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Abstract

Recommender systems predict users’ preferences over a large number of items by pooling
similar information from other users and/or items in the presence of sparse observations.
One major challenge is how to utilize user-item specific covariates and networks describing
user-item interactions in a high-dimensional situation, for accurate personalized prediction.
In this article, we propose a smooth neighborhood recommender in the framework of the
latent factor models. A similarity kernel is utilized to borrow neighborhood information
from continuous covariates over a user-item specific network, such as a user’s social network,
where the grouping information defined by discrete covariates is also integrated through
the network. Consequently, user-item specific information is built into the recommender
to battle the ‘cold-start” issue in the absence of observations in collaborative and content-
based filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least
squares algorithm to achieve scalable computation, and establish asymptotic results for the
proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we
illustrate that the proposed method improves substantially over its competitors in simulated
examples and real benchmark data–Last.fm music data.

Keywords: Blockwise coordinate decent, Cold-start, Kernel smoothing, Neighborhood,
Personalized prediction, Singular value decomposition, Social networks.

1. Introduction

Recommender systems predict users’ preferences over a large number of items by pooling
similar information from other users or items when observations are sparse, which are
particularly useful in personalized prediction. It has become an essential part of e-commerce,
with applications in movie rentals (MovieLens; Miller et al. 2003), restaurant guides (Entree;
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Burke 2002), book recommendations (Amazon; Linden et al. 2003), and personalized e-news
(Daily learner; Billsus and Pazzani 2000).

Two main streams emerge for training recommender systems: collaborative filtering,
which predicts users’ behaviors based on similar users (Bell and Koren, 2007), and content-
based filtering, which builds user and item profiles based on domain knowledge and rec-
ommends items with similar profiles (Lang, 1995; Melville et al., 2002). Specifically, col-
laborative filtering predicts unknown ratings by averaging over similar users’ ratings with
weights; such as the latent factor approach (Feuerverger et al., 2012), latent Dirichlet alloca-
tion (LDA; Blei et al. 2003), probabilistic latent semantic analysis (pLSA; Hofmann 2004),
regularized singular value decomposition (regularized SVD; Paterek 2007), and restricted
Boltzmann machines (RBM; Salakhutdinov et al. 2007). Among them, the regularized SVD
approach has become popular due to its high predictive performance and scalability in real
applications. In addition, Koren (2008) further generalizes SVD to model users’ implicit
feedbacks, and Forbes and Zhu (2011) incorporates content information in the regularized
SVD approach through a regression-type of constraint. For content-based filtering, keywords
analysis extracts features from items previously rated by a user to develop a profile of the
user’s interests, and recommendation is made by comparing the user profile and potential
items (Lang, 1995). The naive Bayes (Billsus and Pazzani, 2000), decision tree (Pazzani
et al., 1996) and kNN (Middleton et al., 2004) formulate this type of recommendation as
a classification problem, where each item can be labeled by users as “like” or “dislike”.
Hybrid recommender systems (Burke, 2002) utilize geo-social correlations to accommodate
new users and items through location-based recommendation systems; Bi et al. (2017) pro-
poses a group-specific latent factor model by utilizing missingness-related characteristics to
accommodate new users or items without any observed ratings.

To achieve better prediction accuracy, several main challenges remain in training recom-
mender systems. First, smooth structure is contained in the user-item interactions, yet they
are not fully utilized in model training. For instances, friends tend to share similar interests
and preferences on various items, and relevant items tend to receive comparable ratings
from users. Particularly, Figure 1 for the Last.fm data indicates that friends behave more
similarly than randomly selected user pairs, which can be well characterized by a smoothing
pattern of users’ preference on items over the user-item specific network. However, such
a user-item specific network usually involves a large number of parameters, which imposes
great challenges in model building without a sufficient amount of observations. Therefore,
how to incorporate the user-item specific network into a recommender system remains one
key factor for improving prediction accuracy. Second, covariate information such as demo-
graphic and social network information of users, tags and content information of items, can
be easily accessible (Nguyen and Zhu, 2013). In the existing literature, a number of meth-
ods have been proposed to utilize the side and relational information through Laplacian
regularization (Gu et al., 2010), Gaussian generative models (Zhou et al., 2012), probability
propagation (Yang et al., 2011), aggregating regression (Demir et al., 2017; Zhao et al., 2016;
Zhao and Guo, 2017), Markov logic network (Salakhutdinov and Mnih, 2008; Richardson
and Domingos, 2006), and the probabilistic soft logic (Kouki et al., 2015; Bach et al., 2017).
Yet, most of the aforementioned methods are rather ad hoc and lack theoretical justifica-
tion. Mainly, it remains largely unknown how the users’ social networks and items’ tagging
information impact the accuracy of prediction. More importantly, a rating mechanism usu-
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ally does not follow a parametric form in terms of covariates, which is commonly assumed
in the literature due to the lack of sufficient observations for each user and item. How to
employ a nonparametric approach to model the covariate-assisted recommender system in
a high-dimensional setting continues to be an open question. Third, missing completely at
random (MCAR) is often assumed by existing methods, leading to inaccurate prediction
as the MCAR assumption is typically unrealistic for recommender systems. For example,
users tend not to rate items that are of little interest to them, as illustrated in Figure 4.
Fourth, most methods fail to recommend for new users or items without any observed rat-
ings, which is referred as the “cold-start” problem. Thus, utilizing the covariate information
to fully and efficiently solve the “cold-start” problem is attractive in devising recommender
systems.

In this paper, we propose a novel approach based on the idea of a similarity-based
neighborhood system pooling similar user-item pairs to improve prediction performance.
Specifically, for each user-item pair, the proposed approach incorporates similar observed
pairs through kernel weighting based on covariates as well as a user-item specific network.
The weight function quantifies a smooth rating mechanism in terms of the closeness of
continuous covariates within a neighborhood of the connected user-item pairs in the network.
One novelty of the proposed approach is that it builds discrete covariates into a user-item
specific network with the same discrete covariate values corresponding to connectivity. This
enables us to handle high-dimensional covariates while not being burdened by the “curse of
dimensionality.” Unlike existing methods (Zhu et al., 2016; Bi et al., 2017), our approach is
nonparametric, yet it goes beyond the traditional nonparametric framework which focuses
primarily on continuous covariates. This provides a flexible framework to handle continuous
covariates, discrete covariates and networks all together without specifying a functional
relation. Moreover, the proposed approach also tackles the “cold-start” issue as it utilizes
observed pairs in the neighborhood of any new user-item pairs in prediction.

The proposed approach takes full advantage of the smoothing pattern of the rating mech-
anism over covariates, while integrating user-item dependencies through user-item specific
networks into a recommender system nonparametrically. This leads to a higher predic-
tion accuracy for a recommender, as demonstrated in the numerical examples in Section
5. Significantly, our approach outperforms the state-of-the-art prediction performance for
the Last.fm music benchmark dataset by nearly 20%. Additionally, we perform an error
analysis, showing that the error rate of the proposed method is governed by the degree
of smoothness of a neighborhood system with respect to continuous covariates, given that
the grouping information is precisely defined by discrete covariates and networks. Most
critically, as suggested by Theorem 1, the method performs well even in a high-dimensional
situation in which the overall size of observed ratings is of the same magnitude as the
number of unknown parameters.

