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Abstract

Given a vertex of interest in a network G1, the vertex nomination problem seeks to find
the corresponding vertex of interest (if it exists) in a second network G2. A vertex nom-
ination scheme produces a list of the vertices in G2, ranked according to how likely they
are judged to be the corresponding vertex of interest in G2. The vertex nomination prob-
lem and related information retrieval tasks have attracted much attention in the machine
learning literature, with numerous applications to social and biological networks. However,
the current framework has often been confined to a comparatively small class of network
models, and the concept of statistically consistent vertex nomination schemes has been
only shallowly explored. In this paper, we extend the vertex nomination problem to a very
general statistical model of graphs. Further, drawing inspiration from the long-established
classification framework in the pattern recognition literature, we provide definitions for
the key notions of Bayes optimality and consistency in our extended vertex nomination
framework, including a derivation of the Bayes optimal vertex nomination scheme. In ad-
dition, we prove that no universally consistent vertex nomination schemes exist. Illustrative
examples are provided throughout.

Keywords: Vertex nomination, graph inference, recommender systems

1. Introduction

Statistical inference on graphs is an important branch of modern statistics and machine
learning. In recent years, there have been numerous papers in the literature developing
graph analogues of statistical inference tasks such as hypothesis testing (Asta and Shal-
izi, 2015; Tang et al., 2017b), classification (Tang et al., 2013; Chen et al., 2016a), and
clustering (Luxburg, 2007; Rohe et al., 2011; Sussman et al., 2012; Newman and Clauset,
2016). Moreover, growth in the size and complexity of network data sets have necessitated
techniques for network-specific data mining tasks such as link prediction (Liben-Nowell
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Figure 1: A visual representation of the classical Vertex Nomination framework: Given a
community of interest in a network (here the red community) and some examples
of vertices that are/are not part of the community of interest (colored red and
green, respectively), rank the remaining vertices in the network into a nomination
list, with those vertices from the community of interest concentrating at the top
of the nomination list.

and Kleinberg, 2007; Lü and Zhou, 2011); entity resolution and network alignment (Conte
et al., 2004; Lyzinski, 2018); and vertex nomination (Coppersmith and Priebe, 2012; Cop-
persmith, 2014; Suwan et al., 2015; Fishkind et al., 2015; Lyzinski et al., 2016). Akin to the
development of classical statistics, algorithmic advancement has, in many ways, outpaced
theoretical developments in these emerging graph-driven domains. This development has
been necessitated by the dizzying pace of data generation, but there is nevertheless the
need for a firm theoretical context in which to frame algorithmic progress. In this paper,
drawing inspiration from the long-established classification framework in the pattern recog-
nition literature (Devroye et al., 1997), we provide a rigorous theoretical framework for
understanding statistical consistency in the vertex nomination inference task.

The vertex nomination (VN) task, which can be viewed as the graph analogue of the
more classical recommender system task (Ricci et al., 2011), has traditionally been stated as
follows: given a community of interest in a network and some examples of vertices that are
or are not part of a community of interest, vertex nomination seeks to rank the remaining
vertices in the network into a nomination list, with those vertices from the community of
interest (ideally) concentrating at the top of the nomination list. See Figure 1 for a visual
representation of this classical Vertex Nomination framework. In limited-resource settings,
vertex nomination tools have proven to be effective in efficiently searching and querying
large networks, with applications including detecting fraudsters in the Enron email network
(Coppersmith and Priebe, 2012; Marchette et al., 2011; Suwan et al., 2015), uncovering web
advertisements that have association with human trafficking (Fishkind et al., 2015), and
identifying latent structure in connectome data (Fishkind et al., 2015; Yoder et al., 2018).

While related to the community detection problem (Newman, 2006; Luxburg, 2007;
Bickel and Chen, 2009; Newman and Clauset, 2016), this traditional formulation of the VN
problem is a semi-supervised inference task whose output is not an assignment of vertices
to communities, but rather a ranked estimate of which vertices belong to a particular
community of interest. That is, in contrast to community detection, the VN problem does
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not aim to recover the community memberships of any vertices not in the community of
interest. Clearly, any method that can recover the community memberships of all vertices
in a graph can recover the interesting community, and hence any community detection
algorithm can be repurposed for the VN problem just described with minor adaptation
(e.g., by ranking vertices according to their probability of membership in the community of
interest); see, for example, the spectral vertex nomination scheme of Fishkind et al. (2015).
The specific performance of such an adaptation is highly dependent on the fidelity of the
base clustering procedure, and the performance is often below that of the semi-supervised
VN specific analogues (see Yoder et al., 2018).

The above formulation of the VN task assumes the presence of strong community struc-
ture among the vertices of interest in the graph. In practice, this is often a reasonable
assumption, particularly if it is expected that interesting vertices will behave similarly to
one another in the network. However, the particular features that mark a vertex as inter-
esting are entirely task-dependent. To paraphrase the common proverb, interestingness is
in the eye of the practitioner. Interesting vertices may be, for example, those with large
network centrality (Jeong et al., 2001; Newman, 2005), those with a particular role in the
network (Lusseau and Newman, 2004), or those corresponding to a given user across social
networks (Patsolic et al., 2017). In these applications, interesting vertices need not corre-
spond precisely to the community structure captured by a generative network model, and
hence such cases are ill-described by the community-based VN problem described above. To
accommodate this task-dependency and broader notion of interesting vertices, we consider
the following generalization and extension of the previously-presented VN problem: Given
a vertex of interest v∗ in a graph G1 = (V1, E1), find the corresponding vertex of interest u∗

(if it exists) in a second graph G2 = (V2, E2) by ranking the vertices of G2 according to our
confidence that they correspond to v∗ in graph G1; see Figure 2 for a visual representation
of this VN framework. In this formulation, which is an (potentially) unsupervised infer-
ence task, what defines v∗ as interesting is entirely model-dependent, and different network
models can highlight different characteristics of interest in the graph. Potential application
domains for this VN generalization abound, including identifying users of interest across
social network platforms (see, for example, Patsolic et al., 2017), identifying structural sig-
nal across connectomes (see, for example, Sussman et al., 2018), and identifying topics of
interest across graphical knowledge bases (see, for example, Sun and Priebe, 2013).

In Fishkind et al. (2015) and Lyzinski et al. (2016), the notion of a consistent vertex
nomination scheme (i.e., an asymptotically optimal solution to the VN problem) was pro-
posed for the original formulation of the VN problem, in which community membership
entirely determines whether or not a given vertex is interesting. This definition of consis-
tency was based on the mean average precision (MAP) of a nomination scheme operating
on a graph model with explicit community structure encoded by the the Stochastic Block
Model (SBM) of Holland et al. (1983). Under this restricted notion of consistency, Fishkind
et al. (2015) derived the analogue of universal Bayes optimality in the VN setting, namely
a scheme that achieves the optimal mean average precision for all parameterizations of the
underlying SBM. While this derivation of the Bayes optimal scheme somewhat parallels the
derivation of the Bayes optimal classifier in the classical pattern recognition literature, the
SBM model assumption and MAP formulation greatly narrow the set of models and sets of
interesting vertices we can consider. In this paper, we revamp and generalize the concept
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Figure 2: A visual representation of the generalized Vertex Nomination framework: Given a
vertex of interest v∗ (colored red) in a graph G1 = (V1, E1), find the corresponding
vertex of interest u∗ (if it exists) in a second graph G2 = (V2, E2), ranking the
vertices of G2 into a nomination list so that u∗ ideally appears at the top of the
nomination list.

of VN consistency—and of VN Bayes optimality—in the two-graph VN framework. This
framework is quite general, and further allows us to highlight the similarities and differences
between our new VN consistency formulation and its analogue in the classification literature
defined in, for example, Devroye et al. (1997).

The paper is laid out as follows. In the remainder of this section, we provide brief
overviews of information retrieval as it relates to vertex nomination (Section 1.1) and the
Bayes optimal classifier in the classical setting (Section 1.2), and conclude the introduction
by establishing notation for the remainder of the paper (Section 1.3). In Section 2, we
define the VN problem framework that is the focus of this paper, and in Section 3 we derive
the VN analogue of a Bayes optimal scheme. In Section 4, we define a new notion of VN
consistency, and we prove that no universally consistent VN scheme exists, providing an
interesting contrast to the standard classification setting. We conclude in Section 5 with a
short summary comparing and contrasting VN with classical classification and a discussion
of implications and future directions.

1.1. Connections to Information Retrieval

The vertex nomination task is, in some ways, similar to the task faced by recommender
systems (Resnick and Varian, 1997; Ricci et al., 2011), in which the aim is to retrieve
objects (e.g., documents or images) likely to be of interest to a user based on his or her
previous behavior. For example, the celebrated PageRank algorithm (Brin and Page, 1998)
recommends webpages based on random walks on the world wide web graph, in which
websites are nodes and (directed) edges reflect hyperlinks between pages. The information
retrieval (IR) literature includes many such graph-based approaches. We refer the reader to
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Ricci et al. (2011) and Mihalcea and Radev (2011) for the state of the art circa 2010, and
concentrate here on recapping more recent graph-based information retrieval techniques.

Many graph-based IR techniques rely on the assumption that similar objects (i.e., doc-
uments, webpages, etc.) will lie near one another in a suitably-constructed graph. Indeed,
this intuition underlies many graph-based approaches throughout machine learning and re-
lated disciplines (see, for example, Belkin and Niyogi, 2003; Zhou et al., 2004). Techniques
along these lines have been applied toward many tasks in natural language processing, typi-
cally inspired by PageRank (Rothe and Schütze, 2014). Along similar lines, Ma et al. (2012)
applied a diffusion-based method (Coifman and Lafon, 2006) to the world wide web graph
to yield an approach to ranking for query completion and recommendation. These infor-
mation retrieval techniques can be naturally adapted to the vertex nomination problem by
treating the vertex or vertices of interest as the object or objects to be retrieved.

The vertex nomination problem also bears similarities to the task of learning to rank
(Duh, 2009; Liu, 2009; Li, 2011), in which the goal is to learn an ordering on a set of objects
(e.g., documents, images, videos, etc.) according to (estimated) similarity or relevance to
a given query object. In the learning to rank literature, graphs usually appear as training
instances, with nodes corresponding to objects and edges encoding preferences or similarities
among them elicited from users (e.g., an undirected weighted edge may join two documents
judged to be similar). The work in Agarwal et al. (2006) is among the earliest to consider
the problem of ranking objects in a network. The authors modified the PageRank algorithm
to take preference information into account, rather than working solely with the hyperlink
graph. In Agarwal (2010), the authors used a data graph encoding object similarities to
obtain a regularizer similar to Belkin et al. (2006) on the empirical ranking error, with
the target ranking encoded in a preference graph. More recent efforts along these lines
have focused on the problem of incorporating network structure present between entities of
different types, for example, between users and events in a social network (Luo et al., 2014;
Pham et al., 2016). Here again, any learning to rank algorithm has a natural adaptation
to the VN problem by using the first graph, in which some vertices are labeled, as training
data to learn a ranking on the vertices of the second graph.

1.2. Bayes Error in Classical Pattern Recognition

In this section, we review the concepts of consistency and Bayes error from the statistical
classification literature. We do not aim to give an exhaustive overview of the subject, but
only to provide a rough outline as to the structures that we would like to replicate in the
context of vertex nomination. For a more thorough treatment, we refer the interested reader
to Devroye et al. (1997), whose presentation we follow below.

We begin by recalling the classical definition of Bayes error. Note that we will restrict our
attention to the two-class problem to maximally bring forth the similarities (and differences)
between statistical classification and VN, as in VN vertices are either of interest or not.

