
Journal of Machine Learning Research 20 (2019) 1-57 Submitted 2/18; Revised 8/19; Published 8/19

Minimal Sample Subspace Learning: Theory and Algorithms

Zhenyue Zhang zyzhang@zju.edu.cn
School of Mathematics Science
Zhejiang University, Yuquan Campus
Hangzhou 310027, China

Zhejiang Laboratory
1818 Wenyixi Road
Hangzhou 311122, China

Yuqing Xia xiayq@zju.edu.cn

School of Mathematics Science

Zhejiang University, Yuquan Campus

Hangzhou 310027, China

Editor: Francis Bach

Abstract

Subspace segmentation, or subspace learning, is a challenging and complicated task in
machine learning. This paper builds a primary frame and solid theoretical bases for the
minimal subspace segmentation (MSS) of finite samples. The existence and conditional
uniqueness of MSS are discussed with conditions generally satisfied in applications. Uti-
lizing weak prior information of MSS, the minimality inspection of segments is further
simplified to the prior detection of partitions. The MSS problem is then modeled as a
computable optimization problem via the self-expressiveness of samples. A closed form of
the representation matrices is first given for the self-expressiveness, and the connection of
diagonal blocks is addressed. The MSS model uses a rank restriction on the sum of segment
ranks. Theoretically, it can retrieve the minimal sample subspaces that could be heavily
intersected. The optimization problem is solved via a basic manifold conjugate gradient
algorithm, alternative optimization and hybrid optimization, therein considering solutions
to both the primal MSS problem and its pseudo-dual problem. The MSS model is further
modified for handling noisy data and solved by an ADMM algorithm. The reported exper-
iments show the strong ability of the MSS method to retrieve minimal sample subspaces
that are heavily intersected.

Keywords: Subspace learning, Clustering, Rank restriction, Sparse optimization, Self-
expressiveness

1. Introduction

Given a collection of vectors sampled from the union of several unknown low-dimensional
subspaces that might intersect with each other, subspace learning, or subspace segmenta-
tion, aims to partition the samples into several segments such that each segment contains
samples within the same subspace. If the segmentation is correct, the unknown subspaces
are estimated well by the segments. The problem of subspace segmentation occurs in several
applications. For instance, in single rigid motion, the trajectories of feature points lie in
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an affine subspace with a dimension of at most 3 (Costeira and Kanade, 1998).1 Moreover,
facial images of an individual under various lighting conditions lie in a linear subspace of
dimension up to 9 (Basri and Jacobs, 2003). Detecting multiple rigidly moving objects
from videos, and recognizing multiple individuals from facial images are potential subspace
segmentation tasks.

Algorithms for subspace segmentation can be traced backe to early studies on algorithms
such as RANSAC (Fischler and Bolles, 1981), K-subspace (Bradley and Mangasarian, 2000;
Tseng, 2000), and generalized principal component analysis (GPCA, Vidal et al., 2005; Ma
et al., 2008). In recent years, self-expressiveness methods such as low-rank representation
(LRR, Liu et al., 2013) and sparse subspace clustering (SSC, Elhamifar and Vidal, 2013)
have attracted a great deal of attention because of their state-of-art empirical performance.
Given a set of column vectors X sampled from the union of several subspaces, such algo-
rithms search for a representation matrix C of X, that is, X = XC, and try to detect
the subspaces based on C. Ideally, the representation matrix C is block-diagonal as that
C = diag(C1, · · · , CK) under permutation. In this case, the samples are also partitioned
into K pieces such as X = [X1, · · · , XK ], and each Xk contains samples from the same
subspace.

To estimate such a representation with the block-diagonal structure in C as much as
possible, the SSC minimizes the `1-norm of C as follows:

(SSC) min
C
‖C‖1 s.t. X = XC, diag(C) = 0. (1)

The restriction on the diagonals avoids a trivial and meaningless solution. The LRR method
searches for a representation matrix with approximate low-rank structure that can take the
so-called ‘global structure’ of the samples into account. Thus, it minimizes the nuclear norm
‖C‖∗ (sum of the singular values) of C as follows:

(LRR) min
C
‖C‖∗ s.t. X = XC. (2)

The main difference is that SSC searches for the sparsest nontrivial representation matrix,
while LRR searches for the representation matrix with the lowest rank. SSC and LRR
seemingly impede subspace retrieval at two ends: an overly sparse solution may be block-
diagonal with a greater-than-expected number of diagonal blocks, and a solution with an
overly low-rank may not be block-diagonal or have less blocks. In these two cases, the
ground-truth subspaces cannot be detected via classical spectral clustering. To control
the number of blocks, Wang et al. (2013) combines the two objective functions. More
purposefully, Xia and Zhang (2018) combines the `1-norm function with a logarithmic-
determinant function to balance the sparsity and rank of the solution. Li et al. (2017)
modifies the `1-norm function ‖C‖1 to the `1-norm of the off-diagonal blocks of C with a
partition that should also be optimized. This strategy may help to increase the connection of
the diagonal blocks in some sense.2 Since the number of zero eigenvalues of the Laplacian
matrix of a block-diagonal matrix is equal to the number of connected diagonal blocks

1. A d-dimensional affine subspace can be embedded into a (d + 1)-dimensional linear subspace by adding
1 as a new entry to each vector.

2. We say that Ck is connected if the undirected graph constructed from |Ck|+ |Ck|T is connected.

2



Minimal Sample Subspace Learning: Theory and Algorithms

(Von Luxburg, 2007), Lu et al. (2019) minimizes several of the smallest eigenvalues of the
Laplacian matrix of C to achieve a block-diagonal solution with connected diagonal blocks.

The effectiveness of these methods has scarcely been exploited in the literature. For
instance, Soltanolkotabi and Candès (2012) gave sufficient conditions for SSC to retrieve a
representation matrix that can detect subspaces. Liu et al. (2013) proved that LRR can
recover mutually independent subspaces.3 The above modified methods require equivalent
or stronger conditions, which are generally very strict in applications.

