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Abstract

This work studies low-rank approximation of a positive semidefinite matrix from partial
entries via nonconvex optimization. We characterized how well local-minimum based low-
rank factorization approximates a fixed positive semidefinite matrix without any assump-
tions on the rank-matching, the condition number or eigenspace incoherence parameter.
Furthermore, under certain assumptions on rank-matching and well-boundedness of con-
dition numbers and eigenspace incoherence parameters, a corollary of our main theorem
improves the state-of-the-art sampling rate results for nonconvex matrix completion with
no spurious local minima in Ge et al. (2016, 2017). In addition, we have investigated when
the proposed nonconvex optimization results in accurate low-rank approximations even in
presence of large condition numbers, large incoherence parameters, or rank mismatching.
We also propose to apply the nonconvex optimization to memory-efficient kernel PCA.
Compared to the well-known Nyström methods, numerical experiments indicate that the
proposed nonconvex optimization approach yields more stable results in both low-rank
approximation and clustering.

Keywords: low-rank approximation, matrix completion, nonconvex optimization, model-
free analysis, local minimum analysis, kernel PCA

1. Introduction

Let M be an n × n positive semidefinite matrix and let r � n be a fixed integer. It is
well known that a rank-r approximation of M can be obtained by truncating the spectral
decomposition of M . To be specific, let M =

∑n
i=1 σiuiu

>
i be the spectral decomposition

with σ1 > . . . > σn > 0. Then, the best rank-r approximation of M is Mr =
∑r

i=1 σiuiu
>
i .

If we denote Ur = [
√
σ1u1 . . .

√
σrur], then the best rank-r approximation of M can

be written as M = UrU
>
r . By the well-known Eckart-Young-Mirsky Theorem (Golub

and Van Loan, 2012), Ur is actually the global minimum (up to rotation) to the following
nonconvex optimization:

min
X∈Rn×r

‖XX> −M‖2F .
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This factorization for low-rank approximation has been well-known in the literature (see,
e.g., Burer and Monteiro, 2003).

This paper studies how to find a rank-r approximation of M in the case that only partial
entries are observed. Let Ω ⊂ [n] × [n] be a symmetric index set, and we assume that M
is only observed on the entries in Ω. For convenience of discussion, this subsampling is
represented as PΩ(M) in that PΩ(M)i,j = Mi,j if (i, j) ∈ Ω and PΩ(M)i,j = 0 if (i, j) /∈ Ω.
We are interested in the following question

How to find a rank-r approximation of M in a scalable manner only through PΩ(M)?

We propose to find such a low-rank approximation through the following nonconvex op-
timization, which has been exactly proposed in Ge et al. (2016, 2017) for matrix completion.

Denote X =
[
x1, . . . ,xn

]> ∈ Rn×r. A rank-r approximation of M can be found through

min
X∈Rn×r

f(X) :=
1

2

∑
(i,j)∈Ω

(
x>i xj −Mij

)2
+ λ

n∑
i=1

[(‖xi‖2 − α)+]4

:=
1

2
‖PΩ(XX> −M)‖2F + λGα(X) (1)

where Gα(X) :=
∑n

i=1[(‖xi‖2−α)+]4. Following the framework of nonconvex optimization
without initialization in Ge et al. (2016, 2017), our local-minimum based approximation for

M is M ≈ X̂X̂> where X̂ is any local minimum of (1).
Let’s briefly discuss the memory and computational complexity to solve (1) via gradient

descent. If Ω is symmetric and does not contain the diagonal entries as later specified in
Definition 1, the updating rule of gradient decent

X(t+1) = X(t) − η(t)∇f(X(t)) (2)

is equivalent to

x
(t+1)
i := x

(t)
i −η

(t)

2
∑

j:(i,j)∈Ω

(
〈x(t)

i ,x
(t)
j 〉 −Mi,j

)
x

(t)
j +

4λ

‖x(t)
i ‖2

(
‖x(t)

i ‖2 − α
)3

1{‖x(t)
i ‖2>α}

x
(t)
i

 ,
where the memory cost is dominated by storing X(t), X(t+1), and M on Ω, which is
generally O(nr + |Ω|). It is also obvious that the computational cost in each iteration is
O(|Ω|r).

1.1. Applications in memory-efficient kernel PCA

Kernel PCA (Schölkopf et al., 1998) is a widely used nonlinear dimension reduction tech-
nique in machine learning for the purpose of redundancy removal and preprocessing before
prediction, classification or clustering. The method is implemented by finding a low-rank
approximation of the kernel-based Gram matrix determined by the data sample. To be
concrete, let z1, . . . ,zn be a data sample of size n and dimension d, and let M be the n×n
positive semidefinite kernel matrix determined by a predetermined kernel function K(x,y)
in that Mi,j = K(zi, zj). Non-centered kernel PCA with r principal components amounts
to finding the best rank-r approximation of M .
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However, when the sample size is large, the storage of the kernel matrix itself becomes
challenging. Consider the example when the dimension d is in thousands while the sample
size n is in millions. The memory cost for the data matrix is d×n and thus in billions, while
the memory cost for the kernel matrix M is in trillions! On the other hand, if not storing
M , the implementation of standard iterative algorithms of SVD will involve one pass of
computing all entries of M in each iteration, usually with formidable computational cost
O(n2d). A natural question arises: How to find low-rank approximations of M memory-
efficiently?

The following two are among the most well-known memory-efficient kernel PCA meth-
ods in the literature. One is Nyström method (Williams and Seeger, 2001), which amounts
to generating random partial columns of the kernel matrix, then finding a low-rank approx-
imation based on these columns. In order to generate random partial columns, uniform
sampling without replacement is employed in Williams and Seeger (2001), and different
sampling strategies are proposed later (e.g., Drineas and Mahoney, 2005). The method is
convenient in implementation and efficient in both memory and computation, but relatively
unstable in terms of approximation errors as will be shown in Section 3.

Another popular approach is stochastic approximation, e.g., Kernel Hebbian Algorithm
(KHA) (Kim et al., 2005), which is memory-efficient and approaches the exact principal
component solution as the number of iterations goes to infinity with appropriately chosen
learning rate (Kim et al., 2005). However, based on our experience, the method usually
requires careful tuning of learning rates even for very slow convergence.

It is also worth mentioning that the randomized one-pass algorithm discussed in, e.g.,
Halko et al. (2011), where the theoretical properties of a random-projection based low-rank
approximation method were fully analyzed. However, although the one-pass algorithm does
not require the storage of the whole matrix M , in kernel PCA one still needs to compute
every entry of M , which typically requires O(n2d) computational complexity for kernel
matrix.

As a result, we aim at finding a memory-efficient method as an alternative to the afore-
mentioned approaches. In particular, we are interested in a method with desirable empirical
properties: memory-efficient, no requirement on one or multiple passes to compute the com-
plete kernel matrix, no requirement to tune the parameters carefully, and yielding stable
results. To this end, we propose the following method based on entries sampling and non-
convex optimization: In the first step, Ω is generated to follow an Erdős-Rényi random
graph with parameter p later specified in Definition 1, and then a partial kernel matrix
PΩ(M) is generated in that Mi,j = K(zi, zj) for (i, j) ∈ Ω. In the second step, the non-
convex optimization (1) is implemented through gradient descent (2). Any local minimum
of (1), X̂, is a solution of approximate kernel PCA in that M ≈ X̂X̂>.

To store the index set Ω and the sampled entries of M on Ω, the memory cost in the
first step is O(|Ω|), which is comparable to the memory cost O(nr+ |Ω|) in the second step.
As to the computational complexity, besides the generation of Ω, the computational cost
in the first step is typically O(|Ω|d), e.g., when the radial kernels or polynomial kernels are
employed. This could be dominating the per-iteration computational complexity O(|Ω|r)
in the second step when the target rank r is much smaller than the original dimension d.

Partial entries sampling plus nonconvex optimization has been proposed in the literature
for scalable robust PCA and matrix completion (Yi et al., 2016). However, to the best

3



Chen and Li

of our knowledge, our work is the first to apply such an idea to memory-efficient kernel
PCA. Moreover, the underlying signal matrix is assumed to be exactly low-rank in Yi
et al. (2016) while we make no assumptions on the positive semidefinite kernel matrix M .
Entry-sampling has been proposed in Achlioptas et al. (2002); Achlioptas and McSherry
(2007) for scalable low-rank approximation. In particular, it is used to speed up kernel
PCA in Achlioptas et al. (2002), but spectral methods are subsequently employed after
entries sampling as opposed to nonconvex optimization. Empirical comparisons between
spectral methods and nonconvex optimization will be demonstrated in Section 3. It is
also noteworthy that matrix completion techniques have been applied to certain kernel
matrices when it is costly to generate each single entry (Graepel, 2002; Paisley and Carin,
2010), wherein the proposed methods are not memory-efficient. In contrast, our method is
memory-efficient in order to serve a different purpose.

1.2. Related work and our contributions

In recent years, a series of papers have been proposed to study nonconvex matrix completion
(see, e.g., Rennie and Srebro, 2005; Keshavan et al., 2010b,a; Jain et al., 2013; Zhao et al.,
2015; Sun and Luo, 2016; Chen and Wainwright, 2015; Yi et al., 2016; Zheng and Lafferty,
2016; Ge et al., 2016, 2017). Interested readers are referred to Balcan et al. (2017), where
required sampling rates in these papers are summarized in Table 1 therein. Compared to
convex approaches for matrix completion (e.g., Candès and Recht, 2009), these nonconvex
approaches are not only more computationally efficient, but also more convenient in storing.
For the same reason, nonconvex optimization approaches have also been investigated for
other low-rank recovery problems including phase retirval (e.g., Candes et al., 2015; Sun
et al., 2018; Cai et al., 2016), matrix sensing (e.g., Zheng and Lafferty, 2015; Tu et al.,
2015), blind deconvolution (e.g., Li et al., 2018), etc.

Our present work follows the framework of local minimum analysis for nonconvex op-
timization in the literature. For example, Baldi and Hornik (1989) has described the non-
convex landscape of the quadratic loss for PCA. Loh and Wainwright (2015) studies the
local minima of regularized M-estimators. Sun et al. (2018) studies the global geometry of
the phase retrieval problem. The conditions for no spurious local minima have been inves-
tigated in Bhojanapalli et al. (2016) and Ge et al. (2016) for nonconvex matrix sensing and
completion, respectively. The global geometry of nonconvex objective functions with under-
lying symmetric structures, including low-rank symmetric matrix factorization and sensing,
has been studied in Li et al. (2016a). Global geometry of rectangular matrix factorization
and sensing is studied Zhu et al. (2017), where the issues of under-parameterization and
over-parameterization have been investigated. Similar analysis has been extended to general
low-rank optimization problems in Li et al. (2017). Matrix factorization is further studied
in Jin et al. (2017) with a novel geometric characterization of saddle points, and this idea is
later extended in Ge et al. (2017), where a unified geometric analysis framework is proposed
to study the landscapes of nonconvex matrix sensing, matrix completion and robust PCA.

