two-layer (L = 2) algorithms and applied them to two-
dimensional (d = 2) toy problems for illustrative reasons, our representer theorems can
also be applied in the high-dimensional case with an arbitrary number of layers. Note
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furthermore that, apart from interpolation and least-squares regression, also more general
choices of the loss function L and the regularizers Θl are allowed in (7). Therefore, one can
also think of multi-layer support vector machines for instance. The construction of such
efficient deep kernel learning algorithms for high-dimensional problems and a thorough
analysis of the interplay between the number of layers L and the dimension d will be future
work.
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Appendix A. Remainder of the proof of theorem 2

To continue the proof of theorem 2, we note that we already showed that f1 has the desired
structure (14). Let us assume we have shown (14) for all f1, . . . , fl−1 for an l ∈ {2, . . . , L}.
To obtain (14) for fl, we proceed in the same fashion as in the first part of the proof in
section 3.2. To this end, we now define Jgl+1,...,gL : Hl → [0,∞) by

Jgl+1,...,gL(gl) :=

∫
Rl+1×R1

L̃l (y, gl(ξ)) dGl,?(P)(ξ, y) + λl‖gl‖2Hl
,

where L̃l(y,z) := L(y, f1 ◦ . . . ◦ fl−1(z)) and Gl,?(P) is the pushforward of P onto Rl+1×R1

defined by Gl(x, y) = (gl+1 ◦ . . . ◦ gL(x), y). Then it holds

min
gl∈Hl,...,gL∈HL

J(f1, f2, . . . , fl−1, gl, gl+1, . . . , gL)

= min
gl+1∈Hl+1,...,gL∈HL

(
min
gl∈Hl

Jgl+1,...,gl+1
(gl)

)
+

L∑
i=l+1

λi‖gi‖2Hi

and we need to show that a minimizer of Jgl+1,...,gL admits a representation of type (14). To
this end, we begin by defining a Nemitski vector loss function and we subsequently prove
that these loss functions admit the representation we need.

Definition 5 Let L : R1 × D → [0,∞) for some domain D ⊂ Rd. Let PR1 denote the
marginal distribution of P w.r.t. the second variable. We call L a P-integrable Nemitski
vector loss, if there exist b : R1 → [0,∞) with b ∈ L1,PR1

(R1) and a measurable, increasing
h : [0,∞)→ [0,∞) such that

L(y,z) ≤ b(y) + h(‖z‖) for all (y,z) ∈ R1 ×D.

If L is k-times differentiable w.r.t. the second variable for all y ∈ R1, we call it a k-times
differentiable Nemitski vector loss.
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Lemma 6 Let l ∈ {2, . . . , L} and let Pl be a distribution6 on Rl+1 × R1 and let L? be a
Pl-integrable and 1-differentiable Nemitski vector loss on R1 × Rl such that the derivative
w.r.t. the second argument ∇2L fulfills

‖∇2L?(y,z)‖ ≤ b?(y) + h?(‖z‖) for all (y, z) ∈ R1 ×Rl

for some b? ∈ L1,Pl
R1

(R1) and a measurable, increasing h? : [0,∞) → [0,∞). Then, the

functional Rl,Pl : Hl → [0,∞) defined by

Rl,Pl(f) :=

∫
Rl+1×R1

L?(y, f(z)) dPl(z, y)

is Frechet differentiable and the derivative dRl,Pl : Hl → B(Hl,R) is given by

dRl,Pl(f)(g) =

∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y). (21)

Furthermore, a critical point of J? : Hl → [0,∞) defined by

J?(f) := Rl,Pl(f) + λl‖f‖2Hl

is given by

f(·) = − 1

2λl

∫
Rl+1×R1

Kl(·, z) · ∇2L?(y, f(z)) dPl(z, y). (22)

Proof We have

lim
‖g‖Hl

→0

Rl,Pl(f + g)−Rl,Pl(f)−
∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y)

‖g‖Hl

= lim
‖g‖Hl

→0

∫
Rl+1×R1

L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

dPl(z, y)

(∗)
=

∫
Rl+1×R1

lim
‖g‖Hl

→0

L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

dPl(z, y)

= 0,

where the last equation follows from the differentiability of L? and (∗) follows by the dom-
inated convergence theorem since the integrand is bounded by∣∣∣∣L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

∣∣∣∣
=

∣∣∣∣∇2L?(y, cf(z) + (1− c)g(z))T · g(z)−∇2L?(y, f(z))T · g(z)

‖g‖Hl

∣∣∣∣
≤ 2b?(y) + h?(‖cf(z) + (1− c)g(z)‖) + h?(‖f(z)‖)

6. Note that we set RL+1 := DL = Ω.
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for some c ∈ [0, 1] due to the mean value theorem. Since the last line is bounded by
2b?(y) + 2h?(‖f(z)‖ + 1) independently of g for any g with ‖g‖Hl

≤ 1, the dominated
convergence theorem can be applied, which proves (21).

