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Abstract

Singular values of a data in a matrix form provide insights on the structure of the
data, the effective dimensionality, and the choice of hyper-parameters on higher-level data
analysis tools. However, in many practical applications such as collaborative filtering and
network analysis, we only get a partial observation. Under such scenarios, we consider
the fundamental problem of recovering spectral properties of the underlying matrix from
a sampling of its entries. In this paper, we address the problem of directly recovering the
spectrum, which is the set of singular values, and also in sample-efficient approaches for
recovering a spectral sum function, which is an aggregate sum of a fixed function applied to
each of the singular values. Our approach is to first estimate the Schatten k-norms of a ma-
trix for a small set of values of k, and then apply Chebyshev approximation when estimating
a spectral sum function or apply moment matching in Wasserstein distance when estimat-
ing the singular values directly. The main technical challenge is in accurately estimating
the Schatten norms from a sampling of a matrix. We introduce a novel unbiased estimator
based on counting small structures called network motifs in a graph and provide guarantees
that match its empirical performance. Our theoretical analysis shows that Schatten norms
can be recovered accurately from strictly smaller number of samples compared to what is
needed to recover the underlying low-rank matrix. Numerical experiments suggest that
we significantly improve upon a competing approach of using matrix completion methods,
below the matrix completion threshold, above which matrix completion algorithms recover
the underlying low-rank matrix exactly.

Keywords: spectrum estimation, matrix completion, counting subgraphs.

1. Introduction

Computing and analyzing the set of singular values of a data in a matrix form, which is
called the spectrum, provide insights into the geometry and topology of the data. Such a
spectral analysis is routinely a first step in general data analysis with the goal of checking
if there exists a lower dimensional subspace explaining the important aspects of the data,
which itself might be high dimensional. Concretely, it is a first step in dimensionality
reduction methods such as principal component analysis or canonical correlation analysis.

However, spectral analysis becomes challenging in practical scenarios where the data is
only partially observed. We commonly observe pairwise relations of randomly chosen pairs:
each user only rates a few movies in recommendation systems, each player/team only plays
against a few opponents in sports leagues, each word appears in the same sentence with
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a small number of other words in word count matrices, and each worker answers a few
questions in crowdsourcing. In other applications, we have more structured samples. For
example, in a network analysis we might be interested in the spectrum of a large network,
but only get to see the connections within a small subset of nodes corresponding to sampling
a sub-matrix of the adjacency matrix. Whatever the sampling pattern is, typical number of
paired relations we observe is significantly smaller than the dimension of the data matrix.

We study all such variations in sampling patterns for partially observed data matrices,
and ask the following fundamental question: can we estimate spectral properties of a data
matrix from partial observations? We propose a novel approach that allows us to estimate
the spectrum, i.e. the singular values. A crucial building block in our approach is that spec-
tral properties can be accurately approximated from the first few moments of the spectrum
known as the Schatten k-norms defined as

‖M‖k =
( d∑
i=1

σi(M)k
)1/k

,

where σ1(M) ≥ σ2(M) ≥ · · · ≥ σd(M) ≥ 0 are the singular values of the data matrix
M ∈ Rd×d. Once we obtain accurate estimates of Schatten k-norms, these estimates,
as well as corresponding performance guarantees, can readily be translated into accurate
estimates of the spectrum of the matrix. Further, if we are interested in estimating a class
of functions known as spectral sum functions of the form (4), our estimates of the Schatten
norms can be used to estimate any spectral sum function using Chebyshev expansions.

1.1. Setup

We want to estimate the Schatten k-norm of a positive semidefinite matrix M ∈ Rd×d
from a subset of its entries. The restriction to positive semidefinite matrices is primarily
for notational convenience, and our analyses, the estimator, and the efficient algorithms
naturally generalize to any non-square matrices. Namely, we can extend our framework to
bipartite graphs and estimate Schatten k-norm of any matrix for any even k. Let Ω denote
the set of indices of samples we are given and let PΩ(M) = {(i, j,Mij)}(i,j)∈Ω denote the
samples. With a slight abuse of notation, we used PΩ(M) to also denote the d× d sampled
matrix:

PΩ(M)ij =

{
Mij if (i, j) ∈ Ω ,

0 otherwise ,

and it should be clear from the context which one we refer to. Although we propose a
framework that generally applies to any probabilistic sampling, it is necessary to propose
specific sampling scenarios to provide tight analyses on the performance. Hence, we focus
on Erdös-Rényi sampling.

There is an extensive line of research in low-rank matrix completion problems (Candès
and Recht, 2009; Keshavan et al., 2010a), which addresses a fundamental question of how
many samples are required to complete a matrix (i.e. estimate all the missing entries) from
a small subset of sampled entries. It is typically assumed that each entry of the matrix is
sampled independently with a probability p ∈ (0, 1]. We refer to this scenario as Erdös-
Rényi sampling, as the resulting pattern of the samples encoded as a graph is distributed
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as an Erdös-Rényi random graph. The spectral properties of such an sampled matrix have
been well studied in the literature (Friedman et al., 1989; Achlioptas and McSherry, 2001;
Feige and Ofek, 2005; Keshavan et al., 2010a; Le et al., 2015). In particular, it is known
that the original matrix is close in spectral norm to the sampled one where the missing
entries are filled in with zeros and properly rescaled under certain incoherence assumptions.
This suggests using the singular values of the sampled and rescaled matrix (d2/|Ω|)P(M)
directly for estimating the Schatten norms. However, in the sub-linear regime in which
the number of samples |Ω| = d2p is comparable to or significantly smaller than the degrees
of freedom in representing a symmetric rank-r matrix, which is dr − r2, the spectrum of
the sampled matrix is significantly different from the spectrum of the original matrix as
shown in Figure 1. We need to design novel estimators that are more sample efficient in
the sub-linear regime where d2p� dr.
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sampled spectrum

↓

Figure 1: In yellow, we show the histogram of the singular values of a positive semi-definite
matrix M ∈ Rd×d of size d = 1000 with rank r = 100, with σ1 = · · · = σ50 = 10,
σ51 = · · · = σ100 = 5, and the rest at zero (we omit zero singular values in the plot
for illustration). In comparison, we show in black the histogram of the singular values of
the sampled matrix where each entry of M is sampled with probability p = (1/d)r1−2/7

(properly rescaled by 1/p to best match the original spectrum).

1.2. Summary of the approach and preview of results

We propose first estimating one or a few Scahtten norms, which can be accurately estimated
from samples, and using these estimated Schatten norms to approximate the spectral prop-
erties of interest: spectral sum functions and the spectrum. We use an alternative expression
of the Schatten k-norm for positive semidefinite matrices as the trace of the k-th power of
M , i.e. (‖M‖k)k = Tr(Mk). This sum of the entries along the diagonal of Mk is the sum
of total weights of all the closed walks of length k. Consider the entries of M as weights on
a complete graph Kd over d nodes (with self-loops). A closed walk of length k is defined
as a sequence of nodes w = (w1, w2, . . . , wk+1) with w1 = wk+1, where we allow repeated
nodes and repeated edges. The weight of a closed walk w = (w1, . . . , wk, w1) is defined as
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ωM (w) ≡
∏k
i=1Mwiwi+1 , which is the product of the weights along the walk. It follows that

‖M‖kk =
∑

w: all length k closed walks

ωM (w) . (1)

Following the notations from enumeration of small simple cycles in a graph by Alon et al.
(1997), we partition this summation into those with the same pattern H that we call a
k-cyclic pseudograph. Let Ck = (Vk, Ek) denote the undirected simple cycle graph with k
nodes, e.g. A3 in Figure 2 is C3. We expand the standard notion of simple k-cyclic graphs
to include multi-edges and loops, hence the name pseudograph.

Definition 1 We define an unlabelled and undirected pseudograph H = (VH , EH) to be a
k-cyclic pseudograph for k ≥ 3 if there exists an onto node-mapping from Ck = (Vk, Ek), i.e.
f : Vk → VH , and a one-to-one edge-mapping g : Ek → EH such that g(e) = (f(ue), f(ve))
for all e = (ue, ve) ∈ Ek. We use Hk to denote the set of all k-cyclic pseudographs. We use
c(H) to the number of different node mappings f from Ck to a k-cyclic pseudograph H.

A1 A2 A3

c(A1) = 1 c(A2) = 3 c(A3) = 6

Figure 2: The 3-cyclic pseudographs H3 = {A1, A2, A3}.

In the above example, each member of H3 is a distinct pattern that can be mapped
from C3. For A1, it is clear that there is only one mapping from C3 to A1 (i.e. c(A1) = 1).
For A2, one can map any of the three nodes to the left-node of A2, hence c(A2) = 3. For
A3, any of the three nodes can be mapped to the bottom-left-node of A3 and also one can
map the rest of the nodes clockwise or counter-clockwise, resulting in c(A3) = 6. For k ≤ 7,
all the k-cyclic pseudo graphs are given in the Section 9 (See Figures 10–15).

Each closed walk w of length k is associated with one of the graphs in Hk, as there
is a unique H that the walk is an Eulerian cycle of (under a one-to-one mapping of the
nodes). We denote this graph by H(w) ∈ Hk. Considering the weight of a walk ωM (w),
there are multiple distinct walks with the same weight. For example, a length-3 walk
w = (v1, v2, v2, v1) has H(w) = A2 and there are 3 walks with the same weight ω(w) =
(Mv1v2)2Mv2v2 , i.e. (v1, v2, v2, v1), (v2, v2, v1, v2), and (v2, v1, v2, v2). This multiplicity of the
weight depends only on the structure H(w) of a walk, and it is exactly c(H(w)) the number
of mappings from Ck to H(w) in Definition 1. The total sum of the weights of closed walks
of length k can be partitioned into their respective pattern, which will make computation of
such terms more efficient (see Section 2) and also de-biasing straight forward (see Equation
(3)):

‖M‖kk =
∑
H∈Hk

ωM (H) c(H) , (2)
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where with a slight abuse of a notation, we let ωM (H) for H ∈ Hk be the sum of all
distinct weights of walks w with H(w) = H, and c(H) is the multiplicity of each of those
distinct weights. This gives an alternative tool for computing the Schatten k-norm without
explicitly computing the singular values.

Given only the access to a subset of sampled entries, one might be tempted to apply
the above formula to the sampled matrix with an appropriate scaling, i.e.∥∥∥ d2

|Ω|
PΩ(M)

∥∥∥k
k

=
d2

|Ω|
∑
H∈Hk

ωPΩ(M)(H) c(H) ,

to estimate ‖M‖kk. However, this is significantly biased. To eliminate the bias, we propose
rescaling each term in (1) by the inverse of the probability of sampling that particular walk
w (i.e. the probability that all edges in w are sampled). A crucial observation is that,
for any sampling model that is invariant under a relabelling of the nodes, this probability
only depends on the pattern H(w). In particular, this is true for the Erdös-Rényi sam-
pling. Based on this observation, we introduce a novel estimator that de-biases each group
separately:

Θ̂k(PΩ(M)) =
∑
H∈Hk

1

p(H)
ωPΩ(M)(H) c(H) , (3)

where p(H) is the probability a pattern H is sampled, i.e. all edges traversed in a walk
w with H(w) = H is sampled. It immediately follows that this estimator is unbiased, i.e.
EΩ[Θ̂k(PΩ(M))] = ‖M‖kk, where the randomness is in Ω. However, computing this estimate
can be challenging. Naive enumeration over all closed walks of length k takes time scaling
as O(d∆k−1), where ∆ is the maximum degree of the graph. Except for extremely sparse
graphs, this is impractical. Inspired by the work of Alon et al. (1997) in counting short
cycles in a graph, we introduce a novel and efficient method for computing the proposed
estimate for small values of k.

Proposition 2 For a positive semidefinite matrix M and any sampling pattern Ω, the
proposed estimate Θ̂k(PΩ(M)) in (3) can be computed in time O(dα) for k ∈ {3, 4, 5, 6, 7},
where α < 2.373 is the exponent of matrix multiplication. For k = 1 or 2, Θ̂k(PΩ(M)) can
be computed in time O(d) and O(d2), respectively.

This bound holds regardless of the degree, and the complexity can be even smaller for
sparse graphs as matrix multiplications are more efficient. We give a constructive proof
by introducing a novel algorithm achieving this complexity in Section 2. For k ≥ 8, our
approach can potentially be extended, but the complexity of the problem fundamentally
changes as it is at least as hard as counting K4 in a graph, for which the best known run
time is O(dα+1) for general graphs (Kloks et al., 2000).

We make the following contributions in this paper:

• We give in (3) an unbiased estimator of the Schatten k-norm of a positive semidefinite
matrix M , from a random sampling of its entries. In general, the complexity of
computing the estimate scales as O(d∆k−1) where ∆ is the maximum degree (number
of sampled entries in a column) in the sampled matrix. We propose a novel efficient
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algorithm for computing the estimate in (3) exactly for small k ≤ 7, which involves
only matrix operations. This algorithm is significantly more efficient and has run-time
scaling as O(dα) independent of the degree and for all k ≤ 7 (see Proposition 2) .

• Under the typical Erdös-Rényi sampling, we show that the Schatten k-norm of an in-
coherent rank-r matrix can be approximated within any constant multiplicative error,
with number of samples scaling as O(dr1−2/k) (see Theorem 3). In particular, this is
strictly smaller than the number of samples necessary to complete the matrix, which
scales as O(dr log d). Below this matrix completion threshold, numerical experiments
confirm that the proposed estimator significantly outperforms simple heuristics of us-
ing singular values of the sampled matrices directly or applying state-of-the-art matrix
completion methods (see Figure 4).

• Given the estimation of first K Schatten norms, it is straight forward to approximate
spectral sum functions of the form (4) using Chebyshev’s expansion, and also estimate
the spectrum itself using moment matching in Wasserstein distance. We apply our
Schatten norm estimates to the applications of estimating the generalized rank studied
in Zhang et al. (2015) and estimating the spectrum studied in Kong and Valiant (2016).
We provide performance guarantees for both applications and provide experimental
results suggesting we improve upon other competing methods.

• We propose a new sampling model, which we call graph sampling, that preserves
the structural properties of the pattern of the samples. We identify a fundamental
property of the structure of the pattern (λ∗G,r in Eq.(14)) that captures the difficulty of
estimating the Schatten k-norm from such graph sampling (see Theorem 11). Under
this graph sampling, we show that there are sampling patterns that are significantly
more efficient, for estimating the spectral properties, than Erdös-Rényi sampling.

In the remainder of this section, we review existing works in Schatten norm approxi-
mation, and provide an efficient implementation of the estimator (3) for small k in Section
2. In Section 3, we provide a theoretical analysis of our estimator under the Erdös-Rényi
sampling scenario. In Section 4, we provide a theoretical analysis under the graph sam-
pling scenario. We conclude with a discussion on interesting observations and remaining
challenges in Section 5.

1.3. Related work

We review the existing methods in approximating the Schatten norms, counting small struc-
tures in graphs, and various applications of Schatten norms.

Estimating k-Schatten norms of a data matrix. The proposed Schatten norm estima-
tor can be used as a black box in various applications where we want to test the property of
a data matrix or a network but limited to observe only a small portion of the data. These
include, for example, network forensics, matrix spectral property testing, and testing for
graph isospectral properties. Relatively little is known under the matrix completion setting
studied in this paper. However, Schatten norm estimation under different resource con-
strained scenarios have been studied. Hutchinson (1990) propose a randomized algorithm
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for approximating the trace of any large matrix, where the constraint is on the compu-
tational complexity. The goal is to design a random rank-one linear mapping such that
the trace is preserved in expectation and the variance is small (Avron and Toledo, 2011;
Roosta-Khorasani and Ascher, 2015). Li et al. (2014) propose an optimal bilinear sketching
of a data matrix, where the constraint is on the memory, i.e. the size of the resulting sketch.
The goal is to design a sketch of a data matrix M using minimal storage and a corresponding
approximate reconstruction method for ‖M‖kk. Li and Woodruff (2016) propose an optimal
streaming algorithm where only one-pass on the data is allowed in a data stream model
and the constraint is on the space complexity of the algorithm. The goal is to design a
streaming algorithm using minimal space to estimate ‖M‖kk. Zhang et al. (2015) propose
an estimator under a distributed setting where columns of the data are store in distributed
storage and the constraint is on the communication complexity. The goal is to design a
distributed protocol minimizing the communication to estimate ‖M‖kk. Given a random
vector X, Kong and Valiant (2016) propose an optimal estimator for the Schatten k-norm
of the covariance matrix, where the constraint is on the number of samples n. The goal is
to design an estimator using minimum number of samples to estimate ‖E[XXT ]‖kk.

