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Abstract

We develop an approach to risk minimization and stochastic optimization that provides a
convex surrogate for variance, allowing near-optimal and computationally efficient trading
between approximation and estimation error. Our approach builds off of techniques for
distributionally robust optimization and Owen’s empirical likelihood, and we provide a
number of finite-sample and asymptotic results characterizing the theoretical performance
of the estimator. In particular, we show that our procedure comes with certificates of
optimality, achieving (in some scenarios) faster rates of convergence than empirical risk
minimization by virtue of automatically balancing bias and variance. We give corroborating
empirical evidence showing that in practice, the estimator indeed trades between variance
and absolute performance on a training sample, improving out-of-sample (test) performance
over standard empirical risk minimization for a number of classification problems.
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1. Introduction

We propose and study a new approach to risk minimization that automatically trades
between bias—or approximation error—and variance—or estimation error. Let X be a
sample space, P0 a distribution on X , and Θ a parameter space. For a loss function
` : Θ×X → R, consider the problem of finding θ ∈ Θ minimizing the risk

R(θ) := E[`(θ,X)] =

∫
`(θ, x)dP (x) (1)

given a sample {X1, . . . , Xn} drawn i.i.d. according to the distribution P . Under appro-
priate conditions on the loss `, parameter space Θ, and random variables X, a number of
researchers (Bartlett et al., 2005, 2006; Boucheron et al., 2005; Koltchinskii, 2006) have
shown results of the form that with high probability,

R(θ) ≤ 1

n

n∑
i=1

`(θ,Xi) + C1

√
Var(`(θ,X))

n
+
C2

n
for all θ ∈ Θ (2)
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where C1 and C2 depend on the parameters of problem (1) and the desired confidence
guarantee. Such bounds justify empirical risk minimization (ERM), which chooses θ̂n to
minimize 1

n

∑n
i=1 `(θ,Xi) over θ ∈ Θ. Further, these bounds showcase a tradeoff between

bias and variance, where we identify the bias (or approximation error) with the empirical
risk 1

n

∑n
i=1 `(θ,Xi), while the variance arises from the second term in the bound.

Given bounds of the form above and heuristically considering the classical “bias-variance”
tradeoff in estimation and statistical learning, it is natural to instead choose θ to directly
minimize a quantity trading between approximation and estimation error, say of the form

1

n

n∑
i=1

`(θ,Xi) + C

√
Var

P̂n
(`(θ,X))

n
, (3)

where Var
P̂n

denotes the empirical variance of its argument. Maurer and Pontil (2009)
considered precisely this idea, giving a number of guarantees on the convergence and good
performance of such a procedure. Unfortunately, even when the loss ` is convex in θ, the for-
mulation (3) is in general non-convex, yielding computationally intractable problems, which
has limited the applicability of procedures that minimize the variance-corrected empirical
risk (3). In this paper, we develop an approach that provides a tractable convex formulation
whenever the loss ` is convex and very closely approximates the penalized risk (3). Our
approach is based on Owen’s empirical likelihood (Owen, 2001) and ideas from distribu-
tionally robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2014; Ben-Tal et al.,
2015). Below, we give a number of theoretical guarantees and empirical evidence for its
performance.

Before summarizing our contributions, we first describe our approach. Let φ : R+ → R
be a convex function with φ(1) = 0. Then the φ-divergence between distributions P and Q
defined on a space X is

Dφ (P ||Q) =

∫
φ

(
dP

dQ

)
dQ =

∫
X
φ

(
p(x)

q(x)

)
q(x)dµ(x),

where µ is any measure for which P,Q� µ, and p = dP
dµ , q = dQ

dµ . Throughout this paper,

we use φ(t) = 1
2(t − 1)2, which gives the χ2-divergence (Tsybakov, 2009). Given φ and a

sample X1, . . . , Xn, we define the local neighborhood of the empirical distribution with radius
ρ by

Pn :=
{

distributions P such that Dφ

(
P ||P̂n

)
≤ ρ

n

}
,

where P̂n denotes the empirical distribution of the sample, and our choice of φ(t) = 1
2(t−1)2

means that Pn consists of discrete distributions supported on the sample {Xi}ni=1. We then
define the robustly regularized risk

Rn(θ,Pn) := sup
P∈Pn

EP [`(θ,X)] = sup
P

{
EP [`(θ,X)] : Dφ(P ||P̂n) ≤ ρ

n

}
. (4)

As it is the supremum of a family of convex functions, the robust risk θ 7→ Rn(θ,Pn) is
convex in θ whenever ` is convex, no matter the value of ρ ≥ 0. Given the robust empirical
risk (4), our proposed estimation procedure is to choose a parameter θ̂ rob

n by minimizing
Rn(θ,Pn).
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Let us now discuss a few of the properties of procedures minimizing the robust empirical
risk (4). Our first main technical result, which we show in Section 2, is that for bounded
loss functions, the robust risk Rn(θ,Pn) is a good approximation to the variance-regularized
quantity (3). That is,

Rn(θ,Pn) = E
P̂n

[`(θ,X)] +

√
2ρVar

P̂n
(`(θ,X))

n
+ εn(θ), (5)

where εn(θ) ≤ 0 and is OP (1/n) uniformly in θ. We show specifically that whenever
`(θ,X) has suitably large variance, with high probability we have εn = 0. From variance
expansions of the form (5) and empirical Bernstein inequality (2), we see that Rn(θ,Pn) is
a O(1/n)-approximation to the population risk R(θ), in contrast to the cruder O(1/

√
n)-

approximation that the empirical risk E
P̂n

[`(θ;X)] provides. Based on this intuition that
the robustly regularized risk Rn(θ;Pn) is a tighter approximation to the population risk
R(θ), we show a number of finite-sample convergence guarantees for the estimator

θ̂ rob
n ∈ argmin

θ∈Θ

{
sup
P

{
EP [`(θ,X)] : Dφ

(
P ||P̂n

)
≤ ρ

n

}}
(6)

that are often tighter than those available for ERM (see Section 3). The above problem is
a convex optimization problem when the original loss `(·;X) is convex and Θ is a convex
set.

Based on the expansion (5), solutions θ̂ rob
n of problem (6) enjoy automatic finite sample

optimality certificates: for ρ ≥ 0, with probability at least 1− C1 exp(−ρ) we have

R(θ̂ rob
n ) = E[`(θ̂ rob

n ;X)] ≤ Rn(θ̂ rob
n ;Pn) +

C2ρ

n
= inf

θ∈Θ
Rn(θ,Pn) +

C2ρ

n

where C1, C2 are constants (which we specify) that depend on the loss ` and domain Θ.
That is, with high probability the robust solution has risk no worse than the optimal finite
sample robust objective up to an O(ρ/n) error term. To guarantee a desired level of risk
performance with probability 1− δ, we may specify the robustness penalty ρ = O(log 1

δ ).
Secondly, we show that the procedure (6) allows us to automatically and near-optimally

trade between approximation and estimation error (bias and variance), so that

R(θ̂ rob
n ) = E[`(θ̂ rob

n ;X)] ≤ inf
θ∈Θ

{
E[`(θ;X)] + 2

√
2ρ

n
Var(`(θ;X))

}
+
Cρ

n
(7)

with high probability. When there are parameters θ with small risk R(θ) and small variance
Var(`(θ,X)), this guarantees that the excess risk R(θ̂ rob

n ) − infθ∈ΘR(θ) is essentially of
order O(ρ/n), where ρ governs our desired confidence level. Our bounds do not require
the Bernstein-type condition Var(`(θ;X)) ≤ MR(θ) often required for ERM. Since it is
often the case that M depends on global information (e.g. size of parameter space Θ),
we have Var(`(θ;X)) � MR(θ), in which case the bound (7) offers a tighter guarantee
than that available for the ERM solution θ̂ erm

n . In particular, we give an explicit example
in Section 3.3 where our robustly regularized procedure (6) converges at rate O(log n/n)
compared to O(1/

√
n) of empirical risk minimization.
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Bounds that trade between risk and variance are known in a number of cases in the em-
pirical risk minimization literature (Mammen and Tsybakov, 1999; Tsybakov, 2004; Bartlett
et al., 2005; Boucheron et al., 2005; Bartlett et al., 2006; Boucheron et al., 2013; Koltchinskii,
2006), which is relevant when one wishes to achieve “fast rates” of convergence for statistical
learning algorithms (that is, faster than the O(1/

√
n) guaranteed by a number of uniform

convergence results (Bartlett and Mendelson, 2002; Boucheron et al., 2005, 2013)). In many
cases, however, such tradeoffs require either conditions such as the Mammen and Tsybakov’s
noise condition (Mammen and Tsybakov, 1999; Boucheron et al., 2005) or localization re-
sults made possible by curvature conditions that relate the loss/risk and variance (Bartlett
et al., 2006, 2005; Mendelson, 2014). The robust solutions (6) enjoy a different tradeoff
between variance and risk than that in this literature, but essentially without conditions
except compactness of Θ.

In proposing any new estimator, it is essential to understand the limits of the pro-
posed procedure and identify situations in which its performance may be worse than ex-
isting estimators. There are indeed situations in which minimizing the robust-regularized
risk (4) yields some inefficiency (for example, in classical statistical estimation problems
with correctly specified model). To understand limits of the inefficiency induced by using
the distributionally-robustified estimator (6), in Section 4 we study explicit finite sample
properties of the robust estimator for general stochastic optimization problems, and we
also provide asymptotic normality results in classical problems. There are a number of
situations, based on growth conditions on the population risk R, when convergence rates
faster than 1/

√
n (or even 1/n) are attainable (see Shapiro et al. (2009, Chapter 5)). We

show that under these conditions, the robust procedure (6) still enjoys (near-optimal) fast
rates of convergence, similar to empirical risk minimization (also known as sample average
approximation in the stochastic programming literature). Our study of asymptotics makes
precise the asymptotic efficiency loss of the robust procedure over minimizing the standard
(asymptotically optimal) empirical expectation: there is a bias term that scales as

√
ρ/n

in the limiting distribution of θ̂ rob
n , though its variance is optimal. o

We complement our theoretical results in Section 5, where we conclude by providing
three experiments comparing empirical risk minimization strategies to robustly-regularized
risk minimization (6). These results validate our theoretical predictions, showing that the
robust solutions are a practical alternative to empirical risk minimization. In particular, we
observe that the robust solutions outperform their ERM counterparts on “harder” instances
with higher variance. In classification problems, for example, the robustly regularized es-
timators exhibit an interesting tradeoff, where they improve performance on rare classes
(where ERM usually sacrifices performance to improve the common cases—increasing vari-
ance slightly) at minor cost in performance on common classes.

Related Work

The theoretical foundations of empirical risk minimization are solid (Vapnik, 1998; Bartlett
and Mendelson, 2002; Boucheron et al., 2005, 2013). When the expectation of the excess
loss bounds its variance, it is possible to achieve faster rates than the O(1/

√
n) offered by

standard uniform convergence arguments (Vapnik and Chervonenkis, 1971, 1974; Bartlett
et al., 2006; Koltchinskii, 2006; Boucheron et al., 2013) (see Boucheron et al. (2005, Section
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5) for an overview in the case of classification, and Shapiro et al. (2009, Chapter 5.3) for
more general stochastic optimization problems). Vapnik and Chervonenkis (1971, 1974) first
provided such results in the context of {0, 1}-valued losses for classification (see also (An-
thony and Shawe-Taylor, 1993)), where the expectation of the loss always upper bounds its
variance, so that if there exists a perfect classifier the convergence rates of empirical risk
minimization procedures are O(1/n). Mammen and Tsybakov (Mammen and Tsybakov,
1999; Tsybakov, 2004) give low noise conditions for binary classification substantially gener-
alizing these results, which yield a spectrum of fast rates. Under related conditions, Bartlett,
Jordan, and McAuliffe (2006) show similar fast rates of convergence for convex risk mini-
mization under appropriate curvature conditions on the loss. The robust procedure (6), on
the other hand, is guaranteed to provide an at most O(1/n) over-estimate of the popula-
tion risk and a small increase of its variance regularized population counterpart. It may
be the case that the variance-regularized risk infθ{R(θ) +

√
Var(`(θ,X))/n} decreases to

R(θ?) more slowly than 1/n. As we note above and detail in Section 4, however, in stochas-
tic optimization problems the variance-regularized approach (6) suffers limited degradation
with respect to empirical risk minimization strategies, even under convexity and curvature
properties that allow faster rates of convergence than those achievable in classical regimes,
as detailed by (Shapiro et al., 2009, Chapter 5.3).

Most related to our work is that of Maurer and Pontil (2009), who propose directly
regularizing empirical risk minimization by variance, providing guarantees similar to ours
and giving a natural foundation off of which many of our results build. In their setting,
however—as they carefully note—it is unclear how to actually solve the variance-regularized
problem, as it is generally non-convex. Shivaswamy and Jebara (2010, 2011) build on this
and develop an elegant approach for boosting binary classifiers based on a variance penalty
applied to the exponential loss; as it is a boosting approach, their approach provides a
coordinate-wise strategy for decreasing the loss, but it is not guaranteed to converge to a
global minimizer and applies to classification-like problems. Our approach, handling general
stochastic optimization problems, removes these obstructions.

The robust procedure (6) is based on distributionally robust optimization ideas that
many researchers have developed (Ben-Tal et al., 2013; Bertsimas et al., 2014; Lam and
Zhou, 2015), where the goal (as in robust optimization more broadly (Ben-Tal et al., 2009)) is
to protect against all deviations from a nominal data model. In the optimization literature,
there is substantial work on tractability of the problem (6), including that of Ben-Tal
et al. (2013), who show that the dual of (4) often admits a standard form (such as a
second-order cone problem) to which standard polynomial-time interior point methods can
be applied. Namkoong and Duchi (2016) develop stochastic-gradient-like procedures for
solving the problem (6), which efficiently provide low accuracy solutions (which are still
sufficient for statistical tasks). Work on the statistical analysis of such procedures is nascent;
Bertsimas, Gupta, and Kallus (2014) and Lam and Zhou (2015) provide confidence intervals
for solution quality under various conditions, and Duchi et al. (2016) give asymptotics
showing that the optimal robust risk Rn(θ̂ rob

n ;Pn) is a calibrated upper confidence bound
for infθ∈Θ E[`(θ;X)]. They and Gotoh et al. (2015) also provide a number of asymptotic
results showing relationships between the robust risk Rn(θ;Pn) and variance regularization,
but they do not leverage these results for guarantees on the solutions θ̂ rob

n .
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Figure 1. Plot of θ 7→
√

Var(`(θ,X)) for `(θ;X) = |θ−X| where X ∼ Uni({−2,−1, 0, 1, 2}).
The function is non-convex, with multiple local minima, inflection points, and does not grow
as θ → ±∞.

Notation We collect our notation here. We let B denote a unit norm ball in Rd, B =
{θ ∈ Rd : ‖θ‖ ≤ 1}, where d and ‖·‖ are generally clear from context. Given sets A ⊂ Rd
and B ⊂ Rd, we let A + B = {a + b : a ∈ A, b ∈ B} denote Minkowski addition. For
a convex function f , the subgradient set ∂f(x) of f at x is ∂f(x) = {g : f(y) ≥ f(x) +
g>(y − x) for all y}. For a function h : Rd → R, we let h∗ denote its Fenchel (convex)
conjugate, h∗(y) = supx{y>x − h(x)}. For sequences an, bn, we let an . bn denote that
there is a numerical constant C <∞ such that an ≤ Cbn for all n. For a sequence of random

vectors X1, X2, . . ., we let Xn
d→ X∞ denote that Xn converges in distribution to X∞. For

a nonegative sequence a1, a2, . . ., we say Xn = OP (an) if limc→∞ supn P(‖Xn‖ ≥ can) = 0,
and we say Xn = oP (an) if limc→0 lim supn P(‖Xn‖ ≥ can) = 0.

2. Variance Expansion

We begin our study of the robust regularized empirical risk Rn(θ,Pn) by showing that it is a
good approximation to the empirical risk plus a variance term, that is, studying the variance
expansion (5). Although the variance of the loss is in general non-convex (see Figure 1 for a
simple example), the robust formulation (6) is a convex optimization problem for variance
regularization whenever the loss function is convex (the supremum of convex functions is
convex (Hiriart-Urruty and Lemaréchal, 1993, Prop. 2.1.2.)).

2.1. Variance expansion for a single variable

To gain intuition for the variance expansion that follows, we begin with a slightly simpler
problem, which is to study the quadratically constrained linear maximization problem

maximize
p

n∑
i=1

pizi subject to p ∈ Pn =

{
p ∈ Rn+ :

1

2
‖np− 1‖22 ≤ ρ, 〈1, p〉 = 1

}
, (8)
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where z ∈ Rn is a vector. For simplicity, let s2
n = 1

n ‖z‖
2
2 − (z)2 = 1

n ‖z − z‖
2
2 denote the

empirical “variance” of the vector z, where z = 1
n 〈1, z〉 is the mean value of z. Then by

introducing the variable u = p− 1
n1, the objective in problem (8) satisfies 〈p, z〉 = z+〈u, z〉 =

z + 〈u, z − z〉 because 〈u,1〉 = 0. Thus problem (8) is equivalent to solving

maximize
u∈Rn

z + 〈u, z − z〉 subject to ‖u‖22 ≤
2ρ

n2
, 〈1, u〉 = 0, u ≥ − 1

n
.

Notably, by the Cauchy-Schwarz inequality, we have 〈u, z − z〉 ≤
√

2ρ ‖z − z‖2 /n =
√

2ρs2
n/n,

and equality is attained if and only if

ui =

√
2ρ(zi − z)
n ‖z − z‖2

=

√
2ρ(zi − z)
n
√
ns2

n

.

It is possible to choose such ui while satisfying the constraint ui ≥ −1/n if and only if

min
i∈[n]

√
2ρ(zi − z)√

ns2
n

≥ −1. (9)

Thus, if inequality (9) holds for the vector z—that is, there is enough variance in z—we
have

sup
p∈Pn

〈p, z〉 = z +

√
2ρs2

n

n
.