Definition 1 Consider a set of potential observations X and a set of unknown class labels
{0, 1} for objects in X . A classifier is a function h : X → {0, 1}, which aims to predict the
class label of a given observation in X . Given a distribution F supported on X ×{0, 1}, the
error for the classifier h is given by L(h) = P(h(X) 6= Y ) where (X,Y ) ∼ F .
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Any classifier that achieves the lowest possible error is said to be a Bayes optimal clas-
sifier. We write h∗ for any such optimal classifier, which by definition satisfies h∗ ∈
arg minh:X→{0,1} L(h). It is easily seen in this two-class framework that the Bayes optimal
classifier is given by

h∗(x) =

{
1 if E(Y |X = x) = P(Y = 1|X = x) > 1/2;

0 else.
(1)

Practically speaking, the Bayes optimal scheme chooses the label which maximizes the
class-conditional probability of the observed data. The corresponding error, L∗ = L(h∗), is
called the Bayes error. Of course, h∗ depends on the distribution F of (X,Y ), and, when
appropriate, we will make this dependence explicit by writing L∗F .

In practice, a classifier is often constructed based on training data (X1, Y1), (X2, Y2),
. . . , (Xn, Yn), where the data (Xi, Yi) are drawn i.i.d. according to F . This supervised
classification framework is defined as follows.

Definition 2 Consider a set of potential observations X and a set of unknown class labels
{0, 1} for objects in X . A (supervised) classifier is a function

hn : X × {X × {0, 1} }n → {0, 1},

which aims to predict the class label of a given observation in X based on n training ob-
servations (x1, y1), (x2, y2), . . . , (xn, yn) ∈ X × {0, 1}. Given a distribution F supported on
X × {0, 1}, the error for the classifier hn is given by

LF (hn) = P
[
hn(X, (Xi, Yi)

n
i=1) 6= Y | (Xi, Yi)

n
i=1

]
where (X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

i.i.d.∼ F.

Note that LF (hn) is a random variable in which {(Xi, Yi)}ni=1 are drawn i.i.d. from F , but
then held fixed as we average over (X,Y ) ∼ F .

A sequence of classifiers h = (hn)∞n=1 is called a classification rule. Informally, a good
classification rule is one for which the probability of error becomes arbitrarily close to Bayes
optimal as n→∞. The precise nature of what we mean by close is codified in the concept
of statistical consistency.

Definition 3 A classification rule h = (hn)∞n=1 is consistent with respect to F if

EF (L(hn))→ L∗F .

The rule h is strongly consistent if

LF (hn)
a.s.→ L∗F .

A rule that is (strongly) consistent for all distributions F on X ×{0, 1} is called (strongly)
universally consistent.

6



On Consistent Vertex Nomination Schemes

Perhaps surprisingly, given that F can have arbitrary structure on X × {0, 1}, universally
consistent classification rules exist; see Stone (1977) for the first proof of this phenomenon.

In Fishkind et al. (2015), a notion of consistency for vertex nomination was presented,
roughly analogous to Definition 3. In contrast to the classification task presented above,
vertex nomination requires a ranking of the vertices, rather than merely the classification
of a single vertex. As such, a vertex nomination scheme is evaluated in Fishkind et al.
(2015) based on average precision (Manning et al., 2008), rather than simply a fraction
of correctly-classified vertices. In Fishkind et al. (2015), VN consistency is defined in the
context of stochastic block model (SBM) random graphs with respect to a provably optimal
canonical nomination scheme. This canonical scheme plays an analogous role of Bayes
optimal classifiers in this restricted model framework (see Section 3 below). The goal
of this paper is to explore and further develop a broader notion of VN consistency that
encompasses a more expressive class of models than the SBM.

1.3. Notation and Background

We conclude this section by establishing notation and reviewing a few of the more popular
statistical network models that we will make use of as examples in the sequel.

1.3.1. Notation

For a set S, we let |S| denote its cardinality and
(
S
2

)
denote the set of all unordered pairs

of distinct elements from S. Throughout, we will denote graphs via the ordered pair G =
(V,E), with vertices V and edges E ⊆

(
V
2

)
. All graphs considered herein will be labeled,

hollow (i.e., containing no self-edges), and undirected. We let Gn denote the set of all
labeled, hollow, undirected graphs on n vertices. Given a graph G, we will let V (G) denote
the vertices of G and E(G) denote its edges. We note that when G is random, this latter
set is a random subset of

(
V
2

)
. For a set of vertices S ⊆ V (G), we let G[S] denote the

subgraph of G induced by S, i.e., the graph G′ = (S,E) with {u, v} ∈ E if and only if
{u, v} ∈ E(G). In a few places, we will require the notion of an asymmetric graph. A graph
G ∈ Gn is asymmetric if it has no nontrivial automorphisms (Erdős and Rényi, 1963). For
a positive integer n ∈ Z, we will define [n] = {1, 2, . . . , n}, and Gn to be the be the set of
labeled graphs on n vertices. Throughout this paper, we will often, in order to simplify
notation, suppress dependence of parameters on n. Throughout, the reader should assume
that, unless specified otherwise, all parameters depend on the number of vertices n.

1.3.2. Stochastic block models

The stochastic block model (SBM) is a widely studied model for edge-independent random
graphs with latent community structure (Holland et al., 1983; Hoff et al., 2002; Karrer and
Newman, 2011).

Definition 4 We say that a random graph G = (V,E) ∈ Gn is an instantiation of a
stochastic block model with parameters (K,B, b), written G ∼ SBM(K,B, b), if

i. V is partitioned into K classes (called communities or blocks), V = V1∪V2∪· · ·∪VK .

ii. The block membership vector b ∈ [K]|V | is such that for all k ∈ [K], bv = k if and
only if v ∈ Vk.
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iii. The symmetric matrix B ∈ [0, 1]K×K denotes the edge probabilities between and within
blocks, with

1{ {u,v}∈E(G)}
ind.∼ Bernoulli(Bbu,bv).

We note that when K = 1, we recover the Erdős-Rényi random graph (Erdős and Rényi,
1959), in which the edges of G are present or absent independently with probability p. In
this special case, we write G ∼ ER(n, p). By a slight abuse of notation, for a symmetric
matrix P ∈ [0, 1]n×n, we will write G ∼ ER(P ) if, identifying the vertices of G with [n],
we have {i, j} ∈ E(G) with probability Pi,j independent of the other edges. With no
restrictions on P , ER(P ) random graphs can be viewed as n-block SBMs and are the most
general edge-independent random graph model.

The latent community structure inherent to SBMs makes them a natural model for
use in the traditional vertex nomination framework. Recall the traditional VN task: given
a community of interest in a network and some examples of vertices that are or are not
part of the community of interest, vertex nomination seeks to rank the remaining vertices
in the network into a nomination list, with those vertices from the community of interest
(ideally) concentrating at the top of the nomination list. As a result, previous work on
VN consistency (Fishkind et al., 2015) has been posed within the SBM framework, with
the optimal scheme only obtaining its optimality for SBMs. We note that we consider
herein the SBM setting where communities are disjoint and each vertex can only belong
to a single community. However, the results contained herein translate immediately to the
mixed membership SBM setting (Airoldi et al., 2008); details are omitted for brevity.

1.3.3. Random dot product graphs

In stochastic block models, the block assignment vector can be viewed as a latent feature
vector for the vertices in the network, with these features (i.e., block memberships) defining
the connectivity structure in the network. The random dot product graph (RDPG) model
(Young and Scheinerman, 2007) allows for more nuanced vertex features to be incorporated
into the model and has been used as the setting for a VN formulation similar to the one
proposed here; see Patsolic et al. (2017) for details.

Definition 5 We say that a random graph G = (V,E) ∈ Gn is an instantiation of a d-
dimensional random dot product graph with parameters X, written G ∼ RDPG(X), if

i. The matrix X ∈ Rn×d is such that 0 ≤ (XXT )i,j ≤ 1 for all i, j ∈ [n]. The rows of X
provide the latent features for the vertices in V .

ii. The edges of G are present or absent independently, with {i, j} ∈ E(G) with probability
(XXT )i,j. Written succinctly, G ∼ ER(XXT ).

We can view the RDPG model as a example of the more general latent position random
graph model (Hoff et al., 2002), in which edge probabilities are determined by hidden
vertex-level geometry.

Estimating the latent position structure in RDPGs is particularly amenable to spectral
methods, and this model has played a prominent role in recent theoretical developments
of spectral graph methods (see, for example, Rohe et al., 2011; Sussman et al., 2012; Tang
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et al., 2017a). Note that the RDPG can be extended to a broader class of models, in which
edge probabilities are given by evaluating a positive definite link function at vertices’ latent
positions as in, for example, Tang et al. (2013). While incorporating this more general
family of latent position graphs into the present VN framework would be straightforward,
we restrict our focus to the RDPG model of Definition 5 for ease of exposition.

1.3.4. Correlation across networks

The vertex nomination problem we consider in this paper presupposes the existence of a
vertex of interest in a network G1 and, ideally, a corresponding vertex of interest in a second
network G2. Often, such correspondences across networks are encoded into random graph
models via edge-wise graph correlation (see, for example, Fishkind et al., 2019). Arguably
the simplest such structure is seen in the ρ-correlated Erdős-Rényi model (see, for example,
Lyzinski et al., 2015).

Definition 6 We say that bivariate random graphs (G1, G2) ∈ Gn×Gn are an instantiation
of a ρ-correlated ER(P ) model, written (G1, G2) ∼ ρ- ER(P ), if

i. Marginally, G1 ∼ ER(P ) and G2 ∼ ER(P ).

ii. Edges are independent across G1 and G2 except that the indicators of the events
{u, v} ∈ E(G1) and {u, v} ∈ E(G2) are jointly distributed as a pair of Bernoulli
random variables with success probability Pu,v and correlation ρ. If the correlation
is allowed to vary across edges, so that these two events have correlation ρu,v, then
collecting these correlations in a symmetric matrix R = [ρi,j ]

n
i,j=1, we write (G1, G2) ∼

R -ER(P ) (see Lyzinski and Sussman, 2018).

Ranging the values in R from 0 to 1 allows for the consideration of graphs that range from
independent (R = 0) to isomorphic (R = 1). Intermediate values of R allow for the encoding
of a correspondence across networks between these two extremes. We will also consider
R < 0, in which case edges across networks are anti-correlated. This is particularly useful
for modeling situations in which corresponding vertices stochastically behave differently
across networks.

2. Vertex Nomination

Loosely stated, the vertex nomination problem we consider in this paper can be summarized
as follows: Given a vertex of interest v∗ in a graph G1 = (V1, E1), find the corresponding
vertex of interest u∗ (if it exists) in a second graph G2 = (V2, E2) by ranking the vertices
of G2 according to our confidence that they correspond to v∗ in graph G1. To formally
define this version of vertex nomination, we will need to consider distributions on graphs
with partially-overlapping node sets that have a built-in notion of vertex correspondence
across graphs. To this end, we will consider distributions on Gn × Gm, where Gn is the set
of labeled graphs on n vertices, with vertex labels given by {v1, v2, . . . , vn}, and Gm is the
set of labeled graphs on m vertices, with vertex labels given by {u1, u2, . . . , um}. Note that
for i ∈ [n] ∩ [m], vi and ui are merely vertex labels, and it is not necessarily the case that
vi = ui. We follow this labeling convention in order to emphasize the reality that the vertex
sets of G1 and G2 may only partially overlap.
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Definition 7 (Nominatable Distributions) For a given n,m ∈ Z > 0, the set of Nom-
inatable Distributions of order (n,m), denoted Nn,m, is the collection of all families of
distributions of the following form

F
(n,m)
Θ = {F (n,m)

c,θ s.t. 0 ≤ c ≤ min(n,m) ∈ Z, θ ∈ Θ ⊂ Rd(n,m)}

where F
(n,m)
c,θ is a distribution on Gn × Gm parameterized by θ ∈ Θ satisfying:

i. The vertex sets V1 = {v1, v2, . . . , vn} and V2 = {u1, u2, . . . , um} satisfy vi = ui for
0 < i ≤ c. We refer to C = {v1, v2, . . . , vc} = {u1, u2, . . . , uc} as the core vertices.
These are the vertices that are shared across the two graphs and imbue the model with
a natural notion of corresponding vertices.

ii. Vertices in J1 = V1 \C and J2 = V2 \C, satisfy J1∩J2 = ∅. We refer to J1 and J2 as
junk vertices. These are the vertices in each graph that have no corresponding vertex
in the other graph.

iv. The induced subgraphs G1[J1] and G2[J2] are conditionally independent given θ.

