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Abstract

In this paper, we introduce a learning algorithm, boosted kernel ridge regression (BKRR),
that combines L2-Boosting with the kernel ridge regression (KRR). We analyze the learning
performance of this algorithm in the framework of learning theory. We show that BKRR
provides a new bias-variance trade-off via tuning the number of boosting iterations, which
is different from KRR via adjusting the regularization parameter. A (semi-)exponential
bias-variance trade-off is derived for BKRR, exhibiting a stable relationship between the
generalization error and the number of iterations. Furthermore, an adaptive stopping rule
is proposed, with which BKRR achieves the optimal learning rate without saturation.

Keywords: learning theory, kernel ridge regression, boosting, integral operator

1. Introduction

Supervised learning aims at learning function relationships between input and output vari-
ables, based on input-output pair samples. Kernel ridge regression (KRR) is a classical and
standard approach for supervised learning due to its easy implementation and theoretical
optimality (Evgeniou et al., 2000; Caponnetto and De Vito, 2007; Steinwart et al., 2009;
Lin et al., 2017) and thus has triggered enormous research activities in the statistical and
machine learning communities (Bauer et al., 2007; Caponnetto and De Vito, 2007; Cucker
and Zhou, 2007; Smale and Zhou, 2007; Steinwart et al., 2009; Lin et al., 2017). However,
KRR suffers from a so-called saturation phenomenon (Gerfo et al., 2008) meaning that its
learning rate cannot be improved once the target (regression) function goes beyond a certain
level of regularity. Furthermore, there lacks efficient parameter-selection strategies for KRR
to realize its theoretically optimal learning performance. Many users’ spirit is dampened
by these drawbacks and then turns to other learning algorithms such as the kernel-based
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gradient descent (Yao et al., 2007), kernel-based conjugate gradient descent (Blanchard and
Krämer, 2016) and kernel-based partial least squares (Lin and Zhou, 2018b).

Boosting, originally proposed by Schapire (1990); Freund (1995), is devoted to producing
a strong composite learner from a given class of weak learners. Some boosting algorithms
can be interpreted from a viewpoint of statistical gradient descent to solve optimization
problems with different loss functions (Friedman et al., 2000; Friedman, 2001). In this way,
a special boosting algorithm, L2-Boosting, was interpreted as an iterative least squares
fitting of residuals (Friedman, 2001; Bühlmann and Yu, 2003). L2-Boosting was utilized by
Park et al. (2009) to improve the learning performance of Nadaya-Watson kernel estimators
by overcoming saturation and was also proved in Bühlmann and Yu (2003) to be almost over-
fitting resistant by exhibiting its exponential bias-variance trade-off for linear regression,
reducing the difficulty of model selection.

The aim of this paper is to combine L2-Boosting with KRR to overcome the saturation
and reduce the difficulty of model selection of KRR. Let (HK , ‖ · ‖K) be the reproducing
kernel Hilbert space (RKHS) induced by a Mercer kernel K on a metric (input) space X
and D = {(xi, yi)}Ni=1 ⊂ X × Y be a sample with Y ⊆ R the output space. KRR is defined
by

f
(1)
D,λ := arg min

f∈HK

 1

|D|
∑

(x,y)∈D

(f(x)− y)2 + λ‖f‖2K

 , (1)

where λ > 0 is a regularization parameter and |D| = N is the cardinality of D. Implement-
ing KRR needs the inverse of the matrix K+λ|D|I and thus requires O(|D|3) computational

complexity in time for a fixed λ, where K is the kernel matrix (K(xi, xj))
|D|
i,j=1 and I is the

|D| × |D| identity matrix. The performance of KRR is sensitive to regularization parame-
ters, which need be carefully tuned to achieve satisfactory learning rates close to the optimal
one.

Boosted KRR (BKRR) studied in this paper iteratively defines an estimator f
(k)
D,λ by

running KRR on the data set {(xi, yi− f (k−1)D,λ (xi))}(xi,yi)∈D, whose outputs are residuals of

the previous iteration f
(k−1)
D,λ . To be detailed, the estimator at the k-th boosting iteration

is given by

f
(k)
D,λ := f

(k−1)
D,λ + f

(k)�
D,λ , k > 1, (2)

where

f
(k)�
D,λ := arg min

f∈HK

 1

|D|
∑

(x,y)∈D

{
f(x)− [y − f (k−1)D,λ (x)]

}2
+ λ‖f‖2K

 , k > 1. (3)

An advantage of BKRR over KRR is the flexibility of choosing some relatively large regular-
ization parameter λ. Satisfactory learning rates are achieved by the boosting iterations. As

the inputs {xi}Ni=1 of KRR and f
(k)�
D,λ are the same and the inverse of K+λ|D|I has already

been derived in the first step, it only requires O(|D|2) computational complexity to solve
(3). Then, BKRR with k iterations only needs O(|D|3 + k|D|2) computational complexity,
which does not bring additional computational burden over KRR.

As pointed out by Friedman (2001), boosting leads to over-fitting if the weak learners
are already over-fitting. So the regularization parameter of (1) must be relatively large,

2



Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping

implying under-fitting of the original KRR. BKRR then tunes k to reduce the bias, which
enlarges the variance, reflecting the bias-variance trade-off. Our first main result is to
deduce a (semi-)exponential bias-variance trade-off of BKRR: the bias of BKRR decreases
exponentially with respect to k, while the variance increases by an exponentially diminishing
amount as k gets large for the in-sample estimate and by an algebraic diminishing amount
with respect to k for the out-sample estimate. The (semi-)exponential bias-variance trade-
off shows that BKRR can reach its optimal learning performance with a relatively small
number of iterations. It also exhibits that moderately large k does not degrade the learning
performance of BKRR very much, making the model selection much easier than that of
other iteration-based learning algorithms such as kernel-based gradient descent, kernel-
based conjugate gradient descent and kernel-based partial least squares for which only
polynomial bias-variance trade-off is obtained (Yao et al., 2007; Blanchard and Krämer,
2016; Lin and Zhou, 2018b).

The exponential bias-variance trade-off does not mean that over-fitting never happens
for BKRR, and it requires a stopping rule of high quality. Our second main result is to
propose an adaptive stopping rule based on an empirical effective dimension (Lu et al.,
2018; Mücke, 2018), with which we prove that BKRR achieves the optimal learning rate
without saturation. In a nutshell, our analysis shows that BKRR reduces the difficulty of
model selection of KRR in terms of providing a stable relationship between the learning
performance and model selection. Furthermore, BKRR with an adaptive stopping rule
can improve the learning performance of KRR via overcoming the saturation. The main
tools of our analysis are detailed spectral analysis of BKRR, the recently developed integral
operator approach (Lin et al., 2017; Guo et al., 2017) and a tight bound for the number of
iterations of the stopping rule.

2. Main Results

Our analysis is conducted in a standard learning theory framework for regression (Cucker
and Zhou, 2007), in which the samples in D are independently drawn according to ρ, a Borel
probability measure on Z := X × Y. The purpose of regression is to derive an estimator
based on D to approximate the regression function fρ(x) :=

∫
Y ydρ(y|x) with ρ(·|x) being

the conditional distribution of ρ induced at x ∈ X . Let ρX be the marginal distribution of
ρ on X and L2

ρX
be the space of ρX square integrable functions endowed with norm ‖ · ‖ρ.

Throughout this paper, we assume X is compact, which implies κ :=
√

supx∈X K(x, x) <
∞.

2.1. Optimal Learning Rates

Before presenting the exponential bias-variance trade-off and stopping rule, we derive op-
timal learning rates for BKRR with a priori knowledge involving λ and k to show the
necessity of our studies. For this purpose, some assumptions on the decay of the outputs,
regularity of the regression function and capacity of HK are needed. To be detailed, we
assume

∫
Y y

2dρ <∞ and the following output decay condition∫
Y

(
e
|y−fρ(x)|

M − |y − fρ(x)|
M

− 1

)
dρ(y|x) ≤ γ2

2M2
, ∀x ∈ X , (4)
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where M and γ are positive constants. Condition (4) is satisfied if the noise is uniformly
bounded, Gaussian or sub-Gaussian (Caponnetto and De Vito, 2007). In particular, if
|y| ≤ B almost surely for some B > 0, then (4) holds with γ/2 = M = B.

Let LK : HK → HK (or L2
ρX
→ L2

ρX
) be the integral operator defined by

LKf =

∫
X
Kxf(x)dρX(x)

with Kx := K(·, x). We assume that fρ satisfies the standard regularity condition

fρ = LrKhρ, for some r > 0 and hρ ∈ L2
ρX
, (5)

where LrK is the r-th power of LK : L2
ρX
→ L2

ρX
. The regularity condition (5) describes

the regularity of fρ and has been adopted in a large literature to quantify learning rates
for some algorithms (Smale and Zhou, 2007; Bauer et al., 2007; Caponnetto and De Vito,
2007; Caponnetto and Yao, 2010; Shi et al., 2011; Blanchard and Krämer, 2016; Guo et al.,
2017; Lin et al., 2017; Lin and Zhou, 2018b; Ying and Zhou, 2017) .

We also introduce the effective dimension N (λ) := Tr[(LK + λI)−1LK ] to measure the
capacity of HK . Here Tr(A) denotes the trace of an operator A with a detailed definition
to be given in Appendix B. In particular, we assume with a parameter 0 < s ≤ 1 and a
constant C0 > 0 that

N (λ) ≤ C0λ
−s, ∀λ > 0. (6)

Condition (6) with s = 1 is always satisfied by taking C0 = Tr(LK) ≤ κ2. For 0 < s <
1, it was shown in Guo et al. (2017, Page 7) that (6) is slightly more general than the
eigenvalue decaying assumption in the literature (Caponnetto and De Vito, 2007) and has
been extensively employed to derive fast learning rates for some algorithms (Caponnetto
and De Vito, 2007; Blanchard and Krämer, 2016; Guo et al., 2017; Lin et al., 2017; Lin and
Zhou, 2018a,b). With these assumptions, we present in the following theorem the optimal
learning rates for BKRR.

Theorem 1 Let 0 < δ < 1, k ≤
√
|D| and λ =

(
k2/|D|

)1/(2min{k,r}+s)
with r > 3/2 and

0 < s ≤ 1. Under assumptions (4), (5) and (6), with confidence 1− δ there holds∥∥∥f (k)D,λ − fρ
∥∥∥
ρ
≤ C̃(k2/|D|)

min{k,r}
2min{k,r}+s log3

8

δ
, (7)

where C̃ is a constant independent of |D|, k or δ.

For an iteration number k ≥ r independent of |D|, Theorem 1 presents an optimal
learning rate for BKRR since (7) achieves the minimax lower bound established by Capon-
netto and De Vito (2007). However, as shown in (7), too large k may worsen the learning
rate. An extreme case is k =

√
|D| which leads to a constant upper bound. In a nutshell,

small k (smaller than r) suffers from the saturation but too large k leads to slow learning
rates. Thus, it is important to derive an adaptive stopping rule on selecting k. Further-
more, Theorem 1 implies that as long as k ≥ r, the boosting iteration with large k does not
have any benefits in the learning process, which contradicts the boosting theory developed
in Friedman (2001); Bühlmann and Yu (2003) at first glance. Thus, it requires a more
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delicate analysis to explore the power of iterations, especially when k ≥ r. Based on this
observation, we conduct a detailed bias-variance analysis in the following subsection and
find a so-called exponential bias-variance trade-off of BKRR.