For losses `(θ,X) with enough variance relative to `(θ,Xi) − E
P̂n

[`(θ,Xi)], that is, those
satisfying inequality (9), then, we have

Rn(θ,Pn) = E
P̂n

[`(θ,X)] +

√
2ρVar

P̂n
(`(θ,X))

n
.

A slight elaboration of this argument, coupled with the application of a few concentration
inequalities, yields the next theorem. The theorem as stated applies only to bounded
random variables, but in subsequent sections we relax this assumption by applying the
characterization (9) of the exact expansion. As usual, we assume that φ(t) = 1

2(t − 1)2 in
our definition of the φ-divergence.

Theorem 1 Let Z be a random variable taking values in [0,M ]. Let σ2 = Var(Z) and
s2
n = E

P̂n
[Z2]− E

P̂n
[Z]2 denote the population and sample variance of Z, respectively. Fix

ρ ≥ 0. Then(√
2ρ

n
s2
n −

2Mρ

n

)
+

≤ sup
P

{
EP [Z] : Dφ(P ||P̂n) ≤ ρ

n

}
− E

P̂n
[Z] ≤

√
2ρ

n
s2
n. (10)

Moreover, for n ≥ max
{

2, M
2

σ2 max {8σ, 44}
}

, with probability at least 1− exp
(
−3nσ2

5M2

)
sup

P :Dφ(P ||P̂n)≤ ρ
n

EP [Z] = E
P̂n

[Z] +

√
2ρ

n
s2
n. (11)
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See Section A for the proof of Theorem 1.

Inequality (10) and the exact expansion (11) show that, at least for bounded loss func-
tions `, the robustly regularized risk (4) is a natural (and convex) surrogate for empirical
risk plus standard deviation of the loss, and the robust formulation approximates exact
variance regularization with a convex penalty. In the sequel, we leverage this result to
provide sharp guarantees for a number of stochastic risk minimization problems.

2.2. Uniform variance expansions

We now turn to a more uniform variant of Theorem 1, which depends on familiar notions
of function complexity based on Rademacher averages. For a sample x1, . . . , xn and i.i.d.
random signs εi ∈ {−1, 1}, independent of the xi, the empirical Rademacher complexity of
the class F is

Rn(F) := E

[
sup
f∈F

1

n

n∑
i=1

εif(xi)

]
.

The worst-case Rademacher complexity (Srebro et al., 2010) is

Rsup
n (F) := sup

x1,...,xn∈X
E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
]
.

For example, when F is a class of functions bounded by M with VC-subgraph dimension

d, we have the inequalities E[Rn(F)] ≤ Rsup
n (F) . M

√
d
n . See van der Vaart and Wellner

(1996, Chapter 2) and Bartlett and Mendelson (2002) for other bounds.

With this definition, we provide a result showing that the variance expansion (5) holds
uniformly for all functions with enough variance.

Theorem 2 Let F be a collection of bounded functions f : X → [0,M ], and M ≤ n. There
exists a universal constant C such that if τ2 > 0 satisfies

τ2 ≥ 4ρM2

n
+ C

[
Rsup
n (F)2 log3 n+

M2

n
(t+ log log n)

]
.

Then with probability at least 1− 3e−t

sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)] = E
P̂n

[f(X)] +

√
2ρ

n
Var

P̂n
(f(X)) (12)

for all f ∈ F such that Var(f) ≥ τ2.

We prove the theorem in Section B. Theorem 2 shows that the variance expansion of Theo-
rem 1 holds uniformly for all functions f with sufficient variance. An asymptotic analogue
of the equality (12) for heavier tailed random variables is also possible (Duchi et al., 2016).
In the remainder of the section, we provide examples and applications of the theorem.
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2.2.1. Linear and margin-based losses

Consider a standard margin-based classification problem (Bartlett and Mendelson, 2002),
where we have data pairs (x, y) ∈ X × {−1, 1}, and X ⊂ Rd. Let Θ ⊂ Rd be a norm
ball of radius r(Θ), Θ = {θ ∈ Rd | ‖θ‖ ≤ r}, and let ‖·‖∗ be the associated dual norm,
assuming also that X ⊂ {x ∈ Rd | ‖x‖∗ ≤ r(X )}. We may then consider the standard loss
minimization setting, where for some non-increasing and 1-Lipschitz loss ` : R → R+, we
have the risk

R(θ) := E [`(Y 〈θ,X〉)] ,
so that `(y 〈x, θ〉) is the loss suffered by making prediction 〈θ, x〉 when the label is y. By
taking the function class F = {(x, y) 7→ `(y 〈x, θ〉)−`(0) | θ ∈ Θ}, in this case, an application
of the Ledoux-Talagrand contraction inequality (Ledoux and Talagrand, 1991) implies for
any y1, x1, . . . , yn, xn that

E

[
sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

εi [`(yi 〈θ, xi〉)− `(0)]

∣∣∣∣∣
]
≤ E

[
sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

εi 〈θ, xi〉

∣∣∣∣∣
]
≤ r(Θ)E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
∗

]
. (13)

Example 1 (Euclidean norms) In the above context, suppose that norm ‖·‖ is the stan-
dard `2 Euclidean norm so that Θ is contained in an `2-ball of radius r(Θ), and X ⊂ Rd in
an `2 ball of radius r(X ). Then Jensen’s inequality and independence of εi’s give the bound

E[‖
n∑
i=1

εixi‖] ≤

√√√√E
d∑
j=1

(
n∑
i=1

εixij

)2

≤ r(X )
√
n.

Then, inequality (13) and Theorem 1 imply that

sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [`(Y 〈θ,X〉)] = E
P̂n

[`(Y 〈θ,X〉)] +

√
2ρ

n
Var

P̂n
(`(Y 〈θ,X〉))

for all θ satisfying

Var(`(Y 〈θ,X〉)) ≥ r(X )2r(Θ)2

n

[
4ρ+ C log3 n+ Ct

]
,

with probability at least 1− e−t.

Example 2 (High-dimensional problems) In high dimensional problems, the Euclidean
scaling of Example 1 may be problematic, so that using `1-constraints is preferred (Bühlmann
and van de Geer, 2011). Thus, taking the norm ‖·‖ in the preceding to be the `1 norm, so that
Θ ⊂ {θ ∈ Rd | ‖θ‖1 ≤ r1(Θ)} and ‖·‖∗ = ‖·‖∞, then E[‖

∑n
i=1 εixi‖∞] ≤ r(X )

√
n log(2d),

where r∞(X ) denotes the `∞-radius of X ⊂ Rd. Thus, if we take the loss class F =
{`(〈θ, ·〉)− `(0) | θ ∈ Θ}, we obtain

Rsup
n (F) . sup

x1,...,xn∈X

r1(Θ)

n
E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
∞

]
≤ r1(Θ)r∞(X )

√
log(2d)

n
.

Then the exact variance expansion (12) holds with probability at least 1−e−t uniformly over

θ satisfying Var(`(Y 〈θ,X〉)) ≥ r1(Θ)2r∞(X )2

n [4ρ+ C log d · log3 n+ Ct].

9
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2.2.2. Covering number guarantees

It is also possible to provide guarantees on the exact variance expansion using standard cov-
ering numbers, though careful arguments based on Rademacher complexity can be tighter.
We begin by recalling the appropriate notions from approximation theory. Let V be a vector
space and V ⊂ V be any collection of vectors in V. Let ‖·‖ be a (semi)norm on V. We say
a collection v1, . . . , vN ⊂ V is an ε-cover of V if for each v ∈ V, there exists vi such that
‖v − vi‖ ≤ ε. The covering number of V with respect to ‖·‖ is then

N(V, ε, ‖·‖) := inf {N ∈ N : there is an ε-cover of V with respect to ‖·‖} .

Now, let F be a collection of functions f : X → R, and define the L∞(X ) norm on f by

‖f − g‖L∞(X ) := sup
x∈X
|f(x)− g(x)|.

We also relax our covering number requirements to empirical `∞-covering numbers as fol-
lows. Define F(x) = {(f(x1), . . . , f(xn)) : f ∈ F} for x ∈ X n, and define the empirical
`∞-covering numbers

N∞(F , ε, n) = sup
x∈Xn

N (F(x), ε, ‖·‖∞) ,

which bound the number of `∞-balls of radius ε required to cover F(x). Note that we
always have N∞(F , ε, n) ≤ N(F , ε, ‖·‖L∞(X )) by definition. The classical Dudley entropy
integral (Dudley, 1999; van der Vaart and Wellner, 1996) shows that, if Pn denotes the point
masses on x1, . . . , xn and ‖·‖L2(Pn) the empirical L2-norm on functions f : X → [−M,M ],
then

E

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]
. inf

δ≥0

{
δ +

1√
n

∫ M

δ

√
logN(F , ε, ‖·‖L2(Pn))dε

}
≤ inf

δ≥0

{
δ +

1√
n

∫ M

δ

√
logN∞(F , ε, n)dε

}
. (14)

Our main (essentially standard (van der Vaart and Wellner, 1996)) motivating example
is that of Lipschitz loss functions for a parametric set Θ, as follows.

Example 3 Let Θ ⊂ Rd and assume that ` : Θ × X → [0,M ] is L-Lipschitz in θ with
respect to the `2-norm for all x ∈ X , meaning that |`(θ, x) − `(θ′, x)| ≤ L ‖θ − θ′‖2. Then
taking F = {`(θ, ·) : θ ∈ Θ}, any ε-covering {θ1, . . . , θN} of Θ in `2-norm guarantees that
mini |`(θ, x)− `(θi, x)| ≤ Lε for all θ, x. That is,

N(F , ε, ‖·‖L∞(X )) ≤ N(Θ, ε/L, ‖·‖2) ≤
(

1 +
diam(Θ)L

ε

)d
,

where diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖2. Thus `2-covering numbers of Θ control L∞-covering
numbers of the family F , and we have by the entropy integral (14) that

Rsup
n (F) .

√
d

n

∫ diam(Θ)L

0

√
log

diam(Θ)L

ε
dε . diam(Θ)L

√
d

n
.

That is, with high probability, for all θ such that Var(`(θ,X)) ≥ 4M2ρ
n + Cddiam(Θ)2L2 log3 n

n ,
we have the exact variance expansion (12).
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3. Optimization by Minimizing the Robust Loss

Based on the precise variance expansions in the preceding section, it is natural to expect
that the robust solution (6) automatically trades between approximation and estimation
error. This intuition is accurate, and we show that the robustly regularized objective
Rn(θ;Pn) overestimates the population risk R(θ) by at most O(1/n). By virtue of optimiz-
ing this tighter approximation—as opposed to the usual O(1/

√
n)-approximation given by

the empirical risk E
P̂n

[`(θ;X)]—the robustly regularized solution (6) enjoys a number of
favorable finite-sample properties, which are not always comparable to those for empirical
risk minimization (ERM).

In Section 3.1, we present two versions of our main result that depend on covering
numbers and discuss their consequences, and we provide an example where the robustly
regularized solution θ̂ rob

n achieves a tighter excess risk bound compared to those that a
straightforward application of localized Rademacher complexities (Bartlett et al., 2005)
show that the ERM solution θ̂ erm

n achieves. As evidenced by the substantial work on
Rademacher- and Gaussian-complexity and symmetrization, in some instances covering-
number-based arguments do not provide the sharpest scaling (Bartlett and Mendelson,
2002; Bartlett et al., 2005; Srebro et al., 2010); thus, in Section 3.2 we present a version of
our main result that depends on localized Rademacher complexities, which can allow more
refined uniform concentration bounds than covering numbers. We also provide a concrete
(but admittedly somewhat contrived) example where our robustly regularized procedure (6)
achieves R(θ̂ rob

n )− infθ∈ΘR(θ) . logn
n , while empirical risk minimization suffers R(θ̂ erm

n )−
infθ∈ΘR(θ) & 1√

n
, in Section 3.3. The robust “regularizer” has invariance properties other

regularization procedures do not, and we mention these briefly in Section 3.4.

3.1. Covering arguments

Our first guarantee depends on the covering numbers of the function class F as we describe
in Section 2.2.2. While we state our results abstractly, in the loss minimization setting we
typically consider the function class F := {`(θ, ·) : θ ∈ Θ} parameterized by θ. We have the
following theorem, where as usual, we let F be a collection of functions f : X → [M0,M1]
with M = M1 −M0.

Theorem 3 Let n ≥ 8M2/t, t ≥ log 12, ε > 0, and ρ ≥ 9t. Then with probability at least
1− 2(3N∞ (F , ε, 2n) + 1)e−t,

E[f(X)] ≤ sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)] +
11

3

Mρ

n
+

(
2 + 4

√
2t

n

)
ε (15)

for all f ∈ F . Defining the empirical minimizer

f̂ ∈ argmin
f∈F

{
sup
P

{
EP [f(X)] : Dφ(P ||P̂n) ≤ ρ

n

}}
we have with the same probability that

E[f̂(X)] ≤ inf
f∈F

{
E[f ] + 2

√
2ρ

n
Var(f)

}
+

19Mρ

3n
+

(
2 + 4

√
2t

n

)
ε. (16)

11
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See Section C for a proof of the theorem. Because uniform L∞-covering numbers upper
bound empirical L∞-covering numbers, it is immediate that covering F in ‖·‖L∞(X ) provides
an identical result.

3.1.1. Covering bounds: corollaries

We turn to a number of corollaries that expand on Theorem 3 to investigate its consequences.
Our first corollary shows that Theorem 3 applies to standard Vapnik-Chervonenkis (VC)
classes. As VC dimension is preserved through composition, this result also extends to the
procedure (6) in typical empirical risk minimization scenarios.

Corollary 4 In addition to the conditions of Theorem 3, let F have finite VC-dimension
VC(F). Then for a numerical constant c <∞, the bounds (15) and (16) hold with probability
at least

1−

(
cVC(F)

(
16Mne

ε

)VC(F)−1

+ 2

)
e−t.

Proof Let ‖f‖L1(Q) :=
∫
|f(x)|dQ(x) denote the L1-norm on F for the probability distri-

bution Q. Then by Theorem 2.6.7 of van der Vaart and Wellner (1996), we have

sup
Q
N(F , ε, ‖·‖L1(Q)) ≤ cVC(F)

(
8Me

ε

)VC(F)−1

for a numerical constant c. Because ‖x‖∞ ≤ ‖x‖1, taking Q to be uniform on x ∈ X 2n

yields N(F(x), ε, ‖·‖∞) ≤ N(F , ε
2n , ‖·‖L1(Q)). The result is immediate.

Next, we focus more explicitly on the estimator θ̂ rob
n defined by minimizing the robust

regularized risk (6). Let us assume that Θ ⊂ Rd, and that we have a typical linear modeling
situation, where a loss h is applied to an inner product, that is, `(θ, x) = h(θ>x). In this
case, by making the substitution that the class F = {`(θ, ·) : θ ∈ Θ} in Corollary 4, we have
VC(F) ≤ d, and we obtain the following corollary. In the corollary, recall the definition (1) of
the population risk R(θ) = E[`(θ,X)], and the uncertainty set Pn = {P : Dφ(P ||P̂n) ≤ ρ

n},
and that Rn(θ,Pn) = supP∈Pn EP [`(θ,X)]. By setting ε = M/n in Corollary 4, we obtain
the following result.

Corollary 5 Let the conditions of the previous paragraph hold and let θ̂ rob
n ∈ argminθ∈ΘRn(θ,Pn).

Assume also that `(θ, x) ∈ [0,M ] for all θ ∈ Θ, x ∈ X . Then if n ≥ ρ ≥ 9 log 12,

R(θ̂ rob
n ) ≤ Rn(θ̂ rob

n ,Pn) +
11Mρ

3n
+

2M

n

(
1 +

√
ρ

n

)
≤ inf

θ∈Θ

{
R(θ) + 2

√
2ρ

n
Var(`(θ;X))

}
+

11Mρ

n

with probability at least 1 − 2 exp(c1d log n − c2ρ), where ci are universal constants with
c2 ≥ 1/9.

To give an alternate concrete variant of Corollary 5 and Theorem 3, let Θ ⊂ Rd and
recall Example 3. We assume that for each x ∈ X , infθ∈Θ `(θ, x) = 0 and that ` is L-
Lipschitz in θ. If D := diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖2 < ∞, then `(θ, x) ≤ Ldiam(Θ), and

12
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for δ > 0, we define

ρ = log
2

δ
+ d log(2nDL). (17)

Setting t = ρ and ε = 1
n in Theorem 3 and assuming that δ . 1/n, D . nk and L . nk for a

numerical constant k, choosing δ = 1
n we obtain that with probability at least 1−δ = 1−1/n,

E[`(θ̂ rob
n ;X)] = R(θ̂ rob

n ) ≤ inf
θ∈Θ

{
R(θ) + C

√
dVar(`(θ,X))

n
log n

}
+ C

dLD log n

n
(18)

where C is a numerical constant.

3.1.2. Examples and heuristic discussion

Unpacking Theorem 3, the first result (15) (and its Corollary 5) provides a high-probability
guarantee that the true expectation E[f̂ ] cannot be more than O(1/n) worse than its
robustly-regularized empirical counterpart. The second result (16) (and inequality (18))
guarantees convergence of the empirical minimizer to a parameter with risk at mostO(log n/n)
larger than the best possible variance-corrected risk.

