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Abstract

We study networks of communicating learning agents that cooperate to solve a common
nonstochastic bandit problem. Agents use an underlying communication network to get
messages about actions selected by other agents, and drop messages that took more than
d hops to arrive, where d is a delay parameter. We introduce Exp3-Coop, a cooperative
version of the Exp3 algorithm and prove that with K actions and N agents the average

per-agent regret after T rounds is at most of order
√(

d+ 1 + K
N α≤d

)
(T lnK), where α≤d is

the independence number of the d-th power of the communication graph G. We then show
that for any connected graph, for d =

√
K the regret bound is K1/4

√
T , strictly better than

the minimax regret
√
KT for noncooperating agents. More informed choices of d lead to

bounds which are arbitrarily close to the full information minimax regret
√
T lnK when G

is dense. When G has sparse components, we show that a variant of Exp3-Coop, allowing
agents to choose their parameters according to their centrality in G, strictly improves the
regret. Finally, as a by-product of our analysis, we provide the first characterization of the
minimax regret for bandit learning with delay.

Keywords: Multi-armed bandits, distributed learning, cooperative multi-agent systems,
regret minimization, LOCAL communication

1. Introduction

Delayed feedback naturally arises in many sequential decision problems. For instance, a
recommender system typically learns the utility of a recommendation by detecting the oc-
currence of certain events (e.g., a user conversion), which may happen with a variable delay
after the recommendation was issued. Other examples are the communication delays ex-
perienced by interacting learning agents. Concretely, consider a network of geographically
distributed ad servers using real-time bidding to sell their inventory. Each server sequen-
tially learns how to set the auction parameters (e.g., reserve price) in order to maximize
the network’s overall revenue, and shares feedback information with other servers in order
to speed up learning. However, the rate at which information is exchanged through the
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communication network is slower than the typical rate at which ads are served. This causes
each learner to acquire feedback information from other servers with a delay that depends
on the network’s structure.

Motivated by the ad network example, we consider networks of learning agents that
cooperate to solve the same nonstochastic bandit problem, and study the impact of delay
on the global performance of these agents. We introduce the Exp3-Coop algorithm, a
distributed and cooperative version of the Exp3 algorithm of Auer et al. (2002b). Exp3-
Coop works within a distributed and synced model where each agent runs an instance of
the same bandit algorithm (Exp3). All bandit instances are initialized in the same way
irrespective to the agent’s location in the network (that is, agents have no preliminary
knowledge of the network), and we assume the information about an agent’s actions is
propagated through the network with a unit delay for each crossed edge. In each round t,
each agent selects an action and incurs the corresponding loss (which is the same for all
agents that pick that action in round t). Besides observing the loss of the selected action,
each agent obtains the information previously broadcast by other agents with a delay equal
to the shortest-path distance between the agents. Namely, at time t an agent learns what
the agents at shortest-path distance s did at time t − s for each s = 1, . . . , d, where d is a
delay parameter. In this scenario, we aim at controlling the growth of the regret averaged
over all agents (the so-called average welfare regret).

In the noncooperative case, when agents ignore the information received from other
agents, the average welfare regret grows like

√
KT (the minimax rate for standard bandit

setting), where K is the number of actions and T is the time horizon. We show that, using
cooperation, N agents with communication graph G can achieve an average welfare regret

of order
√(

d+ 1 + K
N α≤d

)
(T lnK). Here α≤d denotes the independence number of the

d-th power of G (i.e., the graph G augmented with all edges between any two pair of nodes
at shortest-path distance less than or equal to d). When d =

√
K this bound is at most

K1/4
√
T lnK +

√
K(lnT ) for any connected graph —see Remark 8 in Section 4.1— which

is asymptotically better than
√
KT .

Networks of nonstochastic bandits were also investigated by Awerbuch and Kleinberg
(2008) in a setting where the distribution over actions is shared among the agents without
delay. Awerbuch and Kleinberg (2008) prove a bound on the average welfare regret of order√(

1 + K
N

)
T ignoring polylog factors.1 We recover the same bound as a special case of our

bound when G is a clique and d = 1. In the clique case our bound is also similar to the

bound
√

K
N (T lnK) achieved by Seldin et al. (2014) in a single-agent bandit setting where,

at each time step, the agent can choose a subset of N ≤ K actions and observe their loss.
In the case when N = 1 (single agent), our analysis can be applied to the nonstochastic
bandit problem where the player observes the loss of each played action with a delay of d
steps. In this case we improve on the previous result of

√
(d+ 1)KT by Neu et al. (2010,

2014), and give the first characterization (up to logarithmic factors) of the minimax regret,
which is of order

√
(d+K)T .

1. The rate proven in (Awerbuch and Kleinberg, 2008, Theorem 2.1) has a worse dependence on T , but
we believe this is due to the fact that their setting allows for dishonest agents and agent-specific loss
vectors.
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In principle, the problem of delays in online learning could be tackled by simple reduc-
tions. Yet, these reductions give rise to suboptimal results. In the single agent setting,
where the delay is constant and equal to d, one can use the technique of Weinberger and
Ordentlich (2002) and run d + 1 instances of an online algorithm for the nondelayed case,
where each instance is used every d + 1 steps. This delivers a suboptimal regret bound of√

(d+ 1)KT . In the case of multiple delays, like in our multi-agent setting, one can re-
peat the same action for d+ 1 steps while accumulating information from the other agents,
and then perform an update on scaled-up losses. The resulting (suboptimal) bound on the

average welfare regret would be of the form
√

(d+ 1)
(
1 + K

N α≤d
)
(T lnK).

Rather than using reductions, the analysis of Exp3-Coop rests on quantifying the
performance of suitable importance weighted estimates. In fact, in the single-agent setting
with delay parameter d, using Exp3-Coop reduces to running the standard Exp3 algorithm
performing an update as soon a new loss becomes available. This implies that at any round
t > d, Exp3 selects an action without knowing the losses incurred during the last d rounds.
The resulting regret is bounded by relating the standard analysis of Exp3 to a detailed
quantification of the extent to which the distribution maintained by Exp3 can drift in d
steps.

In the multi-agent case, the importance weighted estimate of Exp3-Coop is designed
in such a way that at each time t > d the instance of the algorithm run by an agent v
updates all actions that were played at time t− d by agent v or by other agents not further
away than d from v. Compared to the single agent case, here each agent can exploit the
information circulated by the other agents. However, in order to compute the importance
weighted estimates used locally by each agent, the probabilities maintained by the agents
must be propagated together with the observed losses. Here, further concerns may show up,
like the amount of communication, and the location of each agent within the network. In
particular, when G has sparse components, we show that a variant of Exp3-Coop, allowing
agents to choose their parameters according to their centrality within G, strictly improves
on the regret of Exp3-Coop.

Finally, we propose a second variant of Exp3-Coop where each agent is able to use loss
information as soon as it becomes available. This implies that the updates performed at
time t now involve losses with different delays. For this reason, the new variant of Exp3-
Coop combines many loss estimators, each defined for a different level of delay, through
a fixed distribution D. In the analysis we show how the introduction of combined loss
estimators affects the average welfare regret.

A preliminary version of this work appeared as an extended abstract in (Cesa-Bianchi
et al., 2016).

2. Additional Related Work

Many important ideas in delayed online learning, including the observation that the effect
of delays can be limited by controlling the amount of change in the agent strategy, were
introduced by Mesterharm (2005) —see also (Mesterharm, 2007, Chapter 8). A more recent
investigation on delayed online learning is due to Neu et al. (2010, 2014), who analyzed ex-
ponential weights with delayed feedbacks. Furher progress is made by Joulani et al. (2013),
who also study delays in the general partial monitoring setting. Additional works (Joulani
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et al., 2016; Quanrud and Khashabi, 2015) prove regret bounds for the full-information case
of the form

√
(D + T ) lnK, where D is the total delay experienced over the T rounds. In

the stochastic case, bandit learning with delayed feedback was considered by Dud́ık et al.
(2011); Joulani et al. (2013) and in a harder anonymized model by Pike-Burke et al. (2018).

To the best of our knowledge, the first paper about nonstochastic cooperative bandit
networks is (Awerbuch and Kleinberg, 2008). More papers analyze the stochastic setting,
and the closest one to our work is perhaps (Szorenyi et al., 2013). In that paper, delayed
loss estimates in a network of cooperating stochastic bandits are analyzed using a dynamic
P2P random networks as communication model. A more recent paper is (Landgren et al.,
2015), where the communication network is a fixed graph and a cooperative version of the
UCB algorithm is introduced which uses a distributed consensus algorithm to estimate the
mean rewards of the arms. The main result is an individual (per-agent) regret bound that
depends on the network structure without taking delays into account.

Another interesting paper about cooperating bandits in a stochastic setting is (Kar
et al., 2011). Similar to our model, agents sit on the nodes of a communication network.
However, only one designated agent observes the rewards of actions he selects, whereas the
others remain in the dark. This designated agent broadcasts his sampled actions through
the networks to the other agents, who must learn their policies relying only on this indirect
feedback. The paper shows that in any connected network this information is sufficient to
achieve asymptotically optimal regret. Cooperative bandits with asymmetric feedback are
also studied by Barrett and Stone (2011). In their model, an agent must teach the reward
distribution to another agent while keeping the discounted regret under control. Tekin and
van der Schaar (2015) investigate a stochastic contextual bandit model where each agent
can either privately select an action or have another agent select an action on his behalf.
In a related paper, Tekin et al. (2014) look at a stochastic bandit model with combinatorial
actions in a distributed recommender system setting, and study incentives among agents
who can now recommend items taken from other agents’ inventories. A more recent paper
(Kolla et al., 2016) studies the performance of the UCB algorithm by Auer et al. (2002a) in
a multi-agent setting, where at each time step each agent observes also the losses of actions
chosen by any agent located in the same neighborhood of the communication network.

A further line of relevant work involves problems of decentralized bandit coordination.
For example, Stranders et al. (2012) consider a bandit coordination problem where the
reward function is global and can be represented as a factor graph in which each agent
controls a subset of the variables.

A parallel thread of research concerns networks of bandits that compete for shared
resources. A paradigmatic application domain is that of cognitive radio networks, in which
a number of channels are shared among many users and any two or more users interfere
whenever they simultaneously try to use the same channel. The resulting bandit problem
is one of coordination in a competitive environment, because every time two or more agents
select the same action at the same time step they both get a zero reward due to the
interference —see (Rosenski et al., 2015) for recent work on stochastic competitive bandits
and (Kleinberg et al., 2009) for a study of more general congestion games in a game-theoretic
setting.

Finally, there exists an extensive literature on the adaptation of gradient descent and
related algorithms to distributed computing settings, where asynchronous processors natu-

4



Delay and Cooperation in Nonstochastic Bandits

rally introduce delays —see, e.g., (Zinkevich et al., 2009; Agarwal and Duchi, 2011; Li et al.,
2013; McMahan and Streeter, 2014; Quanrud and Khashabi, 2015; Liu et al., 2015; Duchi
et al., 2015). However, none of these works considers bandit settings, which are an essential
ingredient for our analysis.