Since a critical point f of J? fulfills

0 = dJ?(f)(g) = dRl,Pl(f)(g) + 2λl〈f, g〉Hl
,

for all g ∈ Hl, we obtain

〈f, g〉Hl
= − 1

2λl
dRl,Pl(f)(g)

= − 1

2λl

∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y)

= − 1

2λl

∫
Rl+1×R1

∇2L?(y, f(z))T ·
dl∑
i=1

〈g,Kl(·, z)ei〉Hl
· ei dPl(z, y)

= − 1

2λl

dl∑
i=1

〈∫
Rl+1×R1

∇2L?(y, f(z))TKl(·, z)ei dPl(z, y), g

〉
Hl

· ei

with the reproducing property of Kl, which is equivalent to the Bochner-type integral
formulation (22). This finishes the proof.

Now, we can apply lemma 6 with Pl = Gl,?(P) and L? = L̃l, which shows that a critical
point g?l of Jgl+1,...,gL can be written as

g?l (·) = − 1

2λl

∫
Rl+1×R1

Kl(·, ξ) · ∇2L̃l(y, g?l (ξ)) dGl,?(P)(ξ, y) (23)

= − 1

2λl

∫
Ω×R1

Kl(·, gl+1 ◦ . . . ◦ gL(x)) · ∇2L̃l(y, g?l ◦ gl+1 ◦ . . . ◦ gL(x)) dP(x, y),

which is of type (14). Therefore, it just remains to show that L̃l fulfills the prerequisites of
lemma 6 and that Afl,fl+1,...,fL(x, y) := ∇2L̃l(y, fl ◦ fl+1 ◦ . . . ◦ fL(x)) ∈ L1,P.

Lemma 7 L̃l is a Gl,?(P)-integrable and 1-differentiable Nemitski loss and the derivative
w.r.t. the second argument fulfills∥∥∥∇2L̃l(y, z)

∥∥∥ ≤ b̃(y) + h̃(‖z‖) for all (y,z) ∈ R1 ×Rl (24)

for a b̃ ∈ L1,Gl,?(P)R1
(R1) and a measurable, increasing h̃ : [0,∞)→ [0,∞).

Proof Since

|L̃l(y,z)| = |L(y, f1 ◦ . . . ◦ fl−1(z))| ≤ b0(y) + h0(f1 ◦ . . . ◦ fl−1(z)) ≤ b0(y) + h0(‖f1‖∞),

L̃l is a Gl,?(P)-integrable Nemitski-loss. Here, we again used that f1 ∈ H1 ↪→ C(D1) because
of (12). Since f1, . . . , fl−1 are differentiable because the respective kernels are in C1, L̃l is
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also 1-differentiable by the chain rule. It remains to show (24). To this end, note that the
chain rule gives us

∇2L̃l(y, z)(·) =
∂

∂z
(L (y, f1 ◦ . . . ◦ fl−1(z)))

= L(1)(y, f1 ◦ . . . ◦ fl−1(z)) · df1(f2 ◦ . . . ◦ fl−1(z)) (df2(f3 ◦ . . . ◦ fl−1(z)) (. . . dfl−1(z)(·))) ,

which leads to

‖∇2L̃l(y,z)‖ ≤ (b1(y) + h1(|f1 ◦ . . . ◦ fl−1(z)|)) ·
l−1∏
i=1

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri)

≤ (b1(y) + h1(‖f1‖∞)) ·
l−1∏
i=1

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri). (25)

Because of our assumption that we already showed (14) for f1, . . . , fl−1 and because of (12),
we get by the dominated convergence theorem that

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri) ≤
1

2λi
ci‖Afi,...,fL‖L1,P

for all i = 1, . . . , l − 1. Therefore, by setting b̃(y) := c · b1(y) and choosing a constant
h̃ := c · h1(‖f1‖∞) with c :=

∏l−1
i=1

1
2λi
ci‖Afi,...,fL‖L1,P <∞, we obtain (24).

Applying lemma 6 and lemma 7 shows us that fl fulfills the integral equation (23). To
conclude the proof of theorem 2, we note that

Afl,fl+1,...,fL(x, y) := ∇2L̃l(y, fl ◦ fl+1 ◦ . . . ◦ fL(x)) ∈ L1,P,

which directly follows from (25) and the fact that b1 ∈ L1,PR1
. This finally shows that fl

admits a representation of type (14). Since the argument is valid for each l = 2, . . . , L and
we already proved (14) for l = 1 in section 3.2, this finishes the proof of theorem 2.
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