To illustriate how variance regularization can yield tighter guarantees than empirical
risk minimization by optimizing a O(1/n) upper bound on the risk, we now compare the
second bound (16) with an analogous result for empirical risk minimization (ERM). We first
give a heuristic version, making it more precise in a coming example. For the ERM solution
θ̂ erm
n ∈ argminθ∈Θ E

P̂n
[`(θ;X)], one common assumption is an upper bound of the variance

by the risk; for example, when the losses take values in [0,M ], one has Var(`(θ,X)) ≤
MR(θ). In such cases, there is typically some complexity measure Compn associated with
the class of functions being learned, and it is possible to achieve bounds of the form

R(θ̂ erm
n ) ≤ R(θ?) + C

√
CompnMR(θ?)

n
+ C

CompnM

n
(19)

where θ? ∈ argminθ∈ΘR(θ), a type of result common for bounded nonnegative losses (Boucheron
et al., 2005; Vapnik and Chervonenkis, 1971; Vapnik, 1998). For example, for classes of
functions of VC-dimension d, we typically have Compn . d log n

d . In this caricature, when
Var(`(θ?, X))�MR(θ?) and ρ & Compn, the optimality guarantee (16) for variance regu-
larization can be tighter than its ERM counterpart (19). This bound is certainly not always
sharp, but yields minimax optimal rates in some cases.

Example 4 (Well-specified least-absolute-deviation regression) For the least-absolute-
deviation (LAD) regression, we compare rates of convergence for the ERM solution given by
the localized Rademacher complexity against those for the robust solution. Let Z = (X,Y ) ∈
Rd × R, where X ∈ {x ∈ Rd | ‖x‖2 ≤ L}, and let D := diam(Θ) be the `2-diameter of Θ.
The LAD loss is `(θ; (x, y)) := |y− 〈θ, x〉 |, where we assume that Y = 〈θ?, X〉+ ε for some
θ? ∈ Θ, and random noise ε ∈ [−B,B] independent of X. We then have the global bound
`(θ; (X,Y )) ≤ DL + B =: M . Suppose for simplicity that ε is uniform on [−B,B]; then
θ? = argminθ∈ΘR(θ) and R(θ?) = E[`(θ?;Z)] = 1

2B. In this case,

Var (`(θ?;Z)) =
B2

12
≤ 1

2
(DL+B)B = ME[`(θ?;Z)] = MR(θ?).

13
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Using that the loss is 1-Lipschitz, the L∞ covering numbers for the set of functions
F := {fθ(x, y) = | 〈θ, x〉 − y| | θ ∈ Θ} satisfy logN(F , ε, ‖·‖L∞(X )) . d log DL

ε , and so

applying the bound (18) for the robustly regularized solution θ̂ rob
n with ε = DL/n, we obtain

R(θ̂ rob
n ) ≤ R(θ?) + C

√
d log n

n
B2 + C

d(LD +B) log n

n

with probability at least 1− 1/n. On the other hand, even an “optimistic” (but naive) ERM
bound, achieved by taking Compn . 1 in the bound (19), yields

R(θ̂ erm
n ) ≤ R(θ?) + C

√
log n

n
(BDL+B2) + C

(LD +B) log n

n

with probability at least 1−1/n. We see that leading term for the robustly regularized solution
θ̂ rob
n only depends on the noise-level B2 while the corresponding term for the ERM solution
θ̂ erm
n depends on global information like the size of the parameter space D, and a uniform

bound over covariates L. For typical VC and other d-dimensional classes, the bound Compn
scales linearly in d (cf. (Bartlett et al., 2005, Corollary 3.7), in which case the bound (19)
scales as R(θ?) + C

√
d(BDL+B2) log n/n+O(log n/n), which is worse.

Example 5 (A hard median estimation problem) To give a bit more insight into the
behavior of the robust estimator, consider the simple 1-dimensional median problem, where
`(θ;x) = |θ − x|, and assume that x ∈ {−B,B} with P(X = B) = 1+δ

2 for some δ > 0,
so that θ? = argminR(θ) = B and R(θ?) = (1 − δ)B. In this case, taking θ0 = 0 yields
Var(`(θ;X)) = 0 and R(θ0)−R(θ?) = δB. For δ small (on the order of 1/

√
n), with constant

probability the empirical risk minimizer is θ̂ erm
n = −B, yielding risk R(θ̂ erm

n )−R(θ?) = 2δB.
On the other hand, with high probability θ̂ rob

n ≥ 0 (because Var(`(θ0;X)) = 0 as `(0;X) ≡
B), and so R(θ̂ rob

n )−R(θ?) ≤ δB. This gap is of course small, but it shows that the robust
solution is more conservative: it chooses θ̂ rob

n so that large losses (of scale 2B) are less
frequent.

When the population problem is “easy”, it is often possible to achieve faster rates of
convergence than the usual O (1/

√
n) rate. The simplest scenario where this occurs is

if the problem is realizable R(θ?) = 0, in which case θ̂ erm
n has excess risk of the order

O(log n/n); see the bound (19). The robustly regularized solution θ̂ rob
n enjoys the same

faster rates of convergence under the more general condition that Var(`(θ?;X)) is small.
As a concrete instance of this, let `(θ;X) ∈ [0,M ] and assume that `(θ;X) satisfies the
conditions of the first part of Example 3, and let the problem be realizable R(θ?) = 0.
Since Var(`(θ;X)) ≤MR(θ), we have from the bounds (18) and (19) that

R(θ̂ erm
n ) ≤ CdDL log n

n
and R(θ̂ rob

n ) ≤ CdDL log n

n
.

For example, Var(`(θ;X)) = 0 allows for the existence of some θ0 ∈ Θ such that `(θ0;X) <
`(θ?;X) with positive probability.
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3.2. Localized Rademacher Complexity

A somewhat more sophisticated approach to concentration inequalities and generalization
bounds is based on localization ideas, motivated by the fact that near the optimum of
an empirical risk, the complexity of the function class may be smaller than over the entire
(global) class (van der Vaart and Wellner, 1996; Bartlett et al., 2005). With this in mind, we
now present a refined version of Theorem 3 that depends on localized Rademacher averages.

The starting point for this approach is a notion of localized Rademacher complexity
(we give a slightly less general notion than Bartlett et al. (2005), as it is sufficient for our
derivations). For a function class F of functions f : X → R, the localized Rademacher
complexity at level r is

E
[
Rn

({
cf | f ∈ F , c ∈ [0, 1],E[c2f2 ≤ r]

})]
.

In addition, we require a few analytic notions, beginning with sub-root functions, where we
recall (Bartlett et al., 2005) that a function ψ : R+ → R+ is sub-root if it is nonnegative,
nondecreasing, and r 7→ ψ(r)/

√
r is nonincreasing for all r > 0. Any non-constant sub-root

function ψ is continuous and has a unique positive fixed point r? = ψ(r?), where r ≥ ψ(r)
for all r ≥ r?. Lastly, we consider upper bounds ψn : R+ → R+ on the localized Rademacher
complexity satisfying

ψn(r) ≥ E[Rn({cf : f ∈ F , c ∈ [0, 1],E[c2f2] ≤ r})], (20)

where ψn is sub-root. (The localized Rademacher complexity itself is sub-root.) Roots of
ψn play a fundamental role in providing uniform convergence guarantees, and Bartlett et al.
(2005) and Koltchinskii (2006) provide careful analyses of localized Rademacher complexi-
ties, with typical results as follows. For a class of functions f with range bounded by 1, for
any root r?n of ψn, with probability at least 1− e−t we have

E[f ] ≤ E
P̂n

[f ] +
1

η
E
P̂n

[f ] + C(1 + η)

(
r?n +

1

n

)
+
t

n
for all f ∈ F and η ≥ 0.

As an example, when F is a bounded VC-class, we have r?n �
VC(F) log(n/VC(F))

n (Bartlett
et al., 2005, Corollary 3.7).

With this motivation, we have the following theorem.

Theorem 6 For M ≥ 1, let F be a collection of functions f : X → [0,M ], let ψn be a
sub-root function bounding the localized complexity (20), and let r?n ≥ ψn(r?n). Let t > 0 be
arbitrary and assume that ρ satisfies

ρ

n
≥ 8

(
45M

n

(
t+ log

⌈
log

n

t

⌉)
+ 18r?n

)
. (21)

Then with probability at least 1− e−t,

E[f ] ≤

(
1 + 2

√
2ρ

n

)
sup

P :Dφ(P ||P̂n)≤ ρ
n

EP [f ] +

(
13 + 4

√
2ρ

n

)
Mρ

n
for all f ∈ F . (22)
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Additionally, if f̂ minimizes sup
P :Dφ(P ||P̂n)≤ρ/n EP [f ], then with probability at least 1−3e−t,

E[f̂ ] ≤

(
1 + 2

√
2ρ

n

)
inf
f∈F

(
E[f ] +

√
91ρ

45n
Var(f)

)
+

(
14 + 6

√
2ρ

n

)
M(3ρ+ t)

n
. (23)

We provide the proof of Theorem 6 in Appendix D. It builds off of and parallels many of
the techniques developed by Bartlett, Bousquet, and Mendelson (2005), but we require a
bit of care to develop the precise variance bounds we provide.

Let us consider the additional
√

ρ
n factors in Theorem 6 (as compared to Theorem 3).

In general, these terms are negligible to the extent that the variance of f dominates the
first moment of the function f—heuristically, in situations in which we expect penalizing
the variance to improve performance. Let us make this more precise in a regime where n is
large. Letting f ∈ F , we see that we have the inequality

(1 +
√
ρ/n)

(
E[f ] +

√
ρ

n
Var(f)

)
≤ E[f ] + C

√
ρ

n
Var(f)

(for a constant C > 1 +
√
ρ/n) if and only if (C−1−

√
ρ/n)2Var(f) ≥ E[f ]2. Equivalently,

as n gets large, this occurs roughly when E[f2] ≥ C2−2C+2
C2−2C+1

E[f ]2, which holds for large
enough C whenever Var(f) > 0.

In some scenarios, we can obtain substantially tighter bounds by using localized Rademacher
averages instead of the covering number arguments considered in Section 3.1. (Recall also
the discussion following Theorem 2.) To illustriate this point, we consider the case where F
is a bounded subset of a reproducing kernel Hilbert space generated by some sufficiently nice
kernel K; even for the Gaussian kernel K(x, z) = exp(−1

2 ‖x− z‖
2), log covering numbers

for such function spaces grow at least exponentially in the dimension (Zhou, 2003; Kühn,
2011).

Example 6 (Reproducing kernels and least-absolute-deviation regression) We now
give an example using a non-parametric class of functionals in which covering number ar-
guments do not apply, as the covering numbers of the associated classes are too large. Let
H be a reproducing kernel Hilbert space (RKHS) with norm ‖·‖H and associated kernel
(representer of evaluation) K : X × X → R. Letting P be a distribution on X , Mer-
cer’s theorem (e.g. Cristianini and Shawe-Taylor, 2004) implies that the integral opera-
tor TK : L2(X , P ) → L2(X , P ) defined by TK(f)(x) =

∫
K(x, z)dP (z) is compact, and

K(x, x′) =
∑∞

j=1 λjφj(x)φj(z) where λj are the eigenvalues of T in decreasing order and φj
form an orthonormal decomposition of L2(X , P ).

Consider now the least absolute deviation (LAD) loss function `(h;x, y) = |h(x) − y|,
defined for h ∈ H, and let BH be the unit ‖·‖H-ball of H. Assume additionally that the
model is well-specified, and that y = h?(x)+ξ for some random variable ξ with E[ξ | X] = 0,
E[ξ2] ≤ σ2, and h? ∈ BH. Let the function class

{` ◦ H}≤r :=
{

(x, y) 7→ c`(h(x), y) | c ∈ [0, 1], c2E[`(h(X), Y )2] ≤ r
}
.

Based on inequality (20), we consider the localized complexity

Rn({` ◦ H}≤r) = E

[
1

n
sup

h∈BH,c∈[0,1]

∑
εic`(h(xi), yi) | E[`(h(X), Y )2] ≤ r/c2

]
.
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We claim that

Rn({` ◦ H}≤r) .
√
r/n+

 1

n

∞∑
j=1

min{λj , r}

 1
2

. (24)

As this claim is not central to our development—but does show a slightly different localization
result based on Gaussian comparison inequalities than available, for example, in Mendelson
(2003)—we provide its proof in Appendix G.1.

Let us use inequality (24). To apply Theorem 3, we must find a bound on the fixed
point of the localized complexity. To give this bound, we require some knowledge on the
eigenvalues λj, for which there exists a body of work. For example (Mendelson, 2003), the

Gaussian kernel K(x, x′) = exp(−1
2 ‖x− x

′‖22) generates a class of smooth functions for

which the eigenvalues λj decay exponentially, as λj . e−j
2
. Kernel operators underlying

Sobolev spaces with different smoothness orders (Birman and Solomjak, 1967; Gu, 2002)
typically have eigenvalues scaling as λj . j−2α for some α > 1

2 . As a concrete example, the
first-order Sobolev (min) kernel K(x, x′) = 1 + min{x, x′} generates an RKHS of Lipschitz

functions with α = 1. In the former case of λj . e−j
2
, r?n =

√
logn
n 1

n

∞∑
j=1

min

{
e−j

2
,
log n

n

} 1
2

≈

 1

n

√
logn∑
j=1

√
log n

n
+

1

n

∫ ∞
√

logn
e−t

2
dt

 1
2

.

√
log n

n
= r?n.

In the latter case of polynomially decaying eigenvalues λj . j−2α, we have j−2α = r when

r−
1
2α = j, so

∞∑
j=1

min{j−2α, r} ≈ r
2α−1
2α +

∫ ∞
r−1/2α

t−2αdt � r
2α−1
2α .

Solving for nr = r
2α−1
2α , we find the fixed point (r?n)

2α−1
4α = r?n

√
n yields r?n = n−

2α
2α+1 .

Ignoring constants, the above analysis shows that in the case that the kernel eigenvalues
scale as λj . e−j

2
, as soon as ρ &

√
log n we have

E[`(h(X), Y )] ≤ (1+2
√

2ρ/n)

(
E
P̂n

[`(h(X), Y )] +

√
2ρ

n
Var

P̂n
(`(h(X), Y ))

)
+
Cρ

n
for all h ∈ BH

with high probability. In the case of polynomial eigenvalues, if ĥ minimizes the robust

empirical loss sup
P :Dφ(P ||P̂n)≤ρ/n EP [`(h(X), Y )] and ρ � n1− 2α

2α+1 , then

E
[
`(ĥ(X), Y )

]
≤
(

1 + Cn−
α

2α+1

)
inf
h∈BH

(
E[`(h(X), Y )] + Cn−

α
2α+1

√
Var(`(h(X), Y ))

)
+Cn−

2α
2α+1 .

This rate of convergence holds without any assumptions on the smoothness of the distribution
of the noise ξ.

3.3. Beating empirical risk minimization

We now provide a concrete example where the robustly regularized estimator θ̂ rob
n exhibits a

substantial performance gap over empirical risk minimization. In the sequel, we bound the
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performance degradation to show that the formulation (6) in general loses little over empir-
ical risk minimization. For intuition in this section, consider the (admittedly contrived) set-
ting in which we replace the loss `(θ,X) with `(θ,X)−`(θ?, X), where θ? ∈ argminθ∈ΘR(θ).

Then in this case, by taking θ = θ? in Corollary 5, we have R(θ̂ rob
n ) ≤ R(θ?) +O(1/n) with

high probability. More broadly, we expect the robustly regularized approach to offer per-
formance benefits in situations in which the empirical risk minimizer is highly sensitive to
noise, say, because the losses are piecewise linear, and slight under- or over-estimates of
slope may significantly degrade solution quality.

With this in mind, we construct a concrete 1-dimensional example—estimating the
median of a discrete distribution supported on X = {−1, 0, 1}—in which the robustly
regularized estimator has convergence rate log n/n, while empirical risk minimization is at
best 1/

√
n. Define the loss `(θ;x) = |θ − x| − |x|, and for δ ∈ (0, 1) let the distribution P

be defined by

P (X = 1) =
1− δ

2
, P (X = −1) =

1− δ
2

, P (X = 0) = δ. (25)

Then for θ ∈ R, the risk of the loss is

R(θ) = δ|θ|+ 1− δ
2
|θ − 1|+ 1− δ

2
|θ + 1| − (1− δ).

By symmetry, it is clear that θ? := argminθ R(θ) = 0, which satisfies R(θ?) = 0. (Note also
that `(θ, x) = `(θ, x)− `(θ?, x).) Without loss of generality, we assume that Θ = [−1, 1] in
this problem.

Now, consider a sample X1, . . . , Xn drawn i.i.d. from the distribution P , let P̂n denote
its empirical distribution, and define the empirical risk minimizer

θ̂ erm
n := argmin

θ∈R
E
P̂n

[`(θ,X)] = argmin
θ∈[−1,1]

E
P̂n

[|θ −X|].

If too many of the observations satisfy Xi = 1 or too many satisfy Xi = −1, then θ̂ erm
n will be

either 1 or −1; for small δ, such events become reasonably probable, as the following lemma
makes precise. In the lemma, Φ(x) = 1√

2π

∫ x
−∞ e

− 1
2
t2dt denotes the standard Gaussian CDF.

(See Section G.2 for a proof.)

Lemma 7 Let the loss `(θ;x) = |θ−x| − |x|, δ ∈ [0, 1], and X follow the distribution (25).
Then R(θ̂ erm

n )−R(θ?) ≥ δ with probability at least

2Φ

(
−
√

nδ2

1− δ2

)
− (1− δ2)

n
2

√
8

πn
.

On the other hand, we certainly have `(θ?;x) = 0 for all x ∈ X , so that Var(`(θ?;X)) =
0. Now, consider the bound in Theorem 3. We see that logN({`(θ, ·) : θ ∈ Θ}, ε, ‖·‖L∞(X )) ≤
2 log 1

ε , and taking ε = 1
n , we have that if θ̂ rob

n ∈ argminθ∈ΘRn(θ,Pn), then

R(θ̂ rob
n ) ≤ R(θ?) +

15ρ

n
with probability ≥ 1− 4 exp (2 log n− ρ) .
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In particular, taking ρ = 3 log n, we see that

R(θ̂ rob
n ) ≤ R(θ?) +

45 log n

n
with probability at least 1− 4

n
.