One of our contributions is that we propose an efficient algorithm for computing the
weighted counts of small structures in Section 2, which can significantly improve upon
less sample-efficient counterpart in, for example, (Kong and Valiant, 2016). Under the
setting of (Kong and Valiant, 2016) (and also (Li et al., 2014)), the main idea of the
estimator is that the weight of each length-k cycle in the observed empirical covariance
matrix (1/n)

∑n
i=1XiX

T
i provides an unbiased estimator of ‖E[XXT ]‖kk. One prefers to

sum over the weights of as many cycles as computationally allowed in order to reduce the
variance. As counting all cycles is in general computationally hard, they propose counting
only increasing cycles (which only accounts for only 1/k! fraction of all the cycles), which can
be computed in time O(dα). If one has an efficient method to count all the (weighted) cycles,
then the variance of the estimator could potentially decrease by an order of k!. For k ≤ 7,
our proposed algorithm in Section 2 provides exactly such an estimator. We replace (Kong
and Valiant, 2016, Algorithm 1) with ours, and run the same experiment to showcase the
improvement in Figure 3, for dimension d = 2048 and various values of number of samples
n comparing the multiplicative error in estimating ‖E[XXT ]‖kk, for k = 7. With the same
run-time, significant gain is achieved by simply substituting our proposed algorithm for
counting small structures, in the sub-routine. In general, the efficient algorithm we propose
might be of independent interest to various applications, and can directly replace (and
significantly improve upon) other popular but less efficient counterparts.

One of the main challenges under the sampling scenario considered in this paper is that
existing counting methods like that of (Kong and Valiant, 2016) cannot be applied, regard-
less of how much computational power we have. Under the matrix completion scenario, we
need to (a) sum over all small structures H ∈ Hk and not just Ck as in (Kong and Valiant,
2016); and (b) for each structure we need to sum over all subgraphs with the same structure
and not just those walks whose labels form a monotonically increasing sequence as in (Kong
and Valiant, 2016).

Algorithms for counting structures. An important problem in graph theory is to count
the number of small structures, also called network motifs, in a given graph. This has many
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Figure 3: By replacing Algorithm 1 in (Kong and Valiant, 2016) that only counts increasing
cycles with our proposed algorithm that counts all cycles, significant gain is acheived in
estimating ‖E[XXT ]‖kk, for k = 7.

practical applications in designing good LDPC codes (Tian et al., 2004), understanding the
properties of social networks (Ugander et al., 2013), and explaining gene regulation networks
(Shen-Orr et al., 2002). Exact and approximate algorithms have been proposed in (Alon
et al., 1997; Kloks et al., 2000; Liu and Wang, 2006; Halford and Chugg, 2006; Karimi and
Banihashemi, 2013; Wang et al., 2014). The most relevant one is the work of Alon et al.
(1997) on counting the number of cycles Ck, where counts of various small structures called
k-cyclic graphs are used as sub-routines and efficient approaches are proposed for k ≤ 7.
These are similar to k-cyclic pseudographs, but with multi-edges condensed to a single edge.
When counting cycles in a simple (unweighted) graph, k-cyclic graphs are sufficient as all
the edges have weight one. Hence, one does not need to track how many times an edge has
been traversed; the weight of that walk is always one. In our setting, the weight of a walk
depends on how many times an edge has been traversed, which we track using multiedges.
It is therefore crucial to introduce the class of k-cyclic pseudographs in our estimator.

In a distributed environment, fast algorithms for counting small structures have been
proposed by Elenberg et al. (2015) and Elenberg et al. (2016) for small values of k ∈ {3, 4}.
However, the main strength of their approach is in distributed computing, and under the
typical centralized setting we study, this approach can be slower by a factor exponential in
k for, say k ≤ 7.

From Schatten norms to spectral sum functions. A dominant application of Schatten
norms is in approximating a family of functions of a matrix, which are called spectral sum
functions (Han et al., 2016) of the form

F (M ; f) ≡
d∑
i=1

f(σi(M)) '
K∑
k=0

ak

{ d∑
i=1

σi(M)k
}
. (4)

A typical approach is to compute the coefficients of a Chebyshev approximation of f ,
which immediately leads to an approximation of the spectral sum function of interest as
the weighted sum of Schatten k-norms. This follows from the approximation of f(x) '
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∑K
k=0 akx

k. This approach has been widely used in fast methods for approximating the log-
determinant (Pace and LeSage, 2004; Zhang and Leithead, 2007; Boutsidis et al., 2015;
Aune et al., 2014; Han et al., 2015), corresponding to f(x) = log x. Practically, log-
determinant computations are routinely (approximately) required in applications including
Gaussian graphical models (Rue and Held, 2005), minimum-volume ellipsoids (Van Aelst
and Rousseeuw, 2009), and metric learning (Davis et al., 2007). Fast methods for ap-
proximating trace of matrix inverse has been studied in (Wu et al., 2016; Chen, 2016),
corresponding to f(x) = x−1, motivated by applications in lattice quantum chromodynam-
ics (Stathopoulos et al., 2013). Fast methods for approximating the Estarada index has
been studied in (Han et al., 2016), corresponding to f(x) = exp(x). Practically, it is used
in characterizing 3-dimensional molecular structure (Estrada, 2000) and measuring graph
centrality (Estrada and Hatano, 2007), the entropy of a graph (Carbó-Dorca, 2008), and
the bipartivity of a graph (Estrada and Rodriguez-Velázquez, 2005). Approximating the
generalized rank under communication constraints has been studied in (Zhang et al., 2015),
corresponding to f(x; c1) = I(x ≤ c1). The generalized rank approximates a necessary tun-
ing parameter in a number of problems where low-rank solutions are sought including robust
PCA (Candès et al., 2011; Netrapalli et al., 2014) and matrix completion (Keshavan et al.,
2010b,a; Jain et al., 2013), and also is required in sampling based methods in numerical
analysis (Mahoney et al., 2011; Halko et al., 2011). Similarly, (Saade et al., 2015) studied
the number of singular values in an interval, corresponding to f(x; c1, c2) = I(c1 ≤ x ≤ c2).
In practice, a number of eigensolvers (Polizzi, 2009; Sakurai and Sugiura, 2003; Schofield
et al., 2012) require the number of eigenvalues in a given interval. For more comprehensive
list of references and applications of this framework, we refer to the related work section in
(Han et al., 2016).

In a recent work, Kong and Valiant (2016) provide a novel approach to tackle the
challenging problem of estimating the singular values themselves. Considering the histogram
of the singular values as a one-dimensional distribution and the Schatten k-norm as the k-th
moment of this distribution, the authors provide an innovative algorithm to estimate the
histogram that best matches the moments in Wasserstein distance.

Matrix completion. Low-rank matrix completion addresses the problem of recovering a
low-rank matrix from its sampled entries. Tight lower and upper bounds on the sample
complexity is well studied in both cases where you want exact recovery when samples are
noiseless (Candès and Recht, 2009; Keshavan et al., 2010a; Bhojanapalli and Jain, 2014),
and also when samples are noisy and where you want approximate recovery (Keshavan
et al., 2010b; Negahban and Wainwright, 2012). In practical applications, one might not
have enough samples to estimate all the missing entries with sufficient accuracy. However,
one might still be able to infer important spectral properties of the data, such as the singular
values or the rank. Such spectral properties can also assist in making decisions on how many
more samples to collect in order to make accurate inference on the quantity of interest. In
this paper, one of the fundamental question we ask and answer affirmatively is: Can we
accurately recover the spectral properties of a low-rank matrix from sampling of its entries,
below the matrix completion threshold?
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2. Efficient Algorithm

In this section we give a constructive proof of Proposition 2, inspired by the seminal work
of Alon et al. (1997) and generalize their counting algorithm for k-cyclic graphs to counting
(weighted) k-cyclic pseudographs. In computing the estimate in (3), c(H) can be computed
in time O(k!). Suppose p(H) has been computed. We will explain how to compute p(H)
for Erös-Rényi sampling and graph sampling in Sections 3 and 4. The bottleneck then
is computing the weights ωPΩ(M)(H) for each H ∈ Hk. Let γM (H) ≡ ωM (H)c(H). We
give matrix-multiplication-based equations to compute γM (H) for every H ∈ Hk for k ∈
{3, 4, 5, 6, 7}. This establishes that γM (H), and hence ωM (H), can be computed in time
O(dα), proving Proposition 2.

For any matrix A ∈ Rd×d, let diag(A) to be a diagonal matrix such that (diag(A))ii =
Aii, for all i ∈ [d] and (diag(A))i,j = 0, for all i 6= j ∈ [d]. For a given matrix M ∈ Rd×d,
define OM to be matrix of off-diagonal entries of M that is OM ≡ M − diag(M) and
DM ≡ diag(M). Let tr(A) denote the trace of A, that is, tr(A) =

∑
i∈[d]Aii. Let A∗B

denote the standard matrix multiplication of two matrices A and B. Consider computing
γM (H) for H ∈ H3 as labeled in Figure 2:

γM (A1) = tr(DM∗DM∗DM ) (5)

γM (A2) = 3 tr(DM∗OM∗OM ) (6)

γM (A3) = tr(OM∗OM∗OM ) (7)

The first weighted sum γM (A1) is the sum of all weights of walks of length 3 that consist
of three self-loops. One can show that γM (A1) =

∑
i∈[d]M

3
ii, which is (5) in our matrix

operation notations. Similarly, γM (A3) is the sum of weights of length 3 walks with no
self-loop, which leads to (7) and, γM (A2) is the sum of weights of length 3 walks with a
single self-loop, which leads to (6). The factor 3 accounts for the fact that the self loop
could have been placed at the first, second or the third in the walk.

Similarly, for each k-cyclic pseudographs in Hk for k ≤ 7, computing γM (H) involves
a few matrix operations with run-time O(dα). We provide the complete set of explicit
expressions in Section 10. A MATLAB implementation of the estimator (3), that includes
as its sub-routines the computation of the weights of all k-cyclic pseudographs, is available
for download at https://github.com/khetan2/Schatten_norm_estimation. The explicit
formulae in Section 10 together with the implementation in the above url might be of interest
to other problems involving counting small structures in graphs.

For k = 1, the estimator simplifies to Θ̂k(PΩ(M)) = (1/p)
∑

i PΩ(M)ii, which can

be computed in time O(d). For k = 2, the estimator simplifies to Θ̂k(PΩ(M)) =
(1/p)

∑
i,j PΩ(M)2

ij , which can be computed in time O(|Ω|). However, for k ≥ 8, there
exist walks over K4, a clique over 4 nodes, that cannot be decomposed into simple com-
putations involving matrix operations. The best known algorithm for a simpler task of
counting K4 has run-time scaling as O(dα+1), which is fundamentally different. We refer
to Section 5 for further discussions on the computational complexity beyond k = 7.
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Spectrum Estimation from a Few Entries

Algorithm 1 Schatten k-norm estimator

Require: PΩ(M), k, Hk, p(H) for all H ∈ Hk
Ensure: Θ̂k(PΩ(M))
1: if k ≤ 7 then
2: For each H ∈ Hk, compute γPΩ(M)(H) using the formula from Eq. (5)–(7) for k = 3

and Eq. (60) – (203) for k ∈ {4, 5, 6, 7}
3: Θ̂k(PΩ(M))←

∑
H∈Hk

1
p(H) γPΩ(M)(H)

4: else
5: Θ̂k(PΩ(M))← Algorithm 4[PΩ(M), k, Hk, p(H) for all H ∈ Hk] [Section 6]
6: end if

3. Erdös-Rényi sampling

Under the stylized but canonical Erdös-Rényi sampling, notice that the probability p(H)
that we observe all edges in a walk with pattern H is

p(H) = pm(H) ,

where p is the probability an edge is sampled and m(H) is the number of distinct edges in
a k-cyclic pseudograph H. Plugging in this value of p(H), which can be computed in time
linear in k, into the estimator (3), we get an estimate customized for Erdös-Rényi sampling.

Given a rank-r matrix M , the difficulty of estimating properties of M from sampled
entries is captured by the incoherence of the original matrix M , which we denote by µ(M) ∈
R (Candès and Recht, 2009). Formally, let M ≡ UΣU> be the singular value decomposition
of a positive definite matrix where U is a d×r orthonormal matrix and Σ ≡ diag(σ1, · · · , σr)
with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Let Ui,r denote the i-th row and j-th column
entry of matrix U . The incoherence µ(M) is defined as the smallest positive value µ such
that the following holds:

A1. For all i ∈ [d], we have
∑r

a=1 U
2
ia(σa/σ1) ≤ µr/d.

A2. For all i 6= j ∈ [d], we have |
∑r

a=1 UiaUja(σa/σ1)| ≤ µ
√
r/d.

The incoherence measures how well the matrix is spread out and is a common measure of
difficulty in completing a matrix from random samples (Candès and Recht, 2009; Keshavan
et al., 2010a). We note that our incoherence condition depends upon singular values unlike
the one given in (Candès and Recht, 2009) which only depends upon row and column spaces.
The lower the incoherence, the more spread out the entries are, and estimation is easier.
On the other hand, if there are a few entries that are much larger than the rest, estimating
a property of the matrix (such as the Schatten k-norm) from uniformly sampled entries can
be extremely challenging.

3.1. Performance guarantee

For any d× d positive semidefinite matrix M of rank r with incoherence µ(M) = µ and the
effective condition number κ = σmax(M)/σmin(M), we define

ρ2 ≡ (κµ)2kg(k) max

{
1,

(dp)k−1

d
,
rkpk−1

dk−1

}
,

11
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such that the variance of our estimator is bounded by Var(Θ̂(PΩ(M))/‖M‖kk) ≤
ρ2(r1−2/k/dp)k as we show in the proof of Theorem 3 in Section 8.1. Here, g(k) =
O(k!) is a function depending only on k. Note that for k ≥ 3, ρ2 simplifies to ρ2 =

(κµ)2kg(k) max
{

1, (dp)k−1

d

}
.

Theorem 3 (Upper bound under the Erdös-Rényi sampling) For any integer k ∈
[3,∞), any δ > 0, any rank-r positive semidefinite matrix M ∈ Rd×d, and given i.i.d. sam-
ples of the entries of M with probability p, the proposed estimate of (3) achieves normalized
error δ with probability bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ ρ2

δ2

(r1−2/k

dp

)k
. (8)

Consider a typical scenario where µ, κ, and k are finite with respect to d and r, and rank
is sufficiently small, r = O(dk/((k−1)(k−2))). Then the Chebyshev’s bound in (8) implies that
the sample complexity of d2p = O(dr1−2/k) is sufficient to recover ‖M‖kk up to arbitrarily
small multiplicative error and arbitrarily small (but strictly positive) error probability. This
is strictly less than the known minimax sample complexity for recovering the entire low-rank
matrix, which scales is Θ(rd log d). As we seek to estimate only a property of the matrix (i.e.
the Schatten k-norm) and not the whole matrix itself, we can be more efficient on the sample
complexity by a factor of r2/k in rank and a factor of log d in the dimension. We emphasize
here that such a gain can only be established using the proposed estimator based on the
structure of the k-cyclic pseudographs. We will show empirically that the standard matrix
completion approaches fail in the critical regime of samples below the recovery threshold of
O(rd log d).