Among these results, Ge et al. (2016) and Ge et al. (2017) are highly relevant to our
work in both methodological and technical terms. In fact, exactly the same nonconvex
optimization problem (1) has been studied in Ge et al. (2016, 2017) for matrix completion

from missing data. To be specific, these papers show that any local minimum X̂ yields M =

4



Nonconvex Matrix Completion

X̂X̂>, as long as M is exactly rank-r, the condition number κr := σ1/σr is well-bounded,
the incoherence parameter of the eigenspace of M is well-bounded, and the sampling rate
is greater than a function of these quantities. The case with additive stochastic noise has
also been discussed in Ge et al. (2016).

In contrast, our paper studies the theoretical properties of X̂X̂> with no assumptions
on M . There are actually two questions of interest: how close X̂X̂> is from M , and
how close X̂X̂> is from Mr (recall that Mr is the best rank-r approximation of M by
spectral truncation). In comparison to Ge et al. (2016, 2017), our main contributions to be
introduced in the next section include the following:

• Our main result Theorem 2 that characterizes how well any local-minimum based rank-
r factorization X̂X̂> approximates M or Mr requires no assumptions imposed on M
regarding its rank, eigenvalues and eigenvectors. The sampling rate is only required to
satisfy p > C(log n/n) for some absolute constant C. Therefore, for applications such
as memory-efficient kernel PCA, our framework provides more suitable guidelines than
Ge et al. (2016, 2017). In fact, kernel matrices are in general of full rank and their
condition numbers and incoherence parameters may not satisfy the strong assumptions
in Ge et al. (2016, 2017).

• When M is assumed to be exactly low-rank as in Ge et al. (2016, 2017), Corollary
3 improves the state-of-the-art no-spurious-local-minima results in Ge et al. (2016,
2017) for exact nonconvex matrix completion in terms of sampling rates. To be
specific, assuming both condition numbers and incoherence parameters are on the
order of O(1), our result improves the result in Ge et al. (2017) from Õ(r4/n) to
Õ(r2/n).

• Theorem 2 also implies the conditions under which the nonconvex optimization (1)
yields good low-rank approximation of M in the cases of large condition numbers,
high incoherence parameters, or rank-mismatching.

On the other hand, our paper benefits from Ge et al. (2016, 2017) in various aspects.

In order to characterize the properties of any local minimum X̂, we follow the idea in Ge
et al. (2017) to combine the first and second order conditions of local minima linearly to
construct an auxiliary function, denoted as K(X) in our paper, and consequently all local

minima satisfy the inequality K(X̂) > 0 as illustrated in Figure 1. If M is exactly rank-r
and its eigenvalues and eigenvectors satisfy particular properties, Ge et al. (2017) shows
that K(X) 6 0 for all X as long as the sampling rate is large enough. This argument can
be employed to prove that there is no spurious local minima.

However, K(X) 6 0 does not hold for all X if no assumptions are imposed on M , so

we instead focus on analyzing the inequality K(X̂) > 0 directly in the model-free manner.
Among a few novel technical ideas, the success of such model-free analysis relies crucially
on the deterministic inequality (Lemma 8) that controls the difference between the function
K(X) and its population version E[K(X)].
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K(X)

−f(X)
Ur

span of
local minima

of f(X)

span of {X ∈ Rn×r | K(X) > 0}

Figure 1: Landscape of −f(X),K(X) and Ur.

1.3. Organization and notations

The remainder of the paper is organized as follows: Our main theoretical results are stated
in Section 2; Numerical simulations and applications in memory-efficient KPCA are given
in Section 3. Proofs are deferred to Section 4.

We use bold letters to denote matrices and vectors. For any vectors u and v, ‖u‖2
denotes its `2 norm, and 〈u,v〉 their inner product. For any matrix M ∈ Rn×n, Mi,j

denotes its (i, j)-th entry, Mi,· = (Mi,1,Mi,2, . . . ,Mi,n)> its i-th row of M , and M·,j =
(M1,j ,M2,j , . . . ,Mn,j)

> its j-th column. Moreover, we use ‖M‖, ‖M‖∗, ‖M‖F , ‖M‖`∞ :=
maxi,j |Mi,j |, ‖M‖2,∞ := maxi ‖Mi,·‖2 to denote its spectral norm, nuclear norm, Frobenius
norm, elementwise max norm and `2,∞ norm, respectively. The vectorization of M is
represented by vec(M) = (M1,1,M2,1, . . . ,M1,2, . . . ,Mn,n)>. For matrices M ,N of the
same size, denote 〈M ,N〉 =

∑
i,jMi,jNi,j = trace

(
M>N

)
. Denote by ∇f(M) ∈ Rn×n

and ∇2f(M) ∈ Rn2×n2
the gradient and Hessian of f(M).

Denote [x]+ = max{x, 0}. We use J to denote a matrix whose all entries equal to one.
We use C,C1, C2, . . . to denote absolute constants, whose values may change from line to
line.

2. Model-free approximation theory

2.1. Main results

The following sampling scheme is employed throughout the paper:
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Definition 1 (Off-diagonal symmetric independent Ber(p) model) Assume the in-
dex set Ω consists only of off-diagonal entries that are sampled symmetrically and indepen-
dently with probability p, i.e.,

1. (i, i) /∈ Ω for all i = 1, . . . , n;

2. For all i < j, sample (i, j) ∈ Ω independently with probability p;

3. For all i > j, (i, j) ∈ Ω if and only if (j, i) ∈ Ω.

Here we assume all diagonal entries are not in Ω for the generality of the formulation,
although they are likely to be obtained in practice. For instance, all diagonal entries of
the radial kernel matrix are ones. For any index set Ω ⊂ [n] × [n], define the associated
0-1 matrix Ω ∈ {0, 1}n×n such that Ωi,j = 1 if and only if (i, j) ∈ Ω. Then we can write
PΩ(X) = X ◦Ω where ◦ is the Hadamard product.

Assume that the positive semidefinite matrix M has the spectral decomposition

M =
r∑
i=1

σiuiu
>
i +

n∑
i=r+1

σiuiu
>
i := Mr + N , (3)

where σ1 > σ2 > · · · > σn > 0 are the spectrum, ui ∈ Rn are unit and mutually perpen-
dicular eigenvectors. The matrix Mr :=

∑r
i=1 σiuiu

>
i is the best rank-r approximation of

M and N :=
∑n

i=r+1 σiuiu
>
i denotes the residual part. In the case of multiple eigenvalues,

the order in the eigenvalue decomposition (3) may not be unique. In this case, we consider
the problem for any fixed order in (3) with the fixed Mr.

Theorem 2 Let M ∈ Rn×n be a positive semidefinite matrix with the spectral decomposi-
tion (3). Let Ω be sampled according to the off-diagonal symmetric Ber(p) model with p >
CS

logn
n for some absolute constant CS. Then in an event E with probability P[E] > 1−2n−3,

as long as the tuning parameters α and λ satisfy 100
√
‖Mr‖`∞ 6 α 6 200

√
‖Mr‖`∞ and

100‖Ω− pJ‖ 6 λ 6 200‖Ω− pJ‖, any local minimum X̂ ∈ Rn×r of (1) satisfies

∥∥∥X̂X̂> −Mr

∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
‖Mr‖`∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

[p(1− p)n+ log n]r‖N‖2`∞
p2

(4)

and

∥∥∥X̂X̂> −M
∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
‖Mr‖`∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

[p(1− p)n+ log n]r‖N‖2`∞
p2

+ ‖N‖2F

(5)

with C1, C2 absolute constants.
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Model-free low-rank approximation from partial entries has been studied for for spectral
estimators in the literature. For example, under the settings of Theorem 2, the spectral
low-rank approximation (denoted as Mapprox) discussed in Keshavan et al. (2010a, Theorem
1.1) is guaranteed to satisfy

‖Mapprox −Mr‖2F 6 C

{
nr‖Mr‖2`∞

p
+
r‖PΩ(N)‖2

p2

}
,

with high probability. However, this cannot imply exact recovery even when M is of low
rank and the sampling rate p satisfies the conditions specified in Ge et al. (2017). Similarly,
the SVD-based USVT estimator introduced in Chatterjee (2015) does not imply exact
recovery. In contrast, as will be discussed in the next subsection, Theorem 2 implies that
any local minimum of (1) yields exact recovery of M with high probability under milder
conditions than those in Ge et al. (2017).

2.2. Implications in exact matrix completion

Assume in this subsection that the positive semidefinite matrix M is exactly rank-r, i.e.,

M = Mr =

r∑
i=1

σiuiu
>
i = UrU

>
r (6)

where Ur = [
√
σ1u1 . . .

√
σrur]. Furthermore, we assume its condition number κr = σ1

σr

and eigen-space incoherence parameter µr = n
r maxi

∑r
j=1 u

2
i,j (Candès and Recht, 2009) are

well-bounded. This is a standard setup in the literature of nonconvex matrix completion
(e.g., Keshavan et al., 2010b; Sun and Luo, 2016; Chen and Wainwright, 2015; Zheng and
Lafferty, 2016; Ge et al., 2016; Yi et al., 2016; Ge et al., 2017).

Notice that Ge et al. (2016) introduces a slightly different version of incoherence

µ̃r :=

√
n‖Ur‖2,∞
‖Ur‖F

=

√
n‖Mr‖`∞
trace(Mr)

(7)

as a measure of spikiness. (Note that this is different from the spikiness defined in Negah-
ban and Wainwright (2012).) By ‖Mr‖`∞ = ‖Ur‖22,∞ = maxi

∑r
j=1 σju

2
i,j , the following

relationship between µ and µ̃ is straightforward

µ̃2
r

κr
6
µ̃2
r trace(Mr)

rσ1
=
n‖Mr‖`∞

rσ1
6 µr 6

n‖Mr‖`∞
rσr

=
µ̃2
r trace(Mr)

rσr
6 κrµ̃

2
r . (8)

By the fact ‖M‖`∞ 6 r
nσ1µr, Theorem 2 implies the following exact low-rank recovery

results:

Corollary 3 Under the assumptions of Theorem 2, if we further assume rank(M) = r
(i.e., M = Mr) and

p > C max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n

}
8
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or

p > C max

{
µ̃2
rrκr log n

n
,
µ̃4
rr

2κ2
r

n

}
for some absolute constant C, then in an event E with probability P[E] > 1 − 2n−3, any

local minimum X̂ ∈ Rn×r of objective function f(X) defined in (1) satisfies X̂X̂> = M .