The rest of the paper is organized as follows. Section 2 briefly introduces the regu-
larized latent factor model, Section 3 presents the proposed recommender system and its
implementation via the alternating least squares algorithm. Section 4 establishes the asymp-
totic results for the proposed method. Section 5 examines the numerical performance of
the proposed method in simulation studies and a real application to the Last.fm dataset
(http://www.last.fm). A brief summary is given in Section 6, and the Appendix contains
the technical proofs.
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2. Regularized latent factors

In this section, we provide the notations in recommender systems, and the framework of
a regularized latent factor model. Consider a recommender system of n users’ preference
scores on m items, where rui denotes the preference score of user u on item i. Suppose a
user-item specific covariate vector xui ∈ X ⊂ Rd is observed (e.g., a user’s demographics
and an item’s content information). One key challenge for training a recommender system is
that the preference matrix R = (rui) ∈ Rn×m is only partially observed with a high missing
percentage. Denote the index set of observed preference scores as Ω, then |Ω| � nm.

A recommender system can be formulated in the framework of a latent factor model:

rui = θui + εui = pTuqi + εui, 1 ≤ u ≤ n, 1 ≤ i ≤ m, (1)

where θui = E(rui) is the expected preference score of a user-item pair (u, i), and εui is
independent from xui with mean zero and finite variance. The latent factor model assumes
that θui can be represented by user and item latent factors: θui = pTuqi, where pu and
qi are K-dimensional latent vectors representing user u’s preference and item i’s profile,
respectively, and K is the number of latent factors for both users and items, which is also
the rank in the latent factor model (Mukherjee et al., 2015).

To estimate these personalized parameters, a regularized SVD method (Paterek, 2007;
Zhu et al., 2016) estimates P = (p1, · · · ,pn)T and Q = (q1, · · · , qm)T by

min
P ,Q

1

|Ω|
∑

(u,i)∈Ω

(rui − pTuqi)2 + λ
{ n∑
u=1

J(pu) +
m∑
i=1

J(qi)
}
, (2)

where λ is a nonnegative tuning parameter, and J(·) can be any penalty function such as
the Lq-penalty with q = 0, 1, 2 (Zhu et al., 2016) or the alignment penalty (Nguyen and
Zhu, 2013). Note that rui in (2) is often replaced by the residual rui−µ−xTuiβ, where (µ,β)
is a vector of regression coefficients to be minimized in (2). Alternatively, pu = su − xTuα
and qi = ti − xTi β, where (su, ti) are latent factors, and (α,β) are regression coefficients
to incorporate the covariate effects (Agarwal et al., 2011).

There are a number of major challenges for the regularized SVD model in (2). First, a
user-item specific network is often available to capture user-item dependence but is ignored
in (2). Here networks consists of information from existing users’ social network, or item
network, or the network constructed from available discrete covariates of the user-item pair
(u, i). It can provide additional information regarding the preference similarity between
connected pairs. This is the case for the Last.fm data, where a user specific network
impacts users’ preference on items, indicated by Figure 1. Second, a linear model in (2)
may be inadequate to incorporate user and item covariates, especially when the linearity
assumption is violated. Third, the objective function (2) assumes implicitly that missing
occurs completely at random so that the first loss function in (2) can approximate the loss
function for the complete data. When the missing is informative, missing characteristics
such as the missing pattern for each user can be utilized for subgrouping (Bi et al., 2017).
Fourth, the regularized SVD in (2) suffers from the “cold-start” problem for new users or
items in the absence of observed ratings. For instance, if a user u or an item i is completely
missing from Ω, the corresponding pu or qi is estimated incorrectly as 0 due to the penalty
J(·) in (2).
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Figure 1: Comparison of the cosine similarity of logarithm of users’ listening counts vector
between friends and randomly selected users in the Last.fm dataset.

3. Methods

This section introduces a smooth recommender system, which incorporates user and/or
item specific covariates and the user-item specific network information to improve prediction
accuracy. The proposed method utilizes informative observations for each user-item pair
for personalized prediction and resolving the “cold-start” problem.

3.1. Proposed method

One key strategy of the proposed method is to pool information across user-item pairs
to improve prediction accuracy through increasing effective sample size. In contrast to
grouping approaches based on user-item-specific information (Bi et al., 2017; Masthoff,
2011), the proposed recommender system integrates similar observed pairs (u′, i′) ∈ Ω for
each (u, i) through a weight function, regardless of whether (u, i) is observed or not. This
allows for nonlinear or nonparametric modeling of the relation between user-item preferences
and latent factors, which is more flexible than the linear modeling in (2).

The proposed weight function is constructed based on the closeness between continuous
covariates in addition to a user-item specific network. To precisely describe the network
structure, we define an indicator Suiu′i′ = Suu′S

i
i′ = 1 if there exist edges connecting u and

u′ in a user-specific social network and i and i′ in an item-specific network, and Suiu′i′ = 0
otherwise. Moreover, we integrate the above user-item specific network with existing user
social network, item network, as well as information from discrete covariates. For example,
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in the Last.fm dataset, rui is the listening count of a user-artist pair (u, i), and xui is the
pattern of listening counts for user u and artist i. The available network information is given
as Suiu′i′ = Suu′S

i
i′ , where Suu′ represents a user’s friendship network, and Sii′ is constructed

from artists’ tag information with Sii′ = 1 indicating artists i and i′ share the same tags,
and Sii′ = 0 otherwise.

Using local likelihood via smoothing weights (Tibshirani and Hastie, 1987; Fan and Gij-
bels, 1996), we propose the following cost function for a smooth neighborhood recommender
system:

L(P ,Q) =
1

nm

n∑
u=1

m∑
i=1

( ∑
(u′,i′)∈Ω

ωui,u′i′(ru′i′ − pTuqi)2
)

+ λ1

n∑
u=1

J(pu) + λ2

m∑
i=1

J(qi), (3)

where J(·) is a general penalty, and λ1 and λ2 are two nonnegative tuning parameters. It
is also assumed that

∑
(u′,i′)∈Ω ωui,u′i′ = 1. Lemma 1 below gives an equivalent form of (3).