The latent subspaces we wish to retrieve from samples are not well-defined mathemat-
ically, which may explain why theoretical progress in subspace learning has been slow.
Subspace segmentation is practically ambiguous and unidentified in the literature. It is also
highly possible that the segmented subspaces found by an algorithm may be defined by the
algorithm used. For instance, in SSC, segmenting X into {Xk} is equivalent to separating
a constructed graph A into connected subgraphs {Ak} via the following procedure: Let ci
minimize ‖c‖1 subjected to xi = X(i)c, where X(i) is the X whose i-th column is reset to
zero, i = 1, · · · , n. Graph A takes {xi} as its nodes and has an edge between nodes xi and xj
if the j-th entry of ci or the i-th entry of cj is nonzero. Theoretically, C = diag(C1, · · · , CK)
is block-diagonal of connected blocks under permutation if and only if A has K connected
subgraphs {Ak}. In that case, Xk consists of the samples as nodes involved in Ak. Clearly,
the spanning subspaces {span(Xk)} depend on the connection structure of the constructed
graph and cannot be predicted. In addition, the number of subspaces cannot be predicted.
LRR gives a coarse segmentation corresponding to the independent subspaces, each a sum of
several ground-truth subspaces, assuming that the ground-truth subspaces can be separated
into several classes such that the subspace sums within classes are independent.4

This paper aims to build a theoretical basis for subspace learning from a mathematical
viewpoint. The basic, important, and key issues that we keep in mind include the following:

(1) Identifiability of the subspaces that we wish to detect from a finite number of samples.
The related basic issues for noiseless samples may include the definition of subspaces that
are solely determined by samples, the uniqueness of the corresponding segmentation, the
sufficient conditions for uniquely identifying the segmentation, and the consistency of the
defined segmentation with the groundtruth segmentation that we expect in applications.

(2) Computability of the defined subspace segmentation. For application purpose, we
may be required to formulate the defined segmentation as an optimization problem that
should be computable with an acceptable cost. Related issues may include the uniqueness
of the solution or conditions of the uniqueness, and the ability of addressing complicated
segmentation wherein subspaces intersect with each other heavily, or samples are located
near such intersected subspaces.

(3) Efficient algorithms for solving the optimization problem. We may also encounter
efficiency issues with the adopted algorithms, such as computational complexity and local
optimums.

(4) Stability of solutions and robustness of algorithms. It may be difficult but absolutely
worth addressing these issues to further our understanding of subspace learning.

3. LRR cannot recover dependent subspaces; see Theorem 20 in Subsection 5.2.1.
4. This claim can be also concluded from Theorem 20.
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(5) Extension to noisy samples which may be more important in applications. Certain
necessary modifications are required to this end, together with perturbation theory on
subspace segmentation.

In this paper, we partially address the above issues. Below, we briefly describe the main
contributions of this paper and our related motivations.

1. The concept of minimal sample space is introduced and used to define a minimal sam-
ple segmentation (MSS) of a given set of samples. The existence of the MSS is guaranteed
but may not be unique in some special cases; thus, we show that the MSS is conditionally
unique. Two kinds of sufficient conditions for this uniqueness are given that focus on data
quantity and quality, respectively. These conditions are weak since they are always satisfied
in applications with randomly chosen samples from ground-truth subspaces. Hence, the
minimal sample subspaces should generally be ground-truth subspaces.

2. It is difficult to check the minimality of a segmentation. We further study how to
simplify detection under following the prior information of an MSS: The number of minimal
segments, the sum of the segment ranks, and the minimal rank of the segments. We focus
on the set of partitions with the same number of pieces and the restrictions of rank sum and
minimal rank. Conditions for the singleness of such a set are given based on discreet rank
estimations on each segment. These conditions permit subspaces to be heavily intersected
within reasonable sense. Singleness means that the MSS can be detected.

3. The sufficient conditions for singleness of the above partition set are tight. We further
exploit the properties of the sample segments when the sufficient conditions are incompletely
satisfied, leading to two types of partition refinements under weaker conditions: Segment
reduction and segment extension.

4. Based on solid theoretical analyses, we formulate the detection of minimal subspace
segmentation as a computable optimization problem that adopts the self-expressiveness of
samples. The closed-form structure of the representation matrix is given. MSS detection
requires a connected and block-diagonal structure of the solution partitioned as the consid-
ered MSS. We prove that all the connected diagonal blocks are guaranteed only if the rank
sum of the diagonal blocks is equal to that of the minimal sample segments. Under this
restriction, the optimization problem gives a minimal subspace detectable representation
(MSDR) of the MSS.

5. The objective function of the proposed optimization problem contains discrete vari-
ables from index partition J and continuous variables from the representation matrix C
over a nonconvex feasible domain. To solve this minimization problem, we alternatively
optimize J and C, slightly modifying J to an active index set Ω and adding a penalty on
the diagonals of C. A manifold conjugate gradient (MCG) method is used for optimizing
C, and an update rule is given for both Ω and J . Combining the two types of update rules
yields an alternative optimization for detecting an MSS. An equivalent pseudo-dual prob-
lem of the primal problem is further considered and solved via subspace correction. These
two kinds of MSS algorithms may drop into local minima, but they seldom have the same
local minimizers. Hence, alternatively using these algorithms is an efficient strategy for
escaping a local minimum, yielding a hybrid optimization method for the minimal subspace
segmentation.
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6. We further extend the MSS optimization problem to handle noisy samples. An
ADMM method is simply considered for solving this extended optimization problem, and
detailed formulas are given for solving the subproblems involved in the ADMM method.

It should be pointed out that we require the sum of subspace dimensions in our sparse
model. It is an additional prior as a restriction to the rank of C, compared with algorithms
given in the literature for subspace learning. The restriction is not necessary for uniquely
determining the MSS (see Theorem 6 given in Section 2.2 for the sufficient conditions).
However, it is necessary for guaranteeing the connection of a block-diagonal C (Theorems
22 and 24 in Section 5.2). It is also helpful for simplifying the detection of minimal subspace
or MSS as shown in Theorem 11 of Section 3.1.

The remainder of the paper is organized as follows. Sections 2-6 cover the analysis of
noiseless samples, while Section 7 discusses the extended model on noisy samples. The
definition of minimal sample subspaces and discussions on uniqueness are given in Section
2. In Section 3, we discuss the problem of detecting an MSS, focusing on conditions for
the singleness of rank-restricted index partitions. The theoretically supported refinement
of conditioned partitions is further discussed in Section 4. Based on these theoretical anal-
yses, we model the MSS problem as a computational optimization problem in Section 5,
covering a closed form of representation matrices, the connectivity of diagonal blocks, slight
modifications to the model, and a comparison with related work. The MSS algorithms,
together with a manifold conjugate gradient method for solving the basic optimization
problem, alternative optimization strategies and hybrid optimization, are given in Section
6. In addition, we present an extended model for handling noisy samples and a detailed
ADMM algorithm for solving the optimization problem. Finally, we report our numerical
results and compare our method with existing algorithms on both noiseless synthetic data
and real-world data in Section 8. Comments on further research directions are given in the
conclusion section.

2. Minimal Subspace Segmentation

The subspaces that we expect to identify from the set of a finite number of samples may be
quite different from those that naturally fit these samples. This occurs when the samples
from an expected subspace are exactly located in the expected subspaces’ several smaller
subspaces. Thus, the basic issue for subspace learning is: what subspaces can we reasonably
expect based on the given data points?