Remark 2 In Theorem 1 as well as Theorem 4 below, we require r > 3
2 . We believe

that similar optimal learning rates can be derived for r ≥ 1/2 by using the technique in
Caponnetto and Yao (2010); Guo et al. (2017). Since one of the main advantages of BKRR
is to conquer the saturation, we focus on relatively large r in this paper. Throughout this
paper, we assume r ≥ 1/2, implying fρ ∈ HK . For 0 < r < 1

2 , i.e. fρ /∈ HK , like
KRR (Caponnetto and Yao, 2010; Chang et al., 2017), BKRR usually requires additional
unlabeled data to achieve the optimal learning rates.

2.2. Exponential Bias-variance Trade-off

One of the most important advantages of L2 boosting in linear regression is its almost over-
fitting resistance (Bühlmann and Yu, 2003) meaning that for the in-sample error estimate,
the bias decreases exponentially fast and the variance increases with exponentially dimin-
ishing terms as k increases. In this subsection, we will show that BKRR also possesses this
property and show the power of boosting iteration for k ≥ r.

Let SD : HK → R|D| be the sampling operator (Smale and Zhou, 2004) defined by

SDf := (f(x))(x,y)∈D.

Its scaled adjoint STD : R|D| → HK (or R|D| → L2
ρX

) is given by

STDc :=
1

|D|

|D|∑
i=1

ciKxi , c := (c1, c2, . . . , c|D|)
T ∈ R|D|.

Define a discretization of the integral operator LK by

LK,Df := STDSDf =
1

|D|
∑

(x,y)∈D

f(x)Kx.

Our bias-variance trade-off will be stated in terms of some quantities involving the difference
between the compact and positive operators LK and LK,D given by

QD,λ := ‖(LK,D + λI)−1/2(LK + λI)1/2‖, RD := ‖LK,D − LK‖HS (8)

and the difference between STDyD and LK,Dfρ given by

PD,λ :=
∥∥∥(LK + λI)−1/2(LK,Dfρ − STDyD)

∥∥∥
K
, (9)

where ‖A‖HS denotes the Hilbert-Schmidt norm of a Hilbert-Schmidt operator A, ‖ · ‖
denotes the operator norm, yD := (y1, . . . , y|D|)

T and I is the identity operator. We refer
the readers to Appendix B for some basic definitions of linear operators. Let {(σxi , φxi )} be a
set of normalized eigenpairs of LK,D with the eigenfunctions {φxi }i forming an orthonormal
basis of HK and the eigenvalue sequence {σxi } non-increasing. Since LK,D is a positive
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operator of rank at most |D|, we have σxk = 0 for k ≥ |D|+1. Denote by σxmin the minimum

positive eigenvalue of LK,D. Denote by ‖f‖2D := 1
|D|
∑|D|

i=1 f
2(xi). The following theorem

shows a trade-off between the bias and variance of BKRR under the ‖ · ‖D semi-norm.

Theorem 3 Let k ≥ 1. Then, under condition (5) with r ≥ 1/2, there holds∥∥∥f (k)D,λ − fρ
∥∥∥
D
≤ (r − 1/2)κ2r−3‖hρ‖ρ√

k
λ1/2RD +QD,λPD,λ (10)

+ QD,λPD,λ
k−1∑
j=1

(
λ

σxmin + λ

)j−1/2
+ 4(Q2

D,λ + 1)λk‖hρ‖ρ
{

(σxmin + λ)r−k, if k > r,
κ2r−2k + λr−k, if k ≤ r.

The dominant terms on the right-hand side of (10) are the third and fourth terms and we
call them the variance and bias for BKRR, respectively. For 0 < λ ≤ 1, it follows from The-
orem 3 that the bias of BKRR decreases exponentially fast while the variance increases with
exponentially diminishing terms as k increases, showing the exponential bias-variance trade-
off. Bound (10) also exhibits a sudden change of the rate of bias decay when k is around

the regularity level r of fρ. Its rate drops from λk to λk(σxmin + λ)r−k = λr
(

λ
σx
min+λ

)k−r
.

Since Proposition 17 below shows that the variance of KRR can be bounded by QD,λPD,λ,

the additional term in the variance of BKRR, QD,λPD,λ
∑k−1

j=1

(
λ

σx
min+λ

)j−1/2
, implies that

BKRR degrades the learning performance of KRR if their regularization parameters are
identical. This coincides with the consensus that boosting is not worthwhile if the learner
is already complex. Hence, in BKRR, a large λ should be chosen to guarantee under-fitting
of the original KRR, i.e., large bias and small variance. The trade-off can be achieved via
an appropriately tuned k such that the bias and variance are close.

Theorem 3 presents an error estimate for BKRR in terms of the empirical semi-norm
‖ · ‖D. In the following theorem, we present error analysis for BKRR in terms of the ‖ · ‖ρ
norm.

Theorem 4 Let k ≥ 1. Assume condition (5) with r > 3/2. Then there holds

‖f (k)D,λ − fρ‖ρ ≤ 2QD,λ(r − 1/2)κ2r−3‖hρ‖ρλ1/2RD + 2kQ2
D,λPD,λ

+ QD,λλk‖hρ‖ρ
{
λr−k + κ2r−2k−1(κ+ λ

1
2 ), if k ≤ r,

2(σxmin + λ)r−k, if k > r.
(11)

Different from the exponential bias-variance trade-off of the error estimate in terms of
the ‖ · ‖D semi-norm shown in Theorem 3, there exhibits a semi-exponential bias-variance
trade-off for the error estimate in terms of the ‖·‖ρ norm. To be detailed, the bias decreases
exponentially, while the variance increases polynomially as k increases. Based on Theorem
3 and Theorem 4, we can derive the following corollary.

Corollary 5 Under condition (5) with r ≥ 1/2, ‖LK,Df (k)D,λ−S
T
DyD‖K decreases with respect

to k. Moreover,

lim
k→∞

‖LK,Df (k)D,λ − S
T
DyD‖K ≤ λ

1
2PD,λQD,λ (12)

6



Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping

and

lim
k→∞

∥∥∥f (k)D,λ − fρ
∥∥∥
D
≤

(
1 +

(σxmin + λ)1/2λ1/2

σxmin

)
PD,λQD,λ. (13)

Corollary 5 exhibits an almost over-fitting resistance phenomenon of BKRR (neglecting
the constant) for some kernels, since the sample error of KRR is bounded by QD,λPD,λ
(see Proposition 17 below). The behavior of the boosting iteration in (13) is different from
that of the kernel-based (conjugate) gradient descent (Blanchard and Krämer, 2016; Lin
and Zhou, 2018a), where the generalization error becomes∞ for an arbitrary kernel, as the
iteration number tends to infinity.

2.3. Adaptive Stopping Rule

We present in this subsection an adaptive stopping rule for BKRR to guarantee its optimal
learning rates. To introduce the stopping rule, a user-friendly measurement of the capacity,
empirical effective dimension (Lu et al., 2018; Mücke, 2018), defined by

ND(λ) = Tr[(LK,D + λI)−1LK,D] = Tr[(λ|D|I + K)−1K] (14)

is needed. Denote

WD,λ = 16
√
2(κ2+κ+1)(κM+γ)√

|D|

(
(
√
|D|λ+9)

√
max{ND(λ),1}
|D|λ + 1

)
(
√
|D|λ+9)

√
max{ND(λ),1}√
|D|λ

.(15)

If δ ∈ (0, 1) is the parameter corresponding to the confidence level, the boosting iteration
will stop at the first positive integer k̂ := k̂D,λ,δ,K satisfying

‖LK,Df (k̂)D,λ − S
T
DyD‖K ≤ λ

1
2WD,λ log4

16

δ
. (16)

Since

LK,Df
(k̂)
D,λ − S

T
DyD =

1

|D|

|D|∑
i=1

(f
(k̂)
D,λ(xi)− yi)Kxi ,

we have

‖LK,Df (k̂)D,λ − S
T
DyD‖2K =

1

|D|2
(f

(k̂)
D,λ(x)− y)TK(f

(k̂)
D,λ(x)− y),

where f
(k̂)
D,λ(x)− y is the vector

(
f
(k̂)
D,λ(xi)− yi

)|D|
i=1

. This together with (14) shows that the

stopping rule in (16) is implementable. Moreover, Lemma 23 in Appendix A shows that

QD,λPD,λ ≤
1

2
WD,λ log4

16

δ
(17)

holds with confidence 1−δ. Then Corollary 5 verifies the existence of k̂ with high probability
since (16) is satisfied for sufficiently large k̂ with high probability.

We are now in a position to present our second main result in the following theorem.
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Theorem 6 Let δ ∈ (0, 1). Under conditions (4), (6) with 0 < s ≤ 1 and condition (5)

with r ≥ 1/2, if λ = (c/|D|)1/(2r+s) for some c ≥ 1, and k̂ is the smallest positive integer
satisfying (16), then with confidence at least 1− δ, there holds

‖f (k̂)D,λ − fρ‖ρ ≤ C|D|
− r

2r+s log10
16

δ
, (18)

where C is a constant independent of δ or |D|.

Theorem 6 shows that BKRR equipped with the stopping rule (16) achieves the same
optimal learning rate without saturation, that is, the optimal learning rate holds for an
arbitrary r ≥ 1/2 rather than 1

2 ≤ r ≤ 1 shown by Caponnetto and De Vito (2007) and Lin
et al. (2017) for KRR. Theorem 4 and Theorem 6 state that BKRR provides a novel semi-
exponential bias-variance trade-off achieved by the boosting iteration, and the stopping
rule (16) can realize its good performance. It follows from Corollary 5 and Theorem 6
that combining L2 boosting with KRR reduces the difficulty of model selection (almost
over-fitting resistance) and overcomes the saturation of KRR.

Remark 7 Theoretically, a more delicate stopping rule for BKRR should be the first posi-
tive integer satisfying

‖LK,Df (k̂)D,λ − S
T
DyD‖K ≤ 2λ

1
2QD,λPD,λ.

Since the quantities QD,λ and PD,λ cannot be implemented, we have to present a bound
for them and thus get a confidence-dependent stopping rule (16). It should be noted that
the constant in the definition of WD,λ is not tight, which makes the algorithm stop much
earlier than the optimal one. Due to the (semi-)exponential bias-variance trade-off presented
in the previous subsection, a relatively large number of iterations does not degrade the
generalization ability of BKRR very much. We thus multiply by a small factor to make the
algorithm stop later. In a word, we implement the stopping rule (16) as

‖LK,Df (k̂)D,λ − S
T
DyD‖K (19)

≤ θ
√
λ√
|D|

(
(
√
|D|λ+ 1)

√
max{ND(λ), 1}
|D|λ

+ 1

)
(
√
|D|λ+ 1)

√
max{ND(λ), 1}√
|D|λ

for some small θ such as θ = 0.05 (or other values).

Remark 8 In Theorem 6, although k can be adaptively determined by (16), λ depends on
r and s. It should be noted in Theorem 1 that λ ∼ |D|−1/(2r+s) is the optimal regularization
parameter for BKRR to achieve the optimal learning rate. The reason for this phenomenon
is that we do not impose additional restrictions to the kernel K and the marginal distribution
ρX other than (6). In particular, we use λ

λ+σx
min
≤ 1 directly in the proof. For some

particular kernel and ρX , the minimum positive eigenvalue σxmin for the matrix K/|D| can be
computed. Then, we can derive similar error estimates by Theorem 4. In this way, optimal
learning rates of BKRR hold for large values of λ. It would be interesting to determine
the kernel and marginal distribution ρX , with which BKRR achieves the similar optimal
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learning rates as Theorem 6 for large λ. The other reason that we do not focus on the
selection of λ is that boosting theory usually requires large λ to keep the algorithm under-
fitting and using iteration to reduce the bias. Thus, we can select a relatively large λ in
advance numerically. Our experimental results in Section 6 show that the generalization
ability of BKRR is not very sensitive to λ provided it is larger than some value.

