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Abstract

We develop a set of scalable Bayesian inference procedures for a general class of nonparametric
regression models. Specifically, nonparametric Bayesian inferences are separately performed
on each subset randomly split from a massive dataset, and then the obtained local results
are aggregated into global counterparts. This aggregation step is explicit without involving
any additional computation cost. By a careful partition, we show that our aggregated
inference results obtain an oracle rule in the sense that they are equivalent to those obtained
directly from the entire data (which are computationally prohibitive). For example, an
aggregated credible ball achieves desirable credibility level and also frequentist coverage
while possessing the same radius as the oracle ball.

Keywords: Credible region, divide-and-conquer, Gaussian process prior, linear functional,
nonparametric Bayesian inference

1. Introduction

With rapid development in modern technology, massive data sets are becoming more and
more common. An important feature of massive data is their large volume which hinders
applications of traditional statistical methods. For example, due to huge data amount and
limited CPU memory, it is often impossible to process the entire data in a single machine.
In the parallel computing environment, a common practice is to distribute massive data to
multiple processors, and then aggregate local results in an efficient way. A series of frequentist
methods such as Kleiner et al. (2011); McDonald et al. (2010); Zhang et al. (2015a); Zhao
et al. (2016) have been proposed in this Divide-and-Conquer (D&C) framework.

In Bayesian community, there are quite a few computational or methodological works
developed for massive data such as scalable algorithms for Bayesian variable selection Boom
et al. (2015); Wang et al. (2014) and scalable posterior sampling in parametric models Wang
and Dunson (2013); Wang et al. (2015). Theoretical guarantees of D&C methods have been
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recently obtained in robust estimation Minsker et al. (2017), posterior interval estimation
Srivastava et al. (2018), credible sets of signal in Gaussian white noise Szabd and van Zanten
(2019); Szabo and van Zanten (2018). Rather, the present paper puts focus on uncertainty
quantification of the model parameter in general nonparametric regression, primarily in
theoretical aspects. For instance, how to aggregate individual posterior means into a global
one that maintains frequentist optimality? How to aggregate individual credible balls into a
global one with a minimal possible radius? And how many divisions and what kind of priors
should be chosen to guarantee Bayesian and frequentist validity of the aggregated ball? We
attempt to address these questions in a univariate nonparametric regression setup.

Specifically, we develop a set of aggregation procedures in Bayesian nonparametric
regression. As a first step, nonparametric Bayesian regression is separately fitted based
on each subsample randomly split from a massive dataset. A variety of finite sample
valid credible balls (credible intervals) for regression functions (their linear functionals
Rivoirard et al. (2012), e.g., local values) are then constructed from each individual posterior
distribution based on MCMC. In the second step, we aggregate these credible balls (credible
intervals) into global counterparts analytically without involving any additional computation.
For example, the center of an aggregated ball is obtained by weighted averaging Fourier
coefficients of all individual (approximate) posterior modes, while the radius is given through
an explicit formula on individual radii. A notable advantage of this distributed strategy
is its dramatically faster computational speed, and this computational advantage becomes
more obvious as data size grows.

Our aggregation procedures are proven to obtain an oracle rule in the sense that they are
equivalent to those obtained directly from the entire data, i.e., called as oracle results which
are computationally prohibitive in practice. For example, our aggregated posterior means
are proven to achieve optimal estimation rate, and our aggregated credible ball achieves
desirable credibility level and also frequentist coverage while possessing asymptotically the
same radius as the oracle ball. These oracle results hold when the assigned Gaussian process
priors in each subset are properly chosen and the number of subsets does not grow too fast.
A fundamental theory underlying Bayesian aggregation is a uniform version of nonparametric
Gaussian approximation theorem, also called as Bernstein-von Mises theorem. Developed
based on our recent work Shang and Cheng (2017), this theory states that a sequence of
individual posterior distributions converge to Gaussian processes uniformly over the number
of subsets.

The rest of this paper is organized as follows. Section 3 describes our Bayesian nonpara-
metric model with a Gaussian process prior, based on which our main results are developed
in Section 4. Specifically, a uniform nonparametric Gaussian approximation theorem is
established in Section 4.1, and all the Bayesian aggregation procedures together with their
theoretical guarantee are provided in Sections 4.2-4.6. Section 5 provides a simulation study
to justify our methods. Section 6 applies the proposed procedures to a real dataset of large
size. Main proofs are provided in Appendix. Other results and additional plots are given in
a supplementary document Shang and Cheng.
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2. Nonparametric Bayesian Aggregation: An Illustration

In this section, we provide a concrete example to demonstrate the intuition of our non-
parametric Bayesian aggregation procedure. Our example is based on the special uniform
design and periodic Sobolev space which makes our aggregation procedure explicit and easy
to understand. Section 2.1 describes our nonparametric Bayesian model, and Section 2.2
demonstrates our algorithm and its numeric performance. General aggregation procedures
will be proposed in Sections 3 and 4 with asymptotic properties investigated as well.

2.1. Nonparametric Bayesian model

Suppose that we observe the data Z; = (V;, X;), i =1,..., N, generated from the following
Gaussian regression model with uniform design
jid ;.
YzlfaXlNN(f(Xl)’]-)v Xl,vXN “ Umf[O,l] (1)
Randomly split {1,2,..., N} into s subsets I1,Ia,...,Is with |I1]| =--- = I/ =n (so N =ns).
Denote D; = {Z;i € I} the j-th subsample for j =1,...,sand D = ui_;D; the entire sample.
Suppose that f belongs to an m-order periodic Sobolev space Si*[0, 1] where Si*[0,1] is
the collection of all functions on [0, 1] of the form

f(z) =2 > frcos(2mka) + V2 > grsin(2rka) (2)
k=1 k=1
with real coefficients fy, gi satisfying
> (fi + i) (2mk)*™ < co. 3)
k=1

Here, m > 1/2 is a constant describing the smoothness of the functions. Wahba (1990)
Wahba (1990) introduced a Gaussian process (GP) prior on f which has an interesting
smoothing spline interpretation. Specifically, she assumed that the coefficients fx, gr in (2)
are independent and normally distributed as follows:

Frr g~ N (0,[(27k)*™F 4 nA(27k)*™] 7Y, k=1,2,..., (4)

where 8 > 1 and X\ > 0 are predecided constants. In particular, 8 represents the “relative
smoothness” of the prior to the parameter space and A represents the amount of rescaling.
Rescaling priors are also considered by Szabé and van Zanten (2019); Szabo and van Zanten
(2018) for constructing credible sets of signals in Gaussian white noise. It can be examined
that if f satisfies (2) and (4), then f is a Gaussian process with mean zero and isotropic
covariance function

& cos(2mk(x — "))

Ko(z,2') =2 a2 e [0,1]. 5
o(@,a) ,;1 S TNC L R 5)
Wahba Wahba (1990) showed that the above GP prior (4) generates a posterior distribution
corresponding to a penalized likelihood function (with A the penalty parameter). This
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provides a Bayesian interpretation for smoothing splines. Below we provide some details to
justify this argument.

Let II, denote the probability distribution of f under (4). To derive the posterior
distribution, we need to find the “prior density” of f. Unlike the parametric settings where
the prior densities are Radon-Nikodym (RN) derivatives w.r.t. Lebesgue measure, in the
current infinite-dimensional setting it is impossible to do so since there is no Lebesgue
measure on S;'[0,1] (see Hunt et al. (1992)). Instead, we need to characterize the prior
density of f as an RN derivative w.r.t. other kinds of measures such as Gaussian measure.
Following Wahba Wahba (1990), II, and II = Iy (corresponding to A = 0) are equivalent
probability measures, and the RN derivative of II, w.r.t. II is

@(f) = lo_o[ (1 +n)\(27rk)_/3)71 x exp(—@ i(f,f +g,%)(27rk:)2m)
dIl i} 2 &
—~ _g\-1 n\ 1o,
= g(um@m %) xexp(_7 fo £ )(x)Qda;)
= T meeR) ) <o (-20000). ©)
k=1 2

where J(f) = fol ™) (x)%dz. Note that I3, (1+ n)\(27rk)’ﬁ)_1 converges thanks to > 1
so that (6) is a valid expression. (6) provides an expression for the prior density of f, which
induces the following posterior distribution for f given subsample j:

dP(fID;) o< P(D;|f)dIIz(f)

o< exp (_% Z(Y;_f(XZ))Z - %)\J(f))dﬂ(f), j: 17"'78' (7)

7,€Ij

Recall that I; indexes the j-th subsample. The right hand-side of (7) corresponds to

penalized likelihood function £;(f) = —% jer, (Yi = F(X))? - %J(f) which has been well

studied in smoothing spline literature (Wahba (1990)). Theoretically, we recommend to
2m

choose A x N 2m+8 which will be proven to yield optimal Bayesian inference; see Sections 3

and 4. The duality between the posterior and smoothing spline, i.e., (7), enables us to easily

choose A for practical use, e.g., GCV considered by Wahba (1990).

2.2. Nonparamtric Bayesian Aggregation

First of all, we calculate fjn = E{fD,}, j=1,...,s, the posterior means based on individual
posterior distributions (7). Then we construct a (1-«)-th credible ball centering at f; , with
radius 7j,(a). That is, 7;,(a) > 0 such that P(f € S*[0,1]: | f = finlrz < 7jn(a)Dy) =
1 - a, where |- |2 is the usual L?-norm, i.e., |f] 2 = \/[01 f(x)2dz. Tn practice, fjn
and 7;,(a) can be both estimated by the posterior samples. For instance, generate M

independent samples fj1,..., fju from (7); estimate fj,n by their average and estimate
rjn(a) by the (1 — «)-th percentile of |fj - fijLg for 1 <1 < M. We postpone the
computational details of the sampling procedure to Section 8.5.

We next present a concrete aggregation schemue (procedures (1)—(3) below) to construct a
credible ball based on these individual results { fj7n,rj7n(a)}§:1. Specifically, an aggregated
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credible ball for f, denoted Ry(«), is constructed with its center/radius obtained through
weighted averaging the individual centers/radii. Unlike simple averaging commonly used in
frequentist setting (see Zhang et al. (2015a)), our procedures for posterior mean aggregation
and radius aggregation are weighted averaging with weights ws y » 1 defined in (10). These
weights are used to calibrate the prior effect such that the aggregation procedure can have
satisfactory asymptotic property. The details of our procedure are demonstrated as follows:

1. Posterior mean aggregation. For j-th subsample and k > 1, find
o 1, 1.,
fink = \/5/(; fin(z) cos(2mka)dx, Gjnk = \/5/0 fin(x)sin(2rkz)dz,  (8)

where f]n is the posterior mean based on subsample j. Then we aggregate these
quantities through the following formulas:

S S
TNk =2 FimklS, GNAE= Y. Gjmkls- 9)
j=1 j=1
In the end, we let
fUN’A(x) = Z Ws, Nk {fNA’k\/iCOS(Qﬂ'kx) + §N7>\’k\/§sin(2ﬂ'kl‘)} s (10)

k=1

s(2mk)?m B N (1+A(27k)%™)

(27k)2m+B+ N (1+A\(27k)2™) for k£ > 1.

where w, N Ak =

2. Posterior radius aggregation. Aggregate the radii r; ,(a) through the following formula:

(@) = < | Aws (1 3 rj,n(a)2) + By, (11)
s 4

where

4m+28-1

An s =\/Ca/Dys 2Cm+B)

_ 1 _2m+B-1
BN,s = (201 - 2D1+/ CQ/DQS 2(2m+p) ) N 2m4B |

oo (12)
Cy, = fo (1+ (2r2)* + (272) P Fdw, k=1,2,
Dy = fooou T+ (2r2)™) Fde, k=1,2.
3. Aggregated credible ball:
Ry(a) = {f S50, 1] | f = fialle <riv(e)}. (13)

Algorithms based on weighted averaging have been proposed in numerous computational
aspects. For instance, Huang and Gelman (2005); Neiswanger et al. (2013); Scott et al. (2016)
proposed computational procedures for efficiently aggregating local MCMC samples in which
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the aggregation steps involve proper weight averaging. Such algorithms are particularly
useful to produce MCMC samples from the oracle posterior which can be used for various
inferential purposes, e.g., estimation and testing. The present paper focuses on inferences,
e.g., construction of credible balls, in a special class of nonparametric regression models,
and has more extensive theoretical guarantees.

In practice, one can approximate the integral (8) through discretization; see Section
8.5. Theorem 3 will show that Ry(«a) given in (13) asymptotically covers 1 — « mass of
the posterior based on the full data set and includes the true function with probability
approaching one. More theoretical study on Ry («) such as its center and radius can be
found in Sections 4.2 and 4.3. Note that these sections present an aggregation procedure in
a more general context, which covers (13) as a special case.

A toy simulation study was carried out to examine the proposed procedures (1)—(3).
Specifically, we examine the computing time and coverage probability (CP) of Ry («) for
various choices of s. The CP is defined as the relative frequency of the sets that cover the
truth. We choose m = 8 =2 in our GP prior (4). Results are summarized in Figure 1. Plot
(a) displays the true function fy under which data were generated. Plot (b) displays how the
CP varies as v :=1og(s)/log(N). Plot (c) displays that the computing time decreases when
~ increases. There seems to be a transition for CP vs. -, i.e., CP is uniformly close to one
when 0 <+ < 0.3 and approaches zero when 7 > 0.4. In conclusion, Ry («a) possesses both
satisfactory frequentist coverage and computational efficiency when ~ » 0.2. Other choices
of ~ either lower CP or slow down the computing. Thus, under a proper choice of s, our
aggregation procedure can maintain good statistical properties and reduce computing burden
at the same time. Careful readers may have noticed that the CP approaches one rather
than the credibility level (1 - «). This issue can be addressed by a modified aggregated set
proposed in Section 4.4. More comprehensive simulation results are provided in Section 5 to
examine various aggregation procedures such as the pointwise credible intervals.

(a) (b) (©
14 A o | o
S ©
124
© o |
S )
104
© o |
81 S <
—~ o )
= o £ o
61 < &
o
44 o |
~ «
R
2
o |
=
0 =
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5

X

Figure 1. Ezamination of our aggregation procedures (1)—(8). Results are based on N = 1200 observations
generated from (1) and a GP prior (4) with m = 8 =2 and X = N72/3, (a) True regression function
fo(x) =2.4B30,17(x) + 1.683,11(x), where By is the probability density function for Beta(a,b). (b) Coverage
probability (CP) of Rn(0.95) vs. . (c) Computing time (in seconds) of Rn(0.95) vs. 7.
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3. A Nonparametric Bayesian Framework Based on General Design and
Space

In this section, we introduce a more general Bayesian nonparametric framework based on
general design and function space under which the aggregation results will be obtained.
Suppose that the data {Y, Xi}f\:fl follow a nonparametric regression model:

Yilf, X " N(F(X0),0%), X1, Xy " r(e), (14)

where 7(+) is a probability density on I = (0,1), and f belongs to an m-order Sobolev space
S™(I):

S™I) = {f e L@@, O, ... f™ Dare abs. cont. and f™ e L*(I)}. (15)

In particular, S{'[0,1] is a proper subset of S™(I). Throughout, we let m > 1/2 such that
S™(I) is a reproducing kernel Hilbert space (RKHS). For technical convenience, assume
0? =1 and 0 < inf g 7(x) < sup,q7(z) < co. When o2 is unknown, our approach can still
be applied with o2 replaced by its consistent estimate.

For any f,g € S™(I), define V(f,g) = E{f(X)g(X)} and J(f,g) = fy /™ (2)g"™ (x)de.
Following Shang et al. (2013), there exists a sequence of eigenfunctions ¢1, 2, ... € S™(I)
and a sequence of eigenvalues 0 = p1 = p2 = - = pmy < Pm+1 < Pma2 < -+- such that p, 2 p2m
and

V(‘Puv()@u) = 51/#7 J(QDV, ‘Pu) = puéuuv NTRR (16)

where §,,, is the Kronecker’s delta.