In this section, we introduce the concept of a minimal sample subspace and use it to
define a segmentation of samples termed minimal subspace segmentation. For the sake of
discussion, we refer to X as a data matrix consisting of data points {xi} as its columns,
which is also referred to as the set of the data points. In the following discussion, r(X) and
n(X) refer to the rank and column number of X, respectively.

2.1. Minimal Sample Subspace

Naturally, the subspace spanned by a set of samples should have a smaller dimension than
the sample number. Equivalently, the spanning samples are not linearly independent. We
say that a sample-spanned subspace is minimal if it does not have a smaller subspace
spanned by a subset of the samples. That is, any linearly dependent partial set of samples
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spans the same subspace. Below is an equivalent definition of the minimal sample subspace
in linear algebra.

Definition 1 A sample subspace span(X) is minimal, if

(1) X is rank deficient, that is, n(X) > r(X), and

(2) X is nondegenerate, that is, any subset with a rank smaller than r(X) is of full rank.

A sample subspace, span(X), is pure if X is of full column rank, i.e., n(X) = r(X).

Nondegeneracy specifies that r(X ′) = min{n(X ′), r(X)} for any subset X ′ of a nonde-
generate X. Hence, any subset of a nondegenerate X must also be nondegenerate. This
property implies that, for a minimal subspace span(X), any rank deficient subset X ′ of
X cannot span a subspace with a smaller dimension. Equivalently, if span(X) contains a
minimal subspace span(X ′), the two subspaces must be equal.

With respect to a given data set X if its spanning subspace span(X) is neither pure
nor minimal, that is, if X is rank-deficient but degenerate, then there is a rank-deficient
subset X ′ of smaller rank. Thus, it makes sense to partition the data set X into several
nonoverlapping segments X0, · · · , XK such that span(X0) is pure and the other {span(Xk)}
are minimal.

Definition 2 A segmentation {X0, X1, · · · , XK} of vector set X is called a minimal sub-
space segmentation (MSS) of X if

(1) span(X0) is pure, and each span(Xk) is minimal, k = 1, · · · ,K, if it exists;

(2) span(Xk) 6= span(X`) for k, ` = 0, · · · ,K, k 6= `;

(3) If X0 exists, for any xj ∈ X0, xj /∈ span(Xk), k = 1, · · · ,K.

We also call X0 a pure segment if span(X0) is pure. In applications, a pure segment X0,
if it exists, could be a set of outliers. Condition (3) is necessary since some samples may be
redundant for spanning a minimal sample space.

Theorem 3 Any set of nonzero vectors has an MSS.

Proof The basic idea of the proof was mentioned above. If span(X) is pure, we set X = X0

and K = 0. If span(X) is minimal, we set X1 = X and K = 1, and X0 disappears. In the
other cases, we have a minimal subspace span(X1) that has the smallest dimension, where
X1 is a subset of X. X1 can be the set containing all the samples belonging to the subspace
span(X1), since adding these samples does not change the minimality of the subspace be-
cause there is no minimal subspace of lower dimension. That is, span(X1) remains minimal
after adding samples. Repeating the above procedure on the remaining samples, we can
complete the proof.

However, the MSS of a given set X may be not unique. The following example illustrates
an example of nonuniqueness.
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Example 1 Let X be the union of 4T five-dimensional vectors in the pieces

X1,j =

 aj,1 aj,2
bj bj
o o

 , X2,j =

 aj,1 aj,2
o o
bj bj

 with o =

[
0
0

]
, j = 1, · · · , T,

where the scales aj,1 and aj,2 and the vector bj ∈ R2 are arbitrarily chosen such that aj,1 6=

aj,2, each pair (bi, bj) pair is linearly independent, and

[
ai,si aj,sj ak,sk
bi bj bk

]
is of full rank

for different i, j, k and any si, sj , sk = 1, 2. Then X has two types of segmentations without
a pure segment,

(1) X ′1 = [X1,1, · · · , X1,T ], X ′2 = [X2,1, · · · , X2,T ], K = 2;

(2) X ′′k = [X1,k, X2,k], k = 1, · · · ,K = T .

Here, each span(X ′k) or span(X ′′k ) is minimal. Hence, both {X ′k} and {X ′′k} are minimal.

This example partially explains why subspace learning is complicated. First, a sample
set may have multiple segmentations, and each is an MSS. Second, the segments of an MSS
may be very small. A small minimal segment Xk may have the smallest number of samples
needed to span a minimal subspace, i.e., n(Xk) = r(Xk) + 1. Obviously, if each segment is
small in an MSS, this MSS may have a large number of segments. That is, the samples can
be clustered into many small classes. Third, two different MSSs may have an equal number
of segments with equal ranks. This case occurs when T = 2, where each segment has rank
3 with 4 samples.

Fortunately, the MSS is generally unique in applications. In the next subsection, we
discuss the conditions of uniqueness.

2.2. Uniqueness of Minimal Subspace Segmentation

The following condition is obviously necessary for a unique MSS of X = [x1, · · · , xn].

xj /∈ span(Xk) ∩ span(X`), ∀j and ∀k 6= `. (3)

Otherwise, a sample belonging to the intersection of two spanning subspaces could be arbi-
trarily assigned to any one of the two sample sets spanning the subspaces. In this subsection,
we describe two types of sufficient conditions that guarantee the uniqueness of an MSS based
on either sample quantity or quality.

Theorem 4 If X has an MSS with K minimal sample subspaces satisfying the condition
(3) and n(Xk) > (K + 1)(r(Xk)− 1), then a different MSS of X satisfying (3), if it exists,
must have more minimal sample subspaces.

Proof The theorem is obviously true if span(X) is pure. If span(X) is not pure, which
implies K ≥ 1, and there is another MSS {X ′0, X ′1, · · · , X ′K′} of X satisfying (3) with
K ′ ≤ K, let

n1 = n(X1), r1 = r(X1), X1,k = X1 ∩X ′k, n1,k = n(X1,k), k1 = arg max
k≤K′

n1,k.
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Figure 1: Illustration of nondegenerate intersection. The segmentation of samples according
to the blue, red, and green planes is intersected degenerately because of the points
x1, x2, x3 that are sampled from the three planes but can span a new minimal
subspace marked in gray. After deleting these three points, the segmentation is
intersected nondegenerately.

Because (K + 1)(r1 − 1) < n1 =
∑K′

k=0 n1,k ≤ (K ′ + 1)n1,k1 ≤ (K + 1)n1,k1 , we have
n1,k1 ≥ r1. Hence, span(X1) = span(X1,k1) ⊂ span(X ′k1

). By (3), X ′k1
= X1. Deleting

X1 from X, the remainder samples have two minimal segmentations {X0, X2, · · · , XK} and
{X ′0, · · · , X ′k1−1, X

′
k1+1, · · · , X ′K′}. Using induction on K, these two minimal segmentations

should be equal. Hence, the theorem is proven.

