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Abstract

This paper is concerned with a multivariate extension of Gaussian message passing applied
to pairwise Markov graphs (MGs). Gaussian message passing applied to pairwise MGs
is often labeled Gaussian belief propagation (GaBP) and can be used to approximate the
marginal of each variable contained in the pairwise MG. We propose a multivariate ex-
tension of GaBP (we label this GaBP-m) that can be used to estimate higher-dimensional
marginals. Beyond the ability to estimate higher-dimensional marginals, GaBP-m exhibits
better convergence behavior than GaBP, and can also provide more accurate univariate
marginals. The theoretical results of this paper are based on an extension of the com-
putation tree analysis conducted on univariate nodes to the multivariate case. The main
contribution of this paper is the development of a convergence condition for GaBP-m that
moves beyond the walk-summability of the precision matrix. Based on this convergence
condition, we derived an upper bound for the number of iterations required for convergence
of the GaBP-m algorithm. An upper bound on the dissimilarity between the approximate
and exact marginal covariance matrices was established. We argue that GaBP-m is robust
towards a certain change in variables, a property not shared by iterative solvers of linear
systems, such as the conjugate gradient (CG) and preconditioned conjugate gradient (PCG)
methods. The advantages of using GaBP-m over GaBP are also illustrated empirically.

Keywords: Dbelief propagation, Gaussian distributions, higher-dimensional marginals,
preconditioning, inference

1. Introduction

Let X; : d; x 1 for i =1,2,...,p be mutually exclusive and exhaustive subvectors of the
random vector X : k x 1. We are concerned with the approximation of the marginal distri-
butions of X1, Xa, ..., X, using belief propagation (BP), where it is assumed that X follows
a Gaussian distribution with precision matrix S and potential vector b.

BP is an approximate marginalization algorithm that operates on a specified graph struc-
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ture. The origin of BP can be traced back to the sum-product algorithm as a decoding
algorithm for LDPC codes (Gallager, 1963). When the underlying graph structure forms
a tree, BP will provide the correct marginals at convergence. This is in contrast to loopy
graphs, where convergence is not guaranteed and, even if convergence occurs, the marginals
supplied are not necessarily correct (Pearl, 1988; Weiss and Freeman, 2001). Although this
seems to be a damning property, BP has become a popular tool in inference problems in
situations in which inference does not necessarily require exact marginals (see, for instance,
the near Shannon-limit performance of BP in turbo codes) and because of ease of imple-
mentation in distributive settings.

GaBP is BP applied to a pairwise MG constructed from a multivariate Gaussian distri-
bution in canonical parameterization. GaBP can be used to approximate the univariate
marginals of the variables represented by the MG. GaBP is guaranteed to converge if the
pairwise MG forms a tree structure, but does not necessarily converge for loopy pairwise
MGs. The convergence behavior of GaBP has been the subject of research in the litera-
ture (Weiss and Freeman, 2001; Malioutov et al., 2006; Su and Wu, 2015; Sui et al., 2015).
Weiss and Freeman (2001) interpret the computations done by GaBP as inference on a tree-
structured graph. This interpretation is used to show that univariate GaBP will converge
if the precision matrix is diagonally dominant and that the marginal means supplied by
GaBP, assuming convergence, are exact. We now define two important concepts related to
the convergence of GaBP:

Definition 1 (Walk-summability) Consider a precision matriz S : k x k = [s;;], and
suppose D = dz’ag(\/%, \/;E’ e \/;ﬁ) The matriz S is considered to be walk-summable

if the spectral radius of |Iy — DSD| is less than one.

Definition 2 (Scaled diagonal dominance) A precision matriz S is called scaled diag-
onally dominant if there exists a diagonal matriz D, with only positive diagonal entries,
such that DSD 1is strictly diagonally dominant.

If A = [aj;], then by |A| we mean [|a;;|]. Malioutov et al. (2006) show that GaBP will con-
verge if the precision matrix is walk-summable, while Moallemi and Van Roy (2009, 2010)
show the same for scaled diagonal dominance. In fact, these two conditions are known to be
equivalent (Malioutov, 2008; Ruozzi et al., 2009). Su and Wu (2015) derive necessary and
sufficient conditions for the convergence of univariate GaBP under a specified initialization
set. They also derive necessary and sufficient conditions for damped univariate GaBP, with
an allowable interval for the damping factor.

Although technically a marginalization algorithm, GaBP has been applied to solve large
and sparse systems of linear equations (Bickson, 2008; Shental et al., 2008; El-Kurdi et al.,
2012b). GaBP has also been applied in areas such as channel estimation in communica-
tion systems (Montanari et al., 2006; Guo and Ping, 2008; Guo and Huang, 2011), sparse
Bayesian learning in large-scale compressed sensing problems (Seeger and Wipf, 2010), es-
timation on Gaussian graphical models (Chandrasekaran et al., 2008; Liu et al., 2012) and
the detection of F-formations in free-standing conversational groups (Kamper, 2017).
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Several variants of GaBP have been proposed in the literature to combat the convergence
issues of the basic algorithm in loopy graphs (Johnson et al., 2009; Liu, 2010; El-Kurdi
et al., 2012a; Ruozzi and Tatikonda, 2013; Liu et al., 2012; Kamper et al., 2018). Johnson
et al. (2009) employ diagonal loadings on the precision matrix and iteratively apply GaBP
to compute the correct marginal means. A feedback node refers to a node which, when
removed, results in a cycle-free graph. The role of (pseudo) feedback nodes in improving
the convergence of basic GaBP has been studied by Liu (2010) and Liu et al. (2012). El-
Kurdi et al. (2012a) use a relaxation factor to accelerate GaBP in cases where the precision
components of the basic algorithm converge, while the use of a reweighted min-sum algo-
rithm has been studied by Ruozzi and Tatikonda (2013). Kamper et al. (2018) specify a
regularization scheme on GaBP that guarantees convergence to the exact marginal means,
given sufficient regularization. They also show empirically that this regularization scheme
can improve the accuracy of the precisions supplied by GaBP as approximations for the
exact marginal precisions.

In this paper we consider a multivariate extension of GaBP that can be used to approximate
the marginals of Xy, Xo,...,X,,. For this purpose, we consider a higher-dimensional gener-
alization of a pairwise MG, where each node is allowed to receive more than one random vari-
able. We are not aware of any research that explicitly studies the use of a higher-dimensional
MG to approximate higher-dimensional marginals, although related work, on distributed
state estimation using Gaussian message-passing, can be found in the literature (Sui et al.,
2015). The main contribution of this paper is the development of a sufficient condition for
the convergence of GaBP-m. This condition, labeled preconditioned walk-summability, is
a multivariate extension of the walk-summability condition for the convergence of GaBP.
Under the assumption of preconditioned walk-summability, we derive a bound for the num-
ber of iterations required for convergence by GaBP-m. We also establish a bound on the
dissimilarity between the approximate and exact marginal covariance matrices. Another
important advantage of GaBP-m is its robustness with regard to a certain scaling of the
precision matrix and potential vector. This robustness is special, since it can have a sub-
stantial effect on the performance of iterative solvers of linear systems such as the CG solver.

The main advantage of GaBP-m over GaBP is in a marginalization context, since GaBP-m
can be used to approximate the precision matrix of higher-dimensional marginals. Other
advantages include:
1. GaBP-m can converge in cases where GaBP does not.
2. GaBP-m can converge in fewer iterations than GaBP.
3. GaBP-m can improve the accuracy of the approximate univariate marginals. This
can be done by directly computing the univariate marginals from the approximated

higher-dimensional marginals.

The advantage of using GaBP over GaBP-m is that the message updates associated with
each iteration are computationally less expensive.
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Figure 1: Example of the conversion of a pairwise MG to a higher-dimensional MG. We have
six variables (X7, Xs,...,Xs) clustered into C; = {1,2}, C2 = {3,4}, C3 = {5}
and Cy = {6}. The original pairwise MG is given to the left, while the higher-
dimensional extension is given to the right.

2. Preliminaries

In this section we discuss the mathematical machinery that is used in this paper.

2.1. Higher-dimensional MG

We assume, without loss of generality, that X = (X7,X5,...,X})". Let C; be the set con-
taining all the variables in X;. We sometimes refer to C; as cluster i. Define G = (V,€)
to be the pairwise MG for X, where V and € denote the set of nodes and the set of edges
respectively. Note that, when (s,t) € £, we place the restriction that s < t. Let G = (V, )
be the higher-dimensional MG obtained from the clusters C; : i = 1,2,...,p. Note that V
will contain a node for each C; : i = 1,2,...,p. The pair (i,5) € £, i < j, if and only if there
is an s € C; and a t € C; such that either (s,t) or (t,s) is in &.