The proof is straightforward and deferred to the appendix. Notice that our results are better
than the state-of-the-art results for no spurious local minimum in Ge et al. (2017), where
the required sampling rate is p > C

nµ
3
rr

4κ4
r log n (which also implies p > C

n µ̃
6
rr

4κ7
r log n by

(8)).

2.3. Examples

Besides improving the state-of-the-art no-spurious-local-minima results in nonconvex matrix
completion, Theorem 2 is also capable of explaining some nontrivial phenomena in low-rank
matrix completion in the presence of large condition numbers, high incoherence parameter,
or mismatching between the selected and true ranks.

2.3.1. Nonconvex matrix completion with large condition numbers and high
eigen-space incoherence parameters

Assume here M is exactly rank-r and its spectral decomposition is denoted as in (6).
However, we assume that µr and κr can be extremely large, while the condition num-
ber and incoherence parameter for Mr−1 =

∑r−1
i=1 σiuiu

>
i , i.e., κr−1 = σ1

σr−1
and µr−1 =

n
r−1 maxi

∑r−1
j=1 u

2
i,j , are well-bounded. We are interested in figuring out when the local

minimum based rank-r factorization X̂X̂> approximates the original M well.

By ‖Mr‖`∞ = maxi
∑r

j=1 σju
2
i,j , we have

‖Mr‖`∞ 6
r − 1

n
σ1µr−1 + σr‖ur‖2∞.

Then by Theorem 2, if

p > C max


[
µr−1κr−1(r − 1) + n σr

σr−1
‖ur‖2∞

]
log n

n
,

[
µr−1κr−1(r − 1) + n σr

σr−1
‖ur‖2∞

]2

n


with some absolute constant C, in an event E with probability P[E] > 1 − 2n−3, for any

local minimum X̂ ∈ Rn×r of (1), ‖X̂X̂> −M‖2F 6 1
100σ

2
r−1 holds. In other words, the

relative approximation error satisfies RE := ‖X̂X̂>−M‖F
‖M‖F 6 1

10
√
r−1

.

Notice that ‖ur‖2∞ 6 r
nµr and σr

σr−1
= κr−1

κr
, so the above sampling rate requirement is

satisfied as long as µr
κr

6 Cµr−1 and

p > C max

{
µr−1κr−1r log n

n
,
µ2
r−1κ

2
r−1r

2

n

}
.
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2.3.2. Rank mismatching

In this subsection, M is assumed to be exactly rank-R, i.e.,

M = MR =
R∑
i=1

σiuiu
>
i = URU

>
R

where UR = [
√
σ1u1 . . .

√
σRuR]. However, we consider the case that the selected

rank r is not the same as the true rank R, i.e., rank mismatching. As with Section
2.2, we assume the condition number κR = σ1

σR
and eigen-space incoherence parameter

µR = n
R maxi

∑R
j=1 σju

2
i,j are well-bounded. As with (8), there holds ‖M‖`∞ 6 R

nσ1µR.

Case 1: R < r. Theorem 2 implies that if

p > C max

{
µRκRR log n

n
,
µ2
Rκ

2
RR

2

n

}
for some absolute constant C, then in an event E with probability P[E] > 1 − 2n−3, any

local minimum X̂ ∈ Rn×r of (1) yields ‖X̂X̂>−M‖2F 6 1
100(r−R)σ2

R. This further yields

the relative approximation error bound RE := ‖X̂X̂>−M‖F
‖M‖F 6 1

10

√
r−R
R .

Case 2: R > r. Recall that ‖Mr‖`∞ 6 r
nσ1µr. Moreover,

‖N‖`∞ = max
i

R∑
j=r+1

σju
2
i,j 6 σr+1

max
i

R∑
j=1

u2
i,j

 =
µRR

n
σr+1.

Theorem 2 implies that if

p > C max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n
,
µ2
RR

3

n

}
for some absolute constant C, then with high probability, any local minimum X̂ ∈ Rn×r of
(1) yields

‖X̂X̂> −Mr‖2F 6 C(σ2
r+1 + . . .+ σ2

2r),

which implies that the relative error is well-controlled as long as σ2
r+1 + . . . + σ2

R accounts
for a small proportion in σ2

1 + . . .+ σ2
R.

If we assume that 2C2σr+1 < σr where C2 is specified in Theorem 2, under the same
sampling rate requirement as above, Theorem 2 implies a much sharper result:

‖X̂X̂> −Mr‖2F 6
1

100
σ2
r+1,

which yields the following (perhaps surprising) relative approximation error bound

RE :=
‖X̂X̂> −Mr‖F
‖Mr‖F

6
1

10

√
σ2
r+1

σ2
1 + . . .+ σ2

r

6
1

10
√
r
.
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3. Experiments

In the following simulations where the nonconvex optimization (1) is solved, the initializa-
tion X(0) is constructed randomly with i.i.d. normal entries with mean 0 and variance 1.
The step size η(t) for the gradient descent (2) is determined by Armijo’s rule (Armijo, 1966).
The gradient descent algorithm is implemented with sparse matrix storage in Section 3.2 for
the purpose of memory-efficient KPCA, while with full matrix storage in Section 3.1 to test
the performance of general low-rank approximations from missing data. In each experiment,
the iterations will be terminated when ‖∇f(X(t))‖F 6 10−3 or ‖η(t)∇f(X(t))‖F 6 10−10

or the number of iterations surpasses 103. All methods are implemented in MATLAB. The
experiments are running on a virtual computer with Linux KVM, with 12 cores of 2.00GHz
Intel Xeon E5 processor and 16 GB memory.

3.1. Numerical simulations

In this section, we conduct numerical tests on the nonconvex optimization (1) under different
settings of spectrum for the 500× 500 positive semidefinite matrix M , whose eigenvectors
are the same as the left singular vectors of a random 500× 500 matrix with i.i.d. standard
normal entries. The generation of eigenvalues for M will be further specified in each test.
For each generated M , the nonconvex optimization (1) is implemented for 50 times with
independent Ω’s generated under the off-diagonal symmetric independent Ber(p) model.
To implement the gradient descent algorithm (2), set α = 100‖M‖`∞ and λ = 100‖Ω −
pJ‖ (the performances of our method are empirically not sensitive to the choices of the
tuning parameters). In each single numerical experiment, we also conduct spectral method
proposed in Achlioptas et al. (2002) to obtain an approximate low-rank approximation of
M for the purpose of comparison.

3.1.1. Full rank case

Here M is assumed to have full rank, i.e., rank(M) = 500. To be specific, let σ1 = · · · =
σ4 = 10, σ6 = · · · = σ500 = 1, and σ5 = 10, 9, 8, . . . , 2, 1. The selected rank used in
the nonconvex optimization (1) is set as r = 5, and the sampling rate is set as p = 0.2.
With different values of σ5, the results of our implementations of the gradient descent are
plotted in Figure 2. One can observe that the relative errors for our nonconvex method
(1) are well-bounded for different σ5’s, and much smaller than those for spectral low-rank
approximation. The results indicate that our approach is able to approximate the “true”
best rank-r approximation Mr accurately in the presence of heavy spectral tail and possibly
large condition number σ1/σ5, even with only 20% observed entries.

3.1.2. Low-rank matrix with large condition numbers

Here M is assumed to be of exactly low rank with different condition numbers. Let σ1 =
· · · = σ4 = 10, σ5 = 10

κ , and σ6 = · · · = σ500 = 0. Here the condition number takes on values
κ = 10, 20, 30, 40, 50, 100, 200,∞, which implies rank(M) = 5 if κ <∞ while rank(M) = 4
if κ = ∞. The selected rank is always assumed to be r = 5, while the sampling rate is
always p = 0.2.
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Figure 2: Relative errors for full rank case.
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Figure 3: Relative error
‖Mapprox−M‖F

‖M‖F for low-rank matrix with extreme condition numbers.

The performance of our nonconvex approach with various choices of κ is demonstrated in
Figure 3. One can observe that our nononvex optimization approach yields exact recovery
of M when κ = 10, while yields accurate low-rank approximation for M with relative errors
almost always smaller than 0.3 when κ > 20. This fact is consistent with the example we
discussed in Section 2.3.1, where we have shown that under certain incoherence conditions,
the relative approximation error can be well-bounded even when κr =∞.

3.1.3. Rank mismatching

In this section, we consider rank mismatching, i.e., the rank of M is low but different
from the selected rank r. In particular, we consider two settings for simulation: First,
we fix M with rank(M) = 10, while the nonconvex optimization is implemented with
selected rank r = 5, 7, 9, 10, 11, 13, 15; Second, the matrix M is randomly generated with

12
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rank from 1 to 15, while the selected rank is always r = 5. The sampling rate is fixed as
p = 0.2. We perform the simulation on two sets of spectrums: For the first one, all the
nonzero eigenvalues are 10; And the second one has decreasing eigenvalues: σ1 = 20, σ2 =
18, · · · , σ10 = 2 for the case of fixed rank(M), σ1 = 30, · · · , σrank(M) = 32 − 2 × rank(M)
for the case of fixed selected rank r. Numerical results for the case of fixed rank(M) are
demonstrated in Figure 4 (constant nonzero eigenvalues) and Figure 6 (decreasing nonzero
eigenvalues), while the case of fixed selected rank in Figure 5 (constant nonzero eigenvalues)
and Figure 7 (decreasing nonzero eigenvalues). One can observe from these figures that if
the selected rank r is less than the actual rank rank(M), for the approximation of M ,
our nonconvex approach performs almost as well as the complete-data based best low-
rank approximation Mr. Another interesting phenomenon is that our nonconvex method
outperforms simple spectral methods in the approximation of either M or Mr significantly
if the selected rank is greater than or equal to the true rank.
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(a) Relative error
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Figure 4: Relative errors for rank mismatching for a fixed M with rank(M) = 10.

3.2. Memory-efficient kernel PCA

In this section we study the empirical performance of our memory-efficient kernel PCA
approach by applying it to the synthetic data set in Wang (2012). The data set is an
i.i.d. sample with sample size n = 10, 000 and dimension d = 3, and the data points are
partitioned into two classes independently with equal probabilities. Points in the first class
are first generated uniformly at random on the three-dimensional sphere {x : ‖x‖2 = 0.3},
while points in the second class are first generated uniformly at random on the three-
dimensional sphere {x : ‖x‖2 = 1}. Every point is then perturbed independently by
N (0, 1

100I3) noise. We aim to implement memory-efficient uncentered kernel PCA with
r = 2 on this dataset with the radial kernel exp(−‖x − y‖22) in order to cluster the data
points.