Theorem 4 basically says that an MSS is unique if it is ‘fat’, that is, each segment has
enough samples. Multiple minimal subspace segmentations may exist only if some segments
have a small number of samples compared with the number of segments. Among those
minimal segments with few samples, a union of partial samples from different segments can
also form a new minimal segment. This may be the main reason for the multiplicity of
minimal subspace segmentations. However, this multiplicity will disappear if the samples
are well-distributed. Below, we introduce a new concept to define such a good distribution.
For the sake of simplicity, X\X ′ indicates the remaining samples of X when the subset X ′

is removed.

Definition 5 A segmentation {X0, X1, · · · , XK} is intersected nondegenerately, if for any
subset X ′k of X\Xk, the splitting

Xk = Yk + Zk, Yk ⊂ S ′k, Zk ⊂ S ′′k

according to the direct sum span(Xk) = S ′k ⊕ S ′′k , always gives a zero or nondegenerate Zk,
where S ′k = span(Xk) ∩ span(X ′k), and S ′′k is the orthogonal complement of S ′k restricted in
span(Xk).

Figure 1 illustrates the nondegenerate intersection, in which the minimal segmentation
becomes to be intersected degenerately if we add three special points x1, x2, and x3 into
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the three planes. In this case, the whole sample set has a new segmentation with 4 minimal
segments; However the intersection of two segments may be not empty. In addition, after
merging the new points into the original three segments, respectively, the three extended
segments also form an MSS. This illustration is limited because of its low dimension, in
which the newly added sample xi belongs to an intersection of two minimal segments. This
intersection phenomenon should be removed in uniqueness analysis as we assumed in (3).
In a higher dimensional space, some MSSs may be intersected degenerately, although the
intersection phenomenon in Figure 1 does not occur. For example, (3) is satisfied for the
degenerately intersected segmentation {X ′′k} given in Example 1.

Theorem 6 If X has a nondegenerately intersected MSS satisfies (3), then its MSS satis-
fying (3) is unique.

Proof We use the same notation as that used in the proof of Theorem 4. Assume that
X has a nondegenerately intersected MSS {X0, · · · , XK} and another MSS {X ′0, · · · , X ′K′},
and both satisfy (3). We first show that there is a segment X ′k1

equal to X1. Uniqueness
is then achieved after applying the method of induction to the number of segments since
{X0, X2, · · · , XK} is a minimal segmentation of the remaining samples. To this end, we
consider n1,k1 = maxk 6=0 n1,k that is most possible for the equality X ′k1

= X1 since X ′k1
has

the largest intersection with X1. For the sake of simplicity, we can assume that k1 = 1.
The equality X ′1 = X1 holds if span(X ′1) ⊆ span(X1) or span(X1) ⊆ span(X ′1) by (3).

Assume span(X ′1) * span(X1) and span(X1) * span(X ′1) conversely. That is, both
Xc

1 = X ′1 \X1,1 and X1 \X1,1 are not empty. Obviously, X1 * S ′0 = span(Xc
1). Hence,

splitting X1 according to the direct sum span(X1) = S ′+S ′′, where S ′ = S ′0∩span(X1) and
S ′′ is the orthogonal complement of S ′ restricted in span(X1), we can rewrite X1 = Y1 +Z1,
where Y1 ⊂ S ′ and nonzero Z1 ⊂ S ′′ that should be nondegenerate since {X0, · · · , XK} is
intersected nondegenerately. Thus, in the splitting X1,1 = Y1,1 + Z1,1 of the subset X1,1

of X1, where Z1,1 ⊂ Z1, the nondegeneracy of Z1 gives that r(Z1,1) = min
{
n1,1, r(Z1)

}
.

However, whether r(Z1,1) = r(Z1) is true or not, it always leads to a contradiction as shown
below. If r(Z1,1) = r(Z1), then span(Z1) = span(Z1,1) ⊂ span(X1,1) ⊂ span(X ′1), and we
get span(X1) ⊆ span(Y1) + span(Z1) = S ′ + span(X ′1) ⊆ span(X ′1), a contradiction of the
hypothesis span(X1) * span(X ′1). If r(Z1,1) 6= r(Z1), then r(Z1,1) = n1,1 and

r(Y1,1) + r(Z1,1) = r(X1,1) ≤ n1,1 = r(Z1,1).

Hence, Y1,1 = 0, i.e., X1,1 = Z1,1 ⊆ S′′⊥
(
S ′0 ∩ span(X1,1)

)
. We conclude that span(X1,1)

is orthogonal to S ′0 = span(Xc
1). Thus, r(Xc

1) < r(X ′1). By the minimality of X ′1, Xc
1 is of

full column rank, and n1 > r(X ′1) = r(X1,1) + r(Xc
1) = n1,1 + n(Xc

1) = n1, which is also a
contradiction.

The sample quantity condition of Theorem 4 is generally satisfied in many applications
since the number of subspaces that we want to be recognized is quite small, compared with
the number of samples. In addition, the sample quality condition of Theorem 6 is also
satisfied with probability 1 if the samples are randomly chosen from given subspaces.
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Theorem 7 Given different subspaces S1, · · · ,SK , if the columns of Xk are randomly cho-
sen from Sk with nk > dim(Sk) for k = 1, · · · ,K, then {X1, · · · , XK} is intersected nonde-
generately and (3) is satisfied with probability 1.

Proof The condition (3) is obviously satisfied with probability 1. Let Uk be an orthogonal
basis matrix of Sk, and let Xk = UkHk. By the assumption, Hk is a random matrix whose
entries are i.i.d. To show the nondegenerate intersection of {X0, X1, · · · , XK}, we consider
an arbitrary subset X ′k of Xc

k = X\Xk, and the splitting

Xk = Yk + Zk, Yk ⊂ S ′k = Sk ∩ span(X ′k), Zk ⊂ S ′′k
where Zk 6= 0 and S ′′k is the orthogonal complement of S ′k restricted to Sk. Let Yk = U ′kH

′
k

and Zk = U ′′kH
′′
k , where U ′k and U ′′k are orthogonal basis matrices of S ′k and S ′′k , respectively.

We have Uk = [U ′k, U
′′
k ] and HT

k = [H ′Tk , H
′′T
k ]. Since Hk is a random matrix whose entries

are i.i.d., so is H ′′k . The entry distribution implies that H ′′k is nondegenerate with probability
1 since a matrix with i.i.d. entries is full rank with probability 1. Therefore, Zk = U ′′kH

′′
k is

also nondegenerate with probability 1. Hence, the proof is completed.