3. Preliminaries

We now establish our notation, along with basic assumptions and preliminary facts related
to our algorithms. Notation and setting here both refer to the single agent case. The coop-
erative setting with multiple agents (and notation thereof) will be introduced in Section 4.

Let A = {1, . . . ,K} be the action set. A learning agent runs an exponentially-weighted
algorithm with weights wt(i), and learning rate η > 0. Initially, w1(i) = 1 for all i ∈ A. At
each time step t = 1, 2, . . . , the agent draws action It with probability P(It = i) = pt(i) =
wt(i)/Wt, where Wt =

∑
j∈Awt(j). After observing the loss `t(It) ∈ [0, 1] associated with

the chosen action It, and possibly some additional information, the agent computes, for
each i ∈ A, nonnegative loss estimates ̂̀t(i), and performs the exponential update

wt+1(i) = pt(i) exp
(
−η ̂̀t(i)) (1)

to these weights. The following two lemmas are general results that control the evolution
of the probability distributions in the exponentially-weighted algorithm. As we said in the
introduction, bounding the extent to which the distribution used by our algorithms can
drift in d steps is key to controlling regret in a delayed setting. The first result bounds the
additive change in the probability of any action, and it holds no matter how ̂̀t(i) is defined.

Lemma 1 Under the update rule (1), for all t ≥ 1 and for all i ∈ A,

−η pt(i)̂̀t(i) ≤ pt+1(i)− pt(i) ≤ η pt+1(i)
∑
j∈A

pt(j)̂̀t(j)
holds deterministically with respect to the agent’s randomization.

Proof Directly from the definition of the update (1), wt+1(i) ≤ pt(i) for all i ∈ A, so that
Wt+1 ≤ 1, which in turn implies wt+1(i) ≤ wt+1(i)/Wt+1 = pt+1(i). Therefore

pt+1(i)− pt(i) ≥ wt+1(i)− pt(i) = pt(i)
(
e−η

̂̀
t(i) − 1

)
≥ −η pt(i)̂̀t(i) ,

the last inequality using 1− e−x ≤ x, for x ≥ 0. Similarly,

pt+1(i)− pt(i) ≤ pt+1(i)− wt+1(i)

= pt+1(i)− pt+1(i)Wt+1

= pt+1(i)
∑
j∈A

(
pt(j)− wt+1(j)

)
= pt+1(i)

∑
j∈A

pt(j)
(

1− e−η ̂̀t(j))
≤ η pt+1(i)

∑
j∈A

pt(j)̂̀t(j) ,
5
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hence concluding the proof.

The second result delivers a multiplicative bound on the change in the probability of any
action when the loss estimates ̂̀t(i) are of the following form:

̂̀
t(i) =


`t−d(i)

qt−d(i)
Bt−d(i) if t > d,

0 otherwise ,
(2)

where d ≥ 0 is a delay parameter, Bt−d(i) ∈ {0, 1}, for i ∈ A, are indicator functions, and
qt−d(i) ≥ pt−d(i) for all i and t > d. In all later sections, Bt−d(i) will be instantiated to the
indicator function of the event that action i has been played at time t − d by some agent,
and qt−d(i) will be the (conditional) probability of this event.

Lemma 2 Let ̂̀t(i) be of the form (2) for each t ≥ 1 and i ∈ A. If η ≤ 1
Ke(d+1) in the

update rule (1), then

pt+1(i) ≤
(

1 +
1

d

)
pt(i)

holds for all t ≥ 1 and i ∈ A, deterministically with respect to the agent’s randomization.

Proof We proceed by induction over t. For all t ≤ d, ̂̀t(·) = 0. Hence pt(·) = 1/K, and
the lemma trivially holds. For t > d we can write

∑
i∈A

pt(i)̂̀t(i) =
∑
i∈A

pt(i)
`t−d(i)

qt−d(i)
Bt−d(i)

≤
∑
i∈A

pt(i)

qt−d(i)
(because Bt−d(i)`t−d(i) ≤ 1)

≤
∑
i∈A

(
1 +

1

d

)d pt−d(i)
qt−d(i)

(by the inductive hypothesis)

≤
(

1 +
1

d

)d
K (because qt−d(i) ≥ pt−d(i))

≤ Ke .

Hence, using Lemma 1,

pt+1(i)
(
1− η Ke

)
≤ pt+1(i)

1− η
∑
j∈A

pt(j)̂̀t(j)
 ≤ pt(i)

which implies pt+1(i) ≤
(
1 + 1

d

)
pt(i) whenever η ≤ 1

Ke(d+1) .

As we said in Section 1, the idea of controlling the drift of the probabilities in order to
bound the effects of delayed feedback is not new. In particular, variants of Lemma 1 were
already derived in the work of Neu et al. (2010, 2014). However, Lemma 2 appears to be
new, and this is the key result to achieving our improvements.
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4. The Cooperative Setting on a Communication Network

In our multi-agent bandit setting, there are N agents sitting on the vertices of a connected
and undirected communication graph G = (V,E), with V = {1, . . . , N}. The agents co-
operate to solve the same instance of a nonstochastic bandit problem while limiting the
communication among them. Let Ns(v) be the set of nodes v′ ∈ V whose shortest-path
distance distG(v, v′) from v in G is exactly s. At each time step t = 1, 2, . . . , each agent
v ∈ V draws an action It(v) from the common action set A. Note that each action i ∈ A
delivers the same loss `t(i) ∈ [0, 1] to all agents v such that It(v) = i. At the end of round
t, each agent v observes his own loss `t

(
It(v)

)
, and sends to his neighbors in G the message

mt(v) =
〈
t, v, It(v), `t

(
It(v)

)
,pt(v)

〉
where pt(v) =

(
pt(1, v), . . . , pt(K, v)

)
is the distribution of It(v). Moreover, v also receives

from his neighbors a variable number of messages mt−s(v
′). Each message mt−s(v

′) that v
receives from a neighbor is used to update pt(v) and then forwarded to the other neighbors
only if s < d, otherwise it is dropped.2 Here d is the maximum delay, a parameter of
the communication protocol. Therefore, at the end of round t, each agent v receives one
message mt−s(v

′) from each agent v′ such that distG(v, v′) = s, where s ∈ {1, . . . , d}. Graph
G can thus be seen as a synchronous multi-hop communication network where messages are
broadcast, each hop causing a delay of one time step. Our learning protocol is summarized
in Figure 1, while Figure 2 contains a pictorial example.

Our model is similar to the local communication model in distributed computing
(Linial, 1992; Suomela, 2013), where the output of a node depends only on the inputs of
other nodes in a constant-size neighborhood of it, and the goal is to derive algorithms whose
running time is independent of the network size. (The main difference is that the task here
has no completion time, however, also in our model influence on a node is only through a
constant-size neighborhood of it.)

One aspect deserving attention is that, apart from the common delay parameter d, the
agents need not share further information. In particular, the agents need not know neither
the topology of the graph G nor the total number of agents N . In Section 5, we show that
our distributed algorithm can also be analyzed when each agent v uses a personalized delay
d(v), thus doing away with the need of a common delay parameter, and guaranteeing a
generally better performance.

Further graph notation is needed at this point. Given G as above, let us denote by G≤d
the graph (V,E≤d) where (u, v) ∈ E≤d if and only if the shortest-path distance between
agents u and v in G is at most d (hence G≤1 = G). Graph G≤d is sometimes called the
d-th power of G. We also use G0 to denote the graph (V, ∅). Recall that an independent
set of G is any subset T ⊆ V such that no two i, j ∈ T are connected by an edge in E.
The largest size of an independent set is the independence number of G, denoted by α(G).
Let dG be the diameter of G (maximal length over all possible shortest paths between all
pairs of nodes); then G≤dG is a clique, and one can easily see that N = α(G0) > α(G) ≥

2. Dropping messages older than d rounds is clearly immaterial with respect to proving bandit regret
bounds. We added this feature just to prove a point about the message complexity of the protocol. See
Remark 10 in Section 5 for further discussion.
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The cooperative bandit protocol
Parameters: Undirected communication graph G = (V,E), hidden loss vectors `t =(
`t(1), . . . , `t(K)

)
∈ [0, 1]K for t ≥ 1, delay d.

For t = 1, 2, . . .
1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v);
2. Each agent v ∈ V observes loss `t

(
It(v)

)
, sends to his neighbors the message

mt(v), and receives from his neighbors messages mt−s(v
′);

3. Each agent v ∈ V drops any message mt−s(v
′) received from some neighbor such

that s ≥ d, and forwards to the other neighbors the remaining messages.

Figure 1: The cooperative bandit protocol where all agents share the same delay parameter
d.

31 5 642

Figure 2: In this example, G is a line graph with N = 6 agents, and delay d = 2. At
the end of time step t, Agent 4 sends to his neighbors 3 and 5 message mt(4),
receives from Agent 3 messages mt−1(3) and mt−2(2), and from Agent 5 messages
mt−1(5) and mt−2(6). Finally, Agent 4 forwards to Agent 5 message mt−1(3) and
forwards to Agent 3 message mt−1(5). Any message older than t− 1 received by
Agent 4 at the end of round t will not be forwarded to his neighbors.

α(G≤2) ≥ · · · ≥ α(G≤dG) = 1. We show in Section 4.1 that the collective performance
of our algorithms depends on α(G≤d). If the graph G under consideration is directed (see
Section 5), then α(G) is the independence number of the undirected graph obtained from
G by disregarding edge orientation.

The adversary generating losses is oblivious: loss vectors `t =
(
`t(1), . . . , `t(K)

)
∈ [0, 1]K

do not depend on the agents’ internal randomization. The agents’ goal is to control the
average welfare regret Rcoop

T , defined as

Rcoop
T =

(
1

N

∑
v∈V

E

[
T∑
t=1

`t
(
It(v)

)]
−min

i∈A

T∑
t=1

`t(i)

)
,

the expectation being with respect to the internal randomization of each agent’s algo-
rithm. In the sequel, we write Et[·] to denote the expectation w.r.t. the product distribution∏
v∈V pt(v), conditioned on I1(v), . . . , It−1(v), v ∈ V .

4.1. The Exp3-Coop algorithm

Our first algorithm, called Exp3-Coop (Cooperative Exp3) is described in Figure 3. The al-
gorithm works in the learning protocol of Figure 1. Each agent v ∈ V runs the exponentially-
weighted algorithm (1), combined with a “delayed” importance-weighted loss estimate

8
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The Exp3-Coop Algorithm
Parameters: Undirected communication graph G = (V,E); delay d; learning rate η.
Init: Each agent v ∈ V sets weights w1(i, v) = 1 for all i ∈ A.
For t = 1, 2, . . .