Figure 4 is a scatter plot of the absolute relative error in estimated Schatten k-norm,∣∣‖M‖kk − ‖̂M‖kk∣∣/‖M‖kk, for k = 5, for three approaches: the proposed estimator, Schatten
norm of the scaled sampled matrix (after rank-r projection), and Schatten norm of the
completed matrix, using state-of-the-art alternating minimization algorithm (Jain et al.,
2013). All the three estimators are evaluated 20 times for each value of p. M is a symmetric
positive semi-definite matrix of size d = 500, and rank r = 100 (left panel) and r = 500
(right panel). Singular vectors U of M = UΣU>, are generated by QR decomposition of
N (0, Id×d) and Σi,i is uniformly distributed over [1, 2]. For a low rank matrix on the left,
there is a clear critical value of p ' 0.45, above which matrix completion is exact with
high probability. However, this algorithm knows the underlying rank and crucially exploits
the fact that the underlying matrix is exactly low-rank. In comparison, our approach is
agnostic to the low-rank assumption but finds the accurate estimate that is adaptive to
the actual rank in a data-driven manner. Using the first r singular values of the (rescaled)
sampled matrix fails miserably for all regimes (we truncate the error at one for illustration
purposes). In this paper, we are interested in the regime where exact matrix completion
is impossible as we do not have enough samples to exactly recover the underlying matrix:
p ≤ 0.45 in the left panel and all regimes in the right panel.

The sufficient condition of d2p = O(dr1−2/k) in Theorem 3 holds for a broad range
of parameters where the rank is sufficiently small r = O(dk/((k−1)(k−2))) (to ensure that

12
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Figure 4: The proposed estimator outperforms both baseline approaches below the matrix
completion threshold. For k = 5, comparison of the absolute relative error in estimated

Schatten norm that is
∣∣‖M‖kk − ‖̂M‖kk∣∣/‖M‖kk for the three algorithms: (1) the proposed

estimator, ‖̂M‖kk = Θ̂k(PΩ(M)), (2) Schatten norm of the scaled sampled matrix, ‖̂M‖kk =

‖(1/p)Pr(PΩ(M))‖kk, (3) Schatten norm of the completed matrix, M̃ = AltMin(PΩ(M))

from (Jain et al., 2013), ‖̂M‖kk = ‖M̃‖kk, where Pr(·) is the standard best rank-r projection
of a matrix. Ω is generated by Erdös-Rényi sampling of matrix M with probability p.

the first term in ρ2 dominates). However, the following results in Figure 5 on numerical
experiments suggest that our analysis holds more generally for all regimes of the rank r,
even those close to d. M is generated using settings similar to that of Figure 4. Empirical
probabilities are computed by averaging over 100 instances.

One might hope to tighten the Chebyshev bound by exploiting the fact that the correla-
tion among the summands in our estimator (3) is weak. This can be made precise using the
recent result from Schudy and Sviridenko (2011), where a Bernstein-type bound was proved
for the sum of polynomials of independent random variables that are weakly correlated.
The first term in the bound (9) is the natural Bernstein-type bound corresponding to the
Chebyshev’s bound in (8). However, under the regime where k is large or p is large, the
correlation among the summands becomes stronger, and the second and third term in the
bound (9) start to dominate. In the typical regime of interest where µ, κ, k are finite, rank
is sufficiently small r = O(dk/((k−1)(k−2))), and sample complexity d2p = O(dr1−2/k), the
error probability is dominated by the first term on the right-hand side of (9). Neither one
of the two bounds in (8) and (9) dominates the other, and depending on the values of the
problem parameters, we might want to apply the one that is tighter. We provide a proof in
Section 8.2.
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Figure 5: Each colormap in each block for k ∈ {2, 3, 4, 5, 6, 7} show empirical probability of
the event

{∣∣‖M‖kk − Θ̂k(PΩ(M))
∣∣/‖M‖kk ≤ δ

}
, for δ = 0.5 (left panel) and δ = 0.2 (right

panel). Ω is generated by Erdös-Rényi sampling of matrix M with probability p (vertical
axis). M is a symmetric positive semi-definite matrix of size d = 1000. The solid lines
correspond to our theoretical prediction p = (1/d)r1−2/k.

Theorem 4 Under the hypotheses of Theorem 3, the error probability is upper bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤

e2 max

{
e
− δ

2

ρ2

(
dp

r1−2/k

)k
, e
−(dp)

(
δd

ρrk−1

)1/k

, e
−(dp)

(
δd

ρrk−1

)
, e
− δdp

ρ

}
. (9)

These two results show that the sample size of d2p = O(dr1−2/k) is sufficient to estimate
a Schatten k-norm accurately when µ, κ, k are finite and rank is sufficiently small r =
O(dk/((k−1)(k−2))). In general, we do not expect to get a universal upper bound that is
significantly tighter for all r, because for a special case of r = d, the following corollary of
(Li et al., 2014, Theorem 3.2) provides a lower bound; it is necessary to have sample size
d2p = O(d2−4/k) when r = d. Hence, the gap is at most a factor of r2/k in the sample
complexity.

Corollary 5 Consider any linear observation X ∈ Rn of a matrix M ∈ Rd×d and any
estimate θ(X) satisfying (1− δk)‖M‖kk ≤ θ(X) ≤ (1 + δk)‖M‖kk for any M with probability
at least 3/4, where δk = (1.2k − 1)/(1.2k + 1). Then, n = Ω(d2−4/k).

For k ∈ {1, 2}, precise bounds can be obtained with simpler analyses. In particular,
we have the following remarks, whose proof follows immediately by applying Chebyshev’s
inequality and Bernstien’s inequality along with the incoherence assumptions.
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Remark 6 For k = 1, the probability of error in (8) is upper bounded by min{ν1, ν2}, where

ν1 ≡
1

δ2

(κµ)2

dp
, and ν2 ≡ 2 exp

(−δ2

2

((κµ)2

dp
+ δ

(κµ)

3dp

)−1)
.

Remark 7 For k = 2, the probability of error in (8) is upper bounded by min{ν1, ν2}, where

ν1 ≡
1

δ2

(κµ)4

d2p

(
2 +

r2

d

)
, and ν2 ≡ 2 exp

(
− δ2

2

((κµ)4

d2p

(
2 +

r2

d

)
+ δ

(κµ)2r

3d2p

)−1)
.

When k = 2, for rank small r ≤ C
√
d, only we only need d2p = O(1) samples for

recovery up to any arbitrary small multiplicative error. When rank r is large, our estimator
requires d2p = O(d) for both k ∈ {1, 2}.

3.2. From Schatten norms to spectrum and spectral sum functions

Schatten norms by themselves are rarely of practical interest in real applications, but they
provide a popular means to approximate functions of singular values, which are often of great
practical interest (Di Napoli et al., 2016; Zhang et al., 2015; Kong and Valiant, 2016). In
this section, we consider two such applications using the first few Schatten norms explicitly:
estimating the generalized rank in Section 3.2.1 and estimating the singular values in Section
3.2.2.

3.2.1. Estimating the generalized rank

For a matrix M ∈ Rd×d and a given constant c ≥ 0, its generalized rank of order c is given
by

rank(M, c) =
d∑
i=1

I
[
σi(M) > c

]
.

This recovers the standard rank as a special case when c = 0. Without loss of generality,
we assume that σmax(M) ≤ 1. For any given 0 ≤ c2 < c1 ≤ 1, and δ ∈ [0, 1), our goal is to
get an estimate r̂(PΩ(M)) from sampled entries PΩ(M) such that

(1− δ) rank(M, c1) ≤ r̂(PΩ(M)) ≤ (1 + δ) rank(M, c2) .

The reason we take two different constants c1, c2 is to handle the ambiguous case when the
matrix M has many eigenvalues smaller than but very close to c1. If we were to set c2 = c1,
then any estimator r̂(M) would be strictly prohibited from counting these eigenvalues.
However, since these eigenvalues are so close to the threshold, distinguishing them from
other eigenvalues just above the threshold is difficult. Setting c2 < c1 allows us to avoid
this difficulty and focus on the more fundamental challenges of the problem.

Consider the function Hc1,c2 : R→ [0, 1] given by

Hc1,c2(x) =


1 if x > c1

0 if x < c2
x−c2
c1−c2 otherwise.
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It is a piecewise linear approximation of a step function and satisfies the following:

rank(M, c1) ≤
∑d

i=1Hc1,c2(σi(M)) ≤ rank(M, c2) . (10)

We exploit this sandwich relation and estimate the generalized rank. Given a polynomial
function f : R → R of finite degree m such that f(x) ≈ Hc1,c2(x) for all x, such that
f(x) = a0 + a1x + · · · + amx

m, we immediately have the following relation, which extends
to a function on the cone of PSD matrices in the standard way:

d∑
i=1

f(σi(M)) = a0d+
m∑
k=1

ak‖M‖kk . (11)

Using this equality, we propose the estimator:

r̂(PΩ(M); c1, c2) ≡ a0d+
m∑
k=1

akΘ̂k(PΩ(M)) , (12)

where we use the first several Θ̂k(PΩ(M))’s obtained by the estimator (3). Note that
function f depends upon c1, c2. The remaining task is to obtain the coefficients of the poly-
nomials in f that is a suitable approximation of the function Hc1,c2 . In a similar context
of estimating the generalized rank from approximate Schatten norms, Zhang et al. (2015)
propose to use a composite function f = qs ◦ q where q is a finite-degree Chebyshev poly-
nomial of the first kind such that supx∈[0,1] |q(x)−Hc1,c2(x)| ≤ 0.1, and qs is a polynomial
of degree 2s+ 1 given by

qs(x) =
1

B(s+ 1, s+ 1)

∫ x

0
ts(1− t)sdt , where B(·, ·) is the Beta function.

Note that, since Hc1,c2 is a continuous function with bounded variation, classical theory
in (Mason and Handscomb, 2002, Theorem 5.7), guarantees existence of the Chebyshev
polynomial q of a finite constant degree, say Cb, that depends upon c1 and c2. Specifically,
for a given choice of thresholds 0 ≤ c1 < c2 ≤ 1 and the degree of the beta approximation
s, the estimator r̂(PΩ(M); c1, c2) in (12) can be computed as follows.

The approximation of Hc1,c2 with f = qs ◦q and our upper bound on estimated Schatten

norms Θ̂k(PΩ(M)) translate into the following guarantee on generalized rank estimator
r̂(PΩ(M); c1, c2) given in (12).

Corollary 8 Suppose ‖M‖2 ≤ 1. Under the hypotheses of Theorem 3, for any given 1 ≥
c1 > c2 ≥ 0, there exists a constant Cb, such that for any s ≥ 0 and any γ > 0, the estimate
in (12) with the choice of f = qs ◦ q satisfies

(1− δ)(rank(M, c1)− 2−sd) ≤ r̂(PΩ(M); c1, c2) ≤ (1 + δ)(rank(M, c2) + 2−sd) ,

with probability at least 1−γCb(2s+1), where δ ≡ max1≤k≤Cb(2s+1)

{√
ρ2

γ (max{1,r1−2/k}
dp )k

}
.
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Algorithm 2 Generalized rank estimator (a variation of Zhang et al. (2015))

Require: PΩ(M), c1, c2, s
Ensure: r̂(PΩ(M); c1, c2)
1: For given c1 and c2, find a Chebyshev polynomial of the first kind q(x) satisfying

sup
x∈[0,1]

|q(x)−Hc1,c2(x)| < 0.1

[Algorithm 7]
2: Let Cb denote the degree of q(x)

3: Find the degree (2s+ 1)Cb polynomial expansion of qs ◦ q(x) =
∑(2s+1)Cb

k=0 akx
k

4: r̂(PΩ(M); c1, c2)← a0d+
∑(2s+1)Cb

k=1 akΘ̂k(PΩ(M)) [Algorithm 1]

The proof follows immediately from Theorem 3 and the following lemma which gives a
uniform bound on the approximation error between Hc1,c2 and f = qs ◦ q. Lemma 9,
together with Equations (10) and (11), provides a (deterministic) functional approximation
guarantee of

rank(M, c1)− d 2−s ≤
d∑
i=1

f(σi(M)) ≤ rank(M, c1) + d 2−s ,

for any c1 < c2 and any choice of s, as long as Cb is large enough to guarantee a 0.1 uniform
error bound on the Chebyshev polynomial approximation. Since we can achieve 1 ± δ
approximation on each polynomial in f(σi(x)), Theorem 3 implies the desired Corollary 8.
Note that using Remarks 6 and 7, the bounds in (9) hold for k ∈ [1,∞) with r1−2/k replaced
by max{1, r1−2/k}.

Lemma 9 (Zhang et al. (2015), Lemma 1) Consider the composite polynomial f(x) =
qs(q(x)). Then f(x) ∈ [0, 1] for all x ∈ [0, 1], and moreover

|f(x)−Hc1,c2(x)| ≤ 2−s , for all x ∈ [0, c2] ∪ [c1, 1] .

In Figure 6, we evaluate the performance of estimator (12) numerically. We construct a
symmetric matrix M of size d = 1000 and rank r = 200, σi ∼ Uni(0, 0.4) for 1 ≤ i ≤ r/2,
and σi ∼ Uni(0.6, 1) for r/2 + 1 ≤ i ≤ r. We estimate r̂(PΩ(M); c1, c2) for Erdös-Rényi
sampling Ω, and a choice of c2 = 0.5 and c1 = 0.6, which is motivated by the distribution
of σi. We use Chebyshev polynomial of degree Cb = 2, and s = 1 for qs. That is function f
is of degree 6. Accuracy of the estimator can be improved by increasing Cb and s, however
that would require estimating higher Schatten norms.

3.2.2. Estimating the spectrum

Given accurate estimates of first K Schatten norms of a matrix M , we can estimate singular
values of M using a linear programming based algorithm given in (Kong and Valiant, 2016).
In particular, we get the following guarantees on the estimated singular values, whose proof
follows directly using the analysis techniques in the proof of (Kong and Valiant, 2016,
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Figure 6: The left panel shows a histogram of singular values ofM chosen for the experiment.
The right panel compares absolute error in estimation r̂(PΩ(M); c1 = 0.5, c2 = 0.6) for two

choices of the Schatten norm estimates ‖̂M‖kk: first the proposed estimator Θ̂k(PΩ(M)) in

(3), and second the Schatten norm of the completed matrix, M̃ = AltMin(PΩ(M)) from
(Jain et al., 2013).

Theorem 2). The main idea is that given the rank, the maximum support size of the true
spectrum, and an estimate of its first K moments, one can find r singular values whose K
first moments are close to the estimated Schatten norms.

Algorithm 3 Spectrum estimator (a variation of Kong and Valiant (2016))

Require: PΩ(M), K, ε, target rank r, lower bound a and upper bound b on the positive
singular values

Ensure: estimated singular values (σ̂1, σ̂2, . . . , σ̂r)
1: L ∈ RK : Lk = Θ̂k(PΩ(M)) for k ∈ [K] [Algorithm 1]
2: t = d(b− a)/εe+ 1, x ∈ Rt: xi = a+ ε(i− 1), for i ∈ [t],
3: V ∈ RK×t : Vij = xij for i ∈ [K], j ∈ [t]

4: p∗ ≡ {minp∈Rt |V p− L|1 : 1>t p = 1, p ≥ 0}
5: σ̂i = min{xj :

∑
`≤j p

∗
` ≥

i
r+1}, ith (r + 1)st-quantile of distribution corresponding to

p∗

Further, our upper bound on the first K moments can be translated into an upper
bound on the Wasserstein distance between those two distributions, which in turn gives the
following bound on the singular values. With small enough ε and large enough K and r,
we need sample size d2p > Cr,K,ε,γdr

1−2/k to achieve arbitrary small error.

Corollary 10 Under the hypotheses of Theorem 3, given rank r, constants 0 ≤ a <
b such that σmin ≥ a, σmax ≤ b, and estimates of the first K Schatten norms of M ,
{Θ̂k(PΩ(M))}k∈[K] obtained by the estimator (3), for any 0 < ε� (b−a), and γ > 0, Algo-
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rithm 3 runs in time poly(r,K, (b− a)/ε) and returns {σ̂i}i∈[r] an estimate of {σi(M)}i∈[r]

such that

1

r

r∑
i=1

|σ̂i − σi| ≤

C(b− a)

K
+
b− a
r

+ g(K)(b− a)

(
εKbK−1 +

K∑
k=1

σkmax

√
ρ2

γ

(
max{1, r1−2/k}

dp

)k)
,

with probability at least 1− γK, where C is an absolute constant and g(K) only depends on
K.