The risk for the empirical risk minimizer, as Lemma 7 shows, may be substantially higher;

taking δ = 1/
√
n we see that with probability at least 2Φ(−

√
n
n−1) − 2

√
2/
√
πen ≥

2Φ(−
√

n
n−1)− n−

1
2 ,

R(θ̂ erm
n ) ≥ R(θ?) + n−

1
2 .

(For n ≥ 20, the probability of this event is ≥ .088.) For this (specially constructed)

example, there is a gap of nearly n
1
2 in order of convergence.

3.4. Invariance properties

The robust regularization (4) technique enjoys a number of invariance properties. Standard
regularization techniques (such as `1- and `2-regularization), which generally regularize a
parameter toward a particular point in the parameter space, do not. While we leave deeper
discussion of these issues to future work, we make two observations, which apply when
Θ = Rd is unconstrained. Throughout, we let θ̂ rob

n ∈ argminθ Rn(θ,Pn) denote the robustly
regularized empirical solution.

First, consider a location estimation problem in which we wish to estimate the minimizer
of the expectation of a loss of the form `(θ,X) = h(θ − X), where h : Rd → R is convex
and symmetric about zero. Then the robust solution is by inspection shift invariant, as
`(θ + c,X + c) = `(θ,X) for any vector c ∈ Rd. Concretely, in the example of the previous
section, `1- or `2-regularization achieve better convergence guarantees than ERM does, but if
we shift all data x 7→ x+c, then non-invariant regularization techniques lose efficiency (while
the robust regularization technique does not). Second, we may consider a generalized linear
modeling problem, in which data comes in pairs (x, y) ∈ X ×Y and `(θ, (x, y)) = h(y, θ>x)
for a function h : Y ×R→ R that is convex in its second argument. Then θ̂ rob

n is invariant
to invertible linear transformations, in the sense that for any invertible A ∈ Rd×d,

argmin
θ

{
sup

P :Dφ(P ||P̂n)≤ ρ
n

EP [`(θ, (X,Y ))]
}

= argmin
θ

{
sup

P :Dφ(P ||P̂n)≤ ρ
n

EP [`(A−1θ, (AX,Y ))]
}

= θ̂ rob
n .

Our results in this section do not precisely apply as we require unbounded θ, however, the
next section shows that localization approaches can address this.

4. Robust regularization cannot be too bad

The previous two sections provide guarantees on the performance of the robust regularized
estimator (6), it does not—cannot—dominate classical approaches based on empirical risk
minimization (also known as sample average approximation in the stochastic optimization
literature), though it can improve on them in some cases. For example, with a correctly spec-
ified linear regression model with gaussian noise, least-squares—empirical risk minimization
with the loss `(θ, (x, y)) = 1

2(θ>x − y)2—is essentially optimal. Our goal in this section is
thus to provide more understanding of potential poor behavior of the procedure (6) with
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respect to ERM, considering two scenarios. The first is in stochastic (convex) optimization
problems, where we investigate the finite-sample convergence rates of the robust solution
to the population optimal risk. We show that the robust solution θ̂ rob

n enjoys fast rates of
convergence in cases in which the risk has substantial curvature—precisely as with empirical
risk minimization. The second is to consider the asymptotics of the robust solution θ̂ rob

n ,
where we show that in classical statistical scenarios the robust solution is nearly efficient,
though there is an asymptotic bias of order 1/

√
n that scales with the confidence ρ.

4.1. Fast Rates

In cases in which the risk R has curvature, empirical risk minimization often enjoys faster
rates of convergence (Boucheron et al., 2005; Shapiro et al., 2009). The robust solution θ̂ rob

n

similarly attains faster rates of convergence in such cases, even with approximate minimizers
of Rn(θ,Pn). For the risk R and ε ≥ 0, let

Sε? :=

{
θ ∈ Θ : R(θ) ≤ inf

θ?∈Θ
R(θ?) + ε

}
denote the ε-sub-optimal (solution) set, and similarly let

Ŝε? :=

{
θ ∈ Θ : Rn(θ,Pn) ≤ inf

θ′∈Θ
Rn(θ′,Pn) + ε

}
.

For a vector θ ∈ Θ, let πS?(θ) = argminθ?∈S? ‖θ
? − θ‖2 denote the Euclidean projection of θ

onto the set S?; this projection operator is very useful for showing faster rates of convergence
in stochastic optimization (see Shapiro et al. (2009), whose techniques we closely follow).
In the statement of the result, for A ⊂ Θ, we let Rn(A) denote the Rademacher complexity
of the localized process {x 7→ `(θ;x) − `(πS?(θ);x) : θ ∈ A}. We then have the following
result, whose proof we provide in Section E.

Theorem 8 Let Θ be convex and let `(·;x) be convex and L-Lipshitz in its first argument
for all x ∈ X . For constants λ > 0, γ > 1, and r > 0, assume the risk R satisfies

R(θ)− inf
θ∈Θ

R(θ) ≥ λ dist(θ, S?)
γ for all θ such that dist(θ, S?) ≤ r. (26)

Let t > 0. If 0 ≤ ε ≤ 1
2λr

γ satisfies

ε ≥
(

2
8γLγ

λ

) 1
γ−1 (ρ

n

) γ
2(γ−1)

and
ε

2
≥ 2E[Rn(S2ε

? )] + L

(
2ε

λ

) 1
γ

√
2t

n
, (27)

then P(Ŝε? ⊂ S2ε
? ) ≥ 1− e−t,

We provide a brief discussion of this result as well as a corollary that gives more explicit
rates of convergence. First, we note that (by an inspection of the proof) the L-Lipschitz
assumption need only hold in the neighborhood S2ε

? for the result to hold. We also have
the following
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Corollary 9 In addition to the conditions of Theorem 8, assume that S? = {θ?} is a single
point and Θ ⊂ Rd. Then for any ε ≤ 1

2λr
γ, we have P(Ŝε? ⊂ S2ε

? ) ≥ 1− e−t for

ε &

(
Lγ

λ

) 1
γ−1
(
d

n
log

n

d
+
t

n
+
ρ

n

) γ
2(γ−1)

.

So long as ρ . d log n
d , this rate of convergence is as good as that enjoyed by standard

empirical risk minimization approaches (Shapiro et al., 2009, Ch. 5) under these types of
growth conditions. The case that γ = 2 corresponds (roughly) to strong convexity, and

in this case we get the approximate rate of convergence of L2

λ

d log n
d

n , the familiar rate of
convergence under these conditions. Of course, if there is too much variance penalization
(i.e. ρ is too large), then the rates of convergence may be slower.

Proof That S? is a singleton implies that S2ε
? ⊂ {θ | ‖θ − θ?‖ ≤ (2ε/λ)

1
γ }. Moreover, in

this case we also have that∣∣∣EP̂n [`(θ;X)− `(θ?;X)]− E
P̂n

[`(θ′;X)− `(θ?;X)]
∣∣∣ ≤ L∥∥θ − θ′∥∥ ,

so that an ε/L-cover of {θ | ‖θ − θ?‖ ≤ (2ε/λ)
1
γ } is an ε-cover of the function class F =

{f(x) = `(θ;x)− `(θ?;x) | θ ∈ S2ε
? } in ‖·‖L2(Pn) norm. Thus, the standard Dudley entropy

integral (Dudley, 1999; van der Vaart and Wellner, 1996) yields

E[Rn(S2ε
? )] .

1√
n

∫ ∞
0

√
logN(F , δ, ‖·‖L2(Pn))dδ

.
1√
n

∫ L(2ε/λ)
1
γ

0

√
d log

L

δ
dδ ≤ L

√
d

n

(
2ε

λ

) 1
γ

√
1 +

1

γ
log

λ

2Lγε

where we have used that
∫ ε

0

√
log L

δ dδ ≤ ε
√

1 + log L
ε . Solving for ε in the localization

inequality (27) then yields the corollary, showing that the specified choice of ε is sufficient
for all the conditions (27) to hold.

4.2. Asymptotics

It is important to understand the precise limiting behavior of the robust estimator in addi-
tion to its finite sample properties—this allows us to more precisely characterize when there
may be degradation relative to classical risk minimization strategies. With that in mind, in
this section we provide asymptotic results for the robust solution (6) to better understand
the consequences of penalizing the variance of the loss itself. In particular, we would like
to understand efficiency losses relative to (say) maximum likelihood in situations in which
maximum likelihood is efficient. Before stating the results, we make a few standard assump-
tions on the risk R(θ), the loss `, and the moments of ` and its derivatives. Concretely, we
assume that

θ? := argmin
θ

R(θ) and ∇2R(θ?) � 0,
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that is, the risk functional has strictly positive definite Hessian at θ?, which is thus unique.
Additionally, we have the following smoothness assumptions on the loss function, which are
satisfied by common loss functions, including the negative log-likelihood for any exponential
family or generalized linear model (Lehmann and Casella, 1998). In the assumption, we let
B denote the `2-ball of radius 1 in Rd.

Assumption A For some ε > 0, there exists a function L : X → R+ satisfying

|`(θ, x)− `(θ′, x)| ≤ L(x)
∥∥θ − θ′∥∥

2
for θ, θ′ ∈ θ? + εB

and E[L(X)2] ≤ L(P ) < ∞. Additionally, there is a function H such that the function
θ 7→ `(θ, x) has H(x)-Lipschitz continuous Hessian (with respect to the Frobenius norm) on
θ? + εB, where E[H(X)2] <∞.

Then, recalling the robust estimator (6) as the minimizer of Rn(θ,Pn), we have the
following theorem, which we prove in Section F.

Theorem 10 Let Assumption A hold, and let the sequence θ̂ rob
n be defined by θ̂ rob

n ∈
argminθ Rn(θ,Pn). Define

b(θ?) :=
Cov(∇θ`(θ?, X), `(θ?, X))√

Var(`(θ?, X))
and Σ(θ?) =

(
∇2R(θ?)

)−1
Cov(∇`(θ?, X))

(
∇2R(θ?)

)−1
.

Then θ̂ rob
n

a.s.→ θ? and

√
n(θ̂ rob

n − θ?) d→ N
(
−
√

2ρ b(θ?),Σ(θ?)
)

The asymptotic variance Σ(θ?) in Theorem 10 is generally unimprovable, as made ap-
parent by Le Cam’s local asymptotic normality theory and the Hájek-Le Cam local minimax
theorems (van der Vaart and Wellner, 1996). Thus, Theorem 10 shows that the robust reg-
ularized estimator (6) has some efficiency loss, but it is only in the bias term. We explore
this a bit more in the context of the risk of θ̂ rob

n . Letting W ∼ N(0,Σ(θ?)), as an immediate
corollary to this theorem, the delta-method implies that

n
[
R(θ̂ rob

n )−R(θ?)
]

d→ 1

2

∥∥∥√2ρ b(θ?) +W
∥∥∥2

∇2R(θ?)
, (28)

where we recall that ‖x‖2A = x>Ax. This follows from a Taylor expansion, because
∇R(θ?) = 0 and so R(θ)−R(θ?) = 1

2(θ − θ?)>∇2R(θ?)(θ − θ?) + o(‖θ − θ?‖2), or

n(R(θ̂ rob
n )−R(θ?)) = n

(
1

2
(θ̂ rob
n − θ?)>∇2R(θ?)(θ̂ rob

n − θ?) + o(‖θ̂ rob
n − θ?‖2)

)
=

1

2

(√
n(θ̂ rob

n − θ?)
)>
∇2R(θ?)

(√
n(θ̂ rob

n − θ?)
)

+ oP (1)

d→ 1

2
(
√

2ρ b(θ?) +W )>∇2R(θ?)(
√

2ρ b(θ?) +W )

by Theorem 10.
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The limiting random variable in expression (28) has expectation

1

2
E[‖
√

2ρb(θ?) +W‖2∇2R(θ?)] = ρb(θ?)>∇2R(θ?)b(θ?) +
1

2
tr(∇2R(θ?)−1 Cov(`(θ?, X)),

while the classical empirical risk minimization procedure (standardM -estimation) (Lehmann
and Casella, 1998; van der Vaart and Wellner, 1996) has limiting mean-squared error
1
2 tr(∇2R(θ?)−1 Cov(`(θ?, X))). Thus there is an additional ρ ‖b(θ?)‖2∇2R(θ?) penalty in the
asymptotic risk (at a rate of 1/n) for the robustly-regularized estimator. An inspection of
the proof of Theorem 10 reveals that b(θ?) = ∇θ

√
Var(`(θ?, X)); if the variance of the loss

is stable near θ?, so that moving to a parameter θ = θ? + ∆ for some small ∆ has little
effect on the variance, then the standard loss terms dominate, and robust regularization
has asymptotically little effect. On the other hand, highly unstable loss functions for which
∇θ
√

Var(`(θ?, X)) is large yield substantial bias.

We conclude our study of the asymptotics with a (to us) somewhat surprising example.
Consider the classical linear regression setting in which y = x>θ? + ε, where ε ∼ N(0, σ2).
Using the standard squared error loss `(θ, (x, y)) = 1

2(θ>x− y)2, we obtain that

∇`(θ?, (x, y)) = (x>θ? − y)x = (x>θ? − x>θ? − ε)x = −εx,

while `(θ?, (x, y)) = 1
2ε

2. The covariance Cov(εX, ε2) = E[εX(ε2 − σ2)] = 0 by symmetry
of the error distribution, and so—in the special classical case of correctly specified linear
regression—the bias term b(θ?) = 0 for linear regression in Theorem 10. That is, the
robustly regularized estimator (6) is asymptotically efficient.

5. Experiments

We present three experiments in this section. The first is a small simulation example,
which serves as a proof of concept allowing careful comparison of standard empirical risk
minimization (ERM) strategies to our variance-regularized approach. The latter two are
classification problems on real datasets; for both of these we compare performance of robust
solution (6) to its ERM counterpart.

5.1. Minimizing the robust objective

As a first step, we give a brief description of our (essentially standard) method for solving
the robust risk problem. Our work in this paper focuses mainly on the properties of the
robust objective (4) and its minimizers (6), so we only briefly describe the algorithm we use;
we leave developing faster and more accurate specialized methods to further work. To solve
the robust problem, we use a gradient descent-based procedure, and we focus on the case in
which the empirical sampled losses {`(θ,Xi)}ni=1 have non-zero variance for all parameters
θ ∈ Θ, which is the case for all of our experiments.

Recall the definition of the subdifferential ∂f(θ) = {g ∈ Rd : f(θ′) ≥ f(θ)+〈g, θ′ − θ〉 for all θ′},
which is simply the gradient for differentiable functions f . A standard result in convex anal-
ysis (Hiriart-Urruty and Lemaréchal, 1993, Theorem VI.4.4.2) is that if the vector p∗ ∈ Rn+

. Code is available at https://github.com/hsnamkoong/robustopt.
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achieving the supremum in the definition (4) of the robust risk is unique, then

∂θRn(θ,Pn) = ∂θ sup
P∈Pn

EP [`(θ;X)] =
n∑
i=1

p∗i ∂θ`(θ;Xi),

where the final summation is the standard Minkowski sum of sets. As this maximizing
vector p is indeed unique whenever Var

P̂n
(`(θ;X)) 6= 0, we see that for all our problems, so

long as ` is differentiable, so too is Rn(θ,Pn) and

∇θRn(θ,Pn) =

n∑
i=1

p∗i∇θ`(θ;Xi) where p∗ = argmax
p∈Pn

{ n∑
i=1

pi`(θ;Xi)

}
. (29)

In order to perform gradient descent on the risk Rn(θ,Pn), then, by equation (29) we
require only the computation of the worst-case distribution p∗. By taking the dual of
the maximization (29), this is an efficiently solvable convex problem; for completeness,
we provide a procedure for this computation in Section H that requires time O(n log n +
log 1

ε log n) to compute an ε-accurate solution to the maximization (29). As all our examples
have smooth objectives, we perform gradient descent on the robust risk Rn(·,Pn), with
stepsizes chosen by a backtracking (Armijo) line search (Boyd and Vandenberghe, 2004,
Chapter 9.2).

5.2. Simulation experiment

For our simulation experiment, we use a quadratic loss with linear perturbation. For
v, x ∈ Rd, define the loss `(θ;x) = 1

2 ‖θ − v‖
2
2 + x>(θ − v). We set d = 50 and take

X ∼ Uni({−B,B}d), varying B in the experiment. For concreteness, we let the domain
Θ = {θ ∈ Rd : ‖θ‖2 ≤ r} and set v = r

2
√
d
1, so that v ∈ int Θ; we take r = 10. Notably,

standard regularization strategies, such as `1 or `2-regularization, pull θ toward 0, while the
variance of `(θ;X) is minimized by θ = v (thus naturally advantaging the variance-based
regularization we consider, as R(v) = infθ R(θ) = 0). Moreover, as X is pure noise, this is
an example where we expect variance regularization to be particularly useful. We choose
δ = .05 and set ρ as in Eq. (17) (using that ` is (3r +

√
dB)-Lipschitz) to obtain robust

coverage with probability at least 1− δ. In our experiments, we obtained 100% coverage in
the sense of (15), as the high probability bound is conservative.

Figure 2 summarizes the results. The robust solution θ̂ rob
n = argminθ∈ΘRn(θ,Pn) always

outperforms the empirical risk minimizer θ̂ erm
n = argminθ∈Θ E

P̂n
[`(θ,X)] in terms of the true

risk E[`(θ,X)] = 1
2 ‖θ − v‖

2
2. Each experiment consists of 1,200 independent replications for

each sample size n and value B. In Tables 1 and 2, we display the risks of θ̂ erm
n and θ̂ rob

n and
variances, respectively, computed for the 1,200 independent trials. The gap between the
risk of θ̂ erm

n and θ̂ rob
n is siginificant at level p < .01 for all sample sizes and values of B we

considered according to a one-sided T-test. Notice also in Table 2 that the variance of the
robust solutions is substantially smaller than that of the empirical risk minimizer—often
several orders of magnitude smaller for large sample sizes n. This simulation shows that—in
a simple setting favorable to it—our procedure outperforms standard alternatives.
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Figure 2. Simulation experiment. logE[R(θ̂ ermn )] is the solid lines, in decreasing order from

B = 10 (top) to B = .01 (bottom). logE[R(θ̂ robn )] is the dashed line, in the same vertical
ordering at sample size n = 102.