We next place a prior distribution ITy on f, where I, is a probability measure on S"*(I)
and A > 0 is a hyperparameter. Similar to Section 2, we will characterize II, through its
Radon-Nikodym (RN) derivative w.r.t. II, with II a pre-given probability measure II on
S™(T). Specifically, assume that the RN derivative of IT) w.r.t. II satisfies

dITy,

() e exp (<2000, (17)

where J(f) is defined in (3). Interestingly, it is possible to explicitly construct ITy and II
such that (17) holds. To see this, let

o0

GA() = Z wyu(+), (18)
v=m+1
where w,’s are independent of the observations satisfying w, ~ N (0, 1/(p,£+ﬂ/(2m) +nApy)), v >

m. Let G(-) = G)=(+). Suppose II, and IT are probability measures induced by G and G,
ie., II\(S) = P(Gy €S) and II(S) = P(G € S) for any measurable S ¢ S™(I). It follows by
Hajek’s lemma (see Shang and Cheng (2017)) that (17) holds. In (18), A >0 and 3 > 1 are
both hyper-parameters characterizing the smoothness of the prior. It is easy to check that
the sample path of G\ belongs to S™(I) for any 8 > 1 almost surely. As demonstrated in a
simulation study, the GCV-selected A is sufficient to provide satisfactory results.
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4. Main Results

In this section, we present a series of main results that are built upon a uniform Gaussian
approximation theorem (Section 4.1). Three classes of aggregation procedures are then
proposed: aggregated credible balls in both strong and weak topology, and aggregated
credible intervals for linear functionals. These results can be classified into two types: finite
sample construction (Sections 4.3, 4.4 and 4.5) and asymptotic construction (Section 4.6).
The former construction is often time-consuming since its radius (interval length) is obtained
through s posterior sampling, while the latter employs a large-sample limit of the radius
given by an explicit formula. The computational gain will be illustrated by the simulations
in Section 5. Similar to Section 2, let Iy, I, ..., I be a random partition of {1,2,..., N}
such that U?_;I; = {1,2,..., N} with |I;]=nfor j=1,...,s and N =ns.

4.1. A Uniform Gaussian Approximation Theorem

A fundamental theory underlying Bayesian aggregation is developed in this section. It is a
uniform version of Gaussian approximation theorem that characterizes the limit shapes of a
sequence of individual posterior distributions. This uniform validity holds if the number
of posterior distributions does not grow too fast. Also, Bayesian aggregation procedures
possess frequentist validity if A is chosen properly.

Similar to (7), we note that each sub-posterior distribution can be written as

dP(fD;) o< exp(nljn(f))dII(f),
where £, (f) =17 Tier, (Vi = f(Xi))? = (\/2)J(f). Define

Fin = arg mex Cin(f), 5=1,...,5. (19)

Suppose that f;n admits the following Fourier expansion:

oo

E,n() = Z f;(/j)sou(')’ 1 Sj <s. (20)

v=1

1
Define h = A\Y/™) with h* := N"2n75 . We remark that h* is an optimal choice for our
aggregation procedure as will be shown later.

Theorem 1 (Uniform Gaussian Approzimation) Suppose that fo admits a Fourier expansion

fo() =321 20, (-) which further satisfies

o B-1
Condition (S): > |f,9|2p11,Jr m < oo
v=1
If the following holds
1 81
m > 1+§ ~ 1.866, 1 <B<2m+2——1,s=o(N2m+ﬁ) and h < h*, (21)
m
then we have as N — oo,
_am?+2mB-10m+1 5
sup max [P(S1D;) - Pos(9)] = Op,, (VAN “Ttmss " (log )], (22)
SeS 1<j<s 0

8
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where S is the Borel o-algebra on S™(I) with respect to I1, and Pyj’s are GPs defined by

Jsexp (=311 = Finl?) dTI(f)
me(H) exp (_%”f - ,En \2) dH(f)7

Proof of Theorem 1 is rooted in Shang and Cheng (2017) who essentially considered s = 1.
Substantial efforts have been made here to quantify a range of partition size s such that
local posteriors can be uniformly approximated by GPs. The explicit structure of the GPs
provides a guideline for our aggregation procedures which will be introduced in subsequent
sections. It should be emphasized that our aggregation of GPs is weighted-averaging which
is different from product-based ones such as Cao and Fleet (2014).

Po;(5) = (23)

Condition (S) amounts to requiring known regularity of the truth f € gm+Zt (T). This
can be seen from the inequality Y52, |fO)20?*~1 < oo since p, = v®™. This condition
essentially means that fy has derivatives up to order m + % (when this order is integer-
valued). Combined with (21) this means that the regularity of fy belongs to (m,2m+ ﬁ -1),
i.e., the truth function is jointly confined by both functional space and the prior. The |-||-norm

used in (23) is defined as follows. For any g,§ € S™(I), define

(9:9) =V (9,9) + \J(9,9) (24)
and its squared norm |g[? = (g, g). Clearly, (-,-) is a valid inner product on S™(I).

Remark 1 We remark that (21) can be replaced by a more general rate condition:

nh?*™" > 1, a, = O(F,), by <1, 72b, <72

2 nT2b, = o(1),

where rn, = (nh)™% + K™ 7, = (nh/log2s)'/? + hm+%,an = n_l/zh_%rnlog]\f, by =
n’l/zh_%(log N)3/2. Here, we provide a technical explanation for the terms ry, Ty, Gn, by.
Specifically, T, can be viewed as the rate of convergence of local ordinary penalized MLE (19),
T can be viewed as the posterior contraction rate of the local Bayesian mode, ay, by, are error
bounds of the higher-order remainders in the Taylor expansions of the individual penalized
likelihood functions. Uniform Gaussian approzimation for general h (not necessarily h < h*)
can be established under such condition.

Theorem 3.5 in Shang and Cheng (2017) shows that P; (conditional on Dj) is induced
by a Gaussian process, denoted as W7, in the sense that Py;(S) = P(W7 € S|D;) for any
S €S. Define

2 1+2

T, =py ™, vl (25)

Then we have
W]() = Z(an,yﬂj) + bn,l/TVUV)(Pl/(')a ] = 17 27 R
v=1

where a,, = n(1+Ap,) (72 +n(1+ Apy)) 7L, by :‘(’7'”2 +n(1+Apy)) Y% and v, ~ N(0,7,2).
For convenience, define the mean functions of W7 as

E,n(') = Z an,l/f;(/j)(pl/(')u j = ]-a ceey Sy (26)
v=1
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such that we can re-express W7 as
W/ f] ntWhn, j=1,.

where Wi, (+) :== X021 bp v Twvuu(+) is a zero-mean GP. Note that the posterior mode En is
very close to fj, since | fin— finl = op;, (1) uniformly for 1 < j < s; see the proof of Theorem
3. The above characterization of W7 is useful for the subsequent Bayesian aggregation
procedures.

4.2. Aggregated posterior means

In this section, we propose a method to aggregate the posterior means fv']n = E{f|D;},
for j =1,...,s. The aggregated mean function, denoted as fN’,\(-), can be viewed as a
nonparametric Bayesian estimate of f, and will be used to construct aggregated credible
balls/intervals to be introduced later.

Our aggregation procedure is

fN)\() = Z aNV (li TL,SDV) SOV() (27)

=1 S iz

Note that when the model is Gaussian and f € S§*(0,1), (27) becomes (10). Next we
will show that the aggregation procedure (27) yields minimax optimality in the following
theorem.

Theorem 2 Under conditions of Theorem 1, the following result holds:

4m,2+2m,[3—10m+1

max Hfj n- JNH = OPfO (?n\/gN AmGmes) (logN)g) ) (28)

1<j<s

If, in addition, 3/2 < B <2m+1/(2m) - 3/2 and s satisfies

4mZ+2mB-11m+1 3
s=o (N sm(m+B)  (log N)~ 2) (29)

then it holds that 2Bl
£y~ foll2 = O, (V72655 ), (30)

where | fll2 =/V(f) denotes the V-norm.

According to van der Vaart et al. (2008b), the rate in (30) is minimax optimal given Condition

(9).

4.3. Aggregated credible region in strong topology

In this section, we construct an aggregated credible region based on s individual credible
regions (w.r.t. a weighted £2-norm). Specifically, s radii are combined in an explicit manner.
This aggregated region possesses nominal posterior mass asymptotically, and is further
proven to cover the true function with probability tending to one. This nice frequentist

10
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property is achieved as long as s is not diverging fast and the assigned GP prior in each
subset is chosen by setting h X h*, i.e., A X N —2m/(2m+5) - The conservative frequentist
coverage can be improved to the nominal level if we use a weaker norm in defining credible
region; see Section 4.4.

Based on each subset D, the individual credible ball is constructed as follows:

Rjn(a)={feS™(I):

The credible ball centers around the posterior mean fj,n, while its radius 7, () is directly
sampled from MCMC such that P(R;,(a)/D;) =1-a for any o € (0,1). We will construct
an “aggregated” region centering at fx x with radius explicitly constructed as follows:

2 <rjin(a)}.

ry(a) = %[Cl,Nﬁ“ Z]:( i? (o) - Cln)] (31)

where

- k
Ck,n = Z (2#)) fork=1,2.

S\2+n(1+Mpy,

The final aggregated credible region is obtained as

Ry(a)={f eS™D): |f - fualz < ()} (32)

Our theorem below confirms that Ry («) indeed possesses (asymptotic) posterior mass
(1 - «), and more importantly, proves that it covers the true function fy with probability
tending to one.

Theorem 3 Suppose that fo satisfies Condition (S), m > 1+ 33/2< B <2m+1/(2m)-3/2,

s = o(N2m+B), (29) and h < h*. Then for any a € (0,1), P(RN(a)]D) =l-a+op, (1) and
limy, 0 Pfo(fo € Ry(a)) =1.

From the proof of Theorem 3, we point out that when s = 1, the posterior mass of the
aggregated credible region is exactly 1 — a, consistent with Shang and Cheng (2017). This
remark also applies to other aggregated procedures to be presented later.

Remark 2 When h < h*, the radius of the aggregated ball ry () < N_% according to
the discussions in Section 4.6. This is the optimal rate at which a posterior ball contracts
based on the entire sample; see van der Vaart et al. (2008b).

4.4. Aggregated credible region in weak topology

In this section, we invoke a weaker norm (than that used in Section 4.3) to construct an
aggregated credible region. Under this new norm (inspired by Castillo et al. (2013, 2014)),
it is proven that the frequentist coverage exactly matches with the asymptotic credibility
level. The requirement on s and A in this section remains the same as Section 4.3.

We define a weaker norm than | - |2, denoted |- |,. For any f e S™(I) with f =Y, foou,
define | f||2 = £°°, w, f2, where w, = (v(log2v))~" for some constant 7 > 1. Since w, < 1 for

11
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all v > 1, we have | f|, < | f]2. Under the new | -||,-norm, each individual (1 - «) credible
region is constructed as

Ry (@)= {feS™(D) [ f = fin

where 7y, j () is directly obtained from posterior sampling such that P(R?, (a)D;) =1-a.
Under | - |,-norm, the aggregated credible region is constructed as:

w S ?”w,j,n(Oé)},

R(@)={f eS| f = fuplle <o n (@)}, (33)

where the radius is given as

1 S
reN(a) =4 | 5 2.7 (). (34)
j=1

Interestingly, Section 4.6 illustrates that the aggregated radius r,, v (o) contracts at root-N
rate.

Our theorem below shows that the frequentist covergage of RY («v) exactly matches with
the asymptotic posterior mass, both of which achieve the nominal level (1 - ).

(2m-1)2
2m

Theorem 4 Suppose that fy satisfies Condition (S), m > 1+/3/2, 2 < B <

am2+2mpB-12m+

-1 dm_+2mB-12m+1
s = o(N2m+3), s = o( N 8m(@m+5) (logN)_%), and h < h*. Then for any a € (0,1),
P(RY(a)|D) =1-a+op, (1) and lim,e Pf,(fo € Ry () =1-a.

4.5. Aggregated credible interval for linear functional

In this section, we construct aggregated credible intervals for a class of linear functionals
of f, denoted as F(f). Examples include the evaluation functional, i.e., F'(f) = f(x), and
integral functional, i.e., F'(f) = [01 f(x)dx. Specifically, the interval is centered at F( fN’ A)
with an length aggregated through s lengths obtained from posterior sampling. Posterior
and frequentist coverage properties of this aggregated interval depends on the functional
form F'(-). Again, our theory holds when s is mildly diverging and h < h*.

Let F': S"™(I) » R be a linear II-measurable functional satisfying the following Condition
(F): sup,s; |F(¢y)| < oo, and there exist constants x > 0 and 7 € [0,1] such that for any
fesm,

[F(£)] < sh £ (35)

It follows by Shang and Cheng (2017) that the evaluation functional satisfies Condition (F')
with 7 = 1 and the integral functional satisfies Condition (F) with r = 0.

Based on each Dj, we obtain from posterior samples the following (1 — «) credible
interval:

CIf () = {f € S™(D) : [F(f) = F(fin)l < rrjn(@)},

where 7r;,(a) is a radius such that P(C’Ifn(a)|Dj) =1 - a. The aggregated credible
interval is constructed as

CIf(a) ={f e S™I): |F(f) - F(fn)l < Frn(a)} (36)

12
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where

91N

fork=1,2.  (37)

2
ren(a) = rrin(@)? and an = Z Fev)

o1 (77 +n(1+ Apy))F

The shrinking rate of 7 y(a) depends on the functional form F'; see Section 4.6.
Our theorem below investigates the asymptotic properties of C'1 fpv (a) in terms of both
posterior and frequentist coverage.

Theorem 5 Suppose that fo = Y2, fOp, satisfies Condition (S'): Y2, |fO2v*™*8 < oo,
Es{e*|X} < My a.s. for some constant My > 0, Nka,N h™" for k=1,2, m>1+ \/_

am2+2mpB-12m

2<p6< %, s= O(Nm), 5= O(NW(logN)fi), (29) and h X h*. Then for
any a € (0,1), P(CI%(a)|D) =1-a+ op;, (1), and liminfy e Pp,(fo € CIi () 21-a
given that Condition (F) holds. Moreover, if 0 < Y021 F(p,)? < 0o, then limy_co Pf,(fo €
CIL(a))=1-a.

Note that Condition (S’) is slightly stronger than Condition (S) required in Theorem 1.
Indeed, this condition essentially means that fy has derivatives up to order m + g (when
this order is integer-valued). Hence, Theorem 5 requires a more smooth true function fj.
It was shown in Shang and Cheng (2017) that the integral functional F,(f) := [ f(z)dz
for any x € [0, 1] satisfies (35) with » = 0 and 0 < 352, F.(¢,)? < co. Therefore, the (1-a)-th
credible interval of F,(f) achieves exactly (1 — ) frequentist coverage, while that for the
evaluation functional is more conservative. These theoretical findings will be empirically

verified in Section 5 .

4.6. Asymptotic aggregated inference

In practice, the centers fN,A, F(fN,A) and the radii 7, (), 1w jn(a), 7rjn(a) in Sections
4.3 — 4.5 are directly obtained from posterior samples. Sometimes posterior sampling is
time consuming and inefficient, particularly as s — co. This computational consideration
motivates us to propose an asymptotic approach in which one replaces the above centers/radii
by their large sample limits. Our new asymptotic inference procedures dramatically improve
the computing speed, as displayed in simulations; see Section 5.

Define

v=1 On,

fN)\( ) = Z C"NV (é i};,n»@pu) ‘101/(')- (38)

Clearly, fN,  is a counterpart of fN, A (27) with fuj,n therein replaced by f;n By a careful
examination of the proofs of Theorems 3 — 5, it can be shown that the following limits hold:

| fvp = Fual = opy, (N2,
max m“in(a) - Cl,n _, -0 (1)
1<j<s /2o ol T PPl
¥<la<X ’\/_TWJ n(a) V CO&’ = 0Py (1)7
{gjaéx |TFj n(a)/eln a/2| = OPfO(l)’ (39)

13
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where 2z, = ®}(1 - a) with ®(-) being the c.d.f. of standard normal random variable, and
Co > 0 satisfies P(X52, d,n? < co) = 1 —a with 7, being independent standard normal random
variables.

It yields from (39) that the following approximation relationships hold uniformly for
1<j<s:

T‘jm(Oé) N \} Cl,n +4/ 2C2,nza

n

C
» Twjn(a) & /f and 7gjn(a) ~ 010240,

which further implies (by the aggregation formulae (31), (34) and (37))

rv(a) = riy(a) = \J A VTN

— (40)
rav(a) ol y(a) = [,

ren(o) » T}L;’N(a) = 01, NZa /2

Thus, we have the following asymptotic counterparts of Ry(a), R%(a) and CIk(a):
RYy(a)={f e S"@): | - Fval2 s ()}, (41)
Ry (a) = {f € 8" (M) | = Fvale <rl y(@)}, (42)
CIV () = {f € 8™ (W) [F(f) = F(Fwa)| < (@)} (43)

Our theorem below shows that the posterior coverage and frequentist coverage of the
above computationally efficient alternatives remain the same as those for Ry(«), R% («)
and CTL («) under the same set of conditions.