1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v) =
(pt(1, v), . . . , pt(K, v)) , where

pt(i, v) =
wt(i, v)

Wt(v)
, i = 1, . . . ,K, and Wt(v) =

∑
j∈A

wt(j, v) ;

2. Each agent v ∈ V observes loss `t
(
It(v)

)
and exchanges messages with his neigh-

bors (Steps 2 and 3 of the protocol in Figure 1);
3. Each agent v ∈ V performs the update wt+1(i, v) = pt(i, v) exp

(
−η ̂̀t(i, v)

)
for all

i ∈ A, where

̂̀
t(i, v) =


`t−d(i)

qd,t−d(i, v)
Bd,t−d(i, v) if t > d,

0 otherwise,
(3)

and Bd,t−d(i, v) = I{∃v′ ∈ N≤d(v) : It−d(v
′) = i} with

qd,t−d(i, v) = 1−
∏

v′∈N≤d(v)

(
1− pt−d(i, v′)

)
.

Figure 3: The Exp3-Coop algorithm where all agents share the same delay parameter d.

̂̀
t(i, v) that incorporates the delayed information sent by the other agents. Specifically,

denote by N≤d(v) =
⋃
s≤dNs(v) the set of nodes in G whose shortest-path distance from

v is at most d, and note that, for all v, {v} = N≤0(v) ⊆ N≤1(v) ⊆ N≤2(v) ⊆ · · · . If
any of the agents in N≤d(v) has played at time t − d action i (that is, Bd,t−d(i, v) = 1

in (3)), then the corresponding loss `t−d(i) is incorporated by v into ̂̀t(i, v). The denomina-
tor qd,t−d(i, v) is simply, conditioned on the history, the probability of Bd,t−d(i, v) = 1,
i.e., qd,t−d(i, v) = Et[Bd,t−d(i, v)]. Observe that {v} ⊆ N≤d(v) for all d ≥ 0 implies
qd,t−d(i, v) ≥ pt−d(i, v), as required by (2) so as to make Lemma 2 hold. It is also worth
mentioning that, despite this is not strictly needed by our learning protocol, each agent v
actually exploits the loss information gathered from playing action It(v) only d time steps
later. An extension of Exp3-Coop, where each loss is exploited as soon as it is made avail-
able to an agent, is analyzed in Section 6. Section 7, instead, studies an important special
case of this setting where there is a single bandit agent receiving delayed feedback.

By their very definition, the loss estimates ̂̀t(·, ·) at time t are determined by the realiza-
tions of Is(·), for s = 1, . . . , t− d. This implies that the numbers pt(·, ·) defining qd,t−d(·, ·),
are determined by the realizations of Is(·) for s = 1, . . . , t− d− 1 (because the probabilities
pt(v) at time t are determined by the loss estimates up to time t− 1, see (1)). We have, for

9
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all t > d, i ∈ A, and v ∈ V ,

Et−d
[̂̀
t(i, v)

]
= `t−d(i) . (4)

Further, because of what we just said about pt(·, ·) and qd,t−d(·, ·) being determined by
I1(·), . . . , It−d−1(·), we also have

Et−d
[
pt(i, v)̂̀t(i, v)

]
= pt(i, v)`t−d(i) , Et−d

[
pt(i, v)̂̀t(i, v)2

]
= pt(i, v)

`t−d(i)
2

qd,t−d(i, v)
. (5)

The next lemma relates the variance of the estimates (3) to the structure of the communi-
cation graph G. The lemma is stated for a generic undirected communication graph G, but
our application of it actually involves graph G≤d.

Lemma 3 Let G = (V,E) be an undirected graph with independence number α(G). For
each v ∈ V , let N≤1(v) be the neighborhood of node v (including v itself), and p(v) =(
p(1, v), . . . , p(K, v)

)
be a probability distribution over A = {1, . . . ,K}. Then, for all i ∈ A,

∑
v∈V

p(i, v)

q(i, v)
≤ 1

1− e−1

(
α(G) +

∑
v∈V

p(i, v)

)
where q(i, v) = 1−

∏
v′∈N≤1(v)

(
1− p(i, v′)

)
.

Proof Fix i ∈ A and set for brevity P (i, v) =
∑

v′∈N≤1(v) p(i, v
′). We can write

∑
v∈V

p(i, v)

q(i, v)
=

∑
v∈V :P (i,v)≥1

p(i, v)

q(i, v)︸ ︷︷ ︸
(I)

+
∑

v∈V :P (i,v)<1

p(i, v)

q(i, v)︸ ︷︷ ︸
(II)

,

and proceed by upper bounding the two terms (I) and (II) separately. Let r(v) be the
cardinality of N≤1(v). We have, for any given v ∈ V ,

min

q(i, v) :
∑

v′∈N≤1(v)

p(i, v′) ≥ 1

 = 1−
(

1− 1

r(v)

)r(v)

≥ 1− e−1 .

The equality is due to the fact that the minimum is achieved when p(i, v′) = 1
r(v) for all

v′ ∈ N≤1(v), and the inequality comes from r(v) ≥ 1 (for, v ∈ N≤1(v)). Hence

(I) ≤
∑

v∈V :P (i,v)≥1

p(i, v)

1− e−1
≤
∑
v∈V

p(i, v)

1− e−1
.

As for (II), using the inequality 1− x ≤ e−x, x ∈ [0, 1], with x = p(i, v′), we can write

q(i, v) ≥ 1− exp

− ∑
v′∈N≤1(v)

p(i, v′)

 = 1− exp (−P (i, v)) .

10



Delay and Cooperation in Nonstochastic Bandits

In turn, because P (i, v) < 1 in terms (II), we can use the inequality 1− e−x ≥ (1− e−1)x,
holding when x ∈ [0, 1], with x = P (i, v), thereby concluding that q(i, v) ≥ (1− e−1)P (i, v).
Thus

(II) ≤
∑

v∈V :P (i,v)<1

p(i, v)

(1− e−1)P (i, v)
≤ 1

1− e−1

∑
v∈V

p(i, v)

P (i, v)
≤ α(G)

1− e−1

where in the last step we used (Alon et al., 2017, Lemma 10). Note that despite the
statement of this lemma refers to a directed graph and its maximum acyclic subgraph, in
the special case of undirected graphs, the size of the maximum acyclic subgraph coincides
with the independence number. Moreover, observe that p(i, 1), . . . , p(i,N) ≥ 0 need not
sum to one in order for this lemma to hold.

The following theorem quantifies the behavior of Exp3-Coop in terms of a free parameter
γ in the learning rate, the tuning of which will be addressed in the subsequent Theorem 5.

Theorem 4 The regret of Exp3-Coop run over a network G = (V,E) of N agents, each
using delay d and learning rate η = γ

/(
Ke(d+ 1)

)
, for γ ∈ (0, 1], satisfies

Rcoop
T ≤ 2d+

Ke(d+ 1) lnK

γ
+ γ

(
α(G≤d)

2(1− e−1)(d+ 1)N
+

3

Ke

)
T .

Proof The standard analysis of the exponentially-weighted algorithm with importance-
sampling estimates —see, e.g., the proof of (Alon et al., 2017, Lemma 1)— gives for each
agent v and each action k the deterministic bound

T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v) ≤
T∑
t=1

̂̀
t(k, v) +

lnK

η
+
η

2

T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)2 . (6)

We take expectations of the three (double) sums in (6) separately. As for the first sum,
note that an iterative application of Lemma 1 gives, for t > d,

pt(i, v) ≥ pt−d(i, v)− η
d∑
s=1

pt−s(i, v)̂̀t−s(i, v) ,

so that, setting for brevity At(i, v) =
∑d

s=1 pt−s(i, v)̂̀t−s(i, v), we have

T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v) ≥
T∑

t=2d+1

K∑
i=1

pt(i, v)̂̀t(i, v)

≥
T∑

t=2d+1

K∑
i=1

pt−d(i, v)̂̀t(i, v)− η
T∑

t=2d+1

K∑
i=1

At(i, v) ̂̀t(i, v) .

11
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Hence

E

[
T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)

]
≥ E

[
T∑

t=2d+1

K∑
i=1

pt−d(i, v)̂̀t(i, v)

]
− η E

[
T∑

t=2d+1

K∑
i=1

At(i, v) ̂̀t(i, v)

]

= E

[
T∑

t=2d+1

K∑
i=1

pt−d(i, v)Et−d
[̂̀
t(i, v)

]]
− η E

[
T∑

t=2d+1

K∑
i=1

At(i, v)Et−d
[̂̀
t(i, v)

]]
(since pt(i, v) is determined by I1(·), . . . , It−d−1(·))

= E

[
T∑

t=2d+1

K∑
i=1

pt−d(i, v) `t−d(i)

]
− η E

[
T∑

t=2d+1

K∑
i=1

At(i, v) `t−d(i)

]
(using (4))

≥ E

[
T∑
t=1

K∑
i=1

pt(i, v) `t(i)

]
− 2d− η T d .

The last step uses

E

[
K∑
i=1

At(i, v) `t−d(i)

]
≤ E

[
K∑
i=1

At(i, v)

]
= E

[
K∑
i=1

d∑
s=1

pt−s(i, v)̂̀t−s(i, v)

]

= E

[
K∑
i=1

d∑
s=1

pt−s(i, v)`t−s−d(i)

]
≤ E

[
K∑
i=1

d∑
s=1

pt−s(i, v)

]
= d

holding for t ≥ 2d+ 1. Similarly, for the second sum in (6), we have

E

[
T∑
t=1

̂̀
t(k, v)

]
=

T∑
t=d+1

`t−d(k) ≤
T∑
t=1

`t(k) .

Finally, for the third sum in (6), an iterative application of Lemma 2 yields, for t > d,

pt(i, v) ≤
(

1 +
1

d

)d
pt−d(i, v) ≤ e pt−d(i, v) ,

so that we can write

E

[
T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)2

]
= E

[
T∑

t=d+1

K∑
i=1

Et−d
[
pt(i, v)̂̀t(i, v)2

]]

≤ E

[
T∑

t=d+1

K∑
i=1

pt(i, v)

qd,t−d(i, v)

]
(using (5) and `t(·) ≤ 1)

≤ eE

[
T∑

t=d+1

K∑
i=1

pt−d(i, v)

qd,t−d(i, v)

]
.

The last inequality comes from an iterative application of Lemma 2, and the observation

that
(
1 + 1

d

)d ≤ e.
12
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Hence, summing over all agents v, dividing by N , and using Lemma 3 on G≤d gives

1

N
E

[
T∑
t=1

K∑
i=1

∑
v∈V

pt(i, v)̂̀t(i, v)2

]
≤ e

N
E

[
T∑

t=d+1

K∑
i=1

∑
v∈V

pt−d(i, v)

qd,t−d(i, v)

]

≤ e

(1− e−1)N
E

[
T∑

t=d+1

K∑
i=1

(
α(G≤d) +

∑
v∈V

pt−d(i, v)

)]

≤ e

1− e−1
T

(
K

N
α(G≤d) + 1

)
.