Table 1: Simulation experiment: Mean risks over 1,200 simulations

B = .01 B = .1 B = 1 B = 10

n R(θ̂ erm
n ) R(θ̂ rob

n ) R(θ̂ erm
n ) R(θ̂ rob

n ) R(θ̂ erm
n ) R(θ̂ rob

n ) R(θ̂ erm
n ) R(θ̂ rob

n )

100 4.06E-06 7.42E-07 4.17E-04 7.65E-05 4.20E-02 7.64E-03 4.15E+00 7.12E-01
500 8.91E-07 5.01E-15 8.22E-05 1.63E-14 8.36E-03 2.19E-13 8.41E-01 8.21E-12
1000 4.47E-07 1.52E-15 4.02E-05 1.64E-17 4.20E-03 6.32E-18 4.19E-01 2.45E-17
5000 1.44E-07 2.68E-16 8.00E-06 2.74E-18 8.27E-04 5.09E-20 8.38E-02 6.55E-20
10000 7.64E-08 1.32E-16 4.02E-06 1.32E-18 4.13E-04 2.57E-20 4.18E-02 3.34E-20

5.3. Protease cleavage experiments

For our second experiment, we compare our robust regularization procedure to other regu-
larizers using the HIV-1 protease cleavage dataset from the UCI ML-repository (Lichman,
2013). In this binary classification task, one is given a string of amino acids (a protein) and
a featurized representation of the string of dimension d = 50960, and the goal is to predict
whether the HIV-1 virus will cleave the amino acid sequence in its central position. We
have a sample of n = 6590 observations of this process, where the class labels are somewhat
skewed: there are 1360 examples with label Y = +1 (HIV-1 cleaves) and 5230 examples
with Y = −1 (does not cleave).

We use the logistic loss `(θ; (x, y)) = log(1+exp(−yθ>x)). We compare the performance
of different constraint sets Θ by taking

Θ =
{
θ ∈ Rd : a1 ‖θ‖1 + a2 ‖θ‖2 ≤ r

}
,
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Table 2: Simulation experiment: Variances of R(θ̂) over 1,200 simulations

B = .01 B = .1 B = 1 B = 10
n ERM Robust ERM Robust ERM Robust ERM Robust

100 7.06E-13 9.76E-14 6.58E-09 1.03E-09 7.09E-05 1.08E-05 7.37E-01 9.20E-02
500 5.98E-14 7.15E-28 3.04E-10 3.52E-26 2.80E-06 2.26E-24 2.92E-02 3.26E-21
1000 2.63E-14 1.07E-31 7.53E-11 1.99E-35 7.14E-07 3.44E-33 7.03E-03 4.78E-32
5000 7.34E-15 2.94E-33 2.70E-12 3.28E-37 2.95E-08 2.50E-39 2.74E-04 5.24E-38
10000 1.60E-15 6.54E-34 6.74E-13 7.59E-38 7.04E-09 3.34E-39 6.52E-05 2.25E-38

which is equivalent to elastic net regularization (Zou and Hastie, 2005), while varying a1, a2,
and r. We experiment with `1-constraints (a1 = 1, a2 = 0) with r ∈ {50, 100, 500, 1000, 5000},
`2-constraints (a1 = 0, a2 = 1) with r ∈ {5, 10, 50, 100, 500}, elastic net (a1 = 1, a2 = 10)
with r ∈ {100, 200, 1000, 2000, 10000}, our robust regularizer with ρ ∈ {100, 1000, 10000, 50000, 100000}
and our robust regularizer coupled with the `1-constraint (a1 = 1, a2 = 0) with r = 100.
Though we use a convex surrogate (logistic loss), we measure performance of the classifiers
using the 0-1 (misclassification) loss 1{sign(θTx)y ≤ 0}. For validation, we perform 50
experiments, where in each experiment we randomly select 9/10 of the data to train the
model, evaluating its performance on the held out fraction (test).

We plot results summarizing these experiments in Figure 3. The horizontal axis in
each figure indexes our choice of regularization value (so “Regularizer = 1” for the `1-
constrained problem corresponds to r = 50). The figures show that the robustly regularized
risk provides a different type of protection against overfitting than standard regularization
or constraint techniques do: while other regularizers underperform in heavily constrained
settings, the robustly regularized estimator θ̂ rob

n achieves low classification error for all
values of ρ (Figure 3(b)). Notably, even when coupled with a fairly stringent `1-constraint
(r = 100), robust regularization has perofrmance better than `1 except for large values r,
especially on the rare label Y = +1 (Figure 3 (d) and (f)).

We investigate the effects of the robust regularizer with a slightly different perspective
in Figure 4, where we use Θ = {θ : ‖θ‖1 ≤ r} with r = 100 for the constraint set for
each experiment. The horizontal axis indicates the tolerance ρ we use in construction of
the robust estimator θ̂ rob

n , where ERM means ρ = 0. In Fig. 4(a), we plot the logistic risk
R(θ̂) = E[`(θ̂, (X,Y ))] for the train and test distribution. We also plot the upper confidence
bound Rn(θ,Pn) in this plot, which certainly over-estimates the test risk—we hope to
tighten this overestimate in future work. In Figure 4(b), we plot the misclassification error
on train and test for different values of ρ, along with 2-standard-error intervals for the 50
runs. Figures 4(c) and (d) show the error rates restricted to examples from the uncommon
(c) and common (d) classes. In Table 3 we give explicit error rates and logistic risk values
for the different procedures. Due to the small size of the test dataset (ntest = 659), the
deviation across folds is somewhat large.
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Figure 3. HIV-1 Protease Cleavage plots (2-standard error confidence bars). Comparison
of misclassification error rates among different regularizers.
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Figure 4. HIV-1 Protease Cleavage plots (2-standard error confidence bars). Plot (a) shows

the logistic risk R(θ) = E[log(1+e−Y θ
>X)] and confidence bounds computed from the robust

risk (4). Plots (b)–(d) show misclassification error rates plotted against robustness parameter
ρ.

In this experiment, we see (roughly) that the ERM solutions achieve good performance
on the common class (Y = −1) but sacrifice performance on the uncommon class. As we
increase ρ, performance of the robust solution θ̂ rob

n on the rarer label Y = +1 improves
(Fig. 4(c)), while the misclassification rate on the common class degrades a small (insignif-
icant) amount (Fig. 4(d)); see also Table 3. This behavior is roughly what we might expect
for the robust estimator: the poor performance of the ERM estimator θ̂ erm

n on the rare
class induces (relatively) more variance, which the robust solution reduces by via improved
classification performance on the rare (Y = +1) class. This occurs at little expense over the
more common label Y = −1 so that overall performance improves by a small amount. We
remark—but are unable to explain—that this improvement on classification error for the
rare labels comes despite increases in logistic risk; while the average logistic loss increases,
misclassification errors decrease.

28



Variance-based Regularization with Convex Objectives

Table 3: HIV-1 Cleavage Error

risk error (%) error (Y = +1) error (Y = −1)
ρ train test train test train test train test

erm 0.1587 0.1706 5.52 6.39 17.32 18.79 2.45 3.17
100 0.1623 0.1763 4.99 5.92 15.01 17.04 2.38 3.02
1000 0.1777 0.1944 4.5 5.92 13.35 16.33 2.19 3.2
10000 0.283 0.3031 2.39 5.67 7.18 14.65 1.15 3.32

5.4. Document classification in the Reuters corpus

For our final experiment, we consider a multi-label classification problem with a reasonably
large dataset. The Reuters RCV1 Corpus (Lewis et al., 2004) has 804,414 examples with
d = 47,236 features, where feature j is an indicator variable for whether word j appears
in a given document. The goal is to classify documents as a subset of the 4 categories
Corporate, Economics, Goverment, and Markets, and each document in the data is labeled
with a subset of those. As each document can belong to multiple categories, we fit binary
classifiers on each of the four categories. There are different numbers of documents labeled as
each category, with the Economics category having the fewest number of positive examples.
Table 4 gives the number of times a document is labeled as each of the four categories (so
each document has about 1.18 associated classes). In this experiment, we expect the robust
solution to outperform ERM on the rarer category (Economics), as the robustification (6)
naturally upweights rarer (harder) instances, which disproportionally affect variance—as in
the experiment on HIV-1 cleavage.

Table 4: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820

For each category k ∈ {1, 2, 3, 4}, we use the logistic loss `(θk; (x, y)) = log(1+exp(−yθ>k x)).
For each binary classifier, we use the `1 constraint set Θ =

{
θ ∈ Rd : ‖θ‖1 ≤ 1000

}
. To

evaluate performance on this multi-label problem, we use precision (ratio of the number of
correct positive labels to the number classified as positive) and recall (ratio of the number
of correct positive labels to the number of actual positive labels):

precision =
1

n

n∑
i=1

∑4
k=1 1{θ>k xi ≥ 0, yi = 1}∑4

k=1 1{θ>k xi > 0}
,

recall =
1

n

n∑
i=1

∑4
k=1 1{θ>k xi ≥ 0, yi = 1}∑4

k=1 1 {yi = 1}
.

We partition the data into ten equally-sized sub-samples and perform ten validation experi-
ments, where in each experiment we use one of the ten subsets for fitting the logistic models
and the remaining nine partitions as a test set to evaluate performance.

In Figure 5, we summarize the results of our experiment averaged over the 10 runs,
with 2-standard error bars (computed across the folds). To facilitate comparison across
the document categories, we give exact values of these averages in Tables 5 and 6. Both
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Figure 5: Reuters Corpus (2-standard error deviations)

θ̂ rob
n and θ̂ erm

n have reasonably high precision across all categories, with increasing ρ giving
a mild improvement in precision (from .93 ± .005 to .94 ± .005); see also Figure 5(a).
On the other hand, we observe in Figure 5(d) that ERM has low recall (.69 on test) for
the Economics category, which contains about 15% of documents. As we increase ρ from
0 (ERM) to 105, we see a smooth and substantial improvement in recall for this rarer
category (without significant degradation in precision). This improvement in recall amounts
to reducing variance in predictions on the rare class. We also note that while the robust
solutions outperform ERM in classification performance for ρ ≤ 105, for very large ρ =
106 ≥ 10n, the regularizing effects of robustness degrade the solution θ̂ rob

n . This precision
and recall improvement comes in spite of the increase in the average binary logistic risk for
each of the 4 classes, which we show in Figure 5a, which plots the average binary logistic
loss (on train and test sets) averaged over the 4 categories as well as the upper confidence
bound Rn(θ,Pn) as we vary ρ. The robust regularization effects reducing variance appear to
improve the performance of the binary logistic loss as a surrogate for true misclassification
error.

30



Variance-based Regularization with Convex Objectives

Table 5: Reuters Corpus Precision (%)

Precision Corporate Economics Government Markets
ρ train test train test train test train test train test

erm 92.72 92.7 93.55 93.55 89.02 89 94.1 94.12 92.88 92.94
1E3 92.97 92.95 93.31 93.33 87.84 87.81 93.73 93.76 92.56 92.62
1E4 93.45 93.45 93.58 93.61 87.6 87.58 93.77 93.8 92.71 92.75
1E5 94.17 94.16 94.18 94.19 86.55 86.56 94.07 94.09 93.16 93.24
1E6 91.2 91.19 92 92.02 74.81 74.8 91.19 91.25 89.98 90.18

Table 6: Reuters Corpus Recall (%)

Recall Corporate Economics Government Markets
ρ train test train test train test train test train test

erm 90.97 90.96 90.20 90.25 67.53 67.56 90.49 90.49 88.77 88.78
1E3 91.72 91.69 90.83 90.86 70.42 70.39 91.26 91.23 89.62 89.58
1E4 92.40 92.39 91.47 91.54 72.38 72.36 91.76 91.76 90.48 90.45
1E5 93.46 93.44 92.65 92.71 76.79 76.78 92.26 92.21 91.46 91.47
1E6 93.10 93.08 92.00 92.04 79.84 79.71 91.89 91.90 92.00 91.97

Summary

We have seen through multiple examples that robustification—our convex surrogate for
variance regularization—is an effective tool in a number of applications. As we heuristically
expect, variance-based regularization (robust regularization) yields predictors with better
performance on “hard” instances, or subsets of the problem that induce higher variance,
such as classes with relatively few training examples in classification problems. The robust
regularization ρ gives a principled knob for tuning performance to trade between variance
(uniform or across-the-board performance) and—sometimes—absolute performance.

6. Discussion

In this paper, we have developed theoretical results for robust regularization (6) that ap-
ply to general stochastic optimization and learning problems problems. The examples we
describe in Section 3 illustrate our expectation that the robust solution θ̂ rob

n should have
good performance in cases in which Var(`(θ?;X)) is small (recall also Theorems 3 and 6).
Identifying the separation between the performance empirical risk minimization and related
estimators and that of the robustly-regularized estimators—as well as variance-regularized
estimates—we consider more generally remains a challenge. We hope that this paper in-
spires work in this direction in machine learning and statistics, and more broadly, torward
considering distributionally robust problems. Part of this is likely to come from making
rigorous our empirical observations (Section 5) that robust regularization improves perfor-
mance on “hard” instances without sacrificing performance on easier cases.

Our understanding of so-called “fast rates” for stochastic optimization problems, while
considering robustness, is also limited. For empirical risk minimization, fast rates of con-
vergence hold under conditions in which the the gap R(θ)−R(θ?) controls the variance of
the excess loss `(θ,X) − `(θ?, X) (cf. Mammen and Tsybakov, 1999; Bartlett et al., 2005;
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Boucheron et al., 2005; Bartlett et al., 2006), which usually requires some type of uniform
convexity assumption. These bounds typically follow from localization guarantees (Bartlett
et al., 2005, Section 5) on the function class

{x 7→ `(θ, x)− `(θ?, x) | θ ∈ Θ} .

While in Section 4.1, we show that the robust estimate θ̂ rob
n enjoys faster rates of conver-

gence under growth conditions analogous to uniform convexity of the risk, as Var(`(θ;X)−
`(θ?;X)) 6= Var(`(θ;X)), it is not clear how to directly connect these guarantees to results
of the form in Theorems 3 and 6. We leave investigation of these topics to future work.

The last point of our discussion is to revisit Theorem 6, which provides a guarantee
for robustly regularized estimators based on localized Rademacher complexities. An inves-
tigation of our proof shows that our derivation proceeds by considering the complexity of
self-normalized classes of functions of the form

Gr =

{√
r

E[f2] ∨ r
f | f ∈ F

}
.

In contrast, the analogous result of Bartlett et al. (2005, Thereom 3.3) for empirical risk
minimization considers the complexity of classes of functions of the form

Gr =

{
r

E[f2] ∨ r
f | f ∈ F

}
.

The latter class normalizes functions f by
√

E[f2]—a type of self-normalization that arises
in the computation of pivotal (asymptotically independent of the underlying distribution)
statistics. While this choice prima facie is just a step in our proof, the robust objective
Rn(θ,Pn) defined in Eq. (4) is an empirical likelihood upper confidence bound on the
optimal population risk (see also Duchi et al., 2016). One of the important characteristics
of empirical likelihood confidence bounds is that they are self-normalizing and yield pivotal
statistics (Owen, 2001). Investigating such self-normalization in complexity guarantees
seems likely to yield fruitful insights.
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Appendix A. Proof of Theorem 1

The theorem is immediate if sn = 0 or σ2 = 0, as in this case sup
P :Dφ(P ||P̂n)≤ρ/n EP [Z] =

E
P̂n

[Z] = E[Z]. In what follows, we will thus assume that σ2, s2
n > 0. We recall the

maximization problem (8), which is

maximize
p

n∑
i=1

pizi subject to p ∈ Pn =

{
p ∈ Rn+ :

1

2
‖np− 1‖22 ≤ ρ, 〈1, p〉 = 1

}
,

and the solution criterion (9), which guarantees that the maximizing value of problem (8)
is z +

√
2ρs2

n/n whenever √
2ρ
zi − z√
ns2

n

≥ −1.

Letting z = Z, then under the conditions of the theorem, we have |zi − z| ≤ M , and to
satisfy inequality (9) it is certainly sufficient that

2ρ
M2

ns2
n

≤ 1, or n ≥ 2ρM2

s2
n

, or s2
n ≥

2ρM2

n
. (30)

Conversely, suppose that s2
n <

2ρM2

n . Then we have 2ρs2n
n < 4ρ2M2

n2 , which in turn implies
that

sup
p∈Pn

〈p, z〉 ≥ 1

n
〈1, z〉+

(√
2ρs2

n

n
− 2Mρ

n

)
+

.

Combining this inequality with the condition (30) for the exact expansion to hold yields
the two-sided variance bounds (10).

We now turn to showing the high-probability exact expansion (11), which occurs when-
ever the sample variance is large enough by expression (30). To that end, we show that s2

n

is bounded from below with high probability. Define the event

En :=

{
s2
n ≥

3

64
σ2

}
,

and let n ≥ 4M2

σ2 max {2σ, 11}. Then, on event En we have n ≥ 44ρM2

σ2 ≥ 2ρM2

s2n
, so that the

sufficient condition (30) holds and expression (11) follows. We now argue that the event En
has high probability via the following lemma due to Maurer and Pontil.

Lemma 11 (Maurer and Pontil (2009, Theorem 10)) Let Zi be i.i.d. random vari-

ables taking values in [0,M ], and let s2
n = 1

n

∑n
i=1 Z

2
i −

(
1
n

∑n
i=1 Zi

)2
. Then, for n ≥ 2

P (sn ≤ σ − t) ∨ P (sn ≥ σ + t) ≤ exp

(
− nt2

2M2

)
.