Lemma 1 The cost function L(P ,Q) in (3) is equivalent to

1

nm

n∑
u=1

m∑
i=1

( ∑
(u′,i′)∈Ω

ωui,u′i′ru′i′ − pTuqi
)2

+ λ1

n∑
u=1

J(pu) + λ2

m∑
i=1

J(qi). (4)

The choice of ωui,u′i′ is critical to properly measure the similarity between (u, i) and
(u′, i′). We introduce a weight function to define the smooth neighborhood of (u, i):

ωui,u′i′ =
Kh(xui,xu′i′)S

ui
u′i′∑

(u′,i′)∈ΩKh(xui,xu′i′)S
ui
u′i′

, (5)

where ωui,u′i′ involves only observed pairs (u′, i′)’s with Suiu′i′ = 1. In (5), if xui or Suiu′i′ is
absent, Kh(xui,xu′i′) or Suiu′i′ can be set as 1 correspondingly. The kernel function is set as
Kh(xui,xu′i′) = K(h−1‖xui−xu′i′‖2) measuring the closeness between xui and xu′i′ , where
the choice of the L2-norm reduces the dimension of the covariate space and other choices
of distance may be also considered. Here h > 0 is the window size and K(·) is a kernel
whose degree of smoothness reflects prior knowledge about how the true preference varies
in terms of ‖xui − xu′i′‖2. Note that this is different from standard kernel smoothing (Fan
and Gijbels, 1996; Delaigle and Hall, 2010), in that the smooth neighborhood is constructed
based on continuous and discrete covariates as well as user-item specific networks, whereas
standard kernel smoothing focuses primarily on smoothing over continuous covariates.

The proposed framework has the following advantages. First, the user-item specific
covariates and network structures are integrated in constructing the neighborhood for (u, i)
pairs. Thus the effective sample size for (u, i) increases when pooling information from
its neighborhood through

∑
(u′,i′)∈Ω ωui,u′i′ru′i′ in (4). Second, it solves the “cold-start”

problem and yields more accurate estimators of pu and qi for all u’s and i’s by leveraging
dependencies among users and items, expressed in terms of user-specific social networks and
items’ tagging information. This is evident from (4), since even for an unobserved (u, i),∑

(u′,i′)∈Ω ωui,u′i′ru′i′ is a weighted average of preference scores over its neighborhood. On
this ground, a recommendation can be made by estimating pu and qi for any new user-item
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pair (u, i). Third, the non-ignorable missing can be addressed through a covariate-adjusted
neighborhood associated with missingness and users’ preferences. For instance, each user’s
and item’s missing percentages and the percentiles of their observed ratings can be modeled
nonparametrically as covariates in defining ωui,u′i′ .

3.2. Scalable computation

To solve large-scale optimization in (3), we employ a “divide-and-conquer” type of alter-
nating least squares (ALS) algorithm, with a principle of solving many small penalized
regression problems iteratively. This permits parallel and efficient computation. The ALS
method has been extensively investigated in the literature (Carroll and Chang, 1970; Fried-
man and Stuetzle, 1981), and the divide-and-conquer strategy is also employed in (Zhu
et al., 2016) for the parallelization of (2).

The computational strategy of ALS is to break large-scale optimization into multiple
small subproblems by alternatively fixing either pu or qi, where each subproblem is a simple
penalized least squares regression and can be solved analytically with J(·) = ‖ · ‖22. Note
that this strategy is applicable as long as J(·) is separable for pu and qi.

For illustration, consider J(·) = ‖ · ‖22. At iteration k, Q̂(k) is fixed and the latent factor

pu is updated as p̂
(k+1)
u = argminpu

∑
i

(∑
(u′,i′)∈Ω ωui,u′i′(ru′i′−pTu q̂

(k)
i )2

)
+λ1‖pu‖22. Sim-

ilarly, with fixed P̂ (k+1), qi is updated as q̂
(k+1)
i = argminqi

∑
u

(∑
(u′,i′)∈Ω ωui,u′i′(ru′i′ −

(p̂
(k+1)
u )Tqi)

2
)

+ λ2‖qi‖22. Then each subproblem is solved analytically,

p̂(k+1)
u =

(∑
i

q̂
(k)
i (q̂

(k)
i )T + λ1IK

)−1(∑
i

r̄Ω
uiq̂

(k)
i

)
, (6)

q̂
(k+1)
i =

(∑
u

p̂(k+1)
u (p̂(k+1)

u )T + λ2IK

)−1(∑
u

r̄Ω
uip̂

(k+1)
u

)
, (7)

where r̄Ω
ui =

∑
(u′,i′)∈Ω ωui,u′i′ru′i′ is a weighted rating for (u, i) over the neighborhood, and

IK is a K × K identity matrix. The iterative updating is continued until a termination
criterion is reached. Once the solution {p̂u, q̂i}1≤u≤n;1≤i≤m is obtained, the final predicted
preference is r̂ui = p̂Tu q̂i.

It follows from Chen et al. (2012) that the algorithm converges to a stationary point
(P̄ , Q̄) of L(P ,Q) in (3), where P̄ = argminP L(P , Q̄), and Q̄ = argminQ L(P̄ ,Q). This
is due to the nonconvex minimization in addition to having many missing observations.
Moreover, each update of pu and qi in (6) and (7) can be computed in a parallel fashion.
This can substantially speed up the computation, particularly when K is small but m and
n are large.

The overall computational complexity of the algorithm is no greater than O
(
(nmK2 +

(n+m)K3)IALS
)
, where IALS is the number of iterations in the ALS algorithm. In our im-

plementation, the algorithm is coded through PyMP, which is a Python version of OpenMP
in C, and can handle a dataset with a size up to the order of 108 on a quad-core computer
with one 3.40GHz CPU and 8G memory.
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4. Theory

This section presents theoretical properties to quantify the asymptotic behavior of the
proposed recommender system. Particularly, we show the convergence rate in prediction
error of the proposed system.

Let the true and estimated parameters be θ0
ui = p0

u
T
q0
i and θ̂ui = p̂Tu q̂i, where p̂u and

q̂i are estimated latent factors; u = 1, · · · , n; i = 1, · · · ,m. Note that the representation
is unique with respect to θui, although the decomposition of pu and qi may not be unique.
Let θ̂ = (θ̂ui) ∈ Rn×m and θ0 = (θ0

ui) ∈ Rn×m, the prediction accuracy of θ̂ is defined by
the root mean square error:

RMSE(θ̂,θ0) =
( 1

nm

n∑
u=1

m∑
i=1

(
θ̂ui − θ0

ui

)2)1/2
.

We require the following technical assumptions.
Assumption A. There exist constants c1 > 0 and α > 0 such that for any (u, i) and

(u′, i′) ,
∣∣θ0
ui − θ0

u′i′

∣∣ ≤ c1

√
K max{‖xui − xu′i′‖α2 , I(Suiu′i′ = 0)}, where the corresponding

expression in the maximum operator is set as 0 if xui or Suiu′i′ is absent.
Assumption A defines the smoothness of θ0

ui in terms of the continuous covariate xui in
the presence of connected user-item pairs in the network. As a special case, if xui is absent,
Assumption A degenerates to θ0

ui = θ0
u′i′ for pairs with Suiu′i′ = 1. This assumption is mild

when all covariates are available, and is relatively more restrictive when xui is absent as
it pushes the model to be a parametric one with only a finite number of unknown θ’s. It
is necessary to capture the smooth property of θ over the network structure, and similar
assumptions are widely used in nonparametric regression (Vieu, 1991; Wassermann, 2006)
and kernel density estimation (Stone, 1984; Marron and Padgett, 1987).