To implement the Nyström method (Williams and Seeger, 2001), 50 columns (and cor-
responding rows) are selected uniformly at random without replacement, then a rank-2
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Figure 5: Relative errors for rank mismatching, fixed selected rank.
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Figure 6: Relative errors for rank mismatching for a fixed M with rank(M) = 10.

approximation of the kernel matrix M can be efficiently constructed with a smaller scale
factorization. The effective sampling rate for Nyström method is pNys = 2×50n−502

n2 ≈ 0.01.
In contrast, in addition to recording the selected entry values, our nonconvex optimization
method also requires to record the row and column indices for each selected entry. By using
sparse matrix storage schemes like compressed sparse row (CSR) format (Saad, 2003), it
needs 2n2pNCVX + n+ 1 entries to store the sparse matrix. Therefore, if pNCVX > 3

n , the
nonconvex approach requires at most 2.5 times as much memory as Nyström method for
the same sampling complexity. Therefore, we choose the sampling rate pNCVX =

pNys

2.5 in
the implementation of the nonconvex optimization (1) such that the memory consumption
is less costly than the Nyström method.
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Figure 7: Relative errors for rank mismatching, fixed selected rank.

Fixing such a synthetic data set, we apply both the Nyström method and our approach
(with α = 100‖M‖`∞ = 100 and λ = 500

√
npNCVX) for 100 times. Denote by M the ground

truth of the kernel matrix, by M2 the ground truth of the best rank-2 approximation of M ,
and by Mapprox the memory efficient rank-2 approximation obtained by Nyström method
or our nonconvex optimization. The left and right panels of Figure 8 compare the two
methods in approximating M2 and M respectively based on the distributions of relative
errors throughout the 100 Monte Carlo simulations. One can see that our approach is
comparable with the Nyström method in terms of median performance, but much more
stable.

Both Nyström method and our nonconvex optimization (1) give approximation in the

form of M ≈ X̂X̂>, so clustering analysis can be directly implemented based on X̂. We
implement k-means on the rows of X̂ with 20 repetitions, and Figure 9 compares the two
methods in the distribution of clustering accuracies. It clearly shows that our nonconvex
optimization (1) yields accurate clustering throughout the 100 tests while the Nyström
method results in poor clustering occasionally.

Moreover, during the iterations of the nonconvex method, the regularization term never
activate throughout the 100 simulations. Therefore, empirically speaking, the performances
of our numerical tests will remain the same if we simply set λ = 0.

4. Proofs

In this section, we give a proof for main theorem. In Section 4.1, we will present some
useful supporting lemmas; in Section 4.2, we present a proof for our main result Theorem 2;
finally in Section 4.3 we give proof of lemmas used in former subsections. Our proof ideas
benefit from those in Ge et al. (2017) as well as Zhu et al. (2017), Jin et al. (2017).
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Figure 8: Relative errors for Nyström method with sampling rate pNys ≈ 0.01 and nonconvex
method with sampling rate pNCVX =

pNys
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Figure 9: Clustering accuracy for Nyström method with sampling rate pNys ≈ 0.01 and
nonconvex method with sampling rate pNCVX =

pNys

2.5 .

4.1. Supporting lemmas

In this section, we give some useful supporting lemmas. The following lemma is well known
in the literature, see, e.g., Vu (2018) and Bandeira et al. (2016).

Lemma 4 There is a constant Cv > 0 such that the following holds. If Ω is sampled
according to the off-diagonal symmetric Ber(p) model, then

P
[
‖Ω− pJ‖ > Cv

√
np(1− p) + Cv

√
log n

]
6 n−3.

The following eigen-space incoherence parameter has been proposed in Candès and Recht
(2009).
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Definition 5 (Candès and Recht 2009) For any subspace U of Rn of dimension r, de-
note PU : Rn → Rn as the orthogonal projection onto U . Define

µ(U) :=
n

r
max
16i6n

‖PUei‖22, (9)

where e1, . . . , en represents the standard orthogonal basis of Rn.

As with Theorem 4.1 in Candès and Recht (2009), for the off-diagonal symmetric Ber(p)
model, we also have:

Lemma 6 Let Ω be sampled according to the off-diagonal symmetric Ber(p) model. Define

T := {M ∈ Rn×n | (I − PU )M(I − PU ) = 0, M symmetric},

where U is a fixed subspace of Rn. Let PT be the Euclidean projection on to T : For any
symmetric matrix M ∈ Rn×n,

PT (M) = PUM + MPU − PUMPU .

Then there is an absolute constant Cc, such that for any δ ∈ (0, 1], if p > Cc
µ(U) dim(U) logn

δ2n
with µ(U) defined in (9), in an event Ec with probability P[Ec] > 1− n−3, we have

p−1‖PT PΩPT − pPT ‖ 6 δ.

In Gross (2011) and Gross and Nesme (2010), similar results are given for symmetric uniform
sampling with/without replacement. The proof of Lemma 6 is very similar to that in Recht
(2011).

The first and second order optimality conditions of f(X) satisfy the following properties:

Lemma 7 (Ge et al. 2016, Proposition 4.1) The first order optimality condition of ob-
jective function (1) is

∇f(X) = 2PΩ(XX> −M)X + λ∇Gα(X) = 0,

and the second order optimality condition requires that for any H ∈ Rn×r, we have

vec(H)>∇2f(X) vec(H)

=‖PΩ(HX> + XH>)‖2F + 2〈PΩ(XX> −M),PΩ(HH>)〉+ λ vec(H)>∇2Gα(X) vec(H)

>0.

In the sequel, we are going to present our key lemma which will be used multiple times
throughout this section. For any matrix M1,M2 ∈ Rn1×n2 , any set Ω0 ∈ [n1] × [n2] and
any real number t ∈ R, we introduce following notation for simplicity of notations:

DΩ0,t(M1,M2) := 〈PΩ0(M1),PΩ0(M2)〉 − t〈M1,M2〉. (10)

Our key lemma is given as follows:
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Lemma 8 Let Ω0 be any index set in [n1]×[n2], and Ω0 ∈ Rn1×n2 be defined correspondingly
as in Section 2.1. For any A ∈ Rn1×r1 ,B ∈ Rn1×r2 ,C ∈ Rn2×r1 ,D ∈ Rn2×r2, and any
t ∈ R, there holds

|DΩ0,t(AC>,BD>)| 6 ‖Ω0 − tJ‖

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22. (11)

We will use this result for Ω0 = Ω, t = p for multiple times later. Note that here we do not
make any assumptions on Ω0 and this is a deterministic result. The proof of this lemma
is deferred to Section 4.3.1. This result extends the following lemma given in Bhojanapalli
and Jain (2014) and Li et al. (2016b):

Lemma 9 (Bhojanapalli and Jain 2014; Li et al. 2016b) Suppose matrix M ∈ Rn1×n2

can be decomposed as M = BD>, let Ω0 ⊂ [n1]× [n2] be any index set. Then for any t ∈ R,
we have

‖PΩ0(M)− tM‖ 6 ‖Ω0 − tJ‖‖B‖2,∞‖D‖2,∞.

Lemma 8 is applied in our proof of Lemma 12 in replace of Theorem D.1 in Ge et al. (2016)
to derive tighter control of perturbation terms, i.e., K2(X),K3(X) and K4(X) defined in
(14). Their result is given here for the purpose of comparison.

Lemma 10 (Ge et al. 2016, Theorem D.1) With high probability over the choice of Ω,
for any two rank-r matrices W ,Z ∈ Rn×n, we have

|〈PΩ(W ),PΩ(Z)〉 − p〈W ,Z〉|

6O
(
‖W ‖`∞‖Z‖`∞nr log n+

√
pnr‖W ‖`∞‖Z‖`∞‖W ‖F ‖Z‖F log n

)
.

In Sun and Luo (2016), Chen and Wainwright (2015) and Zheng and Lafferty (2016), upper
bounds are given to ‖PΩ(HH>)‖2F for any H. To be more precise, they assume Ω is

sampled according to the i.i.d. Bernoulli model with probability p. If p > C logn
n for some

sufficient large absolute constant C, there holds

‖PΩ(HH>)‖2F − p‖H‖4F 6 C
√
np

n∑
i=1

‖Hi,·‖42 (12)

with high probability. In contrast, by combining Lemma 4 and Lemma 8, there holds

|‖PΩ(HH>)‖2F − p‖HH>‖2F | 6 C
√
np

n∑
i=1

‖Hi,·‖42 (13)

with high probability. This is tighter than (12) in that ‖HH>‖F 6 ‖H‖2F . Moreover,
comparing to (12), our result (13) directly measures the difference between ‖PΩ(HH>)‖2F
and its expectation p‖HH>‖2F , which makes the model-free analysis possible.
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4.2. A proof of Theorem 2

This section aims to prove Theorem 2. The proof is basically divided into two parts:
In Section 4.2.1, we discuss the landscape of objective function f(X) and then define the
auxiliary function K(X). We show that the span of local minima of f(X) can be controlled
by the superlevel set of K(X): {X ∈ Rn×r | K(X) > 0}. In Section 4.2.2, we give a uniform
upper bound of K(X) in order to control the above superlevel set.

4.2.1. Landscape of objective function f and auxiliary function K

Denote Ur := [
√
σ1u1 . . .

√
σrur]. For a given X ∈ Rn×r, suppose that X>Ur has SVD

X>Ur = ADB>, and let RX,Ur
:= BA> ∈ O(r) and U := UrRX,Ur , where O(r) denotes

the set of r×r orthogonal matrices {R ∈ Rr×r | R>R = RR> = I}. Then X>U = ADA>

is a positive semidefinite matrix. Then also holds UrU
>
r = UU>.

Denote ∆ := X − U , and define the following auxiliary function introduced in Jin et al.
(2017) and Ge et al. (2017):

K(X) := vec(∆)>∇2f(X) vec(∆)− 4〈∇f(X),∆〉.

The first and second order optimality conditions for any local minimum X̂ imply that
K(X̂) > 0. In other words, we have

{All local minima of f(X)} ⊂ {X ∈ Rn×r | K(X) > 0}.