Setting t =
(

1−
√

3
8

)
σ, the final result follows from noting that P(En) ≥ 1− exp

(
− nt2

2M2

)
from the lemma.
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Appendix B. Proof of Theorem 2

Our starting point is to recall from inequality (30) in the proof of Theorem 1 that for

each f ∈ F , the empirical variance equality (12) holds if n ≥ 4ρM2

Var
P̂n

(f) . As a consequence,

Theorem 2 will follow if we can provide a uniform lower bound on the sample variances
Var

P̂n
(f) that holds with high enough probability. We use C to denote a universal constant

whose value may change from line to line. Noting that Var
P̂n

(f) = E
P̂n

(f−E[f ])2−(E
P̂n

(f−
E[f ]))2, we proceed in two parts. First, we give a lower bound for E

P̂n
(f − E[f ])2.

Lemma 12 Let F be a collection of bounded functions f : X → [M0,M1] with M :=
M1 −M0. Then, with probability at least 1− e−t, for every f ∈ F

Var(f) ≤ 2E
P̂n

(f − E[f ])2 + C

[
Rsup
n (F)2 log3(nM) +

M2

n
(t+ log log n)

]
.

Proof We follow the arguments of Srebro et al. (2010) and Bousquet (2002b, Thm. 6.1).
For x1, . . . , xn ∈ X , let

Fn,r :=
{
f − E[f ] | f ∈ F , E

P̂n
[(f − E[f ])2] ≤ r

}
,

where P̂n is the empirical measure on x1, . . . , xn. Let ψsup
n be a sub-root upper bound on

the worst-case Rademacher complexity

ψsup
n (r) ≥ Rsup

n (Fn,r),

where implicitly in the right hand side we take the supremum over x1, . . . , xn definining
Fn,r as well.

Lemma 13 (Srebro et al. (2010, Lemma 2.2)) Let H be a class of bounded functions
X → [−M,M ], and let κ : [−M,M ] → R+ be a bounded function with L-Lipschitz deriva-
tives. Then,

Rsup
n

({
κ ◦ h : h ∈ H,E

P̂n
[κ ◦ h] ≤ r

})
≤ C
√
rRsup

n (H) log
3
2 (Mn).

Since κ(t) = t2 has Lipschitz derivatives, above lemma with H = {f −E[f ] : f ∈ F} yields

Rsup
n (F2

n,r) ≤ C
√
rRsup

n (F) log
3
2 (nM) (31)

where we recall the notation that G2 = {g2 | g ∈ G} for any function class G. Thus we may

take ψsup
n (r) = C

√
rRsup

n (F) log
3
2 n, which has fixed point rsup

n = C2Rsup
n (F)2 log3 n. The

following classical result then shows that the fixed point rsup
n controls generalization of class

of functions F2
n,r. Since f2 ≥ 0, Theorem 6.1 of Bousquet (2002b) yields that for all f ∈ F ,

E(f − E[f ])2 ≤ 2E
P̂n

(f − E[f ])2 + C

[
Rsup
n (F)2 log3 nM +

M2

n
(t+ log log n)

]
with probability at least 1− e−t.

Next, we give an upper bound for (E
P̂n

(f − E[f ]))2. We use the following version of
Talagrand’s inequality due to Bousquet (2002a, 2003). (See also Bartlett et al. (2005, Thm
2.1).)
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Lemma 14 Let r > 0 and F be a class of functions that map X into [a, b] such that for
every f ∈ F , Var(f(X)) ≤ r. Then, with probability at least 1− e−t

sup
f∈F
{E[f ]− E

P̂n
[f ]} ≤ inf

α>0

{
2(1 + α)E[Rn(F)] +

√
2rt

n
+
t

n
(b− a)

(
1

3
+

1

α

)}
.

The same statement holds with supf∈F (E
P̂n

[f ] − E[f ]) replacing the left-hand side of the
inequalities.

Applying Lemma 14 and letting α = 1
2 , with probability at least 1− 2e−t

|E
P̂n

[f ]− E[f ]| ≤ 3E[Rn(F)] + 2M

√
2t

n

holds for all f ∈ F . Combining the above display with Lemma 12, we obtain the desired
result.

Appendix C. Proof of Theorem 3

Before proving the theorem proper, we state a technical lemma that provides uniform
Bernstein-like bounds for the class F using empirical `∞-covering numbers.

Lemma 15 (Maurer and Pontil (2009, Theorem 6)) Let n ≥ 8M2

t and t ≥ log 12.
Then with probability at least 1− 6N∞(F , ε, 2n)e−t, we have

E[f ] ≤ E
P̂n

[f ] + 3

√
2Var

P̂n
(f)t

n
+

15Mt

n
+ 2

(
1 + 2

√
2t

n

)
ε (32)

for all f ∈ F .

We return to the proof of Theorem 3. Let E1 denote that the event that the inequali-
ties (32) hold. Then on E1 hold, uniformly over f ∈ F we have

E[f ] ≤ E
P̂n

[f ] +

√
18Var

P̂n
(f(X))t

n
+

15Mt

n
+ 2

(
1 + 2

√
2t

n

)
ε

(i)

≤ sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)] +

√
2ρVar

P̂n
(f(X))

n

−

√2ρVar
P̂n

(f(X))

n
− 2Mρ

n


+

+
5Mρ

3n
+ 2

(
1 + 2

√
2t

n

)
ε

≤ sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)] +
11

3

Mρ

n
+ 2

(
1 + 2

√
2t

n

)
ε for all f ∈ F , (33)

where inequality (i) follows from the bounds (10) in Theorem 1 and the fact that ρ ≥ 9t by
assumption. This gives the first result (15).
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For the second result (16), we recall that f̂ ∈ argminf∈F supP {EP [f(X)] : Dφ(P ||P̂n) ≤
ρ
n}, and we bound the supremum term in expression (33). First, we note that because f̂
minimizes the supremum term in expression (33), we have

E[f̂ ] ≤ sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)] +
11Mρ

3n
+ 2

(
1 + 2

√
2t

n

)
ε for all f ∈ F .

Now fix f ∈ F . As the function f is fixed, by Bernstein’s inequality, we have

E
P̂n

[f ] ≤ E[f ] +

√
2Var(f)t

n
+

2Mt

3n

with probability at least 1− e−t. Similarly, we have by Lemma 11 that

√
Var

P̂n
(f) ≤

√
Var(f) +

√
2tM2

n

with probability at least 1− e−t. That is, for any fixed f ∈ F , we have with probability at
least 1− 2e−t that

sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f(X)]
(i)

≤ E
P̂n

[f ] +

√
2ρVar

P̂n
(f)

n

≤ E[f ] +

√
2Var(f)t

n
+

2M

3n
t+

√
2ρVar(f)

n
+

2
√
M2ρt

n
(ii)

≤ E[f ] + 2

√
2Var(f)ρ

n
+

8

3

Mρ

n
,

where inequality (i) follows from the uniform upper bound (10) of Theorem 1 and in-
equality (ii) from our assumption that ρ ≥ t. Substituting this expression into our earlier
bound (33) yields that for any f ∈ F , with probability at least

1− 2(3N∞ (F , ε, 2n) + 1)e−t,

we have

E[f̂(X)] ≤ E[f(X)] + 2

√
2ρVar(f(X))

n
+

19

3

Mρ

n
+ 2

(
1 + 2

√
2t

n

)
ε.

This gives the theorem.

Appendix D. Proof of Theorem 6

We first show the following version of uniform Bernstein’s inequality with Rademacher
complexities. The proof uses a peeling technique (Bartlett et al., 2005; van de Geer, 2000),
in conjuction with Talagrand’s concentration inequality (Lemma 14).
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Lemma 16 Let r > 0 and F be a collection of bounded functions f : X → [0,M ] with
Var(f(X)) ≤ r. Then, with probability at least 1− e−t, for every f ∈ F

E[f ] ≤ E
P̂n

[f ] +

√
2eVar(f)

n

(
t+ log

⌈
log

nr

M2t

⌉)
+ 6E[Rn(F)] +

7M

n

(
t+ log

⌈
log

nr

M2t

⌉)
.

The same statements hold with the roles of E[f ] and E
P̂n

[f ] reversed.

We defer the proof to section D at the end of this section. Because Var(f) ≤ M2 for all
f ∈ F , Lemma 16 also holds if we replace the terms

⌈
log nr

M2t

⌉
with

⌈
log n

t

⌉
≤ 1 + log n

t .
Next, we show an important extension of Lemma 16 that replaces the Rademacher

complexity term E[Rn(F)] by a local quantity r?n, the fixed point of ψn(r). To this end, we
use another peeling argument and apply Lemma 16 to the self-normalized class

Gr :=

{√
r

E[f2] ∨ r
f : f ∈ F

}
⊆
{
cf : f ∈ F ,E[c2f2] ≤ r, c ∈ [0, 1]

}
.

This idea follows the techniques of Bartlett et al. (2005, Thm. 3.3), though we use a type of
self-normalizing scale, that is, f/

√
E[f2], whereas they use a variance-normalizing scaling by

studying classes of functions of the form f/E[f2]. Our use of this alternative normalization
is important in the next lemma, which allows us to obtain bounds that apply to the robustly
regularized risk.

Lemma 17 Let F be a collection of bounded functions f : X → [0,M ] satisfying the local-
ization inequality (20) for some sub-root function ψn(·) with root r?n. Let Bn = 1

n

(
t+ log

⌈
log n

t

⌉)
.

Then with probability at least 1− e−t, for every f ∈ F

E[f ] ≤ E
P̂n

[f ] +
(√

2eBn + 6
√
r?n + 7MBn/3

)√
E[f2] + 6r?n + 14MBn.

The same statement holds with the roles of E[f ] and E
P̂n

[f ] reversed.

See Section D.1 for the proof.
Next, we give an analogous result for f2.

Lemma 18 Let F be a collection of bounded functions f : X → [0,M ] satisfying the
localization inequality (20) for some sub-root function ψn(·) with root r?n. Let η > 0. Then,
with probability at least 1− e−t, for every f ∈ F

E[f2] ≤ E
P̂n

[f2] +
1

η
E
P̂n

[f2] + 72M2(1 + η)r?n +
Mt

n

(
4 +

7

3
M

)
.

Also, with probability at least 1− e−t, for every f ∈ F

E
P̂n

[f2] ≤ E[f2] +
η

1 + η
E[f2] + 72M2(1 + η)r?n +

Mt

n

(
4 +

7

3
M

)
.

See Section D.2 for the proof.
Now, we make two additional pieces of shorthand notation. Let

Vn = 4((2e+ 84M)Bn + 36r?n).
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Then, Lemma 17 implies that

E[f ] ≤ E
P̂n

[f ] +
√
VnE[f2] + 6r?n + 14MBn

with probability at least 1− e−t. Applying Lemma 18 to this bound with the choice η = 1
immediately yields that

E[f ] ≤ E
P̂n

[f ] +
√

2VnEP̂n [f2] + 144M2Vnr?n + 7VnM max{M, 1}t/n+ 6r?n + 14MBn

≤ E
P̂n

[f ] +
√

2VnEP̂n [f2] + 12M

√
Vn

(
r?n +

7 max{M, 1}
M

t

n

)
+ 6r?n + 14MBn

for all f ∈ F with probability at least 1 − 2e−t. Subtracting and adding (E
P̂n

[f ])2 to the
second term, we have√

2VnEP̂n [f2] =
√

2VnVar
P̂n

(f) + 2VnEP̂n [f ]2 ≤
√

2VnVar
P̂n

(f) +
√

2VnEP̂n [f ],

where we have used that f ≥ 0. We thus obtain

E[f ] ≤
(

1 +
√

2Vn

)
E
P̂n

[f ] +
√

2VnVar
P̂n

(f) + 12M

√
Vn

(
r?n +

7 max{M, 1}
M

t

n

)
+ 6r?n + 14MBn

≤
(

1 +
√

2Vn

)
E
P̂n

[f ] +
√

2VnVar
P̂n

(f) + 6MVn + 6M

(
r?n +

7 max{M, 1}t
Mn

)
+ 6r?n + 14MBn,

where the second inequality follows because
√
ab ≤ 1

2a + 1
2b for a, b ≥ 0. Recalling the

bound (21), which implies ρ ≥ nVn, ρ ≥ n(r?n + 7 max{M,1}t
Mn ), and ρ/n ≥ 6r?n + 14MBn, we

obtain that

E[f ] ≤

(
1 +

√
2ρ

n

)
E
P̂n

[f ] +

√
2ρ

n
Var

P̂n
(f) +

13Mρ

n
.

Theorem 1 implies E
P̂n

[f ] +
√

2ρ
n Var

P̂n
(f) ≤ sup

P :Dφ(P ||P̂n)≤ ρ
n
EP [f(X)] + 2Mρ

n , so we im-

mediately we arrive at

E[f ] ≤

(
1 + 2

√
2ρ

n

)
sup

P :Dφ(P ||P̂n)≤ ρ
n

EP [f(X)] +

(
13 + 4

√
2ρ

n

)
Mρ

n

for all f ∈ F with probability at least 1− 2e−t. This is the first result (22).
To show the second result, we simply apply Bernstein’s inequality and the concentration

inequalities for the standard deviation in Lemma 11. For any fixed f ∈ F , by Bernstein’s
inequality, we have

E
P̂n

[f ] ≤ E[f ] +

√
2tVar(f)

n
+

2Mt

3n

with probability at least 1− e−t. From Lemma 11, we have√
Var

P̂n
(f) ≤

√
Var(f) +

√
2tM2

n
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with probability at least 1− e−t.
We thus obtain that for any fixed f ,

sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f ] ≤ E
P̂n

[f ]+

√
2ρ

n
Var

P̂n
(f) ≤ E[f ]+

√
2t

n
Var(f)+

√
2ρ

n
Var(f)+

2M
√
ρt

n
+

2Mt

3n

with probability at least 1−2e−t. Noting that ρ ≥ 45Mt by assumption (21), so
√
ρ+
√
t ≤√

46ρ/45 + 45t ≤
√

91ρ/45 and that always 2
√
ρt ≤ 3ρ+ 1

3 t, we have that with probability
at least 1− 2e−t that

sup
P :Dφ(P ||P̂n)≤ ρ

n

EP [f ] ≤ E[f ] +

√
91ρ

45n
Var(f) +

3Mρ

n
+
Mt

n
.

Noting that we could take f to minimize the right hand side of the preceding expression
and that f̂ minimizes sup

P :Dφ(P ||P̂n)≤ρ/n EP [f ], we have the result (23).

We first show the claim for g ∈ Fcentered = {f − E[f ] : f ∈ F}. To see the claim for
g ∈ Fcentered, let us fix L ∈ N to be chosen later, and for l = 1, . . . , L− 1 define the classes

Fl :=
{
g ∈ Fcentered : e−lr < E[g2] ≤ e−(l−1)r

}
, FL :=

{
g ∈ Fcentered : E[g2] ≤ e−Lr

}
so that Fcentered = ∪Ll=1Fl. Let z > 0 be such that t ≤ z. Applying Lemma 14 (with the
choice α = 1

2) to Fl for each l = 1, . . . , L− 1, we have with probability at least 1− e−t, for
every g ∈ Fl

E[g] ≤ E
P̂n

[g] +

√
2te−(l−1)r

n
+ 3E[Rn(Fl)] + 5M

t

n

≤ E
P̂n

[g] +

√
2et

n
E[g2] + 3E[Rn(Fl)] + 5M

t

n

where in the last line we have used e−lr ≤ E[g2] for g ∈ Fl. Similarly, applying Lemma 14
to FL, then with probability at least 1− e−t, for every g ∈ FL

E[g] ≤ E
P̂n

[g] +

√
2te−Lr

n
+ 3E[Rn(FL)] + 5M

t

n

≤ E
P̂n

[g] +

√
2et

n
E[g2] +

√
2te−Lr

n
+ 3E[Rn(FL)] + 5M

t

n
.

Taking a union bound, we have with probability at least 1− Le−t, for every g ∈ Fcentered

E[g] ≤ E
P̂n

[g] +

√
2et

n
E[g2] + 3E[Rn(Fcentered)] + 5M

t

n
+

√
2te−Lr

n
.

Noting that E[Rn(Fcentered)] ≤ 2E[Rn(F)] by Jensen’s inequality, we take L =
⌈
log rn

M2t

⌉
and map t to t + logL to obtain the lemma. The case when the roles of E[f ] and E

P̂n
[f ]

are reversed follows similarly.
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D.1. Proof of Lemma 17

Let r ≥ r?n be an arbitrary but fixed value to be choosen later. Using this r, define the
self-normalized class of functions

Gr :=

{√
r

E[f2] ∨ r
f : f ∈ F

}
⊆
{
cf : f ∈ F ,E[c2f2] ≤ r, c ∈ [0, 1]

}
.

From the truncation by r, we have E[g2] ≤ r for all g ∈ Gr. Lemma 16 implies that with
probability at least 1− e−t, uniformly over g ∈ Gr

E[g] ≤ E
P̂n

[g] +

√
2e

n
E[g2]

(
t+ log

⌈
log

n

t

⌉)
+ 6E[Rn(Gr)] +

7M

n

(
t+ log

⌈
log

n

t

⌉)
. (34)

Using the sub-root property of ψn and that ψn(r?n) = r?n, we have the inequality

ψn(r) =
√
rψn(r)/

√
r ≤
√
rψn(r?n)/

√
r?n =

√
rr?n

for any r ≥ r?n, so

E[RnGr] ≤ E[Rn

{
cf : f ∈ F ,E[c2f2] ≤ r, c ∈ [0, 1]

}
] ≤ ψn(r) ≤

√
rr?n

Using this upper bound in Eq. (34) and recalling the notation Bn = 1
n

(
t+ log

⌈
log n

t

⌉)
, we

get

E[g] ≤ E
P̂n

[g] +
√

2eBnE[g2] + 6
√
r?nr + 7MBn. (35)

Now, we return to choose the value r to optimize the bound (35). let r be the largest
solution to 6

√
r?nr + 7MBn = 6r. The following elementary lemma provides a bound on r.