Finally, putting together as in (6), setting η = γ
/(
Ke(d+ 1)

)
, and overapproximating, we

obtain the desired bound.

We might be tempted to optimize the bound of Theorem 4 for γ. However, this is not
a legal learning rate setting in a distributed scenario, for the optimized value of γ would
depend on the global quantities N and α(G≤d). Thus, instead of this global tuning, we
let each agent set its own learning rate γ through a “doubling trick” played locally. The
doubling trick3 works as follows. For each v ∈ V , we let γr(v) = Ke(d+ 1)

√
(lnK)/2r for

each r = r0, r0 + 1, . . . , where r0 =
⌈
log2 lnK + 2 log2(Ke(d+ 1))

⌉
is chosen in such a way

that γr(v) ≤ 1 for all r ≥ r0. Let Tr be the random set of consecutive time steps where the
same γr(v) was used. Whenever the local algorithm at v is running with γr(v) and detects∑

s∈Tr Qs(v) > 2r, where Qs(v) is the quantity defined in (9) —see the proof of Theorem 5
in the appendix— then we restart this algorithm with γ(v) = γr+1(v).

We have the following result (proof in the appendix).

Theorem 5 The regret of Exp3-Coop run over a network G = (V,E) of N agents, each
using delay d, and an individual learning rate η(v) = γ(v)/

(
Ke(d+ 1)

)
, where γ(v) ∈ (0, 1]

is adaptively selected by each agent through the above doubling trick, satisfies, when T grows
large,4

Rcoop
T = O

(√
(lnK)

(
d+ 1 +

K

N
α(G≤d)

)
T + d log T

)
.

Remark 6 Theorem 5 shows a natural trade-off between delay and information. To
make it clear, suppose N ≈ K. In this case, the regret bound becomes of order√(

d+ α(G≤d)
)
T lnK + d lnT . Now, if d is as big as the diameter dG of G, then

α(G≤d) = 1. This means that at every time step all N ≈ K agents observe (with some
delay) the losses of each other’s actions. This is very much reminiscent of a full informa-
tion scenario, and in fact our bound becomes of order

√
(dG + 1)T lnK + dG lnT , which

is close to the full information minimax rate
√

(d+ 1)T lnK when feedback has a constant

3. There has been some recent work on adaptive learning rate tuning applied to nonstochastic bandit
algorithms (Kocák et al., 2014; Neu, 2015). One might wonder whether the same techniques may apply
here as well. Unfortunately, the specific form of our update (1) makes this adaptation nontrivial, and
this is why we resorted to a more traditional “doubling trick”.

4. The big-oh notation here hides additive terms that are independent of T and do depend polynomially
on the other parameters.

13
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delay d (Weinberger and Ordentlich, 2002). When G is sparse (i.e., dG is likely to be large,
say dG ≈ N), then agents have no advantage in taking d = dG since dG ≈ N ≈ K. In
this case, agents may even give up cooperation (choosing d = 0 in Figure 3), and fall back
on the standard bandit bound

√
TK lnK, which corresponds to running Exp3-Coop on the

edgeless graph G0. (No doubling trick is needed in this case, hence no extra log T term
appears.)

Remark 7 When d = dG, each neighborhood N≤d(v) used in the loss estimate (3) is equal
to V , hence all agents receive the same feedback. Because they all start off from the same
initial weights, the agents end up computing the same updates. This in turn implies that: (1)
the individual regret incurred by each agent is the same as the average welfare regret Rcoop

T ;
(2) the messages exchanged by the agents (see Figure 1) may be shortened by dropping the
distribution part pt−s(v

′).

Remark 8 An interesting question is whether the agents can come up with a reasonable
choice for the value of d even when they lack any information whatsoever about the global
structure of G. A partial answer to this question follows. It is easy to show that the
choice d =

√
K in Theorem 5 yields a bound on the average welfare regret of the form

K1/4
√
T lnK+

√
K(lnT ) for all G (and irrespective to the value of N = |V |), provided G is

connected. This holds because, for any connected graph G, the independence number α(G≤d)
is always bounded by5

⌈
2N
/

(d+ 2)
⌉
. To see why this latter statement is true, observe that

the neighborhood N≤d/2(v) of any node v in G≤d/2 contains at least d/2+1 nodes (including
v), and any pair of nodes v′, v′′ ∈ N≤d/2(v) are adjacent in G≤d. Therefore, no independent
set of G≤d can have size bigger than d2N

/
(d + 2)

⌉
. A more detailed bound is contained,

e.g., in (Firby and Haviland, 1997).

Remark 9 The choice of d minimizing the bound d + K
N α(G≤d) requires prior knowledge

of the independence numbers α(G≤d) for different values of d. Computing these quantities
is NP-hard in general, even when G is fully known.

5. Extension I: Cooperation with Individual Parameters

In this section, we analyze a modification of Exp3-Coop that allows each agent v in the
network to use a delay parameter d(v) different from that of the other agents. We then
show how such individual delays may improve the average welfare regret of the agents. In
the previous setting, where all agents use the same delay parameter d, messages have an
implicit time-to-live equal to d. In this setting, however, agents may not have a detailed
knowledge of the delay parameters used by the other agents. For this reason we allow an
agent v to generate messages with a time-to-live ttl(v) possibly different from the delay
parameter d(v). Note that the role of the two parameters d(v) and ttl(v) is inherently
different. Whereas d(v) rules the extent to which v uses the messages received from the
other agents, ttl(v) limits the number of times a message from v is forwarded to the other
agents, thereby limiting the message complexity of the algorithm. In order to accomodate
this additional parameter, we are required to modify the cooperative bandit protocol of

5. Because it holds for a worst-case (connected) G, this upper bound on α(G≤d) can be made tighter when
specific graph topologies are considered.
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Figure 1. As in Section 4, we have an undirected communication network G = (V,E) over
the agents. However, in this new protocol the message that at the end of round t each agent
v sends to his neighbors in G has the format

mt(v) =
〈
t, v, ttl(v), It(v), `t

(
It(v)

)
,pt(v)

〉
where ttl(v) is the time-to-live parameter of agent v. Each message mt−s(v

′), which v
receives from a neighbor, first has its time-to-leave decremented by one. If the resulting
value is positive, the message is forwarded to the other neighbors, otherwise it is dropped.
Moreover, v uses this message to update pt(v) only if s ≤ d(v). Hence, at time t an
agent v uses the message sent at time t − s by v′ if and only if distG(v′, v) = s with
s ≤ min{d(v), ttl(v′)}, where distG(v, v′) is the shortest-path distance from v′ to v in G.

Based on the collection P = {d(v), ttl(v)}v∈V of individual parameters, we define the
directed graph GP = (V,EP) as follows: arc (v′, v) ∈ EP if and only if distG(v, v′) ≤
min{d(v), ttl(v′)}. The in-neighborhood N−P (v) of v thus contains the set of all v′ ∈ V
whose distance from v is not larger than min{d(v), ttl(v′)}. Notice that, with this definition,
v ∈ N−P (v), so that (V,EP) includes all self-loops (v, v). Figure 4(a) illustrates these
concepts through a simple pictorial example.

Remark 10 It is important to remark that the communication structure encoded by P is an
exogenous parameter of the regret minimization problem, and so our algorithms cannot trade
it off against regret. In addition to that, the parameterization P = {d(v), ttl(v)}v∈V defines
a simple and static communication graph which makes it relatively easy to express regret as
a function of the amount of available communication. This would not be possible if we had
each individual node v decide whether to forward a message based, say, on its own local delay
parameter d(v). To see why, consider the situation where nodes v and v′ are along the route
of a message that is reaching v before v′. The decision of v to drop the message may clash
with the willingness of v′ to receive it, and this may clearly happen when d(v) < d(v′). The
structure of the communication graph resulting from this individual behavior of the nodes
would be rather complicated. On the contrary, the time-to-live-based parametrization, which
is commonly used in communication networks to control communication complexity, does
not have this issue.

Figure 5 contains our algorithm (called Exp3-Coop2) for this setting. Exp3-Coop2 is
a strict generalization of Exp3-Coop, and so is its analysis. The main difference between
the two algorithms is that Exp3-Coop2 deals with directed graphs. This fact prevents us
from using the same techniques of Section 4.1 in order to control the regret. Intuitively,
adding orientations to the edges reduces the information available to the agents and thus
increases the variance of their loss estimates. Thus, in order to control this variance, we
need a lower bound6 on the probabilities pt(i, v). From Figure 5, one can easily see that

1 =
∑
i∈A

wt(i, v)

Wt(v)
≤ P̃t(v) ≤

∑
i∈A

(
wt(i, v)

Wt(v)
+

δ

K

)
= 1 + δ (7)

6. We find it convenient to derive this lower bound without mixing with the uniform distribution over A
—see, e.g., (Auer et al., 2002b)— but in a slightly different manner. This facilitates our delayed feedback
analysis.
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Figure 4: (a) In this example, the communication network G is an undirected line graph
with N = 6 agents, whose edges are depicted in black. Close to each node
v = 1, . . . , 6 is the individual delay d(v) (in blue), and the individual time-to-
leave ttl(v) (in red). The arcs (a.k.a., directed edges) of the induced directed
graph GP are also depicted in blue. Self-loops are not depicted. For instance, we
have N−P (5) = {4, 5, 6} and N−P (3) = {3}. (b) A communication network having
a dense (red nodes) and a sparse (black nodes) region. The black region has N1/2

agents, the red one has N −N1/2 agents. (c) A star graph with long rays. The
center v (in red) sets a small d(v) and a large ttl(v). The peripheral nodes v′ (in
green) set a large d(v′) and a small ttl(v′).

implying the lower bound pt(i, v) ≥ δ
K(1+δ) , holding for all i, t, and v.

The following theorem (proof in the appendix) is the main result of this section.

Theorem 11 The regret of Exp3-Coop2 run over a network G = (V,E) of N agents, each
agent v using individual delay d(v), individual time-to-leave ttl(v), exploration parameter
δ = 1/T , and learning rate η such that η → 0 as T →∞ satisfies, when T grows large,

Rcoop
T = O

(
lnK

η
+ η
(
d̄V +

K

N
α (GP) ln(TNK)

)
T

)
, where d̄V =

1

N

∑
v∈V

d(v) .

Using a doubling trick in much the same way we used it to prove Theorem 5, we can state
the following result (proof in the appendix).

Corollary 12 The regret of Exp3-Coop2 run over a network G = (V,E) of N agents, each
agent v using individual delay d(v), individual time-to-leave ttl(v), exploration parameter
δ = 1/T , and individual learning rate η(v) adaptively selected by each agent through a
doubling trick, satisfies, when T grows large

Rcoop
T = O

(√
(lnK)

(
d̄V + 1 +

K

N
α(GP) ln(TNK)

)
T + d̄V

(
lnT + ln ln(TNK)

))
.