We illustrate this procedure in Figure 1. We consider a pairwise MG drawn for X =
(X1, X9, X3, X4, X5, Xg)' where we perform the clustering C; = {1, 2}, Co = {3,4}, C3 = {5}
and C4 = {6}. From this point onwards, we refer to the higher-dimensional extension of the
pairwise MG just as MG.
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Algorithm 1 Synchronous GaBP-m

1. Provide a precision matrix S : k& X k, a potential vector b : k x 1, and clusters
Ci:i=1,2,...,p as inputs.

(\V)

. Specify a tolerance ¢ and a maximum number of iterations m.

3. Initialize Q) = 0 : d; x d; and vi;) =0 : d; x 1 for all i and all j € AV.
4. Set Err = Inf and n = 0.

5. While Err > ¢

(a) Compute p™ = Sii+2 jen; Q;?) and 2™ = bi + > e, vi™ for i = 1,2,....,p.

i i i

(b) Set p!™ = [Pgn)]_lzgn), e§”) =2 Siju§") — b; and Err = maxi{||e§n)!|oo}.

(2

(c) If Err > ¢, do for all i € {1,2,...,p} and all j € N;:
Q™Y = =[Pl - Q118 and
n+1 n n)j— n n
vii ™ = 8P - QY Y - vy,
(d) Increment n.

(e) If n =m, break.

6. End.

2.2. Factorization of the Gaussian Density

We assume that X follows a multivariate Gaussian distribution with precision matrix S and
potential vector b. By S;; we refer to the submatrix of S corresponding to the variables in
C; and C; for the rows and columns respectively. The vector b; refers to the subvector of b
corresponding to the variables in C;.

Note that we can factor the Gaussian density according to the MG:

f(X)ZEH@(Xz’) I wixixy), (1)

where ¢;(x;) = exp| — %ngiixi +:1:;bl} s i (%3, %5) = exp[—x;Sijxj , Z is a normalization

constant, x = (x},Xy,...,X,)" follows the decomposition X = (X7,X5,...,X}), and € =

{(i,j) 11 < jand S;; #0: d; x dj}.

2.3. Derivation of GaBP-m

We restrict our focus to a synchronous sum-product derivation of GaBP-m. Define N; =
{j : (i,7) or (j,i) € £} to denote the neighborhood of cluster i. In the Gaussian case, we
have N; = {j #i:Si; # 0 : d; x d;}. Suppose that j € Nj, then by N; \ j we mean the
set \; with cluster j removed. Based on Equation (1), we formulate the message updates
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of GaBP-m analogous to the message updates of BP applied to a pairwise MG:

mIM () = | gilxiii(xixg) ] mil? (xi)dxi, (2)
i teN\j

for all clusters i and all j € N;. Note that when i > j we use v;;(x;,x;) = 1;i(x;,%;). For
the Gaussian case, Equation (2) reduces to:

n 1 n
mz(j i) = / eXP[ - ixgsiixi + X;'bi:| exp { - ngz‘jxy} 11 my” (xi)dx;.  (3)
"" teNi\

We now make the assumption that mgl) (x;) exp[ — %X;QE?)XZ + xgvg)] for all t € N;.

Substitution into Equation (3) yields:

s o) x x| - Q0 vy | (1)
where
Q" = —s;[P “”rlsij (5)
Vz(;lH) SJZ[ b; + Z Vm (6)
teN;\j
P=sa+ Y Q) (7)
teN;\j

Note that we used the following integral in the derivation of Equation (4):

1
/exp<—2y'Ay+y’a)dy:( )
y

where A is positive definite. The message updates in Equations (5) and (6) are performed
efficiently in Algorithm 1. At each iteration of GaBP-m, we can construct an approximate
marginal for cluster 7 by collecting all incoming messages from its neighborhood:

m
2

(det(A)) 3exp <;a'A1a> ,

fi(n)( i) = di(x) Hmm xl)ocexp[—xP( )x +x, Z( )], (8)

teN;
where Pgn) =S; + Zje/\/i Qg?) and zl( ) b; + Z]e/\f ](Z). Clearly, the density given in
Equation (8) is a Gaussian density with precision PE ") and mean M, " = [P l(n)] (n) We

refer to fi(n) (x;) as the posterior distribution of cluster ¢ at iteration n. The quantltles PE n)

and ,u,z(-n) are labeled the posterior precision and the posterior mean associated with cluster

1 at iteration n respectively.
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2.4. Notes on the Perron-Frobenius Theorem

In this section we discuss results related to the Perron-Frobenius theorem. This theorem
plays an important role in the theoretical considerations of this paper.

Theorem 1 (Perron-Frobenius theorem) Consider a non-negative and irreducible real
matriz A : k x k. There exists a v > 0 such that Av = p(A)v, where p(A) denotes the
spectral radius of A.

We use the notation x > y to indicate that each component of x is greater than the
corresponding component of y. The following important lemma follows from the Collatz-
Wielandt formula.

Lemma 1 Let p(.) be the spectral radius of a matriz. For any real matrix A : k X k we
have p(A) < p(|A]).

For the remainder of this paper we assume, without loss of generality, that GaBP-m is
applied to an irreducible MG. If this assumption does not hold, then GaBP-m can be
applied separately to irreducible subgraphs of the MG.

2.5. Preconditioned Walk-summability

The main theoretical result of this paper is the development of a sufficient condition for the
convergence of GaBP-m. We label this condition preconditioned walk-summability, since
it involves a certain preconditioning of the precision matrix based on how the clusters are
chosen. We give the following definitions:

Definition 3 (Valid Preconditioner) We call a matriz A : k x k a valid preconditioner
with respect to the clusters C; 11 =1,2,...,p if Ay is positive definite and A;j = 0 : d; x d;.

Definition 4 (Preconditioned Walk-summability) Consider a precision matriz S :
k x k and clusters C; : i = 1,2,...,p. The precision matriz S is preconditioned walk-
summable if there exists a valid preconditioner A such that ASA is walk-summable.

We note that preconditioned walk-summability is novel with respect to walk-summability
and scaled diagonal dominance in the sense that the preconditioner does not need to be
diagonal. In fact, the larger the chosen clusters, the wider the range of valid preconditioners.
In the empirical section we give an explicit example where GaBP fails to converge on a non-
(but preconditioned) walk-summable precision matrix.

2.6. Computation Trees

A computation tree is a representation of loopy belief propagation (LBP) in terms of in-
ference on a tree-structured graph. Introduced by Weiss and Freeman (2001), it has been
widely used in the study of the convergence behavior of LBP (Malioutov et al., 2006;
Moallemi and Van Roy, 2009, 2010; Ruozzi and Tatikonda, 2013; Sui et al., 2015).

To generate a computation tree for GaBP-m, we start by clustering the k variables into
p clusters. We then construct the higher-dimensional MG, which is used to construct the
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topology of the computation tree exactly as we would have in the univariate case.

Our discussion of the process to generate a computation tree from an MG closely fol-
lows the discussion of Malioutov et al. (2006). We restrict our focus to computation trees
for synchronous message-passing. Each message mgb_l)(.) receives a computation tree 7;§n)
(the superscript of the tree represents the depth of the tree rather than the iteration num-
ber). To construct 7;§-n), we join all the trees 776(2."71), for k € N;\ j, at their common root
node (this node refers to cluster ). We then add a new root node (with a reference to

cluster j) and an edge to the previous root node. The computation tree for cluster 7, 7;(71),
is constructed by joining all trees 7;(1@_1), for k € N;, at their common root node. The trees

7;51) consist of a single node with reference to cluster j. An example of this process is given
in Figure 2. Note that each node in the computation tree has a reference to a specific cluster.

The above process shows that a (synchronous) computation tree has a natural division
into different layers. This allows a further conversion of the graph structure. All nodes in a
given layer of the computation tree are collected into a single node. This leads to a graph in
the form of a line topology (right-hand side of Figure 2). The line topology of 7;(71) is labeled

[,Z(n). This conversion will be used in the derivation of preconditioned walk-summability as

a sufficient condition for convergence.