Lemma 19 Let x be the largest solution to ax + b = x2

d where a, b, d > 0. Then a2d2 ≤
x2 ≤ a2d2 + 2bd.

Proof From the quadratic formula, we have x = 1
2

(
ad+

√
a2d2 + 4b

)
from which the

lower bound follows. From convexity of z 7→ z2 and
√
z1 + z2 ≤

√
z1 +

√
z2 for z1, z2 > 0,

we obtain the upper bound.

Lemma 19 immediately yields

r?n ≤ r ≤ r?n +
7MBn

3
.

For each g ∈ Gr, there exists f ∈ F such that g =
√

r
E[f2]∨rf . If E[f2] ≤ r, we have

g = f and the bound (35) yields

E[f ] ≤ E
P̂n

[f ] +
√

2eBnE[f2] + 6r?n + 14MBn.

If E[f2] > r, rescaling g in the bound (35) and using the choice 6r = 6
√
r?nr+ 7MBn yields

E[f ] ≤ E
P̂n

[f ] +
√

2eBnE[f2] + 6
√
rE[f2]

≤ E
P̂n

[f ] +
√

2eBnE[f2] + 6
√

(r?n + 7MBn/3)E[f2]
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instead. Combining the cases E[f2] ≶ r, we conclude that for all f ∈ F ,

E[f ] ≤ E
P̂n

[f ] +
(√

2eBn + 6
√
r?n + 7MBn/3

)√
E[f2] + 6r?n + 14MBn

with probability at least 1 − e−t. Similarly, we can reverse the roles of E[f ] and E
P̂n

[f ] to
get the second result.

D.2. Proof of Lemma 18

We frequently use the Rademacher contraction principle (Ledoux and Talagrand, 1991,
Thm. 4.12) in what follows.

Lemma 20 Let φ : R→ R be L-Lipschitz. Then, for every class G

Eε[Rn(φ ◦ G)] ≤ LEε[Rn(G)]

where φ ◦ G = {φ ◦ f : f ∈ G}.

As in Section D.1, define the self-normalized functions in F

Gr :=

{√
r

E[f2] ∨ r
f : f ∈ F

}
⊆
{
cf : f ∈ F ,E[c2f2] ≤ r, c ∈ [0, 1]

}
where r ≥ r?n will be choosen later. Let G2

r = {g2 : g ∈ Gr}. From the truncation by r, we
have that for all g2 ∈ G2

r , Var(g2) ≤ E[g4] ≤M2E[g2] ≤M2r. Let c1 = 3 and c2 = 7
3 . Then

by Lemma 14 applied to G2
r , with probability at least 1− e−t, for every g ∈ Gr

E[g2] ≤ E
P̂n

[g2] + c1E[Rn(G2
r )] +M

√
2rt

n
+ c2

M2t

n
(a)

≤ E
P̂n

[g2] + 2c1ME[Rn(Gr)] +M

√
2rt

n
+
c2M

2t

n
(b)

≤ E
P̂n

[g2] + 2c1M
√
rr?n +M

√
2rt

n
+
c2M

2t

n
(36)

where in step (a) we used the contraction principle (Lemma 20) and that x 7→ x2 is 2M -
Lipschitz on [−M,M ], and in step (b), we used that ψn(r) ≤

√
rr?n as in the proof of

Lemma 17 in Section D.1.

Let A = 2c1M
√
r?n + M

√
2t
n and D = c2M2t

n . For any fixed K > 1, choose r to be the

largest solution to A
√
r +D = r

K so that the bound (36) becomes

E[g2] ≤ E
P̂n

[g2] +
r

D
.

From Lemma 19, we have
K2A2 ≤ r ≤ K2A2 + 2KD

and in particular, r ≥ K2A2 ≥ r?n. For each g ∈ Gr, there exists f ∈ F such that

g =
√

r
E[f2]∨rf . If E[f2] ≤ r, rescaling the inequality (36) and using the upper bound on r,

we obtain
E[f2] ≤ E

P̂n
[f2] +

r

K
≤ E

P̂n
[f2] +KA2 + 2D.
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If E[f2] > r, rescaling instead yields

E[f2] ≤ E
P̂n

[f2] +
E[f2]

K
.

Combining the two cases, we obtain

E[f2] ≤ K

K − 1
E
P̂n

[f2] +KA2 + 2D.

Noting that A ≤ 2
(

4c2
1M

2r?n + 2M
2t
n

)
by convexity, we have the first result once we replace

K with η = K − 1 > 0. The second result similarly follows by reversing the roles of E[f ]
and E

P̂n
[f ] in the above argument.

Appendix E. Proof of Theorem 8

Recall our shorthand notation that π(θ) = argminθ∗∈S?{‖θ − θ
∗‖2} denotes the Euclidean

projection of θ onto S?, which is a closed convex set. Define also the localized empirical
deviation function

∆n(θ) := E [`(θ;X)− `(π(θ);X)]− E
P̂n

[`(θ;X)− `(π(θ);X)] . (37)

We begin with the following

Claim 21 If Ŝε? 6⊂ S2ε
? , then

sup
θ∈S2ε

?

{
∆n(θ) +

√
2ρ

n
Var

P̂n
(`(θ;X)− `(π(θ);X))

}
≥ ε. (38)

Deferring the proof of the claim, let us prove the theorem. First, the growth condition (26)
shows that

S2ε
? ⊂

{
θ ∈ Θ : ‖θ − π(θ)‖2 ≤

(
2ε

λ

) 1
γ

}
=

{
θ ∈ Θ : dist(θ, S?) ≤

(
2ε

λ

) 1
γ

}
.

Therefore, we have for all θ ∈ S2ε
? that

Var
P̂n

(`(θ;X)− `(π(θ);X)) ≤ L2 dist(θ, S?)
2 ≤ L2

(
2ε

λ

) 2
γ

,

and so by the assumption (27) that ε ≥ (8L2ρ
n )

γ
2(γ−1) ( 2

λ)
1

γ−1 , we have√
2ρ

n
Var

P̂n
(`(θ;X)− `(π(θ);X)) ≤ L

√
2ρ

n

(
2ε

λ

) 1
γ

≤ ε

2
.

In particular, if the event (38) holds then

sup
θ∈S2ε

?

∆n(θ) ≥ ε

2
,
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and recalling the definition (37) of ∆n, it then follows that

P
(
Ŝε? 6⊂ S2ε

?

)
≤ P

(
sup
θ∈S2ε

?

∆n(θ) ≥ ε

2

)
. (39)

To bound the probability (39), we use standard bounded difference and symmetriza-
tion arguments (e.g. Boucheron et al., 2013, Theorem 6.5). Letting f(X1, . . . , Xn) :=
supθ∈S2ε

?
∆n(θ), the function f satisfies bounded differences:

sup
x,x′∈X

|f(X1, · · · , Xj−1, x,Xj+1, · · · , Xn)− f(X1, · · · , Xj−1, x
′, Xj+1, · · · , Xn)|

≤ sup
x,x′∈X

sup
θ∈S2ε

?

∣∣∣∣ 1n(`(θ;x)− `(π(θ);x))− 1

n
(`(θ;x′)− `(π(θ);x′))

∣∣∣∣
≤ 2L

n
sup
θ∈S2ε

?

dist(θ, S?) ≤
2L

n

(
2ε

λ

) 1
γ

for j = 1, . . . , n. Using the standard symmetrization inequality E[supθ∈S2ε
?

∆n(θ)] ≤ 2E[Rn(S2ε
? )]

and the bounded differences inequality (Boucheron et al., 2013, Theorem 6.5), we have

P

(
sup
θ∈S2ε

?

∆n(θ) ≥ 2E[Rn(S2ε
? )] + t

)
≤ exp

(
− nt

2

2L2

(
λ

2ε

) 2
γ

)

for all t ≥ 0. Letting u = nt2

2L2

(
λ
2ε

) 2
γ above and recalling the assumption (27) upper bound-

ing E[Rn(S2ε
? )], we have P(supθ∈S2ε

?
∆n(θ) ≥ ε

2) ≤ e−u. The theorem follows from the
bound (39).

Proof of Claim 21 If Ŝε? 6⊂ S2ε
? , then certainly it is the case that there is some θ ∈ Θ\S2ε

?

such that
Rn(θ,Pn) ≤ inf

θ∈Θ
Rn(θ,Pn) + ε ≤ Rn(π(θ),Pn) + ε.

Using the convexity of Rn, we have for all t ∈ [0, 1] that

Rn(tθ + (1− t)π(θ),Pn) ≤ tRn(θ,Pn) + (1− t)Rn(π(θ),Pn) ≤ Rn(π(θ),Pn) + tε.

For all t ∈ [0, 1], we have by definition of orthogonal projection (because the vector θ −
π(θ) belongs to the normal cone to S? at π(θ); cf. (Hiriart-Urruty and Lemaréchal, 1993,
Prop. III.5.3.3)) that π(tθ+(1−t)π(θ)) = π(θ). Thus, choosing t appropriately, there exists
θ′ ∈ bdS2ε

? with θ′ = tθ + (1− t)π(θ), π(θ′) = π(θ), and Rn(θ′,Pn) ≤ Rn(π(θ′),Pn) + ε.
Adding and subtracting the risk R(θ) and R(π(θ)), we have that for some θ ∈ bdS2ε

?

that
Rn(θ,Pn)−R(θ) +R(π(θ))−Rn(π(θ),Pn) ≤ R(π(θ))−R(θ) + ε ≤ −ε,

where we have used that R(θ) = R(π(θ)) + 2ε by construction. Multiplying by −1 on each
side of the preceding display and taking suprema, we find that

ε ≤ sup
θ∈S2ε

?

{R(θ)−Rn(θ,Pn)− (R(π(θ))−Rn(π(θ),Pn))}

≤ sup
θ∈S2ε

?

sup
P :Dφ(P ||P̂n)≤ρ/n

{R(θ)−R(π) + EP [`(π(θ);X)− `(θ;X)]} .

Applying the upper bound in inequality (10) of Theorem 1 gives the claim.
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Appendix F. Proof of Theorem 10

We begin by establishing a few technical lemmas, after which the proof of the theorem
follows essentially standard arguments in asymptotics. To prove Theorem 10, we first show
that (eventually) we have the exact expansion

Rn(θ,Pn) = E
P̂n

[`(θ,X)] +

√
2ρVar

P̂n
(`(θ,X))

n

for all θ in a neighborhood of θ?. As in the proof of Theorem 1, this exact equality holds
once there is suitable variability in the values `(θ,Xi) over i = 1, . . . , n, however, we require
a bit more care as the values `(θ,Xi) may be unbounded below and above. Heuristically,

however, assuming that we have this exact expansion and that θ̂ rob
n − θ? = OP (n−

1
2 ), then

we can write the expansions

0 = ∇θRn(θ̂ rob
n ,Pn)

= ∇ 1

n

n∑
i=1

`(θ?, Xi) +∇2

(
1

n

n∑
i=1

`(θ?, Xi)

)
(θ̂ rob
n − θ?) +∇

√
2ρVar

P̂n
(`(θ̂ rob

n , X))

n
+ oP (n−

1
2 )

=
1

n

n∑
i=1

∇`(θ?, Xi) +∇2R(θ?)(θ̂ rob
n − θ?) +∇

√
2ρVar(`(θ?, X))

n
+ oP (n−

1
2 ).

Multiplying by
√
n and solving for θ̂ rob

n in the preceding expression, computing∇
√

Var(`(θ?, X))
then yields the theorem.

The remainder of the proof makes this heuristic rigorous, and the outline is as follows:

1. We show that there is a uniform expansion of the form (12) in a neighborhood of θ?.
(See Section F.1.)

2. Using the uniform expansion, we can then leverage standard techniques for asymptotic
analysis of finite-dimensional estimators (see, e.g. van der Vaart and Wellner (1996)
or Lehmann and Casella (1998)), which proceed by performing a Taylor expansion of
the objective in a neighborhood of the optimum and using local asymptotic normality
arguments. (See Section F.2.)

F.1. The uniform variance expansion

To lighten notation, we define a few quantities similar to those used in the proof of Theo-
rem 1. Let

Z(θ) := `(θ,X)− E[`(θ,X)]

be the deviation of `(θ,X) around its mean (the risk), and similarly let Zi(θ) be the version
of this quantity for observation Xi. In addition, let s2

n(θ) = Var
P̂n

(Z(θ)) be the empirical
variance of Z(θ), which is identical to the empirical variance of `(θ,X).

Now, recall the problem

maximize
P

EP [Z(θ)] subject toDφ(P ||P̂n) ≤ ρ

n
,
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and for each θ ∈ Θ, let p(θ) = argmaxp∈Pn
∑n

i=1 piZi(θ) be the solution (probability)
vectors. Following expression (9) we see for any ε ≥ 0 that

min
i∈[n]

√
2ρ(Zi(θ)− Z(θ))√

nsn(θ)
≥ −1 for all θ ∈ θ? + εB

is sufficient for the exact variance expansion to hold. We now show that this is indeed likely.
Let ε > 0 be small enough that Assumption A holds, that is, the random Lipschitz function
L(X) satisfies |`(θ, x)− `(θ′, x)| ≤ L(x)‖θ − θ′‖ for θ, θ′ ∈ θ? + εB. Then because∣∣√nsn(θ)−

√
nsn(θ′)

∣∣ ≤ sup
u:‖u‖2≤1

n∑
i=1

ui
(
`(θ,Xi)− `(θ′, Xi)

)
≤ sup

u:‖u‖2≤1

n∑
i=1

uiL(Xi)
∥∥θ − θ′∥∥ ≤

√√√√ n∑
i=1

L2(Xi)
∥∥θ − θ′∥∥

so θ 7→ sn(θ) is
√

1
n

∑n
i=1 L(Xi)2-Lipschitz for θ ∈ θ? + εB, we have

inf
θ∈θ?+εB

min
i∈[n]

{√
2ρ(Zi(θ)− Z(θ))√

nsn(θ)

}
≥ min

i∈[n]

√
2ρ(Zi(θ

?)− Z(θ?)− 2εL(Xi))√
n
(
sn(θ?)− ε

√
1
n

∑n
j=1 L(Xj)2

) .
Summarizing our development thus far, we have the following lemma.

Lemma 22 Let the conditions of the previous paragraph hold. Then

min
i∈[n]

{√
2ρ(Zi(θ

?)− Z(θ?)− 2εL(Xi))
}
≥
√
n

√√√√sn(θ?)− ε
(

1

n

n∑
i=1

L(Xi)2

) 1
2

implies that

Rn(θ,Pn) = E
P̂n

[`(θ,X)] +

√
2ρ

n
Var

P̂n
(`(θ,X)) for all θ ∈ θ? + εB.

Now, we use the following standard result to show that the conditions of Lemma 22
eventually hold with probability one.

Lemma 23 (Owen (Owen, 1990), Lemma 3) Let Yi be independent random variables

with supi E[Y 2
i ] <∞. Then n−

1
2 max1≤i≤n |Yi|

a.s.→ 0.

Based on Lemma 23 and the strong law of large numbers, we see immediately that

1√
n

max
1≤i≤n

|Zi(θ?)|
a.s.→ 0, and

1√
n

max
1≤i≤n

L(Xi)
a.s.→ 0,

because E[Z(θ?)2] < ∞ and E[L(Xi)
2] < ∞. Applying the strong law of large numbers to

obtain

sn(θ?)
a.s.→
√

Var(`(θ?, X)) and

√√√√ 1

n

n∑
i=1

L(Xi)2 a.s.→
√
E[L(X)2],

we see immediately that for small enough ε > 0, the condition of Lemma 22 holds eventually
with probability 1. That is, the following uniform expansion holds.
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Lemma 24 There exists ε > 0 such that, with probability 1, there exists an N (which may
be random) such that n ≥ N implies

Rn(θ,Pn) = E
P̂n

[`(θ,X)] +

√
2ρVar

P̂n
(`(θ,X))

n
for all θ ∈ θ? + εB.

F.2. Asymptotics and Taylor expansions

Let En,exact be the event that the exact variance expansion of Lemma 24 occurs for θ ∈
θ? + εB. Now that we know that P(En,exact eventually) = 1, we may perform a few asymp-
totic expansions of the variance-regularized objective to provide the convergence guarantees
specified by the theorem. We use the following lemma.

Lemma 25 Let the conditions of the theorem hold. If

θ̂ rob
n ∈ argmin

θ
Rn(θ,Pn) then θ̂ rob

n
a.s.→ θ?. (40)

The proof is standard, but for completeness we include it in Section G.3.

By combining Lemmas 24 and 25, we see that with probability 1, for any ε > 0, we
eventually have both

‖θ̂ rob
n − θ?‖2 < ε and Rn(θ̂ rob

n ,Pn) = E
P̂n

[`(θ̂ rob
n , X)] +

√
2ρ

n
Var

P̂n
(`(θ̂ rob

n , X)).

Assume for the remainder of the argument that both of these conditions hold. Standard
results on subdifferentiability of maxima of collections of convex functions (Hiriart-Urruty
and Lemaréchal, 1993, Chapter X) give that Rn(θ,Pn) is differentiable near θ?, and thus

0 = ∇Rn(θ̂ rob
n ,Pn) = E

P̂n
[∇`(θ̂ rob

n , X)] +∇
√

2ρ

n
Var

P̂n
(`(θ̂ rob

n , X))

=
1

n

n∑
i=1

∇`(θ̂ rob
n , Xi) +

√
2ρ

n

E
P̂n

[
(∇`(θ̂ rob

n , X)− E
P̂n

[∇`(θ̂ rob
n , X)])(`(θ̂ rob

n , X)− E
P̂n

[`(θ̂ rob
n , X)])

]
√

Var
P̂n

(`(θ̂ rob
n , X))

.