A few examples will serve to illustrate this definition. We will return to the three
example settings below several times throughout the rest of the paper in order to highlight
and illustrate phenomena of interest.

Example 1 (R -ER(P )) Let (G1, G2) ∼ R -ER(P ) with P,R ∈ Rn×n andR > 0 entrywise,
so that G1 and G2 have correlated edges as described in Section 1.3.4. In this example, the
model parameter is θ = (P,R), and the vertex sets of the two graphs can be thought of as
fully overlapping, i.e., V1 = V2 = C = [n] and J1 = J2 = ∅, since the correlation structure
conveyed in the entries of R encodes an explicit correspondence between the edges of G1

and the edges of G2 (and hence also a correspondence between V1 and V2). Note that if we
consider C = [k] with k < n, then we would require (after suitably ordering the vertices)
Ru,v = 0 for u, v > k. This highlights the way in which θ (and hence the distribution

F
(n,m)
c,θ ) can vary with c, and vice-versa.

Example 2 (RDPG) Let m > n and suppose that Y ∈ Rm×d has distinct rows and
satisfies (Y Y T )i,j ∈ [0, 1] for all i, j ∈ [m]. Let X ∈ Rn×d be a submatrix of Y , and consider
G1 ∼ RDPG(X) and G2 ∼ RDPG(Y ), where G1 and G2 are conditionally independent
given Y . In this example, we can consider θ = Y , V1 = [n] = C, J1 = ∅, V2 = [n] ∪ J2, and
J2 = {un+1, un+2, . . . , um}. Note that as G1 and G2 are conditionally independent given θ,
we could also consider 0 < c < n here as well. This illustrates that θ need not necessarily

vary with c, and hence F
(n,m)
c,θ need not vary with c, either.

Example 3 (Independent Erdős-Rényi graphs) Let (G1, G2) be independent ER(n, p)
random graphs. In this example, we can consider any c ∈ [n]. Note that if c = 0 here,
then there is no corresponding vertex of interest in G2, and this example serves as a natural
boundary case between models in which nomination is possible and those in which it is
not. As we will see below in Theorem 23, c > 0 may still yield chance performance for
any nomination scheme, and the existence of a vertex correspondence does not necessarily
imply any performance guarantees.
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Remark 8 In addition to the edge-independent and conditionally edge-independent net-
work models considered above, the class of nominatable distributions contains a host of
other popular random graph models, including the Exponential Random Graph Model
(Frank and Strauss, 1986; Snijders et al., 2006; Robins et al., 2007), the preferential attach-
ment model (Albert and Barabási, 2002), and the Watts-Strogatz small world model (Watts
and Strogatz, 1998), among others. Indeed, if we consider the case where c = n = m, then
any parametric distribution on Gn × Gn is a nominatable distribution.

Remark 9 The core vertices C in a nominatable distribution correspond to the vertices
that can be sensibly identified across graphs. Note that this set does not require any further
structure, aside from the conditional independence of G1[J1] and G2[J2] given the parameter
θ. Thus, we are largely free to specify any notion of correspondence we please. Depending on
the application, this correspondence may be that of vertices playing similar structural roles,
belonging to the same community, or some more complicated application-specific notion of
correspondence. That is, the notion of cross-graph correspondence, and hence the notion
of vertex similarity, is largely left to the practitioner to specify when she or he specifies an
appropriate random graph model.

Given a pair of graphs (G1, G2) ∼ F (n,m)
c,θ ∈ Nn,m, if the vertices in C are known across

graphs then identifying the corresponding vertex to v∗ ∈ C is immediate from the vertex
labels. In practice, this information is unknown and the correspondences across graphs are
only partially observed or even unobserved entirely. To model this added uncertainty, we
consider passing the vertex labels of G2 through an obfuscating function.

Definition 10 Let (G1, G2) ∼ F
(n,m)
c,θ ∈ Nn,m. An obfuscating function o : V2 → W is a

bijection from V2 to W with W ∩Vi = ∅ for i = 1, 2. We call a set W satisfying W ∩Vi = ∅
for i = 1, 2 an obfuscating set, and for a given obfuscating set W , we let OW be the set of
all obfuscating functions o : V2 →W .

Here, o models the practical reality that the correspondence of labels across graph is un-
known a priori. Note that to ease notation, we shall write o(G2) (resp., o(g2) and o(Gm))
to denote the graph G2 (respectively, g2 and Gm) whose labels have been obfuscated via o.

Before defining a VN scheme, we must make one additional definition: for a graph
g ∈ Gm and u ∈ V (g), define

I(u; g) = {w ∈ V (g) s.t. ∃ an automorphism σ of g, s.t. σ(u) = w}.

Note that by taking σ to be the identity, we have u ∈ I(u; g). The vertices in I(u; g) are
those that are, in a sense, topologically equivalent to the vertex u in g, and hence, in the
absence of labels, indistinguishable from one another. As such, any sensibly-defined vertex
nomination scheme should view all vertices in I(u; g) as being equally good matches to a
vertex of interest v∗. Thus, a well-defined VN scheme should be “label-independent” in
the following sense: The set of ranks of each set of equivalent vertices (i.e., each I(u; g2))
needs to be invariant to the particular choice of obfuscating function; see Figure 3 for an
illustration of this consistency criterion. Formally, we have the following.

11
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Figure 3: An illustration of the “label-independence” property of VN schemes. If the blue
vertex in o1(g2) (resp., o2(g2)) is o1(u) (resp., o2(u)) for u ∈ V2, then we require
the ranks of I(o1(u); o1(g2)) (outlined in red in the network o1(g2) and colored
red/blue in the ordering provided by Φ) to be equal to the ranks of I(o2(u); o2(g2))
(outlined in grey in the network o2(g2) and colored grey/blue in the ordering
provided by Φ). Indeed, the set of ranks of o(I(u; g2)) via Φ is independent of
the choice of obfuscation function o.

Definition 11 (Vertex Nomination (VN) Scheme) For a set A, let TA denote the
set of all total orderings of the elements of A. For n,m > 0 fixed, obfuscating set W ,
and obfuscating function o ∈ OW , a vertex nomination scheme is a function Φ : Gn ×
o(Gm) × V1 → TW satisfying the following consistency property: If for each u ∈ V2, we
define rankΦ(g1,o(g2),v∗)

(
o(u)

)
to be the position of o(u) in the total ordering provided by

Φ(g1, o(g2), v∗), and we define rΦ : Gn × Gm ×OW × V1 × 2V2 7→ 2[m] via

rΦ(g1, g2, o, v
∗, S) = {rankΦ(g1,o(g2),v∗)

(
o(u)

)
s.t. u ∈ S},

then we require that for any g1 ∈ Gn, g2 ∈ Gm, v∗ ∈ V1, obfuscating functions o1, o2 ∈ OW

and any u ∈ V (g2),

rΦ
(
g1, g2, o1, v

∗, I(u; g2)
)

= rΦ
(
g1, g2, o2, v

∗, I(u; g2)
)

(2)

⇔ o2 ◦ o−1
1

[
I
(

Φ(g1, o1(g2), v∗)[k]); o1(g2)
)]

= I
(

Φ(g1, o2(g2), v∗)[k]; o2(g2)
)
, for all k ∈ [m],

where Φ(g1, o(g2), v∗)[k] denotes the k-th element (i.e., the rank-k vertex) in the ordering
Φ(g1, o(g2), v∗). We let Vn,m denote the set of all such VN schemes.
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Figure 4: An example of the consistency criterion, Equation (2), in action. The left
panel (a) shows a well-defined nomination scheme while the right panel (b)
shows an ill-defined scheme. The key in this example is that any scheme satis-
fying Equation (2) must have rΦ(g1, g2, o1, v

∗, {1}) = rΦ(g1, g2, o2, v
∗, {1});

rΦ(g1, g2, o1, v
∗, {3}) = rΦ(g1, g2, o2, v

∗, {3}); rΦ(g1, g2, o1, v
∗, {2}) =

rΦ(g1, g2, o2, v
∗, {2}); and rΦ(g1, g2, o1, v

∗, {4, 5}) = rΦ(g1, g2, o2, v
∗, {4, 5}).

Given (G1, G2) ∼ F
(n,m)
c,θ ∈ Nn,m realized as G1 = g1 and G2 = g2 with v∗ ∈ V1 the vertex

of interest in G1, a VN scheme Φ(·, ·, ·) produces a ranked list Φ(g1, o(g2), v∗) of the vertices
of o(g2) (i.e., the set W ), ordered according to how likely each vertex in V (o(g2)) is judged
to correspond to v∗, with optimal performance corresponding to

Φ(g1, o(g2), v∗)[1] =

{
o(v∗) if v∗ ∈ C
arbitrary v ∈W if v∗ /∈ C.

Less formally, one can think of a VN scheme as ranking the vertices of G2 according to how
well they resemble the vertex of interest v∗ under some task-dependent measure.

Remark 12 Note that if u ∈ V2 is such that I(u; g2) = {u} (i.e., u is topologically distinct
within g2), then Equation (2) implies that

rankΦ(g1,o1(g2),v∗)

(
o1(u)

)
= rankΦ(g1,o2(g2),v∗)

(
o2(u)

)
for any o1, o2 in OW . If I(u; g2) contains vertices in addition to u, then Equation (2) implies
that the set of vertices topologically equivalent to u (namely, those in I(u; g2)) must achieve
the same ranks via Φ under any two obfuscating functions; see Figure 4 for a simple example
of this consistency criterion in action.

Remark 13 (Relation to Fishkind et al. (2015); Lyzinski et al. (2016)) Recall
the one-graph vertex nomination task considered in earlier works (Coppersmith, 2014;
Fishkind et al., 2015; Lyzinski et al., 2016) and described in Section 1, in which vertices are
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considered interesting precisely when they belong to one of K communities in a stochas-
tic block model. While the two-graph VN formulation we consider in the present work
(modulo symmetries) involves a single vertex of interest across graphs, the framework is
easily extended to the setting where one may have multiple vertices of interest (and not of
interest), and in particular it can encode instances of the one-graph version VN problem.
To see this, consider an instance of the single-graph VN problem on graph G = (V,E)
where V is partitioned into K communities as V = V1 ∪ V2 ∪ · · · ∪ VK and each of the
communities is comprised of labeled (i.e., seed vertices, whose community memberships are
observed) and unlabeled (i.e., nonseed, whose community memberships are unobserved)
vertices, Vk = Sk ∪Uk, where Sk ⊆ Vk is the set of seeds from the k-th block and Uk ⊆ Vk is
the set of nonseed vertices. We can encode this one-graph VN instance as an instance of the
two-graph problem by encoding additional information in the graph G1. Construct a vertex
set V ′ = V ∪{`1, `2, . . . , `K}. The K new vertices {`k}Kk=1 will encode the label information
present in the graph G. Let E′ = E ∪ L, where L = {{`k, s} : s ∈ Sk, k ∈ [K]}, so that
edges connect from seed vertices in S = S1 ∪ S2 ∪ · · · ∪ SK to their corresponding label
vertices. Take G1 = (V ′, E′), and let the interesting vertices (and possible uninteresting
vertices) be given by the elements of S ⊆ V ′. The second graph G2 is then the subgraph
of G induced by the unlabeled vertices U ⊆ V passed through an appropriate obfuscating
function. This pair (G1, G2), with any s ∈ S1 chosen to be the interesting vertex, encodes
the label information present in the one-graph VN problem as well as the graph structure
of G, as required.