To study the properties of the local minima of f(X), we can consider the superlevel set of
K(X): {X ∈ Rn×r | K(X) > 0} instead. In order to get a clear representation of K(X),
one can plug in the formulas of gradient and Hessian in Lemma 7. By repacking terms in
Ge et al. (2017, Lemma 7), and given 〈U∆>,N〉 = 0, due to the definition of U and N ,
K(X) can be decomposed as follows:

Lemma 11 (Ge et al. 2017, Lemma 7) Uniformly for all X ∈ Rn×r, as well as corre-
sponding U and ∆ defined above, we have

K(X) = p
(
‖∆∆>‖2F − 3‖XX> −UU>‖2F

)
︸ ︷︷ ︸

K1(X)

+DΩ,p(∆∆>,∆∆>)− 3DΩ,p(XX> −UU>,XX> −UU>)︸ ︷︷ ︸
K2(X)

+ λ
(

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉
)

︸ ︷︷ ︸
K3(X)

+ 6DΩ,p(∆∆>,N) + 8DΩ,p(U∆>,N) + 6p〈∆∆>,N〉︸ ︷︷ ︸
K4(X)

,

(14)

where DΩ,p(·, ·) is defined in (10).
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Notice that in Theorem 2, we are only concerned about the difference between XX> and
Mr (or M), which remains the same by replacing X with X̃ = XR, for any R ∈ O(r). On
the other hand, by the definition of RX,Ur , we have RXR,Ur = RX,UrR for any R ∈ O(r),

which implies Ũ = UR and ∆̃ = ∆R. Now we have

X̃X̃> = XX>, ŨŨ> = UU>, ∆̃∆̃> = ∆∆>, Ũ∆̃> = U∆>,

which means Ki(X̃) = Ki(X) for i = 1, 2, 4. As for K3, by Ge et al. (2017, Lemma 18), we
have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

=4

n∑
i=1

[(‖Xi,·‖2 − α)+]3
‖Xi,·‖22‖∆i,·‖22 − 〈Xi,·,∆i,·〉2

‖Xi,·‖32
+ 12

n∑
i=1

[(‖Xi,·‖2 − α)+]2
〈Xi,·,∆i,·〉2

‖Xi,·‖22

− 16

n∑
i=1

[(‖Xi,·‖2 − α)+]3
〈Xi,·,∆i,·〉
‖Xi,·‖2

.

Since R ∈ O(r), we have ‖X̃i,·‖2 = ‖Xi,·‖2, ‖∆̃i,·‖2 = ‖∆i,·‖2 and 〈X̃i,·, ∆̃i,·〉 = 〈Xi,·,∆i,·〉,
so we have K3(X̃) = K3(X). Putting things together, we have K(X̃) = K(X).

Therefore, if we want to show that any X with K(X) > 0 satisfies (4) and (5) with high
probability, without loss of generality, we can assume that X satisfies the property that
X>Ur is a positive semidefinite matrix, i.e., U = Ur.

4.2.2. Proof of Theorem 2.

In order to prove our main result, we first give a uniform upper bound of K(X). Then for

any local minimum X̂, K(X̂) > 0, the property enables us to solve for the range of possible

X̂. For simplicity of notations, denote νr := ‖Mr‖`∞ .

Lemma 12 Assume that tuning parameters α, λ satisfy 100
√
νr 6 α 6 200

√
νr, 100‖Ω −

pJ‖ 6 λ 6 200‖Ω − pJ‖, and p > CS
logn
n with some absolute constant CS. Then, in an

event E with probability P[E] > 1 − 2n−3, uniformly for all X ∈ Rn×r and corresponding
∆ defined as before, we have

4∑
i=2

Ki(X) 610−3p
[
‖∆>∆‖2F + ‖U∆>‖2F

]

+ C3p

r∑
i=1

{[
C4

(√
n

p
+

log n

p

)
νr + C4σ2r+1−i − σi

]
+

}2

+ C3

[p(1− p)n+ log n]r‖N‖2`∞
p

.

(15)

Note in our proof of Theorem 2, we only use probabilistic tools in the above lemma to
control perturbation terms, i.e., K2(X),K3(X),K4(X). The rest part of the proof is
purely deterministic.
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Recall by the way we define ∆,

‖XX> −UU>‖2F =‖U∆> + ∆U> + ∆∆>‖2F
=‖∆∆>‖2F + 2‖∆U>‖2F + 2〈∆U>,U∆>〉+ 4〈∆∆>,U∆>〉.

(16)

By the definition of matrix inner product, we have

‖U∆>‖2F =〈U∆>,U∆>〉 = trace(∆U>U∆>) = trace(U>U∆>∆)

=〈U>U ,∆>∆〉,
(17)

and

〈∆∆>,U∆>〉 = trace(∆∆>U∆>) = trace(∆>∆∆>U) = 〈∆>∆,∆>U〉. (18)

Here we use the fact that trace(AB) = trace(BA) for any matrix A and B with suitable
size. Moreover, since we choose U such that U>X is positive semidefinite, U>∆ = ∆>U
and U>(∆ + U) � 0. Therefore, we also have

〈∆U>,U∆>〉 = trace(U∆>U∆>) = trace(∆U>∆U>) = trace(U>∆U>∆)

=〈∆>U ,U>∆〉 = 〈∆>U ,∆>U〉 = ‖∆>U‖2F
(19)

and
〈∆>∆,U>U + ∆>U〉 = 〈∆>∆, (U + ∆)>U〉 > 0. (20)

Here (20) also uses the fact that inner product of two positive semidefinite matrices is
non-negative.

Now denote a := ‖∆>∆‖F = ‖∆∆>‖F , b := ‖∆>U‖F and

ψ := C3


r∑
i=1

{[
C4

(√
n

p
+

log n

p

)
νr + C4σ2r+1−i − σi

]
+

}2

+
[p(1− p)n+ log n]r‖N‖2`∞

p2

 .

Putting Lemma 11 and Lemma 12 together, and using (16), we have

K(X)

p
61.001‖∆∆>‖2F − 3‖XX> −UU>‖2F + 10−3‖U∆>‖2F + ψ

=1.001a2 − 3
[
‖∆∆>‖2F + 2‖∆U>‖2F + 2〈∆U>,U∆>〉+ 4〈∆∆>,U∆>〉

]
+ 10−3‖U∆>‖2F + ψ,

(21)

By putting (17), (18), (19), (21) together,

K(X)

p
61.001a2 − 3‖∆∆>‖2F − 6‖∆U>‖2F − 6〈∆U>,U∆>〉 − 12〈∆∆>,U∆>〉

+ 10−3‖U∆>‖2F + ψ

=− 1.999a2 − 6〈U>U ,∆>∆〉 − 6‖∆>U‖2F − 12〈∆>∆,∆>U〉
+ 10−3〈U>U ,∆>∆〉+ ψ

=− 1.999a2 − 〈∆>∆, 5.999U>U + 12∆>U〉 − 6b2 + ψ.

(22)
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Therefore, combining with (20),

K(X)

p
6− 1.999a2 − 6.001〈∆>∆,∆>U〉 − 6b2 + ψ

6− 1.999a2 + 6.001ab− 6b2 + ψ

(23)

holds for all X ∈ Rn×r. For the last line, we apply Cauchy-Schwarz inequality for matrices,
i.e.,

|〈∆>∆,∆>U〉| 6 ‖∆>∆‖F ‖∆>U‖F .

Note that for any local minimum X̂, we have K(X̂) > 0. Replacing X with X̂ in (23),
there holds

−1.999a2 + 6.001ab− 6b2 + ψ > 0,

which further implies
0 6 a 6 C5

√
ψ, 0 6 b 6 C5

√
ψ. (24)

From (22), we have

K(X̂)

p
6 −1.999a2 − 〈∆>∆, 5.999U>U + 12∆>U〉 − 6b2 + ψ.

Recall from (17), ‖U∆>‖2F = 〈U>U ,∆>∆〉, and K(X̂) > 0. Therefore, combining with
(24),

5.999‖U∆>‖2F 6− 1.999a2 − 〈∆>∆, 12∆>U〉 − 6b2 + ψ

6− 1.999a2 + 12‖∆>∆‖F ‖∆>U‖F − 6b2 + ψ

6− 1.999a2 + 12ab− 6b2 + ψ

6C6ψ.

(25)

From (21),

K(X̂)

p
6 1.001‖∆∆>‖2F − 3‖X̂X̂> −UU>‖2F + 10−3‖U∆>‖2F + ψ.

Using the fact that K(X̂) > 0 again, we have

3‖X̂X̂> −UU>‖2F 6 1.001‖∆∆>‖2F + 10−3‖U∆>‖2F + ψ

Combining with (24), (25), we futher have

3‖X̂X̂> −UU>‖2F 61.001a2 + C7ψ + ψ 6 C8ψ. (26)

Therefore, (4) is directly implied by (26). Notice that

‖X̂X̂>−M‖2F = ‖X̂X̂>−UU>‖2F − 2〈X̂X̂>,N〉+ ‖N‖2F 6 ‖X̂X̂>−UU>‖2F + ‖N‖2F

where the inequality holds since X̂X̂> � 0 and N � 0. Therefore, (5) is implied by (4).
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4.3. Proofs of supporting lemmas

We present in this section the proofs of lemmas stated in previous sections.

4.3.1. A proof of Lemma 8

Proof First of all, by using the definition of matrix inner product and Hadamard product,
we have

|〈PΩ0(AC>),PΩ0(BD>)〉 − t〈AC>,BD>〉| =|〈Ω0 − tJ , (AC> ◦BD>)〉|
6‖Ω0 − tJ‖‖(AC> ◦BD>)‖∗,

(27)

The inequality holds by matrix Hölder’s inequality. So the only thing left over is to give a
bound of ‖(AC> ◦BD>)‖∗. Notice one can decompose the matrix into sum of rank one
matrices as following

AC> ◦BD> =

(
r1∑
k=1

A·,kC
>
·,k

)
◦

(
r2∑
k=1

B·,kD
>
·,k

)
=

r1∑
l=1

r2∑
m=1

(A·,l ◦B·,m)(C·,l ◦D·,m)>.

Recall M·,j = (M1,j ,M2,j , . . . ,Mn,j)
> denotes the j-th column of any matrix M ∈ Rn×m.

Therefore, one can upper bound the nuclear norm via

‖(AC> ◦BD>)‖∗ 6
r1∑
l=1

r2∑
m=1

‖(A·,l ◦B·,m)(C·,l ◦D·,m)>‖∗

=

r1∑
l=1

r2∑
m=1

‖A·,l ◦B·,m‖2‖C·,l ◦D·,m‖2

=

r1∑
l=1

r2∑
m=1

√√√√ n1∑
k=1

A2
k,lB

2
k,m

√√√√ n2∑
k=1

C2
k,lD

2
k,m,

where the first line is by the triangle inequality and we can replace nuclear norm by vector
`2 norms in second line since the summands are all rank one matrices. By applying the
Cauchy-Schwarz inequality for twice, we can obtain

‖(AC> ◦BD>)‖∗ 6

√√√√ r1∑
l=1

r2∑
m=1

n1∑
k=1

A2
k,lB

2
k,m

√√√√ r1∑
l=1

r2∑
m=1

n2∑
k=1

C2
k,lD

2
k,m

=

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22.

(28)

Combining (27) and (28) together, we have

|〈PΩ0(AC>),PΩ0(BD>)〉 − t〈AC>,BD>〉|

6‖Ω0 − tJ‖

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22.
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4.3.2. A proof of Lemma 12

Proof The proof of Lemma 12 can be divided into the controls of K2(X), K3(X) and
K4(X) separately.