Theorem 6 Suppose that all assumptions in Theorems 3 — 5 hold. Then for any « € (0,1),
ijv(oz), R;\U[J(a) and C’IJCF(a) possess exactly the same posterior and frequentist properties
as Ry(a), R§ (a) and CI (), respectively.

As a byproduct, (40) implies the contraction rate of each aggregated credible ball /interval
in Sections 4.3 — 4.6. It is easy to see that r, y(a) x N™V/2. As for rgy(a), it depends
on the functional form F. For example, when F' is an evaluation functional, it holds that

_2m+p-1
H%N % (Nh)™!, leading to N 2@m+%) when h x h*; when F is an integral functional, we

-1/2

have rpy(a) X N since Gf’N =< N1 As for ry(a), it can be shown by a simple fact

_2m+p-1
CiN, N % R~ that ry(a) = (Nh)‘l/2 < N 2@m+8) when h x h*. This contraction rate turns
out to be optimal based on the entire sample; see van der Vaart et al. (2008b). However, if

S
we choose h in the scale of subsample size n, e.g., h X n 2m+8 similar arguments show that
2m+8-1

ry(a) = N 7W372(T1+ﬁ>. Hence, such a region contracts faster than the optimal rate,
which results in unsatisfactory frequentist coverage.

Table 1 summarizes six aggregated credible regions/intervals from Sections 4.3 — 4.5 in
terms of their centers and radii.

14
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Table 1. Summary of Aggregated (1 — ) Credible Regions/Intervals

Type Name Notation Center  Radius

strong CR for f Ry(«) fN,,\ rn (o)
Finite-sample weak CR for f R (@) fN,A Tw,N ()
CI for F(f) CIt(a) F(fny) rrn(a)

strong CR for f R}Lv(a) v rjv(a)
Asymptotic weak CR for f R;f\[f(a) v T‘L’N(a)
CI for F(f) CI]TVF(Q) F(fN)\) r’quN(a)

5. Simulation Study

In this section, statistical properties of the proposed aggregated procedures are examined
using a simulation study. We generated samples from the following model

Y;j = fO(XU) +€ija 7= 1,2,...,n,j = 1,2,...,8, (44)
where X; iid Unif[0,1], €; iid N(0,1), and €;; are independent of X;;. The true regression
function was chosen to be fo(z) = 2.4830,17(z) + 1.68311(x), where B, is the probability
density function for Beta(a,b).

Consider GP prior f ~ ¥7_; w,p,, where w, are defined in (18). The proposed Bayesian
procedures were examined. Specifically, we computed the frequentist coverage proportions
(CP) of the credible regions (32), (33), (41), (42), and credible intervals (36), (43). In
particular, (32), (33) and (36) were constructed based on posterior samples, as described in
Sections 4.2-4.5; whereas (41), (42) and (43) were constructed based on asymptotic theory
developed in Section 4.6. To ease presentation, we call (32) and (33) as finite-sample credible
regions (FCR), and call (41) and (42) as asymptotic credible regions (ACR).

The calculation of CP was based on 500 independent experiments. Specifically, the CP is
the proportion of the credible regions/intervals containing fo/F'(fy) (for a linear functional
F). Two types of F were considered: (1) the evaluation functional F,(f) = f(z) for any
x € [0,1], and (2) the integral functional F,(f) = [ f(z)dz for any z € [0,1]. In both cases,
we consider F, with x being 15 evenly spaced points in [0.05,0.95]. To make the study more
complete, a set of credibility levels were examined, i.e., 1 —a =0.1,0.3,0.5,0.7,0.9,0.95. In
each experiment, N = 1200 independent samples were generated from the model (44). For
ACR and FCR, we chose the number of divisions s = 1,2, 3,4, 5,6, 8, 10,12, 15, 20, 24, 30, 40, 60.
Define « = log s/log N. Note that s =1 (equivalently, v = 0) means “no division.”

Figure 2 demonstrates the results for FCR and ACR based on strong topology, i.e.,
(32) and (41). The red dotted line indicates the (1 — «) credibility level. It can be seen
that the CP of both FCR and ACR is above the credibility levels when « is small, while it
suddenly drops to zero as 7y is beyond some threshold, say 0.3. This observation supports
our theory that s should not grow too fast, and that the credible regions based on strong
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Figure 2. CP of ACR and FCR based on strong topology. Dotted red lines indicate credibility levels.

topology tends to be more “conservative.” Figure 3 demonstrates the results for FCR and
ACR based on weak topology, i.e., (33) and (42). We observe that the CP of both ACR and
FCR approaches the desired credibility levels when + < 0.3, but quickly drops to zero when
~v becomes large. This observation also supports our theory that the use of weak topology
leads to a more satisfactory frequentist coverage.

For credible intervals of linear functionals, we chose the number of divisions s = 1,6, 15, 60.
Figures 4 and 5 display the results for evaluation functional and integral functional, respec-
tively, based on posterior samples. It can be seen that when s = 60, the CP of the credible
intervals for the evaluation functional drops to zero at most of the x points, indicating the
failure in covering the true values of the function. However, when s = 1,6,15, the CP is
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above the credibility levels except for the points where the true function fy has peaks; see
(a) of Figure 1. The observation that the CP stays above (1 — «) coincides with our theory
that the credible interval of the evaluation functional is conservative. On the other hand, it
can be seen that when s = 60, the CP of the credible intervals for the integral functional
becomes far below the credibility levels at most . However, when s = 1,6, 15, the CP is close
to the credibility levels at all . This finding coincides with our theory that the the credible
interval of the integral functional achieves exactly (1 — «) frequentist coverage. The above
results also support our claim that s cannot grow too fast for guaranteeing frequency validity.
Credible intervals based on asymptotic theory, i.e., (43), were summarized in Figures 11
and 12 of the supplement document Shang and Cheng. Interpretations of these results are
similar to those based on finite posterior samples.

The supplement document Shang and Cheng also includes Figures 13 — 16 which
demonstrate how the radii/lengths of the aggregated credible regions/intervals change along
with ~y, the size of the subsample. It can be observed that when ~ < 0.3, indicating that
the full sample is divided into at most twelve subsamples, the radii of the aggregated
regions/intervals are almost identical to the radii of the regions/intervals directly constructed
from the full sample, i.e., v = 0. This means that our aggregated procedures, based on a
suitable amount of divisions, indeed mimic the oracle procedures. However, when -~ increases
to 0.6, the distinctions between the the aggregated and oracle procedures quickly become
obvious.

We also repeated the above study for NV = 1800 and 2400. The plots corresponding to
these studies are given in supplement document; see Section S.8.6 of Shang and Cheng. The
interpretations of these additional results are similar as above.

To the end of this section, computing efficiency is investigated. Figure 6 displays the
results based on a single experiment for various choices of N. Specifically, we look at the
value of the quantity p = 1 - (T'/Tp) versus a collection of 4’s for FCR and ACR, where
Ty (T) is the computing time without using D&C (based on D&C). We observe that T is
substantially smaller than Ty, and this computation efficiency (as reflected by the value of
p) becomes more obvious as vy grows for each fixed N. This can also be seen as N grows for
each fixed «. However, this reduction in computing time does not affect the performances of
the aggregated credible regions when 0 <~ < 0.3, as demonstrated in Figures 2, 3, 13-16.

6. Real Data Analysis

In this section, we apply our methods to Million Song Data (MSD) and Flight Delay Data
(FDD).

6.1. Million Song Data

As a real application, we apply our aggregation procedure to analyze MSD. The MSD
is a perfect example of large dataset, a freely-available collection of audio features and
metadata for a million contemporary popular music tracks. Each observation is a song
track released between the year 1922 and 2011. The response variable Y; is the year when
the song was released and the covariate X; is the timbre average of the song. The main
purpose is to explore a relationship, denoted as f, between song features and years in a
nonparametric regression model, i.e., year = f(timbre)+error. The above model is useful to
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Figure 4. CP of F.(f) = f(x) against x based on posterior samples of f. Dotted red lines indicate

credibility levels.
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Figure 6. p versus v based on FCR and ACR for single experiment.

predict production year based on song timbre. Due to enormous sample size, processing
the entire data is infeasible. In frequentist setting, a distributed kernel ridge regression
method was proposed by Zhang et al. (2015a,b) for estimation purposes (without quantifying
uncertainty).

In the Bayesian setup, we applied our aggregation procedure to construct 95% credible
sets for f based on a subset of NV = 10,000 songs released from the year 1996 to 2010. We
randomly split the observations to s = 5,10, 20 subsets. We also compared our results with
the baseline method in which all ten thousand observations were used. Credible sets are
displayed as gray areas in Figure 7. We find that the shapes of all credible sets are overall
the same when the timbre ranges from -4 to 4, e.g., all display a W-shape, although the
results are a bit sensitive near the endpoints. Therefore, the overall pattern of the sets
appears to be insensitive to the above selections of s.

6.2. Flight Delay Data

We applied our aggregation procedure to one more real data set, the FDD. The data consists
of flight arrival and departure information for all commercial flights within the United States,
from October 1987 to April 2008. The main purpose is to find the key factors that have an
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Figure 7. 95% Credible sets (grey areas) for f based on a subset of 10,000 samples in Million Song Data.
The first plot refers to the baseline method where the whole samples were used. The rest three plots refer to

the aggregation procedure which was applied to 5, 10, 20 random splits.

impact on the flight delay. We considered the relationship (denoted f) between month and
the length of the flight delay, i.e., length of flight delay = f(month)-+error. Negative length
of delay implies that the flight arrived earlier. We applied the same Bayesian aggregation
procedure as described in MSD to a randomly selected subset of N = 10,000 flight information
in the year 2007. We randomly split the observations to s = 10,100, 500 subsamples, based
on which the aggregated credible sets for f were constructed. We also compared the results
with the baseline where all the ten thousand samples were used. Credible sets are displayed
as gray areas in Figure 8. Again, the shapes of the four credible sets appear to be almost
the same for all s.

6.3. Computation Efficiency

We compare the overall execute computation time of both MSD and FDD on different
numbers of splits, e.g. computational time per machine x number of machines in Figure
9-10. It can be seen that the computing time dramatically decreases as the number of splits
increases, which reflects the scalability of our proposed algorithm.

22



NONPARAMETRIC BAYESIAN AGGREGATION FOR MASSIVE DATA

baseline s=10

ArDelay
5
|
ArDelay
5
|

T T T T T
2 4 6 8 10 12 2 4 6 8 10 12

Month Month

Figure 8. 95% Credible sets (grey areas) for f based on a subset of 10,000 samples in Flight Delay Data.
The first plot refers to the baseline method where the whole samples were used. The rest three plots refer to

the aggregation procedure which was applied to 10, 100, 500 random splits.

7. Conclusions

This paper proposes algorithms for aggregating individual posterior results such as modes,
balls, intervals, into their global counterparts. The algorithms are easy-to-implement which
are particularly useful in big data scenarios. We also experimented the proposed algorithms
through simulated and real data sets. A notable contribution of this article is to provide
rigorously justified theoretical guarantees. The major tool for proving our theoretical results
is a uniform Gaussian approximation theorem which shows that the individual posterior
distributions converge uniformly to Gaussian processes provided that the number of subsets
is not too large.
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8. APPENDIX

This appendix section contains the proofs of the main results. Section 8.1 contains proof of
Theorem 1 and relevant preliminary results. Section 8.2 includes the proof of Theorem 2.
Sections 8.3 and 4.4 includes the proofs of Theorems 3 and 4, i.e., coverage properties of the
credible sets based on strong and weak topology respectively.

All proofs crucially depend on an eigensystem designed for simultaneous diagonalization
of the two bilinear functionals U,V induced from likelihood and prior, respectively. In fact,
(¢u, pv) is a solution of the following ordinary differential system (whose existence and
uniqueness is guaranteed by Birkhoff (1908)):

(1) () = pur (w4,
e (0) =W (1)=0, j=m,m+1,...,2m-1, (1)

Properties of this eigen-system are summarized in Proposition 1, whose proof can be found
in (Shang et al., 2013, Proposition 2.2).

Proposition 1 It holds that sup,.y |¢v | < 00, and that the sequence p, is nondecreasing
with p1 == pm =0, and p, >0 for u>m. Moreover, p, < v*™ and

V(SDWLPV) zé,ulla J(SO;MQDV) :Pué,uz/: w,v €N, (2)
where 8, is the Kronecker’s delta. In particular, any f € S™(I) admits a Fourier ezpansion
=2, V(f,pv)p, with convergence held in the || - |-norm.

8.1. Proofs in Section 4.1

The proof of Theorem 1 requires the following technical result which derives a local contraction

rate 7, uniformly over s: 7, = (nh/log2s) /% + K75 The proof can be found in (Shang
and Cheng).

Proposition 1 If fy satisfies Condition (S) and the following Rate Condition (R) holds:
nh*™"* 1 > 1, a, = O(7), by <1, 2b, <72.

Let a >0 be a fived constant. Then for any ¢ € (0,1), there exist positive constants M', N’
s.t. for anyn> N',

P, (mac{E(1S = fol“T(1S = foll > MT)ID;) > M's exp(-ni2 log(2s)) ) <= (3)

We remark that Proposition 1 significantly generalizes the classical results in Ghosal et al.
(2000); van der Vaart et al. (2008a).

Proof [Proof of Theorem 1| Let Mj, Ms be large positive constants. For any fixed constant
a > 0, consider three events:

&, = {max | Fjn = foll < Mi7}
€ = {max B{|f - fol"I(If - fol 2 MaT)[D;} < Mys® exp(-n7, /log(2s))}
& = Amax Eoy{If = fol"I(1f = foll > MeF)} < My exp(-n7,)}
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where Ep; means expectation taken under Fy;. It follows from Shang and Cheng and
Proposition 1 that we can choose M; > My (both large enough) s.t. Pr (&, nE&)) >1—-¢e1/2
where €1 > 0 is an arbitrary constant. Meanwhile, by (Shang and Cheng) we have, on &/,
for any 1<j<s,

Eoi{llf = fol“I(lf - fol = Ma7)}
S i-so1smsm 1 = foll* exp (=21 f - finl?) dLi(f)
Jsma) exp (=21 f = finl?) dII(f)
Jis—sosntgr 1 = Foll®exp (=3[ £ = Finl?) dII(£)
Jis-poli<r &P (=5 1f = Finl?) dIL(f)
exp (= ((Ma - My)?/2 = (My +1)*/2 - ¢3/4) n75 ) C(a,11), (4)

IN

where ¢3 > 0 is a universal constant and C'(a,II) = me(H) If = fol®dII(f). We can choose
My > C(a,II) so that the quantity (4) is less than My exp(-n72). So & implies £, so
that Py, (&) > Py, (E,nE&)) >1-¢€1/2. Define &, =€, n & n &, then it can be seen that
Pfo(gn) >1-e.