Remark 9 The constant exhibited in (18) is a bit pessimistic, compared with the classi-
cal results in the literature (Caponnetto and De Vito, 2007; Caponnetto and Yao, 2010;
Blanchard and Krämer, 2016; Lin et al., 2017; Guo et al., 2017). One of the reasons for
this pessimistic estimate is that we do not impose any restriction on the relation between
|D| and δ. In particular, as shown in our proof, if we assume 2 log(16/δ) ≤

√
|D|λ, i.e.

δ ≥ 16 exp
{
−1

2c
−1/(4r+2s)|D|

2r+s−1
4r+2s

}
, then the exponent should be reduced from 10 to 6.

Since the optimal constant is difficult to obtain, we only pursue the optimal learning rate in
Theorem 6.

3. Related Work

In this section, we discuss some related work in the literature and show the novelty of our
results.

3.1. Boosting

A functional gradient descent viewpoint in statistics (Friedman et al., 2000; Friedman,
2001) reformulates boosting as a family of stage-wise optimization problems with different
loss functions. Gradient boosting requires computing the negative gradient vector and line
search in each boosting iteration. For L2-Boosting, the gradient computation and line search
can be unified in solving least squares fitting of residuals (Bühlmann and Yu, 2003). Thus,
L2-Boosting is essentially iterative least squares of residuals. An important advantage of
boosting is its almost resistance to over-fitting (e.g. Friedman (2001) and its discussion
papers), showing an easy way for model selection.

In Bühlmann and Yu (2003), an exponential bias-variance trade-off for linear regression
was derived to illustrate the almost resistance to over-fitting for L2-Boosting in a fixed
design setting. In particular, Theorem 1 in Bühlmann and Yu (2003) shows that as the
boosting iteration goes on, the bias decreases exponentially with a quantity depending on
the minimum eigenvalue of the data matrix, while the variance increases with exponentially
diminishing terms. Our Theorem 3 presents a similar result as Theorem 1 of Bühlmann and
Yu (2003) for taking KRR as weak learners in L2-Boosting, but highlights the importance
of the regularity of the regression function by showing a sudden change of bias decaying.
In Theorem 4, we also analyze the changes of bias and variance in a random design setting
and show a semi-exponential bias-variance trade-off.

In Park et al. (2009), the learning performance of L2-Boosting whose weak learners are
Nadaraya-Watson kernel estimates was analyzed in the same framework as ours. It was
shown in Theorem 2 and Theorem 3 of Park et al. (2009) that L2-Boosting overcomes the
saturation of Nadaraya-Watson kernel estimates (Györfi et al., 2002, Chapter 5). Differ-
ently, we utilize KRR as the weak learners instead of the kernel estimates, requiring totally
different analysis. Furthermore, we present an adaptive stopping rule to select the number

9
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of boosting iterations, while Park et al. (2009) requires an a priori knowledge-dependent
number of boosting iterations. In this paper, we are concerned with combining L2-Boosting
with KRR. It would be interesting to consider boosted versions of other algorithms such
as the kernel-based gradient descent (Yao et al., 2007) and more generally the kernel-based
spectral algorithms (Gerfo et al., 2008).

3.2. Iterated Tikhonov Regularization

From Lemma 12 below, we find that for a fixed k, BKRR can be regarded as a special spec-
tral algorithm, the iterated Tikhonov regularization (Gerfo et al., 2008). In this framework,
the learning rate of BKRR with a fixed k may be derived directly from general results for
spectral algorithms (Bauer et al., 2007; Caponnetto and Yao, 2010; Guo et al., 2017,b).

Different from the iterated Tikhonov regularization, BKRR focuses on fixed but rela-
tively large λ and parameterizes the number of iterations, though they possess the same
spectral representation (see (27) below). It follows from Theorem 3 that BKRR has an
eventually stable relationship between the generalization error and boosting iteration in
the sense that the generalization error does not increase much with the boosting iteration
after some k. Theorem 6 shows that BKRR with adaptive stopping rule (16) can overcome
the saturation of KRR, just as iterated Tikhonov regularization does but with an a priori
knowledge-dependent selected and fixed k.

In a recent paper (Wu, 2017), a bias correction algorithm was proposed for ridge re-
gression and detailed analysis was provided for the changes of bias and variance. It was
found that one-step iteration can reduce the bias without increasing the variance much.
The analysis in Wu (2017) is carried out in a more general framework than that in this
paper. It should be pointed out that with the same setting in this paper, the algorithm in
(Wu, 2017) possesses the spectral representation (27) below with k = 1.

Iterated Tikhonov regularization is closely related to BKRR and widely used in the
community of inverse problems. Analysis of iterated Tikhonov regularization in solving
ill-posed inverse problems can be dated back to the 1970’s (e.g. King and Chillingworth
(1979)). The optimal convergence rates and parameter selection of iterated Tikhonov regu-
larization are important topics in inverse problems (Engl, 1987; Jin and Hou, 1997; Hanke
and Groetsch, 1998; Jin and Stals, 2012). In particular, our stopping rule (16) is motivated
by the discrepancy principle provided in Hanke and Groetsch (1998).

3.3. Iteration-based Learning Schemes and Stopping Rules

Saturation is a well known design-flaw of KRR (Gerfo et al., 2008) and limits its usage. Due
to this phenomenon, researchers turn to other iteration-based learning schemes such as the
kernel-based gradient descent (Yao et al., 2007), kernel-based conjugate gradient descent
(Blanchard and Krämer, 2016) and kernel-based partial least squares (Lin and Zhou, 2018b).
The theoretical results in Blanchard and Krämer (2016); Lin and Zhou (2018a,b) showed
that these strategies can reach the optimal learning rates without saturation.

As an iteration-based algorithm, the bias and variance of the kernel-based gradient de-
scent algorithm were analyzed in Lin and Zhou (2018a) and a polynomial bias-variance
trade-off was exhibited. In particular, as the iteration goes on, its bias decreases as
O(k−r) and its variance increases as a polynomial of k. Similar results on polynomial

10
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bias-variance trade-off of the kernel-based conjugate gradient descent and kernel-based par-
tial least squares were derived in Blanchard and Krämer (2016) and Lin and Zhou (2018b),
respectively. Different from these iteration-based algorithms, BKRR shows an exponential
bias-variance trade-off, reducing the difficulty of model selection.

Stopping rules play an important role in iteration-based learning schemes. Learning
rates of iteration-based algorithms were built in Bauer et al. (2007); Yao et al. (2007); Guo
et al. (2017); Blanchard and Krämer (2016) upon prior knowledge-based stopping rules. In
Caponnetto and Yao (2010); Lin and Zhou (2018b), cross-validation based stopping rules
were presented for general spectral algorithms and kernel-based partial least squares. In
Raskutti et al. (2014), an adaptive stopping rule was deduced for the kernel-based gradient
descent algorithm under the regularity condition (5) with r = 1/2. More recently, another
adaptive stopping rule based on a balancing principle for general spectral algorithms was
presented in Lu et al. (2018). Different from these results, our stopping rule presented
in (16) requires neither dividing the sample set (compared with the cross-validation), nor
computing estimators with various λ (compared with the balancing principle). Compared
with Raskutti et al. (2014), our results hold under condition (5) with all r ≥ 1/2, i.e., we
adaptively select r rather than fixing it to be 1/2. At first glance, the dependence of the
confidence level in (16) may make the stopping rule not so stable. However, the (semi-)
exponential bias-variance trade-off of BKRR compensates this instability by showing that
the learning performance remains stable for a large range of k. It would be interesting to
derive a confidence-independent stopping rule for BKRR.

4. Operator Representations and Error Estimates

We analyze the learning performance of BKRR by using the integral operator approach
(Smale and Zhou, 2007; Lin et al., 2017; Guo et al., 2017). The novelties of our proof are
special operator representations of BKRR, special spectral properties of BKRR and a tight
bound for k̂ defined by (16). In Subsections 4.1 and 4.2, we provide detailed spectral analysis
for BKRR, which is crucial for deriving the bias and variance estimates in Subsections 4.3
and 4.4. In Subsection 4.5, we provide a tight bound on the number of boosting iteration
defined by (16) by utilizing the special spectral properties of BKRR.

4.1. Special Operator Representations of BKRR

Define the noise-free version of f
(k)
D,λ by

f
(1,∗)
D,λ := arg min

f∈HK

 1

|D|
∑

(x,y)∈D

(f(x)− fρ(x))2 + λ‖f‖2K

 (20)

and

f
(k,∗)
D,λ := f

(k−1,∗)
D,λ + f

(k,∗)�
D,λ , k > 1, (21)

11
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where

f
(k,∗)�
D,λ := arg min

f∈HK

 1

|D|
∑

(x,y)∈D

[f(x)− (fρ(x)− f (k−1,
∗)

D,λ (x))]2 + λ‖f‖2K

 , k > 1.

(22)
For KRR, the classical result in Smale and Zhou (2007) shows

f
(1)
D,λ = (LK,D + λI)−1 STDyD, and f

(1,∗)
D,λ = (LK,D + λI)−1 LK,Dfρ. (23)

Similar to (23), the following Lemma 10 presents operator representations for f
(k)
D,λ and

f
(k,∗)
D,λ .

Lemma 10 Let k ≥ 2. We have

f
(k)
D,λ = [I − (LK,D + λI)−1LK,D]f

(k−1)
D,λ + f

(1)
D,λ, (24)

LK,Df
(k)
D,λ = STDyD − [I − (LK,D + λI)−1LK,D]kSTDyD (25)

and

f
(k,∗)
D,λ = [I − (LK,D +λI)−1LK,D]f

(k−1,∗)
D,λ + f

(1,∗)
D,λ = fρ− [I − (LK,D +λI)−1LK,D]kfρ. (26)

Proof. Since f
(k)�
D,λ is the solution to KRR (1) with data {xi, yi − f (k−1)D,λ (xi)}(xi,yi)∈D, it

follows from (2), (23) and the definition LK,D = STDSD that

f
(k)
D,λ = f

(k−1)
D,λ + (LK,D + λI)−1STD(yD − SDf (k−1)D,λ )

= [I − (LK,D + λI)−1LK,D]f
(k−1)
D,λ + f

(1)
D,λ.

This verifies (24). Combining this with (23) yields

LK,Df
(k)
D,λ − S

T
DyD = LK,D[I − (LK,D + λI)−1LK,D]f

(k−1)
D,λ + LK,Df

(1)
D,λ − S

T
DyD

= [I − (LK,D + λI)−1LK,D]LK,Df
(k−1)
D,λ + [(LK,D + λI)−1LK,D − I]STDyD

= [I − (LK,D + λI)−1LK,D][LK,Df
(k−1)
D,λ − STDyD].

Applying this relation iteratively and using (23) give

LK,Df
(k)
D,λ − S

T
DyD = [I − (LK,D + λI)−1LK,D]k−1[LK,Df

(1)
D,λ − S

T
DyD]

= −[I − (LK,D + λI)−1LK,D]kSTDyD.

This proves (25). As for deriving (26), we have

f
(k,∗)
D,λ = [I − (LK,D + λI)−1LK,D]f

(k−1,∗)
D,λ + (LK,D + λI)−1LK,Dfρ.