FEach computation tree has an associated precision matrix and potential vector. The spar-
sity structure of the precision matrix follows the topology of the computation tree. A node
in the computation tree with a reference to cluster i receives S;; and b; as a precision
matrix and potential vector respectively. An edge between two nodes in the computation
tree receives S;; as its precision matrix, assuming the references of the nodes are 7 and j
respectively.

The next section offers a proof that the posterior precision and posterior mean for node 4
of synchronous GaBP-m at iteration n — 1 can be obtained by performing inference on the

tree 7;(71).

3. GaBP-m as Inference on a Computation Tree

In this section we discuss the interpretation of GaBP-m as inference on a computation tree
and the effect of a certain change in the input variables on this algorithm. The main results
of this section are:

1. A proof that the posterior mean and posterior precision of a cluster can be obtained
by marginalizing a computation tree.

2. That there is a simple way of moving between the output of GaBP-m before and after
a certain change in variables is introduced. This suggests that the performance of
GaBP-m is robust towards this change in variables.

We focus, without loss of generality, on the computation tree associated with node 1. We de-
note the computation tree and line topology for node 1 by 7, and L, respectively. Associate
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Original Markov Graph 4 Layer Computation Tree for Cluster 1 4 Layer Line Graph for Cluster 1

Layer 1 Layer 1

Layer 2 Layer 2

Layer 3 e e Layer 3

Layer 4 Layer 4

Figure 2: Different graph representations of an MG. The original MG is displayed to the
left, the computation tree for cluster 1 is displayed in the middle, while the line
graph representation of the same cluster is displayed to the right. Each node (in
all three graphs) contains references to certain clusters.

with 7, the precision matrix T,, : m, X m,, and potential vector t,, : m, x 1. Marginalizing
7., involves computing T, ! and T, t,,. We want to show that Pgn_l) and ugn_l) can be
obtained by extracting the diagonal block and subvector corresponding to cluster 1 of T, *
and T, 't, respectively. We start by defining a few matrices for convenience. Refer to

Appendix C for a running example of some of the considerations in this section.

3.1. Matrix Definitions

A movement along a computation tree is defined to be first by layer, starting at layer 1,
and within each layer from left to right. Unless explicitly stated otherwise, we assume that
the order of the nodes in the precision matrix and potential vector associated with 7, is
according to the movement along 7,.

Definition 5 (Row-extractor matrix of cluster t) Define
Ftithk:[OZthdl O:thdt_l Idt OlthdH_l Olthdp].

Recalling the ordering of our variables, we see that F;S extracts the rows of S corresponding
to the variables in C;. Also note that:

SjtFt:[Oldedl O:dedt_l Sjt OidedH_l Otdedp].

Definition 6 (Row-extractor matrix) The row-extractor matriz B, : m, xp is obtained
by moving along the computation tree, noting the cluster reference of each node and stacking
the row-extractor matrix of this cluster.
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Since Fib = by, we see that:

Definition 7 (Node-extractor matrix) Consider node j of the computation tree (read
from left to right along the layers). Let GY be such that [G(])] T,, extracts the rows of Ty,
corresponding to node j. Define the root extractor matriz as G,, = Gn

Definition 8 (Sparse replicate of cluster t) A sparse replicate of cluster t is obtained
by taking FyS = [Stl Sy . Stp] and setting Sy < 0 : dy x dj for all j in a
non-empty subset of N.

Note that the matrix T,,E,, has a row-block decomposition according to the computation
tree. This means that the jth row block of T,E, corresponds to the jth node of the
computation tree. We now consider the following lemma.

Lemma 2 We consider the following two scenarios for a node in the computation tree with
reference to cluster t:

1. If this node is not in the final layer, then the corresponding row block of T,E, is FS.

2. If this node is in the final layer, then the corresponding row block of T, E, is a sparse
replicate of cluster t.

Proof Note that T, E, has a row-block decomposition according to its computation tree,
i.e. the jth row-block corresponds to the jth node in the computation tree. Consider node j
of the computation tree. Note that we can extract the jth row block of T,,E,, by computing
[G(j )]’ T, E,,. We use the notation I(j) to denote the cluster to which node j has a reference.

Suppose that I(j) = t. Let O; denote the neighborhood of node j in the computation tree,
and let J(O;) ={I(s) : s € O ;i}. We have that:

GOV T By =SuFi+ > SuFy.
k‘GJ(Oj)

The proof follows directly from the fact that J(O;) = N, if j is not in the terminal layer,
and J(O;) C N; otherwise. |

A consequence of Lemma 2 is given in the following corollary.

Corollary 1 We have:

where the first m,_1 rows of L, contain only zero entries.

We note that Lemma 2 and Corollary 1 do not only apply for computation trees of sym-
metric matrices, but also to computation trees of general non-symmetric matrices. We use
this fact in some of the proofs contained in this paper.

10
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The remainder of this section is dedicated to showing the validity of the following formulas:

P =[G, T, G, (10)
p\" Y = G T E,b. (11)

We first discuss a tree-pruning procedure that is aimed at removing terminal nodes of the
computation tree in such a way that inference at the root node remains unchanged. This is
followed by a discussion of how the tree-pruning procedure can be used to prove formulas
(10) and (11).

3.2. Tree-pruning Procedure

Consider a general tree 7 with precision matrix T and potential vector t. Suppose that
ru(T) and rp(7T) give the marginal mean and marginal precision respectively of the root
node of 7. We can obtain 7p(7) by inverting the diagonal block of T~! corresponding to
the root node. In a similar way, r,(7) is obtained by extracting the first subvector (corre-
sponding to the root node) of T~'t.

The tree-pruning procedure iteratively prunes terminal nodes such that the marginal pre-
cision matrix and marginal mean vector of the root node of the remaining (trimmed) tree
remain unchanged. Let T be the trimmed tree obtained after eliminating certain terminal

nodes from 7, then we must have that r,(7) = r,(7) and rp(T) = rp(T).

At each step of the pruning process, we select one of the nodes in the penultimate layer
(we call this node the bereaved parent), the objective being to prune its children in the
terminal layer. This must be done in such a way that inference at the root node remains
unchanged. In order to achieve this, we need to change certain elements of the precision
and potential associated with the nodes in the trimmed tree from their corresponding values
in the untrimmed tree. In the remainder of this section, we show that it is only necessary
to change the precision matrix and potential vector associated with the bereaved parent.
Moreover, these adjustments can be obtained by marginalizing the tree with the bereaved
parent as the root node.

Let T and t be the precision matrix and potential vector respectively of 7. We can write,
without loss of generality:

[Ty, Tz O
T= Ty T T
| 0 T3 T3
-
t= [ty
| t3

11
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In general, we associate t3 with the nodes to be pruned, ty with the bereaved parent and t;
with the remaining nodes. A similar interpretation holds for the precision matrix. Consider

A A
T:
[Am AQQ]
=[]
ag
T11 Tio [0 ty
here A1 = , Ao = , Aoy = |0 Ts3o|, Agg = T33, a1 = and
where Aqq |:T21 T22} 12 Tzzj 21 [ 32], Ao 33, a1 [tj n

as = t3. Block-wise matrix inversion yields

T ! =

)

TA—1 ~1 ~1
Al _A11.2A12A22}
where Aj10 = A1 — A12A~2_21A21 and the ... represents an irrelevant part of the matrix
(nodes to be pruned). Let 7 denote the trimmed tree. In order to preserve root inference,

the precision matrix and potential vector associated with T must be T = Ao and t =
a; — A12A521a2 respectively. It can be shown that:

Ty Ti2
A = _ 12
2 [Tm Too — T23T331T32} (12)
_ t
o AnAp e = Lg - T2;T§31t3] | )

Equations (12) and (13) show that it is only necessary to adjust the precision and potential
associated with the bereaved parent. Thereafter, we can prune the terminal nodes.

Let M be the tree containing the nodes to be pruned, with the bereaved parent as the

.. . . . T T
root node. The precision and potential associated with M are M = [ng T23] and
32 L33

t . . _ . . .
m = Lﬂ respectively. Setting Tog 3 = Too — T23T331T327 we see, using block-wise matrix
3
inversion, that:
rp(M) = Taa3
ru(M) = T2721.3[t2 - T23T§31t3]-

In summary, to prune terminal nodes while preserving the marginal quantities of the root
node, we need to do the following;:

1. Compute 7,(M) and rp(M).

2. Obtain the trimmed tree by eliminating the terminal nodes from the graph and only
adjusting the potential and the precision of the bereaved parent to rp(M)r, (M) and
rp(M) respectively.