In Figure 7, we evaluate the performance of the proposed estimator (3), in recovering
the true spectrum using Algorithm 3. We compare the results with the case when Schatten
norms are estimated using matrix completion. We consider two distributions on singular
values, one peak and two peaks. More general distributions of spectrum can be recovered
accurately, however that would require estimating higher Schatten norms. For both cases,
the proposed estimator outperforms matrix completion approaches, and achieves better
accuracy as sample size increases with α. In each graph, the black solid line depicts the
empirical Cumulative Distribution Function (CDF) of the ground truths {σi}i∈[r] for those
r strictly positive singular values. In the first experiment (the top panel), there are r
singular values at one peak σi = 1, and in the second experiment (the bottom pannel) there
are r/2 singular values at each of the two peaks at σi = 1 and σi = 2. Each cell shows
the result of a choice of rank r ∈ {50, 200, 500} and a parameter α ∈ {3, 5, 8, 10}, where
Ω is generated using Erdös-Rényi sampling with probability p = (α/d)r1−2/7. Matrix M
is a symmetric matrix of size d = 1000 and rank r with singular values {σi}i∈[d]. In
each cell, there are one black line, three blue lines, and three orange lines. Each blue
line corresponds to the empirical CDF of {σ̂i}i∈[d] for each trial, over three independent
trials. Each orange line corresponds to the empirical CDF of {σ̃i}i∈[d]. Here, σ̂i’s are

estimated using {Θ̂k(PΩ(M))}k∈[K] obtained by the estimator (3), and σ̃i’s are estimated

using {‖M̃‖kk}k∈[K] where M̃ = AltMin(PΩ(M)), along with Algorithm 2 in (Kong and
Valiant, 2016), for K = 7.

4. Graph sampling

Our framework for estimating the Schatten k-norms can be applied more generally to any
random sampling, as long as the distribution is permutation invariant. In practice, we
typically observe one instance of a sampled matrix and do not know how the samples
were generated. Under a mild assumption that the probability of sampling an entry is
independent of the value of that entry, the only information about the sampling model that
we have is the pattern, i.e. an unlabelled graph G = (V,E) capturing the pattern of sampled
indices by the edges. This naturally suggests a novel sampling scenario that we call graph
sampling.

The Erdös-Rényi sampling has been criticized as being too strict for explaining how
real-world datasets are sampled. When working with natural data, we typically only get
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Figure 7: The proposed estimator (in blue solid lines) outperforms matrix completion ap-
proaches (in orange solid lines) in estimating the ground truths empirical cumulative dis-
tribution function of the r strictly positive singular values (in black solid line) for two
examples: one peak at σi = 1 on the top and two peaks at σi = 1 or σi = 2 on the bottom.

one instance of a sampled matrix without the knowledge of how those entries are sampled.
In this section, we propose a new sampling model that we call graph sampling that makes
minimal assumptions about how the data was sampled. We assume that the pattern has
been determined a priori, which is represented by a deterministic graph G = (V,E) with d
nodes denoted by V and undirected edges denoted by E. The random sampling Ω is chosen
uniformly at random over all relabeling of the nodes in G. Formally, for a given G = (V,E),
a permutation π : [d]→ V is drawn uniformly at random and samples are drawn according
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to

PΩ(M) = {(i, j,Mij)}(π(i),π(j))∈E .

As the sampling pattern G is completely known to the statistician who only has one instance
of a random sampling, we are only imposing that the samples are drawn uniformly at
random from all instances that share the same pattern. Further, understanding this graph
sampling model has a potential to reveal the subtle dependence of the estimation problem
on the underlying pattern, which is known to be hard even for an established area of matrix
completion.

In this section, we provide an estimator under graph sampling, and characterize the
fundamental limit on the achievable error. This crucially depends on the original pattern
G via a fundamental property λ∗G,r, which is generally challenging to compute. However,
we provide a bound on λ∗G,r for two extreme cases of varying difficulty: a clique sampling

that requires only O(r2−4/k) samples and a clique-star sampling that requires as many as
O(dr1−4/k) samples. This is made formal by showing a lower bound on the minimax sample
complexity. Comparing the two necessary conditions on sample complexity, O(r2−4/k) for
clique sampling and O(dr1−4/k) for clique-star sampling, it follows that depending on the
pattern of the samples, the sample complexity can vary drastically, especially for low-rank
matrices where r � d.

Under the graph sampling, the probability p(H) that we observe all edges in a walk with
pattern H is

p(H) =
ωPΩ(1d1

T
d )(H)

ω1d1Td
(H)

,

where 1d1
T
d is the all ones matrix, and by permutation invariance, the probability is the ratio

between total (unweighted) number of walks with H(w) = H in the original pattern Ω and
that of the complete graph Kd. Note that although Ω is a random quantity, ωPΩ(11T )(H)
only depends on the structure and not the labelling of the nodes and hence is a deterministic
quantity. Plugging in this value of p(H), which can be computed in time O(dα) for k ≤ 7
as shown in Proposition 2 (and in general only increases the computational complexity of
the estimate by a factor of two), into the estimator (3), we get an estimate customized for
graph sampling.

4.1. Performance Guarantees

Recall the graph sampling defined in Section 1.1, where we relabel the nodes of a pattern
graph G(V,E) according to a random uniform permutation, and sample the entries of the
matrix M on the edges. We prove a fundamental lower bound on the sample complexity
that crucially depends on the following property of the pattern G. Let Gπ(Ṽ ,Ω) denote
the graph after relabeling the nodes of G = (V,E) with permutation π : [d] → [d]. For
independent Rademacher variables ui for i ∈ [r]

fG,r(λ) ≡ max
π

{
Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)]}
, (13)
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where P(r)(Gπ) ⊆ [r]× [r] is a projection of the edges Ω over d nodes to a set of edges over r
nodes by mapping a node i ∈ [d] to a node 1+(i−1 mod r) ∈ [r]. Precisely, (i, j) ∈ P(r)(Gπ)
if there exists an edge (i′, j′) ∈ Ω such that i = 1+(i′−1 mod r) and j = 1+(j′−1 mod r).
Observe that fG,r(λ) is a non-decreasing function of λ. It follows from the fact that for any
positive λ and random variable x and any ε > 0, we have E[eλ(1+ε)x] ≥ E[eλx](E[eλx])ε ≥
E[eλx]eελE[x] ≥ E[eλx]. The first and the second inequalities use Jensen’s inequality and the
third one holds when E[x] ≥ 0. Note that Eu[

∑
(i,j)∈P(r)(Gπ) uiuj ] ≥ 0, since ui’s are i.i.d.

Rademacher variables.
This function measures the distance between a particular low-rank matrix with Gaussian

entries and its rank one perturbation, which is used in our constructive lower bound (see
Eq. (35)). Intuitively, smaller fG,r(λ) implies that two rank-r matrices with separated
Schatten norms look similar after graph sampling w.r.t. G. Hence, when this function is
small, say less than 26/25, then it is hard to distinguish which of the two (distributions of)
matrices we are observing. This is captured by the largest value of λ that still maintains
fG,r(λ) sufficiently small:

λ∗G,r ≡ max
{λ>0:fG,r(λ)≤26/25}

λ . (14)

One can choose any number not necessarily 26/25 as long as it is strictly larger than one
and strictly smaller than two, and this will only change the probability upper bound in (15).
If we sample from a graph G with large λ∗G,r, then we cannot distinguish two distributions
even if they have a large Schatten norm separation. We do not have enough samples and/or
our pattern is not sample efficient. The dependence of the fundamental lower bound on the
graph G is captured by this quantity λ∗G,r, which is made precise in the following theorem.
We provide a lower bound that captures how sample complexity depends on the pattern
G and also on the underlying matrix, by providing analysis customized for each family of
matrices Mr,µ parametrized by its rank and incoherence:

Mr,µ ≡
{
M ∈ Rd×d : M = M>, rank(M) ≤ r , µ(M) ≤ µ

}
.

Theorem 11 (General lower bound under graph sampling) For any k ∈ [3,∞) sup-
pose we observe samples under the graph sampling defined in Section 1.1 with respect to a
pattern graph G = (V,E). Then there exist universal constants C > 0, C ′ > 0 and C ′′ > 0
such that for any r ≥ eC′′k and µ ≥ C ′

√
log r, if λ∗G,r ≥ Cdr1/k−1/2 then

inf
M∈Mr,µ

sup
Θ̃

P
(

1

2
‖M‖k ≤ Θ̃(PΩ(M)) ≤ 2‖M‖k

)
≤ 3

4
, (15)

where the supremum is over any measurable function of PΩ(M) and the probability is with
respect to the random sampling Ω.

A proof of Theorem 11 is given in Section 8.3. It is in general challenging to evaluate λ∗G,r
for a given graph. For a special case of clique sampling, where the pattern G(V,E) is a
clique over a subset of ` nodes among d, we provide a sharp upper bound on λ∗G,r.

Lemma 12 (Lower bound for clique sampling) If the pattern graph G(V,E) is a clique

over a subset of ` nodes, then λ∗G,r ≥ 2−4d(min{`, r})−1/2.
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Therefore, if ` ≤ 2−8C−2r1−2/k then λ∗G,r ≥ Cdr1/k−1/2, which together with Theorem
11 implies that with probability at least 1/4 any estimator makes a multiplicative error
larger than two. Hence, sample size of `(` + 1)/2 = O(r2−4/k) is necessary to achieve
multiplicative error less than two with high probability. We show that our estimator is
optimal for k = 3, by providing a matching upper bound on the sample complexity. For
any positive semidefinite matrix M ∈ Rd×d of rank r with incoherence µ(M) = µ, κ =
σmax(M)/σmin(M), and some function g(k) = O(k!), we define

ρ̃2 ≡ (κµ)2kg(k) max

{
1 ,

`k−1

rk−2
,
`

r
,
r1/2`k

d

}
,

such that the variance of our estimator is bounded by Var(Θ̂(PΩ(M))/‖M‖kk) ≤ ρ2(r1−2/k/`)k

as we show for k = 3 in the proof of Theorem 13 in Section 8.6. Here, g(k) = O(k!) is a
function of k only.

Theorem 13 (Upper bound for clique sampling) For k = 3, any δ > 0, and any
rank-r matrix M � 0, the proposed estimator (3) achieves a multiplicative error δ with
probability of error bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ ρ̃2

δ2

(r1−2/k

`

)k
,

under the graph sampling with the pattern graph G that is a clique over ` nodes.

For a typical scenario with finite µ and κ, this upper bound shows that sample size of
`(`+ 1)/2 = O(r2−4/k) is sufficient to achieve any arbitrarily small multiplicative error for
k = 3 and sufficiently small rank r ≤ d2k/(3k−2) and ` ≤ r(k−2)/(k−1), to ensure that the first
term dominates in ρ̃2. However, the numerical experiments suggest that our analysis holds
more generally for all regimes of the rank r. This matches the previous lower bound, proving
optimality of the proposed estimator for k = 3. Although the current analysis holds only
for k = 3, we are intentionally writing the guarantee in general form as we expect the bound
to hold more generally. In particular, we believe that Lemma 19 holds for all k ≥ 3, and
thereby Theorem 13 holds for any fixed integer k ∈ [3,∞). In the numerical experiments in
Figure 8, M is generated using settings similar to that of Figure 4. Empirical probabilities
are computed by averaging over 100 instances.

Although our analysis does not give a tight lower bound for Erdös-Rényi sampling,
there exists graph patterns such that the sample complexity is large, i.e. scales linearly
in d. Consider a clique-star sampling where the pattern graph G(V,E) has a clique on
a small subset of nodes V1, |V1| = `, and the remaining nodes V \ V1 are disconnected
among themselves and are fully connected with the clique in V1. Precisely, G = (V,E) with
(i, j) ∈ E if i ∈ V1 or j ∈ V1.

Lemma 14 (Lower bound for clique-star sampling) Under the clique-star sampling
over a clique of size `, there exists an absolute constant c such that λ∗G,r ≥ cd(r(min{`, r}))−1/4.
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Figure 8: Each colormap in each block for k ∈ {3, 4, 5, 6} show empirical probability of the
event

{∣∣‖M‖kk− Θ̂k(PΩ(M))
∣∣/‖M‖kk ≤ δ}, for δ = 0.5 (left panel) and δ = 0.2 (right panel).

Ω is generated by clique sampling of matrix M with a clique of size ` (vertical axis). M is a
positive semi-definite matrix of size d = 1000. The solid lines correspond to our theoretical
prediction ` =

√
kr1−2/k.

Together with Theorem 11, this implies that if ` ≤ c4C−4r1−4/k, then with probability at
least 1/4, any estimator makes an multiplicative error larger than two. This implies that the
total number of edges in the pattern graph should be O(dr1−4/k) for accurate estimation.
Together with the upper bound on clique sampling in Theorem 13, this shows that the
sample complexity can drastically change based on the pattern of your sampling model.
Clique sampling requires only O(r2−4/k) samples (for k = 3) whereas clique-star sampling
requires at least O(dr1−4/k). A proof of Lemma 12 and Lemma 14 is given in Section 8.4
and 8.5 respectively.

5. Discussion

We list some observations and future research directions.

Complexity of the estimator beyond k = 7. For k ≥ 8, our approach of using matrix
operations to count (the weights of) walks for each pattern H ∈ Hk can potentially be
extended. However, the complexity of the problem fundamentally changes for k ≥ 8. As
our estimator is at least as hard as counting small structures in a simple (unweighted) graph,
we can borrow known complexity results to get a lower bound. For instance, for k ≥ 8, we
need to count K4 in a graph. There is no known simple matrix computation to count K4

in a general graph. The best known run time for counting all K4 is O(dα+1) for general
graphs (Kloks et al., 2000). For general k, under standard hardness assumptions, Flum and
Grohe (2004) show that there is no algorithm with run time O(f(k)dc) for counting cycles of
length k, for any function f(k) and a constant c that does not depend on k. In comparison,
finding one cycle of length k can be done in time 2O(k)dα (Alon et al., 1997). This implies
that the complexity should scale as O(df(k)), and we believe f(k) should be larger than
(α
√

2k/3). The reason is that for k ≥
(
`
2

)
for an odd `, our estimator needs to count the
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number of cliques K` of size ` and, for k ≥ (1/2)`2 for an even `, we require counting K`.
The best known algorithm for counting K` takes time O(min{d1+αd(`−1)/3e, d2+αd(`−2)/3e})
for general graphs (Alon et al., 1997, Theorem 6.4). Putting these bounds together, we

believe that the estimator take time at least dα
√

2k/3.

Sufficiency of k ≤ 7 for practical applications. There are many practical applications
where k ≤ 7 is sufficient for estimating spectral sum function of a matrix from its partial
observations. In the two applications we discuss in this paper, generalized rank estimation
and spectrum estimation, we show by numerical experiments that k ≤ 7 is sufficient. In
Figure 6, we show that the generalized rank of a matrix can be estimated within 0.05 mul-
tiplicative error, for the case when the eigenvalues of the matrix are uniformly distributed
in an interval. In Figure 7, we show that k = 7 is sufficient for estimating the spectrum
for one peak and two peak distributions of eigenvalues. Further, for uniform distribution
of eigenvalues, Kong and Valiant (2016) use only first k = 7 Schatten norms for estimating
the spectrum. They note that considering higher Schatten norms beyond k = 7 did not
significantly improve the results.

Graph sampling. Typical guarantees known for matrix completion assumes the Erdös-
Rényi sampling. One exception is the deterministic sampling studied by Bhojanapalli and
Jain (2014), but such generalization in sampling comes at a price of requiring more strict
assumptions on the matrix M . We propose graph sampling, which can potentially capture
how estimation guarantees depend explicitly on the pattern G, and still remain analytically
tractable. We give such examples for special graphs in Section 4, and graph sampling model
can potentially be used to bridge the gap in sampling models between theory and practice.