It follows that
f
(k,∗)
D,λ − fρ = [I − (LK,D + λI)−1LK,D][f

(k−1,∗)
D,λ − fρ]

12
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and by iterations,

f
(k,∗)
D,λ − fρ = [I − (LK,D + λI)−1LK,D]k−1[f

(1,∗)
D,λ − fρ]

= −[I − (LK,D + λI)−1LK,D]kfρ.

This completes the proof of Lemma 10.
From Lemma 10, we have

f
(k)
D,λ − f

(k,∗)
D,λ = [I − (LK,D + λI)−1LK,D](f

(k−1)
D,λ − f (k−1,∗)D,λ ) + f

(1)
D,λ − f

(1,∗)
D,λ ,

from which the following expression is obtained by iterations.

Lemma 11 For k ∈ N, we have

f
(k)
D,λ − f

(k,∗)
D,λ =

k−1∑
j=0

[I − (LK,D + λI)−1LK,D]j [f
(1)
D,λ − f

(1,∗)
D,λ ].

4.2. Special Spectral Properties of BKRR

Our analysis depends on some spectral analysis of BKRR, viewed as a special class of
spectral algorithms. It follows iteratively from the identity

f
(k)
D,λ = λ(LK,D + λI)−1f

(k−1)
D,λ + (LK,D + λI)−1STDyD

obtained from (24) by writing LK,D = LK,D + λI − λI.

Lemma 12 For k ∈ N, we have

f
(k)
D,λ = g

(k)
λ (LK,D)STDyD, (27)

where g
(k)
λ (LK,D) is an operator on HK defined by spectral calculus and

g
(k)
λ (σ) =

k−1∑
j=0

(λ(σ + λ)−1)k−j−1(σ + λ)−1 =

k−1∑
j=0

λk−1−j

(σ + λ)k−j
. (28)

Based on Lemma 12, we derive the following two lemmas, showing some special spectral
properties of BKRR.

Lemma 13 Let g
(k)
λ be defined by (28), then we have

I − LK,Dg(k)λ (LK,D) = λk(LK,D + λI)−k, (29)

‖LK,Dg(k)λ (LK,D)]‖ ≤ 1, λ‖g(k)λ (LK,D)‖ ≤ k, (30)

and for all u > v > 0, there holds

‖LvK,Dλu(LK,D + λI)−u‖ ≤ vv
(
λ

u

)v
. (31)

13
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Proof. Observe from (28) that

σg
(k)
λ (σ) = (σ + λ− λ)

k−1∑
j=0

((σ + λ)−1)−jλk−j−1(σ + λ)−k

=


k−1∑
j=0

(σ + λ)j+1λk−j−1 −
k−1∑
j=0

(σ + λ)jλk−j

 (σ + λ)−k

= {(σ + λ)k − λk}(σ + λ)−k.

Hence

LK,Dg
(k)
λ (LK,D) =

[
(LK,D + λI)k − λkI

]
(LK,D + λI)−k (32)

and (29) follows. Then spectral analysis with the eigenpairs {(σxi , φxi )} of LK,D verifies
the first inequality of (30). The second inequality of (30) follows directly from (28). Set a
function hv,u on [0,∞) by

hv,u(σ) =
σvλu

(σ + λ)u
.

Since u > v, we have hv,u(0) = hv,u(∞) = 0. It is easy to check that σ = vλ
u−v is the unique

maximum point of hv,u on (0,∞). Thus, ‖LK,D‖ ≤ κ2 yields

‖LvK,Dλu(LK,D + λI)−u‖≤ max
0≤σ≤κ2

hv,u(σ) ≤ max
0≤σ<∞

hv,u(σ) ≤ hv,u
(

vλ

u− v

)
= λvvv

(u− v)u

(u− v)vuu
= vv

(
λ

u

)v (u− v
u

)u−v
≤ vv

(
λ

u

)v
.

This completes the proof of Lemma 13.

Lemma 14 Let u > 0 and ` ∈ N0 := {0} ∪ N. Then for f ∈ HK , we have

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖K ≤

{
κ2(u−`)λ`‖f‖K , if ` ≤ u,

λu
(

λ
σx
min+λ

)`−u
‖f‖K , if ` > u.

(33)

Proof. Due to spectral calculus with f =
∑

i〈f, φxi 〉Kφxi , we have

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖2K =
∑
i

(σxi )2uλ2`

(σxi + λ)2`
|〈f, φxi 〉K |2

=
∑
σx
i >0

(σxi )2uλ2`

(σxi + λ)2`
|〈f, φxi 〉K |2. (34)

If ` ≤ u, we have from maxi σ
x
i ≤ κ2 and (34) that

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖2K ≤ λ2`κ4(u−`)
∑
σx
i >0

|〈f, φxi 〉K |2.
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Then

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖K ≤ κ2(u−`)λ`‖f‖K .

If ` > u, we get from (34) that

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖2K ≤ λ2u
∑
σx
i >0

λ2`−2u

(σxi + λ)2`−2u
|〈f, φxi 〉K |2

≤ λ2u
λ2`−2u

(σxmin + λ)2`−2u

∑
σx
i >0

|〈f, φxi 〉K |2 ≤ λ2u
λ2`−2u

(σxmin + λ)2`−2u

∑
i

|〈f, φxi 〉K |2.

Hence,

‖LuK,D[I − (LK,D + λI)−1LK,D]`f‖K ≤ λu
(

λ

σxmin + λ

)`−u
‖f‖K .

This completes the proof of Lemma 14.

4.3. Bounding the Bias

Our error decomposition will be carried out by bounding the two terms, bias and variance,
as follows

‖f (k)D,λ − fρ‖ ≤ ‖f
(k,∗)
D,λ − fρ‖+ ‖f (k)D,λ − f

(k,∗)
D,λ ‖,

where ‖ · ‖ denotes either the ‖ · ‖D semi-norm or ‖ · ‖ρ norm. For f ∈ HK , it is easy to
check that

‖f − fρ‖D = ‖L1/2
K,D(f − fρ)‖K . (35)

In this subsection, we present two bounds for the bias term f
(k,∗)
D,λ − fρ in terms of the ‖ · ‖D

semi-norm and ‖ · ‖ρ norm.

Proposition 15 Let 0 ≤ ν ≤ 1/2. Under condition (5) with r > 3/2, we have

‖LνK,D(f
(k,∗)
D,λ − fρ)‖K ≤

(r − 1/2)κ2r−3‖hρ‖ρ
kν

λνRD

+

 κ2(r+ν−1/2−k)λk‖hρ‖ρ, if k ≤ r + ν − 1/2,

λr+ν−1/2
(

λ
σx
min+λ

)k−r−ν+1/2
‖hρ‖ρ, if k > r + ν − 1/2.

(36)

Proof. Since r > 3/2, from (5) and (26) we find

‖LνK,D(f
(k,∗)
D,λ − fρ)‖K = ‖LνK,D[I − (LK,D + λI)−1LK,D]kL

r−1/2
K L

1/2
K hρ‖K

=
∥∥∥LνK,D[I − (LK,D + λI)−1LK,D]k

(
L
r−1/2
K − Lr−1/2K,D + L

r−1/2
K,D

)
L
1/2
K hρ

∥∥∥
K

≤
∥∥∥Lr+ν−1/2K,D [I − (LK,D + λI)−1LK,D]kL

1/2
K hρ

∥∥∥
K

+
∥∥∥LνK,D[I − (LK,D + λI)−1LK,D]k

(
L
r−1/2
K − Lr−1/2K,D

)
L
1/2
K hρ

∥∥∥
K

=: A1 +A2. (37)
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We first estimate A2. Since r > 3/2, the bounds ‖LK,D‖ ≤ κ2, ‖LK‖ ≤ κ2, we get from
(68) in Appendix A that

‖Lr−1/2K,D − Lr−1/2K ‖HS ≤ (r − 1/2)κ2r−3‖LK,D − LK‖HS . (38)

When ν > 0, we apply (31) with v = ν to obtain

A2 ≤ ‖LνK,D[I − (LK,D + λI)−1LK,D]k‖
∥∥∥Lr−1/2K − Lr−1/2K,D

∥∥∥ ‖L1/2
K hρ‖K

≤ (r − 1/2)ννκ2r−3‖hρ‖ρ
kν

λνRD.

If ν = 0, we can also obtain from ‖[I − (LK,D + λI)−1LK,D]k‖ ≤ 1 that

A2 ≤ (r − 1/2)κ2r−3‖hρ‖ρRD.

Then we estimate A1 by applying (33) with u = r + ν − 1/2 and f = L
1/2
K hρ to get

A1 ≤

 κ2(r+ν−1/2−k)λk‖hρ‖ρ, if k ≤ r + ν − 1/2,

λr+ν−1/2
(

λ
σx
min+λ

)k−r−ν+1/2
‖hρ‖ρ, if k > r + ν − 1/2.

Plugging the estimates of A1 and A2 into (37), we obtain (36), which completes the proof
of Proposition 15.

Proposition 16 Under condition (5) with r > 3/2, we have

‖f (k,∗)D,λ − fρ‖ρ ≤ 2QD,λ(r − 1/2)κ2r−3‖hρ‖ρλ
1
2RD

+ QD,λ‖hρ‖ρ


κ2r−2k−1(λ

1
2 + κ)λk, if k ≤ r − 1/2,

λr
(

λ
σx
min+λ

)k−r+1/2
+ κ2r−2kλk, if r − 1/2 < k ≤ r,

2λr
(

λ
σx
min+λ

)k−r
, if k > r.

Proof. Since f
(k,∗)
D,λ − fρ ∈ HK , we have from Lemma 24 in Appendix A that

‖f (k,∗)D,λ − fρ‖ρ ≤ QD,λ‖L
1/2
K,D(f

(k,∗)
D,λ − fρ)‖K +QD,λλ1/2‖f

(k,∗)
D,λ − fρ‖K .

For k ≤ r − 1/2, it follows from (36) with ν = 1/2 and ν = 0 that

‖f (k,∗)D,λ − fρ‖ρ ≤ QD,λ
(

(r − 1/2)κ2r−3‖hρ‖ρ√
k

λ1/2RD + κ2(r−k)λk‖hρ‖ρ
)

+ λ1/2QD,λ
(

(r − 1/2)κ2r−3‖hρ‖ρRD + κ2(r−1/2−k)λk‖hρ‖ρ
)
.

For r − 1/2 < k ≤ r,

‖f (k,∗)D,λ − fρ‖ρ ≤ QD,λ
(

(r − 1/2)κ2r−3‖hρ‖ρ√
k

λ1/2RD + κ2(r−k)λk‖hρ‖ρ
)

+ λ1/2QD,λ

(
(r − 1/2)κ2r−3‖hρ‖ρRD + λr−1/2

(
λ

σxmin + λ

)k−r+1/2

‖hρ‖ρ

)
.
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For k > r,

‖f (k,∗)D,λ − fρ‖ρ ≤ QD,λ

(
(r − 1/2)κ2r−3‖hρ‖ρλ1/2√

k
RD + λr

(
λ

σxmin + λ

)k−r
‖hρ‖ρ

)

+ λ1/2QD,λ

(
(r − 1/2)κ2r−3‖hρ‖ρRD + λr−1/2

(
λ

σxmin + λ

)k−r+1/2

‖hρ‖ρ

)
.

This completes the proof of Proposition 16.

4.4. Bounding the Variance

In this subsection, we present the bounds for the variance term f
(k)
D,λ − f

(k,∗)
D,λ .