Let T} be defined as

Ti(f) = —— SUAMX)? - Ex{(Af)(X)?}]. (5)

2TL iEIj

Following Lemma 9, for any 1< j < s,

G = En(Fo) + 31 = Tl = T30 (6)

It follows from the proof of Proposition 1 that on &,, for any f € S™(I) satisfying | f — foll <
Mor, and 1 < j < s,
IT5(£)] < D = T, (7)

where D = D(My, M,) is a positive constant depending only on Mj, Ms. Recall that our
assumption says that eo = n.D72b, = o(1).
For 1< j <s, define

Bt = [ 0 &0 (05 (1) ~L3n(F0)) ATLCP).
= A
Tup= [ o e (51 = Fual? ) ani(p),

= [ s @2 (1) = Gn(F5)) I,

T n —
7 If-fol<Ma7, P 2||f finl @)

For simplicity, let e3 = Mas? exp(-n72/log(2s)). On &, (with a = 0) and for any 1< j < s,

Tt = I
STl ¢ M s? exp(—n7=/log(2s)) =e3, 0<
Injt nj2

Jnj? - Jnj2

0< < exp(—n72) < e3.
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By some algebra, it can be shown that the above inequalities lead to

Injo < 1 'jan
Jnj1 - 1-e3 Jnj1

jn'2
1-e3)- =< 8
(1-20)- 72 ®)

Meanwhile, on &, and for any 1 < j < s, using (7) and the elementary inequality

lexp(z) — 1| < 2|z for |z| <log2, we get that

=Tl = [ e (<51 - Fall) ¥ exp(y (1)) - 1ari(f)

2e9Jnj2,

IN

leading to that

|3K<\

L 1 )
1+2€2 njl 1—262

.. , - Jn;j .
Combining (8) and (9), on &, and for any 1< j <s, 11+25532 < n—ﬁ < m When n is
large, €3 < €2 and both quantities are small, the above inequalities lead to

1- JInj 1
i R PO FL —1<dey (10)
1+ 29 JInj1 (1-2e9)(1-¢3)

For simplicity, denote Ry;(f) = nTj(f). For any S €S, let S"=Sn{feS™):|f-
foll € Ma7,}. Then on &, we get that maxi<j<s |[P(S|D;) — Po;(S)| < maxi<j<s |P(S'|D;) -
Poj(S")| +2e3. Moreover, it follows from (10) that on &, and for any 1< j <s,

|P(S'ID;) - Po; (5]

|/ (exp(n(@-n(i) “GnlFi)) e (3 7 Finl?) ) - f)‘
nj nj2
n T o2) « eXP(an(f))_ 1
< foe (-5l Fal?)x |TEE - o)
- Xp( Ry -1
< [ e (-215 - a2 ) 2D A
nj
e 7 12Y xexo( B () x | —
o J e (51 Tl ) exp(Rus(£)) x| 5= = ()
o o, Jsr @ (GBI = Tial?) dTICH)
JInj
1 n = 2
resp(en) x |- 5| [ esp (=51 Tl )ami(p)
< 2e9 +exp(ez) x J"j2—1 < 2e9 +4egexp(eg) < 1des.
njl
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Note that the right hand side is free of S. Then we get that on &,, supg.s maxi<j<s |P(S|D;)-
Py;(S)| < 14eg + 2e3 < 16e2. This implies that for sufficiently large n,

Py, (sup max |P(S|D;) - Py, (S)| > 1662)
SesS 1<j<s

< Pfo(éﬁ) +Pfo (En,supmaX|P(S]Dj) - P()](S)’ > 1682) = PfO(ETCL) <eq.
SeS 1<7<s

am212mB-10m+1

The desirable result follows by the simple fact eg $/sN~— 4mC@m+5)  (log N )% when h < h*.
|

8.2. Proofs in Section 4.2

Proof [Proof of Theorem 2| We first show (28). Let A, = {f € S™(L) : || f - foll > M7,} and
Bj={feS™):dP(fD;)>dPy;(f)} for 1< j<s. By Proposition 1, Theorem 1 and (4)
with a = 1 therein, we can choose M > 0 sufficiently large such that

max | E(f|D;) - Eo; (f)]

1<j<s

= max| [ (/- )dP(ID) - [ (F - f)dPy (D]

< max| [ (F- )PP +max| [ (F - fo)dPuy(£)]
epax | [ (= fo)(dP(/ID;) ~dPo; ()]

< max B{|S - fol (f € A2)ID;} + masc Boy (£ - fol I(f € A1)

+ M7, max e |dP(f[Dj) - dPo;(f)]

m242mB-10m+1

4
: (32 exp(—n72[log(2s)) + exp(-n72) + Fpy/sN~ Ameme  (log N)

njot

= OPf

)

am2+2mB-10m+1

= Op, (?nﬁN_ imemi) - (log N)g) = Opy, (L),
where the second last equality uses Theorem 1 and the fact that, uniformly for j,

/.. 1aP(fD;) = dPo; (1)
= |P(A5, 0 Bj|D;) - Poj(A;, 0 Bj)l + [P(A5 0 BjID;) - Poj (A7, 0 Bl
Then (28) follows from the trivial fact that Eo;{f} = E(W’|D,) = fjn.
Next we show (30). By direct examinations we can verify the following Rate Conditions

(R):
n72by, = o(1), NTaby = o(1), Nh'/2a%, = 0o(1), Nh'/2a2 = o(1).

Define Rem;, = f;n - fo—Sn(fo) for j=1,2,...,s. It follows by Lemma 6 of Shang and
Cheng that maxij<s [Remyn| = Op,, (an).
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an.y/any < s for all v > 1. Then it holds from (38) that

It is easy to see that

(aNJ/) V(é Zl(fj,n—fj,n),goy) (1+Xpw)
Jj=

an,v

2

| v = Fval?
v>1

13 ~
$* = Y (fim - Fin)|* =
S J:l

Op,, (s°Ly) = op, (N'27%). (11

IA

4m2+2mB-11m+1
N~ 2men+s) (log N)_5) and > 3/2.

The last equality owes to the condition s*log(2s)

By direct examinations, we have

= Z (aNV(1 ZS:IV(meSOu) _fB) Pu
=

Fua-fo =
[e'e] 1 S
= Z aN,v ZV(Rem_]n+f0+S_] n(f0),0) | - Pv
v=1 S 7=1
oo 1 S oo 0
= Y an, V(=Y Remjn,pu)pn + 3 (an, = 1) f,)p0
v=1 S =1 v=1
oo 1 N [
+ > aN,Z/V(N Y eKx,, 00)pr =Y, an,V (Pxfo,ou) e (12)
v=1 i=1 v=1
Denote the four terms in the above equation by T3,75,T5,T}
Since an, <1, it is easy to see that
2 = 2 18 2
T = X an V(5 > Remjn, o)
-1 j=1
[ee] 1 S
< X V(s > Remjn, )| = ||— ZRemanllz < (max | Remjnl)? = Opy, (air)
] 1
(13)

7=1

<
]
—_

Using h x N~Y/@m+8) and a direct algebra we get that

V2m+6

2
012 _2m+B8-1 “1,-1
=o(N 2m+8 )=0o(N "h™").
v2m+B 4 N(1+ v 2m)) ol = o )= o )

L = 5 (owa - 1712 ﬁz(

Meanwhile, it follows by Proposition Shang and Cheng that

oo )\p 2 )\p 2
Tl = 3kl (125) € S (12
ad 1 (hw)?mBH _2m4p-1 I
< hy)2m+h 1(—: N 72ms )= o N~ 1h71).
§ SRyt s —o(N ) <o)

) for any z,2’ € 1. Also define R.(:) = R(z,-). It is

Define R(l‘,$,) = Zu=1 aN7V%
easy to see that R, € S"(I) for any = € I. Then it can be shown that T3 = & ¥i1; €; Ry
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leading to

1 I 2
IT3(3 = V(T3,T3) = N2 Z;QZV(RX“RXJ N2 > cierV(Rx,, Rx,).

i<k

Since Ey,{e*V(Rx,Rx)} = O(h’l),ﬁwe have Ef {|T5]3} = O(N"'h™!). Therefore, | Fv -
2m+p5-1
fol3 = Op,, (N~th71) = Opy, (N_ 2m+p ) This together with (11) leads to (30). [ |

8.3. Proofs in Section 4.3

Before proving Theorem 3, we give some preliminary notation and results. Define an “oracle”
penalized likelihood x x(f) = —5% 21 (Yi— f(Xi))?=2J(f). Applying Theorem 1 to s =1,

we have

sup |P(SD) - Fy(5)] = opy, (1), (14)
SeS

Js exp(= X1 f-FR7 5 12)dI( )
fsm(n) exp(—%Hf—E‘(,’tAHQ)dH(f)
smoothing spline estimator based on full data. Consider a generalized Fourier expansion
of fry: FUAC) = 22 V(F¥ s @0)@u(-). By Theorem 5.2 in Shang and Cheng (2017),
we have Py(S) = P(W € S|D) for any S € S, where W(+) = Zl‘iil(aN7VV(f]°\;:)\,g0V) +
bn Ty )@y (-). Here, ay,, by, are analogous to ones in the definition of WJ(-) in Section
4.1, and v, ~ N(0,7,2) and 72 are given in (25). Define the mean functions of W as
E‘{}")\() =Y aN7,,V(f]0\}:)\, ©u)eu (). So we can re-express W as WO = J?K}")\ + Wy, where
Wn(-) = X021 bn v (-) is a zero-mean GP.

The following result describes the distribution of W,, and Wy.

where Py(S) =

and fﬁ:)\ = argmaxsegm () €N7)\(f) is the “oracle”

Wal3-Cn @ NIWyl3-Gn d
Lemma 2 As N — oo, N — N(0,1), and N — N(0,1).
Proof [Proof of Theorem 3] We can show that Rate Conditions (R) hold by direct calcula-

tions.

It is sufficient to investigate the Pj -probability of the event {| fo - fN7 Ale <ryv(a)}. To

achieve this goal, we first prove the following fact:

{rglja;; |Zj,n(a) - za| = 0Py, (1)a (15)
where 2, = ®!(1-a) and @ is the c.d.f. of N(0,1), and zj () = (n7r},()* = C1.0)/\/2C2.n-
The proof of the theorem follows by (15) and a careful analysis of fy — fVN’ A

We first show (15). It follows by Theorem 1 that for any j=1,2,...,s,

[P(Rjn(@)Dy) = Poj(Rjn(e))] < max|P(Rjn(a)Dr) - For(Rjn(a))|
< sup max |[P(S|Dy) - Por(S)] = op; (1).

SeS 1<k<s
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Together with P(R;n(a)D;) =1 -, we have maxicj<s |[Poj (Rjn()) = (1 - )| = op; (1).

Let Aj = f]n - f;n for 1 <j<s. It is clear that
Poj(Rjn(a)) = P(W’eRjn(a)[Dj) = P(|Wy+Ajla <7jn(a)Dy)
= P([Wal3+2(Wa, Aja + 4[5 < 7 ()’[Dy), (16)
and, for any ¢ € (0, 1),
P(|<Wn7A')2|2 > | A5/ (ne)|Dy) < neE{[(Wh, Aj)alID;} /143
ne A3
= b IV (A5, 00)) < —2 =g, (17)
||A ||§ VZ>:1 ! A3
_4m2+2mB-10m+1 5
and by Theorem 2, maxijcs [A;[3 = Opy, (L%), where Ly =7,\/sN~~ mCm+5)  (log N)2.
By (29), Ckn nl/(@m+F) (Lemma 2), and direct examinations it holds that
n|A;l5
ﬂljgﬁ —Opfo(l). (18)
Combining (16) and (17) we get that
n|A 15 2042
Poj(Rjn(a)) > @p|zjn(a) -
’ ’ ’ \V/ CZ,TL \V4 n€<2 n
n|A3 |

Foj(Rjn(@))

IA

o, (ijn(a) - \/E /—TLECQ N )

where ®,, is the c.d.f. of U,. It follows by Lemma 2 and Polya’s theorem (Chow and
Teicher (2012)) that ®,, uniformly converges to ®(-), the c.d.f. of standard normal variable.
Therefore, when n becomes large enough,

D, (zjm(a) -

d, (zjﬂ(a) -

where implies that

nf A5

2n] A2

\ C2,n

n|Al3 |

\V/ nECQ,n

2n]Ajl2

\/ <2,n

\/ nECQ n

o oy MAME 20181,
o V CQ,n \V/ neCZ,n
A5 | 2nA]

Pl zin(a) -
(J7 ( ) V C2n \V4 nECQ,n

Since (18) implies that

nlA; 13

V CZ,n

2v/n A2
and o

) - (zj,n(a) -
) (Zj,n(a) -

31

n A5

2n] A2

\/ CQ,TL

n|Al3

\ n€C2,n

2n|Aj]2

\ C2,n

\/ 7’L€C2 n

|
|

) < Poj(RjVn(a)) +2e=D(z,) +2e + OPf0(1)7

) 2 P()j(Rj,n(Oé)) -2 =P(z,) —2e + Opfo(l).

are both onO(l) uniformly for j, so (15) holds.
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Next we prove the theorem. Consider expansion (12). Ounly focus on T3. Define W(N) =
2 Y 1cicken €€V (Rx;, Rx,). Let Wi, = 2,V (Rx,, Rx, ), then W(N) = Y1y Wik
Note that W(N) is clean in the sense of de Jong (1987). Let 0%(N) = E;, {W (N)?} and G,
G[[, G[V be defined as G[ = ij EfO{W;;}, G[[ = Zi<j<k(Efo{Wz%vVi2]g} + EfO{WjQZ-Wij} +
Ej, {WEWE}), and

Grv = ), (Bp{WyWaWiWi} + Ef {WiiWyWi;Wii} + Er AW W W Wi }).
i<j<k<l
Since ¢, are uniformly bounded, we get that |R.[3 = %52, % S h7!, where “”

is free of z. This implies that G; = O(N2h™*) and G = O(N3h™).
It can also be shown that for pairwise distinct i, k, ¢,1,

Ef AWuWaWuWu} = 2'Ep{eeieieiV(Rx,, Rx, )V (Rx,, Rx,)V (Rx,, Rx,)V (Rx,, Rx,)}
o0 a8
= 94 L:O(h’l),

v=1 (1 + >‘pl/)8

which implies that Gy = O(N*h™1). In the mean time, a straight algebra leads to that

a 4

o N AN v N\ & N i

2(N) = 4( )2—724( )E =2N(N -1 < N2p7 L.
W 2/ 2 (L+Ap)* 2) S \2+ N1+ Xpy) ( )CaN

Since Nh? x N'=2/(m+8) _, oo we get that G, Gr and Gy are all of order o(c*(N)).

. w(nN) d . -1
Then it follows by de Jong (1987) that as N — oo, NSy —> N(0,1). Since {4y < h™",

the above equation leads to that W(N)/N = Op, (h=11%),

It follows by direct examination that Var {SN, ¢?V(Rx,, Rx,)} < NEj{e}|Rx, |3} =
O(Nh™?), leading to that ¥, €V (Rx,, Rx,) = Er, {1 €V (Rx,, Rx,)}+Op, (N'?h71) =
NG,n +O0p;, (N'2h71). Therefore, it follows by Rate Condition (R), i.e., Nha2 = o(1), and
the analysis on 11,75, T3, Ty in (12) that

Nh|fnx—=fol3 = Nh|T3|5+O0p, (Nhai) +op, (1) = hGan +op, (1). (19)

In the end, note from (15) and (j, < n* for oy = 1/(2m + B) (see proof of Lemma 2)
that <7, 7"]‘771(&)2 = (0 + /202020 + 0Py, (v/C2,n), which leads to that

Nry(a)? = GLN + /20 Nza +opy, (h™11?). (20)

Therefore, Nhry(a)? = héy n(1 + opy, (1)). Since liminfyeo(hC1,n = hG2,n) > 0, we get
by (11) that, with Py, -probability approaching one, | fyx — fol2 < rn(a). Meanwhile, it
follows by Shang and Cheng that ||]?K,T)\ = fo=Sn(fo)l2 = Op,, (an) and ||% i1 Fim—fo-
% Y521 S5 (fo)ll2 = Op, (an), where Sy A(fo) = % >N, eiKx, - Pxfo. Note that Sx.a(fo) =
Lys ) Sjm(fo), which leads to |73, - 2 £5; Fin

9= Opf0 (an +an). Since an, <1, we get
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that

2
o o0 1l
N s Fual? NZa?V,VV( %A—;ij,m%) (T+Apy)
v=1 j=1

IA

2
= Tor 1S+
NZ:IV(fN)\_gZ;fJ’,m‘Pu) (1+Apy)
v= J=

— 1 &~
NITRA -~ 3 Finl? = Op,, (Va2 + Na%) 21)
j=1

opy, (h™Y%), (by condition Nh'2a? + Nh'/?a2, = 0(1))

Using (11) we get that N|f%, - fwal3 = op, (h72). Since E{|(Wn, f§) = fx.)2l’ID} =
St B, V(IR = I 00)? < TR = FNalB/N = opy (N2h7'2), we have that N[W -

o2 2 -1/2 N|Wn 51~ _
fnalz = N[W|3 +op, (R77/7). Tt follows by P( \/ﬁ <2q )= 1-a, (14) and (20)
that P(Ry(a)/D) =1-a+op, (1). This completes the proof. [ |

8.4. Proofs in Section 4.4

Before proving Theorem 4, let us present a preliminary lemma.

d d
Lemma 3 As N — oo, N|Wy|? = $2,dyn?, and n|W,|? - X2, d,n?, where n, are
independent standard normal random variables.