Assumption B. The continuous covariate x has a bounded support X , and the error
term εui has a sub-Gaussian distribution with variance σ2.

Assumption B is a regularity condition for the underlying probability distribution, and
widely used in literature (Ma and Huang, 2017; Lin et al., 2017). Further, assume that
{xui,∆ui}1≤u≤n,1≤i≤m are independent and identically distributed, but the distribution of
∆ui may depend on xui. We denote the parameter space Γ(L) to be {θ : ‖θ‖∞ ≤ L}, where
‖ · ‖∞ is the uniform norm, and L is chosen so that θ0 ∈ Γ(L). To accurately utilize the
network information, we set ωui,u′i′ = 0 if Suiu′i′ = 0. Theorem 1 establishes an upper bound
for the estimation error of the proposed recommender system, where the convergence rate
is determined by the size of the preference matrix nm, the number of parameters K, the
size of the observed ratings |Ω|, the tuning parameters λ1 and λ2, and the window size h.

Theorem 1 Suppose that Assumptions A and B are satisfied. For some constant c2 > 0,
let κ1 = maxu,i

∑
(u′,i′)∈Ω ωui,u′i′‖xui − xu′i′‖α2 , and κ2 = maxu,i

∑
(u′,i′)∈Ω ω

2
ui,u′i′, then

P
(
RMSE(θ̂,θ0) ≥ η

)
≤ exp

{
− c2η

2

κ2
+ log(nm)

}
,

provided that η ≥ max
{√

Kκ1,
√
κ2

}
log (nm) and λ1

∑n
u=1 J(p0

u) + λ2
∑m

i=1 J(q0
i ) ≤ η2/4.

The convergence rate then becomes RMSE(θ̂,θ0) = Op(max
{√

Kκ1, κ
1/2
2

}
log (nm)), where

κ1 and κ2 tend to zero and can be computed for some specific weights.
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Theorem 1 provides a general upper bound of RMSE(θ̂,θ0), which may vary by the
choice of weights ωui,u′i′ and the two quantities κ1 and κ2. In the following, an explicit
convergence rate is given for ωui,u′i′ defined in (5) under some additional assumptions.

Let ∆ui ∈ {0, 1} be a binary variable, with ∆ui = 1 indicating that rui is observed and 0
otherwise. Assume that {xui,∆ui}1≤u≤n,1≤i≤m are independent and identically distributed,
but the distribution of ∆ui may depend on xui.

Assumption C. For any (u, i) and (u′, i′), P (Suiu′i′ = 1|∆u′i′ = 1) is bounded away from
zero, and the conditional density fUui

u′i′ |S
ui
u′i′=1,∆u′i′=1 is continuous and bounded away from

zero, where Uuiu′i′ = ‖xui − xu′i′‖2.
Assumption C is necessary for tackling the “cold-start” problem, and similar assump-

tions are also widely used in the local smoothing technique (Chen et al., 2014; Scott, 2015).
It ensures that for any pair (u, i), the probability of ∆ui = 1 may depend on covariates xui
and Suiu′i′ , and that the corresponding neighboring pairs are observed with positive proba-
bility. In fact, it suffices to assume that P (Suiu′i′ = 1|∆u′i′ = 1) is bounded away from zero
with certain order, and similar results can be obtained with more involved derivation.

Assumption D. There exists a constant c2 such that the nonnegative kernel K(·)
satisfies

max
{∫ ∞

0
K2(u)du,

∫ ∞
0
K(u)uαdu

}
≤ c3.

Assumption D is a standard assumption for smoothing kernels. Notably, the choice of
kernel should match up the smoothness at an order α of θ0. Alternatively, to effectively
employ the smoothing pattern of θ, the decay rate of the chosen kernel may be larger than
α, to filter out more distant user-item pairs and preserve more reliable local neighborhood
structure. For example, the Gaussian kernel has an exponential decay rate, and always
satisfies the inequality conditions in Assumption D.

Corollary 1 Suppose that Assumptions A-D are satisfied. For ωui,u′i′ defined in (5), then

the convergence rate of RMSE(θ̂,θ0) becomes RMSE(θ̂,θ0) = Op
(
|Ω|−

α
2α+1K

1
2(2α+1) log(nm)

)
.

Note that this convergence rate is intriguing compared with some existing results. Par-
ticularly, when K = O(1), we have RMSE(θ̂,θ0) = OP

(
|Ω|−

α
2α+1 log(nm)

)
. For α > 1/2,

since |Ω| ≤ nm < (n + m)2, it leads to a tighter bound than OP

((
n+m
|Ω| log(

√
nm
|Ω| )

) 1
2

)
and

OP

((
n+m
|Ω| log(m) log( |Ω|n+m)

) 1
2

)
established in Bi et al. (2017) and Srebro et al. (2005), re-

spectively. In addition, Theorem 1 still guarantees the convergence of RMSE(θ̂,θ0), if K
goes to infinity at a rate slower than |Ω|2α(log(nm))−2(2α+1). In practice, the size of Ω
is often much less than nm, and only proportional to (n + m)K. For example, in the
MovieLens 1M dataset with K = 10, nm = 0.2 × 108, |Ω| = 106, and (n + m)K = 106;
and in the Last.fm dataset, nm = 0.3 × 108, |Ω| = 106 and (n + m)K = 0.2 × 106. In
such cases with K = O(1), the theoretical results in Bi et al. (2017) and Srebro et al.
(2005) fail to give a reasonable convergence rate. However, Theorem 1 still yields that

RMSE(θ̂,θ0) = OP
(
|Ω|−

α
2α+1 log(nm)

)
. Interestingly, if the continuous covariates are ab-

sent, then Assumption A is satisfied with α = ∞, and there is only a finite number of θ’s
to be estimated for different discrete covariates. In such cases, Theorem 1 implies that the
recommender system can be estimated with a rate η ∼ OP

(
|Ω|−1/2 log(nm)

)
.
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5. Numerical results

This section examines the performance of the proposed method, denoted as sSVD, in sim-
ulations and with a real Last.fm dataset. We compare sSVD to several strong competitors,
including restricted Boltzmann machines (RBM; Salakhutdinov et al. 2007) or a continu-
ous version of restricted Boltzmann machines (CRBM; Chen and Murray 2003); an iter-
ative soft-threshold matrix completion method (SoftImpute; Hastie et al. 2015); the reg-
ularized SVD (rSVD; Paterek 2007); the self-recovered side regression (SSR; Zhao et al.
(2016)) and a group-specific SVD approach (gSVD; Bi et al. 2017). Note that the Python
codes for RBM and CRBM are publicly available (https://github.com/yusugomori/
DeepLearning/tree/master/python), the code for SoftImpute is available in the Python
package “fancyimpute”, the Matlab code for SSR is provided by Zhao et al. (2016), and the
R code for gSVD is provided by Bi et al. (2017). Note that RBM and CRBM are essentially
the same but differ in implementation only for discrete and continuous responses. Although
RBM, SoftImpute and rSVD are not designed to incorporate covariates, we include them in
comparison to illustrate the importance of utilizing covariates for personalized prediction.