Generally, the pure segment X0 vanishes in applications. The following corollary further
shows that if the samples are randomly chosen from the union of subspaces S1, · · · ,SK ,
then these subspaces are just the unique minimal sample subspaces of the samples with
probability 1.

Corollary 8 Assume that the columns of Xk are randomly sampled from subspace Sk and
nk > dim(Sk) for k ≤ K. Then, {X1, · · · , XK} is the unique minimal segmentation with
probability 1.

Proof By Theorem 7, {X1, · · · , XK} is intersected nondegenerately with probability 1.
Hence, with this probability, each Xk is non-degenerate, and hence, span(Xk) = Sk is a
minimal sample subspace, that is, {X1, · · · , XK} is minimal by definition. Since (3) is also
satisfied with probability 1, by Theorem 6, this MSS is unique with probability 1.

In summary, the MSS of a given a set of finite samples always exists. It is possible
to have multiple MSSs, but a fat MSS is unique, as shown in Theorem 4. Furthermore,
if the samples are well-distributed, only one MSS exists, as shown in Theorem 6. In ap-
plications, samples from ground-truth subspaces are generally well-distributed or the MSS
is fat. Therefore, the MSS is unique and generally represents the ground-truth. However,
segmentation minimality is extremely difficult to confirm. In the next section, we show
how to detect the minimality in a relatively simple way, which provides an insight for MSS
detection. It is very helpful for modeling minimality as an optimization problem so that we
can practically determine the minimal subspace segmentation via solving the optimization
problem.

3. Detection of Minimal Subspace Segmentation

Clearly, it is impractical to inspect the minimality of a given segmentation {XJk} by checking
whether each segment is nondegenerate or not, where XJk = X(:, Jk). Notice that we have

10
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used the notation Xk for the minimal segment for the sake of simplicity, i.e., Xk = XJ∗k
with the index set J∗k of Xk. Fortunately, this complicated task can be relatively simplified
if we have a little prior information on the MSS.

The insight for the detection of MSS is that prior information on the MSS may narrow
the set of segmentations, and thus enabling relatively easy detection. To this end, and also
for the sake of simplicity, we assume that MSS {Xk} does not have a pure segment X0

and is intersected nondegenerately. Thus, MSS {Xk} is unique according to Theorem 6.
Obviously, there are at least three necessary conditions for segmentation {XJk} to be the
MSS:

(a) Its segment number equals the number of the minimal segments;
(b) The rank sum of its segments is not larger than the rank sum d =

∑
k r(Xk);

(c) Each segment size is larger than the smallest rank dmin = mink r(Xk).
Here the rank sum d is equal to the dimension sum of the minimal subspaces. We use the

prior information to narrow the feasible domain of the MSS to the subset of those satisfying
the above three restrictions. Equivalently, we focus the index partitions in the following
set:

J (K, d, dmin) =
{
J = {J1, · · · , JK} : min |Jk| > dmin, r(XJ1) + · · ·+ r(XJK ) ≤ d

}
. (4)

Obviously, index partition J∗ = {J∗k} of the MSS {Xk} belongs to J (K, d, dmin). If
J (K, d, dmin) contains only one partition, the detection of the MSS becomes to simply
check whether a partition has only K pieces and if the two conditions

r(XJ1) + · · ·+ r(XJK ) ≤ d, min |Jk| > dmin

are satisfied. Hence, the relevant question is: Could J (K, d, dmin) be a singleton?
We will give a positive answer to this question under weak conditions shown later. To

this end, let Sk = span(Xk), dk = dim(Sk) = r(Xk), nk = n(Xk) for k = 1, · · · ,K, and

dmin = min
k
dk, d0 = max

k
dim

(
Sk ∩

∑
j 6=k
Sj
)
, dint = max

k 6=j
dim(Sk ∩ Sj). (5)

Hence, d =
∑

k dk. We say that J = {Jk} is a minimal partition if {XJk} is an MSS of X.
Example 1 shows that J (K, d, dmin) may have multiple minimal partitions in special cases.
To guarantee a single minimal partition in J (K, d, dmin), certain conditions must be met.
In the next subsection, we offer some sufficient conditions that guarantee the singleness of
J (K, d, dmin). We may use the assumptions if necessary.

(i) xj /∈ Sk ∩ S`, ∀j ≤ n, k 6= `; (ii) {X1, · · · , XK} is intersected nondegenerately. (6)

These sufficient conditions are tight. We will give some counterexamples in which one of
the sufficient conditions is not satisfied and further discuss how to refine J ∈ J (K, d, dmin)
in these cases.

The number K and dimension sum d of minimal subspaces are generally known in
applications. The smallest dimension dmin may also be known if the minimal subspaces
have equal dimensions. In the computational model given later, we assume that K, d, and
dmin are known. However, the minimal dimension restriction is relaxed in our subsequent
algorithms.

11
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3.1. Conditions of Singleness

Our analysis on the singleness of J (K, d, dmin) is based on a discreet estimation on the rank
of each segment XJk for a given partition J = {Jk} ∈ J (K, d, dmin). The simple equality
for matrix partition A = [B,C]

r(A) = r(B) + r(C)− dim(span(B) ∩ span(C)) (7)

will be repeatedly used in the rank estimation. For the sake of simplicity, let t+ = max{0, t}
and

Jik = {j ∈ Ji : xj ∈ Xk}, |Jik| = n(XJik),

and let S \ S ′ be the orthogonal complement of S ′ restricted in S for subspace S ′ of S.

Lemma 9 Let J = {Jk} ∈ J (K, d, dmin). If xj /∈ Sk ∩ S` for all j and k 6= `, then for any
s 6= t and Ji,

r(XJi) ≥ min{|Jis|, ds}+
(

min{|Jit|, dt} − dint

)
+

+
∑
k 6=s,t

(
min{|Jik|, dk} − d0

)
+
. (8)

Furthermore, if {Xk} is intersected nondegenerately, then

(a) r(XJi) ≥ dmin for those Ji having a single nonempty piece Jis.

(b) r(XJi) > dmin for those Ji having at least two nonempty pieces Jis and Jit.

Proof For the sake of simplicity, let X ′k = XJik . We prove (8) with (s, t) = (1, 2) only since
one can reorder {X ′k} to have X ′s and X ′t as the first two segments in the general case. To this
end, we merge the first k pieces to Mk = [X ′1, · · · , X ′k] and let S ′k = span(Mk−1)∩span(X ′k).
By (7), we have the following recursion:

r(Mk) = r(Mk−1) + ζk, (9)

where ζk = r(X ′k)−dim(S ′k). SinceXk is nondegenerate, r(X ′k) = min{|Jik|, dk}. Combining
this with dim(S ′k) ≤ dint for k = 2 or dim(S ′k) ≤ d0 for k > 2, we have the following estimate:

ζk ≥

{ (
min{|Jik|, dk} − dint

)
+
, k = 2;(

min{|Jik|, dk} − d0

)
+
, k > 2.