Proof [Proof of Theorem 4] By direct examinations, one can show that Rate Conditions
(R'): n72b,, = o(1), N7abx = o(1), Na%, = o(1) and Na2 = o(1) are all satisfied.
We first have the following fact:
max |\/ﬁrw,j,n(a) vV Ca| = Opy (1)> (22)
1<j<s 0

where c,, > 0 satisfies P(252; dyn2 < co) = 1 — a with 1, being independent standard normal
random variables. It follows from (22) that

Nryn(a)? =ca+op, (1). (23)
4m2+2mpB-12m+1 3

By Theorem 2 and the condition s = o( N~ #mCm+8)  (log N)“2) we have the following

maxicjcs A2 = maxicjcs nf| A% = Op,, (nL%) = op; (1). Also, for arbitrarily small

g€ (0,1), P({Wn,Aj)ul® 2 |A;]|2/(ne)|D;) < . The proof of (22) is then similar to the
proof of (15) and details are omitted.

Let T1,75,T5,T4 be defined in (12). It follows from the proof of Theorem 3 that

1712 < |13 = Opy, (a2), so N|T1|? = Op, (Na2) = opy, (1) due to the condition Na? =

o(1). Tt follows by condition h x N ~1/2m+B) " dominated convergence theorem and direct
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examinations,
I21% = id (an, = DPIf)P < N Zd i e
w (1 (hV)Qm + (hy)2m+ﬁ)2 v
L& hy)2m+6+1 ~ -
< N1 ( 2m+f-1) 012 _ o Ar-1
SN L Wy Gy =0,
and
)\/71/ (hV)Qm—ﬂ+1 ~
2 02 ¢ 0,2 2m+8-1
inis = g (5 ) e % Qo Gy * AP0
2m-p3
< h2m+BZ (hl/) ‘fB‘2V2m+B_1=0(N_1).

(14 (hv)2m + (hy)2m+B)2
By direct examination it can be shown that T3 = % Zf\zfl € Yooy %. It follows
by Shang and Cheng (2017) that as N — oo, N||T32 4 >, dyn?. By the above analysis on
T} through Ty, =0py, (Ns*L%) = op;, (1), we get that N|fyxr- fon
¥, dyn?. Tt follows by (23) that th_,o<> Pfo(fo e R{ () =1-a.
It follows by N| 7%, - fval3 = Op, (Na% +Nan) = op, (1) (see (21)), P(N|Wy|3 <
Ca) > 1-a, (23) and (14) that P(R% (a)|D) =l-a+op, (1) Proof is completed. [ |

8.5. Computational Details

In this subsection, we provide some computational details relating to Section 2.2. For
convenience, we rewrite model (2.1) as following:

Y}i:f(in)+€ji7 j=1,...,5, i=1,...,’l’L.

Calculation of posterior means. In order to calculate the posterior mean fj n, We have to
generate samples of f from its posterior distribution P(f|{Y};, X;i}i-;). In practice, directly
sampling the function f from P(f|{Y}:, X;:}1~;) is impossible. Instead we generate some
samples from (f(X;1),..., f(X;n))". Asnislarge, (f(X;1),...,f(X n)) can represent the
whole curve of f. Flrstly, let us derive the posterior dlstrlbutlon for (f(Xj1),..., f(Xjn))".
For the j-th subsample, the likelihood function is written by

Yitsoo s Yiul X1, ooy Xjn ~ N((F(Xj1), oo, f(Xjn)) T, In).

Since f follows a GP prior with mean zero and covariance function Ky, where Kj is given in
(5), the prior of (f(Xj1),...,f(X;n))" is multivariate Gaussian:

(f(le)a ceey f(X]n))T ~ N(OaKJ)a
where K is the covariance matrix satisfying

K()(le,Xﬂ), KO(leann)
Ko(Xjn, Xj1) - Ko(Xjn, Xjn)
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Ko(z,2") involves an infinite summation which is practically infeasible. Instead, the infinite
sum is approximated by a finite one, i.e.,

M 2rk(x —x"))
I N x 9 cos( .
o(@,z') kzl (27k)2m+B 4 pA(2mk)2m

In our numerical study, we found that M =100 can already provide a good approximation.
Due to the conjugacy, the posterior distribution of (f(Xj1),...,f(Xjn))" also follows a
multivariate Gaussian distribution

. n 1. . 1. .41
(f(Xj1)s- o F(Xjn)) |{3?17in}¢:1NN(KJ(KﬁEIn) Yty Vi) T B (K~ 1) 15)-

Next we generate M independent samples, denoted (f(l)(le), A f(l)(Xjn))T,l =1,...,M,
from above multivariate Gaussian distribution. Therefore, the posterior mean can be
approximated by

M

y y T o1 1Y T
(fjn(Xﬂ),...,fjn(Xjn)) :(MZf(l)(le),...,M;f(l)(Xjn)) :

=1

Calculation of posterior radius. Once we have M independent samples {(f) (Xj1),..-, o (Xjn)) M,
we are able to approximate | f() - fj,n”LQ by

N[ =

Li= (li(f(l)(in)—ﬁn(in))Z) , for 1=1,..., M.
n =1

Finally, the radius r;,(a) is approximated by the upper a-th percentile of {L1,..., Ly}
Calculation of the integral. We approximate (8) by

V2 V2

v 2 LU o 2 LAY .
fimgk ™ . Z fin(Xji) cos(2mkXji)dx, Gjni~ — ijm(in) sin(27mk X ;) dx.
i=1 i=1

In (12), Cy and Dy also involve two integrals. Since they are independent of samples, any
numerical method for integral calculation is applicable. We also approximate fy \(z) in
(10) by

M
fN,)\(.%') ~ Z ws,N)\,k {fN,)\7k\/§COS(27rkl') + gN,)\7k\/§Sin(27Tka})} .
k=1
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Supplementary document to Nonparametric Bayesian Aggregation for Massive Data

This supplementary document is structured as follows.
e Section S.8.1 contains the proofs of Lemmas 2 and 3.

e Section S.8.2 contains the proofs of the main results in Section 4.5 and 4.6 that were
not included in the main paper.

e Section S.8.3 proves Proposition 1, i.e., a uniform contraction rate result. Preliminary
results relevant to the proof of Proposition 1 are provided in Section S.8.4.

e Section S.8.5 includes a result that characterizes the posterior tail moments of | f — fo[*
for any a > 0.

e Section S.8.6 includes additional simulation results supplementary to Section 5.

S.8.1. Proofs of Lemmas 2 and 3

Proof [Proof of Lemma 2| We only show the first limit distribution since the proof of the
second one is similar.
Let n, = 1yv,. Then 7, is a sequence of iid standard normals. Note that

00 2

n
W 2:2—1/_
Wz Zr2+n(l+Mpy)

Let Uy, = (n|Wy|3 = C1.0)//2{2,n, then we have

1 & n(mi-1)

U, = .
\ 2C2,n v=1 7’3 + n(l + )‘pl/)

By straightforward calculations and Taylor’s expansion of log(1 - x), it can be shown that
the logarithm of the moment generating function of U,, equals

log E{exp(tUn)} = £2/2+ O (£2¢, /5.0 (S.1)

Without loss of generality, assume that N =n® for some a > 1. Then «; := min{1/(2m +
B),a/(2m + )} = 1/(2m + ). Tt follows by (Shang and Cheng, 2017, Lemma S.1)
that (o, % 7 and (3, % n®', so the remainder term in (S.1) is O(n"*/?) = o(1). So
limy, o E{exp(tUy,)} = exp(t?/2). Proof is completed. [ |

Proof [Proof of Lemma 3| The proof follows by moment generating function approach and
direct calculations. |

S.8.2. Proofs in Sections 4.5 and 4.6

This section contains the proofs in Sections 4.5 and 4.6.
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PROOFS IN SECTION 4.5

Proof [Proof of Theorem 5| Recall in the proof of Theorem 4 we showed that Rate Conditions
(R') are satisfied.
It is easy to see that

F(W,) £N(0,62,,), and F(Wx) £ N(0,63 y). (S:2)

For 1 <j < s, define RY, (a) = {f € S™(I) : |[F(f)-F (fjn)| < 77jn()}. Tt follows by The-
am2+2mpB-12m+1

orem 1 that maxj<j<s |1 _O[_PQj(an(Oé)” =op, (1). Since s =o(N  5mCm:A) — (log N)‘%),
it can be examined that N L% = o(1). Together with the condition h™" g N 9%7 ~ and the fact
Ok, N < Ok, one can verify that h™" NH%N < Nein = o(L]‘VQHin). So we have by (35) and
Theorem 2 that
| = -r/2 -
max [F(A))=O0p, (h"""Ly) = op, (61,0).

Combined with (S.2) we get that

Poj (R} ()

P(F(Wn) = F(Aj)| < rrjn()[Dj)

P (TF,j,n(a) + F(A])) + P (TF,j,n(a) - F(A])) -1
91,77, Hl,n

= 20 (M) -1+ 0pf0(1), uniformly for 1 <j <s.

1In

The above argument leads to ®(rg,jn(a)/01n) =1 - /2 +o0p; (1) uniformly for 1< j<s,
which further leads to the following

{r<1ax|7“pjn(a)/91n Zaj2l = opy (1). (S.3)

Consider the decomposition (12) with Ty,Ts, T3, Ty being defined therein. It follows by
(13) and rate condition Na? = o(1) that N|Ty|? = Opy, (Na2) = op; (1). Meanwhile, it

follows by Condition (S’), N~! < h2™*8 and A = h®™ and direct examinations that

N|T|> = N (an, - 121+ Apw)
v=1
y2m+p ? 012 2m
5 Nz(u2m+5+N(1+/\ 2’”)) AP+ A7)
i (hl/)2m+'8+(h7/)4m+/8 ><| 0’2 2m+8 _ (1)
24 (e Gyt (arymeiye < Welvmm = o),
and
NITIE = NS a (1220 ) 0P A
! v=1 1+)‘10V v Y
= ()t "
< 3 Ty gy <M = 01),
v=1
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By (11) and Ns?L%; = o(1) we get | fyx - fual = opy, (N~'2). Therefore, | fy - fo-Ts| <
| fnn = Il + 1 T1+ To+ Tu| = 0p, (N7H/2). 1f follows from (35) that |F(fy = fo) = F(T3)| =
op,, (h‘T/QN‘l/z).

Note that F'(T3) = ]{, YN, ¢;F(Ry,), where the kernel R is defined in the proof of Theorem

3. We will derive asymptotic distribution for F(T3). Let s% = Vars, (X, ¢;F(Rx,)). Tt is
easy to show that

F(‘Pu)z
N3Z (12 + N(1+ Apy))? = N

Clearly, by uniform boundedness of ¢, and F(p,), we get

- QDV(:E)F(QD,/) -1
F(Ry)| =Y ay, 2280 ot
|F(Ry)| lyzlaN’ T+, |

U

where the “$” is free of z €I, and

EfO{EQF(RX) } N2 Z F(SDU)Z

22
E Ny (54

Then for any & > 0, by condition Ej,{¢!|X} < My as.,

Ep{eiF(Rx,)I(Je;F(Rx,)| > 6sn)}

M=

Il
—_

%

(0sn)*Ep{¢'F(Rx)"}

IN
> 2%| > Z%| —

N

—(0sn) ?h?Ep {F(Rx)*} S 02N 'h™>"" = 0(1),
N

where the last o(1)-term follows by h < h* and 2 —r < 2m + . By Lindeberg’s central limit
theorem, as N — oo,

F(13) 1 X

—_— e F(Rx;, AN 0,1 S.5

Noan SN; iF(Rx,) > N(0,1). (5.5)

By condition NZQ%N 2 h™", we have

‘F(fN)\ fo-T3)| _ ( h 2N~ 1/2):0 (1)
VNOy N VN N ot/
It follows by (S.3) that
T‘FN(Oé) OIN\J ZT‘an(a)2/9 —91’Nza/2(1+0pf0(1)), (S.6)

leading to that
ren(a) 0N

X zo2(L+o0p, (1)).
\/_92,1\1 VN N & o
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It can be shown that

2 oo _ Flpu)?
91,N vt 1+Apy+N-172
= 3 > 1,
N@% N Zoo F(‘Pu)
) v=1 (1+Ap,+N-172)2

together with (S.5) we get that

P, (IF(fo) - F(fn )l < rrn(a))
_ p F(fnx—fo-Ts) . F(T3) < reN(a)
o VN n VNOo N |~ V/Nbo N
Py, ( Ry b * %) < Zap2(1+o0p, (1)))
> 1-a. (8.7)

[\

VN y VN

Notice that when 0 < $°°; F(p,)? < oo, % — 1, leading to that the probability in (S.7)
approaches exactly 1 - a.

In the end, we show that P(RL (a)D)=1-a+ opy, (1), where RE (o) = {f € S™(I) :
|E(f) _E(fN,/\N <rpn(a)}. By rate condition N (a3, +a2) = o(1), proof of (21) leading to
Ifx 5= fnal = Opy (an +ay), and (35) we have

F(f]‘({A‘fN,A) B h"'/2(aN+an)
Hl,N - fo

) = 0Py, (1),

01N

where the last o(1)-term follows by condition N 0%7 n 2 b7 and Rate Condition (R'). From
(S.6) we get that

Py(Ry(a)) = P(W” €Ry(a)D)
= P(IF(W®) - F(fna)|<rpn(a)D)
- p F(f]?;:,\_fN,)\) + F(WN) < TF,N(Oé) D
01,n 01§ 01,n
= l-a+op, (1). (S.8)
So it follows from (14) that P(Rk () D) =1-a+ opy, (1). Proof is completed. [ |

PROOFS IN SECTION 4.6

Proof [Proof of Theorem 6] It follows from (20) that ry(«) - rjv(a) = opy, (N"Th=112),
which together with (19) leads to that lim,, . Pf,(fo € R}r\,(a)) =1. It follow from Lemma
2, (14) and the proof of Theorem 3 that P(ij(oz)|D) =1-a+op, (1).

It follows from (23) that r,, y(a)? - T‘LN(O()Q =opy, (N71). Then the desired results on
R}f\‘;(a) directly follow from the proof of Theorem 4.
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It follows by (S.6) that r}L,N(oz) =rpn(a)(1+op, (1)). Then the desired results on
C’I}LVF(a) follow from (S.7) and (S.8). [ |

S.8.3. Proofs of Proposition 1 and relevant results

The goal of this section is to prove Proposition 1 and relevant results. Before proofs, we
exactly describe the Fréchet derivatives of the likelihood function that will be technically
useful. Suppose that (Y, X) follows model (14) based on f. Let g, g € S™(I) for k=1, 2.
For j=1,2,...,s, the Fréchet derivative of £, can be identified as

Dljn(g)g1 = % > (Yi—g(Xi))(Kx;,91) = (Pag, g1) = (Sin(9), 91)-

lGIj

Define S)(g) = E{S;n(g9)}. We also use DSy and D?S, to represent the second- and
third-order Fréchet derivatives of Sy. Note that S;,,(f;») =0, and S, (f) can be expressed
as

Sjn(f) = % > (Yi- f(Xi))Kx, - Prf. (S.9)

ZEI]'

The Fréchet derivative of S;,, is denoted DS, (g)g1g2. These derivatives can be explicitly
written as

1
D*01,(9)9192 = DS;jn(9)9192 = - > 91(X:)92(X;) = (Pagi, g2),

’LEI]'

The proof of Proposition 1 requires a series of preliminary lemmas. Define H™(b) = {f €
S™(I) : J(f) < b*}. We first state a basic lemma about a concentration phenomenon of
smoothing spline estimates in the distributed setup.

Lemma 4 Ifb,r,h, M are positives satisfying the following Rate Condition (H):
1. h?p < 1,
2. A MY2rh ' 2B(h) < 1/2, where B(h) = A(h,2) with A(h,e) given in (S.19),
then, for any 1< j < s, the following two results hold:

1. supgempy Pr (||]";,n = | > 6,) < 2exp(-Mnhr?), where 5, = bh™ +2cx (Ce + M) with
C. = E{(le| +1)?exp(|e| + 1)} an absolute constant;

2. supsepmp) Pr (||f;7n — f=Sjn(f)] > an) < 2exp(-Mnhr?), where a,, = A MY2p1 21 B(h)6,,.
Here, S;n(f) is the Fréchet deriwative of the likelihood function £;,(f); see (5.9) for
its exact expression.