We now prove computation tree correctness by showing that the computations done by
GaBP-m can be represented by the pruning procedure described in this section.

12
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3.3. Computation Tree Correctness

By computation tree correctness we mean the validity of the formulas given in (10) and

(11). In order to establish this, recall that Pg.) =Si + ZteM\j QE? and define
! l
z,gj) =b;,+ Z v;-)
teN;\Jj
l -1 _(
l%(j) = [ng)] 1Z2(j)'
Consider the following recursive expansions (recall Equations (5) to (7)):

P =8u— Y SulP Vs,
teN;\Jj

7y =bi— Y SalPi V72V,
teN;\j

Suppose we have pruned 7, to have only [ layers, where 3 < [ < n. Consider a bereaved
parent, in layer [ —1. We assume that the bereaved parent has a reference to cluster ¢ while
its parent (in layer [ —2) has a reference to cluster j. Due to the construction of 7, we know
that the bereaved parent will have mutually unconnected terminal nodes as children, each
with a reference to a different cluster in Aj\ j. Let |[N;\j| = sij and N;\j = {i1,i2,...,is;},
and suppose that M is the tree with the selected bereaved parent as root, connected to its
children in the terminal layer. We assume that the precision and potential associated with

one of these terminal nodes, with a reference to cluster iy, are Pl(tn[l) and zEZﬁl) respectively.
If M and m denote the precision and potential of M respectively, we have:
[ Sii Siiy Siiy -+ Sy, ]
Siyi PZ(-Z-_Z) 0 0
-1
M= |Suwi 0 PIU 0 (14)
: : : (._l)
Si;i O ... 0 Pizji |
b, |
—1
2"
(n—1)
m= |Zii |. (15)
(n-1)
_Zi:ji i
Using block-wise matrix inversion, it is easy to see that:
87(‘7
—1)— -1
rp(M) = 8i = > 8, [PU)TlSy, = PUTY (16)
t=1
Sij
—I4+1)7— —D)q—1_(n—l —l41)1-1_(n—I+1
ru(M) = PG by = Y S [P = Y T )
t=1

13
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To prune these terminal nodes, the tree-pruning procedure requires adjusting the precision
and potential of the bereaved parent to P(n D and ZE?_ZH) respectively. Once we have
pruned all the terminal nodes, we see that we can apply a similar process to the new ter-

minal layer, [ — 1.

Let us consider the case [ = n, where a terminal node with reference to cluster i; and
its parent with reference to cluster ¢ are considered. At this stage, the precision and poten-
tial associated with this terminal node are S;,;; and b;, respectively. Since,

Ql1l - Slllszlzl Slli

vl = 8,871,

111 4191 "1

we see that PZ(-?E = S;,i, and 2% = b;,. Hence, the type of pruning described in Equations

Q11

(14) and (15) apply at all stages of pruning by induction.

Suppose we have completed the pruning such that only two layers remain. The trimmed tree
will have a root node corresponding to cluster 1, and this node will be connected to terminal
nodes, each of which has a reference to a different cluster in N;. Let Ny = {i1,i2,...,%s, }-
Since we have followed the pruning procedure, the precision matrix and potential vector
associated with a terminal node, with reference to cluster i;, are zz(.tnfz) and PEZfQ) respec-
tively. The final step is to find the root marginal of the following precision matrix and

potential vector:

[S11 Sy Sti, -+ Stin, |
S PP 0 .. 0
M = SZ‘21 0 PE:{Q) 0
Si,1 0 ..o p"7]
by T
(n—2)
(n-2)
m = |Zj1
(n—2)
[ 2,1

One more application of block-wise matrix inversion reveals that:

<7:z>—su—§jsm P I)71S,, —sn+ZQ§:‘11 p" Y (18)
t=1
S1
ru(Ta) = PV V17 b = 84, P2 712l
t=1

= it bl—i-Zthl = plm Y, (19)

14
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Equations (18) and (19) validate the formulas given in (10) and (11). Note that similar
formulas can be derived for all clusters .

We note that GaBP-m applied to a tree-structured MG converges and yields the exact
marginals at convergence. The key property is that the computation tree for a cluster in
a tree-structured MG eventually replicates the tree itself. Since GaBP-m marginalizes the
computation tree exactly, it will also marginalize the tree-structured MG exactly.

3.4. Recovery after Change in Variables

We discuss the relationship between GaBP-m applied to the precision matrix S and po-
tential vector b before and after a certain change in variables is introduced. We show that
the output of GaBP-m applied to the the original inputs can be recovered from the appli-
cation of GaBP-m to the changed inputs through a simple transformation. This is a key
relationship for proving that preconditioned walk-summability is a sufficient condition for
convergence.

Consider a valid preconditioner A relative to the clusters C; : i = 1,2,...,p. We consider
the relationship between GaBP-m applied to the inputs {S, b} and {S b} where S = ASA

and b = Ab. Consider applying GaBP-m to the inputs {S b} For cluster i, we denote

the posterior mean vector and posterior precision matrix (at iteration n — 1) as pgn b

P’En—l)

and

respectively. Consider the following lemma:

Lemma 3 We have the following relationship for all clusters i:

Proof We consider, without loss of generality, the proof for cluster 1. Consider the block-
diagonal matrix B,, : m, X m, with a decomposition according to the computation tree.
This matrix is constructed by moving along the computation tree, noting the reference of
each node (say i) and adding a symmetric and positive definite matrix A;; as diagonal
blocks of B,, (all other entries are zero). It can be shown that T, = B,T,B, is the
precision matrix corresponding to the computation tree (for cluster 1) constructed from S.
The following holds:

(n 1) [Gl Gn]fl
= [G;BnTngnGn]—l. (20)

Note that G/, B,, equals the first d; rows of B,; therefore, since B,, is block-diagonal,
G/, B,, = A11G),. Equation (20) becomes

Pgnil) = Al_lllsgnil)Al_ll? (21)
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where lsgn_l) =[G/ T;'G,]~'. Consider

") = G T E,b
= G/ B,T,'B,E,b
= A G\ T, 'B,E,b.

Now, since B, is block-diagonal, we must have B, E,, = E, A, and therefore
p\"Y = A GLT Bl Ab = A", (22)

where 3{" "V = G, T;'E, Ab. n

Equations (21) and (22) show that there is an easy way of moving between the computations
done by GaBP-m on {8, b} and {S, b} that does not depend on the iteration number. These
considerations suggest that GaBP-m should be robust towards the change in variables as
discussed above.

The way in which S and b are obtained from S and b is typically used to precondition
inputs to iterative solvers of linear systems, such as the conjugate gradient (CG) method.
In the case of the CG method, the difference in the convergence behavior of application
to the different sets of inputs can be substantial, in the sense that the preconditioned
variant converges much faster (Shewchuk, 1994). Equation (22) shows that the rate of con-
vergence of ,ugn) and [l/gn) is identical, and that GaBP-m automatically benefits from the
preconditioning without having to do this explicitly (convergence is guaranteed under pre-
conditioned walk-summability). For other solvers of linear systems, we need to incorporate
the preconditioning explicitly in order to obtain the benefit of a faster convergence rate.
These considerations provide theoretical backing for some of the observations made in the
empirical section.

4. Convergence of GaBP-m

In this section we prove that preconditioned walk-summability is a sufficient condition for
the convergence of GaBP-m. We start by assuming that S is preconditioned walk-summable,
and hence assume the existence of a valid preconditioner A such that S = ASA is walk-
summable. We then show that GaBP-m applied to S and b = Ab is guaranteed to converge.
The convergence of GaBP-m applied to the original inputs is proved using the results of
Section 3.4.

4.1. Convergence of GaBP-m on Preconditioned Inputs

We can assume, without loss of generality, that the diagonal entries of S are all equal to
one (if not, we can incorporate it in the preconditioning). Setting S = Iy — R, we see that
p(|R|) < 1 by assumption. The precision matrix of the computation tree can be expressed
as:

Tn = Imn - Rna
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where R, is a block tri-diagonal matrix corresponding to the line topology of the compu-
tation tree. Hence, we can express,

[C11 Ci2 i
Ca1 Cap Cas
Csy C33 Csy

&
3
Il

Cn— 1;n—2 Cn— 1;n—1 Cn— Lin
Cn;nfl Cnn

with the understanding that the blank spaces are all zero. The C;; blocks are zero-diagonal
square matrices with numbers of rows equal to the sums of the sizes of all nodes in the
ith layer of the computation tree. We now give the following lemma (the proof is given in
Appendix A.1).