(10)

Thus, taking the sum of all the equalities in (9) and using (10), we get (8) with (s, t) = (1, 2).
We further show that ζk can be represented with S ′′k = Sk ∩ span(Mk−1) as

ζk = min{|Jik|, dk − dim(S ′′k )}. (11)

based on the nondegeneracy of the intersection of {Xk}. To this end, we split X ′k = Y ′k +Z ′k
with Y ′k ⊂ S ′k and Z ′k ⊂ span(X ′k) \ S ′k, and rewrite Mk = [Mk−1, Y

′
k] + [0, Z ′k]. By (7), and

span([Mk−1, Y
′
k]) ∩ span(Z ′k) = {0}, we also obtain (9) with ζk = r(Z ′k) since

r(Mk) = r([Mk−1, Y
′
k]) + r(Z ′k) = r(Mk−1) + r(Z ′k).

12



Minimal Sample Subspace Learning: Theory and Algorithms

To estimate the rank of Z ′k, we extend the splitting of X ′k to Xk = Yk +Zk with Yk ⊂ S ′′k =
Sk ∩ span(Mk−1) and Zk ⊂ Sk\S ′′k . Obviously, r(Yk) ≤ dim(S ′′k ) and r(Zk) ≤ dk−dim(S ′′k ).
These equalities should hold since r(Yk) + r(Zk) = dk. Furthermore, Zk is nondegenerated
or Zk = 0 by the nondegenerate intersection of {X1, · · · , XK}. Thus, as a column submatrix
of Zk, Z

′
k should have the rank min{|Jik|, r(Zk)} = min{|Jik|, dk − dim(S ′′k )}. This is (11).

We now prove (a) and (b) of this lemma, using (9) and r(XJi) = r(MK) =
∑K

`=1 ζk,
comparing |Jik| and δk = dk − dim(S ′′k ) for determining ζk by its definition (11).

(1) If |Jik| ≤ δk for all k, then ζk = |Jik|. Hence, r(XJi) =
∑K

k=1 |Jik| = |Ji| > dmin

since J = {Jk} ∈ J (K, d, dmin).
(2) If |Ji1| > δ1, and |Jik| ≤ δk for k ≥ 2, then ζ1 = δ1 = d1 and ζk = |Jik| for k ≥ 2.

Hence, r(XJi) ≥ d1 +
∑K

k=2 |Jik|.
(3) If |Jik| > δk for a k ≥ 2, ζk = δk = dk − dim(S ′′k ). Since span(Mk−1) * Sk, we have

S ′′k ( span(Mk−1), i.e., r(Mk−1) > dim(S ′′k ). By (9), r(XJi) ≥ r(Mk) = r(Mk−1) + ζk > dk.
Hence, in each of the above cases, (a) and (b) are always true.

The following lemma further shows that if each minimal segment Xk has a sufficient
number of samples, it must be dominated by one piece of any J ∈ J (K, d, dmin), in the
sense that there exists at least one subset Jik whose size is not smaller than dk. We will use
this lemma to prove the singleness of J (K, d, dmin).

Lemma 10 If xj /∈ Sk ∩S` for all j and k 6= `, and nk > dk + (K − 1)d0 for all k, then for
J ∈ J (K, d, dmin)

max
i
|Jik| ≥ dk, k = 1, · · · ,K.

Proof Let K = {k : maxi |Jik| ≥ dk}. This lemma is equivalent to saying that K =
{1, · · · ,K}. We can prove this by letting I = {i : maxk |Jik| ≥ dk} and Ki = {k : |Jik| ≥ dk}
for each i ∈ I. Then, K = ∪i∈IKi. If Kc is not empty, we choose an s ∈ Kc and any t 6= s
in (8) of Lemma 9 and use dint ≤ d0 to obtain the following:

r(XJi) ≥
{
d0 +

∑
k∈Kc(|Jik| − d0) +

∑
k∈Ki

(dk − d0)+, i ∈ I;

d0 +
∑

k∈Kc(|Jik| − d0), i ∈ Ic.

Hence, d =
∑

i r(XJi) ≥ Kd0 +
∑

k∈Kc

∑
i(|Jik|−d0)+

∑
i∈I
∑

k∈Ki
(dk−d0)+. In the second

term,
∑

i(|Jik| − d0) ≥ nk −Kd0 > dk − d0. Since I = ∪k∈KIk with Ik = {i : |Jik| ≥ dk},
the last term becomes as follows:∑

i∈I

∑
k∈Ki

(dk − d0)+ =
∑
k∈K

∑
i∈Ik

(dk − d0)+ =
∑
k∈K
|Ik|(dk − d0)+ ≥

∑
k∈K

(dk − d0). (12)

Thus, d > Kd0+
∑

k(dk−d0) = d, which is a contradiction. Therefore, Kc must be empty.

We are now ready to prove the singleness of J (K, d, dmin).

Theorem 11 Assume that X has an MSS {X1, · · · , XK} satisfying the assumption (6). If

dint < dmin, d0 ≤ dmin, nk > dk + (K − 1)d0, ∀k, (13)

then J (K, d, dmin) is a singleton with the unique J∗.

13
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Proof Let J∗k be the index set of Xk. By Lemma 10, Ik = {i : |Jik| ≥ dk} is nonempty. We
further show that Ik has only a single index ik for each k and |I| = K. If it is proven, the
mapping from k to ik is one-to-one; hence for i = ik, r(XJi) ≥ r(XJik) = min{|Jik|, dk} = dk.
This equality holds since d ≥

∑
k r(XJik) ≥

∑
k dk = d. Thus, span(XJik

) = span(XJik,k
) =

Sk and Jik = Jik,k = J∗k . That is, {XJik
} is equal to {Xk}, so J (K, d, dmin) is a singleton

with the unique J∗.
We now prove that |Ik| = 1 for each k and |I| = K by Lemma 9. For i ∈ Ic, we have

r(XJi) ≥ dmin + 1 by (b) of Lemma 9, and then
∑

i∈Ic r(XJi) ≥ |Ic|(dmin + 1). For i ∈ I,
we choose (s, t) in (8) such that s 6= t ∈ Ki if |Ki| > 1, or s ∈ Ki and t ∈ Kci if |Ki| = 1.
We use the indication function δ|Ki|>1 = 1 if |Ki| > 1 or δ|Ki|>1 = 0, otherwise , and obtain
that for i ∈ I,

r(XJi) ≥ ds + δ|Ki|>1(dt − dint) +
∑

k∈Ki,k 6=s,t
(dk − d0)+

= d0 + δ|Ki|>1(d0 − dint) +
∑
k∈Ki

(dk − d0),
(14)

and
∑

i∈I r(XJi) ≥ |I|d0 +
∑

i∈I δ|Ki|>1(d0 − dint) +
∑

i∈I
∑

k∈Ki
(dk − d0). Hence,

d ≥
∑
i

r(XJi) ≥ |I|d0 +
∑
i∈I

δ|Ki|>1(d0 − dint) +
∑
i∈I

∑
k∈Ki

(dk − d0) + |Ic|(dmin + 1). (15)