Lemma 5 For any fized constants M > 1 and b> 0, let

r = (nh/log2s) ™2 6, = bK™ + 2¢ic(Ce + M), (S.10)
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an = A MV2R7Y2:B(R)6,. (S.11)

Then as n — oo,

Py, (max | Fin = fol = 5n) <6sNM 0,
1<j<s
and
Py (1 1T = fo = Sin ()] > an) < 85N 0.
1<j<s
Proof [Proof of Lemma 5| The result is a straightforward consequence of Lemma 4. |

Lemma 6 It holds that

max | B = o= ()| = Oy, (an). (5.12)

Proof [Proof of Lemma 6] The proof follows by
|

Lemma 7 Under Condition (S), we get maxi<j<s | fin — fol = Opy, (Th).

Proof [Proof of Lemma 7| Recall that

Sin(fo) =-= Z(Y Jo(Xi))Kx, = Pxfo.

zeI

It was shown by Shang et al. (2013) that Py, = 1+>\90 . Since fy satisfies Condition (S),

ad A
2 _ 0 Pv 0 1/
Pl = (3 10250 3 1)
_ i|f0|2 )\2[)12,
S 1+ Ay
Ao )t _
- A 02“ (V— = O(h2m1y
H R S oy
s

< oo, and Condition (S). On the

where the last equation follows by A = h?™ , SUP,>0
other side, it follows by the proof of (S.22) that

Py, (max [ Z Yi - fo(Xi))Kx,| > L(M)n(nh/log2s)” 1/2)

1<j_
< 2sexp(—Mnh(nh/log 2s)” ) = (25)"M 50, as M — oo,
where L(M) := ¢ (Ce + M). This implies that

{I<1Ja<X ” Z](Y fO(X ))KX H = OPfo (n(nh/logQS)‘l/Q)’
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and hence,

_ ma B=1 _
max |8 ()] = Oy, (b log 2s) 12+ 151 = O (7).

Together with (S.12) of Lemma 6 and the rate condition a,, <7, we get that max;;<s Hﬁn -
fol = OPfo (Tn)- |

Consider a function class
G={geS™(M): gl <1,J(g,9) < cZh>"*}. (S.13)

Lemma 8 For any fized constant M > 1, as n — oo,

Py, (max sup [ Z;jn(g)| < B(h)\/MlogN) -1,

1<j<s geg
where Zjn(9) = 7= Sier, [¥jn(Zi9) Kx, = E{t)jn(Zi:9)Kx 3], ¥in(Zizg) = et h'2g(X5).

Proof [Proof of Lemma 8| It is easy to see that v ,(Z;; g) satisfies the Lipschitz continuity
condition (S.20). Then the result directly follows by Lemma 12 (see appendix). |

Lemma 9 Forj=1,...,s,

1. én(f) - E’j\n(};,n) = Ij,n(f); where Ij,n(f) = _[()1 f()l SDSj,n(E,n + Ssl(f - E,n))(f -
fj,n)(f - fj,n)deSI for any f € Sm(H);

2. I],n(f) = T’](f) - %Hf - E,n

Ti(f) = = S -F) (X - Ex{(f- ) (X2 (S.14)

2n iEIj

2 where recall that (see 5)

Proof [Proof of Lemma 9] Let Af = f — f;,,. Therefore,

a(f) =~ [ [Ts SN dsds - \I(AFAD)2

lGIj

2 LANX)? = Ex{(Af)(X)*}] - %IIAfII2

’LEI]'

T(f) - SIAfI

1
2n

_ By Taylor’s expansion in terms of Fréchet derivatives, Uin(f) - Ejn(f;n) = S’jm(ﬂn)(f -
fj,n)+Ij,n(f) :Ij,n(f)’ u
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Lemma 10 There exists a universal constant cg >0 s.t.

__2
H(”f - fO ” < ”Fn) > exp(_c3’7ﬁ’n2m+ﬁ*1 ),

where recall that I1 is the probability measure induced by G.

4am

Proof [Proof of Lemma 10] Note that A <7."""~". Then it follows by Lemma 13 (with d,,
therein replaced by 77,) and the proof of Theorem 7 that

(| f - fol <7%) P(|G - fol <7)

P(V(G - fo) <722, \J(G - fo) <72/2)
2(8-1)

P(V(G - fo) <Ta/2,J(G - fo) <7277 [2)

) <

[\

[\

o 2(8-1)
<7212, J(G - fo) <7271 )2)

= P(V(G-Jo
P(V(é—w) < (1/\/5— 1/2)27",2” j(é—w) < (1/\/5_ 1/2)2»1757f£;3—)1)

exp(~[wl3/2)
2(8-1)

«P(V(G) < (V2 -1/2)%72, T(@) < (1/V/2 - 1/2)2721)

exp(—|w[3/2)P(V(G) < (1/V2-1/2)°7%/2)
P(T(G) < (1v/2 - 1)2)27377 o)

v

[\

v

> exp(—c;ﬁ‘;m )

)

where c3 > 0 is a universal constant. [ ]

Proof [Proof of Proposition 1| Fix any ¢ € (0,1). Let M; be a large constant so that (thanks
to Lemma 7) the event
&y ={max | fjn - fol < M7} (S.15)
1<5<s

has probability approaching one. Meanwhile, for a fixed constant M > 1, define

&= {{nax sup | Zjn(9)|l < B(h)\/MlogN}. (S5.16)
<J<s g€G

By Lemma 8 we have that & has Py, -probability approaching one. Thus, it holds that,
when n becomes large, Py (E,) > 1-¢/2, where &, := £, n &)/ In the rest of the proof we
simply assume that &, holds.

For some positive constant My, it follows by Theorem 7 that

max B{ - fol“I(1 = foll > Mora)D;} = O (5% exp(-nr)

Let C" > M, be a constant to be further determined later, then we have that
max E{[f = fol “I(|f - fol > 2C"F)|D;}

1<y

max E{||f - fo|“I(|f - fol > Mor,)|D;}

1<j<s

+max E{|f - fol“I2CT, < || f = foll < Mors)D;}

IN
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The first term is Op,_ (s?exp(-nr2)). Thus, when n is sufficiently large,

Ppy (1max E{If - fol 101 = foll > Mor) D} > M's? exp(-nr2) 2) < o2

for a large constant M’ > 0.
Next we only need to handle the second term. Let Af=f- En It follows by Lemma 9
that I; ,(f) = T5(f) - %HAfHQ, and £ (f) = 4jn(fin) = Ljn(f). Therefore,

E{|f = fol“I(f € An)Dy}
Ja, IS = Fol* exp(n(yn(f) = Lin(F5n)))AI(S) — [a, IS = fol* exp(nLjn(f))dIL(f)

Jsm@ exp(n(Ejn(f) = £in(Fjn)))dT(f) Jsm exp(njn(f))dI(f)

where A, = {f € S™(I) : 2C"T, < || f - fo| < Mory}-
Let

T = o B0 (D). 2= [ 1 = folexplnd (D)),

Then on &, and for |[f - fo|| <7, we have | f = Finll <[ f = foll + | Fin = fol < (M +1)7,.
Let d, = cx(My + 1)h_1/2’7*n. It follows by similar arguments as above (S.23) that
d,'Af € G. Note that on &, and for |f — fol| <7y, for all 1 <j <s,

1

IT;(H)] = on

S A - EX{<Af><X>2}]‘

ZGIj

(SUANCOKy, - B (AN )KL A1)
1] SUANCEKx, - Ex (M)XK
e, |Af]

_ x | Z; -1
- NG | Zjn(d," AS)|

cxh ' 2d, | Af|
B(h)\/ M log N
NG (h)/Mlog
6m—l~2

< D(cg, M, M) x n Y2h i 72\ /log N < D(cg, M, My) x 72b,, (S.17)

1

2n

IN

IA

A

where D(cg, M, M) is constant depending only on ¢, My, M.
It follows that on &, and for all 1 < j < s,

[\

oz [ el (f)AI)

j _MiE o2
ff—fongneXp(”@(f) 51 = Finl )dH(f)
exp (~[D(exc, M, Mi)by + (My +1)* /2075 ) (I = fol <7).

[\
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-2
Since TI(|f - fol <) > exp(-csF, ™7 ) (Lemma 10), together with 7, > (nh) /2 +
- _2m+p-1 2452 2m+f-1 1
BT 2 an 2GR we get that nF, 77 2 n(dn” #m5 ) TERIT = 4. Therefore,

-2
~ 2m+3-1
Tn b

< n72 /4, leading to

T(1f - foll €72) > exp (- ). (515
This implies by rate conditions b, <1 that, on &, and for any 1< j < s,

le

v

exp (—[D(CK, M, My)b, + (M +1)?/2 + 03/4]71'7*721)
exp (-[D(cx, M, My) + (M + 1)%/2 + c3/4]n72) .

v

Next we handle Jj3. The idea is similar to how we handle Jj; but with technical
difference. Let Af = f - En Note that 'F?LAS r2 10g(232\, and hence, on &,, for any f € A,,
sy | = foll € Mora, we get that [AF] = [~ £ < | Fin = foll + 1f = foll € MiTo + Mo, <
(Mo + M1)rn/log(2s). Let dyy = cx (Mo + My)h™Y?r,1/log(2s). Then d;'Af e G. Using
previous similar arguments handling 7;( f), we have that on &,, for any f e A, and 1 <j <s,

”2 j_ h'2d,, - B(h)\/Mlog N

< %CK(MO M2 MY20 72702 B(R) (log NP2

175 ()

IA

< D(cx, M, My, My) x n~ 22 h~ "t (log N )3/
= D(CK7M7M07M1)Xrnbn_D(CK,M7M[),M1)X”F?”

where D(cg, M, My, My) is constant only depending on cgx, M, My, M7 and the last inequality
follows by rate condition r2b < 7“ . It is easy to see that on &, and for any f € A,, and

1<j<s, |fin-fl2If - fo|| Hfg,n foll 2 (2C" - My)7,, leading to that

’_ 2
T < exp(—(w—D(cK,M,Mo,Mo)n'fi)cm,H),

where C'(a,II) = me(]I) If = fol|*dII(f) is the ath prior moment of ||f — fo|| which is finite.
Choose C’ > M to be large such that

(20" - M;)?

5 > 1+ D(cg, M, M)+ D(cg, M, My, My) + (M +1)?/2 + ¢3/4.

Therefore, on &,,

maxicj<s J;2

max E{|f - fo|*I(f € An)D;} < < exp(-nT;,)C (a,II).

1<j<s mingcjcs Jj1

So we get that

Py, ({naxE{Hf fol“I(f € An)D;} > exp(—ni2)C(a, H)) < Py (&) <eg/2.
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By 72 < 72 log(2s), the above leads to that

Py, (max E{1f - folT(1S = fol > 207D,

> (M’ +C(a,II))s exp(—n?ﬂ%/log(%))) <e.

Proof is completed. |

S.8.4. Proofs of other results in Section S.8.3

Let N(e,G,| - |s) be the e-packing number in terms of supremum norm, where recall that
the space G is defined in (S.13). The following result can be found in Van De Geer and Van
De Geer (2006).

Lemma 11 There exists a universal constant cog >0 s.t. for any e >0,

1og N (£,G, |- [oo) < co(V2e ) h= "5 et

For r > 0, define ¥(r) = [, \/log(1 + exp(z~1/™))dz. For arbitrary ¢ > 0, define

A(h,e) = 327—\/6\/50}(106%_(2’”_1)/2‘1’(2\1/56K05mh(2m‘1)/25)

VR  frog (1 +exp (2ea((VE) T ech@Dlze)1im)). (.19

+

where 7 = +/log 1.5 ~ 0.6368.
We have the following useful lemma.

Lemma 12 For any 1 < j < s and f € S™(I), suppose that ¥, ¢(2;g9) is a measurable
function defined upon z = (y,x) € Y x1 and g € G satisfying ;. (2;0) =0 and the following
Lipschitz continuity condition: for any i€ l; and g1,92 € G,

Wim g (Zis 1) = Vimp(Zis 92)| < €2 b g1 = g2 co- (5.20)

Then for any constant t >0 and n > 1,

t2
sup P (sup 1 Zjn.£ () >t)s2exp(——),
jesm(ty | \geg I B(h)?

where B(h) = A(h,2) and

1
NG ZI: (Vs (Zi39) Kx; = Ep{jn,(Zi;9) Kx, }]-

Proof [Proof of Lemma 12| For any f € S™(I) and n > 1, and any ¢1,g2 € G, we get that

Zjn,1(9) =

| (Wi s (Zis 1) = i 1 (Zis 02)) K x| < b2 g1 = galloocich ™% = | g1 = g2 oo
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By Theorem 3.5 of Pinelis et al. (1994), for any t > 0, Ps (| Zj,1(g1) = Zjn,r(g2)| 2 ) <
2exp (—W). Then by Lemma 8.1 in Kosorok (2008), we have

11250, (91) = Zjn, s (9], < V2491 = g2l .

where | - |, denotes the Orlicz norm associated with v2(s) = exp(s®) — 1. Recall 7 =
VIog 1.5 ~ 0.6368. Define ¢(x) = t(7x). Then it can be shown by elementary calculus that
¢(1) <£1/2, and for any z,y > 1, ¢(x)p(y) < ¢(zy). By a careful examination of the proof of
Lemma 8.2, it can be shown that for any random variables &1, ..., &,

2 -1
I &y, < Z05" (1) max €, (s.21)

Next we use a “chaining” argument. Let 1o c Ty c Ty c - ¢ T, := G be a sequence of
finite nested sets satisfying the following properties:

e for any Tj, and any s,t € Ty, |s —t|e > €277 each Tj, is “maximal” in the sense that if
one adds any point in T}, then the inequality will fail;

e the cardinality of T}, is upper bounded by
log|Ty| <log N(e279,G, || - o) < co(v/2cid )™ GmDIGm) (egma)~tm,
where ¢y > 0 is absolute constant;

e cach element ¢,.1 € Ty.1 is uniquely linked to an element ¢, € T, which satisfies
[t~ tos oo <270,

For arbitrary Sgi1,tk1 € Tps1 With ||Sgs1 — tge1] oo < &, choose two chains (both being of
length k +2) t, and s, with ¢4, s, € T, for 0 < ¢ <k +1. The ending points sy and ¢y satisfy

k
Z[”Sq ~Sgi1lloo + [tg = tgr1lloo] + [Sks1 = thst] oo
q=0

IN

Is0 = o] o

k
2) 279+ e < 5Be,
q=0

IN
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and hence, || Z;n,r(s0) - Zj,n,f(tO)”waQ < 5v/24¢. Tt follows by the proof of Theorem 8.4 of
Kosorok (2008) and (S.21) that

IN

IN

IN

IA

IN

max [ Zjn (k1) = Zjn,f(tre1) = (Zjn,r(s0) = Zjn,f(to)) ”‘

Sk+15tk+1€T k41

p2

k
2 7. - 7.
qZ:: weToeveT, 1 Zjm. s () = Zjin s (V)]
u,v link each other "

4 i -1 —q-1
=S U NG )
q=0

<o max [ 255 (w) = Zi )],

u€ly41,veTy
u, v link each other

k
ivat > V1og (1+ N(2707L,G, |- o) )27
T q=0

k+1
SV o e A R e T
T

/2
32v/6 /06 \/log (1 +exp (coc;(l/mh‘@m_l)/@m)x_l/m))dx

T

321/6 ke /2y (%cchm h<2m—1)/25) '
T

On the other hand,

max | Zjnr(u) = Zjnr(v)|y

u,vely
[u—v]oo<5e

Therefore,

max || Zjn t(s) = Zjnf(t)]

8,t€T k11
[s—t]eo<e

IA

2 2
z T m Z; -Z;
T¢2(| ol”) nax 11Zjm, () Jm,f(v)”fuw2

™ [u—v| oo <be

25 (N (6,61 o)) (59/20).

IN

32\/66}(166nh—(2m—1)/2\11 (%cKcomh(le)/Qg)
T

<
b2
2
U (N(2, G| o)) (5V24e)
T
+ 10v24e \/log (1 + exp (2co(cKh(2m—1)/25)—1/m))
T
= A(h,e).