Lemma 4 Let S =T, — R with p(|R|) < 1, then:
1. p(|Ryl) < p(|R)) for all n.
2. The quantity |RY||oo < k1[p(|R|)]* for a constant ry that does not depend on n.
3. H'i‘;lHoo < ko for a constant ko that does not depend on n.

The constants referenced are:

(R 2

where v = (v1,vs, . ..,v,) > 0 such that |R|v = p(|R|)v.

Although Lemma 4 uses the computation tree for cluster 1 as an example, we see that this
cluster plays no role in the computation of k1 and k9. Lemma 4 also applies to computation
trees constructed for other clusters, and the computation of k1 and ks remains as in (23)
and (24) respectively (they do not depend on the cluster chosen to represent the root node).

We restrict our focus to proving the convergence of the posterior mean and posterior vari-
ances of GaBP-m applied to the preconditioned inputs. Let fi be such that Sﬁ = b and
suppose Lg_ljii represents the submatrix of S™! corresponding to the variables in cluster .
The following theorem summarizes our convergence results (for a proof see Appendix B).
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Theorem 2 Consider GaBP-m applied to the walk-summable preconditioned inputs S and
b with clusters C; : i =1,2,...p. The following results apply for all clusters i:

L "™ = fllso < malp(IRD)™.

2. [PV~ |87 - ZY),

3. 12|00 < mrka[p(IR)]EY forn >t —1.

Here, k4 = Kikoks, with k3 = ||S]|so||]]oo, A% forms a Cauchy sequence and t is the first
layer after the root node where cluster i is referenced in its computation tree.

Since p(|R|) < 1, Theorem 2 clearly implies convergence of the posterior means and co-
variance matrices for all clusters. Moreover, the converged posterior means represent the
exact marginal means, while the converged posterior covariance matrices can be regarded
as approximations to the true marginal covariance matrices. The approximation error of
the converged posterior covariance matrices depends on lim,, Zﬁf) = ZSQ In Theorem
2, we always have that ¢ > 3, but ¢ may be larger depending on the topology of the MG.
Note that, if the computation tree never references cluster i again (as in the case of a tree-
structured S), then the converged posterior covariance matrix will be equal to the exact
marginal covariance matrix. We see that Theorem 2 not only proves convergence, but also
gives the rate of convergence of the posterior means and a framework for analyzing the
accuracy of the approximate marginal covariance matrices.

4.2. Convergence of GaBP-m on Original Inputs

Define g, p; and | S~ ];; analogous to fi, fi; and |S™!];; respectively. We give the following
corollary to Theorem 2.

Corollary 2 Consider GaBP-m applied to the original (preconditioned walk-summable) in-
puts S and b with clusters C; : i = 1,2,...p. The following results apply for all clusters
1!

n—1 S\ 1n—
LY = willoe < mallAdilloo[p(RD™
2. [PV~ 87— 2,
3. Forn >t—1 we have H[Pl(-n)]*1 — LS*IJMHOO < /ﬁmgHAMHgo[p(]R\)]tfl.

Here, Zg) = Aiiz,(f)Aii forms a Cauchy sequence, k; : 1 =1,2,3,4 are defined as in Theorem
2, and t is the first layer after the root node where cluster i is referenced in its computation
tree.

Proof The proof follows directly from Theorem 2, Lemma 3 and:
= Ay,
[S7 i = Au| ST i,
which is true for all clusters . |

Clearly, Corollary 2 implies that preconditioned walk-summability is a sufficient condition
for convergence of GaBP-m applied to the original inputs.
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5. Empirical Results

In this next section we provide three empirical studies of the GaBP-m algorithm. The
first study shows the novelty of preconditioned walk-summability with respect to walk-
summability and scaled diagonal dominance using a specific set of inputs. The second
study illustrates the advantages of using GaBP-m over the CG method within the context
of preconditioning. We conclude by promoting GaBP-m over GaBP in an inference context.

5.1. Preconditioned Walk-summability

Consider applying GaBP-m to a precision matrix S : k x k and potential vector b : k x 1,
where the variables are assigned to nodes based on the clusters C; : i = 1,2,...,p. We have
not discussed the selection of A in practice. One type of preconditioner we found to be
effective in the prediction of the convergence of GaBP is the selection:

Ay =S;% fori=1,2,...,p. (25)
We now provide a specific example illustrating the novelty of preconditioned walk-summability:.

Consider the following precision matrix and potential vector: !

r1.0000000 0.17373710 0.1850847 0.3354267 0.26006082 0.21924317
0.1737371 1.00000000 0.0881614 0.2410132 0.03527682 0.1426373
0.1850847 0.08816140 1.0000000 0.3954153 0.24977742 0.2611699
S =10.3354267 0.24101317 0.3954153 1.0000000 0.24246971 0.1855578
0.2600608 0.03527682 0.2497774 0.2424697 1.00000000 0.8966630
10.2192431  0.14263726 0.2611699 0.1855578 0.89666296 1.0000000.
~0.1878888"
0.0430620
0.5864501
b=0.4414838|-
0.2120225
10.1740536.

The spectral radius of |I — S| is 1.4069 > 1, which does not give a decisive answer on
whether GaBP will converge; in fact, we see that the application of GaBP to these inputs
diverges. We now consider GaBP-m applied to these inputs, with the clusters C; = {1, 2},
Cy = {3,4} and C3 = {5,6}. Using the preconditioning defined in (25), we see that the
spectral radius of |I; — S| is 0.6689 < 1, and hence S is preconditioned walk-summable.
The application of GaBP-m yields convergence after 19 iterations (using € = 10710). This
convergence is explained by preconditioned walk-summability. We also see that GaBP-m
can converge in cases where GaBP does not.

We conclude this example by investigating the bounds given in Corollary 2. Suppose we

1. These inputs represent an extract from the correlation matrix and correlation vector of the diabetes data
used by Efron et al. (2004) to illustrate the least angle regression algorithm.
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want n to be sufficiently large such that max;{|| ,uz(n) — Willoo} < €, for some specified e.
Under the assumption of preconditioned walk-summability, we have:

10g(m)
log(p(|RJ))

Evaluating (26), we see that convergence will occur after at most 66 iterations (almost
3.5 times the actual number). The bound for the dissimilarity between the posterior and
marginal variances in Corollary 2, where ¢t = 3, can be evaluated as 5.191402 for cluster 1,
which is poor compared to the actual value of 0.0929461. This bound will likely be better
for sparse graphs (our example represents a dense graph).

(26)

5.2. Robustness Towards Change in Variables

In this empirical study, we compare GaBP and GaBP-m to the CG and PCG algorithms.
A description of the CG algorithm can be found in Shewchuk (1994). Our goal with this
empirical comparison is not to promote GaBP and GaBP-m as solvers of linear systems, but
rather to illustrate the stability of these algorithms with regard to the change in variables
discussed in Section 3.4. The idea is to compare the performance of these algorithms by
considering the application of the basic methods to an ill-conditioned S. The performances
on a well-conditioned matrix, S = ASA, are also compared.

In Section 3.4 we found that the rate of convergence of the means in GaBP-m applied
to S will be identical to that of GaBP-m applied to S, assuming that the clusters are cho-
sen appropriately. In this empirical study, we will argue that the CG algorithm cannot
benefit from the improved conditioning of S without explicitly incorporating the precon-
ditioning. The main advantage of GaBP-m over the CG and PCG methods is that we do
not need to know the preconditioner in advance to obtain the improved convergence rate.
In this sense, GaBP-m automatically benefits from the convergence rate of the best valid
preconditioned inputs.

Kamper et al. (2018) specify a method for generating precision matrices with arbitrary
zero-diagonal spectral radius. The zero-diagonal spectral radius of S is obtained as the
spectral radius of R in S = I, — R, assuming that S has been scaled to have only ones
along its diagonal. We use this method to generate our inputs to the different algorithms.