(Standard) rank estimation. As several popular matrix completion approaches require
the knowledge of the rank of the original matrix, it is of great practical interest to estimate
the standard rank of a matrix from sampled entries. Our framework in Section 3.2.1 provides
a way to estimate the standard rank from samples. However, there are a few parameters
that need to be tuned, such as the thresholds c1 and c2, and the degree of the polynomial
approximation and the order of the Schatten norm. For rank estimation, Keshavan and Oh
(2009) give an estimator that is provably correct in the regime where matrix completion
works, justifying the requirement that popular matrix completion algorithms (Keshavan
et al., 2010a; Jain et al., 2013) need to know the underlying rank. However, in the regime of
our interest, which is below the standard matrix completion threshold, the algorithm fails
miserably and there are no guarantees. In a more recent work, Saade et al. (2015) propose a
novel rank estimator of counting the negative eigenvalues of Bethe Hessian matrix. It is an
interesting future direction to build upon our framework to provide a guideline for choosing
the parameters for the standard rank estimation, and compare its performance to existing
methods.

The effect of the effective rank. One property of the Schatten norm is that as k gets
large and as the singular values have small effective rank (meaning that they decay fast),
the summation is dominated by the largest few singular values. In such scenarios, in the
estimation problem, any algorithm that tracks the first few singular values correctly would
achieve small error. Hence, the gap get smaller as the effective rank gets smaller, between
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Figure 9: For a matrix with a very small effective rank, the gap between the proposed
estimator and the simple scaled sampled matrix approach is smaller.

the proposed estimator and the simple Schatten k-norm of the rescaled sampled matrix, as
depicted in Figure 9. We are using the same setting as those in Figure 4 with a full rank
matrix M with r = d = 500, but the effective rank is relatively small as the singular values
are decaying as σi = 1/i2. For the current choice of k = 5, notice that the contribution in
‖M‖kk of the second singular value is a factor of 210 smaller than the top singular value,
making it effectively a rank one matrix.

Technical challenges. The technical challenge in proving bounds on the necessary num-
ber of samples needed to estimate Schatten k-norms lies in getting tight bounds on the
variance of the estimator. Variance is a function of weighted counts of each pseudograph of
2k-closed walks, in the complete matrix. As the weight of each walk can be positive or neg-
ative, significant cancellation occurs when we sum all the weights. However, this stochastic
cancellation is hard to capture in the analysis and we assume the worst case where all the
weights are positive, which cannot occur for incoherent and well-conditioned matrices. This
weakness of the analysis leads to the requirement of the rank being sufficiently small in
the case of Erdös-Rényi sampling and k small in the case of clique sampling. We believe
these bounds can be tightened and the same is reflected in the numerical simulations which
show the same scaling holds for all small values of k and rank close to the dimension of the
matrix.

6. Algorithm for estimating Schatten k-norm for k ≥ 8

The collection of pseudographs Hk is partitioned into sets {Hiso
k,i}1≤i≤r, for some r ≤ k!.

The partitions Hiso
k,i are defined such that the pseudographs in one partition are isomorphic

to each other when multi-edges are condensed into one. This is useful since all the pseudo-
graphs in one partition are observed together in G([d],Ω) for any fixed subgraph in G. The
underlying simple graph (including self loops) for each partition Hiso

k,i is denoted by Fk,i.
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The main idea is to enumerate a list L` of all connected `-vertex induced subgraphs
(possibly with loops) of the graph G([d],Ω), for each 1 ≤ ` ≤ k. The unbiased weighted
count of all pseudographsHk for each of these vertex-induced subgraphs g ∈ L` is computed.
This is achieved by further enumerating a list Sg,` of all `-vertex subgraphs for each g. Then
the unbiased weight of all pseudographs H ∈ Hk that exist in the subgraph h is computed
and is summed over to get the estimate of the k-th Schatten norm. Recall the notation
PΩ(M) which is used to denote the partially observed matrix corresponding to the index set
Ω with the unobserved entries being replaced by zero. We abuse this notation and use h(M)
to represent the matrix M restricted to the subgraph h of the observed graph G([d],Ω).

Each connected induced subgraphs of size k in a graph can be enumerated in time
polynomial in d and k (Elbassioni, 2015). The number of connected induced subgraphs
of size k in a graph is upper bounded by (e∆)k/((∆ − 1)k), where ∆ is the maximum
degree of the graph (Uehara et al., 1999). Therefore, Algorithm 4 runs in time that is super
exponential in k, polynomial in d and the number of k-connected induced subgraphs in the
observed graph G([d],Ω).

Algorithm 4 Schatten k-norm estimator

Require: PΩ(M), k, Hk, p(H) for all H ∈ Hk
Ensure: Θ̂k(PΩ(M))
1: Θ̂k(PΩ(M))← 0
2: for 1 ≤ ` ≤ k do
3: Enumerate a list, L`, of all connected `-vertex induced subgraphs (possibly with

loops) of the graph G([d],Ω)
4: for all g ∈ L` do
5: Enumerate a list Sg,` of all connected `-vertex subgraphs of the graph g by removing

one or more edges
6: for all h ∈ Sg,` do
7: for 1 ≤ i ≤ r do
8: if h is isomorphic to Fk,i then

9: Θ̂k(PΩ(M))← Θ̂k(PΩ(M)) +
∑

H∈Hiso
k,i

1
p(H)ωh(M)(H)c(H)

10: end if
11: end for
12: end for
13: end for
14: end for

7. Algorithm for computing the Chebyshev polynomial

8. Proofs

We provide proofs for the main results and the technical lemmas.

27



Khetan and Oh

Algorithm 5 Chebyshev polynomial of the first kind approximating Hc1,c2(x)

Require: Hc1,c2 , c1, c2, and target accuracy δ = 0.1
Ensure: Chebyshev polynomial q(x) of first kind
1: g(x) ≡ x−c2

c1−c2
2: T0(x) ≡ 1, T1(x) ≡ x
3: q(x)← 1

π

∫ c1
c2

(1− x2)−1/2g(x)T0(x)dx+ 1
π

∫ 1
c1

(1− x2)−1/2T0(x)dx
4: i = 1
5: while supx∈[0,1] |q(x)−Hc1,c2(x)| ≥ δ do

6: q(x)← q(x) + 2Ti(x)
π

∫ c1
c2

(1− x2)−1/2g(x)Ti(x)dx+ 2Ti(x)
π

∫ 1
c1

(1− x2)−1/2Ti(x)dx
7: i← i+ 1
8: Ti(x) ≡ 2xTi−1(x)− Ti−2(x)
9: end while

8.1. Proof of Theorem 3

Consider W̃ to be the collection of all length k closed walks on a complete graph of d
vertices. Here we slightly overload the notion of complete graph to refer to an undirected
graph with not only all the d(d− 1)/2 simple edges but also with d self loops as well.

Construct the largest possible collection W from W̃ wherein each walk has distinct weights
that is ω(w) 6= ω(w′) for all w,w′ ∈ W . We partition W according to the pattern among
k-cyclic pseudographs, which are further partitioned into four groups. The estimator (3)
can be re-written as

Θ̂k(PΩ(M)) =
∑
w∈W

c(H(w))

p(H(w))
ωPΩ(M)(w)

=
∑
H∈Hk

{ c(H)

p(H)

∑
w:H(w)=H

ωM (w) I(w ⊆ Ω)
}

=

4∑
i=1

∑
H∈Hk,i

{ c(H)

p(H)

∑
w:H(w)=H

ωM (w) I(w ⊆ Ω)
}
,

where we write w ⊆ Ω to denote the event that all the edges in the walk w are sampled,
and we define

• Hk,1 ≡ {Ck} is just a (set of a) simple cycle of length k and there are total |{w ∈
W : H(w) ∈ Hk,1}| =

(
d
k

)
(k!/2k) ≤ (dk/2k) corresponding walks to this set, and

c(Ck) = 2k.

• Hk,2 ≡ {H(VH , EH) ∈ Hk : |VH | ≤ k − 1 and no self loops}, and there are total
|{w ∈W : H(w) ∈ Hk,2| ≤ dk−1 corresponding walks to this set.

• Hk,3 ≡
⋃k−1
s=1 Hk,3,s where Hk,3,s = {H ∈ Hk with s self loops}, and there are total

|{w ∈W : H(w) ∈ Hk,3}| ≤ dk−s corresponding walks in this set.

• Hk,4 ≡ {H(VH , EH) ∈ Hk : |VH | = 1} is a (set of a) graph with k self loops and there
are total |{w ∈W : H(w) ∈ Hk,4}| = d corresponding walks to this set.
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Given this unbiased estimator, we provide an upper bound on the variance of each of the
partitions to prove concentration with Chebyshev’s inequality. For any walk w ∈ W , let
|w| denote the number of unique edges (including self loops) that the walk w traverses. Let
|w ∩ w′| denote the number of unique overlapping edges (including self loops) of walks w
and w′. We have,

Var
(
Θ̂k(PΩ(M)))

= 2

k−1∑
`=1

∑
w 6=w′∈W̃
|w∩w′|=`

cov

(
I(w ⊆ Ω)ωM (w)c(H(w))

p(H(w))
,
I(w′ ⊆ Ω)ωM (w′)c(H(w′))

p(H(w′))

)

+

4∑
i=1

∑
H∈Hk,i

{ c(H)2

p(H)2

∑
w:H(w)=H

ωM (w)2Var
(
I(w ⊆ Ω)

)}

< 4
k−1∑
`=1

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

](∣∣ωM (w)ωM (w′)
∣∣c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

+

4∑
i=1

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
. (16)

Recall from the definition of incoherence that |Mii| ≤ σ1(M)µr/d and |Mij | = σ1(M)µr1/2/d,
and let α = σ1(M)µr1/2/d denote the maximum off-diagonal entry, such that |Mij | ≤ α
and |Mii| ≤ α

√
r for all i, j ∈ [d]. Let Ap,k,α,d = dkα2k/pk denote the target scaling of the

variance, then ∑
H∈Hk,i

∑
w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤



dk

2k

(2k)2α2k

pk
= 2kAp,k,α,d , for i = 1 , (17)

dk−1 f(k)2α2k

pk
=
f(k)2

d
Ap,k,α,d , for i = 2 , (18)

d
rkα2k

p
=
rkpk−1

dk−1
Ap,k,α,d , for i = 4 , (19)

and for i = 3 and for 1 ≤ s ≤ k − 1, we have∑
H∈Hk,3,s

∑
w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤ dk−s

f(k)2α2krs

pk
=
f(k)2rs

ds
Ap,k,α,d , (20)

where c(H) is defined as the multiplicity of walks with the same weight satisfying c(H) ≤
f(k). For w 6= w′ and |w ∩ w′| = `, where the range of ` varies across equations depending
upon the set to which w,w′ belongs, we have the following:∑

w 6=w′∈W
|w∩w′|=`,H(w)∈Hk,i,s,H(w′)∈Hk,i′,s′

E
[
I(w ∈ Ω)I(w′ ∈ Ω)

]∣∣ωM (H(w))ωM (H(w′))
∣∣ c(H(w))c(H(w′))

p(H(w))p(H(w′))
≤
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

dkdk−(`+1)

2k

α2k(2k)2

p`
=

(dp)k−`

d
2kAp,k,α,d, for i = i′ = 1 (21)

f(k)2dk−1dk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d3
Ap,k,α,d for i = i′ = 2 (22)

f(k)2dk−sdk−s
′−`α2k−s−s′(α

√
r)s+s

′

p`
≤ f(k)2(dp)k−`

(d/
√
r)s+s′

Ap,k,α,d , for i = i′ = 3 (23)

f(k)2dkdk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d2
Ap,k,α,d for i = 1, i′ = 2(24)

f(k)2dkdk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d(d/
√
r)s

Ap,k,α,d for i = 1, i′ = 3(25)

f(k)2dk−1dk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d2(d/
√
r)s

Ap,k,α,d for i = 2, i′ = 3(26)

f(k)2ddk−s−`αk−s(α
√
r)k+s

p`
≤ f(k)2(dp)k−`

dk−1(d/
√
r)k+s

Ap,k,α,d for i = 3, i′ = 4 ,(27)

where (27) is valid only for ` = 1. Note that for any w with H(w) ∈ Hk,1
⋃
Hk,2, it has no

overlap with w′ such that H(w′) ∈ Hk,4.

Observe that Var
(
Θ̂k(PΩ(M))) as bounded in (16) is upper bounded by the sum of

quantities in (17)-(27), summating over all possible values of 1 ≤ ` ≤ k− 1, and 1 ≤ s, s′ ≤
k − 1. Let h(k) ≡ f(k)2Ap,k,α,d. Observe that quantities in (17),(18), and (20) are upper
bounded by h(k). Quantities in (21)-(27) are upper bounded by h1(k) ≡ h(k)(dp)k−1/d.
Quantity in (19) is upper bounded by h2(k) ≡ h(k)rkpk−1/dk−1.

Given ‖M‖kk ≥ r(σmin)k, recall a bound on off diagonals of matrix M by |Mij | ≤ α =
µσmax

√
r/d and Ap,k,α,d = dkα2k/pk. This gives

Ap,k,α,d

‖M‖2kk
≤ κ2kµ2krk−2

dkpk
.

Using Chebyshev’s inequality and collecting all terms in the upper bound on the variance,
we have for sufficiently large d the following bound:

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ (κµ)2kf(k)2rk−2

δ2(dp)k
max

{
1,

(dp)k−1

d
,
rkpk−1

dk−1

}
,

where the second and the third term in the max expression follow from evaluating h1(k)
and h2(k). If sampling probability p is small enough such that dp ≤ Cd1/(k−1) for some
constant C, then the second and the third terms are smaller than the first term. Hence,
the desired result in Theorem 3 follows.

8.2. Proof of Theorem 4

We can prove a Bernstein-type bound on accuracy of the estimator. The estimator (3) can
be rewritten as a multi-linear polynomial function of d(d+ 1)/2 i.i.d. Bernoulli(p) random
variables.

Θ̂k(PΩ(M)) =
∑
w∈W

{
c(H(w))

p(H(w))
ωM (w)

∏
(i,j)∈unique(w)

I((i, j) ∈ Ω)

}
,
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where I((i, j) ⊆ Ω) is a random variable that takes value 1 if the (i, j)th entry of the matrix
M is sampled, and unique(w) denotes the set of the unique edges (and self loops) that the
walk w traverses. Let q denote the power of the polynomial function that is the maximum
number of unique edges in the walk w, that is q = k.

We use the following Bernstien-type concentration results of Schudy and Sviridenko
(2011) for the polynomials of independent random variables.

Lemma 15 (Schudy and Sviridenko (2011),Theorem 1.3) We are given d(d + 1)/2
independent central moment bounded random variables {I((i, j) ∈ Ω)}1≤i≤j≤d with the same

parameter L. We are given a multilinear polynomial Θ̂k(PΩ(M)) of power q, then

P
[∣∣∣Θ̂k(PΩ(M))− E

[
Θ̂k(PΩ(M))

]∣∣∣ ≥ λ] ≤ e2 max

{
e

−λ2

Var[Θ̂k(PΩ(M))]Rq ,max
t∈[q]

e
−( λ

µtL
tRq

)1/t
}
,

where R is some absolute constant and µt is defined as follows:

µt = max
S⊆{(i,j):i,j∈[d]}

|S|=t

( ∑
w∈W |w⊇S

c(H(w))

p(H(w))
|ωM (w)|

∏
(i,j)∈unique(w)\S

E[I((i, j) ∈ Ω)]

)
,(28)

where w ⊇ S denotes that the walk w comprises edges(and self loops) contained in the set
S. The parameter L is defined as follows: A random variable Z is called central moment
bounded with real parameter L > 0, if for any integer i ≥ 1 we have

E
[
|Z − E[Z]|i

]
≤ i LE[|Z − E[Z]|i−1] .

For each of the Bernoulli random variables {I((i, j) ∈ Ω)}1≤i≤j≤d, L is contained in [1/4, 1].
In the following, we show that µt ≤ (µσmax)kg(k)rk/(d(dp)t), for t ∈ [k]. Using Lemma 15,
along with ‖M‖kk ≥ r(σmin)k, the bound in (9) follows immediately.