Proposition 17 Let 0 < ν ≤ 1/2. We have

∥∥∥LνK,D(f
(k)
D,λ − f

(k,∗)
D,λ )

∥∥∥
K
≤ λν−1/2QD,λPD,λ

1 +
k−1∑
j=1

(
λ

σxmin + λ

)j−ν . (39)

Proof. Due to Lemma 11, we get

LνK,D(f
(k)
D,λ − f

(k,∗)
D,λ ) =

k−1∑
j=0

LνK,D[I − (LK,D + λI)−1LK,D]j [f
(1)
D,λ − f

(1,∗)
D,λ ].

It then follows from (33) with u = ν, ` = 1, 2, . . . , k − 1 and f = f
(1)
D,λ − f

(1,∗)
D,λ that

∥∥∥LνK,D(f
(k)
D,λ − f

(k,∗)
D,λ )

∥∥∥
K
≤

k−1∑
j=0

∥∥∥LνK,D[I − (LK,D + λI)−1LK,D]j [f
(1)
D,λ − f

(1,∗)
D,λ ]

∥∥∥
K

≤ ‖LνK,D(f
(1)
D,λ − f

(1,∗)
D,λ )‖K +

k−1∑
j=1

λν
(

λ

σxmin + λ

)j−ν
‖f (1)D,λ − f

(1,∗)
D,λ ‖K .

But (23) implies that for 0 ≤ u ≤ 1/2, there holds

‖LuK,D(f
(1)
D,λ − f

(1,∗)
D,λ )‖K = ‖LuK,D(LK,D + λI)−1(STDyD − LK,Dfρ)‖K

≤ λ−1/2+u‖(LK,D + λI)−1/2(STDyD − LK,Dfρ)‖K ≤ λ−1/2+uQD,λPD,λ. (40)

Applying this inequality with u = ν and u = 0 yields

∥∥∥LνK,D(f
(k)
D,λ − f

(k,∗)
D,λ )

∥∥∥
K
≤ λν−1/2QD,λPD,λ +

k−1∑
j=1

λν−1/2
(

λ

σxmin + λ

)j−ν
QD,λPD,λ.

This completes the proof of Proposition 17.
Different from Proposition 15, Proposition 17 does not hold for ν = 0, which makes the

bound of variance in the out-sample case totally different from that in the in-sample case.

17



Lin, Lei and Zhou

Proposition 18 For k ∈ N, we have

‖f (k)D,λ − f
(k,∗)
D,λ ‖ρ ≤ 2kQ2

D,λPD,λ.

Proof. We obtain from Lemma 11 and (40) with u = 0 that

‖f (k)D,λ − f
(k,∗)
D,λ ‖K ≤

k−1∑
j=0

‖f (1)D,λ − f
(1,∗)
D,λ ‖K ≤ kλ

− 1
2QD,λPD,λ.

Then it follows from Lemma 24 in Appendix A and (39) with ν = 1/2 that

‖f (k)D,λ − f
(k,∗)
D,λ ‖ρ ≤ QD,λ‖L

1/2
K,D(f

(k)
D,λ − f

(k,∗)
D,λ )‖K +QD,λλ1/2‖f

(k)
D,λ − f

(k,∗)
D,λ ‖K

≤ Q2
D,λPD,λ

1 +

k−1∑
j=1

(
λ

σxmin + λ

)j−1/2+ kQ2
D,λPD,λ ≤ 2kQ2

D,λPD,λ.

This completes the proof of Proposition 18.

4.5. Bounding the Number of Boosting Iterations

We first show the important role of the stopping rule (16) in controlling the bias.

Lemma 19 Let δ ∈ (0, 1) and λ > 0. If k̂ is the smallest positive integer satisfying (16),
then with confidence 1− δ, there holds

‖LK,Dfρ − LK,Df (k̂,∗)D,λ ‖K ≤
3

2
λ

1
2WD,λ log4

16

δ
, (41)

and

‖LK,Dfρ − LK,Df (k̂−1,∗)D,λ ‖K ≥
1

2
λ

1
2WD,λ log4

16

δ
, if k̂ ≥ 2. (42)

Proof. For k ∈ N, we have

LK,Dfρ − LK,Df (k,∗)D,λ = STDyD − LK,Df
(k)
D,λ + LK,Df

(k)
D,λ − LK,Df

(k,∗)
D,λ + LK,Dfρ − STDyD.

But (27) and

f
(k,∗)
D,λ = g

(k)
λ (LK,D)LK,Dfρ (43)

yield

f
(k)
D,λ − f

(k,∗)
D,λ = g

(k)
λ (LK,D)(STDyD − LK,Dfρ). (44)

It then follows from (32) that

LK,Dfρ − LK,Df (k,∗)D,λ = STDyD − LK,Df
(k)
D,λ + [LK,Dg

(k)
λ (LK,D)− I](STDyD − LK,Dfρ)

= STDyD − LK,Df
(k)
D,λ − λ

k(LK,D + λI)−k(STDyD − LK,Dfρ). (45)

18
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Moreover, (17) implies

‖λk(LK,D + λI)−k(STDyD − LK,Dfρ)‖K ≤ ‖λk(LK,D + λI)−k(LK,D + λI)1/2‖
× ‖(LK,D + λI)−1/2(LK + λI)1/2‖‖(LK + λI)−1/2(STDyD − LK,Dfρ)‖K

≤ λ1/2PD,λQD,λ ≤
1

2
λ1/2WD,λ log4

16

δ
(46)

with confidence 1 − δ. Combining this with (16) and (45), we have that with confidence
1− δ, there holds

‖LK,Dfρ − LK,Df (k̂,∗)D,λ ‖K ≤
3

2
λ1/2WD,λ log4

16

δ
,

which proves (41). To prove (42), the definition of k̂ implies

‖STDyD − LK,Df
(k̂−1)
D,λ ‖K > λ1/2WD,λ log4

16

δ
, if k̂ ≥ 2.

It follows from (45) with k = k̂ − 1 when k̂ ≥ 2 that

‖LK,Dfρ − LK,Df (k̂−1,∗)D,λ ‖K ≥ λ1/2WD,λ log4
16

δ
− 1

2
λ1/2WD,λ log4

16

δ
=

1

2
λ1/2WD,λ log4

16

δ

holds with confidence at least 1− δ. This completes the proof of Lemma 19.

Based on the above important lemma, we derive the following bound for k̂.

Proposition 20 Let δ ∈ (0, 1) and k̂ be the smallest positive integer satisfying (16). We
have with confidence 1− δ that

k̂ ≤ (4r + 2) + 4W−1D,λ

((
2(κ2 + κ)AD,λ√

λ

)2

+ 1

)
λr‖hρ‖ρ log−2

16

δ

+ (4r − 2)W−1D,λ
4κ2r−1√
|D|

λ1/2‖hρ‖ρ log−3
16

δ
, (47)

where

AD,λ :=
1√
|D|

(
1√
|D|λ

+
√
N (λ)

)
. (48)

Proof. If k̂ ≤ r + 3/2, (47) obviously holds. Now we prove (47) for k̂ > r + 3/2. Due to
Lemma 12, Lemma 19 and (43), we have with confidence at least 1− δ that

λ
1
2WD,λ log4

16

δ
≤ 2‖LK,D(fρ − f (k̂−1,∗)D,λ )‖K

= 2
∥∥∥LK,D (g(k̂−1)λ (LK,D)LK,D − I

)
fρ

∥∥∥
K
≤ 2‖LK,Dλk̂−1(LK,D + λI)−k̂+1L

r−1/2
K ‖‖hρ‖ρ,

where the last inequality is due to (32).
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If 1
2 ≤ r ≤

3
2 , we have from Lemma 13 and k̂ − r − 1

2 > 1 that

λ
1
2WD,λ log4

16

δ
≤ 2‖LK,Dλk̂−1(LK,D + λI)−k̂+1(LK,D + λI)r−1/2‖Q2r−1

D,λ ‖hρ‖ρ

= 2Q2r−1
D,λ ‖hρ‖ρλ

r−1/2‖LK,Dλk̂−1−r+1/2(LK,D + λI)−k̂+1+r−1/2‖

≤ 2max(Q2
D,λ, 1)‖hρ‖ρλr+1/2(k̂ − r − 1/2)−1.

Thus, it follows from Lemma 22 in Appendix A that with confidence at least 1− δ

k̂WD,λ log4
16

δ
≤ (r + 1/2)WD,λ log4

16

δ
+ 4 log2

16

δ

((
2(κ2 + κ)AD,λ√

λ

)2

+ 1

)
λr‖hρ‖ρ,

which implies (47).
If r > 3/2, it follows from (38), Lemma 13 and k̂ > r + 3/2 that

λ1/2WD,λ log4
16

δ
≤ 2‖LK,Dλk̂−1(LK,D + λI)−k̂+1L

r−1/2
K,D ‖‖hρ‖ρ

+ 2‖LK,Dλk̂−1(LK,D + λI)−k̂+1(L
r−1/2
K − Lr−1/2K,D )‖‖hρ‖ρ

≤ 2‖hρ‖ρλr−1/2‖LK,Dλk̂−1−r+1/2(LK,D + λI)−k̂+1+r−1/2‖

+ (2r − 1)κ2r−3‖hρ‖ρ‖LK,Dλk̂−1(LK,D + λI)−k̂+1‖‖LK − LK,D‖

≤ 2‖hρ‖ρλr+1/2(k̂ − r − 1/2)−1 + (2r − 1)κ2r−3‖hρ‖ρ
λ

k̂ − 1
RD.

If

λr+1/2(k̂ − r − 1/2)−1 ≤ (r − 1/2)κ2r−3
λ

k̂ − 1
RD,

we have

λ
1
2WD,λ log4

16

δ
≤ (4r − 2)κ2r−3

λ

k̂ − 1
RD‖hρ‖ρ,

which together with Lemma 22 in Appendix A yields with confidence 1− δ

k̂WD,λ log4
16

δ
≤ WD,λ log4

16

δ
+ (4r − 2)

4κ2r−1√
|D|

λ1/2‖hρ‖ρ log
16

δ
.

Thus, (47) holds. If

λr+1/2(k̂ − r − 1/2)−1 > (r − 1/2)κ2r−3
λ

k̂ − 1
RD,

we get

λ
1
2WD,λ log4

16

δ
≤ 4λr+1/2(k̂ − r − 1/2)−1‖hρ‖ρ.

Hence,

k̂WD,λ log4
16

δ
≤ (r +

1

2
)WD,λ log4

16

δ
+ 4λr‖hρ‖ρ,

which together with log 16
δ > 1 yields (47). The proof of Proposition 20 is completed.
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5. Proofs of Main Results

Based on the previous bounds we can now prove our main results.
Proof of Theorem 3. If 1/2 ≤ r ≤ 3/2, we get from (5) and (26) that

‖L1/2
K,D(f

(k,∗)
D,λ − fρ)‖K = ‖L1/2

K,D[I − (LK,D + λI)−1LK,D]kLrKhρ‖K

= ‖L1/2
K,D[I − (LK,D + λI)−1LK,D]k(LK,D + λI)r−1/2(LK,D + λI)1/2−rLrKhρ‖K

≤ 2r−1/2‖LrK,D[I − (LK,D + λI)−1LK,D]k(LK,D + λI)1/2−rLrKhρ‖K
+ 2r−1/2λr−1/2‖L1/2

K,D[I − (LK,D + λI)−1LK,D]k(LK,D + λI)1/2−rLrKhρ‖K .

Here we have used the inequality

‖(LK,D + λI)rf‖K ≤ 2r−1/2
[
‖LrK,Df‖K + λr‖f‖K

]
, ∀f ∈ HK

which follows by means of the normalized eigenpairs {(σxi , φxi )}i of LK,D : HK → HK as

‖(LK,D + λI)rf‖2K =
∑
i

(
σxi + λ

)2r|〈φxi , f〉K |2
≤ 22r−1

∑
i

[
(σxi )2r|〈φxi , f〉K |2 + λ2r|〈φxi , f〉K |2

]
.