3. Bayes Error and Bayes Optimality in Vertex Nomination

Viewing a VN scheme as an information retrieval system suggests that a scheme that puts
o(v∗) close to the top of the nomination list is potentially of great practical value, even if it
fails to obtain perfect performance. Motivated by this, we adapt the recall-at-k metric from
classical information retrieval as a measure of performance. To wit, we define the level-k
loss function and error for VN as follows.

Definition 14 (VN loss function, level-k error) Let Φ ∈ Vn,m be a vertex nomination

scheme and o an obfuscating function. For (g1, g2) realized from (G1, G2) ∼ F (n,m)
c,θ ∈ Nn,m

with vertex of interest v∗ ∈ C, and for k ∈ [m − 1], we define the level-k nomination loss
via

`k(Φ, g1, g2, o, v
∗) = 1{rankΦ(g1,o(g2),v∗)(o(v∗)) ≥ k + 1}

= 1− 1{rankΦ(g1,o(g2),v∗)(o(v∗)) ≤ k}.
(3)

The level-k error of Φ at v∗ is then defined to be

Lk(Φ, v
∗) = E

(G1,G2)∼F (n,m)
c,θ

[`k(Φ, G1, G2, o, v
∗)]

= P
(G1,G2)∼F (n,m)

c,θ

[
rankΦ(G1,o(G2),v∗)(o(v∗)) ≥ k + 1

]
.

(4)
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From the definition of the level-k error in Eq. (4), it is immediate that

L1(Φ, v∗) = 1− P
(G1,G2)∼F (n,m)

c,θ

[
rankΦ(G1,o(G2),v∗)(o(v∗)) = 1

]
≥ L2(Φ, v∗) = 1− P

(G1,G2)∼F (n,m)
c,θ

[
rankΦ(G1,o(G2),v∗)(o(v∗)) ∈ {1, 2}

]
≥ L3(Φ, v∗) = 1− P

(G1,G2)∼F (n,m)
c,θ

[
rankΦ(G1,o(G2),v∗)(o(v∗)) ∈ {1, 2, 3}

]
...

≥ Lm−1(Φ, v∗) = 1− P
(G1,G2)∼F (n,m)

c,θ

[
rankΦ(G1,o(G2),v∗)(o(v∗)) ∈ [m− 1]

]
,

(5)

The level-1 loss function is analogous to the classical 0/1 loss function in classification, as
L1(Φ, v∗) is simply the probability that Φ fails to “classify” o(v∗) as the vertex corresponding
to v∗ in o(G2) (i.e., fails to rank it first). Considering 1 < k � m enables us to model the
practical loss associated with using a VN scheme to search for o(v∗) in o(V2) given limited
resources.

Remark 15 Unlike in the classification setting described in Section 1.2, where LF (hn) is a
random variable indexed by n, the nomination errors defined in Definition 14 are sequences
indexed by m and n and are not random. In the classical setting, LF (hn) denotes the
error rate of a classifier that classifies a single observation X based on n training instances
{(Xi, Yi)}ni=1. In the case of VN, the notion of labeled training instances is, at best, more
hazy. Indeed, in the present setting, the training data and test data are inseparable. The
graphs (or, more specifically, their edges) are the training data, and in the present work,
the graph orders n,m are better thought of as measuring problem dimension rather than
training set size.

Analogous to the classification literature, we are now able to define the concept of Bayes
optimality in the VN framework.

Definition 16 (Bayes error of a VN scheme) Let (G1, G2) ∼ F (n,m)
c,θ with vertex of in-

terest v∗ ∈ C (where we recall that C is the set of core vertices; see Definition 7), and let
o ∈ OW be an obfuscating function. For k ∈ [m − 1], we define the level-k Bayes optimal
VN scheme to be any element Ψ ∈ arg minΦ∈Vn,m Lk(Φ, v

∗), and define the level-k Bayes
error to be L∗k(v

∗) = Lk(Ψ, v
∗) for level-k Bayes optimal Ψ.

Now that we have a notion of Bayes error for VN, it is natural to ask whether an optimal
VN scheme exists analogous to the Bayes optimal classifier of Equation (1). Toward this

end, let (g1, g2) be realized from (G1, G2) ∼ F (n,m)
c,θ ∈ Nn,m, and consider a vertex of interest

v∗ ∈ C and obfuscating function o : V2 → W . In order to avoid the technical complexities

associated with graph automorphisms, in what follows we will assume that F
(n,m)
c,θ ∈ Nn,m

is supported on Gan×Gam, where Gan (resp., Gam) is the set of asymmetric graphs in Gn (resp.,
Gm). For analogous results in networks with symmetries, see Remark 18.

Letting ' denote graph isomorphism, for (g1, g2) ∈ Gn × Gm define the set

(g1, [o(g2)]) =
{(
g1, g̃2

)
s.t. o(g̃2) ' o(g2)

}
=
{(
g1, g̃2

)
s.t. g̃2 ' g2

}
.

(6)
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In order to define the Bayes optimal scheme, we will also need the following restriction of
(g1, [o(g2)]): for each w ∈W, we define

(g1,[o(g2)])w=o(v∗) =
{(
g1, g̃2

)
s.t. ∃ isomorphism σ s.t. o(g̃2) = σ(o(g2)), σ(w) = o(v∗)

}
.

(7)
We are now ready to define a Bayes optimal VN scheme.

For ease of notation, in the sequel we will write P
F

(n,m)
c,θ

or even simply P in place of

P
(G1,G2)∼F (n,m)

c,θ

where there is no risk of ambiguity. Let

g =
{(
g

(i)
1 , g

(i)
2

)}h
i=1

(8)

be such that the sets {(
g

(i)
1 , [o(g

(i)
2 )]

)}h
i=1

partition Gan × Gam. We will call this partition Pn,m, where we suppress dependence on g
and o for ease of notation. We will define a Bayes optimal scheme Φ∗ (independent of the
choice of g) piecewise on each element of this partition, and we will prove in Theorem 17
that Φ∗ is level-k Bayes optimal for all k ∈ [m− 1]:

Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[1] ∈ argmax

u∈W
P
[ (
g

(i)
1 , [o(g

(i)
2 )]

)
u=o(v∗)

∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

) ]
Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[2] ∈ argmax

u∈W\{Φ∗[1]}
P
[ (
g

(i)
1 , [o(g

(i)
2 )]

)
u=o(v∗)

∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

) ]
...

Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[m] ∈ argmax

u∈W\{∪j∈[m−1]Φ
∗[j]}

P
[ (
g

(i)
1 , [o(g

(i)
2 )]

)
u=o(v∗)

∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

) ]
,

(9)
with ties broken arbitrarily but deterministically. We refer the interested reader to Appendix
B.1 for discussion of the case where ties are allowed in the ranking function. For each element

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
\
{(
g

(i)
1 , g

(i)
2

)}
,

choose the permutation σ such that o(g2) = σ(o(g
(i)
2 )), and define

Φ∗(g
(i)
1 , o(g2), v∗) = σ(Φ∗(g

(i)
1 , o(g

(i)
2 ), v∗)).

Lastly, the following theorem shows that this scheme (uniquely defined up to tie-
breaking) is indeed Bayes optimal. A proof can be found in Appendix A.1.

Theorem 17 Let o ∈ OW be an obfuscating function, and let

g =
{(
g

(i)
1 , g

(i)
2

)}h
i=1

be such that the sets {(
g

(i)
1 , [o(g

(i)
2 )]

)}h
i=1
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partition Gan × Gam. Let Φ∗ = Φ∗g be as defined in Equation (9). Suppose that (G1, G2) ∼
F

(n,m)
c,θ ∈ Nn,m with F

(n,m)
c,θ supported on Gan×Gam, and consider a vertex of interest v∗ ∈ C.

We have that Lk(Φ
∗, v∗) = L∗k(v

∗) for all k ∈ [m − 1], partitions g, and all obfuscating
functions o.

Remark 18 The effect of symmetries on Theorem 23 is both subtle and cumbersome, as
the specific tie-breaking procedures used in the analogue of Eq. (9) are of great import. To
this end, consider g to be defined as above, and let T ∈ TW be the ordering that speci-
fies the (fixed but otherwise arbitrary) scheme by which elements within each I(v; o(g2))
are ordered. Informally, we will first rank the sets I(v; o(g2)) (rather than the individual
vertices), and then use T to rank within and across each of the I(v; o(g2)). Full detail is
provided below.

For each w ∈W and v ∈ V (g2), define

(g1, [o(g2)])I(w;o(g2))=o(v) =
{(
g1, g̃2

)
s.t. ∃ iso. σ with o(g̃2) = σ(o(g2)),

and σ(u) = o(v) for some u ∈ I(w; o(g2))
}
.

(10)

As above, we will define the Bayes’ optimal VN scheme on each element of the partition
provided via g. We first define a ranking Ψ of the sets{(

g
(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

}
indexed by u, and then will use T to give the total ordering from Ψ. To wit, for each i ∈ [k],
iteratively define (where ties in the argmax are broken in an arbitrary but nonrandom
manner)

Ψ
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[1]∈ argmax

I(u;o(g
(i)
2 ))⊂W

P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]

Ψ
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[2]∈ argmax
I(u;o(g

(i)
2 ))⊂W\{Ψ[1]}

P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]
...

Ψ
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[`]∈ argmax
Io(g2)(u)⊂W\{∪`−1

j=1Ψ[j]}
P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]
.

(11)
For each element

(g1, g2) ∈ (g
(i)
1 , [o(g

(i)
2 )]) \ {(g(i)

1 , g
(i)
2 )},

choose an isomorphism σ such that o(g2) = σ(o(g
(i)
2 )), and define

Ψ(g1, o(g2), v∗) = σ(Ψ(g
(i)
1 , o(g

(i)
2 ), v∗)).

Note that the choice of isomorphism σ does not impact the definition of Ψ.
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For each (g1, g2) ∈ Gn × Gm, we define a VN scheme Φ∗T from Ψ as follows:
1. Initialize Φ∗T (g1, o(g2), v∗) as an empty list; initialize j = 1;
2. If Ψ(g1, o(g2), v∗)[j] is nonempty, add the top ranked (according to T ) element from
Ψ(g1, o(g2), v∗)[j] to the end of Φ∗T (g1, o(g2), v∗), else do nothing; set j = j + 1 (mod
|Ψ(g1, o(g2), v∗)|)
3. Repeat Step 2 until there are no more vertices to add to Φ∗T (g1, o(g2), v∗).
If T [1] = o(v∗), then Φ∗T (g1, o(g2), v∗) is Bayes optimal (as in Theorem 17) in the sense of
Definition 16. See Appendix A.1 for details.

Example 1, continued. Let (G1, G2) ∼ R-ER(P ) for P,R ∈ Rn×n. Under mild model
assumptions, we have that limn→∞ L

∗
k(v
∗) = 0 for any fixed k. This is due to the fact that

the optimal graph matching of G1 to o(G2) will almost surely recover the true vertex labels
of o(G2) for n suitably large; i.e.,

argminQ∈Πn‖AQ−QB‖F = {In} with probability→ 1,

where Πn is the set of n × n permutation matrices, A is the adjacency matrix for G1 and
B the adjacency matrix for G2. More concretely, we have the following theorem adapted
to our present setting from Lyzinski and Sussman (2018). A proof sketch can be found in
Appendix B.

Theorem 19 Let (A,B) ∼ R-ER(P ), and for any fixed permutation matrix Q define the
random variable δ(Q) := ‖AQ−QB‖F . Define 0 < ε := mini,j;i 6=j 2Ri,jPi,j(1−Pi,j). There
exist positive constants c1, c2 such that if ε2 > c1 log(n)/n, then for sufficiently large n,

P (∃ Q ∈ Πn \ {In} s.t. δ(Q) ≤ δ(In)) ≤ 2 exp
{
−c2ε

2n
}
.