To compute µt, define a set of walks W`,s,ŝ such that w ∈ W`,s,ŝ has 0 ≤ ` ≤ k unique
edges and 0 ≤ s ≤ k unique self loops, and ŝ total self loops with `+ ŝ ≤ k. For the set S as
required in (28), let S˜̀,s̃ be a set of ˜̀unique edges and s̃ unique self loops, with |S˜̀,s̃| = ˜̀+ s̃
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where 1 ≤ ˜̀+ s̃ ≤ k. Therefore, we have

µt = max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑
w∈W`,s,ŝ

:w⊇S˜̀,s̃

c(H(w))

p(H(w))
|ωM (w)|

∏
(i,j)∈unique(w)\S˜̀,s̃

E[I((i, j) ⊆ Ω)]

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑
w∈W`,s,ŝ

:w⊇S˜̀,s̃

f(k)

p`+s
αkrŝ/2p`+s−(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k

`∈[k]:`+ŝ≤k,s̃≤s

d`−(1+˜̀)f(k)

p`+s
(µσmax)kr(k+ŝ)/2

dk
p`+s−(˜̀+s̃)

)

= max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k

`∈[k]:`+ŝ≤k,s̃≤s

f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

(
k3f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)
≤ (µσmax)kg(k)rk

d(dp)t
.

8.3. Proof of Theorem 11

The proof technique is a generalization to a rank-r symmetric matrix of the proof given by
Li et al. (2014) for deriving lower bound on the size of a random bi-linear sketch needed
for approximating Schatten norm of any matrix. It also draws on the techniques used in
Andoni et al. (2013) for proving a lower bound on the size of the linear sketches of moments.

We prove Theorem 11 for an arbitrary fixed relabeling permutation π of the graph nodes.
Indeed, by Yao’s minimax principle, it suffices to give two distributions on matrix M ∈Mr

for which the ‖M‖k values differ by a constant factor with high probability, but for any
relabeling permutation π of the nodes of the pattern graph G, the induced distributions on
the sampled entries PΩ(M) corresponding to the relabeled graph Gπ(Ṽ ,Ω), have low total
variation distance.

For positive C > 0 to be specified later, define λ ≡ Cdr1/k−1/2. We construct distri-
butions D1 and D2 for M ∈ Mr,µ with µ = C ′

√
log r, for some absolute constant C ′, such

that the following holds:

1. ‖M‖k ≤ λ on the entire support of D1, and ‖M‖k ≥ 4λ on the entire support of D2.

2. Let E1 and E2 denote the distribution of the sampled matrix PΩ(M) when M is drawn
from D1 and D2 respectively. Recall that Ω is the set of edges of the relabeled graph
Gπ(Ṽ ,Ω) as defined in Section 4.1. If λ∗G,r ≥ λ then, the total variation distance
between E1 and E2 is bounded by TV(E1, E2) ≤ 1/2.
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The desired result (15) follows from the above claims and the following relationship between
statistical tests and estimators:

P
M∼ 1

2
(D1+D2)

(
1

2
‖M‖k ≤ Θ̃(PΩ(M)) ≤ 2‖M‖k

)
≤ 1

2
P

M∼D2

(
Θ̃(PΩ(M)) ≥ 2λ

)
+

1

2
P

M∼D1

(
Θ̃(PΩ(M)) ≤ 2λ

)
≤ 1

2

(
1 + TV(E1, E2)

)
≤ 3

4
,

where the last inequality follows from the following characterization of the total variation
distance TV(E1, E2) ≡ supA |E1(A)− E2(A)|.

To prove the two claims, we construct one of the desired rank-r random matrix via
tiling, i.e. covering the matrix with copies of a single r × r sub-matrix from the Gaussian
Wigner Ensemble, where diagonals and off-diagonals(upper triangle) are both distributed
as i.i.d. standard Gaussians. Another one is constructed by adding a rank one perturbation.
Precisely, we define a random matrix drawn from D1 as follows.

A random r×r matrix Z chosen from Gaussian Wigner Ensemble, G(r, r), is a symmetric
matrix whose entries Zi,i and Zi,j for i < j are independent with N(0, 1) distribution.
Define B ≡ 1dd/re1

>
dd/re to be an all-ones matrix of size dd/re × dd/re. Let D̄1 denote the

distribution of M1 = Y ⊗ B where Y ∼ G(r, r), and ⊗ denotes the standard Kronecker
product of two matrices. Note that the matrix norm of M1 and Y are related by ‖M1‖k =
dd/re‖Y ‖k. Since the Schatten norm of Y ∼ G(r, r) takes value on the entire R+, we
need to truncate it. We set D1 to be D̄1 conditioned on the event S1 = {M1 : ‖M1‖k ≤
λ, µ(M1) ≤ C ′

√
log r}, i.e. D1(A) = D̄1(A ∩ S1)/D̄1(S1).

We define D̄2 by adding a rank one perturbation. Precisely, let M2 = M1 + (5/d)λU ,
where M1 ∼ D̄1 and U = uu> ⊗ B. Here a random vector u ∈ {±1}r is a vector of
i.i.d. Rademacher random variables. Note that U is a rank one matrix and ‖U‖k =
dd/re‖uu>‖k = d. We set D2 to be D̄2 conditioned on the event S2 = {M2 : ‖M2‖k ≥
4λ, µ(M2) ≤ C ′

√
log r}. Observe thatM1 ∼ D̄1 andM2 ∼ D̄2 belong to Rd×d, are symmetric

and both are rank at most r + 1.
Let Ē1 and Ē2 denote the distribution of PΩ(M) when M is drawn from D̄1 and D̄2

respectively. We first show that their total variation distance is not too large. Using the
triangle inequality, we have

TV(E1, E2) ≤ TV(Ē1, Ē2) + TV(Ē1, E1) + TV(Ē2, E2)

≤ TV(Ē1, Ē2) + TV(D̄1,D1) + TV(D̄2,D2) (29)

= TV(Ē1, Ē2) + P
M1∼D1

(
(‖M1‖k ≥ λ) ∪ (µ(M1) ≥ C ′

√
log r)

)
+ P
M2∼D2

(
(‖M2‖k ≤ 4λ) ∪ (µ(M2) ≥ C ′

√
log r)

)
, (30)

where (29) follows from the data processing inequality and (30) follows from TV(E1, E2) ≡
supA |E1(A)− E2(A)|. We next show that the three terms in (30) are sufficiently small.

We first provide an upper bound on TV(Ē1, Ē2). As per our construction, only the upper
triangular (including diagonals) of the upper-left submatrix of size r × r of M1 ∼ D1 and
M2 ∼ D2 has unique entries and the rest are copies of these. Observe that the set of unique
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entries of M1(or M2) corresponding to any pattern graph G(V,E) are precisely the following
entries of the projection graph P(r)(G) that is defined in Section 4.1:

E(P(r)(G)) ≡
{

(i, j) : i ≤ j ∈ [r], (i, j) ∈ P(r)(G(V,E))
}
. (31)

For the purpose of computing the total variation distance TV(Ē1, Ē2), it is sufficient to
consider only E(P(r)(Gπ)) entries ofM1 distributed as i.i.d. standard GaussiansN(0, I`1×`1),
and the entries of M2 distributed as N(W, I`1×`1)), where `1 = |E(P(r)(Gπ))|. The random
vector W represents the rank one perturbation and is distributed as

Wi,j = (5/d)λuiuj , (i, j) ∈ E(P(r)(Gπ)) .

To bound total variation distance between Ē1 and Ē2, we use the following lemma and
the fact that for any two distributions µ and ν, TV(µ, ν) ≤

√
χ2(µ ‖ ν). Let µ ∗ ν denote

the convolution of the density (or equivalently addition of the two random variables).

Lemma 16 (Ingster and Suslina (2012), p97) It holds that χ2(N(0, In)∗µ ‖N(0, In)) ≤
E exp(〈z, z′〉)− 1, where z, z′ ∼ µ are independent.

It follows that

TV(Ē1, Ē2) ≤
√
Ee〈W,W ′〉 − 1 ≤ 1/5 ,

for λ∗G ≥ λ where the expectation is taken over independent W and W ′ which are identically
distributed. We show that if λ∗G ≥ λ the last inequality holds, as following:

EW,W ′ exp
(
〈W,W ′〉

)
= Eu,u′ exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

uiu
′
iuju

′
j

)

= Eu exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

uiuj

)
(32)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i 6=j

uiuj

)]
exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i=j

uiuj

)

≤ Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i 6=j

2uiuj

)]
exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i=j

uiuj

)
(33)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

:i 6=j

uiuj

)]
exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

:i=j

uiuj

)
(34)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)]
≤ 1 + 1/25 , (35)
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where (32) follows from the fact that u, u′ are i.i.d. Rademacher variables, (33) follows from
the fact that fG,r(λ) defined in (13) is non-decreasing in λ, (34) follows from the definition
of E(P(r)(Gπ)) in (31),and (35) follows from the definition of λ∗G in (14).

To bound the other two terms in (30), we use Wigner’s semicircular law and its rate of
convergence for Gaussian Wigner Ensemble, G(r, r) as defined above. Consider the empirical
spectral distribution of Z ∈ Rr×r as

FZ(x) =
1

r
|{i : λi(Z) ≤ x}|.

Lemma 17 (Wigner (1955)) Define Z = (1/
√
r)Y for Y ∼ G(r, r). Then as r →∞ the

empirical distribution FZ(x) of Z converges weakly to the distribution G(x) with density

g(t) =

√
4− t2
2π

t ∈ [−2, 2] .

Lemma 18 (Götze and Tikhomirov (2003)) For any positive constant α > 0, let `r,α =
log r(log log r)α. There exists an absolute positive constant C and c such that for r large
enough,

P
{

sup
x

∣∣FZ(x)−G(x)
∣∣ ≥ r−1 log r`6r,α

}
≤ C exp

{
− c`r,α

}
.

To bound the schatten norm of a matrix Y ∼ G(r, r), along with Lemma 17 and Lemma
18 we use the following. If F (x) and G(x) are cumulative distribution functions of densities
µ, ν then for any continuous and bounded function f , we have∣∣∣∣ ∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ‖f‖∞ sup
x

∣∣F (x)−G(x)
∣∣ .

Choosing f(x) = xk for x ∈ [−2, 2], we can see that for k = O(log r) there exists a constant
C > 2 such that with probability 1− 1/80 it holds that

‖(1/
√
r)Y ‖kk =

(∫ 2

−2
xk
√

4− x2

2π
dx+ o(1)

)
r ≤ (2k + o(1))r ≤ Ckr . (36)

Hence ‖Y ‖k ≤ Cr(1/k+1/2). By construction of distribution D̄1, for M1 ∼ D̄1, ‖M1‖k =
(d/r)‖Y ‖k ≤ Cdr(1/k−1/2) = λ. Also, by construction M2 ∼ D̄2 is M2 = M1 + (5/d)λU
where ‖U‖k = d. Using triangle inequality, we have

‖M2‖k ≥ ‖(5/d)λU‖k − ‖M1‖k
≥ 5λ− Cdr1/k−1/2 = 4λ ,

Recall that, incoherence parameter µ(M) is defined as µ(M) = maxi 6=j∈[d]Mi,j/(|σmax(M)|
√
r/d).

From (36), there exists a constant 0 < C ′ < 1 such that with probability 1− 1/160 it holds
that ‖Y ‖2 ≥ C ′r. The integral evaluates to 1 for k = 2. Therefore, the largest singular
value of M1 is lower bounded: |σmax(M1)| ≥ C ′d/

√
r. Using the fact that there exists a

constant C ′′ such that maxi,j∈[r]{Yi,j} ≤ C ′′
√

log r with probability at least 1 − 1/160, we
have, µ(M1) ≤ (C ′′/C ′)

√
log r. The same µ(M1) satisfies the upper bound on diagonals

as well. Therefore, using union bound, the second and the third term in (30) are upper
bounded by 1/40.
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8.4. Proof of Lemma 12

Observe that for any given permutation π, P(r)(Gπ) as defined in Section 4.1 is a clique
over a subset of nodes Ṽπ, where |Ṽπ| ≤ min{`, r}. From the definition of fG,r(λ), (13), we
have the following:

fG,r(λ)

= max
π

{
Eu exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)}
= max

π

{
Eu exp

(
(5/d)2λ2

( ∑
i∈Ṽπ

ui
)2)}

= max
π

{ ∞∑
t=0

(5/d)2tλ2tEu
[(∑

i∈Ṽπ ui
)2t]

t!

}
≤ max

π

{(
1 + 2

∞∑
t=1

(
(5/d)2λ2|Ṽπ|

)t)}
,

where the inequality follows from the bound in (37). Therefore, from the definition of λ∗G,r,

we have that λ∗G,r is lower bounded by 2−4d(min{`, r})−1/2.

To bound E(
∑

i∈Ṽπ ui)
2t, for t ∈ [1,∞), using Hoeffding bound we have that

E
∣∣∣∣ ∑
i∈Ṽπ

ui

∣∣∣∣2t =

∫ |Ṽπ |2t
0

P
(∣∣∣∣ ∑

i∈Ṽπ

ui

∣∣∣∣2t ≥ z)dz ≤ 2

∫ |Ṽπ |2t
0

exp

(
−z1/t

2|Ṽπ|

)
dz ≤ 2(2|Ṽπ|)tt! ,

(37)

where the integral is evaluated by variable substitution.

8.5. Proof of Lemma 14

For the given pattern graph G and any given permutation π, let Ãπ ∈ {0, 1}r×r be the
adjacency matrix of the graph P(r)(Gπ) that is defined in Section 4.1. Observe that for
a permutation π, `π rows of Ãπ are all-ones and the remaining are all-zeros, where `π ≤
min{`, r}. Let Aπ be a copy of Ãπ where all the diagonal entries are replaced with zero.
Note that Eu(u>Aπu)2t+1 = 0 for all t ≥ 0, where ui’s are i.i.d. Rademacher random
variables. Define Cπ ≡ exp((5/d)2λ2`π).

From the definition of fG,r(λ), (13), we have the following:

fG,r(λ)

= max
π

{
Eu exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)}
= max

π

{
CπEu exp

(
(5/d)2λ2(u>Aπu)

)}

= max
π

{
Cπ

∞∑
t=0

(5/d)4tλ4tEu
[
(u>Aπu)2t

]
(2t)!

}
≤ max

π

{
Cπ

(
1 + 4

∞∑
t=1

(
2c(5/d)2λ2

√
`πr
)2t)}

,

where the inequality follows from the bound in (38), and c is some absolute constant. There-

fore, from the definition of λ∗G,r, we have that λ∗G,r is lower bounded by cd((min{`, r})r)−1/4.
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To bound Eu
[
(u>Aπu)2t

]
, for t ∈ [1,∞), we use Hanson-Wright Inequality. Observe

that ‖Aπ‖2 ≤
√
`πr, and ‖Aπ‖2F = (r − 1)`π < `πr.

Eu
[
(u>Aπu)2t

]
=

∫ (2
√
r`π)2t

0
P
(
(u>Aπu)2t ≥ z

)
dz +

∫ (`πr)2t

(2
√
r`π)2t

P
(
(u>Aπu)2t ≥ z

)
dz

≤
∫ (2

√
r`π)2t

0
exp

(
−cz1/t

4`πr

)
dz +

∫ (`πr)2t

(2
√
r`π)2t

exp

(
−cz1/(2t)

2
√
`πr

)
dz

≤ 2(4`πr/c)
tt! + 2(2

√
`πr/c)

2t(2t)! ≤ 4(2
√
`πr/c)

2t(2t)! , (38)

where the integral is evaluated by variable substitution.

8.6. Proof of Theorem 13

For a clique of size m selected uniformly at random, we derive an upper bound on the
variance of our estimator. Following the notations defined in the proof of Theorem 3, we
have the following bound on the variance.

Var
(
Θ̂k(PΩ(M)))

= 2

k∑
`=0

∑
w 6=w′∈W̃
|w∩w′|=`

Covar

(
I(w ⊆ Ω)ωM (w)c(H(w))

p(H(w))
,
I(w′ ⊆ Ω)ωM (w′)c(H(w′))

p(H(w′))

)

+

4∑
i=1

∑
H∈Hk,i

{ c(H)2

p(H)2

∑
w:H(w)=H

ωM (w)2Var
(
I(w ⊆ Ω)

)}

< 2

k∑
`=0

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

](ωM (w)ωM (w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

−2
k∑
`=0

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)

]
E
[
I(w′ ⊆ Ω)

](ωM (w)ωM (w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

+

4∑
i=1

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
. (39)

where we abuse the earlier defined notation |w ∩ w′| to denote the number of overlapping
nodes in the two walks w,w′ ∈ W instead of number of overlapping edges. Note that in
pattern sampling, covariance term for two walks that do not have any overlapping node is
not zero. As earlier, we provide bound on each of the terms in (39).