For tuning parameter selection, we set the learning rate, the momentum rate and the
number of hidden units for RBM and CRBM as 0.005, 0.9, and 100, respectively. For rSVD,
gSVD and sSVD, we set the tuning parameter K to be the true one, and the optimal λ
is determined by a grid search over {10(ν−31)/10; ν = 1, · · · , 61}. For the proposed sSVD,
a Gaussian kernel is used with the window size h being the median distance among all
user-item pairs. The predictive performance of all methods is measured by the root mean
squared error (RMSE).

5.1. Simulated examples

This subsection investigates the “cold-start” problem and the utility of a user-item specific
network on prediction performance. We generate the simulation setting as follows. The
dimensions of a rating matrix {rui}1≤u≤n;1≤i≤m are n = 501 and m = 201. Let pu =
(1 + 0.002u)1K +N(0K , ξIK) and qi = (1 + 0.0075i)1K +N(0K , ξIK) for u = 1, · · · , n and
i = 1, · · · ,m, where 1K and 0K being K-dimensional vectors of ones and zeros, respectively.
Here we sample observed ratings at random, where π is the missing rate, and the total
number of observed ratings is |Ω| = (1− π)nm. For each user-item pair (u, i) ∈ Ω, we let u
and i be uniformly sampled from 1, · · · , n and 1, · · · ,m, respectively, and rui be generated
from a truncated normal distribution on [1, 5] with mean pTuqi and standard deviation 0.5.
Further, rui is rounded to the closest integer in {1, · · · , 5} to mimic discrete ratings in
practice.

To generate a similarity network for each user-item (u, i) pair, we connect (u, i) with its
nearest first-order neighbor indices, say u− 1 and u+ 1 for u and i− 1 and i+ 1 for i. This
mimics a user’s friendship network. In addition, we introduce a “cold-start” rate ρ to exam-
ine the prediction accuracy of the proposed method on new users and items. Specifically,
we randomly select ρ-proportion of users and items, and retain all of their corresponding
ratings in a testing set to resemble the “cold-start” phenomenon. The remaining ratings
are randomly split into training, tuning and testing sets with 60%, 15%, and 25% of the
observations, respectively. In simulations, we choose ξ = 0.1, K = 3 or 6, the missing
rate π = .8, .9, .95, and the “cold-start” rate ρ = 0, 0.1, 0.2. For the proposed sSVD, the
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weight function is set as ωui,u′i′ = Suiu′i′ , which is constructed based on the adjacency of
each user-item pairs. For gSVD, we use the ranking percentages of each user and item as
covariates according to Bi et al. (2017), but the user-item specific network information is
not incorporated.

Table 1: Averaged RMSEs of various methods and their estimated standard deviations in
parentheses on the simulated examples over 50 simulations. Here RBM, SoftImput, rSVD,
gSVD, sSVD denote: restricted Boltzmann machines (Salakhutdinov et al., 2007), SoftImput
method (Hastie et al., 2015), regularized SVD method (Paterek, 2007), group-specific SVD
method (Bi et al., 2017) and the proposed method, respectively. The best performer in each
setting is bold-faced.

RBM SoftImpute SSR rSVD gSVD sSVD

Use of covariate No No Yes No Yes Yes

K = 3, π = 0.8
ρ = 0.0 0.842(0.001) 1.082(.003) 2.471(.002) 0.323(.000) 0.302(.000) 0.364(.001)
ρ = 0.1 0.911(0.003) 2.100(.007) 2.570(.004) 1.112(.009) 0.472(.003) 0.371(.001)
ρ = 0.2 0.943(0.002) 2.404(.007) 2.650(.014) 1.331(.007) 0.578(.009) 0.375(.001)

K = 3, π = 0.9
ρ = 0.0 0.848(0.002) 2.146(0.003) 2.617(.002) 0.498(0.002) 0.351(0.002) 0.368(0.001)
ρ = 0.1 0.915(0.002) 2.486(0.006) 2.674(.003) 1.170(0.010) 0.525(0.007) 0.378(0.001)
ρ = 0.2 0.948(0.003) 2.261(0.005) 2.697(.005) 1.418(0.007) 0.622(0.006) 0.388(0.001)

K = 3, π = 0.95
ρ = 0.0 0.861(0.002) 2.554(0.005) 2.693(.004) 1.002(0.004) 0.442(0.002) 0.379(0.001)
ρ = 0.1 0.923(0.003) 2.668(0.006) 2.716(.005) 1.445(0.009) 0.707(0.017) 0.407(0.002)
ρ = 0.2 0.956(0.003) 2.722(0.005) 2.733(.004) 1.636(0.007) 0.849(0.014) 0.440(0.002)

K = 6, π = 0.8
ρ = 0.0 0.843(0.001) 1.086(0.003) 2.472(.002) 0.340(0.001) 0.302(0.001) 0.367(0.001)
ρ = 0.1 0.914(0.003) 2.113(0.006) 2.584(.004) 0.823(0.008) 0.472(0.005) 0.374(0.001)
ρ = 0.2 0.943(0.003) 2.414(0.006) 2.634(.004) 0.984(0.007) 0.568(0.005) 0.382(0.001)

K = 6, π = 0.9
ρ = 0.0 0.851(0.002) 2.156(0.004) 2.616(.003) 0.451(0.001) 0.350(0.001) 0.373(0.001)
ρ = 0.1 0.908(0.002) 2.492(0.005) 2.667(.005) 0.872(0.007) 0.529(0.005) 0.387(0.001)
ρ = 0.2 0.946(0.002) 2.625(0.004) 2.697(.003) 1.030(0.006) 0.619(0.006) 0.403(0.001)

K = 6, π = 0.95
ρ = 0.0 0.857(0.003) 2.558(0.005) 2.697(.003) 0.713(0.003) 0.442(0.002) 0.396(0.002)
ρ = 0.1 0.925(0.002) 2.679(0.006) 2.726(.005) 1.015(0.009) 0.696(0.019) 0.422(0.002)
ρ = 0.2 0.955(0.003) 2.717(0.005) 2.733(.004) 1.154(0.006) 0.866(0.012) 0.460(0.002)

Table 1 indicates that the proposed sSVD achieves the highest predictive accuracy com-
pared against its competitors in 14 out of 18 different settings, whereas its accuracy is close
to the best performer gSVD in the remaining four settings. Note that these four settings
correspond to no “cold-start” user-item pairs in a linear situation. This simulation result is
anticipated as only sSVD is capable of utilizing user-specific social networks. Interestingly,
gSVD, without using the user-specific networks, performs well as it is able to capture user-
user dependencies with respect to ranking due to strong dependency from the neighboring
user-specific friendship networks. By comparison, SSR has a comparable performance as
SoftImput, which is much worse than rSVD, gSVD, and sSVD, partly because it fails to
account for non-ignorable missing.