Similarly to the Bayes optimal scheme, we define the graph matching VN scheme, denoted
ΦM , separately on each element of Pn,n. For a given (g̃1, [o(g̃2)]) ∈ Pn,n, let (g1, g2) be an
fixed element in (g̃1, [o(g̃2)]). Define ΦM (g1, o(g2), v∗)[1] to be a fixed but arbitrary element
from {

r−1(v∗) s.t. Qr ∈ argminQ∈Πn ‖AQ−QB‖F
}
, (12)

where each r : W → V2 appearing above is a bijection and Qr its associated permutation
matrix (having identified both W and V2 with the set [n]). Define

R1 =
{
r : W → V2 s.t. r is a bijection with r−1(v∗) = ΦM (g1, o(g2), v∗)[1]

}
.

If j > 1, define ΦM (g1, o(g2), v∗)[j] to be any element of{
r−1(v∗) s.t. Qr ∈ argmin

Q∈Π(n)\{Qr:r∈
⋃j−1
`=1 R`}

‖AQ−QB‖F
}
,

where Rj is defined analogously to R1. For each element (g′1, g
′
2) ∈ (g̃1, [o(g̃2)]) \ {(g1, g2)},

choose a permutation σ such that o(g′2) = σ(o(g2)), and we then define ΦM (g1, o(g′2), v∗) =
σ(ΦM (g1, o(g2), v∗)). Theorem 19 states that under mild model assumptions, we have that
ΦM (G1, o(G2), v∗)[1] = o(v∗) asymptotically almost surely, and thus limn→∞ L1(ΦM , v

∗) =
0. Indeed, in this setting, for any fixed k ≥ 1, limn→∞ Lk(ΦM , v

∗) = 0. It is then immediate
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that limn→∞ L
∗
k(v
∗) = 0 in this model for any fixed k.

The next two examples serve to illustrate how the level-k Bayes error behaves in the
presence of stochastically indistinguishable vertices. In essence, we cannot hope to perform
better than randomly ordering stochastically equivalent vertices.

Example 3, continued. Let G1 and G2 be independent ER(n, p) graphs. Since the
vertices are stochastically indistinguishable within each of the two graphs, no nomination
scheme can do better than random chance in this model. Thus, with c = n, we have that
L∗k(v

∗) = (1− k/n)(1 + o(1)) for all k ∈ [n− 1] and all v∗ ∈ [n].

Example 4 Let p1, p2, q ∈ [0, 1] with 1 ≥ p1 > p2 ≥ 0 and q 6= p1, p2. Define the matrix

B =

(
p1 q
q p2

)
,

and let G1, G2 be independent SBM (2, B, bn) graphs where bn(i) = 1 if i ≤ n/2 (n even)
and bn(i) = 2 if i > n/2. With c = n and the correspondence equal to the identity function,
let (kn)∞n=2 be a nondecreasing divergent sequence satisfying kn ≤ n/2 for all n > 1, then
limn L

∗
kn

(v∗) = limn [(1− 2kn/n) ∨ 0] for all v∗. Indeed, L∗kn is asymptotically equivalent to
randomly ordering the n/2 vertices in G2 that are stochastically equivalent to v∗.

4. VN Consistency

With the definition of Bayes optimality and the Bayes optimal scheme in hand, it is now
possible to define a notion of consistent vertex nomination analogous to consistent clas-
sification in the pattern recognition literature. Before defining a consistent VN rule (i.e.,
a sequence of VN schemes), we must first define the notion of sequences of nominatable
distributions with nested cores. Such sequences of distributions are necessary in order to
speak sensibly of a sequence of vertex nomination problem instances.

Definition 20 Let F =
(
F

(n,mn)
cn,θn

)∞
n=n0

be a sequence of distributions such that F
(n,mn)
cn,θn

∈
Nn,mn for all n. We say that F has nested cores if for all n0 ≤ n1 < n2, if

(G1, G2) ∼ Fn1 = F
(n1,mn1 )

cn1 ,θn1
and (G̃1, G̃2) ∼ Fn2 = F

(n2,mn2 )

cn2 ,θn2
,

we have, letting C1 and C2 be the core vertices associated with Fn1 and Fn2 respectively,
and denoting the junk vertices J1,1, J2,1, J1,2, J̃2,2 analogously,

[i.] V (G1) = C1 ∪ J1,1 ⊂ V (G̃1) = C2 ∪ J2,1;

[ii.] V (G2) = C2 ∪ J1,2 ⊂ V (G̃2) = C2 ∪ J2,2;
[iii.] C1 ⊂ C2.

We are now ready to define a consistent VN rule.

Definition 21 Let

F =
(
Fn = F

(n,mn)
cn,θn

)∞
n=n0
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be a sequence of distributions such that Fn ∈ Nn,m(n) with nested cores satisfying limn→∞mn =
∞. For a given non-decreasing sequence (kn), we say that a VN rule Φ = (Φn,mn)∞n=n0

is
level-(kn) consistent at v∗ with respect to F if

lim
n→∞

Lkn(Φn,mn , v
∗)− L∗kn(v∗) = 0,

for any sequence of obfuscating functions of V2 with |V2| = mn. If a rule Φ is level-(kn)
consistent at v∗ for a constant sequence kn = k, n = 1, 2, . . . , then we say simply that Φ is
level-k consistent.

Remark 22 Equation (5) has an interesting implication for VN consistency in the setting
where L∗kn(v∗) → 0. In this case, level-(kn) consistency of a VN rule Φ implies that Φ is

(k′n)-consistent for all (k′n) such that lim inf k
′
n
kn
≥ 1. We conjecture that this implication

holds true for the case where L∗kn(v∗)→ c > 0, but this problem remains open at present.

Example 1, continued. Let F = (F
(n,n)
n,θn=(Pn,Rn)) be a sequence of Rn-ER(Pn) random

graph models in Nn,n for some sequence of probability matrices (Pn)∞n=n0
and correlation

matrices (Rn)∞n=n0
. Under mild model assumptions (see Theorem 19), the graph matching

vertex nomination rule ΦM defined in Equation (12) above is level-1 consistent, and hence
level-(kn) consistent for all (kn) sequences.

Example 3, continued. Let F = (F
(n,n)
n,θn=p) be a sequence of independent ER(n, p) ran-

dom graph models in N . All vertex nomination rules are level-(kn) consistent for all (kn)
sequences. This holds for all possible values of c ∈ [n] in the nested sequence of ER(n, p)
distributions, as all VN rules have effectively chance performance, regardless of core size
under this model.

We define the consistency of a VN rule with respect to a broad class of graph sequences,
and it is perhaps no surprise that there cannot be any level-(kn) universally consistent VN
rules. Indeed, even for constant sequences kn := k (i.e., those that are level-(kn) consistent
for all sequences of nominatable distributions F with nested cores) there cannot be any
level-k universally consistent VN rules. To prove this result, we will first establish an
analogue to the “arbitrary poor performance” theorems for classifiers (see, e.g., Devroye
et al., 1997, Theorem 7.1), which state that for a fixed n and m, any VN scheme can
be shown to have arbitrarily poor performance with respect to a well-chosen adversarial

distribution F
(n,m)
c,θ . Our theorem mirrors the classical classification literature, as for a given

classification rule, there exists “a sufficiently complex distribution for which the sample size
n is hopelessly small” (Devroye et al., 1997, pg. 111), so that a classification rule can
be made to perform arbitrarily poorly by selecting a suitably complex data distribution.
Nonetheless, in the case of classification, this model complexity and the implicit dependence
on n can be overcome asymptotically by a classification rule. That is, universally consistent
classifiers exist (see, for example, Stone, 1977; Steinwart, 2002; Tang et al., 2013). In
contrast, in the VN problem, the complexity of the model generating the data can also
grow in n, which effectively thwarts the ability of a VN rule to asymptotically overcome
a sequence of adversarial graph models. Formalizing the above, we arrive at the following
theorem, a proof of which can be found in Appendix A.2.
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Theorem 23 Let n and m be large enough to guarantee the existence of asymmetric graphs
g1 ∈ Gn and g2 ∈ Gm. Consider a VN scheme Φ ∈ Vn,m, obfuscating function o, and
strictly increasing sequence (εi)

m
i=1 satisfying εi ∈ (0, im). Then there exists a distribution

F
(n,m)
c,θ ∈ Nn,m over Gn × Gm and v∗ ∈ C such that for each k ∈ [c− 1],

L∗k(v
∗) ≤ εm−k < 1− k

m
< 1− εk < Lk(Φ, v

∗),

where 1− k
m represents the error probability of chance performance, i.e., the error probability

of a VN scheme in the independent Erdős-Rényi setting.

In the remainder of the section, we will suppress the dependence of m = mn on n. If we
consider sequences (εm,i)

m
i=1 satisfying the assumptions of Theorem 23 and limn εm,m−kn =

ε ∈ (0, 1) for a given (kn) satisfying kn = o(m), we arrive at the following Corollary, namely
that level-(kn) universally consistent VN schemes do not exist for any sequence (kn)∞n=n0

that does not grow as fast as m = |V (G2)|.

Corollary 24 Let ε ∈ (0, 1) be arbitrary, and consider a VN rule Φ = (Φn,m). For any
nondecreasing sequence (kn)∞n=n0

satisfying kn = o(m), there exists a sequence of distribu-

tions (F
(n,m)
c,θ ∈ Nn,m)∞n=n0

with nested cores such that

lim sup
n→∞

L∗kn(v∗) = ε < 1 = lim
n→∞

Lkn(Φn,m, v
∗).

Corollary 24 has a number of practical implications. Below, we will briefly outline two such
implications. Unlike in the classification setting, where universally consistent rules (e.g.,
k-nearest neighbors) are theoretically guaranteed to perform well in big-data settings, the
VN practitioner enjoys no such certainty. Indeed, in VN, the practitioner first needs to
identify the consistency class of a VN rule (i.e., the set of models for which the VN rule is
consistent) before applying it in real settings. Unfortunately, identifying and enumerating
these consistency classes is theoretically and practically nontrivial, and we are investigating
theory and heuristics for this at present. In a streaming data setting, the performance of a
universally consistent classifier will approach Bayes optimality for the distribution governing
the data, and the classifier will be guaranteed to successfully adapt itself to any changes
in the underlying data distribution. The lack of universal consistency in the VN setting
implies that his is not the case for graph data, as the performance, as the performance of a
consistent VN scheme in the streaming setting could precipitously decline in the presence
of distributional shifts in the data. Recognizing these shifts and their potential impact on
VN performance is paramount and is the subject of current research.

4.1. Global Consistency

We have just seen that no universally consistent VN schemes exist. This is a consequence of
the complexity of the models available when choosing a sequence of nominatable distribu-
tions. Indeed, nested-core nominatable sequences F allow for (nearly) arbitrary dependence
structure and model complexity as n increases: corresponding vertex behavior may be corre-
lated (see Example 1), independent (see Example 4), or negatively correlated (see Example
5) across networks. This model flexibility is in service of modeling the complexity of real

21



Lyzinski, Levin, and Priebe

world networks, but, as we will demonstrate below, restricting our model class to sim-
pler dependency structures still does not necessarily guarantee the existence of universally
consistent schemes.

It is thus natural to explore a weaker notion of consistency, namely consistency for a
sufficiently large family of nominatable sequences rather than for all nominatable sequences.

Definition 25 Let

F =

{
Fα =

(
F

(n,mn),α
cn,θn

)∞
n=n0

: α ∈ A
}

be a family of nominatable sequences, indexed by some set A. We say that VN scheme Φ is
level-(kn) F-globally consistent if Φ is level-(kn) consistent for every F ∈ F. We call such
a family level-(kn) globally consistent.