To illustrate the advantage of having individual delays as opposed to sharing the same delay
value, it suffices to consider a communication network including regions of different density.
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The Exp3-Coop2 Algorithm
Parameters: Undirected graph G = (V,E); learning rate η; exploration parameter
δ > 0.
Init: Each v ∈ V sets weights w1(i, v) = 1, for all i ∈ A, delay d(v), and time-to-live
ttl(v).
For t = 1, 2, . . .

1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v) =
(pt(1, v), . . . , pt(K, v)) , where

pt(i, v) =
p̃t(i, v)

P̃t(v)
, P̃t(v) =

∑
j∈A

p̃t(j, v),

and

p̃t(i, v) = max

{
wt(i, v)

Wt(v)
,
δ

K

}
, Wt(v) =

∑
j∈A

wt(j, v) ;

2. Each agent v ∈ V observes loss `t
(
It(v)

)
and exchanges messages with his neigh-

bors (see main text for an explanation);
3. Each agent v ∈ V performs the update wt+1(i, v) = pt(i, v) exp

(
−η ̂̀t(i, v)

)
for all

i ∈ A, where

̂̀
t(i, v) =


`t−d(v)(i)

qP,t−d(v)(i, v)
BP,t−d(v)(i, v) if t > d(v),

0 otherwise,

and BP,t−d(v)(i, v) = I{∃v′ ∈ N−P (v) : It−d(v)(v
′) = i}, with

qP,t−d(v)(i, v) = 1−
∏

v′∈N−P (v)

(
1− pt−d(v)(i, v

′)
)
.

Figure 5: The Exp3-Coop2 algorithm with individual delay and time-to-live parameters.

Concretely, consider the graph in Figure 4(b) with a large densely connected region (red
agents) and a small sparsely connected region black agents). In this example, the black
agents prefer a large value of their individual delay so as to receive more information from
nearby agents, but this comes at the price of a larger bias for their estimators ̂̀t(i, v). On
the contrary, information from nearby agents is readily available to the red agents, so that
they do not gain any regret improvement from a large delay parameter. A similar argument
applies here to the individual time-to-live values: red agents v will set a small ttl(v) to reduce
communication. Black agents v′ may decide to set ttl(v′) depending on their intention to
reach the red nodes. But because the red agents have set a small d(v), any effort made by v′

trying to reach them would be a communication waste. Hence, it is reasonable for a black
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agent v′ to set a moderately large value for ttl(v′), but perhaps not so large as to reach
the red agents. One can read this off the bounds in both Theorem 11 and Corollary 12, as
explained next. Suppose for simplicity that K ≈ N so that, disregarding log factors, these
bounds depend on parameters P only through the quantity H = d̄V + α (GP). Now, in
the case of a common delay parameter d (Section 4.1), it is not hard to see that the best
setting for d in order to minimize H is of the form d = N1/4, resulting in H = Θ(N1/4).
On the other hand, the best setting for the individual delays is d(v) = 1 when v is red, and
d(v) =

√
N when v is black, resulting in H = Θ(1).

The time-to-live parameters ttl(v) affect the regret bound only through α (GP), but they
clearly play the additional role of bounding the message complexity of the algorithm. In our
example of Figure 4(b), we essentially have d(v) ≈ ttl(v) for all v. A typical scenario where
agents may have d(v) 6= ttl(v) is illustrated in Figure 4(c). In this case, we have star-like
graph where a central agent is connected through long rays to all others agents. The center
v prefers to set a small d(v), since it has a large degree, but also a large ttl(v) in order to
reach the green peripheral nodes. The green nodes v′ are reasonably doing the opposite: a
large d(v′) in order to gather information from other nodes, but also a smaller time-to-live
than the center, for the information transmitted by v′ is comparatively less valuable to the
whole network than the one transmitted by the center.

Agents can set their individual parameters in a topology-dependent manner using any
algorithm for assessing the centrality of nodes in a distributed fashion —e.g., (Wehmuth
and Ziviani, 2013), and references therein. This can be done at the beginning in a number
of rounds which only depends on the network topology (but not on T ). Hence, this initial
phase would affect the regret bound only by an additive constant.

6. Extension II: Cooperation with Mixed Delays

The two algorithms we designed so far do not use the loss information in the most effective
way, as they both postpone the update step by d (Figure 3) or d(v) (Figure 5) time steps.
The advantage of postponing updates is that loss estimates are simple to design, because
the updates at time t all involve losses generated at the same time t − d or t − d(v). In
this section, instead, we study generalized versions of Exp3-coop and Exp3-coop2 where
all losses `t−s(i) sent from agents at distance s to any given agent v are used by v at
time t; that is, they are used as soon as they become available to v. Unlike before, the
updates performed at time t now involve losses with different delays, and for this reason
these generalized algorithms combine many loss estimators, each defined for a different level
of delay, through a fixed distribution D (e.g., a distribution emphasizing recent losses).
As we show, in the resulting regret bounds both delays and independence numbers end
up correspondingly mixed according to the distribution D. In the rest of this section, we
present Exp3-Coop-Mix, which generalizes Exp3-Coop to mixed delayed estimators. The
learning protocol remains the same (Figure 1). A similar extension exists for Exp3-Coop2,
where instead of having individual delays d(v), we have individual distributions over delay
values. We decided to omit this further extension from the paper because it does not add
any extra value to the overall discussion.

Exp3-Coop-Mix is described in Figure 6, where we simply replaced estimator (3) by its
mixed version (8). The next theorem (whose proof is in the appendix) and the subsequent
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The Exp3-Coop-Mix Algorithm
Parameters: Undirected communication graph G = (V,E); maximal delay d; delay
distribution D over {0, 1, . . . , d− 1}; learning rate η > 0.
Init: Each agent v ∈ V sets weights w1(i, v) = 1 for all i ∈ A.
For t = 1, 2, . . .

1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v) =
(pt(1, v), . . . , pt(K, v)), where

pt(i, v) =
wt(i, v)

Wt(v)
, i = 1, . . . ,K and Wt(v) =

∑
j∈A

wt(j, v) ;

2. Each agent v ∈ V observes loss `t
(
It(v)

)
and exchanges messages with his neigh-

bors (Steps 2 and 3 of the protocol in Figure 1);
3. Each agent v ∈ V performs the update wt+1(i, v) = pt(i, v) exp

(
−η ̂̀t(i, v)

)
for all

i ∈ A, where

̂̀
t(i, v) =


d−1∑
s=0

D(s)
`t−s(i)

qs,t−s(i, v)
Bs,t−s(i, v) if t > d,

0 otherwise,

(8)

and Bs,t−s(i, v) = I{∃v′ ∈ N≤s(v) : It−s(v
′) = i} with

qs,t−s(i, v) = 1−
∏

v′∈N≤s(v)

(
1− pt−s(i, v′)

)
.

Figure 6: The Exp3-Coop-Mix algorithm where all agents share the same delay distribution
D.

discussion investigate the impact of using a distribution over delay levels on the average
welfare regret bound.

Theorem 13 The regret of Exp3-Coop-Mix run over a network G = (V,E) of N agents,
each using the same delay distribution D, and learning rate η ≤ 1/(Ke(d+ 1)), satisfies

Rcoop
T ≤ 3d+

lnK

η
+

e2η T

1− e−1

(
1 + µD +

2K

N
ᾱD

)
,

where ᾱD =
∑d−1

s=0 D(s)α(G≤s) is the expected independence number of G’s power as deter-
mined by mixture D, and µD is the expectation of distribution D.

Through a doubling trick played locally by each agent, which is utterly similar to the one
described before the statement of Theorem 5, we can state (proof in the appendix) the
following corollary.
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Corollary 14 The regret of Exp3-Coop-Mix run over a network G = (V,E) of N agents,
each using the same delay distribution D, and individual learning rate η(v) adaptively se-
lected by each agent through a doubling trick, satisfies, when T grows large

Rcoop
T = O

(√
(lnK)

(
µD + 1 +

K

N
ᾱD)

)
T + µD log T

)
.

7. Delayed Losses (for a Single Agent)

Exp3-Coop can be specialized to the setting where a single agent is facing a bandit problem
in which the loss of the chosen action is observed with a fixed delay d. In this setting, at
the end of each round t the agent incurs loss `t(It) and observes `t−d(It−d), if t > d, and
nothing otherwise. The regret is defined in the usual way,

RT = E

[
T∑
t=1

`t(It)

]
− min
i=1,...,K

T∑
t=1

`t(i) .

This problem was studied by Weinberger and Ordentlich (2002) in the full information case,
for which they proved that

√
(d+ 1)T lnK is the optimal order for the minimax regret. The

result was extended to the bandit case by Neu et al. (2010, 2014) —see also Joulani et al.
(2013)— whose techniques can be used to obtain a regret bound of order

√
(d+ 1)KT . Yet,

no matching lower bound was available for the bandit case.

As a matter of fact, the upper bound
√

(d+ 1)KT for the bandit case is easily obtained:
just run in parallel d+1 instances of the minimax optimal bandit algorithm for the standard
(no delay) setting, achieving RT ≤

√
KT (ignoring constant factors). At each time step

t = (d+ 1)r + s (for r = 0, 1, . . . and s = 0, . . . , d), use instance s+ 1 for the current play.
Hence, the no-delay bound applies to every instance and, assuming d + 1 divides T , we

immediately obtain RT ≤
∑d+1

s=1

√
K T

d+1 ≤
√

(d+ 1)KT , again, ignoring constant factors.

Next, we show that the machinery we developed in Section 4.1 delivers an improved
upper bound on the regret for the bandit problem with delayed losses, and then we comple-
ment this result by providing a lower bound matching the upper bound up to log factors,
thereby characterizing (up to log factors) the minimax regret for this problem.

Corollary 15 In the nonstochastic bandit setting with K ≥ 2 actions and delay d ≥ 0,
where at the end of each round t the predictor has access to the losses `1(I1), . . . , `s(Is) ∈
[0, 1]K for s = max{1, t − d}, the minimax regret is of order

√
(K + d)T , ignoring loga-

rithmic factors.

Proof In order to prove the upper bound, we use the exponentially-weighted algorithm
with estimate (3) specialized to the case of one agent only, namely Bt−d(i) = I{It−d = i}
and qd,t−d(i) = pt−d(i). Notice that this amounts to running the standard Exp3 algorithm
performing an update as soon a new loss becomes available. In this case, because N =
α(G≤d) = 1, the bound of Theorem 4, with a suitable choice of γ (which depends on T , K,
and d) reduces to

RT = O
(
d+

√
(K + d)T lnK

)
.
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We now prove a lower bound matching our upper bound up to logarithmic factors. The
proof hinges on combining the known lower bound Ω

(√
KT

)
for bandits without delay

of Auer et al. (2002b) with the following argument by Weinberger and Ordentlich (2002)
that provides a lower bound for the full information case with delay. The proof of the latter
bound is by contradiction: we show that a low-regret full information algorithm for delay
d > 0 can be used to design a low-regret full information algorithm for the d = 0 (no delay)
setting. We then apply the known lower bound for the minimax regret in the no-delay
setting to derive a lower bound for the setting with delay.