Compared with the methods without using covariates such as rSVD and SoftImpute,
sSVD yields superior performance in most scenarios, and the percentages of improvement
can be as high as 83.1%. In contrast to RBM, SoftImpute and SSR, the percentages of
improvement from the sSVD range from 51.8% to 83.2%. In addition, sSVD is robust
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against high missing rates and high “cold-start” rates as measured by the missing rate π
and the cold-start rate ρ. As π and ρ increase, the performance of sSVD is stable, whereas
the performances of competitors deteriorate rapidly. In other words, the improvement of
sSVD over its competitors is more significant when π and ρ are large. For example, the
largest amount of improvement of sSVD over the second best performer gSVD is 46.9%
when K = 6, π = .95, and ρ = .2.

Moreover, we examine the robust aspect of the proposed sSVD with respect to the
degree of smoothness of ratings in a neighborhood and the degree of sparseness of a user-
specific network. Specifically, given K = 6 and π = 0.95, we contaminate the neighborhood
structure by increasing the noise level ξ = 0.1, 0.2, 0.4, 0.6, and allow the sparsity ratio
πnetwork = 0.0, 0.2, 0.5, 1.0 for user-item specific networks, where the sparseness ratio is the
probability that the edges connecting each pair of users or items are removed from the
original network. Thus as πnetwork increases, the resultant network becomes sparser, and
the proposed sSVD degenerates to rSVD when πnetwork = 1.0. As suggested by Table 2,
the performance of sSVD deteriorates as the contamination level πnetwork escalates, yet
still outperforming rSVD when ξ = 0.1, 0.2. On the other hand, rSVD outperforms the
proposed sSVD when ξ ≥ 0.4, which is anticipated because the proposed sSVD relies on
the smoothness structure of the ratings. Moreover, it is evident that the proposed sSVD is
less affected by the “cold-start” users and items when πnetwork decreases.

Table 2: Averaged RMSEs and estimated standard deviations over 50 simulations for the
proposed method when the error standard deviation is 0.1, 0.2, 0.4, or 0.6, and the “cold-
start” rate ρ is 0.0, 0.1, or 0.2, and the network structure missing rate πnetwork is 0.0, 0.2,
0.5, or 1.0.

ξ = 0.1 ξ = 0.2 ξ = 0.4 ξ = 0.6

πnetwork = 0.0

ρ = 0.0 0.396(0.002) 0.589(0.003) 0.984(0.005) 1.547(0.010)
ρ = 0.1 0.422(0.002) 0.665(0.004) 1.032(0.014) 1.596(0.015)
ρ = 0.2 0.460(0.002) 0.716(0.005) 1.094(0.009) 1.683(0.016)

πnetwork = 0.2

ρ = 0.0 0.512(0.002) 0.608(0.003) 0.987(0.007) 1.518(0.010)
ρ = 0.1 0.599(0.004) 0.694(0.005) 1.062(0.010) 1.622(0.016)
ρ = 0.2 0.648(0.006) 0.746(0.004) 1.129(0.009) 1.660(0.013)

πnetwork = 0.5

ρ = 0.0 0.569(0.003) 0.648(0.004) 1.000(0.009) 1.516(0.014)
ρ = 0.1 0.660(0.004) 0.743(0.007) 1.092(0.008) 1.629(0.011)
ρ = 0.2 0.711(0.007) 0.796(0.006) 1.127(0.010) 1.670(0.012)

πnetwork = 1.0

ρ = 0.0 0.713(0.003) 0.745(0.006) 0.952(0.009) 1.397(0.008)
ρ = 0.1 1.015(0.009) 1.046(0.011) 1.289(0.014) 1.686(0.015)
ρ = 0.2 1.154(0.006) 1.193(0.009) 1.415(0.013) 1.790(0.020)

In summary, the simulation studies illustrate that integration of user-item specific net-
works into latent factor modeling can enhance the accuracy of prediction and tackle the
“cold-start” issue. In this regard, sSVD is a more effective recommender system than the
existing methods in the literature.
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5.2. Music data from Last.fm

In this section, we analyze a online music dataset from the Last.fm (http://www.last.fm),
which was released in the second International Workshop HetRec 2011 (http://ir.ii.
uam.es/hetrec2011). This dataset contains user-artist listening counts, social networks
among 1,892 users, and tagging information for 17,632 artists. The user-artist listening
counts contain 92,834 tuples defined by [user, artist, listeningCount], where each
user listens to an average of about 49 artists, and each artist has been listened to by about
5 users on average. Note that the observation rate in this dataset is below 0.28%, leading
to a severe “cold-start” problem.

For this application, we focus on utilizing user-item specific covariates and networks
to solve the “cold-start” issue. Specifically, in the Last.fm dataset, a user-specific social
network is available based on 12,717 bi-directional user friendships with an average of about
13 friends per user. Moreover, there are 186,479 tags given by users to artists, with an
average of about 99 tags per user, and about 15 tags per artist. A typical tag of an artist
gives a short description of the artist, such as “rock”, “electronic”, “jazz” and “80s”. The
artist-specific tags are converted to a l-length 0/1 covariate vector to indicate whether music
tags are assigned to an artist by users, where l is the total number of different tags.

Figure 2 illustrates the listening pattern, showing that a log-transformation of the lis-
tening counts appears to be normally distributed. In addition, Figure 3 indicates that only
a small portion of artists are popular and frequently listened to by many users. However,
the majority of the artists are categorized in more specialized genres, which make them less
popular over all, but still having their own followers. This is illustrated by the horizontal
and diagonal stripes in Figure 3 respectively.

(a) Original listening counts (b) log-transformed listening counts

Figure 2: The original and log-transformed listening counts in the Last.fm dataset.

Figure 4 shows that popular artists tend to be listened to more by each follower; that
is, the number of users listening to each artist is positively related with its averaged listen-
ing counts, indicating that missing is non-ignorable and that the missing pattern shall be
incorporated in the recommender system.

For comparison, we investigate the performance of five methods: CRBM, SoftImpute,
SSR, rSVD, and gSVD, where the residuals of these methods are obtained after adjusting for
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Figure 3: Two-dimensional histogram plot of the joint distribution of the observed user-
artist pairs from the Last.fm dataset. The grey level represents the concentration, with
darker color indicating more densely populated. Together with the joint distribution, the
marginal distributions for user and artist are displayed along the horizontal and vertical
axes.