For K2(X), we have

Lemma 13 In an event Ea with probability P[Ea] > 1− n−3, uniformly for all X ∈ Rn×r
and corresponding ∆ defined as before, we have

K2(X) 6 ‖Ω− pJ‖

[
19

n∑
i=1

‖∆i,·‖42 + 18νr‖∆‖2F + 9νr

r∑
i=s+1

σi

]
+ 3× 10−4p‖U∆>‖2F ,

where s is defined by

s := max

{
s 6 r, σs > Cp

νr log n

p

}
(29)

with Cp an absolute constant. Set s = 0 if σ1 < Cp
νr logn

p .

For K3(X), we use a modified version of Ge et al. (2017, Lemma 11):

Lemma 14 (Ge et al. 2017, Lemma 11) If α > 100
√
νr, then uniformly for all X ∈

Rn×r and corresponding ∆ defined as before, we have

K3(X) 6 199.54λα2‖∆‖2F − 0.3λ

n∑
i=1

‖∆i,·‖42.

The main modification we have made is that we keep the extra negative term. We will give
a proof in the appendix for completeness.

For K4(X), we have

Lemma 15 Uniformly for all X ∈ Rn×r and corresponding ∆ defined as before, we have

K4(X) 65× 10−4p‖∆∆>‖2F + 2× 10−4p‖U∆>‖2F + C10
r‖PΩ(N)− pN‖2

p

+ 6p〈∆∆>,N〉.

We can apply Lemma 4 together with Lemma 9 to bound ‖PΩ(N) − pN‖ and ‖Ω − pJ‖
(similar result can also be found in Keshavan et al. (2010b)): As long as p > CS

logn
n with

some absolute constant CS , there is an absolute constant C9, such that

‖PΩ(N)− pN‖ 6
(
C9

√
np(1− p) + C9

√
log n

)
‖N‖`∞ (30)
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and
‖Ω− pJ‖ 6 C9

√
np (31)

hold in an event Eb with probability P[Eb] > 1− n−3.

By putting Lemma 13, Lemma 14 and Lemma 15 together, we have

4∑
i=2

Ki(X) 6‖Ω− pJ‖

[
19

n∑
i=1

‖∆i,·‖42 + 18νr‖∆‖2F + 9νr

r∑
i=s+1

σi

]
+ 3× 10−4p‖U∆>‖2F

+ 199.54λα2‖∆‖2F − 0.3λ
n∑
i=1

‖∆i,·‖42 + 5× 10−4p‖∆∆>‖2F

+ 2× 10−4p‖U∆>‖2F + C10
r‖PΩ(N)− pN‖2

p
+ 6p〈∆∆>,N〉.

Replacing α, λ by the assumption 100
√
νr 6 α 6 200

√
νr, 100‖Ω−pJ‖ 6 λ 6 200‖Ω−pJ‖,

we futher have

4∑
i=2

Ki(X) 6‖Ω− pJ‖

[
19

n∑
i=1

‖∆i,·‖42 + 18νr‖∆‖2F + 9νr

r∑
i=s+1

σi

]
+ 3× 10−4p‖U∆>‖2F

+ 7.9816× 108νr‖Ω− pJ‖‖∆‖2F − 30‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 + 5× 10−4p‖∆∆>‖2F

+ 2× 10−4p‖U∆>‖2F + C10
r‖PΩ(N)− pN‖2

p
+ 6p〈∆∆>,N〉.

Combining with (30) and (31), and applying union bound,

4∑
i=2

Ki(X) 6(19− 30)‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 + (18 + 7.9816× 108)νr‖Ω− pJ‖‖∆‖2F

+ 9νr‖Ω− pJ‖
r∑

i=s+1

σi + (3 + 2)× 10−4p‖U∆>‖2F

+ 5× 10−4p‖∆∆>‖2F + C10
r‖PΩ(N)− pN‖2

p
+ 6p〈∆∆>,N〉

65× 10−4p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C3

p(1− p)n+ log n

p
r‖N‖2`∞

+ C11
√
npνr‖∆‖2F + C12

√
npνr

r∑
i=s+1

σi + 6p〈∆∆>,N〉,

(32)

holds in an event E with probability P[E] > 1− 2n−3.

For ‖∆>∆‖2F , we have

‖∆>∆‖2F = 〈∆>∆,∆>∆〉 =

r∑
i=1

σ4
i (∆), (33)
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where σi(∆) denotes i-th largest singular value of ∆.

In order to proceed, we need the following von Neumann’s trace inequality:

Lemma 16 (Bhatia 2013, Problem III.6.14) Let A,B ∈ Rn×n be two symmetric ma-
trices, λ1(A) > λ2(A) > · · · > λn(A) and λ1(B) > λ2(B) > · · · > λn(B) are eigenvalues
of A and B. Then the following holds:

n∑
i=1

λi(A)λn+1−i(B) 6 〈A,B〉 6
n∑
i=1

λi(A)λi(B).

This result can also be derived from Schur-Horn theorem (see, e.g., Marshall et al. (2011,
Theorem 9.B.1, Theorem 9.B.2)) together with Abel’s summation formula.

From Lemma 16, we have

‖U∆>‖2F = trace(∆U>U∆>) = 〈U>U ,∆>∆〉

>
r∑
i=1

λr+1−i(U
>U)λi(∆

>∆) =
r∑
i=1

σ2
i (∆)σ2

r+1−i(U),
(34)

and

〈∆∆>,N〉 6
n∑
i=1

λi(∆∆>)λi(N) =

r∑
i=1

σ2
i (∆)σi(N). (35)

Here we use the fact that λi(U
>U) = σ2

i (U), λi(∆
>∆) = σ2

i (∆), λi(N) = σi(N) and

λi(∆∆>) =

{
σ2
i (∆) i = 1, · · · , r

0 i = r + 1, · · · , n.

Putting (33), (34) and (35) together we have

− 5× 10−4p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C11

√
npνr‖∆‖2F + 6p〈∆∆>,N〉

6− 5× 10−4p

[
r∑
i=1

σ4
i (∆) +

r∑
i=1

σ2
i (∆)σ2

r+1−i(U)

]
+ C11

√
npνr

r∑
i=1

σ2
i (∆)

+ 6p

r∑
i=1

σ2
i (∆)σi(N)

65× 10−4p

r∑
i=1

{
−σ4

i (∆) +

[
C13

√
n

p
νr − σ2

r+1−i(U) + C13σi(N)

]
σ2
i (∆)

}
.

For the last line, the summands are a series of quadratic functions of σ2
i (∆). Noticing the

fact that for a quadratic function q(x) = −x2+bx, given the constraint x > 0, the maximum
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is taken over x̂ = 1
2 [b]+, and the maximum value is 1

4{[b]+}
2. Therefore, we have

− 5× 10−4p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C11

√
npνr‖∆‖2F + 6p〈∆∆>,N〉

6C14p
r∑
i=1

{[
C13

√
n

p
νr − σ2

r+1−i(U) + C13σi(N)

]
+

}2

=C14p
r∑
j=1

{[
C13

√
n

p
νr − σ2

j (U) + C13σr+1−j(N)

]
+

}2

=C14p
r∑
j=1

{[
C13

√
n

p
νr + C13σ2r+1−j − σj

]
+

}2

.

(36)

In the second last line, we let j = r + 1− i. In the last line, we use the fact that

σr+1−j(N) = σr+r+1−j(M) = σ2r+1−j

and
σ2
j (U) = σj(UU>) = σj(Mr) = σj(M) = σj .

Finally putting (32) and (36) together we have

4∑
i=2

Ki(X) 610× 10−4p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C3

p(1− p)n+ log n

p
r‖N‖2`∞

− 5× 10−4p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C11

√
npνr‖∆‖2F

+ C12
√
npνr

r∑
i=s+1

σi + 6p〈∆∆>,N〉

610−3p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C3

p(1− p)n+ log n

p
r‖N‖2`∞

+ C14p
r∑
i=1

{[
C13

√
n

p
νr + C13σ2r+1−i − σi

]
+

}2

+ C12
√
npνr

r∑
i=s+1

σi.

(37)

Recall by the definition of s in (29), for any i > s, we have σi < Cp
νr logn

p . By choosing C13

sufficient large, i.e., C13 > 2Cp, we have

C13

(√
n

p
+

log n

p

)
νr + C13σ2r+1−i − σi >C13

(√
n

p
+

log n

p

)
νr − 2σi + σi

>C13

(√
n

p
+

log n

p

)
νr − 2Cp

νr log n

p
+ σi

=C13

√
n

p
νr + σi + (C13 − 2Cp)

νr log n

p

>C13

√
n

p
νr + σi > 0.
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Therefore, for all i > s,{[
C13

(√
n

p
+

log n

p

)
νr + C13σ2r+1−i − σi

]
+

}2

>

[
C13

√
n

p
νr + σi

]2

>
√
n

p
νrσi.

Combining with (37), we have

4∑
i=2

Ki(X) 610−3p
[
‖∆>∆‖2F + ‖U∆>‖2F

]

+ C14p
r∑
i=1

{[
C13

(√
n

p
+

log n

p

)
νr + C13σ2r+1−i − σi

]
+

}2

+ C12p

r∑
i=s+1

{[
C13

(√
n

p
+

log n

p

)
νr + C13σ2r+1−i − σi

]
+

}2

+ C3
p(1− p)n+ log n

p
r‖N‖2`∞

610−3p
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C3p

r∑
i=1

{[
C4

(√
n

p
+

log n

p

)
νr + C4σ2r+1−i − σi

]
+

}2

+ C3
p(1− p)n+ log n

p
r‖N‖2`∞

which finishes the proof.

4.3.3. A proof of Lemma 13

Proof Recall that we define ∆ as ∆ := X −U , DΩ,p(XX> −UU>,XX> −UU>) can
be decomposed as following

DΩ,p(XX> −UU>,XX> −UU>)

=DΩ,p(U∆> + ∆U> + ∆∆>,U∆> + ∆U> + ∆∆>)

=DΩ,p(U∆> + ∆U>,U∆> + ∆U>)︸ ︷︷ ︸
1

+DΩ,p(∆∆>,∆∆>)︸ ︷︷ ︸
2

+ 4DΩ,p(U∆>,∆∆>)︸ ︷︷ ︸
3

.
(38)

Here we use the fact that Ω is symmetric. Our strategy here is using Lemma 6 to give a
tight bound to as many as possible terms, for those terms that Lemma 6 cannot handle,
we use Lemma 8 to give a bound. To be more precise, for 2 and 3 , as Lemma 6 cannot

apply here, we use Lemma 8 to give a bound. For 1 , we need to split it into two parts,
the good part we can use Lemma 6 to control, and the rest part we use Lemma 8 to give a
bound.
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First for 2 and 3 , by applying Lemma 8,

| 2 | = |DΩ,p(∆∆>,∆∆>)| 6 ‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 (39)

and

| 3 | = 4|DΩ,p(U∆>,∆∆>)| 64‖Ω− pJ‖

√√√√ n∑
i=1

‖Ui,·‖22‖∆i,·‖22

√√√√ n∑
i=1

‖∆i,·‖42

62‖Ω− pJ‖νr‖∆‖2F + 2‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42,

(40)

where for the second inequality we use the fact that 2xy 6 x2 + y2.