Since 0 ≤ r − 1
2 ≤ 1, (67) in Appendix B shows

‖(LK,D + λI)1/2−rLrKhρ‖K ≤ Q2r−1
D,λ ‖hρ‖ρ.

It then follows from (33) with u = r, f = (LK,D + λI)1/2−rLrKhρ and u = 1/2, f =
(LK,D + λI)1/2−rLrKhρ that

‖L1/2
K,D(f

(k,∗)
D,λ − fρ)‖K ≤ 2

√
2Q2r−1

D,λ ‖hρ‖ρλ
r

(
λ

σxmin + λ

)k−r
, if 1/2 ≤ r < 1,

‖L1/2
K,D(f

(k,∗)
D,λ − fρ)‖K ≤ 2Q2r−1

D,λ λ‖hρ‖ρ(κ
2r−2 + λr−1), if 1 ≤ r ≤ 3/2, k = 1,

and

‖L1/2
K,D(f

(k,∗)
D,λ − fρ)‖K ≤ 4Q2r−1

D,λ λ
r‖hρ‖ρ

(
λ

σxmin + λ

)k−r
, if 1 ≤ r ≤ 3/2, k ≥ 2.

The above estimates together with (36) with ν = 1/2 yield for r ≥ 1/2,

‖L1/2
K,D(f

(k,∗)
D,λ − fρ)‖K ≤ (r − 1/2)κ2r−3‖hρ‖ρ√

k
λ1/2RD

+ 4(Q2
D,λ + 1)λk‖h‖ρ

{
(σxmin + λ)r−k, if k > r,
κ2r−2k + λr−k, if k ≤ r.

Furthermore, (39) with ν = 1/2 implies

∥∥∥L1/2
K,D(f

(k)
D,λ − f

(k,∗)
D,λ )

∥∥∥
K
≤ QD,λPD,λ

1 +
k−1∑
j=1

(
λ

σxmin + λ

)j−1/2 .
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Hence ∥∥∥L1/2
K,D(f

(k)
D,λ − fρ)

∥∥∥
K
≤ ‖L1/2

K,D(f
(k,∗)
D,λ − fρ)‖K +

∥∥∥L1/2
K,D(f

(k)
D,λ − f

(k,∗)
D,λ )

∥∥∥
K

≤ QD,λPD,λ
k−1∑
j=1

(
λ

σxmin + λ

)j−1/2
+

(r − 1/2)κ2r−3‖hρ‖ρ√
k

λ1/2RD +QD,λPD,λ

+ 4(Q2
D,λ + 1)λk‖h‖ρ

{
(σxmin + λ)r−k, if k > r,
κ2r−2k + λr−k, if k ≤ r.

This completes the proof of Theorem 3.

Proof of Theorem 4. Since r > 3/2, we get from Proposition 16 that

‖f (k,∗)D,λ − fρ‖ρ ≤ 2QD,λ(r − 1/2)κ2r−3‖hρ‖ρλ1/2RD

+ QD,λλk‖hρ‖ρ
{
λr−k + κ2r−2k−1(κ+ λ

1
2 ), if k ≤ r,

2(σxmin + λ)r−k, if k > r.

Furthermore, it follows from Proposition 18 that

‖f (k)D,λ − f
(k,∗)
D,λ ‖ρ ≤ 2kQ2

D,λPD,λ.

Then

‖f (k)D,λ − fρ‖ρ ≤ ‖f
(k,∗)
D,λ − fρ‖ρ + ‖f (k)D,λ − f

(k,∗)
D,λ ‖ρ

≤ 2QD,λ(r − 1/2)κ2r−3‖hρ‖ρλ1/2RD

+ 2kQ2
D,λPD,λ +QD,λλk‖hρ‖ρ

{
λr−k + κ2r−2k−1(κ+ λ

1
2 ), if k ≤ r,

2(σxmin + λ)r−k, if k > r.

This completes the proof of Theorem 4.

Proof of Theorem 1. We get from Lemma 22 in Appendix A, (48), r > 3/2, (6) and

λ =
(
k2

|D|

) 1
2min{k,r}+s

with k ≤
√
|D| that with confidence 1− δ,

RD ≤
4κ2√
|D|

log
8

δ
≤ 4κ2√

|D|λs
log

8

δ
,

Q2
D,λ ≤ 2

(
2(κ2 + κ)

(
1

|D|λ
+

√
N (λ)

|D|λ

)
log

8

δ

)2

+ 2 ≤ 8(κ2 + κ+ 1)2(1 +
√
C0)

2 log2
8

δ
,

and

PD,λQDλ ≤
4
√

2(κ2 + κ+ 1)(κM + γ)√
|D|

(
1

λ|D|
+

√
N (λ)√
|D|λ

+ 1

)(
1√
λ|D|

+
√
N (λ)

)
log2

8

δ

≤ 4
√

2(κ2 + κ+ 1)(κM + γ)(2 +
√
C0)(1 +

√
C0)√

|D|λs
log2

8

δ
.
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Here we have used 1√
λ|D|

+
√
N (λ) ≤

√
C0+1√
λs

. Applying these three estimates to Theorem

4, we get

‖f (k)D,λ − fρ‖ρ ≤ 4
√

2(κ2 + κ+ 1)(1 +
√
C0)(r − 1/2)κ2r−3‖hρ‖ρλ1/2

4κ2√
|D|λs

log2
8

δ

+ 32(2 +
√
C0)

3(κ2 + κ+ 1)2(κM + γ)
k√
|D|λs

log3
8

δ

+ 2
√

2(1 +
√
C0)(κ

2 + κ+ 1) log
8

δ
λk‖hρ‖ρ

{
λr−k + κ2r−2k−1(κ+ λ

1
2 ), if k ≤ r,

2(σxmin + λ)r−k, if k > r.

≤ C̃k

2
√
|D|λs

log3
8

δ
+
C̃ log 8

δ

2
λk
{

1, if k ≤ r,
(σxmin + λ)r−k, if k > r,

where C̃ is a constant independent of |D|, k or δ given by

C̃ = 2(κ2+κ+1) max{16
√

2(1+
√
C0)(r−1/2)κ2r−1‖hρ‖ρ+32(2+

√
C0)

3(κ2+κ+1)(κM+γ),

2
√

2(1 +
√
C0)‖hρ‖ρ(2 + κ2r−2k + κ2r−2k−1)}.

Plugging λ = (k2/|D|)
1

2min{k,r}+s into the above estimate and noting σxmin > 0, we get that∥∥∥f (k)D,λ − fρ
∥∥∥
ρ
≤ C̃(k2/|D|)

min{k,r}
2min{k,r}+s log3

8

δ
,

holds with confidence 1− δ. This completes the proof of Theorem 1.
Proof of Corollary 5. It follows from (25) that

‖LK,Df (k+1)
D,λ − STDyD‖K =

∥∥∥[I − (LK,D + λI)−1LK,D]k+1STDyD

∥∥∥
K

≤ ‖I − (LK,D + λI)−1LK,D‖‖[I − (LK,D + λI)−1LK,D]kSTDyD‖K
≤ ‖LK,Df (k)D,λ − S

T
DyD‖K .

Thus ‖LK,Df (k)D,λ − S
T
DyD‖K decreases with respect to k. Furthermore, we have from (25)

again and Lemma 14 that for k > 1

‖LK,Df (k)D,λ − S
T
DyD‖K ≤ ‖[I − (LK,D + λI)−1LK,D]k(STDyD − LK,Dfρ)‖K

+ ‖[I − (LK,D + λI)−1LK,D]kLK,Dfρ‖K
≤ ‖[I − (LK,D + λI)−1LK,D]k(LK,D + λI)1/2‖‖(LK,D + λI)−1/2(STDyD − LK,Dfρ)‖K
+ ‖[I − (LK,D + λI)−1LK,D]kLK,Dfρ‖K

≤ λ1/2‖(LK,D + λI)−1/2(LK,Dfρ − STDyD)‖K + λ

(
λ

σxmin + λ

)k−1
‖fρ‖K .

Thus,

lim
k→∞

‖LK,Df (k)D,λ − S
T
DyD‖K ≤ λ1/2‖(LK,D + λI)−1/2(LK,Dfρ − STDyD)‖K

≤ λ1/2QD,λPD,λ.
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This verifies (12). To prove (13), it follows from Theorem 3 that

lim
k→∞

∥∥∥L1/2
K,D(f

(k)
D,λ − fρ)

∥∥∥
K
≤ QD,λPD,λ +QD,λPD,λ lim

k→∞

k−1∑
j=1

(
λ

σxmin + λ

)j−1/2

=

(
1 +

(σxmin + λ)1/2λ1/2

σxmin

)
PD,λQD,λ.

This completes the proof of Corollary 5.
Proof of Theorem 6. Since

‖f (k̂)D,λ − fρ‖ρ ≤ ‖f
(k̂,∗)
D,λ − fρ‖ρ + ‖f (k̂)D,λ − f

(k̂,∗)
D,λ ‖ρ =: A(D,λ, k̂) + S(D,λ, k̂). (49)

We divide the proof into four steps.
Step 1: Bounding A(D,λ, k̂). Define

Q̃D,λ = ‖(LK,D + λI)−1(LK + λI)‖. (50)

We obtain from ‖L1/2
K (LK + λI)−1/2‖ ≤ 1 and ‖(LK + λI)−

1
2 ‖ ≤ λ−

1
2 that

A(D,λ, k̂) = ‖L1/2
K (f

(k̂,∗)
D,λ − fρ)‖K ≤ λ

−1/2‖(LK + λI)(f
(k̂,∗)
D,λ − fρ)‖K

≤ λ−1/2Q̃D,λ‖(LK,D + λI)(f
(k̂,∗)
D,λ − fρ)‖K

≤ λ−1/2Q̃D,λ‖LK,D(f
(k̂,∗)
D,λ − fρ)‖K + λ1/2Q̃D,λ‖f

(k̂,∗)
D,λ − fρ‖K . (51)

By Lemma 19, with confidence at least 1− δ, there holds

‖LK,D(f
(k̂,∗)
D,λ − fρ)‖K ≤

3

2
λ1/2WD,λ log4

16

δ
. (52)

Let Fλ be the orthogonal projection onto the subspace of HK spanned by the eigenvectors
of LK,D associated with eigenvalues less than λ and F⊥λ = I − Fλ. We have

‖f (k̂,∗)D,λ − fρ‖K ≤ λ
−1‖Fλ[λ(f

(k̂,∗)
D,λ − fρ)]‖K + λ−1‖F⊥λ [λ(f

(k̂,∗)
D,λ − fρ)]‖K =: A1 +A2. (53)

By the definition of F⊥λ and Lemma 19, it follows with confidence 1− δ,

A2 ≤ λ−1‖F⊥λ [LK,D(f
(k̂,∗)
D,λ − fρ)]‖K ≤ λ

−1‖LK,D(f
(k̂,∗)
D,λ − fρ)‖K ≤

3

2
λ−1/2WD,λ log4

16

δ
.

(54)
Due to (43) and (5), we have

A1 ≤ ‖Fλ[g
(k̂)
λ (LK,D)LK,Dfρ − fρ)]‖K ≤ ‖Fλ[λk̂(LK,D + λI)−k̂L

r−1/2
K ]‖‖hρ‖ρ.