Fix d > 0 and let A be a predictor for the full-information online prediction problem
with delay d. Let pt be the probability distribution used by A at time t. We now apply
algorithm A to design a new algorithm A′ for a full information online prediction problem
with arbitrary loss vectors `′1, . . . , `

′
B ∈ [0, 1]K and no delay. More specifically, we create

a sequence `1, . . . , `T ∈ [0, 1]K of loss vectors such that T = (d + 1)B and `t = `′b where
b =

⌈
t/(d+ 1)

⌉
. At each time b = 1, . . . , B algorithm A′ uses the distribution

p′b =
1

d+ 1

d+1∑
s=1

p(d+1)(b−1)+s

where pt =
(

1
K , . . . ,

1
K

)
for all t ≤ 1. Note that p′b is defined using p(d+1)(b−1)+1, . . . ,p(d+1)b.

These are in turn defined using the same loss vectors `′1, . . . , `
′
b−1 since, by definition, each

pt+1 uses `1, . . . , `t−d, and
⌈
(t−d)/(d+1)

⌉
= b−1 for all t = (d+1)(b−1), . . . , (d+1)b−1.

So A′ is a legitimate full-information online algorithm for the problem `′1, . . . , `
′
B with no

delay. As a consequence,

T∑
t=1

K∑
i=1

`t(i)pt(i) =
B∑
b=1

d+1∑
s=1

K∑
i=1

`′b(i)p(d+1)(b−1)+s(i)

= (d+ 1)
B∑
b=1

K∑
i=1

1

d+ 1

d+1∑
s=1

`′b(i)p(d+1)(b−1)+s(i)

= (d+ 1)
B∑
b=1

K∑
i=1

`′b(i)p
′
b(i) .

Moreover,

min
k∈A

T∑
t=1

`t(k) = (d+ 1) min
k∈A

B∑
b=1

`′b(k) .

Since we know that for any predictor A′ there exists a loss sequence `′1, `
′
2, . . . such that

the regret of A′ is at least
(
1− o(1)

)√
(T/2) lnK, where o(1)→ 0 for K,B →∞, we have

that the regret of A is at least

(d+ 1)RT/(d+1)(A′) =
(
1− o(1)

)
(d+ 1)

√
T

2(d+ 1)
lnK =

(
1− o(1)

)√
(d+ 1)

T

2
lnK ,

where RT/(d+1)(A′) is the regret of A′ over T/(d+ 1) time steps. The proof is completed by
observing that that the regret of any predictor in the bandit setting with delay d cannot be
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smaller than the regret of the predictor in the bandit setting with no delay or smaller than
the regret of the predictor in the full information setting with delay d. Hence, the minimax
regret in the bandit setting with delay d must be at least of order

max
{√

KT,
√

(d+ 1)T lnK
}

= Ω
(√

(K + d)T
)
,

ignoring log factors. This concludes the proof.

Recent results by Joulani et al. (2016)— see also (Quanrud and Khashabi, 2015)— consider
a full information setting with variable delays dt > 0. At the end of each round t, the
agent simultaneously observes all loss vectors `s such that s + ds = t. For this setting,
they prove a regret bound of order

√
(D + T ) lnK, where D is the sum of the delays dt.

The proof is based on a generic algorithm (solid) which simply feeds the loss vectors, as
soon as they become available, to any deterministic predictor base designed to operate in a
setting without delays. At the beginning of each round t, solid predicts using the current
distribution pt of base. A general argument shows that the regret of solid is equal to the
regret of base on the sequence of loss vectors permuted according to the delays, plus a term
that accounts for the drift of the distributions pt. For the bandit setting, we conjecture an
upper bound on the regret of order

√
(D +KT ) lnK. However, we have not been able to

prove this result via a direct application of our techniques.

8. Conclusions and Open Questions

We have investigated a cooperative and nonstochastic bandit scenario where cooperation
comes at the price of delayed information. We have proven average welfare regret bounds
that exhibit a natural tradeoff between amount cooperation and delay, the tradeoff being
ruled by the underlying communication network topology. As a by-product of our analysis,
we have also provided the first characterization to date of the regret of learning with (con-
stant) delayed feedback in an adversarial bandit setting. There are a number of possible
extensions of this work:

1. Our analysis only delivers average welfare regret bounds. It would be interesting to
show simultaneous regret bounds that hold for each agent individually. We conjecture
that the individual regret bound of an agent v is of the form√

(lnK)

(
d+

K

|N≤d(v)|

)
T

where |N≤d(v)| is the degree of v in G≤d (plus one). Such bound would in fact imply,
e.g., the one in Theorem 5. A possible line of attack to solve this problem could be
the use of graph sparsity along the lines of (Pan et al., 2015; Duchi et al., 2013; Mania
et al., 2015; McMahan and Streeter, 2014).

2. It would be nice to characherize the average welfare regret by complementing our upper
bounds with suitable lower bounds. For example, is the upper bound of Theorem 5
optimal in the communication model considered here?
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3. It is natural to think of ways to adaptively tune our algorithms so as to automati-
cally determine the best local parameters, e.g., the delay parameter d. For instance,
disregarding message complexity, is there a way for each agent to adaptively tune d
locally so to minimize the bound in Theorem 5?

4. Our messages mt(v) contain both action/loss information and distribution informa-
tion. Is it possible to drop the distribution information and still achieve average
welfare regret bounds similar to those in Theorems 4, 11, and 13?

5. Besides settling the conjecture advanced at the end of Section 7, we generally think
that the study of learning on a communication network with time-varying delays, and
its impact on the regret rates, is a topic worth of attention.
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Proofs from Section 4.1

Proof of Theorem 5. We start off from first part of the proof of Theorem 4 which, after
rearranging terms, gives the following bound for each agent v:

E

[
T∑
t=1

K∑
i=1

pt(i, v)`t(i)

]
−

T∑
t=1

`t(k)

≤ 2d+ E

[
lnK

η(v)
+ η(v) d2 + η(v)

T∑
t=d+1

(
d+

e

2

K∑
i=1

pt−d(i, v)

qd,t−d(i, v)

)]

≤ 3d+ E

Ke(d+ 1) lnK

γ(v)
+

γ(v)

Ke(d+ 1)

T∑
t=1

(
I{t > d} d+

e

2

(
K∑
i=1

pt−d(i, v)

qd,t−d(i, v)

)
I{t > d}

)
︸ ︷︷ ︸

Qt(v)

 .

(9)

Note that the optimal tuning of γ(v) depends on the random quantity

QT (v) =
T∑
t=1

Qt(v) .

We now apply the doubling trick to each instance of Exp3-Coop. Recall that, for each
v ∈ V , we let γr(v) = Ke(d + 1)

√
(lnK)/2r for each r = r0, r0 + 1, . . . , where r0 =⌈

log2 lnK + 2 log2(Ke(d + 1))
⌉

is chosen in a way that γr(v) ≤ 1 for all r ≥ r0. Let Tr
be the random set of consecutive time steps where the same γr(v) was used. Whenever
the algorithm is running with γr(v) and detects

∑
s∈Tr Qs(v) > 2r, then we restart the

algorithm with γ(v) = γr+1(v). The largest r = r(v) we need is
⌈
log2QT (v)

⌉
and⌈

log2QT (v)
⌉∑

r=r0

2r/2 < 5

√
QT (v) .

Because of (9), the regret agent v suffers when using γr(v) within Tr is at most 3d +
2
√

(lnK)2r. Now, since we pay at most regret d at each restart, we have

E

[
T∑
t=1

∑
i

pt(i, v)`t(i)

]
−

T∑
t=1

`t(k) ≤ 3d+ 4Ke(d+ 1) lnK

+ E
[
10

√
(lnK)QT (v) + 3d

⌈
log2QT (v)

⌉]
.

The term 3d + 4Ke(d + 1) lnK bounds the regret when the algorithm is never restarted
implying that only γr0(v) is used.

Taking averages with respect to v, using Jensen’s inequality multiple times, and applying
the deterministic bound

1

N

∑
v∈V

QT (v) ≤
(
d+

e

2(1− e−1)

K (α(G≤d) + 1)

N

)
T
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derived with the aid of Lemma 3 at the end of the proof of Theorem 4, gives

Rcoop
T ≤ 3d+ 4Ke(d+ 1) lnK

+ 10

√√√√(lnK)E

[
1

N

∑
v∈V

QT (v)

]
+ 3d log2

(
E

[
1

N

∑
v∈V

QT (v)

])

≤ 10

√
(lnK)

(
d+

e

2(1− e−1)

K (α(G≤d) + 1)

N

)
T + 3d log2 T + C ,

where C is independent of T and depends polynomially on the other parameters. Hence,
as T grows large,

Rcoop
T = O

(√
(lnK)

(
d+ 1 +

K

N
α(G≤d)

)
T + d log T

)
as claimed.

Proofs from Section 5

We first need to adapt the preliminary Lemmas 1 and 2 to the new update rule of Exp3-
Coop2 contained in Figure 5.

Lemma 16 Under the update rule contained in Figure 5, for all t ≥ 1, for all i ∈ A, and
for all v ∈ V

−pt(i, v)
(
η̂̀t(i, v) + δ

)
≤ pt+1(i, v)− pt(i, v)

≤ pt+1(i, v)
K∑
j=1

pt(j, v)
(

1− I{p̃t+1(i, v) > δ/K}
(
1− η ̂̀t(i, v)

))
holds deterministically with respect to the agents’ randomization.

Proof For the lower bound, we have

pt+1(i, v)− pt(i, v) =
p̃t+1(i, v)

P̃t+1(v)
− pt(i, v) ≥ wt+1(i, v)

Wt+1(v) P̃t+1(v)
− pt(i, v) .

Since Wt+1(v) =
∑

i∈A pt(i, v)e−η
̂̀
t(i,v) ≤

∑
i∈A pt(i, v) = 1, and P̃t+1(v) ≤ 1 + δ by (7), we

can write

pt+1(i, v)− pt(i, v) ≥ wt+1(i, v)

1 + δ
− pt(i, v)

= pt(i, v)

(
e−η

̂̀
t(i,v)

1 + δ
− 1

)

≥ pt(i, v)

(
1− η̂̀t(i, v)

1 + δ
− 1

)
(using e−x ≥ 1− x)

≥ pt(i, v)
(
−δ − η̂̀t(i, v)

)
25



Cesa-Bianchi, Gentile, and Mansour

as claimed. As for the upper bound, we first claim that

wt+1(i, v)

Wt+1(v)
≥ pt+1(i, v)I{p̃t+1(i, v) > δ/K} . (10)

To prove (10), we recall that p̃t+1(i, v) = max
{
wt+1(i,v)
Wt+1(v) ,

δ
K

}
. Then we distinguish two

cases:

1. If wt+1(i,v)
Wt+1(v) ≤

δ
K , then p̃t+1(i, v) = δ/K, and wt+1(i, v)/Wt+1(v) > 0 by definition,

hence (10) holds;

2. If wt+1(i,v)
Wt+1(v) > δ

K then p̃t+1(i, v) = wt+1(i,v)
Wt+1(v) , so that pt+1(i, v) ≤ pt+1(i, v) P̃t+1(v) =

p̃t+1(i, v) and (10) again holds.