Finally for 1 , if U is good enough such that the incoherence µ(U) is well-bounded, then
we can apply Lemma 6 directly and get a tight bound. If µ(U) is not good enough, we
want to split U into two parts and hope first few columns have good incoherence. To be
more precise, recall that we assume U = Ur = [

√
σ1u1 . . .

√
σrur], similar to (8), for the

incoherence of the first k columns, we have

µ (colspan([
√
σ1u1 . . .

√
σkuk]))

=
n

k
max
i

k∑
j=1

u2
i,j 6

n

kσk
max
i

k∑
j=1

σju
2
i,j 6

n

kσk
max
i

r∑
j=1

σju
2
i,j 6

nνr
kσk

,
(41)

where µ(·) is defined in (9).

For fixed s defined as in (29), denote first s columns of U as U1, and remaining part as
U2. Decompose U as U = [U1 U2], and ∆ can also be decomposed as ∆ = [∆1 ∆2]
correspondingly. Note by our assumption that U = Ur, we have (U1)>U2 = 0. So we can
further decompose the first term of (38) as

1 =DΩ,p(U∆> + ∆U>,U∆> + ∆U>)

=DΩ,p

(
[U1 U2][∆1 ∆2]> + [∆1 ∆2][U1 U2]>, [U1 U2][∆1 ∆2]>

+[∆1 ∆2][U1 U2]>
)

=DΩ,p

(
U1(∆1)> + ∆1(U1)>,U1(∆1)> + ∆1(U1)>

)
︸ ︷︷ ︸

A1

+ 4DΩ,p

(
U1(∆1)>,U2(∆2)>

)
︸ ︷︷ ︸

A2

+ 2DΩ,p

(
U2(∆2)>,U2(∆2)>

)
︸ ︷︷ ︸

A3

+ 2DΩ,p

(
U2(∆2)>,∆2(U2)>

)
︸ ︷︷ ︸

A4

+ 4DΩ,p

(
U1(∆1)>,∆2(U2)>

)
︸ ︷︷ ︸

A5

.

(42)
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Now we can apply tight approximation Lemma 6 to the first term of (42). By the way we
choose s, combining with (41),

p > Cp
νr log n

σs
> Cp

νr log n

σs
·
µ
(
colspan(U1)

)
sσs

nνr
= Cp

µ
(
colspan(U1)

)
s log n

n
.

By choosing Cp sufficient large, Lemma 6 ensures that

|A1| =
∣∣∣DΩ,p

(
U1(∆1)> + ∆1(U1)>,U1(∆1)> + ∆1(U1)>

)∣∣∣
62.5× 10−5p‖U1(∆1)> + ∆1(U1)>‖2F
65× 10−5p(‖U1(∆1)>‖2F + ‖∆1(U1)>‖2F )

610−4p‖U∆>‖2F

(43)

hold in an event Ea with probability P[Ea] > 1−n−3, where the second inequality uses the
fact that (x+ y)2 6 2x2 + 2y2, and last inequality uses the fact that (U1)>U2 = 0.

For the rest terms in (42), by applying Lemma 8 we have

|A2| =4|DΩ,p(U
1(∆1)>,U2(∆2)>)|

64‖Ω− pJ‖

√√√√ n∑
i=1

‖U1
i,·‖22‖U2

i,·‖22

√√√√ n∑
i=1

‖∆1
i,·‖22‖∆2

i,·‖22

62‖Ω− pJ‖

[
νr‖U2‖2F +

n∑
i=1

‖∆i,·‖42

] (44)

for the second term in (42), where the second inequality use the fact that ‖U1
i,·‖22 6 ‖Ui,·‖22 6

νr, ‖∆1
i,·‖22 6 ‖∆i,·‖22, ‖∆2

i,·‖22 6 ‖∆i,·‖22 and 2xy 6 x2 + y2. For the third term, applying
Lemma 8 again we have

|A3| =2|DΩ,p(U
2(∆2)>,U2(∆2)>)|

62‖Ω− pJ‖

√√√√ n∑
i=1

‖U2
i,·‖42

√√√√ n∑
i=1

‖∆2
i,·‖42

6‖Ω− pJ‖

[
νr‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]
,

(45)

where for the second inequality we also use the properties used in bounding second term.
For the fourth and last term in (42), applying Lemma 8 and properties listed above, we
have

|A4| =2|DΩ,p(U
2(∆2)>,∆2(U2)>)|

62‖Ω− pJ‖
n∑
i=1

‖U2
i,·‖22‖∆2

i,·‖22 6 2‖Ω− pJ‖νr‖∆‖2F
(46)
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and

|A5| =4|DΩ,p(U
1(∆1)>,∆2(U2)>)|

64‖Ω− pJ‖

√√√√ n∑
i=1

‖U1
i,·‖22‖∆2

i,·‖22

√√√√ n∑
i=1

‖U2
i,·‖22‖∆1

i,·‖22

62‖Ω− pJ‖νr‖∆1‖2F + 2‖Ω− pJ‖νr‖∆2‖2F
=2‖Ω− pJ‖νr‖∆‖2F .

(47)

Now putting estimations of terms in (42) listed above together, i.e., (43), (44), (45), (46)
and (47), we have

| 1 | =|DΩ,p(U∆> + ∆U>,U∆> + ∆U>)|
6|A1|+ |A2|+ |A3|+ |A4|+ |A5|

610−4p‖U∆>‖2F + 2‖Ω− pJ‖

[
νr‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]

+ ‖Ω− pJ‖

[
νr‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]
+ 2‖Ω− pJ‖νr‖∆‖2F

+ 2‖Ω− pJ‖νr‖∆‖2F

6‖Ω− pJ‖

[
3νr‖U2‖2F + 3

n∑
i=1

‖∆i‖42 + 4νr‖∆‖2F

]
+ 10−4p‖U∆>‖2F .

(48)

Plugging estimations (39), (40) and (48) back to (38), we have

|DΩ,p(XX> −UU>,XX> −UU>)|

6| 1 |+ | 2 |+ | 3 |

6‖Ω− pJ‖

[
3νr‖U2‖2F + 3

n∑
i=1

‖∆i‖42 + 4νr‖∆‖2F

]
+ 10−4p‖U∆>‖2F

+ ‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 + 2‖Ω− pJ‖νr‖∆‖2F + 2‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42

=‖Ω− pJ‖

[
3νr‖U2‖2F + 6

n∑
i=1

‖∆i‖42 + 6νr‖∆‖2F

]
+ 10−4p‖U∆>‖2F .
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Therefore, combining with (39), we have

K2(X) 6|DΩ,p(∆∆>,∆∆>)|+ 3|DΩ,p(XX> −UU>,XX> −UU>)|

6‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 + 3‖Ω− pJ‖

[
3νr‖U2‖2F + 6

n∑
i=1

‖∆i‖42 + 6νr‖∆‖2F

]
+ 3× 10−4p‖U∆>‖2F

6‖Ω− pJ‖

[
19

n∑
i=1

‖∆i‖42 + 18νr‖∆‖2F + 9νr

r∑
i=s+1

σi

]
+ 3× 10−4p‖U∆>‖2F .

The last line uses the fact that ‖U2‖2F =
∑r

i=s+1 σi.

4.3.4. A proof of Lemma 15

Proof First, by matrix Hölder’s inequality,

6|〈∆∆>,PΩ(N)− pN〉| 66

√
p‖∆∆>‖∗√

r

√
r‖PΩ(N)− pN‖

√
p

.

Since ∆∆> is at most rank-r, ‖∆∆>‖∗ 6
√
r‖∆∆>‖F . Therefore,

6|〈∆∆>,PΩ(N)− pN〉| 66
√
p‖∆∆>‖F

√
r‖PΩ(N)− pN‖

√
p

65× 10−4p‖∆∆>‖2F + C15
r‖PΩ(N)− pN‖2

p
.

For the last inequality, we also use the fact that 2xy 6 wx2 + y2

w for all w > 0. Use the
same argument we also have

8|〈U∆>,PΩ(N)− pN〉| 6 2× 10−4p‖U∆>‖2F + C15
r‖PΩ(N)− pN‖2

p
,

Therefore, by the way we define K4(X) in (14), we have

K4(X) 6|6〈∆∆>,PΩ(N)〉 − 6p〈∆∆>,N〉|+ |8〈U∆>,PΩ(N)〉 − 8p〈U∆>,N〉|
+ 6p〈∆∆>,N〉

65× 10−4p‖∆∆>‖2F + 2× 10−4p‖U∆>‖2F + C10
r‖PΩ(N)− pN‖2

p

+ 6p〈∆∆>,N〉.
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5. Discussions

This paper studies low-rank approximation of a positive semidefinite matrix from partial
entries via nonconvex optimization. We established a model-free theory for local-minimum
based low-rank approximation without any assumptions on its rank, condition number or
eigenspace incoherence parameter. We have also improved the state-of-the-art sampling rate
results for nonconvex matrix completion with no spurious local minima in Ge et al. (2016,
2017), and have investigated the performance of the proposed nonconvex optimization in
presence of large condition numbers, large incoherence parameters, or rank mismatching.
The nonconvex optimization is further applied to the problem of memory-efficient kernel
PCA. Compared to the well-known Nyström methods, numerical experiments illustrate that
the proposed nonconvex optimization approach yields more stable results in both low-rank
approximation and clustering.

For future research, we are interested in understanding whether and how fast first-order
methods converge to a neighborhood of the set of local minima with theoretical guarantees.
In fact, a series of recent works in nonconvex optimization have discussed why and when
first-order iterative algorithms can avoid strict saddle points almost surely. For example,
in a very recent work by Lee et al. (2017), the authors show that under mild conditions of
the nonconvex objective function, a variety of first order algorithms can avoid strict saddle
points with almost all initialization, which extends the previous results in Lee et al. (2016)
and Panageas and Piliouras (2017). We are particularly interested in the robust version
of the strict saddle points condition discussed in Ge et al. (2015) and Jin et al. (2017),
referred to as (θ, γ, ζ)-strict saddle, under which noisy stochastic/deterministic gradient
descent methods are proven to converge to a neighborhood of the local minima. In fact,
Ge et al. (2017, Theorem 12) shows that the nonconvex optimization (1) satisfies certain
(θ, γ, ζ)-strict saddle conditions as long as M is exactly of rank r, its condition number and
eigenspace incoherence parameter are well-bounded, and the sampling rate is sufficiently
large, but their argument cannot be straightforwardly extended to the model-free settings.
We plan to explore the (θ, γ, ζ)-strict saddle conditions for (1) under a model-free framework
in future.