This empirical study involves two illustrations. In the first illustration we compare GaBP
to the CG and PCG algorithms. We note that the considerations of Section 3.4 also apply
to GaBP in the sense that we can choose k clusters each of size 1. This constrains A to
be a diagonal matrix, and we will show that GaBP is robust towards changes in variables
induced by a diagonal preconditioner. To generate a set of inputs, we do the following:

1. Select a zero-diagonal spectral radius (p) uniformly from the interval [0.5;0.9].

2. Use the method of Kamper et al. (2018) to generate a 1 000 x 1 000 precision matrix
S (with zero-diagonal spectral radius equal to p) and potential vector b: 1 000 x 1.
These will act as our preconditioned inputs.
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3. Generate u: 1 000 x 1, where each element is selected independently from a uniform
random distribution over the interval [0.01;1]. Set D, = diag(u).

4. Our original (ill-conditioned) inputs are S = D,SD, and b = Dyb.

We generate 1 000 of these inputs randomly and compare four methods. The methods are
GaBP on {S,b}, GaBP on {S,b}, CG on {S,b} and CG on {S,b}. The labels for these
methods are gabp.org, gabp.pre, cg.org and cg.pre respectively. The “org” denotes appli-
cation to the original ill-conditioned inputs, while the “pre” denotes the preconditioned
inputs. We compare these methods by recording the number of iterations required by each
method for convergence. Convergence is defined to occur when |[Sp(™ — b||o, <1076, The
results of our simulations are given in the top graph of Figure 3. We see that the perfor-
mance of GaBP on the different sets of inputs is nearly identical. This is in contrast to the
CG method, where the difference in performance is substantial and the robustness of GaBP
to the preconditioning is well illustrated. The CG method on the original inputs performs
the worst by far out of all the methods; however, the preconditioned version outperforms
the GaBP variants. It is important to note that the diagonal PCG method requires the
specification of a preconditioner and does not keep the computations on the scale of the
original inputs.

In our second illustration, we consider the automatic preconditioning done by GaBP-m,
with the understanding that the nodes selected are higher-dimensional. This allows our
preconditioner to be block-diagonal (in contrast to diagonal as for GaBP). We consider

1 000 x 1 000 precision matrices where we have 31 clusters each of size 31, and one additional
cluster of size 39. Consider the following simulation procedure:

1. Select a zero-diagonal spectral radius (p) uniformly from the interval [0.5;0.9].

2. Generate a precision matrix S :1000 x 1000 (with zero-diagonal spectral radius
equal to p) and potential vector b: 1 000 x 1. These will act as our preconditioned
inputs.

3. We define a 1 000 x 1 000 matrix A. For each cluster i of size d;, we generate a
d; X d; precision matrix with zero-diagonal spectral radius equal to 1.5, and set A;
equal to this matrix. When ¢ # j, A;; is a matrix of zeros.

4. Our original (ill-conditioned) inputs are S = ASA and b = Ab.

Again, we generate 1 000 of these structures and compare four different methods. We
apply GaBP-m to {S, b} with clusters as used in the simulation, and GaBP-m to {S,B}
with clusters as used in the simulation. These methods are labeled gabp.org and gabp.pre
respectively. Let Dz be the diagonal matrix, with the diagonal obtained from the diagonal
of A. We define a diagonal preconditioner Djfxl (this was used in the previous simulations)

and apply CG to {D;SD;,Dilb}. This method is labeled cg.diag. The last method

is CG applied to {8, 5}, which we label cg.pre. The results are illustrated in the bottom
graph in Figure 3. We see a similar pattern as in the diagonal preconditioning case. The
CG-based variants show the most volatility towards the preconditioning. In contrast to
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Visualization of the results of our simulations regarding preconditioning. The
top and bottom graphs represent diagonal and block-diagonal preconditioning
respectively. In both cases, we see that the performance of GaBP(-m) on the
preconditioned and original inputs is nearly identical. This is in contrast to the
performance of the CG method on both sets of inputs, where the difference is
substantial.
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the diagonal case, we see that the GaBP-m variants now tend to converge with a smaller
number of iterations when compared to the diagonally preconditioned CG variant. The full
preconditioned CG variant performs the best of all the methods.

5.3. GaBP-m vs GaBP

In this section, we discuss the utility of GaBP-m compared to GaBP. To facilitate this
comparison, we used the following simulation procedure:

1. Select a zero-diagonal spectral radius uniformly from [0.8;1].

2. Generate a 100 x 100 precision matrix and a corresponding 100 x 1 potential vector
using the simulation scheme from Kamper et al. (2018). The precision matrix is scaled
to have a zero-diagonal spectral radius, as determined in (1).

3. Randomly generate 10 clusters each of size 10.

The above procedure was repeated 1 000 times to generate 1 000 different inputs. GaBP
and GaBP-m (using the randomly selected clusters) were then applied to each of these data
structures. The goal is to compare GaBP with GaBP-m based on the following considera-
tions:

1. The number of iterations required for convergence.

2. The univariate inference quality of each method. We note that both GaBP and
GaBP-m supply the exact marginal means at convergence. GaBP-m can be used
for univariate marginal approximation by first approximating the higher-dimensional
marginal, and then computing the univariate marginals from this approximation using
a direct method. For instance, using GaBP-m, we can approximate the marginal
precision associated with a specific cluster and then apply direct matrix inversion to
approximate the univariate marginal precisions.

For the univariate inference quality we consider the KL divergence of the exact marginal
distribution to the approximate marginal distribution. If f; and f; are the exact and ap-
proximate marginal associated with variable i, we are computing:

DrslillFy = [~ siwios( 22 )ay.

fi(y)

Note that, for a specific method, we get a KL divergence for each variable. The inference
quality of a method for a specific input is measured by the mean of these divergences.

The results from our simulation study are summarized in Figure 4. Boxplots are drawn
for the number of iterations required for convergence by GaBP and GaBP-m for the dif-
ferent simulated inputs. To illustrate inference quality, we draw boxplots of the mean KL
divergences arising from the different inputs. The number of iterations required for conver-
gence by GaBP-m tends to be less than that required by GaBP. We see that the univariate
inference quality of GaBP-m tends to be better than that supplied by GaBP. GaBP-m also
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Figure 4: Visualization of the results of our simulations regarding the utility of GaBP-m.
The top graph represents the number of iterations required for convergence by
GaBP-m and GaBP. The middle graph illustrates the univariate inference quality
of both methods, while the bottom graph analyses the higher-dimensional infer-
ence quality of GaBP-m. We see that GaBP-m tends to require a smaller number
of iterations to converge and tends to provide more accurate univariate marginals.
GaBP-m also provides useful approximate higher-dimensional marginals, some-
thing that GaBP cannot do.
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has the advantage of offering approximations of the marginal precisions of the selected clus-
ters. The inference quality of GaBP-m, with respect to the clusters, is also given in Figure
4. Inference quality was defined analogous to the univariate case. We see that GaBP-m can
provide useful approximations for the higher-dimensional marginal distributions.

6. Conclusion

In this paper, we have considered a multivariate extension of belief propagation applied to
pairwise Gaussian MGs (we labeled this GaBP-m). The main advantage of GaBP-m over
GaBP is that it can be used to approximate the precision matrix of higher-dimensional
marginals. In addition, GaBP-m may require fewer iterations than GaBP to converge and
can be used to find better approximations for the univariate marginals. A multivariate ver-
sion of the computation tree analysis, used to analyze univariate GaBP, was given. These
computation trees were used to derive a relationship between GaBP-m applied to a set of
inputs, before and after a certain change in variables was introduced. It was argued that
GaBP-m is robust towards this change in variables, a property not shared by other solvers
of linear systems such as the conjugate gradient solver. This was also illustrated empirically.
The concept of preconditioned walk-summability was defined and shown to be a sufficient
condition for convergence of the GaBP-m algorithm. Bounds were provided for the conver-
gence speed and inference quality of GaBP-m under preconditioned walk-summability. The
novelty of preconditioned walk-summability with respect to walk-summability and scaled
diagonal dominance was discussed and illustrated empirically.

Unfortunately, GaBP-m is not guaranteed to converge for arbitrary precision matrices.
Methods of augmenting this algorithm to converge, without compromising inference qual-
ity, should be considered in further research. A drawback of GaBP-m over GaBP is that the
computational load per iteration scheme is higher. Methods to reduce this computational
load, such as rank-1 updates, should be considered. Asynchronous GaBP-m and the effect
of different initializations on the performance of the algorithm also require attention.
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Appendix A. Proofs Leading to Lemma 4

We consider two additional lemmas before proving Lemma 4. Note that we focus, without
loss of generality, on cluster 1. Consider clustering the real matrix A : k x k according to
Ci:1=1,2,...,p. We can construct a computation tree for A regardless of whether or
not it is symmetrical. We denote the precision matrix of the computation tree of A, for
cluster 1, by T, (A). In the appendices we still adopt the convention that T,, = T,,(S) and
T, = T,(S). We now present and prove the two additional lemmas.