The question of the maximal family F for which a level-(kn) F-globally consistent rule exists
is of prime interest. While we cannot offer a satisfactory complete answer to that question
in the present work, we do offer some examples of globally consistent families.

Example 1 continued: In settings where corresponding vertices have correlated neighbor-
hood structures across networks, there is hope for finding globally consistent rules. In the
ongoing Example 1, we have seen a simple example of this in the R-ER(P ) model, in which
the matrix of correlations R encodes a correspondence across the two graphs. As mentioned
previously, Theorem 19 asserts that under some mild model assumptions on R and P in the
R-ER(P ) model, level-1 globally consistent VN rules exist (namely the graph matching VN
scheme). If F denotes the set of distributions obeying these model assumptions, then we
have that level-(kn) F-globally consistent rules exist for all sequences (kn). While we do not
expect the conditions of Theorem 19 to produce a maximal level-(kn) globally consistent
family for any given (kn), this example nonetheless provides an important intuition for the
properties such maximal families might possess.

Example 4 continued: The SBM provides a prime example of global consistency. Working
in the one-graph framework of Remark 13, under appropriate growth conditions on the
parameters of every sequence in family F, Theorem 6 in Lyzinski et al. (2016) implies the
existence of a likelihood-based nomination scheme that is level-(|U1|) globally consistent
for this family of models. Under similar growth conditions, Theorem 6 in Lyzinski et al.
(2014) implies the existence of a level-(|U1|) globally consistent scheme based on spectral
clustering, in which vertices are nominated based on their proximity to the vertex or vertices
of interest.

Remark 26 An attempt at systematically constructing a maximal globally consistent fam-
ily might begin by putting model restrictions onto elements of Nn,m. A natural restriction
to consider would be to demand that the models in F be nested in the following sense:

For F ∈ F, if (G1, G2) ∼ F
(n2,mn2 )

cn2 ,θn2
with n1 < n2, then (G1

[
[n1]

]
, G2

[
[mn1 ]

]
)
L
= (G′1, G

′
2)

where (G′1, G
′
2) ∼ F (n1,mn1 )

cn1 ,θn1
. This property would allow us to consider “streaming” network

models F, where for n1 < n2, if (g1, g2) is realized from (G1, G2) ∼ F (n2,mn2 )

cn2 ,θn2
, and (g′1, g

′
2) is

realized from (G′1, G
′
2) ∼ F (n1,mn1 )

cn1 ,θn1
then (g1, g2) can be constructed by appropriately adding
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n2 − n1 vertices to (g′1, g
′
2). Additionally, this would serve to mimic the nested nature of

the data in the classification consistency literature. However, as we will see in Example 5,
global consistency depends both on the dependency structure within each graph (as seen in
Theorem 23) and the vertex correspondence (i.e., the potential dependency structure across
graphs) encoded in the model.

4.2. Behavioral (In)consistency and Global (In)consistency

We suspect that if the vertices of interest have a common distinguishing probabilistic and/or
topological characteristic (e.g., correlated neighborhoods, common SBM block structure,
high network centrality, etc.) then a globally consistent rule may exist. Indeed, under
mild model assumptions, this is the case in the R -ER(P ) of Example 1; in the i.i.d. SBM
of Example 4 where the correspondence is the identity function (Lyzinski et al., 2014);
and in the i.i.d. ER of Example 3, to name a few. In each of these examples, there is
a stochastic/topological similarity (or in the ER case, uniformity) between corresponding
vertices across networks. In each, corresponding vertices behave similarly across networks.
While we suspect that this behavioral similarity is not sufficient for global consistency,
Example 5 demonstrates that behavioral inconsistencies within a family of nominatable
distributions can preclude the existence of globally consistent nomination rules.

Example 5 For each n, consider n-vertex random graphs G1∼ asym-SBM(2, B1, b
(1)
n ) inde-

pendent of G2∼ asym-SBM(2, B2, b
(2)
n ), where asym-SBM denotes the stochastic blockmodel

distribution restricted to have support on asymmetric graphs. This restriction is made to
avoid the unpleasantries of symmetries, and is asymptotically negligible as the SBMs con-
sidered in this example are asymptotically almost surely asymmetric.
Case 1. In this case, corresponding vertices behave similarly across networks. To wit, let
F = (Fn)∞n=n0

be the sequence of models where

B1 = B2 =

(
p1 q
q p2

)
, b(1)

n (i) = b(2)
n (i) =

{
1 if i ≤ n/2;

2 if i > n/2,

p1 6= p2, c = n, and the correspondence is the identity function. As stated before, in this
model L∗n/2(v∗) → 0 for all v∗ ∈ C. Without loss of generality, consider v∗ = v1 = u1 = 1.
If Φ is consistent with respect to F then

PFn(rankΦ(G1,o(G2),v1)(o(u1)) ≥ n/2 + 1)→ 0.

By the distributional equivalence of vertices within the same block, and the consistency
property in the definition of a VN scheme, for any u, v ∈ b−1

n (1), k ∈ [n] we have that

PFn(rankΦ(G1,o(G2),v1)(o(u)) = k) = PFn(rankΦ(G1,o(G2),v1)(o(v)) = k).

Letting this common value be set to αk,n (with βk,n defined similarly as the common value
of PFn(rankΦ(G1,o(G2),v1)(o(u)) = k) for u in block 2), we have that

n∑
i=1

PFn(rankΦ(G1,o(G2),v1)(o(ui)) = k) = 1 =
n(αk,n + βk,n)

2
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giving us that αk,n = 2/n− βk,n. Consistency implies that

n/2∑
k=1

αk,n → 1,

which implies that

n/2∑
k=1

αk,n =

n/2∑
k=1

(2/n− βk,n) = 1−
n/2∑
k=1

βk,n → 1,

implying
∑n/2

k=1 βk,n → 0. Therefore, for any u in block 2,

PFn(rankΦ(G1,o(G2),v1)(o(u)) ≥ n/2 + 1)→ 1.

Case 2. In this case, corresponding vertices behave differently across networks. To wit, let
F̃ = (F̃n)∞n=n0

be the sequence of models where

B1 =

(
p1 q
q p2

)
, B2 =

(
p2 q
q p1

)
, b(1)

n (i) = b(2)
n (i) =

{
1 if i ≤ n/2;

2 if i > n/2,

c = n, and the correspondence is the identity function. As in Case 1 considered above, in
this model L∗n/2(v∗) → 0 for all v∗ ∈ C, and, as above, consider v∗ = v1 = u1. If Φ is

consistent with respect to F̃ then

PF̃n(rankΦ(G1,o(G2),v1)(o(u1)) ≥ n/2 + 1)→ 0.

Note that if σ is the permutation such that

σ(i) =

{
i+ n/2 if i ≤ n/2;

i− n/2 if i > n/2,
,

then PFn(g1, g2) = PF̃n(g1, σ(g2)). Define

En = {(g1, g2) s.t. rankΦ(g1,o(g2),v1)(o(u1)) ≥ n/2 + 1}}

i.e., and Ẽn = {(g1, g2) s.t. (g1, σ(g2)) ∈ En}, i.e.,

Ẽn = {(g1, g2) s.t. rankΦ(g1,o(g2),v1)(o(un/2+1)) ≥ n/2 + 1}.

If Φ is consistent with respect to F we have that PFn(En)→ 0 which implies (as (g1, g2) ∈
En ⇔ (g1, σ(g2)) ∈ Ẽn) PF̃n(Ẽn)→ 0. If Φ is consistent with respect to F̃ then PF̃n(En)→ 0

and PF̃n(Ẽn) → 1. We arrive at a contradiction, and Φ cannot be (n/2)-consistent with

respect to both F and F̃.
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Although Example 5 may seem artificial, it is a simple representation of a common
phenomenon observed in network data. Often the same entity can behave quite differently
across networks; see Patsolic et al. (2017) for an example of this in social networks and
Chen et al. (2016b) for an example of this in connectomics. In such a setting, intuition says
that a universal scheme that works in both behavioral settings should not exist. Indeed,
at least in the simple block model setting considered above, we see that no such scheme
exists. Example 5 also highlights an important difference between the VN setting and the
more standard classification framework. We already noted that classification’s universal
consistency relies on the distribution not changing in n, whereas in VN the distributions
must vary with n (indeed, the graph sizes grow in n). Further, Example 5 shows that the
nonexistence of a universally consistent scheme is not simply a consequence of changing the
underlying distributional parameters with n, as these two SBM distributions are (essen-
tially) fixed, in that the matrix B does not change with n. In this example the “training
data” provided by G1 cannot be uniformly beneficial for a single VN scheme across the two
differing model settings we consider. Contrast this with the classification setting of Devroye
et al. (1997), where the training data uniformly provides progressively better estimates of
the class-conditional distributions. Indeed, the training data helps delineate potentially
interesting vertices from non-interesting ones in G2 in Case (1) for one VN scheme, and in
Case (2) for another VN scheme, but there does not exist a VN scheme that achieves this
desired class separation across both cases.

Remark 27 In the cases considered in Example 5, if we introduce positive edge-wise
correlation of

ρ ≤

√
min

(
p1(1− p2)

p2(1− p1)
,
p2(1− p1)

p1(1− p2)

)
into both Case 1 and Case 2, then under mild assumptions on the growth of p1 and p2, joint
consistency can be recovered via a USVT centered graph matching nomination scheme (see
Lyzinski and Sussman, 2018, for details). This example demonstrates that it is sometimes
possible to toggle a family of models to allow for global consistency. A note of caution is
needed, however, as in this particular example the correlation ρ is introducing a behavioral
consistency across networks that addresses the precise issue brought forth by the behavioral
inconsistency in Example 5. In other, more nuanced model families, we do not expect
the global-consistency modification (if it indeed exists) to be as straightforward as adding
additional edge-correlation into the model.

4.3. Vertex Nomination on Networks with Node Covariates

It is natural to ask if incorporating vertex features into the VN framework can resolve
the lack of universally consistent VN schemes. While straightforward to implement, the
ameliorating effect of features is significantly more nuanced. Before defining the VN scheme
with features, we need the following extension of I(v; g) for g ∈ Gn and v ∈ V (g). Letting
X be the space of vertex features for graphs in Gn, for g ∈ Gn, v ∈ V (g), and X ∈ X n we
define

Ĩ(v; g,X) = {u ∈ V (g) : ∃ automorphism τ of g s.t. τ(v) = u and Xu = Xv},

where Xv is the feature associated to v via X.
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Definition 28 (Vertex Nomination (VN) Scheme with features) Let X (resp., Y)
be the space of vertex features of graphs in Gn (resp., Gm). For n,m > 0 fixed, obfuscating
set W and obfuscating function o ∈ OW , a vertex nomination scheme with features is a
function

Φ : Gn ×X n × o(Gm)× Ym × V1 → TW
satisfying the following consistency property: If for each u ∈ V2, we define

rankΦ(g1,X,o(g2),o(Y ),v∗)

(
o(u)

)
to be the position of o(u) in the total ordering provided by Φ(g1, X, o(g2), o(Y ), v∗), and we
define rΦ : Gn ×X n × Gm × Ym ×OW × V1 × 2V2 7→ 2[m] via

rΦ(g1, X, o(g2), o(Y ), v∗, S) = {rankΦ(g1,X,o(g2),o(Y ),v∗)

(
o(u)

)
s.t. u ∈ S},

then we require that for any g1 ∈ Gn, g2 ∈ Gm, v∗ ∈ V1, X ∈ X n, Y ∈ Ym, obfuscating
functions o1, o2 ∈ OW and any u ∈ V (g2),

rΦ
(
g1, X, o1(g2), o1(Y ), v∗, Ĩ(u; g2, Y )

)
= rΦ

(
g1, X, o2(g2), o2(Y ), v∗, Ĩ(u; g2, Y )

)
. (13)

We let Ṽn,m denote the set of all such VN schemes.