Since |Ik| ≥ 1, |Ki| ≥ 1 + δ|Ki|>1 for i ∈ I, and dmin ≥ d0, we estimate the third term as∑
i∈I

∑
k∈Ki

(dk − d0) =
∑
i∈I

∑
k∈Ki

(dk − dmin) +
∑
i∈I

∑
k∈Ki

(dmin − d0)

=
∑
k

|Ik|(dk − dmin) +
∑
i∈I
|Ki|(dmin − d0)

≥ d−Kdmin + |I|(dmin − d0) +
∑
i∈I

δ|Ki|>1(dmin − d0). (16)

Substituting (16) into (15), we obtain that d ≥ d + |Ic| +
∑

i∈I δ|Ki|>1(dmin − dint) ≥ d.
Hence, |Ic| = 0. Furthermore, we have |Ki| = 1 for each i ∈ I if dmin > dint. Since
|K| = |I| = K, |Ki| = 1 for each i ∈ I is equivalent to |Ik| = 1 for each k. The theorem is
then proven.

The condition nk > dk + (K − 1)d0 for all k is generally satisfied in applications. The
other conditions on dint and d0 are also satisfied (in some cases, naturally) basically because
Sk * Sj for any k 6= j. In practice, since Sk∩Sj ( Sk for k 6= j, dint < maxk 6=j min{dk, dj} ≤
maxk dk and d0 ≤ maxk dk. Thus, if all the dk’s are equal, dint < maxk dk = dmin and
d0 ≤ dmin. The equality restriction on {dk} can be released if K = 2 since d0 = dint <
min{d1, d2} = dmin. We summarize our conclusions as a corollary.

Corollary 12 Assume that X has an MSS {X1, · · · , XK} satisfying the assumption (6).
If nk > dk + (K − 1)d0 for each k, and d1 = · · · = dK when K > 2 or arbitrary d1 and d2

when K = 2, then J∗ is the single partition in J (K, d, dmin).
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3.2. Necessity of the Sufficient Conditions

The conditions of Theorem 11 are tight. In this subsection, we give three counterexamples
to show that if one of these conditions, except nk > dk + (K − 1)d0, is not satisfied,
J (K, d, dmin) may not be a singleton. In detail, the MSS {Xk} in Example 2 is not interacted
nondegenerately, and the other conditions in (13) are satisfied. Example 3 is designed such
that dint < dmin is not obeyed, and in Example 4, there exists a dk < d0.

Example 2 Let Xk = UkH ∈ R8×nk with nk > 30, k = 1, · · · , 6, where H is nondegenerate
and its first three columns are e, e−e1, e−e1−e2, ei is the i-th column of the identity matrix
of order 8, and e is a the column vector of all ones. Each Uk consists of 5 columns of the
same identity matrix,

U1 = [e1, e2, e3, e4, e5], U2 = [e1, e2, e6, e7, e8], U3 = [e3, e4, e1, e2, e6],

U4 = [e3, e4, e5, e7, e8], U5 = [e5, e6, e1, e2, e4], U6 = [e5, e6, e4, e7, e8].

Obviously, {Xk} is an MSS of X = ∪kXk with K = 6 and d = 30 since r(Xk) = 5 for
all k ≤ K. The inequality conditions in (13) are satisfied since d0 = 5, dint = 4, dk = 5, and
nk > 30 = dk + (K − 1)d0 for all k. However, for S ′1 = S1 ∩ S2, the splitting X1 = Y1 + Z1

with Y1 ⊂ S′1 and Z1 ⊂ S1 \ S ′1 results in a degenerate Z1 whose first three columns are
equal to e3 + e4 + e5. Hence, {Xk} is not interacted nondegenerately. In addition to MSS
{Xk}, we have another segmentation of 6 pieces as

X̃1 = [X1(:, 1 : 3), X2(:, 1 : 3)], X̃2 = [X3(:, 1 : 3), X4(:, 1 : 3)],

X̃3 = [X5(:, 1 : 3), X6(:, 1 : 3)], X̃4 = X1(:, 4 : n1), X̃5 = X2(:, 4 : n2),

X̃6 = [X3(:, 4 : n3), X4(:, 4 : n4), X5(:, 4 : n5), X6(:, 4 : n6)].

Since r(X̃k) = 4 for k ≤ 3, r(X̃4) = r(X̃5) = 5, r(X̃6) = 8, we also have
∑

k r(X̃k) = 30.
Hence, the partition J̃ corresponding to {X̃ ′k} also belongs to J (K, d, dmin). However, {X̃k}
cannot be minimal since both {Xk} and {X̃k} satisfy nk > 7(dk − 1) for each k, and by
Theorem 4, the MSS of X with K = 6 is unique.

Example 3 Let X = [X1, X2, X3] with Xk = UkHk, where U1 = [e1, e2], U2 = [e2, e3],
and U3 = e4 are three orthonormal matrices of four rows, and H1, H2, and H3 are three
non-degenerate matrices of 5 columns with 2, 2, and 1 row(s), respectively.

This segmentation is minimal by definition but does not satisfy dint < dmin. We have a
different one {X̃1, X̃2, X̃3} where X̃1 = [X1, X2] and the other two pieces X̃2 and X̃3 split
from X3, each having at least two samples X̃2 and X̃3 Since

∑
k r(Xk) =

∑
k r(X̃k) = 5,

both partitions belong to J (3, 5, 1).

Example 4 Let X = [X1, · · · , X5] of columns in R8 and Xk = UkHk with orthonormal

U1 = [e1, e2, e3], U2 = [e3, e4, e5], U3 = [e1, e4, e6], U4 = [e2, e5, e6], U5 = [e7, e8],

and let {Hk} be intersected nondegenerately with n(Xk) = n(Hk) > 15.
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The segmentation {Xk} is also minimal with d = 15 since each Xk is nondegenerate as
Hk. Now, the condition d0 ≤ dmin is not satisfied since d0 = 3 and 2 = dmin. If we merge
the first 4 segments to be X̃1 and split X5 into 4 pieces as X̃2, · · · , X̃5 without overlap, and
each X̃k has at least three samples, then

∑
k r(X̃k) = 15. Hence, J (5, 15, 2) has at least

two different partitions.