Lemma 5 For all n, we have that
| Tn(A)lloo < [[All

with equality if the computation tree is of sufficient depth, such that all clusters are referenced
before the terminal layer.

Proof Consider a node of the computation tree and suppose that this node has a reference
to cluster s:

1. If this node is before the terminal layer, then its neighborhood in the computation
tree will reference each cluster in Ny exactly once. Hence, the infinity norm of the
row block of T, (A) corresponding to this node will be equal to the infinity norm of
the row block of A corresponding to the clusters in Nj.

2. If this node is in the terminal layer, then its neighborhood in the computation tree
will reference each cluster in N at most once (certain clusters will not be referenced).
Hence, the infinity norm of the row block of T,,(A) corresponding to this node will be
at most equal to the infinity norm of the row block of A corresponding to the clusters

in V.

The result follows directly from these points. |

Lemma 6 Consider an irreducible matrix A : t X t consisting of non-negative elements.
There exists an eigenvector v, containing only positive elements, such that Av = p(A)v
(the spectral radius of A is also an eigenvalue of A ). Furthermore, if D = diag(v), then:

p(A) =||DT'AD||.

Proof First we note that the Perron-Frobenius theorem guarantees the existence of a
vector v, consisting only of positive elements, such that Av = p(A)v. Let A = [ag] and
v = (v1,v9,...,v:)". Note that

D 'AD = [”S“ts]

Ut

and all elements of D™'AD are non-negative. The consequence is that the sum of the
absolute elements of row ¢ of D"'AD is

t t
VsQts 1 ’Utp(A)
= - slts = A )
> o S;U at p(A)

Ut Ut

s=1
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since v is the eigenvector of A corresponding to the eigenvalue p(A). The row sums of the
absolute elements of D' AD are all equal to p(A), and hence ||[D !AD|| = p(A). [ ]

A.1. Proof of Lemma 4

Proof The proofs for the components of Lemma 4 are:

1. We assume that the matrix S is irreducible; if it is not, then GaBP—In can be applied
to separate irreducible matrices. Note that the diagonal entries of S are all equal to
one by assumption. Set S = I, — R, and therefore [R| is irreducible. Let v be the
eigenvector of |R| corresponding to its spectral radius. Since |R/| is non-negative and
irreducible, the Perron-Frobenius theorem guarantees that the elements of v will be
positive. Define ¥, = E, v, D, = diag(v) and Dy, = diag(v,). By Lemmas 5 and 6,
we see that:

p(IRn) = p(Dg, |RA[Dy,)
S HD\__",} |Rn|D\7nHOO
115
= [ITw(Dy [R|Dy)|lo0
< |ID'RIDy|[oc

— p(IR]).

2. Consider:
D;!R,[*Ds, = D3'|R,[*'Dy, DS R, | Dy, (27)

From Equation (27),

DS, R |* Dy, [loo < [ID7, [ Ru|* "Dy, [oo| D3,/ R4 Dy, [
< p(IR])|DF, [Ra|* ' Dy, [|oc- (28)

If we apply Inequality (28) recursively, we see that:

1D, [RA[" Dy, [l < [o(IRI)]*,

and
[Rn|*[|so = [|Dv, D3} [Rn|" Dy, D3, ]
< [|Dv, ||so| D5, ||oo| D5, R |* Dy, [l
< SR
Setting k1 = %,

IR oo < [[[Rnl*[loc < #1[p(IR)".
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3. By assumption, p(|R|) < 1, and hence we can write T, as a Neumann power series:

= i RE. (29)

The series in Equation (29) implies:

1T oo < ZHR [l

Appendix B. Proof of Theorem 2

Proof We focus, without loss of generality, on the computation tree for cluster 1. The
proofs for the two components are:

1. Consider p,(n b= =G!T, 'E, b. Since S is positive definite, there is one vector fi in
RF with the property Su = b. Let us consider solving z,, in

’i‘nzn = Eni)

Since Sji :f), we have T,z = E, Sji. Substitution of Equation (9) into this expres-
sion yields Tz, = (T,E,, — L)L, or

Zn = Epfi — T, L, 1.
Using the fact that p,(n V_aq nZn, We have
~(TL ].) G/E ~ _G/ 1f1nﬁ:ﬁ1_G;«LT;1in[L,

where f1; is the subvector of f1 corresponding to the variables in cluster 1. Since
p(Ry) < p(|Rs]) < p(JR|) < 1, by Lemma 4, we can express T,,! as a Neumann

power series,
(o)
_ i
= g R;,.
i=0

Consider the vector fmﬂ. Since the rows of I:n corresponding to the ﬁrst n — 1 blocks
are all equal to zero (see Lemma 2), we can write Ly, it = (0/,05,...,0, | h’). The
notation 0; stands for a vector containing a number of zeros equal to the sum of the
dimensionalities of the nodes in layer [. The vector h,, is a specified vector (entries
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can be non-zero) equal in size to the sum of the dimensionalities of the nodes in the
terminal layer. With this notation, it is easy to see that

G/ R!L,ji= 0,

for all i < n — 1 (note that the first layer contains only one node corresponding to
cluster 1, hence 0; will contain d; zeros). We have:

(0.)
G, T, Lot = G, > RiLnjt

=0
1=n—1
=GR Y RiLje
=0
=G,R'> RiLp
=0
=G R IT; 'L, (30)

The rows with non-zero entries of fi” are (sparse) replicates of a row of S by Lemma
2, and we therefore can say that ||Lyft||co < ||S||col|ft]|cc = 3 (does not depend on
n). Since ||G),||cc = 1, we have

AT ™Y — Ayllse < malp(IRD), (31)

where k4 = K1kok3. Hence [Lgn) will converge to ft; as n — co. We can repeat the
above analysis for all clusters 7.

. Note that Inequality (31) also applies when b is a matrix. Due to the order of the vari-

ables (that is X = (X, X5,...,X})"), we have that cluster 1 will contain the variables
1,2,...,d; of the original pairwise MG. Let €; : k X 1 be a vector of zeros except for
entry [, which contains 1. Set b = [el e ... edJ. Using the convergence implied

by (31), we see that . } .
G T 'E,b— |S7!|n

as n — oo, where |S™1]y; is the submatrix of S~! corresponding to the variables in
cluster 1. The matrix E,b has a row-block decomposition according to the nodes in
the computation tree. If a node in the computation tree does not reference cluster 1,
then the corresponding block of E,b will be zero, otherwise the block is I, (this is
because Fie;, for t # 1 and [ < d;, extracts a subvector of e; containing only zeros).
As a consequence, we have Eni) = G, +E,, where E,, is equal to Eni), except for the
first block, which contains only zeros. We can write

P = 6L TG, ~ (ST 0 - GLTL'E,

for large n. We now present the following lemma (proof follows in Section B.1).

29



KAMPER, STEEL, AND DU PREEZ

Lemma 7 If p(|R|) < 1, then the sequence zZ\V = G/ T;'E, is a Cauchy sequence.

Hence we have: . 3 .
[Pgnfl)}fl ~ LsflJ 11— Zgll)’

with ZS) forming a Cauchy sequence. Note that we can repeat this analysis for any
cluster 1.

3. Let t be the first layer, excluding layer 1, where cluster 1 is referenced in its com-
putation tree. Note that the first ¢ — 1 row-blocks of E,,, corresponding to the line
topology of the computation tree, will all be zero matrices. Hence we can write
zZ\ = G/ RIIT, 'E,. Since ||G/||cc =1 and ||E,||sc < 1, then by Lemma 4,

1ZP]loo = [|GLR: T, Enlfoo
-1 -1
< RS Hlool T oo
< mira[p(IR])])".

B.1. Proof of Lemma 7

. e ~ (1 . . . .
Proof For convenience we write Z, = Zq(1 ). Consider the following recursive expansions:

. T, T,
T _ | tn n
i |:Tn1 Unn:|

_ E
Eni1 = [Wn ]
n

for certain matrices Ty,, U,, and W,,. We have

T} = {T# —T#TmUﬁﬁ]
n Y
where the ... represents an irrelevant part of the matrix, and T, = ’i‘n — Tang%'i‘nl.