Then, setting for brevity C = I{p̃t+1(i, v) > δ/K}, we can write

pt+1(i, v)− pt(i, v) ≤ pt+1(i, v)− wt+1(i, v) (from the update (1))

≤ pt+1(i, v)−Wt+1(v)pt+1(i, v)C (using (10))

= pt+1(i, v)
(
1−Wt+1(v)C

)
= pt+1(i, v)

∑
j∈A

(
pt(j, v)− C wt+1(j, v)

)
= pt+1(i, v)

∑
j∈A

pt(j, v)
(

1− C e−η ̂̀t(j,v)
)

≤ pt+1(i, v)
∑
j∈A

pt(j, v)
(

1− C(1− η ̂̀t(j, v))
)

where in the last step we again used e−x ≥ 1− x. This concludes the proof.

Lemma 17 Under the update rule contained in Figure 5, if δ ≤ 1/d(v) and η ≤ 1
Ke(d(v)+1) ,

then

pt+1(i, v) ≤
(

1 +
1

d(v)

)
pt(i, v) (11)

holds for all t ≥ 1 and i ∈ A, deterministically with respect to the agents’ randomization.

Proof If p̃t+1(i, v) = δ/K then, from (7), we have δ/K = pt+1(i, v)P̃t+1(v) ≥ pt+1(i, v),

and pt(i, v) ≥ δ
K(1+δ) . Hence, pt+1(i,v)

pt(i,v) ≤ δ/K
δ/(K(1+δ)) = 1 + δ, so the claim follows from

δ ≤ 1
d(v) . On the other hand, if p̃t+1(i, v) > δ/K, then the proof is exactly the same as the

proof of Lemma 2, for the second inequality in the statement of Lemma 16 turns out to be
exactly the same as the corresponding inequality in the statement in Lemma 1.

Next, we generalize Lemma 3 to the case of directed graphs. This is where we need a lower
bound on the probabilities pt(i, v). If G = (V,E) is a directed graph, then for each v ∈ V let
N−≤1(v) be the in-neighborhood of node v (i.e., the set of v′ ∈ V such that arc (v′, v) ∈ E),
including v itself.
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Lemma 18 Let G = (V,E) be a directed graph with independence number α(G). Let
p(v) =

(
p(1, v), . . . , p(K, v)

)
be a probability distribution over A = {1, . . . ,K} such that

p(i, v) ≥ δ
K(1+δ) . Then, for all i ∈ A,

∑
v∈V

p(i, v)

q(i, v)
≤ 1

1− e−1

(
6α(G) ln

(
1 +

N2K(1 + δ)

δ

)
+
∑
v∈V

p(i, v)

)
,

where q(i, v) = 1−
∏
v′∈N−≤1(v)

(
1− p(i, v′)

)
.

Proof We follow the notation and the proof of Lemma 3, where it is shown that∑
v∈V

p(i, v)

q(i, v)
≤ 1

1− e−1

∑
v∈V

(
p(i, v)

P (i, v)
+ p(i, v)

)
.

In order to bound from above the sum
∑

v∈V
p(i,v)
P (i,v) , we combine (Alon et al., 2017, Lemma 14

and 16) and derive the upper bound∑
v∈V

p(i, v)

P (i, v)
≤ 6α(G) ln

(
1 +

N2K(1 + δ)

δ

)
holding when p(i, v) ≥ δ

K(1+δ) . Again, the probabilities p(i, 1), . . . , p(i,N) ≥ 0 need not
sum to one in order for this lemma to apply.

With the above three lemmas handy, we are ready to prove Theorem 11.
Proof of Theorem 11. This proof is similar to the proof of Theorem 4, hence we only
emphasize the differences between the two.

From the update rule in Figure 5, we have, for each v ∈ V ,

WT+1(v) =

K∑
i=1

p̃T (i)

P̃T (v)
e−η

̂̀
T (i,v)

≥
K∑
i=1

wT (i, v)

WT (v)P̃T (v)
e−η

̂̀
T (i,v) (since p̃T (i) ≥ wT (i, v)/WT (v))

=
K∑
i=1

p̃T−1(i, v)e−η
̂̀
T−1(i,v)e−η

̂̀
T (i,v)

WT (v)P̃T−1(v)P̃T (v)

...

≥
K∑
i=1

w1(i, v) e−η
∑T

t=1
̂̀
t(i,v)

W1(v) · · ·WT (v)P̃1(v) · · · P̃T (v)
.

Now, because w1(i, v) = 1, W1(v) = K, and P̃t(v) ≤ 1 + δ for all t, see (7), the above chain
of inequalities implies that, for any fixed action k ∈ A,

(1 + δ)T K

(
T∏
t=1

Wt+1(v)

)
≥ e−η

∑T
t=1

̂̀
t(k,v) . (12)
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As usual, the quantity Wt+1(v) can be upper bounded as

Wt+1(v) =

K∑
i=1

pt(i, v)e−η
̂̀
t(i,v)

≤
K∑
i=1

pt(i, v)

(
1− η̂̀t(i, v) +

η2

2
̂̀
t(i, v)2

)
(from e−x ≤ 1− x+ x2/2 for all x ≥ 0)

= 1− η
K∑
i=1

pt(i, v)̂̀t(i, v) +
η2

2

K∑
i=1

pt(i, v)̂̀t(i, v)2 .

Substituting into (12) and taking logs of both sides gives

T ln(1 + δ) + lnK +

T∑
t=1

ln

(
1− η

K∑
i=1

pt(i, v)̂̀t(i, v) +
η2

2

K∑
i=1

pt(i, v)̂̀t(i, v)2

)

≥ −η
K∑
i=1

̂̀
t(k, v) .

Finally, using ln(1 + x) ≤ x, dividing by η, using δ = 1/T , and rearranging yields

T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v) ≤ 1 + lnK

η
+

T∑
t=1

̂̀
t(k, v) +

η

2

T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)2 , (13)

hence arriving at the counterpart of (6). From this point on, we proceed as in the proof of
Theorem 4 by taking expectation on the three (double) sums in (13). Note that we do still
have, for all v ∈ V , t > d(v), and i ∈ A,

Et−d(v)

[̂̀
t(i, v)

]
= `t−d(v)(i)

Et−d(v)

[
pt(i, v)̂̀t(i, v)

]
= pt(i, v)`t−d(v)(i)

Et−d(v)

[
pt(i, v)̂̀t(i, v)2

]
= pt(i, v)

`t−d(v)(i)
2

qP,t−d(v)(i, v)
.

We can write

E

[
T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)

]
≥ E

[
T∑
t=1

K∑
i=1

pt(i, v) `t(i)

]
− 2d(v)− (η + δ)T d(v)

E

[
T∑
t=1

̂̀
t(k, v)

]
≤

T∑
t=1

`t(k)

and, as in the proof of Theorem 4,

E

[
T∑
t=1

K∑
i=1

pt(i, v)̂̀t(i, v)2

]
≤ eE

 T∑
t=d(v)+1

K∑
i=1

pt−d(v)(i, v)

qP,t−d(v)(i, v)

 .
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Summing over all agents v, dividing by N , and applying Lemma 18 to the directed graph
GP , the last inequality gives

1

N
E

[
T∑
t=1

K∑
i=1

∑
v∈V

pt(i, v)̂̀t(i, v)2

]
≤ e

1− e−1
T

(
6K

N
α (GP) ln

(
1 + 2TN2K

)
+ 1

)
.

Combining as in (13), recalling that δ = 1/T , and setting for brevity d̄V = 1
N

∑
v∈V d(v),

we have thus obtained that the average welfare regret of Exp3-Coop2 satisfies

Rcoop
T ≤ 3d̄V + η T d̄V +

1 + lnK

η
+

eη

2(1− e−1)
T

(
6K

N
α (GP) ln

(
1 + 2TN2K

)
+ 1

)
= O

(
η T d̄V +

lnK

η
+
η TK

N
α (GP) ln (TNK)

)
as T grows large. This concludes the proof.

Proofs from Section 6

The following are further generalizations of Lemmas 1 and 2 that apply to mixed delay
estimators.

Lemma 19 Let ̂̀t(i, v) be of the form (8) for each t ≥ 1, i ∈ A, and v ∈ V . If η ≤ 1
Ke(d+1)

in the update rule wt+1(i, v) = pt(i, v) exp
(
−η ̂̀t(i, v)

)
then

pt+1(i, v) ≤
(

1 +
1

d

)
pt(i, v)

holds for all t ≥ 1, i ∈ A, and v ∈ V deterministically with respect to the agent’s random-
ization.

Proof The proof follows a similar inductive argument as in the proof of Lemma 2. We can
write, for t > d,∑

i∈A
pt(i, v)̂̀t(i, v) =

∑
i∈A

pt(i, v)

d−1∑
s=0

D(s)
`t−s(i, v)

qs,t−s(i, v)
Bs,t−s(i, v)

≤
∑
i∈A

pt(i, v)
d−1∑
s=0

D(s)
1

qs,t−s(i, v)

≤
∑
i∈A

d−1∑
s=0

(
1 +

1

d

)s
D(s)

pt−s(i, v)

qs,t−s(i, v)

≤
∑
i∈A

d−1∑
s=0

(
1 +

1

d

)s
D(s)

≤ Ke .

Combining with Lemma 1 as in the proof of Lemma 2 concludes the proof.
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Lemma 20 Under the same assumptions and notation as in Lemma 19, we have that

pt+1(i, v)− pt(i, v) ≥ −eη
d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)

holds for all t ≥ 1, i ∈ A, and v ∈ V deterministically with respect to the agent’s random-
ization.

Proof When t ≤ d the statement is trivially verified, hence we continue by assuming t > d.
From Lemma 1 we have pt+1(i, v)− pt(i, v) ≥ −η pt(i, v)̂̀t(i, v). Then, proceeding as in the
proof of Lemma 19, we have

pt(i, v)̂̀t(i, v) = pt(i, v)
d−1∑
s=0

D(s)
Bs,t−s(i, v) `t−s(i)

qs,t−s(i, v)

≤
d−1∑
s=0

D(s)
Bs,t−s(i, v) pt(i, v)

qs,t−s(i, v)

≤
d−1∑
s=0

D(s)

(
1 +

1

d

)s Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)

≤ e
d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)
.

Putting together proves the claim.