If 1
2 ≤ r ≤

3
2 , we have

A1 ≤ ‖Fλ[λk̂(LK,D +λI)−k̂(LK,D +λI)r−1/2]‖(Q̃D,λ)r−1/2‖hρ‖ρ ≤ (Q̃D,λ)r−1/2‖hρ‖ρλr−1/2.
(55)
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If r > 3/2, (38) implies

A1 ≤ ‖Fλ[λk̂(LK,D + λI)−k̂(L
r−1/2
K − Lr−1/2K,D )]‖‖hρ‖ρ + ‖Fλ[λk̂(LK,D + λI)−k̂L

r−1/2
K,D ]‖‖hρ‖ρ

≤ ‖hρ‖ρ
(

(r − 1/2)κ2r−3RD + λr−1/2
)
. (56)

Inserting (56), (55) and (54) into (53) and then plugging (53) and (52) into (51), we have
from Lemma 22 in Appendix A that with confidence 1− δ,

A(D,λ, k̂) ≤ 3 log6
16

δ

[(
2(κ2 + κ)AD,λ√

λ

)2

+ 1

]
WD,λ

+ 4λ
1
2 ‖hρ‖ρ log4

16

δ

[(
2(κ2 + κ)AD,λ√

λ

)2

+ 1

]2(
λr−

1
2 +

(4r − 2)κ2r−1√
|D|

)
. (57)

Step 2: Bounding S(D,λ, k̂). It follows from (30), (44) and the definitions of QD,λ and
PD,λ that

S(D,λ, k̂) = ‖L1/2
K [f

(k̂)
D,λ − f

(k̂,∗)
D,λ ]‖K

≤ ‖(LK + λI)1/2g
(k̂)
λ (LK,D)(LK,D + λI)1/2(LK,D + λI)−1/2(LK,Dfρ − STDyD)‖K

≤ Q2
D,λ‖g

(k̂)
λ (LK,D)(LK,D + λI)‖PD,λ

≤ Q2
D,λPD,λ

[
‖g(k̂)λ (LK,D)LK,D‖+ λ‖g(k̂)λ (LK,D)‖

]
≤ (k̂ + 1)Q2

D,λPD,λ.

This together with (17) and Lemma 22 in Appendix A implies with confidence 1− δ

S(D,λ, k̂) ≤ k̂ + 1

2
WD,λ log5

16

δ

[√
2

(
2(κ2 + κ)AD,λ√

λ

)
+
√

2

]
.

Combining the above inequality with (47) yields

S(D,λ, k̂) ≤
[√

2

(
2(κ2 + κ)AD,λ√

λ

)
+
√

2

]
log

16

δ

{
(2r + 1)WD,λ log4

16

δ

+ 2

[(
2(κ2 + κ)AD,λ√

λ

)2

+ 1

]
λr‖hρ‖ρ log2

16

δ

+ (2r − 1)
4κ2r−1√
|D|

λ1/2‖hρ‖ρ log
16

δ

}
. (58)

Step 3: Bounding AD,λ and WD,λ. Since r ≥ 1/2, and λ = (c/|D|)1/(2r+s) with c ≥ 1,
it follows from (6), (48) and r ≥ 1

2 that

AD,λ =
1√
|D|

{
1√
|D|λ

+
√
N (λ)

}
≤ (1 +

√
C0)c

−s/(4r+2s)|D|−r/(2r+s). (59)
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This implies

A2
D,λ/λ ≤ (1 +

√
C0)

2c(−s−1)/(2r+s)|D|
1−2r
2r+s

and
AD,λ√
λ

+ 1 ≤ C̃1 (60)

with C̃1 := (1+
√
C0)c

−s−1
4r+2s+1. Now we turn to boundWD,λ. If ηδ/4 := 2 log(16/δ)/

√
|D|λ ≤

1, we have from Lemma 22 in Appendix A that√
max{ND(λ), 1} ≤ 5

√
max{N (λ), 1}.

Then, it follows from (6) and λ = (c/|D|)1/(2r+s) that

(
√
|D|λ+ 9)

√
max{ND(λ), 1} ≤ 5 max{c1/(4r+2s), 9}max{C1/2

0 c−s/(4r+2s), 1}|D|
2r+2s−1
4r+2s .

Thus, it follows from (15) that

WD,λ ≤ C̃ ′2|D|
− r

2r+s , (61)

where

C̃ ′2 := 16
√

2(κ2+κ+1)(κM+γ)
(

5(c−1/(2r+s) + 1)(c1/(4r+2s) + 9)(C
1/2
0 c−s/(4r+2s) + 1) + 1

)2
.

If ηδ/4 > 1, we get from Lemma 22 in Appendix A again and λ = (c/|D|)1/(2r+s) that with
confidence 1− δ√

max{ND(λ), 1} ≤ (1 + 16c−1/(2r+s))
√

max{N (λ), 1} log2
16

δ
.

The same argument as above shows that with confidence 1− δ,

WD,λ ≤ C̃ ′′2 |D|
− r

2r+s log4
16

δ
, (62)

where

C̃ ′′2 := 16
√

2(κ2 + κ+ 1)(κM + γ)

×
(

(1 + 16c−1/(2r+s))(c−1/(2r+s) + 1)(c1/(4r+2s) + 9)(C
1/2
0 c−s/(4r+2s) + 1) + 1

)2
.

Combining (61) with (62), we obtain with confidence 1− δ

WD,λ ≤ C̃2|D|−
r

2r+s log4
16

δ
(63)

with C̃2 := max{C̃ ′2, C̃ ′′2 }.
Step 4: Deriving the learning rate. Plugging (63) and (60) into (57) and (58), we have

with confidence 1− δ that

A(D,λ, k̂) ≤ C̃3|D|−
r

2r+s log10
16

δ
(64)
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with C̃3 = 3(4(κ2 + κ)2C̃2
1 + 1)C̃2 + 4(4(κ2 + κ)2C̃2

1 + 1)2‖hρ‖
(
c

r
2r+s + (4r − 2)κ2r−1c

1
4r+2s

)
and

S(D,λ, k̂) ≤ C̃4|D|−
r

2r+s log9
16

δ
(65)

with C̃4 =
√

2(2(κ2 + κ)C̃1 + 1)
[
(2r + 1)C̃2 + 2(2(κ2 + κ)2C̃2

1 + 1)c
r

2r+s ‖hρ‖ρ + (8r −
4)κ2r−1‖hρ‖ρc

1
4r+2s

]
. Putting (64) and (65) into (49), we have

‖f (k̂)D,λ − fρ‖ρ ≤ (C̃3 + C̃4)|D|−
r

2r+s log10
16

δ
.

This completes the proof of Theorem 6 with the constant C := C̃3 + C̃4.

6. Empirical Studies

In this section, we report experimental results to study the behavior of BKRR and the
adaptive stopping rule (16) in practice. We consider two regression problems. For the j-th
regression problem (j = 1, 2), we assume that training examples are independently drawn

from the regression model yi = gj(xi) + ξi, i = 1, . . . , |D|, where {xi}|D|i=1 are drawn from the

uniform distribution on the (hyper)-cube [0, 1]dj (dj is the input dimension) and {ξi}|D|i=1 are
noise components independently drawn from the Gaussian distribution N (0, 1/5). For the
j-th problem, we build the estimator by applying BKRR in the RKHS induced by a Mercer
kernel Kj . We consider the following two regression functions

g1(x) = min(x, 1− x), x ∈ [0, 1],

g2(x) = (1− ‖x‖2)6+(35‖x‖22 + 18‖x‖2 + 3), x ∈ [0, 1]3.

The two Mercer kernels are K1 : R× R 7→ R,K2 : R3 × R3 7→ R defined by

K1(x, x̃) = 1 + min(x, x̃) and K2(x, x̃) = g3(x− x̃),

where g3(x) = (1 − ‖x‖2)4+(4‖x‖2 + 1), x ∈ [0, 1]3. It can be found in Chang et al. (2017)
that g1 ∈ HK1 with exponent r = 1/2 in (5) and g2 ∈ HK2 with exponent r > 1/2. We
repeat each experiment 40 times and report the average of these experimental results.

Our numerical results are divided into three parts. In the first part, we study the relation
between the generalization ability of BKRR and the regularization parameter to verify our
motivation to combine KRR with boosting. In the second part, we validate the empirical
behavior of BKRR and its comparison with iterated Tikhonov regularization (ITR). In the
last part we show the effectiveness of adaptive stopping rule (16) in practical regression
problems.

6.1. Regularization Parameters in BKRR

A common consensus in boosting theory (Friedman, 2001) is that the weak learners should
be under-fitting and the boosting iteration will reduce the bias and increase the variance
accordingly. For estimators with high-level under-fitting, more boosting iterations are im-
posed and lead to a similar learning performance as other efficient algorithms. If KRR is
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used to build up a weak learner, this argument then shows that we should select a relatively
large λ, larger than some value, so that BKRR with a suitable number of iterations can
reach a similar learning performance as KRR. Our first simulation is to verify this argu-
ment and show a relation between the generalization ability and regularization parameters
in BKRR.

In this simulation, We traverse the regularization parameter λ over the set 0.0002 ×
{1, 2, 22, . . . , 210}. For each regularization parameter, we run BKRR until k reaches 150
for fρ = g1 and 300 for fρ = g2, respectively. For each considered k and λ, we estimate

the excess generalization error (EGE) E(f
(k)
D,λ) − E(fρ) by 1

2000

∑2000
i=1 [f

(k)
D,λ(x′i) − fρ(x

′
i)]

2,

where {x′i}2000i=1 are independently drawn from the uniform distribution on the corresponding
input space. For each λ, we record the optimal k (selected to be optimal to the test
data directly) and the corresponding EGE. Figure 1 reports EGEs and iteration numbers
versus regularization parameters. It is shown in Figure 1 that if λ is larger than some
value (near 10−2 in this simulation), then BKRR with different λ possesses similar learning
performances provided the number of iterations is appropriately selected. Figure 1 also
shows that the more high-level of under-fitting, the more boosting iterations required, which
verifies the previous common consensus. All these results show that using KRR to build
up a weak learner for boosting is reasonable and the selection of λ does not affect the
generalization ability very much.
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Figure 1: Excess generalization errors of BKRR versus regularization parameters. We also
plot the iteration number at which the optimal EGEs are achieved.

6.2. Behavior of BKRR

In this subsection, we want to validate the empirical behavior of BKRR and its comparison
with ITR. It should be mentioned that BKRR focuses on fixed regularization parameters
and varying iteration numbers, while ITR focuses on fixed iteration numbers and varying
regularization parameters. The aim of this simulation is to verify an advantage of BKRR
over ITR in the parameter selection, showing that selecting an appropriate number of
iterations in BKRR is easier than selecting an appropriate regularization parameter in ITR.

We first study how BKRR would behave along the iterations. In the first experiment,
we aim to study how EGEs would change as a function of iteration numbers. We fix
regularization parameters λ ∈ {0.0032, 0.0128, 0.0512, 0.2048}, and show in Figure 2 EGEs
versus the iteration number for two regression problems. From Figure 2 we see that EGEs
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would typically decrease first as k increases from 1 to some number, after which it increases
slowly as a function of k. To be detailed, the increasing curve behaves as a concave function
with respect to k, which validates our arguments in Theorem 3 and Theorem 4 that the
variance increases with exponentially diminishing terms as k increases. Furthermore, for
some large λ (λ = 0.2048 for example), BKRR shows a rather stable relationship between the
generalization performance and iteration numbers. This is consistent with our theoretical
findings in Theorem 3 and Theorem 4. We can also see clearly that the iteration number k
at which EGEs achieve the minimal value would increase as λ increases.
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Figure 2: Excess generalization errors versus the number of iterations for different regular-
ization parameters. We consider four λ and two regression problems with the
regression function being g1 and g2 in panel (a) and panel (b), respectively.
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Figure 3: Excess generalization errors versus regularization parameters for different number
of iterations. We consider four k and two regression problems with the regression
function being g1 and g2 in panel (a) and panel (b), respectively.
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We then illustrate the behavior of ITR with fixed k versus regularization parameters.