Probability of any walk w being sampled is P[w ∈ Ω] =
(
m
`

)
/
(
d
`

)
≤ f(`)m`/d`, where `

is the number of unique nodes that the walk traverses and f(`) is an exponential function
in `. Recall that off diagonals of matrix M are bounded by |Mij | ≤ α = µσmax

√
r/d and

the diagonals are bounded by |Mii| ≤ µσmaxr/d. We have,∑
H∈Hk,i

∑
w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤
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

dk

2k

f(k)2α2kdk

mk
≤ f(k)2(µσmax)2krk

mk
, for i = 1 , (40)(

d2

m

)k−1

f(k)2α2k =
m

d2

f(k)2(µσmax)2krk

mk
, for i = 2 , (41)

d2

m
rkα2k =

rkmk−1

d2k−2

f(k)2(µσmax)2krk

mk
, for i = 4 , (42)

and for i = 3 and for 1 ≤ s ≤ k − 1, we have∑
H∈Hk,3,s

∑
w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]

≤
(
d2

m

)k−s
f(k)2α2krs =

msrs

d2s

f(k)2(µσmax)2krk

mk
, (43)

For any two walks w,w′ with ` ≥ 0 overlapping nodes, P[w,w′ ∈ Ω]/(P[w ∈ Ω]P[w′ ∈
Ω]) ≤ f(k)d`/m`. For w 6= w′ and |w∩w′| = `, where the range of ` varies across equations
depending upon the set to which w,w′ belongs, we have the following:∑
w 6=w′∈W
|w∩w′|=`

H(w)∈Hk,i,s
H(w′)∈Hk,i′,s′

(
E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

]
−E
[
I(w ⊆ Ω)

]
E
[
I(w′ ⊆ Ω)

])(ωM (w)ωM (w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)
≤



f(k)2d`

m`

(µσmax)2kr2

d`
=

f(k)2(µσmax)2k max{r2, r`}
m`

, for i = i′ = 1, ` ≥ 1 (44)

m2k−1

d2k

d2kf(k)2(µσmax)2kr2

m2k
=

f(k)2(µσmax)2kr2

m
, for i = i′ = 1, ` = 0 (45)

f(k)2d`d2k−2−`α2k

m`
≤ f(k)2(µσmax)2krk

m`d2
, for i = i′ = 2 (46)

f(k)2d`d2k−s−s′−`α2k(
√
r)s+s

′

m`
≤ f(k)2(µσmax)2krk

m`d
, for i = i′ = 3 (47)

f(k)2d2α2k(
√
r)2k ≤ f(k)2(µσmax)2krk

d2k−2/rk
, for i = i′ = 4 (48)

f(k)2d`d2k−1−`α2k

m`
≤ f(k)2(µσmax)2krk

m`d
, for i = 1, i′ = 2 (49)

f(k)2d`d2k−s−`α2k(
√
r)s

m`
≤ f(k)2(µσmax)2krk

m`d/
√
r

, for i = 1, i′ = 3 (50)

f(k)2d`dk+1−`α2k(
√
r)k

m`
≤ f(k)2(µσmax)2krk

m`dk−1/(
√
r)k

, for i = 1, i′ = 4 , (51)

f(k)2d`d2k−1−s−`α2k(
√
r)s

m`
≤ f(k)2(µσmax)2krk

m`d2/
√
r

, for i = 2, i′ = 3 (52)

f(k)2d`dk−`α2k(
√
r)k

m`
≤ f(k)2(µσmax)2krk

m`dk(
√
r)k

, for i = 2, i′ = 4 , (53)

f(k)2d`dk+1−s−`α2k(
√
r)s+k

m`
≤ f(k)2(µσmax)2krk

m`dk−1/(
√
r)k

, for i = 3, i′ = 4 , (54)
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Where (44) and (45) both use (56), and (45) also uses (55). Note that ` is zero in (48).
Collecting all the terms, and using Chebyshev’s inequality, along with ‖M‖kk ≥ r(σmin)k,
we get the desired result.

For any two disjoint simple cycles w 6= w′ ∈ Hk,1 with |w∩w′| = 0, we have the following

P
[
w ∈ Ω

]
− P

[
w ∈ Ω

∣∣ w′ ∈ Ω
]

=

(
m
k

)(
d
k

) − (m−kk )(
d−k
k

)
≤ mk

(d− k + 1)k
− (m− 2k + 1)k

(d− k)k
≤ f(k)mk−1

dk
, (55)

where the last inequality assumes that k < d/2.

Lemma 19 For k = 3, and any 0 ≤ ` ≤ k∑
w 6=w′∈Hk,1:|w∩w′|=`

ωM (w)ωM (w′) ≤ f(k)(µσmax)2k max{r2, r`}
d`

. (56)

Although we give a proof for k = 3 only, we are intentionally writing the lemma for general
k as we expect the lemma holds for all k ≥ 3. The joint walk w 6= w′ ∈ Hk,1 : |w ∩ w′| = `
corresponds to H(w) = D27, for ` = 1; and H(w) = D23, for ` = 2 in Figure 12. Define
M̃ ≡M − diag(M), and let � denote the Hadamard product of two matrices. We have,∑
w 6=w′∈Hk,1:|w∩w′|=2

ωM (w)ωM (w′) = (1/4)
∑
i,j∈[d]

((
M̃2 � M̃2 − (M̃ � M̃)2

)
� (M̃ � M̃)

)
i,j
.(57)

Let’s denote the quantity in (57) by C1, we have,∑
w 6=w′∈Hk,1:|w∩w′|=1

ωM (w)ωM (w′)

= (1/8)
∑
i∈[d]

(
diag(M̃3)� diag(M̃3)− 2diag((M̃ � M̃)3)

)
i
− 2C1 .

(58)

It is easy to verify Equation (56) for k = 3 and ` ∈ {1, 2} using the fact that M is a µ
incoherent symmetric matrix with its off-diagonals bounded by µσmax(

√
r/d). For ` = 0,

quantity in (56) is the sum of each pair of disjoint triangles. For sum of all triangles, we
have, ∑

w∈Hk,1

ωM (w) = (1/6)
∑
i∈[d]

(
diag(M̃3)

)
i
≤ (µσmax)3r . (59)

Using Equations (57), (58) and (59), bound for ` = 0 follows immediately. Bound for ` = k,
follows by using the fact that Mi,j ≤ µσmax(

√
r/d) for i 6= j ∈ [d].

9. k-cyclic pseudographs

We provide an enumeration of all k-cyclic psuedographs for k ∈ {4, 5, 6, 7} in Figures (10–
15).
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B1 B2 B3 B4 B5 B6 B7

Figure 10: The 4-cyclic pseudographs H4.

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

Figure 11: The 5-cyclic pseudographs H5.
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D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11 D12

D13 D14 D15 D16

D17 D18 D19 D20

D21 D22 D23 D24

D25 D26 D27 D28

D29 D30 D31 D32

Figure 12: The 6-cyclic pseudographs H6.
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E1 E2 E3 E4

E5 E6 E7 E8

E9 E10 E11 E12

E13 E14 E15 E16

E17 E18 E19 E20

E21 E22 E23 E24

E25 E26 E27 E28

E29 E30 E31 E32

Figure 13: The 7-cyclic pseudographs H7
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E33 E34 E35 E36

E37 E38 E39 E40

E41 E42 E43 E44

E45 E46 E47 E48

E49 E50 E51 E52

E53 E54 E55 E56

E57 E58 E59 E60

Figure 14: The 7-cyclic pseudographs H743



Khetan and Oh

E61 E62 E63 E64 E65

E66 E67 E68 E69

Figure 15: The 7-cyclic pseudographs H7.

10. Efficient computation of ωM(H) for k ∈ {4, 5, 6, 7}

In this section we provide the complete matrix oeprations for copmuting γM (H)’s. Equa-
tions (60) - (66) give expressions to compute γM (H) for H ∈ H4 as labeled in Figure 10.
Equations (67) - (78) give expressions to compute γM (H) for H ∈ H5 as labeled in Figure
11. Equations (79) - (110) give expressions to compute γM (H) for H ∈ H6 as labeled in
Figure 12. Equations (111) - (203) give expressions to compute γM (H) for H ∈ H7 as
labeled in Figure 15.

For brevity of notations and readability, we define the following additional notations. Let
A�B denote the Hadamard product. For A ∈ Rd×d, let sum(A) denote a vector v ∈ Rd such
that vi =

∑
j∈[d]Ai,j . With a slight abuse of notation, for v ∈ Rd, let sum(v) denote sum of

all elements of v that is sum(v) =
∑

i∈[d] vi. Let sum(γM (Hi) : γM (Hj)) ≡
∑j

i′=i γM (Hi′).
Define R ≡ 1d×d − diag(1d×d), that is R is an all-ones matrix except on diagonals which
are zeros. Further, for brevity, we omit the subscript M from the notations γM (H), OM
and DM .

γ(B1) = sum(sum(D�D�D�D)) (60)

γ(B2) = sum(sum(O�O�O�O)) (61)

γ(B3) = 4 tr(O∗O∗D∗D) (62)

γ(B4) = 2 sum(sum((O�O)∗(O�O)�R)) (63)

γ(B5) = 2 tr(O∗D∗O∗D) (64)

γ(B6) = tr(O∗O∗O∗O)− sum(γ(B2) : γ(B4)) (65)

γ(B7) = tr(M∗M∗M∗M)− sum(γ(B1) : γ(B6)) (66)
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γ(C1) = tr(D�D�D�D�D) (67)

γ(C2) = 5 sum(sum(D∗O�O�O�O)) (68)

γ(C3) = 5 sum(sum((D�D�D)∗(O�O))) (69)

γ(C4) = 5 tr((O�O�O)∗O∗O) (70)

γ(C5) = 5 sum(sum(D∗(O�O)∗(D�D))) (71)

γ(C6) = 5 sum(sum(((O�O)∗D∗(O�O))�R)) (72)

γ(C7) = 5 sum(sum((D∗(O�O)∗(O�O))�R)) (73)

γ(C8) = 5 tr(O∗O∗O∗(D�D)) (74)

γ(C9) = 5 sum(diag(O�O�O)�sum(O�O))− 10 tr((O�O�O)∗O∗O)) (75)

γ(C10) = tr(O∗O∗O∗O∗O)− γ(C4)− γ(C9) (76)

γ(C11) = 5 tr(O∗D∗O∗D∗O) (77)

γ(C12) = tr(M∗M∗M∗M∗M)− sum(γ(C1) : γ(C11)) (78)

45



Khetan and Oh

γ(D1) = sum(sum(D�D�D�D�D�D)) (79)

γ(D2) = sum(sum(O�O�O�O�O�O)) (80)

γ(D3) = 6 sum(sum(((O�O)∗(O�O�O�O))�R)) (81)

γ(D4) = 6 sum(sum(((O�O)∗(D�D�D�D))�R)) (82)

γ(D5) = 9 sum(sum(((D�D)∗(O�O�O�O))�R)) (83)

γ(D6) = 3 sum(sum(((D�D)∗(O�O)∗(D�D))�R)) (84)

γ(D7) = 6 sum(sum(((D�D)∗(O�O)∗(O�O))�R)) (85)

γ(D8) = 9 sum(sum(((O�O)∗(D�D)∗(O�O))�R)) (86)

γ(D9) = 6 sum(sum(((D�D�D)∗(O�O)∗D)�R)) (87)

γ(D10) = 6 sum(sum((D∗(O�O�O�O)∗D)�R)) (88)

γ(D11) = 3 sum
((

sum(((O�O)∗(O�O))�R)
)
�
(
sum(O�O)

)
− sum

((
(O�O�O�O)∗(O�O)

)
�R
)

−diag((O�O)∗(O�O)∗(O�O))
)

(89)

γ(D12) = 4 tr((O�O)∗(O�O)∗(O�O)) (90)

γ(D13) = 2 sum
(

(sum(O�O))�(sum(O�O))�(sum(O�O))− sum((O�O�O�O�O�O))

−3
(
(sum(O�O�O�O))�(sum(O�O))− (sum(O�O�O�O�O�O))

))
(91)

γ(D14) = 3 sum(sum((D∗(O�O)∗(O�O)∗D)�R)) (92)

γ(D15) = 12 sum(sum((D∗(O�O)∗D∗(O�O))�R)) (93)

γ(D16) = 6 sum
(

sum(((O�O�O)∗O)�R�(O∗O))− sum(((O�O�O�O)∗(O�O))�R)
)

(94)

γ(D17) = 6 tr((D�D�D)∗O∗O∗O) (95)

γ(D18) = 24 tr(D∗(O�O�O)∗O∗O) (96)

γ(D19) = 6 tr(D∗O∗(O�O�O)∗O) (97)

γ(D20) = 6
(

sum(sum((O∗O)�((O∗(D�D)∗O)�R)))− sum(sum(((O�O)∗(D�D)∗(O�O))�R))
)

(98)

γ(D21) = 12 tr(O∗(D�D)∗O∗D∗O) (99)

γ(D22) = 6
(

sum
(

sum
(
((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)

)
�sum(O�O)

)
−2 sum

(
sum((((O�O�O)∗O)�R�(O∗O)− ((O�O�O�O)∗(O�O))�R))

)
−sum

(
sum

((
(O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R

)
�(O�O)

))))
(100)

γ(D23) = 9 sum(sum(((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)�((O�O)))) (101)

γ(D24) = 12 sum(diag(O∗D∗O∗O)�sum((O�O))− diag((O�O�O)∗D∗O∗O)

−diag((O�O�O)∗O∗D∗O)) (102)

γ(D25) = 6 sum(diag(O∗O∗O)�sum((O�O)∗D)− 2 diag((O�O�O)∗D∗O∗O)) (103)

γ(D26) = 12 sum(diag(O∗O∗O)�diag(D)�sum((O�O))− diag((O�O�O)∗O∗O)�diag(D)) (104)

γ(D27) = 3 sum
(

diag(O∗O∗O)�diag(O∗O∗O)− 2 diag((O�O)∗(O�O)∗(O�O))
)

−(4/3)γ(D23) (105)
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γ(D28) = tr(O∗O∗O∗O∗O∗O)− γ(D2)− γ(D3)− γ(D11)− γ(D12)− γ(D13)

−γ(D16)− γ(D22)− γ(D23)− γ(D27) (106)

γ(D29) = 2 tr(D∗O∗D∗O∗D∗O) (107)

γ(D30) = 3 sum(sum((O∗D∗O)�R�(O∗D∗O))− sum(((O�O)∗(D�D)∗(O�O))�R))

(108)

γ(D31) = 6 sum(sum((O∗D∗O∗D)�R�(O∗O))− sum(((O�O)∗D∗(O�O)∗D)�R)) (109)

γ(D32) = tr(M∗M∗M∗M∗M∗M)− tr(O∗O∗O∗O∗O∗O)− sum(γ(D1) : γ(D26)) + γ(D2) + γ(D3) +

γ(D11) + γ(D12) + γ(D13) + γ(D16) + γ(D22) + γ(D23)− γ(D29)− γ(D30)− γ(D31)(110)
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γ(E1) = sum(diag((D�D�D�D�D�D�D))) (111)

γ(E2) = 7 sum(sum((O�O)∗(D�D�D�D�D))) (112)

γ(E3) = 7 sum(sum(((D�D)∗(O�O)∗(D�D�D))�R)) (113)

γ(E4) = 14 sum(sum((O�O�O�O)∗(D�D�D))) (114)

γ(E5) = 7 sum(sum((O�O�O�O�O�O)∗D)) (115)

γ(E6) = 7 sum(sum((D∗(O�O)∗(D�D�D�D))�R)) (116)

γ(E7) = 21 sum(sum((D∗(O�O�O�O)∗(D�D))�R)) (117)

γ(E8) = 7 sum(sum(((O�O)∗(O�O)∗(D�D�D))�R)) (118)