It is immediate that if the features are sufficiently informative, consistency can be estab-
lished with features where it could not be without. Indeed, consider in Example 5 features
that encode the community memberships of a few vertices (e.g., a few vertices whose cor-
respondences across the two graphs are known a priori). Combined with spectral methods,
these would be sufficient for consistent VN under either behavior regime. It is also immedi-
ate that the fundamental idea presented in Example 5 has an analogue when vertex features
are available, as illustrated by the following example.

Example 6 For each n, consider n-vertex random graphs G1∼ asym-SBM(3, B1, b
(1)
n ) in-

dependent of G2∼ asym-SBM(3, B2, b
(2)
n ), where asym-SBM again indicates the stochastic

block model with support restricted to the asymmetric graphs.
Case 1. In this case, corresponding vertices behave similarly across networks. To wit, let
F = (Fn)∞n=n0

be the sequence of models where 3|n and

B1 = B2 =

p1 q q
q p2 q
q q p2

 , b(1)
n (i) = b(2)

n (i) =


1 if i ≤ n/3;

2 if i ∈ (n/3, 2n/3]

3 if i > n/3,

p1 6= p2, c = n, the correspondence is the identity function, and v∗ = 1 is in block 1.
Case 2. In this case, corresponding vertices behave differently across networks. To wit, let
F = (Fn)∞n=n0

be the sequence of models where 3|n and

B1 =

p1 q q
q p2 q
q q p2

 , B2 =

p2 q q
q p1 q
q q p2

 , b(1)
n (i) = b(2)

n (i) =


1 if i ≤ n/3;

2 if i ∈ (n/3, 2n/3]

3 if i > n/3,
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p1 6= p2, c = n, the correspondence is the identity function, and v∗ = 1 is in block 1.
Similar to Example 5, without features no VN scheme can be (n/3)-consistent for both
Cases 1 and 2 simultaneously. In a similar fashion, if we consider features X and Y defined
via

Xv = Yv =

{
1 if b(1)(v) = 1

−1 if b(1)(v) = 2, 3,

then joint consistency is achievable for both Cases 1 and 2, for example by relying on
features and ignoring graph structure. However, if we consider features X and Y defined
via

Xv = Yv =

{
1 if b(1)(v) = 1, 2

−1 if b(1)(v) = 3,

then joint consistency is again not achievable for both Cases 1 and 2 simultaneously.

This example demonstrates that features, in general, are not enough to ensure universal
consistency. Nevertheless, insofar as features supply additional information, they have the
potential to improve VN performance. A more thorough examination of the effect and
effectiveness of vertex features in VN is beyond the scope of this work, and is the subject
of current research.

5. Discussion

In this work, we have introduced a notion of consistency for the vertex nomination task that
better reflects the broad range of models under which VN may be deployed. Rather than
being restricted to the stochastic block model structure required in previous formulations
of the problem, our framework allows for arbitrary dependence structure both within and
between graph pairs, while encompassing the original SBM formulation of the problem.
Additionally, we have demonstrated how this framework relates to the well-studied notion
of Bayes optimal classifiers in the pattern recognition literature. Unlike in the classification
setting, we have seen that while Bayes optimal VN schemes always exist, no universally
consistent scheme exists. This fact is due essentially to the additional leeway provided
by the graph model, in which observing more vertices does not necessarily correspond to
receiving more information about the underlying distribution. This is in contrast to the
classification setting studied in Stone (1977) and others (Devroye et al., 1997), in which
observing more samples allows more accurate estimation of the underlying distribution and
class boundary. For this reason, one especially interesting line of investigation concerns the
nominatable distributions for which larger n does indeed correspond to more information
about the underlying graph distribution. A simple example of this is the initial formulation
of the vertex nomination problem, in which observing more vertices allows one to better
estimate the model parameters, including the block memberships, and thus more accurately
identify the vertices from the interesting block. We suspect that the essential property at
play here is that under models of this sort, each vertex is analogous to a sample from a single
distribution, though this may not be in and of itself a sufficient condition for consistency.
For example, in the case of (G1, G2) being i.i.d. or ρ-correlated marginally identical draws
from a random dot product graph model with the identity correspondence, each vertex
(along with its incident edges) is, in a sense, a noisy sample from the underlying latent
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position distribution. Hence, for large n, one can estimate the latent positions or their
distribution to arbitrary accuracy, and provided that the latent positions of the interesting
vertices are suitably separated from those of the rest of the graph, one should have VN
consistency for the collection of these latent position models.

More broadly, it would be good to better understand whether there exist families of
nominatable distributions F for which certain VN schemes are consistent, and precisely
how large these families can be made to be. In a similar vein, it would be of interest to
explore how the dependence structure allowed both within and between graphs influences
vertex nomination. In particular, if one rules out certain pathologically hard dependence
structures as considered in Example 5, can one obtain global consistency with respect to
this restricted set of distributions? We hope to explore these questions in future work.

We are also exploring alternative formulations of the VN problem and alternate formu-
lations of the VN loss function. While the extension to multiple vertices of interest in each
network G1 and G2 is straightforward, we are considering several generalizations of the VN
problem considered here. One formulation of prime interest in applications (especially in
connectomics and social networks) is as follows: given a collection of vertices of interest in
one graph, find those that play a similar structural (based on the topology of the underly-
ing network) or functional (based on vertex or edge covariates) role in the other graph. In
addition, as seen in Section 4.3 the impact on VN consistency (and the potential existence
of universally consistent schemes) when incorporating edge and vertex covariates into the
VN framework is of prime interest, and a deeper analysis of the VN inference task in this
framework is the subject of our current and future work.

The loss function considered in the present work is an analogue of the 0/1 recall-at-
k loss function in the information retrieval literature. Under this loss function, we have
shown that no universally consistent VN rule exists. It is natural to ask whether alternative
loss functions can be considered under which universal consistency is achievable. While
we conjecture that Example 5 will nearly always provide a counterexample to universal
consistency, this question remains open and is the subject of current research.
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Appendix A. Proofs of Main Results

Here we collect the proofs of the two main theorems in this work, Theorems 17 and 23.
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A.1. Theorem 17 and Remark 18

In this section, we present proofs of Theorem 17 and the claim in Remark 18.
Proof [Proof of Theorem 17]
Let Φ be an arbitrary VN scheme and Φ∗ the scheme defined at Eq. (9). Recall the
definition

(g1, [o(g2)])w=o(v) =
{(
g1, g̃2

)
s.t. ∃ iso. σ with o(g̃2) = σ(o(g2)), and σ(w) = o(v∗)

}
.

With g defined as in the theorem, note that for each i ∈ [h],

U ji,g : =
{

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
s.t. rankΦ(g1,o(g2),v∗)(o(v∗)) = j

}
=
{

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
s.t. Φ(g1, o(g2), v∗)[j] = o(v∗)

}
=
{

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
s.t. ∃ iso. σ s.t. σ(o(g

(i)
2 )) = o(g2) and

σ(Φ(g
(i)
1 , o(g

(i)
2 ), v∗)[j]) = o(v∗)

}
=
(
g

(i)
1 , [o(g

(i)
2 )]

)
Φ(g

(i)
1 ,o(g

(i)
2 ),v∗)[j]=o(v∗)

.

For each i ∈ [h] define pi,Φ ∈ [0, 1]m via

pi,Φ[j] := P
F

(n,m)
c,θ

(
U ji,g

∣∣ (g(i)
1 , [o(g

(i)
2 )])

)
.

Observe that for each i ∈ [h], it is immediate that pi,Φ∗ majorizes pi,Φ. To see this, note

that for any fixed ξ ∈ [m], letting qξi,Φ be (pi,Φ[j])ξj=1 with entries sorted in descending order,

we have pi,Φ∗ [j] ≥ qξi,Φ[j] for all j ∈ [ξ], and majorization follows immediately. With Pg
denoting the partition induced by g, this majorization property implies

Lξ(Φ, v
∗) = 1−

ξ∑
j=1

P
(
rankΦ(G1,o(G2),v∗)(o(v∗)) = j

)
= 1−

∑
Pg

ξ∑
j=1

P
[
U ji,g

∣∣ (g(i)
1 , [o(g

(i)
2 )])

]
P
[
(g

(i)
1 , [o(g

(i)
2 )])

]

=
∑
Pg

1−
ξ∑
j=1

pi,Φ[j]

P
[
(g

(i)
1 , [o(g

(i)
2 )])

]

≥
∑
Pg

1−
ξ∑
j=1

pi,Φ∗ [j]

P
[
(g

(i)
1 , [o(g

(i)
2 )])

]
= Lξ(Φ

∗, v∗).

As Φ, g, and o were arbitrary, the proof follows.
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Proof [Proof of Remark 18] Fix i, and let ξi = |Ψ(g
(i)
1 , g

(i)
2 , v∗)|. Note that for each j ≤ ξi,

the set of graphs (g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
for which Ψ(g1, g2, v

∗)[j] = I(o(v∗); o(g2)) is

precisely (
g

(i)
1 , [o(g

(i)
2 )]

)
Ψ(g

(i)
1 ,o(g

(i)
2 ),v∗)[j]=o(v∗)

.

If the tie breaking scheme T satisfies T [1] = o(v∗), then the set set of graphs (g1, g2) ∈(
g

(i)
1 , [o(g

(i)
2 )]

)
for which Φ∗T (g1, g2, v

∗)[j] = o(v∗) is then also(
g

(i)
1 , [o(g

(i)
2 )]

)
Ψ(g

(i)
1 ,o(g

(i)
2 ),v∗)[j]=o(v∗)

.

The proof proceeds as follows. For an arbitrary VN scheme Φ, and for each i ∈ [h],

U ji,g : =
{

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
s.t. rankΦ(g1,o(g2),v∗)(o(v∗)) = j

}
⊂
{

(g1, g2) ∈
(
g

(i)
1 , [o(g

(i)
2 )]

)
s.t. ∃ iso. σ s.t. σ(o(g

(i)
2 )) = o(g2) and

σ
(
I
(

Φ(g
(i)
1 , o(g

(i)
2 ), v∗)[j]; o(g

(i)
2 )
))
3 o(v∗)

}
=
(
g

(i)
1 , [o(g

(i)
2 )]

)
I
(

Φ(g
(i)
1 ,o(g

(i)
2 ),v∗)[j];o(g

(i)
2 )
)

=o(v∗)

We then have that T [1] = o(v∗) implies that

1− L`(Φ, v∗) =
∑
Pg

P

⋃̀
j=1

U ji,g

 ∣∣ (g(i)
1 , [o(g

(i)
2 )]

)P
[(
g

(i)
1 , [o(g

(i)
2 )]

)]

≤
∑
Pg

P

⋃̀
j=1

(
g

(i)
1 , [o(g

(i)
2 )]

)
I
(

Φ(g
(i)
1 ,o(g

(i)
2 ),v∗)[j];o(g

(i)
2 )
)

=o(v∗)

∣∣ (g(i)
1 , [o(g

(i)
2 )]

)P
[(
g

(i)
1 , [o(g

(i)
2 )]

)]

=
∑
Pg

∑
j∈Ji

P

[(
g

(i)
1 , [o(g

(i)
2 )]

)
I
(

Φ(g
(i)
1 ,o(g

(i)
2 ),v∗)[j];o(g

(i)
2 )
)

=o(v∗)
|
(
g

(i)
1 , [o(g

(i)
2 )]

)]
P
[(
g

(i)
1 , [o(g

(i)
2 )]

)]
≤
∑
Pg

∑
j∈Ji

P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
Ψ(g

(i)
1 ,o(g

(i)
2 ),v∗)[j]=o(v∗)

|
(
g

(i)
1 , [o(g

(i)
2 )]

)]
︸ ︷︷ ︸

=P
[
(g1,g2)∈

(
g
(i)
1 ,[o(g

(i)
2 )]

)
s.t. Φ∗T (g1,o(g2),v∗)[j]=o(v∗)

∣∣(g(i)1 ,[o(g
(i)
2 )]

)]
P
[(
g

(i)
1 , [o(g

(i)
2 )]

)]

≤ 1− L`(Φ∗T , v∗),

where Ji ⊂ [`] is the lexicographically smallest set of indices for which{(
g

(i)
1 , o(g

(i)
2 )]

)
I
(

Φ(g
(i)
1 ,o(g

(i)
2 ),v∗)[j];o(g

(i)
2 )
)

=o(v∗)

}
j∈Ji

are distinct.