Consider

Zni1 =G T En
(@, o T,! —T,;'T., U, [E,
=G/\T,'E, - G/, T,'T,U,}W,,. (32)

It can be shown that
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where V,, = [U,,, — 'i‘nl’i‘;l'i‘ln]’l'i‘nl. Furthermore,

G/ T,'E, =G/ T,'E, + G, T, 'T,V, T, 'E,
=Z,+G T TV, T, 'E,.

Considering again Equation (32),

fay

Zni1=2,+G T 'T,V, T 'E, - G T,'T,U W,
=7Z,+G T,'T,V,T,'E, - G [T,! +T,'T,V,, T, }|T., U, W,
=7Z,+G, T,'T,V,T,'E, -G T, 'T,U,}W, -G T,'T,V,T,'T,U, W,
=Z,+G T 1T,[V,T,'E, -V, T,'T,U'W, - U, 'W,]
=7, + G, T 'T,[V, T, Y(E, — T, U,!W,) - U, 'W,]. (33)

Note that the sparsity pattern of T, is similar to that of L,, and contains zeros in all the
rows, except for the rows corresponding to the terminal layer of the computation tree (of
depth n). Similar to Equation (30), we can show that

G/ T,'Ty, = G,R'T,' Ty,
and hence: o ) }
1GL T, Tinlloo < K1k2||Tinlloc[o(IRD]" (34)
By Equations (33) and (34), we see that:

Hzn-l-l_zn”oo < ’11"‘&2||T1n|‘OO‘|Vn'i‘r:1(En_Tan;n{Wn)_U;éWn‘|oo><[P(|Rmn71- (35)
We now make some comments on the matrices present in Equation (35).

1. The matrix T}, represents the links between parents in layer n and their children in
layer n+1. Note that a parent in layer n has links to nodes in layer n+1 corresponding
to its neighbors only, hence || T1,||co < max;z;{][Si||oo}-

2. The matrix Uy, is block diagonal, with diagonal blocks corresponding to the cluster
diagonal blocks of S referenced in the final layer of the computation tree (of depth
n + 1). Therefore, ||U} | < maXZ{HS oo} and || Unnloo < maxi{||Siillso} -

3. Because ||T;|o0 < ko for all s, we have || T || < k2 since T;! is a block of Tn}rl

4. Consider Vn = U o1 + U T [T — T Ut Tt ' T U Ty = UL T +
U, 1TMT TMU Tnl Slnce all the matrices in this expression have an infinity
norm bounded by some constant which does not depend on n, there will also be a
constant (independent of n) that bounds the infinity norm of V,,.

5. Note that ||En|loc < 1 and |[Wy||ee < 1 (recall the definition of E, in the proof of
Theorem 2).

The above considerations imply the existence of a constant K (independent of n) such that
/{1/{2||T1n|\oo\|V T, (E ~T1,U,;'W,)) = U, )W, || < K. Therefore, ||Zn11 — Zn||oo <
K[p(IR]*? hence Z,, is a Cauchy sequence. [ |
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Appendix C. Examples for Section 3

In this appendix we give some examples for the considerations of Section 3. We use the
following precision matrix and potential vector for our illustrations:

Si1 Si2 Si3 O
So1 Sa2 S23 Soy
Ss1 Ssz2 Sszz O

S:

and

b
by
b3
by

We consider a computation tree, of depth 4, constructed for cluster 1. The different topolo-
gies corresponding to the MG, the computation tree and the line topology are illustrated in
Figure 2. The precision matrix and potential vector for the computation tree are given by:

[S11 S12 S13 O 0 0 0 0 0
So1 S99 0 So3 Soy 0 0 0 0
S 0 S33 O 0 S3; O 0 0
0 S35 0 S33 O 0 S3;37 O 0
Ts=|[0 Sss O 0 Su O 0 0 0
0 0 So3 0 0 Soo 0 So1 Sos
0 0 0 Si3 O 0 S;;1 O 0
0 0 0 0 0 S 0 Sy ;1 O
0 0 0 0 0 Sp 0 0 Sy

b

b2

b3

b3

ty= |by

bo

by

b1

LDy

C.1. Special Matrices

Some special matrices were introduced in Section 3.1. The row extractor matrix for cluster
1lis Fy = [Id1 00 O]. Note that F1S = [SH Si12 Si3 814}, and hence we are
extracting the rows corresponding to cluster 1. The row extractor matrix for our running
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example is:

P
Fy
F3
F3

E,= |Fy
Fo
Fq
Fy

| Fy

The sixth node of the computation tree is the rightmost node in layer 3 in the middle graph of
Figure 2. The node extractor matrix for this node is [G)) =[0 0 0 0 0 I, 0 0 0].

We see that [Gf)]' T, extracts the rows of Ty corresponding to node 6 in the computation
tree. Lemma 2 can be validated using our running example:

[S11 S12 S13 0 7 ) 0 0 0
So1 S22 So3 Sos 0 o 0 o0
S31 S32 S33 O 0 0 0 0
S31 S32 S33 O 0 0 0 0
T/ E,s = 0 S 0 Suu| + 1|0 0 0 0| =E4S+L,.
So1 S22 So3 Soy 0 o0 0 o
Si1 S12 Sz O 0 -S2 0 0
Si11 Si2 Si3 0 0 0 -Si3 0
| 0 Sp 0 Sy 10 0 0 0]

C.2. Tree-pruning Procedure

We now illustrate the tree-pruning procedure discussed in Sections 3.2 and 3.3. A visual
illustration is given in Figure 5.

In Step 1 we have the original computation tree. We select node 6 of the computation tree
as our bereaved parent. To move to Step 2, we prune the children of node 6 and adjust the
precision matrix and potential vector associated with node 6, as discussed in Section 3.2. If
we perform inference on the tree in Step 2, then the marginal at the root node is equivalent
to the corresponding marginal in Step 1. We repeat this process until all nodes in the final
layer have been removed. We then proceed to the next layer and continue until we are left
only with the root node, as in Step 6.

We consider how the computation tree preserves the message-passing structure for our run-
ning example. Consider moving from Step 1 to Step 2 in Figure 5. Noting that ng) =Su
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and PL(LOQ) = S44, we see that the tree-pruning procedure requires us to perform inference on:
_822 SQl 824 822 S21 S24
M= Sy S 0|=|Sy PY o
0
Siz2 0 Sy Six, O PEQ)

—bg b2
m= |b| = )
= |01 = |Z12
K

Equations (16) and (17) imply that rp(M) = P%) and r,(M) = [Pg?))] lz%) We remove

nodes 8 and 9 of the computation tree (1 and 4 in the red rectangle) and adjust the potential
and precision of node 6 (2 in red rectangle) to rp(M)r, (M) = z%) and rp(M) = P%)
respectively. The potential vector and precision matrix of the trimmed tree are given in
Equations (36) and (37) (the vector and matrix to the right of the arrows indicate the

potential vector and precision matrix of the tree obtained after the next pruning step):

b, by ]
) bo
bs bs
bs | — | () (36)
z
b 32
4 (1)
L0 |z
23 )
by [Z23 |
Si1 S12 S53 0 0 0 O [Si1 Si2 Si3 O 0 0 ]
So1 S22 0 Szz3 S 0 O So1 Sss 0O Sos Soy O
S(:]ﬂ S0 Sga SO g 532 SO S;y 0 Ss3 0 0 Sy
32 33 31| — 1 37
0 Sz 0 0 Sy 0 O 0 8y o Py o 0| 7
12 44 0 S, 0 0o PY o
0 0 Sy 0 O P%) 0 2 2w
0 0 0 S 0 0 Sy L0 0 S 00 Py

Note that, due to the specific sparsity pattern, we can write 25112) = zg) = by and Pfé) =
ng) = S44. We can repeat this process until we are left with the following potential vector

and precision matrix:

We then apply one more pruning step in order to obtain:
rp(Ts) = S11 — S12P§21)521 - 513P;(;,21)331 =Sn+ QS) + Q;(i) = ng)
2
ru(T2) = [PYV] 7" [br — S12[PEY] 257 — SusPEY] 247

3)1— 2 3
P by + v + v =
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Step 1

Step 4

Step 2

Final

Figure 5: Visualization of the process used to invert a tree-structured precision matrix/solve
a linear system through node pruning, where the block of the inverse/solution of

the root node is of interest.
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