Now for any gi,g2 € G with g1 — g2/leo < €/2. Let k > 2, hence, 2'7% <1 - |g1 — g2 /€.
Since Ty is “maximal”, there exist syt € T s.t. max{|g1 — Sk |co, [g2 — tr]oo } < €27F. Tt is
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easy to see that |sg —tx]e < €. So

1 Zjn.s(91) = Zim g (92) | < 1 Zjn.s(91) = Zjm, g (s1) | + [ Zin £ (92) = Zjm, 5 (E) |
HZjn s (s1) = Zjn, s () |
< 4vne2 v max (| Zjap(u) = Zjap(0)].
u,veTy

K
|u-v]eo<e

Therefore, letting k — oo we get that

sup | Zjn.r(91) = Zjns(92)

91,92€9
lg1-g2lle0<e/2 W2
< AVne2F\log2+ | max [ Zjp(u) = Zjns ()]
) k
lu-veo<e "
< 4yne2%)\/log2 + A(h,e) - A(h,¢).

Taking € = 2 in the above inequality, we get that

sup [ Zjn,p(91) = Zjn(g2)l| < A(h,2)=B(h).
91,92€9
[g1-g2]e0<1 o

By Lemma 8.1 in Kosorok (2008), we have

t2
P Zi >t) <2exp[-—u |
s (sup 12302 1) < 2050 -5

Note that the right hand side in the above does not depend on f. This completes the proof. B

Proof [Proof of Lemma 4| Let f € H™(b) be the parameter based on which the data are
drawn. It is easy to see that DS\(f)g=-E{g9(X)Kx}—Pxrg, Vge S™(I). Therefore, for

any gage Sm(ﬂ)v <DS>\(f)g7§) = _<g7§>7 lmplylng DS)\(f) = —id.
The proof of (1) is finished in two parts.
Part I: For any f € S™(I), define an operator mapping S (I) to S™ (I):

Tif(g) =g+ Sx(f+g), geS™(I).

First observe that, under Py with f e H™(b),

ISXCHI = [Pafl = sup [(Paf,g)l < VAI(f) < B™.

lgll=1

Let r1, = bh™. Let B(r1,) = {g € S™(I) : ||g| < r1n} be the ri,-ball. For any g € B(r1y,),
using DSy(f) = —id, it is easy to see that |Ti(g)| = [Sx(f)| < bA™ = ri,. Therefore, Ty
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maps B(r1,) to itself. For any g1, g2 € B(r1,), by Taylor’s expansion we have

IT17(g1) = T1y(g2)| lg1 = g2 + Sx(f +g1) = SA(f + g2) |

1
lg1 — g2 + fo DS\(f +g2+sg)gds| = 0.

This shows that T ¢ is a contraction mapping which maps B(r1,,) into B(71,). By contraction
mapping theorem (see Rudin et al. (1964)), T’ ¢ has a unique fixed point g’ € B(71,,) satisfying

Ti(g") =9'. Let fx=f+g'. Then S\(fy)=0and | fr—- f| <7in.
Part II: For any f e H™(b), under (14) with f being the truth, let fy be the function
obtained in Part I s.t. ||f) — f|| € 71n. Define an operator

Top(g9) =g+ Sjn(fr+9), geS™().

Rewrite Tos as

Top(g) = [DSjn(fr)g—DS\(fr)g] + Sjn(fr)-

Denote the above two terms by I, I, respectively.
For any i€ I}, let R; = (Y; — fa(Xi))Kx, - E¢{(Y - fa(X))Kx}. Obviously,

IEA{(Y = fA(X))Ex }| 2up (EA Y = /(X)) Ex},9)|

HSlﬁlfl [EAY = fa(X))g(X)H < [f = ol < 71me

Therefore, | R;| < cxh™'/?|Y; = fx(Xi)| + r1n which leads to that

E{exp( 2] )}SE(eXp(|ei|+1))£C€,

CKh—1/2
where C. = E{(|Je| + 1)?exp(|e| + 1)}. Let 8§ = hr/cx. By condition rh'/? <1, we have
E{exp(S|Ri) - 1-0[Ril} < E{(5|Rill)* exp(S]| Ril)} < e Ced®n™".

It follows by Theorem 3.2 of Pinelis et al. (1994) that, for L(M) := cx(Ce + M),

A\

Py (H Y Rily> L(M)nr) < 2exp (-L(M)dnr + ¢ Cenh™'6%)

ZEIj

2exp(-Mnhr?). (S.22)

We note that the right hand side in (S.22) does not depend on f. Moreover, it is easy to see
that Sjn(f2) = Sjn(f2) = Sx(f2) = 5 Ties, Ri- Let

En1 = {ISjn (S < L(M)r},

then sup repm(cy Pr(€p 1) < 2exp(-Mnhr?). Define 1;,(Xi;9) = c2ht?g(X;), i € I;, and
Zin(9) = ﬁ Yier; [Vin(Xis 9) Kx, —E{t)jn(Xi; 9) Kx, }]. By Lemma 12, sup s gm ) Pr (€}, 2) <
2exp(~Mnhr?), where &2 = {supyeg | Zjn(9)| < VMnhr2B(h)}.
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For any g € S™(I)\{0}, let g = g/d’,, where d’, = cxh™"?|g|. It follows that

1910 < cxch™2|g]l = exch™ | g] /d}, = 1, and

A (g,9) < p2m ”9”2 -2p-2m+1

J(a.a) = d~2J =p2m DI ¢ S S
@.9) = d*Ng.9) =" R S g2 =K

Therefore, g € G. Consequently, on &9, for any g € S™(I)\{0}, we get |Z;.(g)| <
V Mnhr2B(h), which leads to that

IDS;n(f2)g = DSx(f2)gl

%” S [g(Xi)Kx, - E{g(X)Ex.}]|;

’LEIj

M Pra 2 B(h) gl < llgl/2. (5.23)

IN

where the last inequality follows by condition 2 MY2rh™1/2B(h) < 1/2. Note that the above
inequality also holds for g = 0.

Let ro, = 2L(M)r. Therefore, it follows by (S.23) that, for any f € H™(b), on &, :=
En1 N &y and for any g € B(ra2,), |Tor(9)| < [gll/2 + 720/2 < 72,. Meanwhile, for any
91,95 € B(rzn), replacing g by g1 - g in (5.23), we get that [Tay(g1) - Tog(g2) | < lg1 - gal /2.
Therefore, for any f e H™(b), on &, Toy is a contraction mapping from B(r2,) to itself. By
contraction mapping theorem, there exists uniquely an element g"” € B(r2,) s.t. Tor(g") = ¢".
Let En =fi+g”. Clearléﬁ S]n(]/”;n) =0, and hence, f;n is the maximizer of ¢;,,; see (19).
So we get that, on &, | Fin— fly <= FI + 1 Fin = Foll €710 + 72 = BA™ + 2L(M)r. The
desired conclusion follows by the trivial fact: sup scgm ) Pr(€5) < 4exp(-M nhr?). Proof of
(1) is completed.

Next we show (2).

For any f e H™(b), let f;n be the penalized MLE of f obtained by (19). Let g, = f;m—f,
Op = Dh™ + 2L(M)r, d, = cich™'1%6,,.

On &,, we have | gn|f < 0n. Let g = g,/d;,. Clearly, g€ G. Then we get that

Ii(F +9n) = S5 (1) = (S(J + 92) = S3()]
= 1 DX Kx, - Bx{n () Kx |

iGIj
cxd), _ _
) \K/ nh 1Zjn(9)] < C%(Mlmh 1/27"B(h)6n = Qn. (S.24)

Since Sjn(f +gn) =0 and DSy(f) = —id, from (S.24) we have on &,

1 1
an > 1Sin()+ DS\(Dga+ [ [ DN + 55'90)ugndsds'| = [Sn(f) = gu]

which implies that || fj, — f — Spx(f)] < an. Since SUp reprm (vcy Pr(€5) < 4exp(-Mnhr?),
proof of (2) is completed. [ |
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S.8.5. An initial contraction rate

Theorem 7 below states that the s posterior measures uniformly contract at rate r, =
(nh)"2 + ™, where recall that h = AY®™)_ This is an initial rate result that holds
irrespective the diverging rate of s.

Theorem 7 (An Initial Contraction Rate) Suppose fo = o2y [Op, satisfies Condition (S).
Let a >0 be a fized constant. If r, = o(h*?), h'/?log N = 0(1), nh?™*L > 1, then there exists
a unwwersal constant M >0 s.t.

max B{1f - ol I(17 = fol > Mra)|Ds} = O (2 exp(-nr2)
as n — oo, no matter s is fived or diverges at any rate.

Before proving Theorem 7, we present a preliminary lemma.
Let {3, : v > 1} be a bounded orthonormal basis of L?(I) under usual L? inner product.
For any b € [0, 3], define

Hy={Y fuv: Y fop, O™ < 0o}
v=1 v=1

Then H, can be viewed as a version of Sobolev space with regularlty m+ b/2 Define G =
Y%, 0,3y, a centered GP, and fo = ¥, [y Define V(f,9) = 9 = [ f(2)g(z)dz,
the usual L? inner product, J(f) = Yo IV (/, go,,)| Pu, & functlonal on Hy. For simplicity,
denote V(f) = V(f,f). Clearly, fo € HB Since G is a Gaussian process with covariance
function

7(s,t) = E{G(s)G(1)} = 203%(8)%@) W 2m)~ v ()P (1),

v>m

it follows by van der Vaart et al. (2008a) that ]?Ig is the RKHS of G. For any H;, with
0 < b < B, define inner product

o0

(Z v, Zgu‘ﬂu b= ZO' Jvgu + Z fugypy

= v>m

Let | - ||p be the norm corresponding to the above inner product. The following lemma is
used in the proof of Theorem 7. Its proof can be found in Shang and Cheng (2017).

Lemma 13 Let d,, be any positive sequence. If Condition (S) holds, then there exists w € .FNIB
such that

1. V(w-fo) < 1d2,

T T < 1gamemt
2. J(w_fO)SZdn ’

)
3. |wl? = O(d, 7).
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To ease reading, we sketch the proof of Theorem 7. We first show the following result:
for any € >0, as n — oo,

max [ 1f = [ol*dP(JID;) = Or, (s exp(-nr) (5.25)
<j7<s —J0|co2E

To show (S.25), we can rewrite the posterior density of f by

ier; (pf/p50)(Zi) exp(=nAJ (f)/2)dII(f) L <
Jsm @ Wier; (01 /p10)(Z:) exp(—nAJ (f)/2)dII(f)"

p(fDj) =

)<,

where recall that p¢(z) is the probability density of Z = (Y, X) under f. For 1 < j <'s, define

112 o TT0soR)ZD esp(nrI (1)), (5.26)
a nA

L= [, 1 = ol TLwsfpa) (Z0) exp(=" T (1)), (527)

o= [ 1 = 01 TL o) (2 exp(=" ()t (528)

where A, = {f € S™(I) : |f - fol 2 26,} and A! = {f € S™(I) : |f - fo| > V2Mr,}, with
the quantities d,, M specified later. Using LeCam’s uniformly consistent test Ghosal et al.
(2000), we will show that max<j<s Ij2/I;1 is of an exponential order (in the sense of Py,).
Then (S.25) holds by taking a = 0 in Ij3. The proof of Theorem 7 will be completed by
decomposing I, /I;1 into three terms based on an auxiliary event {f € S™(I) : | f - fol « < €}
with each term of an exponential order.

Proof [Proof of Theorem 7] Note that there exists a universal constant ¢’ > 0 such that
U(z) <zt for any 0 < x < 1. Therefore, there exists a universal constant ¢’ > 0 s.t.
B(h) SC”h_(Qm_l)/(4m).
2(8-1)
Define B, = {f € S™(I) : V(f - fo) <72,J(f - fo) <r2™1}. Then

I

[\

[ TTwslon)(Z) exp(-nAI())/2)dII(f)

niel;

[, ep(X R, fo)) exp(-nAJ (H)/2)dII(£).

’LEIj

where R;(f, fo) =log (ps(Z)[ps,(Z:)) = Yi(f(Xi) = fo(X:)) = F(Xi)?/2+ fo(X;)?/2 for any
i € I;. Define dIT*(f) = dII(f)/II(B), a reduced probability measure on B,,. By Jensen’s
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inequality,

tog [ exp( 3 R, fo) exp(-nAJ (£)/2)dIl" (£)

’LEIj

v

N (z Ri(J.00) - nAJ<f>/2) A (f)

’LEIj

[ SR 5 - B Rl fo) NI (1)

" el
oo [ B (- [ M arpy
= le + J]Q + Jj3
2(8-1)

For any f € By, |f - fol*> =V (f - fo) + \J(f = fo) <2 + A2 '. By (Shang and Cheng,
2017, Lemma A.9) and the condition h~3/?r,, = o(1), we can choose n to be sufficiently large

so that || f = folle < ch™Y2|f = fo| < /R~ 1r2 + h2m=1 < 1.

It follows by Taylor’s expansion and E {Y; — fo(X;)|X;} =0, that for any f € B,

|Ero{Ri(f, fo)} = Ep {(F(X) = fo(X))*}/2 < 7y /2.

Therefore, Jj2 > ~nr2/2 for any 1<j <s.
Since 2 = 0(1), we can choose n to be large so that |E, {R;(f, fo)}| < 1. Meanwhile, for
any f € B, for some s € [0,1], we have

[Ri(f, fo)l = Vi(F(Xi) = fo( X)) = F(Xi)*/2+ fo(Xi)? /2]
Y~ fo(Xe) = 3 (F = Fo) (XDl x I(F - fo) (X0

Yi = fo(X)| + 1/2 = |e;] + 1/2.

IN

We have used | f - fo|e <1 in the above inequalities.

For any 1<i< N, define 4; = {|¢;| < 2log N}. It is easy to check that Py, (u;AS) -0,
as N — oo. Define & = [p Ri(f, fo)dIT*(f) x L4,, we get that |&;| < 2log N +1/2, a.s. It can
also be shown by 72 > 1/n > 1/N that, as n, N — oo,

IA

Ep{(lei] +1/2) x Lac}

C.(1/N +1/N?) <v2,

g, Balf, fo)dIl* (£) x Lag)

IA

where C¢ is an absolute constant.

Let 0 = 1/(x/nrn). Note that by the condition h'/2log N = o(1) we have dlog N =
(log N)/(v/nry) < h?log N = o(1), we can let n be large so that §(2log N +1) < 1. Let
d; =& — Es{&} for i € I;, then it is easy to see that

di| <|&]+|Ef{&}] < 2log N +1, a.s.
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Let e; = Ey,{exp(d|d;|)—1-0|d;|}. It can be shown using inequality exp(z) —1-z < 2% exp(x)
for > 0 and Cauchy-Schwartz inequality that

IA

By, {8%d2 exp(0]di]) }
652Ef0{d12}

652Efo {512}

e [ En{Ri(f, fo)*}dIl" ()

< e [ Bnd(al+1/2°(f = fo) (X)) (1)
eC.6%r2,

lei

IA

IA

IA

IA

where the last step follows from V(f - fo) < 72 for any f € B,. Therefore, it follows by
(Pinelis et al., 1994, Theorem 3.2) that

({Ejagd Yo [& - Ep{&it]l = 4v/nry, logN)

i€l

5P, (| Z - Epf{&}l> Av/nry IOgN)

<
i€l
< 2sexp(-4v/nr,(log N)é + eCednr?)
< 25/N* =0, as N — oo. (S.29)

Since \/nry, > log N, we can let n be large so that 4\/nry, log N < nr2. Since on nl¥, A;,

T = SI6- Bile)] -nB{ [, Ri(f o)l (F) x Lig),

i€]j
we get from (S.29) that with Py -probability approaching one, for any 1< j <s,

Jj1 2 —4/nr, log N — nr,z1 > —2nr2.

n

Meanwhile, for any f € By, J(f) < (1 + J(fo)l/Q)Q. Therefore, Jj?, > _(1+J();0)1/2)2n

with probability approaching one, for any 1< j < s,

A. So,

(1+J(fo)'/?)?
2

I 2exp(—5nr,21/2— n)\) I1(B,).