We fix the iteration numbers to some predefined values, and report EGEs of f
(k)
D,λ as a

function of regularization parameters in Figure 3. According to Figure 3, we see that
EGEs first decrease and then increase as a function of λ. As compared to the stable
relationship between EGEs and the number of iterations for BKRR, EGEs change more
rapidly with the regularization parameters for ITR. This gives empirical evidence that the
selection of iteration number in BKRR is more tractable than the selection of regularization
parameters in ITR. It is also clear that the optimal regularization parameter becomes larger
as k increases, which is consistent with Theorem 1.

In Table 1, we record the optimal EGEs achieved by BKRR over all iterates for different
regularization parameters. We list in the first row the considered regularization parameters.
In the second and third rows, we report the optimal EGEs achieved by BKRR with the fixed
regularization parameters on two regression problems. In Table 2, we record the optimal
EGEs achieved by ITR over all regularization parameters for different iteration numbers.
We list in the first and third rows the considered number of iterations. In the second and
fourth rows, we report the optimal EGEs achieved by ITR with fixed iteration number on
two regression problems. It can be found that BKRR can achieve similar accuracies to ITR
with a much easier parameter-selection strategy.

λ 0.0004 0.0008 0.0016 0.0032 0.0064 0.0128 0.0256 0.0512 0.1024 0.2048
g1 2.72e−4 2.26e−4 2.24e−4 1.92e−4 1.89e−4 1.87e−4 1.87e−4 1.87e−4 1.87e−4 1.87e−4
g2 1.76e−3 1.75e−3 1.65e−3 1.60e−3 1.60e−3 1.60e−3 1.59e−3 1.59e−3 1.59e−3 1.59e−3

Table 1: Excess generalization errors of BKRR with different regularization parameters.

k 15 30 45 60 75 90 105 120 135 150
g1 1.91e−4 1.92e−4 1.87e−4 1.92e−4 1.89e−4 1.87e−4 1.88e−4 1.92e−4 1.97e−4 2.02e−4
k 30 60 90 120 150 180 210 240 270 300
g2 1.59e−3 1.59e−3 1.63e−3 1.59e−3 1.63e−3 1.62e−3 1.60e−3 1.59e−3 1.61e−3 1.63e−3

Table 2: Excess generalization errors of ITR with different iteration numbers.

6.3. BKRR with Early Stopping

In this subsection, we aim to validate the effectiveness of adaptive stopping rule (19) in
practical regression problems for some θ ∈ R+. It should be noted that (19) is independent
of the confidence level and also different from (16) in the constant term. As discussed in
Remark 7, such a modification is reasonable due to the (semi) exponential bias-variance
trade-off of BKRR. We apply BKRR to regression problems with different sample sizes
(|D| ∈ {800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000}) and different regularization pa-
rameters (λ ∈ {0.016, 0.032, 0.064, 0.128}). For each sample size and regularization parame-
ter, we run BKRR with several iterations to get a sequence of candidate models. We record
the iteration number k̂ASR selected by the adaptive stopping rule (ASR) (19) with θ = 0.05,
the iteration number k̂CV selected by the five-fold cross validation (CV) and the iteration
number k̂Oracle with the minimal generalization error over all candidate models.
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(b) λ = 0.032
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(c) λ = 0.064
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(d) λ = 0.128

Figure 4: Excess generalization errors of the model selected by ASR (red color), the model
selected by CV (black color) and the best candidate model (blue color) versus the
number of training examples. We consider the regression problem y = g1(x) + ε
and four regularization parameters: λ = 0.016, λ = 0.032, λ = 0.064 and λ =
0.128.

In Figure 4, we fix different regularization parameters and plot the EGEs of f k̂ASR
D,λ ,

f k̂CV
D,λ and f k̂Oracle

D,λ versus the number of training examples for the regression problem with
the regression function g1. According to Figure 4, it is clear that ASR (19) works well in
selecting a good model with EGEs comparable to the best candidate model. Furthermore,
ASR also behaves slightly better than the CV widely used in practical learning problems.
It should be mentioned that the five-fold CV requires the training of an additional five
models based on different assignments of validation sets, which can be time-consuming.
This repeated training is not required in ASR and therefore ASR requires significantly less
computational costs than CV.
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Appendix A. Auxiliary Lemmas

In this appendix, we present some useful lemmas. The first one (Mücke, 2018, Corollary
2.2) (see also Lu et al. (2018)) describes the difference between the effective dimension and
its empirical counterpart.
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Lemma 21 For any 0 < δ < 1, with confidence 1− δ, there holds

(1 + 4ηδ)
−1√max{N (λ), 1} ≤

√
max{ND(λ), 1} ≤ (1 + 4 max{√ηδ, η2δ})

√
max{N (λ), 1},

where ηδ := 2 log(4/δ)/
√
|D|λ.

Based on Lemma 21, we can get the following lemma.

Lemma 22 Let D be a sample drawn independently according to ρ and 0 < δ < 1. With
confidence at least 1− δ,

Q2
D,λ ≤ Q̃D,λ ≤ 2

(
2(κ2 + κ)AD,λ log 8

δ√
λ

)2

+ 2,

RD ≤ 4κ2√
|D|

log
8

δ
,

PD,λ ≤ 2(κM + γ)AD,λ log
(
8/δ
)
,

(1 + 4ηδ/4)
−1√max{N (λ), 1} ≤

√
max{ND(λ), 1} ≤ (1 + 4

√
ηδ/4 ∨ η2δ/4)

√
max{N (λ), 1}

hold simultaneously.

Proof. From Guo et al. (2017, Proposition 1) and (67) in Appendix B below, there exists

a subset Z |D|δ,1 of Z |D| with measure at least 1− δ such that for all D ∈ Z |D|δ,1

Q2
D,λ ≤ Q̃D,λ ≤ 2

(
2(κ2 + κ)AD,λ log 2

δ√
λ

)2

+ 2.

From Yao et al. (2007, Proposition 5.3), there exists a subset Z |D|δ,2 of Z |D| with measure at

least 1− δ such that for all D ∈ Z |D|δ,2

RD ≤
4κ2√
|D|

log
2

δ
.

It also follows from Blanchard and Krämer (2016, Lemma 5.1) that there exists a subset

Z |D|δ,3 of Z |D| with measure at least 1− δ such that for all D ∈ Z |D|δ,3

PD,λ ≤ 2(κM + γ)AD,λ log
(
2/δ
)
.

According to Lemma 21, there exists a subset Z |D|δ,4 of Z |D| with measure at least 1− δ such

that for all D ∈ Z |D|δ,4

(1 + 4ηδ)
−1√max{N (λ), 1} ≤

√
max{ND(λ), 1} ≤ (1 + 4

√
ηδ ∨ η2δ )

√
max{N (λ), 1}.

Thus, for D ∈ Z |D|δ,1 ∩ Z
|D|
δ,2 ∩ Z

|D|
δ,3 ∩ Z

|D|
δ,4 , the above four inequalities hold simultaneously.

Then Lemma 22 follows by scaling δ to δ/4.
From Lemma 22, we derive the following estimate.
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Lemma 23 For any 0 < δ < 1, with confidence 1− δ, there holds

PD,λQDλ ≤
1

2
WD,λ log4

16

δ
.

Proof. It follows from Lemma 22 and (48) that with confidence 1− δ, there holds

PD,λQDλ ≤
4
√

2(κ2 + κ+ 1)(κM + γ)√
|D|

(
1

λ|D|
+

√
N (λ)√
|D|λ

+ 1

)(
1√
λ|D|

+
√
N (λ)

)
log2

16

δ

≤ 4
√

2(κ2 + κ+ 1)(κM + γ)√
|D|

(
(
√
|D|λ+ 9)

√
max{ND(λ), 1}
|D|λ

+ 1

)

×
(
√
|D|λ+ 9)

√
max{ND(λ), 1}√
|D|λ

log4
16

δ
.

This together with (15) completes the proof of Lemma 23.
Our final lemma establishes a relation between the in-sample norm and out-sample

norm of functions in HK .

Lemma 24 Let f ∈ HK . Then

‖f‖ρ ≤ QD,λ‖L
1/2
K,Df‖K +QD,λλ1/2‖f‖K . (66)

Proof. Since f ∈ HK , it follows from the definition of QD,λ that

‖f‖ρ = ‖L1/2
K f‖K ≤ ‖(LK + λI)1/2f‖K ≤ QD,λ‖(LK,D + λI)1/2f‖K

≤ QD,λ‖L
1/2
K,Df‖K +QD,λλ1/2‖f‖K .

This finishes the proof of Lemma 24.

Appendix B. Some Inequalities for Positive Linear Operators

In this part, we recall some basic definitions and properties for linear operators which can
be found in Bhatia (2013). Let H1 and H2 be two Hilbert spaces. Let L(H1,H2) be the
space of all bounded linear operators from H1 to H2. The adjoint of an operator A is the
unique operator A∗ in L(H2,H1) that satisfies the relation

〈g,Af〉H2 = 〈A∗g, f〉H1

for all f ∈ H1 and g ∈ H2. For the space L(H,H), we use the more compact notation L(H).
For A ∈ L(H), if A = A∗, we then call A a self-adjoint operator. A self-adjoint operator is
said to be positive, if 〈f,Af〉H ≥ 0 for all f ∈ H. If 〈f,Af〉H > 0 for all nonzero f , we say
A is strictly positive.

For A ∈ L(H), the operator norm is defined by

‖A‖ = sup
‖f‖H=1

‖Af‖H.
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IfA is compact and positive, there exists a normalized eigenpairs ofA, denoted by {(λi, ϕi)}∞i=1,
with eigenvectors {ϕi} forming an orthonormal basis for H and eigenvalues satisfying
λ1 ≥ λ2 ≥ · · · ≥ 0. There also holds ‖A‖ = λ1. Write the trace of the positive opera-
tor A by

Tr(A) =

∞∑
i=1

λi.

The Hilbert-Schmidt norm of A is then defined by

‖A‖HS = (Tr(A2))1/2 =

 ∞∑
j=1

λ2j

1/2

.

If ‖A‖HS < ∞, we then call A a Hilbert-Schmidt operator. If A is Hilbert-Schmidt, it
follows from the definition that ‖A‖ ≤ ‖A‖HS . For F : R+ ∩ {0} → R, we define the
operator

F (A) =

∞∑
i=1

F (λi)ϕi ⊗ ϕi =

∞∑
i=1

F (λi)〈·, ϕi〉Hϕi

by spectral calculus. For positive operators A and B, there holds ‖AB‖ = ‖BA‖. We
also need the following two important inequalities, which can be found in Lemma 1 and
Lemma 4 in Guo et al. (2017) (see also Bhatia (2013, Lemma VII.5.5) for the second one).

Lemma 25 Let A and B be positive operators. Then for any 0 ≤ τ ≤ 1, there holds

‖AτBτ‖ ≤ ‖AB‖τ . (67)

If in addition A and B are Hilbert-Schmidt and max{‖A‖, ‖B‖} ≤ κ, then for arbitrary
µ ≥ 1, there holds

‖Aµ −Bµ‖HS ≤ µκµ−1‖A−B‖HS . (68)
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