(41)

Because θ̂ rob
n

a.s.→ θ?, by the continuous mapping theorem and local uniform convergence of
the empirical expectations E

P̂n
[·] to E[·], the second term of expression (41) satisfies

E
P̂n

[
(∇`(θ̂ rob

n , X)− E
P̂n

[∇`(θ̂ rob
n , X)])(`(θ̂ rob

n , X)− E
P̂n

[`(θ̂ rob
n , X)])

]
√

Var
P̂n

(`(θ̂ rob
n , X))

=
Cov(∇`(θ?, X), `(θ?, X))√

Var(`(θ?, X))︸ ︷︷ ︸
=:b(θ?)

+oP (1).

For simplicity, we let b(θ?) denote the final term, which we shall see becomes an asymptotic
bias. Thus, performing a Taylor expansion of the terms ∇`(θ̂ rob

n , Xi) around θ? in equal-
ity (41), there exist (random) error matrices En(Xi), where ‖En(Xi)‖ ≤ H(Xi)‖θ̂ rob

n − θ?‖
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by Assumption A, such that

0 = E
P̂n

[∇`(θ?, X)] +
1

n

n∑
i=1

(
∇2`(θ?, Xi) + En(Xi)

)
(θ̂ rob
n − θ?) +

√
2ρ

n
(b(θ?) + oP (1))

= E
P̂n

[∇`(θ?, X)] +
(
∇2R(θ?) + oP (1)

)
(θ̂ rob
n − θ?) +

√
2ρ

n
(b(θ?) + oP (1)).

Multiplying both sides by
√
n, using that ∇2R(θ?) + oP (1) is eventually invertible, and

applying the continuous mapping theorem, we have

√
n(θ̂ rob

n − θ?) = −(∇2R(θ?) + oP (1))−1 1√
n

n∑
i=1

∇`(θ?, Xi)−
√

2ρb(θ?) + oP (1).

The first term on the right side of the above display converges in distribution to a N(0,Σ)
distribution, where

Σ = (∇2R(θ?))−1 Cov(∇`(θ?, X))(∇2R(θ?))−1,

so that √
n(θ̂ rob

n − θ?) d→ N
(
−
√

2ρ b(θ?),Σ
)

as claimed in the theorem statement.

Appendix G. Proofs of Technical Lemmas

G.1. Proof of Inequality (24)

Define the Gaussian complexity

Gn({` ◦ H}≤r) := E

[
sup

h∈BH,c∈[0,1]

∑
gic`(h(xi), yi) | E[`(h(X), Y )2] ≤ r/c2

]
, (42)

where gi
iid∼ N(0, 1) (here we recall the standard result (Bartlett and Mendelson, 2002) that

Gaussian complexity upper bounds Rademacher complexities up to a constant). Now, the
set h − h? such that h ∈ BH is contained in 2BH, which is convex. Moreover, we have
E[`(h(X), Y )2] = E[(h(X)− h?(X))2] + σ2, and so we have for any c that

{h ∈ BH | c2E[`(h(X), Y )2] ≤ r} ⊂ {h ∈ BH | E[(h(X)− h?(X))2] ≤ r/c2},

and E[`(h(X), Y )2] ≤ r/c2 also implies σ2 ≤ r/c2. Returning to expression (42) and
enlarging the sets over which we take suprema, we thus obtain

Gn(` ◦ H) ≤ E

[
sup

h∈BH,c1,c2∈[0,1]

n∑
i=1

gi|c1(h(xi)− h?(xi))− c2ξi| | E[(h(X)− h?(X))2] ≤ r

c2
1

, σ2 ≤ r

c2
2

]

≤ E

[
sup

f∈2BH,c∈[0,1]

n∑
i=1

gi|f(xi)− cξi| | E[f(X)2] ≤ r, σ2 ≤ r/c2

]
,
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where we have used that h − h? ∈ 2BH and that the set BH is convex to obtain the
second inequality. We now upper bound the final display using the classical Sudakov-
Fernique comparison theorem (e.g. Chatterjee, 2005). Indeed, define the two Gaussian
processes indexed by f ∈ H and c ∈ [0, 1] by Yf,c =

∑n
i=1 gi|f(xi) − cξi| and Zf,c =∑n

i=1 gif(xi) + c
∑n

i=1wiξi, where gi
iid∼ N(0, 1) and wi

iid∼ N(0, 1). Then we have for any
f1, f2 ∈ H and c1, c2 ∈ [0, 1] that

E[(Yf1,c1 − Yf2,c2)2] =

n∑
i=1

(|f1(xi)− c1ξi| − |f2(xi)− c2ξi|)2

≤
n∑
i=1

(f1(xi)− f2(xi) + (c2 − c1)ξi)
2

≤ 2

n∑
i=1

(f1(xi)− f2(xi))
2 + 2(c2 − c1)2

n∑
i=1

ξ2
i .

Moreover, E[(Zf1,c1 − Zf2,c2)2] =
∑n

i=1(f1(xi) − f2(xi))
2 + (c1 − c2)2

∑n
i=1 ξ

2
i . Thus, the

Sudakov-Fernique inequality guarantees that E[supf,c Yf,c] ≤
√

2E[supf,c Zf,c], and

Gn(` ◦ H) . E

[
sup
f∈2BH

n∑
i=1

gif(xi) | E[f(X)2] ≤ r

]
+ E

[
sup
c∈[0,1]

c
n∑
i=1

wiξi | c2σ2 ≤ r

]
.

The last term in the expression has bound
√
nr by Jensen’s inequality and the relaxation

that c ∈ [−1, 1]. For the first term, Mendelson (2003, Thm. 2.1) shows that for RKHS with
kernel eigenvalues λ1, λ2, . . ., we have

E

[
sup
f∈2BH

n∑
i=1

gif(Xi) | E[f(X)2] ≤ r

]
.
√
n

 ∞∑
j=1

min{λj , r}

 1
2

,

which yields our desired claim (24).

G.2. Proof of Lemma 7

Defining Ny := card{i ∈ [n] : Xi = y} for y ∈ {−1, 0, 1}, we immediately obtain

E
P̂n

[`(θ;X)] =
1

n
[N−1|θ + 1|+N1|θ − 1|+N0|θ| − (n−N0)] ,

because N1 + N−1 + N0 = n. In particular, we find that the empirical risk minimizer θ
satisfies

θ̂ erm
n := argmin

θ∈R
E
P̂n

[`(θ;X)] =


1 if N1 > N0 +N−1

−1 if N−1 > N0 +N1

∈ [−1, 1] otherwise.

On the events N1 > N−1 +N0 or N−1 > N0 +N1, which are disjoint, then, we have

R(θ̂ erm
n ) = δ = R(θ?) + δ.
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Let us give a lower bound on the probability of this event. Noting that marginally N1 ∼
Bin(n, 1−δ

2 ) and using N0 +N−1 = n−N1, we have N1 > N0 +N−1 if and only if N1 >
n
2 ,

and we would like to lower bound

P
(
N1 >

n

2

)
= P

(
Bin

(
n,

1− δ
2

)
>
n

2

)
= P

(
Bin

(
n,

1 + δ

2

)
<
n

2

)
.

Letting Φ(t) = 1√
2π

∫ t
−∞ e

−u2/2du denote the standard Gaussian CDF, then Zubkov and

Serov (2013) show that

P
(
N1 ≥

n

2

)
≥ Φ

(
−

√
2nDkl

(
1

2
||1 + δ

2

))
where Dkl (p||q) = p log p

q + (1 − p) log 1−p
1−q denotes the binary KL-divergence. We have by

standard bounds on the KL-divergence (Tsybakov, 2009, Lemma 2.7) that Dkl(
1
2 ||

1+δ
2 ) ≤

δ2

2(1−δ2)
, so that

P
(
N1 >

n

2
or N−1 >

n

2

)
≥ 2Φ

(
−
√

nδ2

1− δ2

)
− 2P

(
N1 =

n

2

)
.

For n odd, the final probability is 0, while for n even, we have

P
(
N1 =

n

2

)
= 2−n

(
n

n/2

)
(1− δ2)n/2 ≤ (1− δ2)n/2

√
2

πn
,

where the inequality uses that
(

2n
n

)
≤ 4n√

πn
by Stirling’s approximation. Summarizing, we

find that

P
(
N1 >

n

2
or N−1 >

n

2

)
≥ 2Φ

(
−
√

nδ2

1− δ2

)
− (1− δ2)n/2

√
8

πn
.

G.3. Proof of Lemma 25

Under the conditions of the theorem, the compactness of θ? + εB guarantees that

sup
θ∈θ?+εB

|E
P̂n

[`(θ,X)]−R(θ)| a.s.→ 0,

as the functions θ 7→ `(θ, x) are Lipschitz in a neighborhood of θ? by Assumption A.
Similarly,

sup
θ∈θ?+εB

∣∣∣Var
P̂n

(`(θ,X))−Var(`(θ,X))
∣∣∣ a.s.→ 0,

using the local Lipschitzness of ∇2`. (See, for example, the Glivenko-Cantelli results
in Chapters 2.4–2.5 of van der Vaart and Wellner (1996).) Thus, using the two-sided
bounds (10) of Theorem 1, we have that

sup
θ∈θ?+εB

|Rn(θ,Pn)−R(θ)|

≤ sup
θ∈θ?+εB

∣∣∣EP̂n [`(θ,Pn)]−R(θ)
∣∣∣+

√
2ρ

n
sup

θ∈θ?+εB

√
Var

P̂n
(`(θ,X))

a.s.→ 0.
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Now, we use the fact that ∇2R(θ?) � 0, and that θ 7→ ∇2R(θ) is continuous in a neigh-
borhood of θ?. Fix ε > 0 small enough that the preceding uniform convergence guarantees
hold over θ? + 2εB and ∇2R(θ) � λI for some λ > 0 and all θ ∈ θ? + 2εB. Let θ 6∈ θ? + εB,
but θ ∈ θ? + 2εB. Then for sufficently large n, we have that

Rn(θ,Pn) ≥ E
P̂n

[`(θ,X)]
(i)

≥ R(θ)− λ

4
ε2

(ii)

≥ R(θ?) +
λ

2
‖θ − θ?‖22 −

λ

4
ε2

(iii)

≥ R(θ?) +
λ

4
ε2

(iv)

≥ E
P̂n

[`(θ?, X)] +
λ

4
ε2 − λ

8
ε2 = E

P̂n
[`(θ?, X)] +

λ

8
ε2,

where inequalities (i) and (iv) follow from the uniform convergence guarantee, inequality
(ii) from the strong convexity of R near θ?, and (iii) because ‖θ − θ?‖2 ≥ ε. Finally, we
have that

E
P̂n

[`(θ?, X)] ≥ Rn(θ?,Pn)−
√

2ρ

n
Var

P̂n
(`(θ?, X))︸ ︷︷ ︸

a.s.→ 0

,

so that eventually Rn(θ,Pn) > Rn(θ?,Pn) for all θ ∈ θ? + 2εB \ εB. By convexity, then this
inequality holds for all θ 6∈ θ? + εB. Thus if θ̂ rob

n ∈ argminθ Rn(θ,Pn), then for any ε > 0
we must eventually have ‖θ̂ rob

n − θ?‖2 < ε.

Appendix H. Efficient solutions to computing the robust expectation

In this appendix, we give a detailed description of the procedure we use to compute the
supremum problem (8). In particular, our procedure requires time O(n log n+ log 1

ε log n),
where ε is the desired solution accuracy. Let us reformulate this as a minimization problem
in a variable p ∈ Rn for simplicity. Then we wish to solve

minimize p>z subject to
1

2n
‖np− 1‖22 ≤ ρ, p ≥ 0, p>1 = 1.

We take a partial dual of this minimization problem, then maximize this dual to find the
optimizing p. Introducing the dual variable λ ≥ 0 for the constraint that 1

2‖p−
1
n1‖22 ≤

ρ
n

and performing the standard min-max swap (Boyd and Vandenberghe, 2004) (strong duality
obtains for this problem because the Slater condition is satisfied by p = 1

n1) yields the
maximization problem

maximize
λ≥0

f(λ) := inf
p

{
λ

2

∥∥∥p− 1

n
1
∥∥∥2

2
− λρ

n
+ p>z | p ≥ 0, 1>p = 1

}
. (43)

If we can efficiently compute the infimum (43), then it is possible to binary search over λ.
Recall the standard fact (Hiriart-Urruty and Lemaréchal, 1993, Chapter VI.4.4) that for
a collection {fp}p∈P of concave functions, if the infimum f(x) = infp∈P fp(x) is attained
at some p0 then any vector ∇fp0(x) is a supergradient of f(x). Thus, letting p(λ) be
the (unique) minimizing value of p for any λ > 0, the objective (43) becomes f(λ) =
λ
2‖p(λ)− 1

n1‖22−
λρ
n +p(λ)>z, whose derivative with respect to λ (holding p fixed) is f ′(λ) =

1
2‖p(λ)− 1

n1‖22 −
ρ
n .
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Now we use well-known results on the Euclidean projection of a vector to the probability
simplex (Duchi et al., 2008) to provide an efficient computation of the infimum (43). First,
we assume with no loss of generality that z1 ≤ z2 ≤ · · · ≤ zn and that 1>z = 0, because
neither of these changes the original optimization problem (as 1>p = 0 and the objective is
symmetric). Then we define the two vectors s, σ2 ∈ Rn, which we use for book-keeping in
the algorithm, by

si =
∑
j≤i

zj , σ2
i =

∑
j≤i

z2
j ,

and we let z2 be the vector whose entries are z2
i . The infimum problem (43) is equivalent

to projecting the vector v(λ) ∈ Rn defined by

vi =
1

n
− 1

λ
zi

onto the probability simplex. Notably (Duchi et al., 2008), the projection p(λ) has the form
pi(λ) = (vi − η)+ for some η ∈ R, where η is chosen such that

∑n
i=1 pi(λ) = 1. Finding

such a value η is equivalent (Duchi et al., 2008, Figure 1) to finding the unique index i such
that

i∑
j=1

(vj − vi) < 1 and

i+1∑
j=1

(vj − vi+1) ≥ 1,

taking i = n if no such index exists (the sum
∑i

j=1(vj−vi) is increasing in i and v1−v1 = 0).

Given the index i, algebraic manipulations show that η = 1
n−

1
i−

1
i

∑i
j=1 zj/λ = 1

n−
1
i−

1
i si/λ

satisfies the equality
∑n

i=1 (vi − η)+ = 1 and that vj−η ≥ 0 for all j ≤ i while vj−η ≤ 0 for

j > i. Of course, given the index i and η, we may calculate the derivative ∂
∂λf(λ) efficiently

as well:

f ′(λ) =
∂

∂λ

{
λ

2

∥∥p(λ)− n−11
∥∥2

2
− λρ

n
+ p(λ)>z

}
=

1

2

∥∥p(λ)− n−11
∥∥2

2
− ρ

n
=

1

2

i∑
j=1

(vj − η − n−1)2 +
1

2

n∑
j=i+1

1

n2
− ρ

n

=
1

2

i∑
j=1

(
1

λ
zj + η

)2

+
n− i
2n2

− ρ

n
=

σ2
i

2λ2
+
iη2

2
+
siη

λ
+
n− i
2n2

− ρ

n
.

Finding the index optimal i can be done by a binary search, which requires O(log n) time,
and f ′(λ) is then computable in O(1) time using the vectors s and σ2. It is then possible
to perform a binary search over λ using f ′(λ), which which requires log 1

ε iterations to
find λ within accuracy ε, from which it is easy to compute p(λ) via pi(λ) = (vi − η)+ =(
n−1 − λ−1zi − η

)
+

.

We summarize this discussion with pseudo-code in Figures 6 and 7, which provide a
main routine and sub-routine for finding the optimal vector p. These routines show that,
once provided the sorted vector z with z1 ≤ z2 ≤ · · · ≤ zn (which requires n log n time to
compute), we require only O(log 1

ε · log n) computations.
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Inputs: Sorted vector z ∈ Rn with 1>z = 0, parameter ρ > 0, solution
accuracy ε

Set λmin = 0 and λmax = λ∞ = max{n ‖z‖∞ ,
√
n/2ρ ‖z‖2}

Set si =
∑

j≤i zj and σ2
i =

∑
j≤i z

2
j

While |λmax − λmin| > ελ∞
Set λ = λmax+λmin

2
Set (η, i) = FindShift(z, λ, s) // (Figure 7)

Set f ′(λ) = 1
2λ2

σ2
i + η2

2 i
2 + η

λsi + n−i
2n2 − ρ

n
If f ′(λ) > 0
Set λmin = λ

Else
Set λmax = λ

Set λ = 1
2(λmax + λmin), (η, i) = FindShift(z, λ, s)

Set pi =
(

1
n −

1
λzi − η

)
+

and return p

Figure 6. Procedure FindP to find the vector p minimizing
∑n
i=1 pizi subject to the

constraint 1
2n ‖np− 1‖22 ≤ ρ. Method takes log 1

ε iterations of the loop.

Inputs: Sorted vector z with 1>z = 0, λ > 0, vector s with si =
∑

j≤i zj

Set ilow = 1, ihigh = n
If 1

n −
zn
λ ≥ 0

Return (η = 0, i = n)
While ilow 6= ihigh

i = 1
2(ilow + ihigh)

sleft = 1
λ(izi − si) // (this is sleft =

∑i
j=1(vj − vi))

sright = 1
λ((i+ 1)zi+1 − si+1) // (this is sright =

∑i+1
j=1(vj − vi+1))

If sright ≥ 1 and sleft < 1
Set η = 1

n −
1
i −

1
λisi and return (η, i)

Else if sleft ≥ 1
Set ihigh = i− 1

Else
Set ilow = i+ 1

Set i = ilow and η = 1
n −

1
i −

1
λisi and return (η, i)

Figure 7. Procedure FindShift to find index i and parameter η such that, for the definition
vi = 1

n −
1
λzi, we have vj − η ≥ 0 for j ≤ i, vj − η ≤ 0 for j > i, and

∑n
j=1 (vj − η)+ = 1.

Method requires time O(log n).
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