To proceed, we need a lower bound for II(B,). It follows by Lemma 13 by replacing
d,, therein by r,, by Gaussian correlation inequality (see Theorem 1.1 of Li et al. (1999)),
by Cameron-Martin theorem (see Cameron and Martin (1944) or (Kuelbs et al., 1994, eqn

58



NONPARAMETRIC BAYESIAN AGGREGATION FOR MASSIVE DATA

(4.18))) and (Hoffmann-Jorgensen et al., 1979, Example 4.5) that

2(8-1)

H(Bn) = P(V(G - fo) < 7“7217 J(G _ f()) < Tﬁm+ﬂ—1)
S = e~ 2(8-1)
= P(V(G-fo)< 7“721, J(G - fo) < Tﬁmﬂsq)
25025 — 2(8-1)
> P(V(G-w)< 7321/4, (G -w) <rZ™ 7T 4)
1 o~ ~ . 23-1)
> exp(—§||W||%)P(V(G) <r2/4, J(G) < v |4)
= 2 V(G 2 T ;26;11
> exp(=5 |w[5)P(V(G) <rif8)P(J(G) <™ [8)
> exp(—cyr, 2 GmHB-1)y (5.30)

where ¢ > 0 is a universal constant.
2(2m+p8)
Since # > 1 and r2 = (nh)™' + A > n7 2@ we get 12 > A\ and nr2™0 >
1— 2m(2m+p3) 9 _% X . .
n @mDEED > 150 nr2 > r, "7 Consequently, with Py -probability approaching one

min I, > exp(—conr?), (S.31)
1<j<s

where ¢ =5/2+ (1+J(fo)Y?)%/2+ ;.

Let b = 2¢/c2+1 and C > b%/4. Next we examine Ij» defined in (S.27) with A4, =
{f € S™Q) :|f - fol =26n}, for 6, = bh™ + 2¢x (C. + C)r, r = roh™'/2. By the condition
h=32r, = 0(1) and B(h) s h=Gm=D/(4m) it can be easily checked that the Rate Condition
(H): is satisfied (when n becomes large) with M therein replaced by C. For 1< j < s, define
test ¢ = I(| Fjn — fol = 0,). Tt follows by part (1) of Theorem 4 that for any 1< j < s,

Ef0{¢j,n} = PfO(HE,n - fo ” 2 571) < 2€Xp(—CTLT721),

and

sup  Ep{l-¢jn} =  sup  Ps(|fjm— fol <0n)
feH™(b) JeH™(b)
| f-foll=26n [ f=fol>26n
< sup  Pp(|fim— FI 2 6,) < 2exp(=Cnr}).
JeH™(b)
[ £-fol=26n

An immediate consequence is Ey, {maxj<jcs ¢jn} < 25sexp(~Cnr?), which implies maxi<jcs ¢jn =
Opy, (s exp(-Cnr?)).
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Note that for any f e A,\H™(b), J(f) > b*. Since nh®*™*! > 1 leads to r2 = (nh) L+ A <
2], it then holds that, for any 1< j < s,

Ep{Lj2(1-¢jn)}

= /;‘n If = foll*Ef{1 = ¢jn}exp(-nAJ(f)/2)dII(f)

) fAn\Hm(b) IS = fol“E{1 - ¢} exp(=nAJ(f)/2)dIL(f)
sy = DI B (1650 exp(=nAd (1)) )

(exp(-b*nA/2) + 2exp(-Cnr?)) C(a,II)
< 3exp(-b*nr2/4)C(a,10),

IN

where the last inequality follows by C > b?/4 and A >72/2. So
S
Ejo {max Ij2(1 = ¢jn)} < > Ego{Lja(1 = dj0)} < 3s exp(=b*nry [4)C (a, 1),
<j< ot

which implies maxigj<s Ij2(1-¢jn) = Opy (s exp(-b®nr2/4)). On the other hand, as n — oo,

1<5<s

Epy{ax Ipy < [ = fol*d()

which implies that maxi<j<s Ij2 = op, (8). Therefore,

Ijg max1<j<s Ijg X max1<j<5 ¢j n 2 )
ax =—@;n < — —— " =0 exp(— . S.32
{Isljs}; I Pin minggjcs 1 Pro (5" exp(=nra)) ( )
By the above arguments and (S.31), we have
max [ 17~ fol"dP(fID;) = max 2
1<j<s J A, J 1<j<s Iy
1. Tio(1l = s
S maxﬁgb.n_;’_maxM
lj<s Ijp 7 1<j<s I;

= Op,, (s?exp(-nr2)) + Opy, (s exp(=b*nr? J4) exp(conr?))

= Op, (s*exp(-nr2)).

By condition r,,h~%/? = (1) and the trivial fact 6, < r,h~"/2, we have that h=/25, = o(1).
Therefore, eventually fl\f—fonzs If = fol*dP(fDy) <[4 |f = fol*dP(f|D;) forall 1< j<s,
which implies that (S.25) holds.

Now we will prove the theorem. Let I}, be defined as in (S.28) with A;, = {f € S™(I) :
If=foll = v/2Mr,} for a fixed number satisfying M > max{2, J(fo)?+/2(c2 + 1), 1+| fol oo }
(M will be further described). Let A’ = {f € S™(I): V.(f - fo) > M?r2, \J(f - fo) < M*r2}
and A/, = {f e S™(): A\J(f - fo) > M?r2}. For any f € Al,, it can be shown that

My <A = fo) < VAT (D2 + T (f0)'2) < AT UNY2 + T (fo) Pora,
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which leads to AJ(f) > (M - J(fo)?)?r2. So we have

[T (rs/pa) (Z0) exp(-"2 T (P)ani( 1))

’LEIj

Egy{max [ 17 - fol"
An2

1<j<s

IN

> Byl f, 1=l [Twslon) (Z) exp(-"2 () an(s))
j= n2

1€l
s [ 15~ ol exp(-" g (p)an(p)

sexp(=(M - J(fo)'*)*nr}[2)C(a,II),

IN

which leads to that

wax [ 1f = fol® T10sfps)(Z:) exp(-"5 T (H)I(F)

1<y<s iel;
_ 1/242, .2
— Opy, (sexp(~(M - J(fo)/2)2nr2/2)). (3.33)
It follows from (S.31) and (S.33) that
1

nA
max o [ 17l T sl (20 esp(- "7 (£)an(p)
=Op,, (s exp(—(M - J(fo)Y?)*nr2 )2 + CQnTZ)) =Op;, (s exp(-nr2)), (S.34)

where the last inequality follows by (M — J(fo)"?)? > 2(cp +1).
To continue, we need to build uniformly consistent test. Let d%,(Pf, pPy) = % [ (\/dPs -

\ /ang)2 be the squared Hellinger distance between the two probability measures Py(z)
and P;(z). Recall that their corresponding probability density functions are p; and py,
respectively. Nextwe present a lemma showing the local equivalence of V' and d%l.

Lemma 14 Let ¢ € (0,1) satisfy €2 + 32c exp(1/2)C, < 2, where C. = E{exp(|e|)}. Then for
any f,g € S™(I) satisfying | f - glleo <&, V(f - 9)/16 < df; (Pr, Py) <3V (f - 9)/16.

Let ¢ satisfy the conditions in Lemma 14. Define F,, = {f € S™(I) : | f - folleo < /2, J(f) <
(M + J(fo)'*)2r2\71}. Let P, = {Ps: f € F} and D(6, P, dpr) be the §-packing number
in terms of dg. Since r2 > X which leads to (M +J(fo)Y?)r,h™™ > M+ J(fo)? > e+ || fol oo
it can be easily checked that F,, ¢ (M + J(fo)"?)rnh™™T, where T = {f € S™(I) : || f] oo <
1L,J(f)<1}.

For any f,g € F, with |f - g|s < ¢, it follows by Lemma 14 that D(§, Pp,dg) <
D(46/7/3, Fy, dy), where dy is the distance induced by V, i.e., dy-(f,g) = VY/?(f - g). And
hence, it follows by (Kosorok, 2008, Theorem 9.21) that

log D(46/\/3, Fyn, dy)

log D(46/v/3, (M + J(fo)/*)rah™™T ,dy)
5 -1/m

v ( (M + J(fo)l/z)rnh‘m) ’

IOgD(é, P?‘w dH)

IN

IN
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where cy is a universal constant only depending on the regularity level m. This implies that
for any d > 2r,,

log D(0/2, Py, dpr)

IN

IOgD(Tn, PTH dH)
ev (M + J(fo)*)Ympt
ey (M + J(fo) V) Ymngs?,

IN

IN

where the last inequality follows by the fact 72 > (nh)~!. Thus, the right side of the above
inequality is constant in §. By (Ghosal et al., 2000, Theorem 7.1), with 6 = Mr,, /4, there
exists test ¢;, and a universal constant kg > 0 satisfying

Ef{djn} = Ppodjn
exp(ey (M + J(fo) ) /™ nr2) exp(~kond?)
1 —exp(—kond?)
exp(ey (M + J(fo)Y?)nr2 — koM?nr2/16)
1 —exp(~koM?nr2/16) 7

and, combined with Lemma 14,

sup Ef{l_aj,n} sup Pf{l_aj,n}

feFn feFn
dy (f,fo)2446 dy (f,fo)249
< sup Pi{l-¢;n}
feFn

IN

exp(—kond?) = exp(~koM?nr2/16).

This implies that

Ep{max [ ger 1= foll TT (/o) (Z0) exp(=nAJ (1)) (L= F5)}

1<j<s

dy (f,fo)246 iel;
< 2 gm0l E{TT(slpn) (21 = 30) ()
J=1"dy (f,fo)=46 iel;
= [ e U= Rl E{1- G d()
3=1"dy (f,f0)245
< sexp(=koM?nr?/16)C(a,II).
Therefore,

max[ FeFn If = fol* H(pf/pfo)(Zi)exp(—n)\J(f)/Q)dH(f)(l_ajvn)

L<jss dy (f,fo)249 i€l
Opy, (s exp(—k0M2nri/16)) .
(S.35)
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Meanwhile, it follows by (S.31) and (S.35) that

— foll*dP(fID)(1 = b,

s [l BIPUID) (-G
< — foll*dP(fID:)(1 = sy,
< max [Tnﬁdvmmuf Fol*dP(£D;)(1 - G1.n)

max [ ger, 1f = fol Tier, (p1/ps) (Z2) exp(=nAT (f)/2)dTI(f) (1 - 1)
< SJ=s dV(f7f0)246
- min I

1<j<s

= Op,, (sexp(-koM*nr}[16 + canryy)) = Op, (sexp(-nr})) .

Choose the constant M to be even bigger so that cy (M + J(fo)'/?) + 1 + co < koM?/16.
Similar to (S.32) we get

— fol*dP(f|D;)¢jn = Op, (5% exp(—nr?)).
max [ I R PUID) G = Opy (5 exp(-nr?)

Therefore,

max /
1<j<s J A

1 folwse/2 ILf = fol*dP(fD;) = Op,, (s* exp(-nr?)). (S.36)
nl’ 0 SE

Together with (S.25), (S.32) and (S.36), we get

max fA 7 = folaP(ID;)

max [, 17 = ol aP(ID) + max [, 1 = foll*dP(7ID;)

1<j<s
= l"dP(fID;)

IN

IN

max [ If = fol“dP(fID;) + max [

1<5<s JA? | f~folleose/2 1<j<s J| f=foloo>e

+{2j‘$§f14;2 |f - fol*dP(f|D;)

= Op, (s*exp(-nr2)).

This completes the proof. |

Proof [Proof of Lemma 14] For any f,g € S"™(I) with |f - gllec < &, define Az(f,9) =
LY (f(X) - g(X)) - f(X)?/2 + g(X)?/2], where recall and Z = (Y, X). It is easy to see by
direct calculations that d% (Ps, P;) = 1 - Eg{exp(Az(f,g))}. By Taylor’s expansion, for
some random ¢ € [0, 1],

1= By {exp(B(/.9))
- B AB2(1.0)} - S EAAZ(,0)) - S Ey(exp(tAz(f,9)A2(.9)°)

We will analyze the terms on the right side of the equation.
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Define £ =Y — A(g(X)). By Morris et al. (1983) we get E,{¢|X} =0 and E,{€%|X} = 1.
By Taylor’s expansion, Az(f,g) = 5[£(f(X) - g(X)) - %(f(X) - g(X))2. Then we get that
~E{Az(f,9)} = 1V(f -g) and

Ey{(GE(F(X0) - 9(X)) 1 (F(X) - g(X)))
= B0 - g(X))) - {E{EG(X) - g(0)} + 2 By (F(X) - (X))}

_ i” Fog)+ 1—16Eg{(f(X) - g(X))"}.

Eg{Az(f.9)*}

Since ||f —g|o <e< 1 and |Az(f,9)| < %(|§| +1/2)|f(X) - g(X)|, we get

|Eg{exp(tAz(f,9))Az(f,9)"}]
Eg{exp(|Az(f,9))IAz(f,9)I*} ‘
Eg{exp(el¢|/2 +e/4)(|€]/2 + 1/4)*| f(X) - g(X)’}

6F, {exp(elél/2 +2/4) x 3 (el/2+ 14" 170 - g (O |

6 Eg{exp(el¢|/2 +¢/4) exp(€]/2 + 1/4)| F(X) - g(X) [’}
6exp(e/4 + [4) Eg{exp(I€)If (X) - g(X)I}
6eexp(1/2)CV (f - g).

It also holds that |E,{(f(X) - g(X))*}| <2V (f - g). Therefore, for any f,g e S™(I) with
If =gl <&,

IN IN

IN NN

(P, P) = V(F - )/
- B0 - g(0) + S Ey{exp(az(£,0) A2 (f,9)°)
< (eCeexp(1/2) +&%[32) V(f - g) <V (f - g)/16,

which implies V (f - g)/16 < d%(Py, P,) <3V (f - g)/16. This proves Lemma 14. [ |
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S.8.6. Additional Plots in Section 5

RADIUS OF THE CREDIBLE SETS/INTERVALS
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Figure 11. CP of F.(f) = f(2) against x based on asymptotic theory.

RESULTS ON LARGER N

Simulation results about credible regions/intervals in Section 5 are based on N = 1200. This
section repeated the same study for N = 1800,2400. Results are summarized in following
plots.

65



SHANG, HAao, CHENG

1-a=0.95 1-a=0.90
o
[ R (E— e e T
4 - = ©
o |- . S ]
S v . |
?)_ . , S % ‘ AN
, . < , R
~N ’ i | ’ N
S ] el . ° J/
~ 17777 — T o ’
S —— 5=l = s%6 = s=15 - - $=60 ol ... - el
! T T T T ° T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X X
1-a=0.70 1-a=0.50
©
@
o i
o <
3
<
o
X X
1-a=0.30 1-a=0.10
© ©
o 7 o 7
o i
o <
3
<
o

Figure 12. CP of F.(f) =/, f(2)dz against x based on asymptotic theory.
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Figure 13. Radius of credible region (82) against y. Legend indicates the credibility levels 1 - c.
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Figure 14. Radius of credible region (33) against y. Legend indicates the credibility levels 1 — a.
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Figure 15. Radius of credible interval (36) for pointwise functional F.(f) = f(x) against v. Legend

indicates the credibility levels 1 — a. Four values of © are considered.
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Figure 16. Radius of credible interval (36) for integral functional Fo(f) = [ f(2)dz against . Legend

indicates the credibility levels 1 — a. Four values of © are considered.
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Figure 17. N =1800: CP of ACR and FCR based on strong topology.
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Figure 18. N =1800: CP of ACR and FCR based on weak topology.
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Figure 19. N =1800: CP of F.(f) = f(x) against x based on posterior samples of f.
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Figure 21. N =1800: CP of F.(f) = [, f(2)dz against x based on posterior samples of f.
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Figure 22. N =1800: CP of F.(f) = [ f(2)dz against x based on asymptotic theory.
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Figure 23. N =2400: CP of ACR and FCR based on strong topology.
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Figure 24. N =2400: CP of ACR and FCR based on weak topology.
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Figure 25. N =2400: CP of F.(f) = f(x) against x based on posterior samples of f.
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Figure 26. N =2400: CP of F.(f) = f(x) against x based on asymptotic theory.
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Figure 27. N =2400: CP of Fu(f) = [, f(2)dz
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Figure 28. N =2400: CP of F.(f) = [, f(2)dz against x based on asymptotic theory.
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