Figure 4: Missing pattern analysis for artists in the Last.fm dataset. It is clear that artists
attracting fewer users tend to have smaller averaged listening counts.
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covariate effects from user-specific social networks and artist-specific tags. Furthermore, to
incorporate the non-ignorable missing pattern, the missing percentage is used to generate
12 homogeneous subgroups of users and 10 homogeneous subgroups of artists for gSVD,
and covariates (xu,xi) for sSVD are obtained from 5%, 25%, 50%, 75%, and 95% quantiles
of the log observed listening counts in the training set for each user and artist. Also, we
slightly modify the weight ωui,u′i′ defined in (5) using thresholding. Specifically, Suiu′i′ =
Suu′S

i
i′ , where Suu′ = 0.8 if user u and u′ are adjacent in the user social network, and

Suu′ = 0.5 otherwise; and Sii′ is computed based on the cosine similarity between the tag
information of artists i and i′. For new users or artists, only user social network and artist
tags information are available, therefore the weight function for covariate is automatically
set as one. Furthermore, we apply a Gaussian kernel with window size h as the median
distance among all user-artist pairs. For each user-artist pair (u, i), we compute the weights
as in (5), and truncate them to keep only the five most similar user-artist pairs for each
(u, i) to facilitate computation.

For evaluation, we apply 5-fold cross-validation over a random partition of the original
dataset, and calculate the RMSE as in Koyejo and Ghosh (2011). For SVD-based methods,
we set K = 5, and select the optimal λ from {1, · · · , 25} through the 5-fold cross-validation.
For CRBM, the parameters are set as suggested in Nguyen and Lauw (2016); and for SSR,
the parameters are determined through cross-validation as suggested in Zhao et al. (2016).

Table 3: RMSEs of various methods and their estimated standard deviations in parentheses
for observed, cold-start, and entire pairs on the Last.fm dataset. Here RBM, SoftImput,
SSR, rSVD, gSVD, sSVD denote: restricted Boltzmann machines (Salakhutdinov et al.,
2007), SoftImput method (Hastie et al., 2015), Self-recovered side regression (Zhao et al.,
2016), regularized SVD method (Paterek, 2007), group-specific SVD method (Bi et al., 2017)
and the proposed method, respectively. The second column indicates what type of covariates
are used by each method, where N, T and M denote user-specific social networks, artist tags
and non-ignorable missing pattern, respectively. The best performance in each setting is
bold-faced.

Covariate Observed pair “Cold-start” pair Entire pair

Regression N, T 1.507(.005) 1.832(.023) 1.552(.005)

CRBM N, T 1.507(.005) 1.834(.023) 1.552(.004)

SoftImpute N, T 1.308(.005) 1.832(.023) 1.386(.004)

SSR N, T 1.436(.006) 1.841(.035) 1.493(.009)

rSVD N, T 1.124(.006) 1.832(.023) 1.237(.004)

gSVD M, T 0.997(.013) 1.202(.012) 1.026(.011)

sSVD N, M, T 0.880(.004) 0.706(.003) 0.860(.003)

Table 3 shows that sSVD significantly outperforms its competitors with a RMSE of 0.860
for the entire dataset, whereas gSVD is the second best performer with a RMSE of 1.020.
As a reference, these two RMSEs are both smaller than 1.071 for the weighted interaction
method under the same setting, which is reported as the best performer in analyzing the
Last.fm dataset (Koyejo and Ghosh, 2011). The amounts of improvement of sSVD over
gSVD, rSVD, SoftImput, SSR and CRBM are 15.6%, 24.6%, 38.0%, 42.4%, and 44.6%,
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respectively. For the “cold-start” pairs, sSVD yields a more than 40% improvement over
the second-best competitor gSVD. Note that SoftImput and rSVD do not perform well in
handling the “cold-start” problem, as their penalization leads to the same performance as
the regression approach.

6. Summary

This article proposes a smooth collaborative recommender system which integrates the net-
work structure of user-item pairs to improve prediction accuracy. The proposed method
provides a flexible framework to exploit the covariate information, such as user demograph-
ics, item contents, and social network information for users and/or items. The network
structure allows us to increase the effective sample size for higher prediction accuracy, in
addition to producing a more accurate recommender system for “cold-start” pairs. In addi-
tion, we implement a “divide-and-conquer” type of alternating least square algorithm. We
also establish the asymptotic properties of the proposed method, which provide the theoret-
ical foundation of its superior performance over other state-of-the-art methods. Although
the proposed method is formulated based on the latent factor model, the framework can be
extended to other models, such as Koren (2008) and Bi et al. (2017).
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Appendix: technical proofs

Proof of Lemma 1. By the definition of (P̂ , Q̂) as a minimizer of (3), we have

(P̂ , Q̂) = argmin
P ,Q

1

nm

n∑
u=1

m∑
i=1

( ∑
(u′,i′)∈Ω

ωui,u′i′(ru′i′ − pTuqi)2
)

+ λ1

n∑
u=1

J(pu) + λ2

m∑
i=1

J(qi)

= argmin
P ,Q

1

nm
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u=1

m∑
i=1

( ∑
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ωui,u′i′r
2
u′i′ −

∑
(u′,i′)∈Ω

2ωui,u′i′ru′i′p
T
uqi

+
∑

(u′,i′)∈Ω

ωui,u′i′(p
T
uqi)

2
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u=1

J(pu) + λ2

m∑
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= argmin
P ,Q
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nm
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( ∑
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2
u′i′ −

∑
(u′,i′)∈Ω

2ωui,u′i′ru′i′p
T
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2

−
∑

(u′,i′)∈Ω

ωui,u′i′r
2
u′i′ +

( ∑
(u′,i′)∈Ω

ωui,u′i′ru′i′
)2)

+ λ1
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+ λ1

n∑
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J(pu) + λ2
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J(qi)

= argmin
P ,Q

1
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ωui,u′i′ru′i′ − pTuqi
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where the third equality follows that
∑

(u′,i′)∈Ω ωui,u′i′ = 1 and the fact that adding constants
to the cost function does not impact minimization. This completes the proof.
Proof of Theorem 1. Our treatment for bounding P

(
RMSE(θ̂,θ) ≥ η

)
is to bound

empirical processes induced by RMSE(·, ·) by a chaining argument as in (Wong and Shen,
1995; Shen et al., 2003; Liu and Shen, 2006).

Let Γ(L, η) = {θ ∈ Γ(L) : RMSE(θ,θ0) ≥ η} be a parameter subset of the parameter
space Γ(L). Let λJ(θ) = λ1

∑n
u=1 J(pu) + λ2

∑m
i=1 J(qi) be the regularizer.

Note that θ̂ is a minimizer of L(P ,Q) in Γ(L), we have that P
(
RMSE(θ̂,θ0)) ≥ η

)
≤

P ∗
(

supθ∈Γ(L,η)(L(P 0,Q0)−L(P ,Q)) ≥ 0
)

, where P ∗ is the outer probability (Billingsley,

2013). Using the expression of L(P ,Q), we obtain an upper bound of the latter as follows.