Acknowledgments

We would like to acknowledge Taisong Jing for pointing us to the reference Bhatia (2013).

References

Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix approxima-
tions. Journal of the ACM (JACM), 54(2):9, 2007.

Dimitris Achlioptas, Frank McSherry, and Bernhard Schölkopf. Sampling techniques for
kernel methods. In Advances in Neural Information Processing Systems, pages 335–342,
2002.

Larry Armijo. Minimization of functions having Lipschitz continuous first partial deriva-
tives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

33



Chen and Li

Maria-Florina Balcan, Yingyu Liang, David P Woodruff, and Hongyang Zhang. Opti-
mal sample complexity for matrix completion and related problems via `2-regularization.
arXiv preprint arXiv:1704.08683, 2017.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2(1):53–58, 1989.

Afonso S Bandeira, Ramon Van Handel, et al. Sharp nonasymptotic bounds on the norm of
random matrices with independent entries. The Annals of Probability, 44(4):2479–2506,
2016.

Rajendra Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer New York,
2013. ISBN 9781461206538.

Srinadh Bhojanapalli and Prateek Jain. Universal matrix completion. In International
Conference on Machine Learning, pages 1881–1889, 2014.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro. Global optimality of lo-
cal search for low rank matrix recovery. In Advances in Neural Information Processing
Systems, pages 3873 – 3881, 2016.

Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–
357, 2003.

T Tony Cai, Xiaodong Li, Zongming Ma, et al. Optimal rates of convergence for noisy
sparse phase retrieval via thresholded wirtinger flow. The Annals of Statistics, 44(5):
2221–2251, 2016.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9(6):717–772, 2009.

Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger
flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–
2007, 2015.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals
of Statistics, 43(1):177–214, 2015.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient
descent: General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025,
2015.

Petros Drineas and Michael W Mahoney. On the Nyström method for approximating a
gram matrix for improved kernel-based learning. Journal of Machine Learning Research,
6(Dec):2153–2175, 2005.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points–online
stochastic gradient for tensor decomposition. In Conference on Learning Theory, pages
797–842, 2015.

34



Nonconvex Matrix Completion

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. In International Conference on Machine Learning, pages
1233–1242, 2017.

Gene H Golub and Charles F Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

Thore Graepel. Kernel matrix completion by semidefinite programming. In International
Conference on Artificial Neural Networks, pages 694–699. Springer, 2002.

David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans-
actions on Information Theory, 57(3):1548–1566, 2011.

David Gross and Vincent Nesme. Note on sampling without replacing from a finite collection
of matrices. arXiv preprint arXiv:1001.2738, 2010.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 665–674. ACM, 2013.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to
escape saddle points efficiently. In International Conference on Machine Learning, pages
1724–1732, 2017.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from
noisy entries. Journal of Machine Learning Research, 11(Jul):2057–2078, 2010a.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from
a few entries. IEEE Transactions on Information Theory, 56(6):2980–2998, 2010b.

Kwang In Kim, Matthias O Franz, and Bernhard Schölkopf. Iterative kernel principal
component analysis for image modeling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(9):1351–1366, 2005.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Conference on Learning Theory, pages 1246–1257, 2016.

Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan,
and Benjamin Recht. First-order methods almost always avoid saddle points. arXiv
preprint arXiv:1710.07406, 2017.

Qiuwei Li, Zhihui Zhu, and Gongguo Tang. Geometry of factored nuclear norm regulariza-
tion. arXiv preprint arXiv:1704.01265, 2017.

35



Chen and Li

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei. Rapid, robust, and reliable
blind deconvolution via nonconvex optimization. Applied and computational harmonic
analysis, 2018.

Xingguo Li, Zhaoran Wang, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, and Tuo
Zhao. Symmetry, saddle points, and global geometry of nonconvex matrix factorization.
arXiv preprint arXiv:1612.09296, 2016a.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank
approximation via alternating minimization. In International Conference on Machine
Learning, pages 2358–2367, 2016b.

Po-Ling Loh and Martin J. Wainwright. Regularized m-estimators with nonconvexity: Sta-
tistical and algorithmic theory for local optima. Journal of Machine Learning Research,
16(19):559–616, 2015.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majoriza-
tion and Its Applications. Springer, 2011.

Sahand Negahban and Martin J Wainwright. Restricted strong convexity and weighted
matrix completion: Optimal bounds with noise. Journal of Machine Learning Research,
13(May):1665–1697, 2012.

John Paisley and Lawrence Carin. A nonparametric bayesian model for kernel matrix
completion. In 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 2090–2093. IEEE, 2010.

Ioannis Panageas and Georgios Piliouras. Gradient descent only converges to minimizers:
Non-isolated critical points and invariant regions. In Innovations in Theoretical Computer
Science, 2017.

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning
Research, 12(Dec):3413–3430, 2011.

Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proceedings of the 22nd international conference on Machine
learning, pages 713–719. ACM, 2005.

Yousef Saad. Iterative Methods for Sparse Linear Systems, volume 82. SIAM, 2003.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations
of Computational Mathematics, 18(5):1131–1198, 2018.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization.
IEEE Transactions on Information Theory, 62(11):6535–6579, 2016.

36



Nonconvex Matrix Completion

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht.
Low-rank solutions of linear matrix equations via procrustes flow. arXiv preprint
arXiv:1507.03566, 2015.

Van Vu. A Simple SVD Algorithm for Finding Hidden Partitions. Combinatorics, Proba-
bility and Computing, 27(1):124–140, 2018.

Quan Wang. Kernel principal component analysis and its applications in face recognition
and active shape models. arXiv preprint arXiv:1207.3538, 2012.

Christopher KI Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems, pages 682–688,
2001.

Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for
robust PCA via gradient descent. In Advances in Neural Information Processing Systems,
pages 4152–4160, 2016.

Tuo Zhao, Zhaoran Wang, and Han Liu. A nonconvex optimization framework for low
rank matrix estimation. In Advances in Neural Information Processing Systems, pages
559–567, 2015.

Qinqing Zheng and John Lafferty. A convergent gradient descent algorithm for rank mini-
mization and semidefinite programming from random linear measurements. In Advances
in Neural Information Processing Systems, pages 109–117, 2015.

Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix com-
pletion using burer-monteiro factorization and gradient descent. arXiv preprint
arXiv:1605.07051, 2016.

Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. The global optimization geom-
etry of nonsymmetric matrix factorization and sensing. arXiv preprint arXiv:1703.01256,
2017.

Appendix A. Proof of Corollary 3

Proof The inequality (8) gives ‖M‖`∞ 6 µrrσ1
n . Therefore, in the case rank(M) = r, the

approximation error bound (5) becomes∥∥∥X̂X̂> −M
∥∥∥2

F
6 C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
µrr

n
σ1 − σi

]
+

}2

.

Therefore, if

p > C max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n

}
with absolute constant C sufficient large, we have

C2

(√
n

p
+

log n

p

)
µrr

n
σ1 6 σi, i = 1, · · · , r.
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In other words, X̂X̂> = M .

Similarly, by definition (7), in the case rank(M) = r, we have

‖M‖`∞ =
µ̃2
r trace(M)

n
6
µ̃2
rrσ1

n
.

Therefore, the approximation error bound (5) becomes∥∥∥X̂X̂> −M
∥∥∥2

F
6 C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
µ̃2
rr

n
σ1 − σi

]
+

}2

.

Therefore, if

p > C max

{
µ̃2
rrκr log n

n
,
µ̃4
rr

2κ2
r

n

}
with absolute constant C sufficient large, we have X̂X̂> = M .

Appendix B. Proof of Lemma 14

Here we present a proof of Lemma 14. This proof is exactly the proof in Ge et al. (2017)
except keeping the extra negative term. We include the proof in Ge et al. (2017) here for
completeness.
Proof By Ge et al. (2017, Lemma 18), we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

=4
n∑
i=1

[(‖Xi,·‖2 − α)+]3
‖Xi,·‖22‖∆i,·‖22 − 〈Xi,·,∆i,·〉2

‖Xi,·‖32

+ 12
n∑
i=1

[(‖Xi,·‖2 − α)+]2
〈Xi,·,∆i,·〉2

‖Xi,·‖22
− 16

n∑
i=1

[(‖Xi,·‖2 − α)+]3
〈Xi,·,∆i,·〉
‖Xi,·‖2

.

(49)

First of all, since we choose α > 100
√
νr = 100‖U‖2,∞, then for all Xi,· satisfying ‖Xi,·‖2 >

α, we have

〈Xi,·,∆i,·〉 = 〈Xi,·,Xi,·−Ui,·〉 > ‖Xi,·‖22−‖Xi,·‖2‖Ui,·‖2 > (1−0.01)‖Xi,·‖22 > 0.99‖Xi,·‖22,
(50)

which gives an lower bound of the inner product between Xi,· and ∆i,·. At the same time,
we can also upper bound ‖∆i,·‖2 by ‖Xi,·‖2:

‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 6 1.01‖Xi,·‖2. (51)

Plugging the above two estimations (50), (51) together with the fact that |〈Xi,·,∆i,·〉|2 6
‖Xi,·‖22‖∆i,·‖22 into (49), we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

6− 15.68
n∑
i=1

[(‖Xi,·‖2 − α)+]3‖Xi,·‖2 + 12

n∑
i=1

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22.
(52)
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Moreover, for all Xi,· satisfies ‖Xi,·‖2 > 5α, we can also upper bound ‖∆i,·‖2 by ‖Xi,·‖2:

‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 6 1.002‖Xi,·‖2, (53)

and also lower bound ‖Xi,·‖2 − α by ‖∆i,·‖2:

‖Xi,·‖2 − α >

(
1− 1

5

)
‖Xi,·‖2 >

400

501
‖∆i,·‖2. (54)

Plugging (53) and (54) back to (52), we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

612
∑

i,‖Xi,·‖2<5α

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22

+

[
12− 15.68× 400

501
× 1

1.002

] ∑
i,‖Xi,·‖2>5α

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22

6192α2‖∆‖2F − 0.3
∑

i,‖Xi,·‖2>5α

‖∆i,·‖42

6199.54α2‖∆‖2F − 0.3
n∑
i=1

‖∆i,·‖42,

where the last inequality uses the fact that ‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 and α > 100
√
νr.
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