30



On Consistent Vertex Nomination Schemes

A.2. Proof of Theorem 23

Proof Define a probability vector ξ ∈ Rm by ξi = εi − εi−1 for i ∈ [m − 1] (where we
take ε0 := 0), and let ξm = 1− εm−1. Consider asymmetric graphs (g1, g2) ∈ Gn × Gm and

construct a distribution F
(n,m)
c,θ ∈ N as follows.

i. c = n ∧m;

ii. The support of F
(n,m)
c,θ is (g1, [o(g2)]);

iii. For each k ∈ [m] define

RΦ,k =
{

(g1, g̃2) ∈ (g1, [o(g2)]) s.t. Φ(g1, o(g̃2), v∗)[k] = o(v∗)
}
.

Then we define P
F

(n,m)
c,θ

(RΦ,k) := ξ[k] with all elements of RΦ,k being assigned equal

mass under F
(n,m)
c,θ .

It is clear then that Lk(Φ, v
∗) = 1−εk > 1− k

m . It is also clear that L∗k(v
∗) ≤ εm−k. Indeed,

consider Φ′ which is defined by reversing the order provided by Φ; then Lk(Φ
′, v∗) = εm−k;

which completes the proof.

Appendix B. Proof of Theorem 19

Herein we will provide a sketch of the proof of Theorem 19 for completeness. Let Q be
a permutation matrix in Πn (with associated permutation σQ) that permutes precisely k
labels (i.e.,

∑
iQi,i = n− k), and let T denote the number of transpositions induced by σQ,

and note |T | ≤ k/2. By exploiting the cyclic structure of Q acting on vec(B), we have that

Eδ(Q)− Eδ(In) = E‖AQ−QB‖2F − E‖A−B‖2F ≥ ε
(

(n− k)k +

(
k

2

)
− T

)
.

Combining this expectation bound with the following McDiarmid-like concentration result
will yield the proof of Theorem 19.

Proposition 29 (Proposition 3.2 from Kim et al. (2002)) Let X1, . . . , Xn be a se-
quence of independent Bernoulli random variables where E[Xi] = pi. Let f : {0, 1}n 7→ <
be such that changing any Xi to 1−Xi changes f by at most

M = sup
i

sup
X1,...,Xn

|f(X1, . . . , Xi, . . . , Xn)− f(X1, . . . , 1−Xi, . . . , Xn)|.

Let σ2 = M2
∑

i pi(1− pi) and let Y = f(X1, . . . , Xn).

Then

Pr[|Y − E[Y ]| ≥ tσ] ≤ 2e−t
2/4

for all 0 < t < 2σ/M .
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Indeed, we see that XQ := δ(Q)− δ(In) is a function of NQ independent Bernoulli random

variables, where NQ = 3
((

k
2

)
+ k(n− k)− |T |

)
≤ 3kn. Let SQ be the sum of these NQ

Bernoulli random variables, and it follows that Var(SQ) ≤ NQ/4. By setting t = C εkn
σ for

an appropriate constant C > 0 in Proposition 29, we have for n sufficiently large

Pr (XQ ≤ 0) ≤ Pr (|XQ − E(XQ)| ≥ E(XQ)) ≤ 2exp
{
−Θ(ε2kn)

}
.

A union bound over all such Q (of which there are ≤ nk) and over k yields

P (∃ Q ∈ Πn \ {In} s.t. δ(Q) ≤ δ(In)) ≤
n∑
k=2

2exp
{
k log(n)−Θ(ε2kn)

}
= 2exp

{
−Θ(ε2n)

}
,

as desired.

B.1. VN Schemes with Ties

We can incorporate ties into the VN framework as follows. With ties allowed, any sensibly-
defined vertex nomination scheme should view all vertices in I(u; g) as being equally good
matches to a vertex of interest v∗. To this end, we will view VN schemes as providing weak
orderings of the elements of W :

Definition 30 For a set A, let WA denote the set of all weak orderings of the elements of
A (i.e., the set of all total orderings where ties are allowed). For x ∈ WA, let tx be any
maximum-length total ordering induced by x. For each a ∈ A, we define

rankx(a) = rank tx(a′),

where a = a′ according to the ordering x.

Example 7 If A = {a, b, c, d, e} and x : a > c > d = e > b, then t(x) : a > c > d > b, or
t(x) : a > c > e > b; in either case, rankx(a) = 1, rankx(c) = 2, rankx(d) = 3, rankx(e) = 3,
and rankx(b) = 4.

A well-defined VN scheme should be “label-independent” in the following sense: Each
element of each I(o(u); o(g2)) should be ranked identically by Φ, and these ranks should be
independent of the obfuscation function o. Formally, we have the following.

Definition 31 (Vertex Nomination (VN) Scheme) For n,m > 0 fixed, obfuscating
set W , and o ∈ OW , a vertex nomination scheme is a function Φ : Gn× o(Gm)×V1 →WW

satisfying the following properties: For all (g1, g2) ∈ Gn × Gm,

i. If u1 /∈ I(u2; g2) then either o(u1) > o(u2) or o(u1) < o(u2) in the ordering provided
by Φ(g1, o(g2), v∗);

ii. If u1 ∈ I(u2; g2) then o(u1) = o(u2) in the ordering provided by Φ(g1, o(g2), v∗);

iii. (consistency criterion) If o1, o2 ∈ OW , then for each v ∈ V (g2)

rankΦ(g1,o1(g2),v∗)(o1(v)) = rankΦ(g1,o2(g2),v∗)(o2(v)). (14)
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We let Vn,m denote the set of all such VN schemes.

The VN loss functions and level-k errors are defined as in the totally ordered setting.

To define the Bayes optimal scheme, let (g1, g2) be realized from (G1, G2) ∼ F (n,m)
c,θ ∈ Nn,m,

and consider a vertex of interest v∗ ∈ C and obfuscating function o : V2 → W . Letting '
denote graph isomorphism, for (g1, g2) ∈ Gn × Gm define the set

(g1, [o(g2)]) =
{(
g1, g̃2

)
s.t. o(g̃2) ' o(g2)

}
=
{(
g1, g̃2

)
s.t. g̃2 ' g2

} (15)

In order to define the Bayes optimal scheme, we will also need the following restrictions of
(g1, [o(g2)]): for each w ∈W, and v ∈ V2 we define

(g1, [o(g2)])I(w;o(g2))=o(v) =
{(
g1, g̃2

)
s.t. ∃ iso. σ with o(g̃2) = σ(o(g2)),

and σ(u) = o(v) for some u ∈ I(w; o(g2))
}
.

(16)

Note that for a fixed v, if {I(w; o(g2))}w∈W ′ partitions W (for some suitable W ′ ⊆ W ),
then {

(g1, [o(g2)])I(w;o(g2))=o(v)

}
w∈W ′

partitions (g1, [o(g2)]). We are now ready to define a Bayes optimal VN scheme.

For ease of notation, in the sequel we will write P
F

(n,m)
c,θ

or even simply P in place of

P
(G1,G2)∼F (n,m)

c,θ

where there is no risk of ambiguity. Let

g =
{(
g

(i)
1 , g

(i)
2

)}h
i=1

(17)

be such that the sets {(
g

(i)
1 , [o(g

(i)
2 )]

)}h
i=1

partition Gn×Gm. We will call this partition Pn,m, where we suppress dependence on g and
o for ease of notation. We will define a Bayes optimal scheme Φ∗ = Φ∗g piecewise on each
element of this partition. For each i ∈ [h], define (where ties in the argmax’s are broken in
an arbitrary but nonrandom manner)

Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[1]∈ argmax

I(u;o(g
(i)
2 ))⊂W

P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]

Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[2]∈ argmax
I(u;o(g

(i)
2 ))⊂W\{Φ∗[1]}

P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]
...

Φ∗
(
g

(i)
1 , o(g

(i)
2 ), v∗

)
[`]∈ argmax
Io(g2)(u)⊂W\{∪`−1

j=1Φ∗[j]}
P
[(
g

(i)
1 , [o(g

(i)
2 )]

)
I(u;o(g

(i)
2 ))=o(v∗)

∣∣∣∣ (g(i)
1 , [o(g

(i)
2 )]

)]
(18)
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so that the ranking provided by Φ∗ is (where Φ∗(g
(i)
1 , o(g

(i)
2 ), v∗)[i] = {u(i)

1 , . . . , u
(i)
ni })

u
(1)
1 = u

(1)
2 = · · · = u(1)

n1︸ ︷︷ ︸
n1

> u
(2)
1 = u

(2)
2 = · · · = u(2)

n2︸ ︷︷ ︸
n2

> · · · > u
(`)
1 = u

(`)
2 = · · · = u(`)

n`︸ ︷︷ ︸
n`

.

For each element

(g′1, g
′
2) ∈ (g

(i)
1 , [o(g̃

(i)
2 )]) \ {(g(i)

1 , g
(i)
2 )},

choose any isomorphism σ such that o(g′2) = σ(o(g
(i)
2 )), and define

Φ∗(g1, o(g′2), v∗) = σ(Φ∗(g
(i)
1 , o(g

(i)
2 ), v∗)),

noting that Φ∗(g1, o(g′2), v∗) is independent of the choice of isomorphism σ. The next
proposition states that, modulo ties, the definition of Φ∗g is independent of the choice of g.

Proposition 32 Let o ∈ OW be an obfuscating function, and let

g =
{(
g

(i)
1 , g

(i)
2

)}h
i=1
6= g̃ =

{(
g

(i)
1 , g̃

(i)
2

)}h
i=1

be such that the sets {(
g

(i)
1 , [o(g

(i)
2 )]

)}h
i=1

,
{(
g

(i)
1 , [o(g̃

(i)
2 )]

)}h
i=1

partition Gn×Gm. Suppose that (G1, G2) ∼ F (n,m)
c,θ ∈ Nn,m, and consider a vertex of interest

v∗ ∈ C. Then there exists a fixed strategy for breaking ties in the argmax’s for Φ∗g and Φ∗g̃
that yields Φ∗g = Φ∗g̃. In particular, under any such tie-breaking strategy, we have that
Lk(Φ

∗
g, v
∗) = Lk(Φ

∗
g̃, v
∗) for all k ∈ [m− 1].

Lastly, the following theorem shows that this scheme (or schemes) is indeed Bayes
optimal. The proof is analogous to the totally ordered setting and is thus omitted.

Theorem 33 Let o ∈ OW be an obfuscating function, and let

g =
{(
g

(i)
1 , g

(i)
2

)}h
i=1

be such that the sets {(
g

(i)
1 , [o(g

(i)
2 )]

)}h
i=1

partition Gn × Gm. Let Φ∗ = Φ∗g be as defined in Equation (9). Suppose that (G1, G2) ∼
F

(n,m)
c,θ ∈ Nn,m, and consider a vertex of interest v∗ ∈ C. We have that Lk(Φ

∗, v∗) = L∗k(v
∗)

for all k ∈ [m− 1] and all obfuscating functions o.
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P. Erdős and A. Rényi. On random graphs, I. Publicationes Mathematicae, 6:290–297, 1959.
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