P ∗
(

sup
θ∈Γ(L,η)

(nm)−1
∑
u,i

∑
(u′,i′)∈Ω

ωui,u′i′(θui − θ0
ui)(2ru′i′ − θ0

ui − θui) + λJ(θ0)− λJ(θ) ≥ 0
)

≤ P ∗
(

sup
θ∈Γ(L,η)

(nm)−1
∑
u,i

∑
(u′,i′)∈Ω

ωui,u′i′(θui − θ0
ui)(2ru′i′ − θ0

ui − θui) ≥ −λJ(θ0)
)
,

where the fact that λJ(θ) ≥ 0 has been used. Now, let Aj =
{
θ ∈ Γ(L) : 2j−1η ≤

RMSE(θ,θ0) ≤ 2jη
}

; j = 1, · · · ,∞ be a partition in that Γ(L, η) =
⋃∞
j=1Aj . Combining

17



Dai, Wang, Shen and Qu

the above inequalities, we have that P
(
RMSE(θ̂,θ0) ≥ η

)
is bounded by

∞∑
j=1

P ∗
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sup
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Next, we bound each Ij separately. Since
∑
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2,

which, by Assumption A and the fact that ωui,u′i′ = 0 when Suiu′i′ = 0, is upper-bounded by

c1

√
K(nm)−1

∑
u,i

|θui − θ0
ui|

∑
(u′,i′)∈Ω

2ωui,u′i′‖xu′i′ − xui‖α2

+ (nm)−1
∑
u,i

∑
(u′,i′)∈Ω

2ωui,u′i′(θui − θ0
ui)εu′i′ − (nm)−1

∑
u,i

(θui − θ0
ui)

2.

Then for any θ ∈ Aj , (2jη)2 ≥ (nm)−1
∑

u,i(θui − θ0
ui)

2 ≥ (2j−1η)2, by the Cauchy-Schwarz
inequality,

sup
Aj

c1

√
K(nm)−1

∑
u,i

|θui − θ0
ui|

∑
(u′,i′)∈Ω

2ωui,u′i′‖xu′i′ − xui‖α2

≤ sup
Aj

c1

√
K
(

(nm)−1
∑
u,i

(θui − θ0
ui)

2
)1/2(

(nm)−1
∑
u,i

( ∑
(u′,i′)∈Ω

2ωui,u′i′‖xu′i′ − xui‖α2
)2)1/2

≤ 2c1

√
Kκ12jη.

Thus, Ij ≤ P ∗
(

supAj (nm)−1
∑

u,i

∑
(u′,i′)∈Ω 2ωui,u′i′(θui−θ0

ui)εu′i′ ≥ (2j−1η)2−2c1

√
Kκ12jη−

λJ(θ0)
)

. Note that λJ(θ0) ≤ η2/4 and RMSE(θ,θ0) =
(∑

u,i(θui − θ0
ui)

2
)1/2

≥ 2j−1η for
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θ ∈ Aj . For any η ≥ 24c1

√
Kκ1, (2j−1η)2−2c1

√
Kκ12jη−λJ(θ0) ≥ 22j−4η2, implying that

Ij ≤ P ∗
(

sup
Aj

(nm)−1
∑
u,i

(θui − θ0
ui)

∑
(u′,i′)∈Ω

ωui,u′i′εu′i′ ≥ 22j−4η2
)

≤ P ∗
(

sup
Aj

(nm)−1
(∑

u,i

(θui − θ0
ui)

2
)1/2(∑

u,i

( ∑
(u′,i′)∈Ω

ωui,u′i′εu′i′
)2)1/2

≥ 22j−4η2
)

≤ P ∗
((

(nm)−1
∑
u,i

( ∑
(u′,i′)∈Ω

ωui,u′i′εu′i′
)2)1/2

≥ 2j−4η
)

≤ P ∗
(

max
u,i

∣∣ ∑
(u′,i′)∈Ω

ωui,u′i′εu′i′
∣∣ ≥ 2j−4η

)
≤
∑
u,i

2 exp
(
− 2(2j−8)η2

2σ2
∑

(u′,i′)∈Ω ω
2(xui,xu′i′)

)
≤ 2nm exp

(
− 2(2j−8)η2

2σ2κ2

)
,

where the second to the last inequalities follow from the Chernoff inequality of a weighted
sub-Gaussian distribution (Chung and Lu, 2006) and Assumption B. Hence, there exist
some positive constants a2 and a3, for η ≥ 24c1

√
Kκ1 such that

P
(
RMSE(θ̂,θ0) ≥ η

)
≤ 4nm

∞∑
j=1

exp
{
− 2(2j−8)η2

2σ2κ2

}
≤ 4nm exp{−a2

η2

σ2κ2
}/(1− exp{−a2

η2

σ2κ2
}) ≤ a3 exp

{
− a2

η2

σ2κ2
+ log(nm)

}
.

The desired result then follows immediately. �
Proof of Corollary 1. It suffices to compute κ1 and κ2. First, we will show that for any
xui ∈ X , when |Ω| is sufficiently large, there exist positive constants a4–a7 such that∑
(u′,i′)∈Ω

Kh(‖xu′i′ − xui‖2)Suiu′i′ ≥
|Ω|
2
E
(
Kh(‖x− xui‖2)Sui

∣∣∆ = 1
)

=
|Ω|
2
P (Sui = 1|∆ = 1)E

(
Kh(‖x− xui‖2)

∣∣Sui = 1,∆ = 1
)

≥ a4|Ω|E
(
Kh(‖x− xui‖2)

∣∣Sui = 1,∆ = 1
)

≥ a5|Ω|
∫
Kh(u)fUui|Sui=1,∆=1(u)du ≥ a6|Ω|h

∫
K(u)du

≥ a7|Ω|h,

where the fUui|Sui=1,∆=1 is the conditional density for Uui, the first inequality follows from
the law of large numbers, and the third inequality and the third to the last inequalities
follow from Assumption C. Similarly, for some positive constants a8 and a9,∑
(u′,i′)∈Ω

Kh(‖xui − xu′i′‖2)‖xui − xu′i′‖αSuiu′i′ ≤ 2|Ω|E
(
Kh(Uui)(Uui)α|Sui = 1,∆ = 1

)
= 2|Ω|

∫
Kh(u)uαfUui|Sui=1,∆=1(u)du ≤ a8|Ω|hα+1,
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where the last inequality follows from Assumptions C and D, and∑
(u′,i′)∈Ω

K2
h(‖xui − xu′i′‖2)Suiu′i′ ≤ 2|Ω|E

(
K2
h(Uui)|Sui = 1,∆ = 1

)
≤ a9|Ω|h.

Combing the above inequalities yields that

∑
(u′,i′)∈Ω

ω(x0,xu′i′)‖x0,xu′i′‖α2 =

∑
(u′,i′)∈ΩKh(‖x0 − xu′i′‖2)‖x0 − xu′i′‖α2Suiu′i′∑

(u′,i′)∈ΩKh(‖x− xu′i′‖2)Suiu′i′
≤ a8h

α.

Furthermore,

∑
(u′,i′)∈Ω

ω2(x0,xu′i′) ≤
∑

(u′,i′)∈ΩK2
h(‖x0 − xu′i′‖2)Suiu′i′(∑

(u′,i′)∈ΩKh(‖x− xu′i′‖2)Suiu′i′
)2 ≤ a9

a2
7|Ω|h

.

Consequently, κ1 = hα and κ2 = (|Ω|h)−1, then the desired result follows immediately. �
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