γ(E9) = 14 sum(sum(((O�O)∗(D�D�D)∗(O�O))�R)) (119)

γ(E10) = 7 sum(sum(((O�O�O�O)∗(O�O)∗D)�R)) (120)

γ(E11) = 21 sum(sum(((O�O�O�O)∗D∗(O�O))�R)) (121)

γ(E12) = 14 sum(sum((D∗(O�O�O�O)∗(O�O))�R)) (122)

γ(E13) = 7 tr((O�O�O�O�O)∗O∗O) (123)

γ(E14) = 14 tr((O�O�O)∗O∗(O�O�O)) (124)

γ(E15) = 7 sum(sum(((O�O)∗(O�O))�R)�sum((O�O)∗D)− sum(((O�O�O�O)∗D∗(O�O))�R)

−diag(((O�O)∗D∗(O�O)∗(O�O)))) (125)

γ(E16) = 14 sum((sum(((O�O)∗(O�O))�R)�sum((O�O))− sum(((O�O�O�O)∗(O�O))�R)

−diag(((O�O)∗(O�O)∗(O�O))))�diag(D)) (126)

γ(E17) = 7 sum(((sum(O�O)�sum(O�O)�sum(O�O))− sum((O�O�O�O�O�O))

−3 (sum((O�O�O�O))�sum((O�O))− sum((O�O�O�O�O�O))))�diag(D)) (127)

Z1 ≡ 0.5 ((sum(O�O)�sum(O�O))− sum((O�O�O�O)))

γ(E18) = 14 sum(sum((O�O)∗D)�Z1 − sum((O�O�O�O)∗D)�sum((O�O))

+ sum((O�O�O�O�O�O)∗D)) (128)

γ(E19) = 28 sum(diag((O�O)∗(O�O)∗(O�O))�diag(D)) (129)

γ(E20) = 21 sum(sum((D∗(O�O)∗(D�D)∗(O�O))�R)) (130)

γ(E21) = 14 sum(sum(((D�D)∗(O�O)∗D∗(O�O))�R)) (131)

γ(E22) = 7 sum(sum((D∗(O�O)∗(O�O)∗(D�D))�R)) (132)

γ(E23) = 7 sum(diag(O∗O∗O)�diag((D�D�D�D))) (133)

γ(E24) = 28 sum(diag((O�O�O)∗O∗O)�sum((O�O))− diag((O�O�O�O�O)∗O∗O)

−diag((O�O�O)∗O∗(O�O�O))) (134)

γ(E25) = 7 sum(diag(O∗(O�O�O)∗O)�sum((O�O))− 2 diag((O�O�O)∗(O�O�O)∗O)) (135)

γ(E26) = 7 sum(diag(O∗(O�O�O)∗O)�diag((D�D))) (136)

γ(E27) = 42 sum(diag((O�O�O)∗O∗O)�diag((D�D))) (137)

γ(E28) = 7 sum(diag(O∗O∗O)�sum((O�O�O�O))− 2 diag((O�O�O�O�O)∗O∗O)) (138)

γ(E29) = 7 sum(sum((D∗(O�O)∗D∗(O�O)∗D)�R)) (139)

γ(E30) = 28 sum(diag(O∗D∗(O�O�O)∗O)�diag(D)) (140)
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γ(E31) = 28 tr(O∗D∗(O�O�O)∗D∗O) (141)

γ(E32) = 14 sum(diag(O∗(D�D)∗O∗O)�sum((O�O))− diag((O�O�O)∗O∗(D�D)∗O)

−diag((O�O�O)∗(D�D)∗O∗O)) (142)

γ(E33) = 14 sum(diag(O∗D∗O∗O)�diag((D�D�D))) (143)

γ(E34) = 7tr(O∗(D�D)∗O∗(D�D)∗O) (144)

γ(E35) = 7(sum(sum((((O∗O)�R)�((O∗(D�D�D)∗O)�R))))

−sum(sum(((O�O)∗(D�D�D)∗(O�O))�R))) (145)

γ(E36) = 14 sum(sum(((O�O�O)∗O)�R�(O∗D∗O))

−sum(((O�O�O�O)∗D∗(O�O))�R)) (146)

γ(E37) = 28 sum(sum(((O�O�O)∗D∗O)�R�(O∗O))

−sum(((O�O�O�O)∗D∗(O�O))�R)) (147)

Z2 ≡ (((O∗O)�R)∗O −O�(1d×1∗(sum((O�O)>))> − (O�O)))�R (148)

Z3 ≡ (O�((O∗O)�R))�R (149)

Z4 ≡ (O�(((O�O�O�O�O)∗O)�R))�R (150)

Z6 ≡ ((O�O�O)�((O∗O)�R))�R (151)

Z7 ≡ (O�(((O�O�O)∗(O�O�O))�R))�R (152)

γ(E38) = 7 sum(sum((((O�O�O)∗O)�R�Z2 − (((O�O�O�O)∗Z3)�R− Z4)

−((Z6∗(O�O))�R− Z7)))) (153)

Z7 ≡ 0.5 sum(sum(O�(((O�O)∗(O�O))�R)�((O∗O)�R)

−O�(((O�O�O)∗(O�O�O))�R))) (154)

γ(E39) = 7 (sum(sum((O�((O∗O)�R)�(sum((O�O))∗11×d

−(O�O))�(1d×1∗(sum((O�O)>))> − (O�O)))))

−sum(sum((O�(((O�O�O)∗O)�R)�(1d×1∗(sum((O�O)>))> − (O�O)))))

−sum(sum((O�((O∗(O�O�O))�R)�(sum((O�O))∗11×d − (O�O)))))

+sum(sum((O�(((O�O�O)∗(O�O�O))�R)))))− 14 Z7 (155)

γ(E40) = 21 sum(diag((D�D)∗O∗O∗O)�sum((O�O))− 2 diag((D�D)∗(O�O�O)∗O∗O))(156)

γ(E41) = 7 sum(diag(O∗O∗O)�sum((O�O)∗(D�D))− 2 diag((O�O�O)∗(D�D)∗O∗O)) (157)

γ(E42) = 7 (sum(diag(O∗O∗O)�sum(((O�O)∗(O�O))�R)− 2 diag((O�O�O)∗(O�O�O)∗O))

−2 sum(diag((O�O�O)∗O∗O)�sum((O�O))− diag((O�O�O�O�O)∗O∗O)

−diag((O�O�O)∗O∗(O�O�O))))− 28 Z7 (158)

γ(E43) = 14 sum(diag(O∗O∗O)�Z1 − 2 (diag((O�O�O)∗O∗O)�sum((O�O))

−diag((O�O�O�O�O)∗O∗O)− 0.5 diag((O�O�O)∗O∗(O�O�O)))) (159)

γ(E44) = 56 Z7 (160)

Z8 ≡ (O�(((O�O�O)∗O)�R))�R (161)

Z9 ≡ (O�((O∗O)�R))�R (162)

Z10 ≡ (O�((O∗(O�O�O))�R))�R (163)

Z11 ≡ ((O∗O)�R�Z2 − (((O�O)∗Z3)�R− Z8)− ((Z9∗(O�O))�R− Z10)) (164)

γ(E45) = 14 (sum(0.5 sum(Z11)�sum((O�O)))− (1/7) γ(E38)− sum(sum(((O�O))�Z11)))(165)
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γ(E46) = 21 sum(sum(((O�O))�Z11)) (166)

γ(E47) = 7 sum(sum(Z11)�diag((D�D))) (167)

γ(E48) = 7 tr((D�D)∗O∗D∗O∗D∗O) (168)

γ(E49) = 14 sum(diag(D∗O∗O∗O)�sum((O�O)∗D)− 2 diag(D∗(O�O�O)∗D∗O∗O))(169)

γ(E50) = 14 sum(diag(O∗O∗D∗O)�sum((O�O)∗D)− diag((O�O�O)∗D∗O∗D∗O)

−diag((O�O�O)∗(D�D)∗O∗O)) (170)

γ(E51) = 28 sum(diag(D∗O∗D∗O∗O)�sum((O�O))− diag(D∗(O�O�O)∗D∗O∗O)

−diag(D∗(O�O�O)∗O∗D∗O)) (171)

γ(E52) = 7 sum(diag(O∗D∗O∗D∗O)�sum((O�O))− 2 diag((O�O�O)∗D∗O∗D∗O))(172)

γ(E53) = 14 sum((sum(((((O∗O)�R)�((O∗D∗O)�R))

−((O�O)∗D∗(O�O))�R)))�diag((D�D))) (173)

γ(E54) = 7 sum(sum(((((O∗D∗O)�R)�((O∗(D�D)∗O)�R))

−((O�O)∗(D�D�D)∗(O�O))�R))) (174)

Z12 ≡ sum(0.5 sum(((((O∗O)�R)�((O∗O)�R))

−(((O�O)∗(O�O))�R))�((O�O)∗D))) (175)

Z13 ≡ sum(sum((((((O�O�O)∗D∗O)�R)�((O∗O)�R))

−((O�O�O�O)∗D∗(O�O))�R))) (176)

Z14 ≡ 0.5 sum(sum(((((O∗D∗O)�R)�((O∗O)�R))

−(((O�O)∗D∗(O�O))�R))�((O�O)))) (177)

Z15 ≡ sum(sum((((((O�O�O)∗O)�R)�((O∗D∗O)�R))

−((O�O�O�O)∗D∗(O�O))�R))) (178)

γ(E55) = 14 (sum(0.5 (sum(((((O∗O)�R)�(((O∗O))�R))

−((O�O)∗(O�O))�R)))�sum((O�O)∗D))− Z13 − Z12) (179)

γ(E56) = 28 (sum(0.5 (sum(((((O∗O)�R)�(((O∗O))�R))

−((O�O)∗(O�O))�R)))�sum(D∗(O�O)))− Z13 − Z12) (180)

γ(E57) = 14 (sum((sum(((((O∗D∗O)�R)�(((O∗O))�R))

−((O�O)∗D∗(O�O))�R)))�sum((O�O)))− Z13 − Z15 − 2 Z14) (181)

γ(E58) = 14 (sum(0.5 sum((((((O∗O)�R)�((O∗O)�R))

−(((O�O)∗(O�O))�R))∗D))�sum((O�O)))− Z15 − Z12) (182)

γ(E59) = 84 Z12 (183)

γ(E60) = 42 Z14 (184)

Z25 = tr(M∗M∗M∗M∗M∗M∗M)− sum(γ(E1) : γ(E60)) (185)

Z26 = tr(O∗O∗O∗O∗O∗O∗O)− γ(E13)− γ(E14)− γ(E24)

−γ(E25)− γ(E28)− γ(E38)− γ(E39)− sum(γ(E42) : γ(E46)) (186)

Z16 ≡ (1/6) ((O∗O�R)�(O∗O�R)�(O∗O�R)− ((O�O�O)∗(O�O�O)�R)

−3 (((O�O)∗(O�O)�R)�(O∗O�R)− ((O�O�O)∗(O�O�O)�R))) (187)
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γ(E61) = 42 sum(sum(Z16�O)) (188)

Z17 ≡ sum(sum(0.5 ((O∗O�R)�(O∗O�R)

−((O�O)∗(O�O)�R)))�(0.5 diag(O∗O∗O))) (189)

γ(E62) = 28 (Z17 − (6/84) γ(E61)− (2/42) γ(E46)− (3/56) γ(E44) (190)

γ(E63) = Z26 − γ(E61)− γ(E62) (191)

γ(E64) = 7 sum(sum((D∗O∗D∗O∗D�R)�(O∗O�R)))

−7 sum(sum(D∗(O�O)∗D∗(O�O)∗D�R)) (192)

γ(E65) = 7 sum(sum(D∗Z11∗D)) (193)

Z18 ≡ sum(((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)�((O�O))) (194)

γ(E66) = 7 sum(((diag(O∗O∗O)�diag(O∗O∗O))

−2 diag((O�O)∗(O�O)∗(O�O))− 4 Z18)�diag(D)) (195)

Z20 ≡ 0.5 sum(sum(((O∗O�R)�(O∗D∗O�R)− ((O�O)∗D∗(O�O)))�(O�O)))(196)

γ(E67) = 14 (sum(diag(O∗O∗O)�diag(O∗O∗D∗O)− 2 diag((O�O)∗(O�O)∗D∗(O�O)))

−2 sum(Z18�diag(D))− 4 Z20) (197)

Z21 ≡ (((O∗D∗O∗D)�R)∗O −O�(1d×1∗sum(D∗(O�O)∗D, 1)

−D∗(O�O)∗D))�R (198)

Z22 ≡ (O�((O∗D∗O)�R))�R (199)

Z23 ≡ (O�((D∗(O�O�O)∗D∗O)�R))�R (200)

Z24 ≡ (O�((O∗D∗(O�O�O)∗D)�R))�R (201)

γ(E68) = 7 sum(sum(((O∗O)�R�Z21 − (((O�O)∗D∗Z22)�R− Z23)

−((Z22∗D∗(O�O))�R− Z24)))) (202)

γ(E69) = Z25 − Z26 − sum(γ(E64) : γ(E68)) (203)
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A. Saade, F. Krzakala, and L. Zdeborová. Matrix completion from fewer entries: Spectral
detectability and rank estimation. In Advances in Neural Information Processing Systems,
pages 1261–1269, 2015.

Tetsuya Sakurai and Hiroshi Sugiura. A projection method for generalized eigenvalue prob-
lems using numerical integration. Journal of computational and applied mathematics, 159
(1):119–128, 2003.

G. Schofield, J. R. Chelikowsky, and Y. Saad. A spectrum slicing method for the kohn–sham
problem. Computer Physics Communications, 183(3):497–505, 2012.

54



Spectrum Estimation from a Few Entries

W. Schudy and M. Sviridenko. Bernstein-like concentration and moment inequalities
for polynomials of independent random variables: multilinear case. arXiv preprint
arXiv:1109.5193, 2011.

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional
regulation network of escherichia coli. Nature genetics, 31(1):64–68, 2002.

A. Stathopoulos, J. Laeuchli, and K. Orginos. Hierarchical probing for estimating the trace
of the matrix inverse on toroidal lattices. SIAM Journal on Scientific Computing, 35(5):
S299–S322, 2013.

T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel. Selective avoidance of cycles in
irregular ldpc code construction. IEEE Transactions on Communications, 52(8):1242–
1247, 2004.

Ryuhei Uehara et al. The number of connected components in graphs and its applications.
Manuscript. URL: http://citeseerx. ist. psu. edu/viewdoc/summary, 1999.

J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical
and extremal geography of large graph collections. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pages 1307–1318. ACM, 2013.

S. Van Aelst and P. Rousseeuw. Minimum volume ellipsoid. Wiley Interdisciplinary Reviews:
Computational Statistics, 1(1):71–82, 2009.

P. Wang, J. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. Efficiently estimating
motif statistics of large networks. ACM Transactions on Knowledge Discovery from Data
(TKDD), 9(2):8, 2014.

E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals
of Mathematics, page 548564, 1955.

L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos. Estimating the
trace of the matrix inverse by interpolating from the diagonal of an approximate inverse.
Journal of Computational Physics, 326:828–844, 2016.

Y. Zhang and W. E. Leithead. Approximate implementation of the logarithm of the ma-
trix determinant in gaussian process regression. Journal of Statistical Computation and
Simulation, 77(4):329–348, 2007.

Y. Zhang, M. J. Wainwright, and M. I. Jordan. Distributed estimation of generalized matrix
rank: Efficient algorithms and lower bounds. arXiv preprint arXiv:1502.01403, 2015.

55


	Introduction
	Setup
	Summary of the approach and preview of results
	Related work

	Efficient Algorithm
	Erdös-Rényi sampling
	Performance guarantee
	From Schatten norms to spectrum and spectral sum functions 
	 Estimating the generalized rank 
	Estimating the spectrum


	Graph sampling
	Performance Guarantees

	Discussion
	Algorithm for estimating Schatten k-norm for k 8
	Algorithm for computing the Chebyshev polynomial
	Proofs
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 11
	Proof of Lemma 12
	Proof of Lemma 14
	Proof of Theorem 13

	k-cyclic pseudographs
	Efficient computation of M(H) for k{4,5,6,7} 