Proof of Theorem 13. As in the proof of Theorem 4, we start off from (6). Using the
definition of ̂̀t(i, v) in (8) this can be written as

T∑
t=d+1

K∑
i=1

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt(i, v) `t−s(i)

qs,t−s(i, v)
≤

T∑
t=d+1

d−1∑
s=0

D(s)
Bs,t−s(k, v) `t−s(k)

qs,t−s(k, v)

+
lnK

η
+
η

2

T∑
t=d+1

K∑
i=1

pt(i, v)

(
d−1∑
s=0

D(s)
Bs,t−s(i, v) `t−s(i)

qs,t−s(i, v)

)2

. (14)

We now bound the first and the third sum in (14) separately. As for the first sum, a repeated
application of Lemma 20 for t ≥ 2d+ 1 and s = 1, . . . , d leads to

pt(i, v) ≥ pt−s(i, v)− eη
s∑

h=1

d−1∑
r=0

D(r)
Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v)
,

30



Delay and Cooperation in Nonstochastic Bandits

so that
T∑

t=d+1

K∑
i=1

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt(i, v) `t−s(i)

qs,t−s(i, v)

≥
T∑

t=2d+1

K∑
i=1

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt(i, v) `t−s(i)

qs,t−s(i, v)

≥
T∑

t=2d+1

K∑
i=1

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v) `t−s(i)

qs,t−s(i, v)
− eη

T∑
t=2d+1

K∑
i=1

St(i, v) ,

where the slack St(i, v) satisfies

St(i, v) =

d−1∑
s=1

D(s)
Bs,t−s(i, v) `t−s(i)

qs,t−s(i, v)

s∑
h=1

d−1∑
r=0

D(r)
Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v)
. (15)

As for the third sum, Jensen’s inequality and `i,t−s ∈ [0, 1] jointly give(
d−1∑
s=0

D(s)
Bs,t−s(i, v) `t−s(i)

qs,t−s(i, v)

)2

≤
d−1∑
s=0

D(s)
Bs,t−s(i, v)

qs,t−s(i, v)2
.

Moreover, recalling that s ∈ {1, . . . , d}, a repeated application of Lemma 19 yields

pt(i, v) ≤
(

1 +
1

d

)s
pt−s(i, v) ≤

(
1 +

1

d

)d
pt−s(i, v) ≤ e pt−s(i, v) ,

so that

T∑
t=d+1

K∑
i=1

pt(i, v)

(
d−1∑
s=0

D(s)
Bs,t−s(i, v) `t−s(i)

qs,t−s(i, v)

)2

≤ e
T∑

t=d+1

K∑
i=1

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)2
.

Putting together and summing over v ∈ V we obtain

T∑
t=2d+1

K∑
i=1

∑
v∈V

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v) `t−s(i)

qs,t−s(i, v)︸ ︷︷ ︸
(I)

≤
T∑

t=d+1

∑
v∈V

d−1∑
s=0

D(s)
Bs,t−s(k, v) `t−s(k)

qs,t−s(k, v)︸ ︷︷ ︸
(II)

+
N lnK

η
+ eη

T∑
t=2d+1

K∑
i=1

∑
v∈V

St(i, v)︸ ︷︷ ︸
(III)

+
eη

2

T∑
t=d+1

K∑
i=1

∑
v∈V

d−1∑
s=0

D(s)
Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)2︸ ︷︷ ︸
(IV)

.

Similar to before, we have, for any i ∈ A, v ∈ V , t = 1, 2, . . ., and s = 0, . . . , d− 1,

Et−s
[
Bs,t−s(i, v) pt−s(i, v) `t−s(i)

qs,t−s(i, v)

]
=
pt−s(i, v) `t−s(i)

qs,t−s(i, v)
Et−s

[
Bs,t−s(i, v)

]
= pt−s(i, v) `t−s(i)

Et−s
[
Bs,t−s(k, v) `t−s(k)

qs,t−s(k, v)

]
=

`t−s(k)

qs,t−s(k, v)
Et−s

[
Bs,t−s(k, v)

]
= `t−s(k)

Et−s

[
Bs,t−s(i, v) pt−s(i, v)(

qs,t−s(i, v)
)2

]
=

pt−s(i, v)(
qs,t−s(i, v)

)2 Et−s
[
Bs,t−s(i, v)

]
=

pt−s(i, v)

qs,t−s(i, v)
.
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Hence

E [(I)] =

K∑
i=1

∑
v∈V

T∑
t=2d+1

d−1∑
s=0

D(s)pt−s(i, v) `t−s(i)

≥
K∑
i=1

∑
v∈V

T−d+1∑
t=2d+1

pt(i, v) `t(i)

≥
K∑
i=1

∑
v∈V

(
T∑
t=1

pt(i, v) `t(i)−
2d∑
t=1

pt(i, v)−
T∑

t=T−d+2

pt(i, v)

)

≥
∑
v∈V

T∑
t=1

K∑
i=1

pt(i, v) `t(i)− 3dN

and

E [(II)] =
∑
v∈V

T∑
t=2d+1

d−1∑
s=0

D(s)`t−s(k) ≤
∑
v∈V

T∑
t=1

`t(k) .

Moreover, from Lemma 3,

E [(IV)] =

K∑
i=1

T∑
t=d+1

d−1∑
s=0

D(s)
∑
v∈V

pt−s(i, v)

qs,t−s(i, v)

≤
K∑
i=1

T∑
t=d+1

d−1∑
s=0

D(s)

(
1

1− e−1

(
α(G≤s) +

∑
v∈V

pt−s(i, v)

))

=
K

1− e−1

T∑
t=d+1

d−1∑
s=0

D(s)α(G≤s) +
1

1− e−1

T∑
t=d+1

d−1∑
s=0

D(s)
∑
v∈V

K∑
i=1

pt−s(i, v)

=
K

1− e−1
(T − d) ᾱD +

1

1− e−1
(T N − dN)

<
T

1− e−1
(KᾱD +N) ,

where ᾱD =
∑d−1

s=0 D(s)α(G≤s).

Finally, we are left with upper bounding E[(III)]. Consider each slack term St(i, v)
in (15) We can then rewrite St(i, v) as

St(i, v) =

d−1∑
s=1

s∑
h=1

d−1∑
r=0

D(s)D(r)
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)
.

Now, we consider three cases, depending on the value of the indices s, h, and r in the triple
sum.
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Case 1: t− s > t− h− r (i.e., s < h+ r). We have

E
[
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]
= E

[
Et−s

[
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]]
= E

[
`t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)
Et−s [Bs,t−s(i, v)]

]
= E

[
`t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v)

]
≤ E

[
pt−h−r(i, v)

qr,t−h−r(i, v)
Et−h−r[Br,t−h−r(i, v)]

]
= E [pt−h−r(i, v)] .

Case 2: t− s < t− h− r (i.e., s > h+ r). We can write

E
[
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]
= E

[
Et−h−r

[
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]]
= E

[
Bs,t−s(i, v) `t−s(i) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)
Et−h−r [Br,t−h−r(i, v) ]

]
≤ E

[
Bs,t−s(i, v) pt−h−r(i, v)

qs,t−s(i, v)

]
≤
(

1 +
1

d

)s−h−r
E
[
Bs,t−s(i, v) pt−s(i, v)

qs,t−s(i, v)

]
(repeatedly using Lemma 19)

≤ eE
[
pt−s(i, v)

qs,t−s(i, v)
Et−s [Bs,t−s(i, v)]

]
= eE [pt−s(i, v)] .

Case 3: t − s = t − h − r (i.e., s = h + r). We have pt−h−r(i, v) = pt−s(i, v). Moreover,
since h ≥ 1 we have s > r, so that Bs,t−s(i, v)Br,t−h−r(i, v) = Br,t−h−r(i, v). We can write

E
[
Bs,t−s(i, v) `t−s(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]
= E

[
Et−h−r

[
`t−h−r(i)Br,t−h−r(i, v) pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)

]]
≤ E

[
pt−h−r(i, v)

qr,t−h−r(i, v) qs,t−s(i, v)
Et−h−r [Br,t−h−r(i, v)]

]
= E

[
pt−h−r(i, v)

qs,t−s(i, v)

]
= E

[
pt−s(i, v)

qs,t−s(i, v)

]
.
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Therefore, piecing together and overapproximating yields

E [St(i, v)] ≤ eE

[ ∑
s,h,r : s<h+r

D(s)D(r) pt−h−r(i, v) +
∑

s,h,r : s>h+r

D(s)D(r) pt−s(i, v)

+
∑

s,h,r : s=h+r

D(s)D(r)
pt−s(i, v)

qs,t−s(i, v)

]
.

This allows us to write

E[(III)] ≤ e
T∑

t=2d+1

K∑
i=1

∑
v∈V

E

[ ∑
s,h,r : s<h+r

D(s)D(r) pt−h−r(i, v)

+
∑

s,h,r : s>h+r

D(s)D(r) pt−s(i, v) +
∑

s,h,r : s=h+r

D(s)D(r)
pt−s(i, v)

qs,t−s(i, v)

]

= e
T∑

t=2d+1

∑
v∈V

∑
s,h,r : s<h+r

D(s)D(r) + e
T∑

t=2d+1

∑
v∈V

∑
s,h,r : s>h+r

D(s)D(r)

+ e

T∑
t=2d+1

K∑
i=1

∑
s,h,r : s=h+r

D(s)D(r)E

[∑
v∈V

pt−s(i, v)

qs,t−s(i, v)

]
≤ e T N

∑
s,h,r : s 6=h+r

D(s)D(r)

+
e

1− e−1

T∑
t=2d+1

K∑
i=1

∑
s,h,r : s=h+r

D(s)D(r)

(
α(G≤s) +

∑
v∈V

pt−s(i, v)

)
= e T N

∑
s,h,r : s 6=h+r

D(s)D(r)

+
T e

1− e−1

K ∑
s,h,r : s=h+r

D(s)D(r)α(G≤s) +N
∑

s,h,r : s=h+r

D(s)D(r)


<

T e

1− e−1

K ∑
s,h,r : s=h+r

D(s)D(r)α(G≤s) +N
∑
s,h,r

D(s)D(r)


Now,

∑
s,h,r

D(s)D(r) =

d−1∑
s=1

D(s)

s∑
h=1

d−1∑
r=0

D(r) =

d−1∑
s=1

D(s) s = µD

and

∑
s,h,r : s=h+r

D(s)D(r)α(G≤s) =
d−1∑
s=1

D(s)α(G≤s)
s∑

h=1

D(s− h) ≤
d−1∑
s=1

D(s)α(G≤s) = ᾱD
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so that

E[(III)] ≤ T e

1− e−1

(
NµD +KᾱD

)
.

Putting pieces together, dividing by N , and further overapproximating gives

R
coop
T ≤ 3d+

lnK

η
+

e2η T

1− e−1

(
1 + µD +

2K

N
ᾱD

)
,

thereby concluding the proof.
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