4. Segmentation Refinement

When either of two conditions dint < dmin or d0 ≤ dmin in Theorem 11 are not satisfied,
J (K, d, dmin) may have multiple K-partitions. Hence, there may be a partition J = {Jk}
in J (K, d, dmin) that is not minimal. However, certain segments Jk or XJk can be further
refined to be minimal under some weak conditions. Let us illustrate this scenario on the
examples shown in the last subsection.

In Example 3, we take segment of {X̃k} with the smallest rank, say X̃2, and extend it
to be the largest segment containing all the samples belonging to span(X̃2). This extension
merges X̃2 and X̃3 asX3; hence, X3 is recovered. Then, {X1, X2} is an MSS of the remaining
samples X ′ = X\X3. One may search for a segmentation from J (K ′, d′, d′min) on X ′ with
K ′ = K − 1 = 2, d′ = d − r(X3) = 4 and d′min = 2. Since the conditions of Theorem 11
are now satisfied , J (K ′, d′, d′min) has the single segmentation {X1, X2}. Hence, minimal
segmentation {Xk} is recovered. Similar, we can refine {X̃k} in Example 4.

In Example 2, each X̃k, k ≤ 3, has the smallest rank but is nonextendable. However,
the extension works on the larger segments X̃4 or X̃5. That is, if we extend X̃4 to the
largest one, X1 can be recovered immediately. Similarly, when X̃5 is extended, X2 can also
be recovered. Other segments can be determined from J (K ′, d′, d′min) on the remaining
samples with K ′ = K − 2, d′ = d− r(X1)− r(X2) and d′min = 5.

Motivated by these observations, we offer an approach for refining a segmentation {XJk}
for J ∈ J (K, d, dmin) if it is not minimal. The approach consists of two strategies: reduction
and extension. We emphasize that, in this section our analysis is given under the same
assumption as that given in the last subsection. Hence, we no longer mention the conditions
for simplicity.

4.1. Segment Reduction

We observe that a partition J = {Jk} ∈ J (K, d, dmin) has at least one piece Jk such that
XJk is a minimal segment, even if the whole segmentation {XJi} is not an MSS of X. The
following two propositions support this observation.

Proposition 13 If r(XJi) = dmin < |Ji|, then Ji ⊆ J∗k with dk = dmin.

Proof By (b) of Lemma 9, if Ji has two nonempty intersection parts Jik = Ji ∩ J∗k with
two different k’s, then the condition |Ji| > dmin implies r(XJi) > dmin. Therefore, if we also
have r(XJi) = dmin, Ji must have a single nonempty Jik, that is, Ji ⊆ J∗k , and XJi ⊆ Xk.
Since Xk is nondegenerate,

dmin = r(XJi) = min{|Ji|, dk} ≥ min{dmin + 1, dk}.

Combining this with dk ≥ dmin, we can conclude that dk = dmin.
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Proposition 14 If d0 ≤ dmin and |Jk| > dk + (K− 1)d0 for all k, then mini r(XJi) = dmin.

Proof If we further have that dmin > dint, this proposition is obviously true since {Jk} is
unique by Theorem 11. Hence, we can assume dmin ≤ dint, which implies dint = d0 = dmin

since dint ≤ d0 ≤ dmin. Thus, in the proof of Theorem 11, we have |Ic| = 0 and each of the
inequalities between (14) and (16) holds in equality, where we do not use dint < dmin. The
equalities dint = d0 = dmin simplify (16) to

∑
k |Ik|(dk − dmin) = d−Kdmin. Thus, |Ik| = 1

if dk > dmin. Consider the union of those Ik with k ∈ K′ = {k : dk > dmin}. The size of
this union is equal to |K′| and |K′| < K since there is a k /∈ K′ with dk = dmin. For each
k ∈ Ki0 with i0 /∈ ∪k∈K′Ik, we also have i0 ∈ Ik. Hence, we conclude that for all k ∈ Ki0 ,
k /∈ K′, i.e., dk = dmin. Moreover, (14) becomes r(XJi) = dmin +

∑
k∈Ki

(dk − dmin) for all
i. Hence, r(XJi0

) = dmin ≤ r(XJi) for all i.

Therefore, if the conditions of Proposition 14 are satisfied, by Proposition 13, Ji ⊆ J∗ki
for those Ji and J∗ki with the smallest rank r(XJi) = dmin = dki . That is, these minimal
segments Xki have been retrieved. Let K0 be the number of retrieved segments. The
conditions of Proposition 14 remain satisfied for J ′ ∈ J (K ′, d′, d′min), where K ′ = K −K0,
d′ = d−dminK0 and d′min ≥ dmin. Thus, repeating this reduction procedure, we can retrieve
all the minimal segments. Therefore, we have proven the following theorem.

Theorem 15 If d0 ≤ dmin and nk > dk + (K − 1)d0 for all k, then the MSS {Xk} of X
can be recovered via a reduction procedure on any J ∈ J (K, d, dmin).

4.2. Segment Extension

We say that Ji or XJi is extendable if there is at least one xj ∈ span(XJi) with j /∈ Ji.
The extension strategy enlarges an extendable Ji as much as possible by adding all these
j’s into Ji similar to that given in the proof of Theorem 3 without checking for segment
nondegeneracy.

Proposition 16 If each Ji of J ∈ J (K, d, dmin) is nonextendable, then {Ji} = {J∗k}.

Proof By Lemma 10, for each k, there exists an ik such that |Jik,k| ≥ dk and hence,
span(XJik,k

) = Sk. Since Jik cannot be extended, we must have Jik,k = J∗k and Jik is empty
for i 6= ik. Because each Ji is not empty, the mapping from k to ik is one-to-one and onto.
Therefore, {Ji} = {J∗k}.

Proposition 17 If Ji is extendable, the extended J̃i has J̃ik=Jik or J̃ik = J∗k for all k.

Proof Assume J̃i = Ji ∪ J ′i , where XJ ′i
⊂ span(XJi). Then, J̃ik = Jik ∪ J ′ik, where

J ′ik = J ′i ∩ J∗k . If the minimal segment Xk ⊆ span(XJc
ik

) ⊂ span(XJi), where Jcik = Ji \ Jik,
then we must have J̃ik = J∗k .

We will show that if Xk * span(XJc
ik

) and J̃ik 6=Jik, then r([Xk, XJc
ik

]) = r(XJi), which

implies Xk ⊂ span(XJi), and hence, J̃ik = J∗k . To this end, we split Xk = Yk + Zk with
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Yk ⊂ S ′k and Zk ⊂ S ′′k , according to the direct sum Sk = S ′k⊕S ′′k where S ′k = Sk∩span(XJc
ik

)
and S ′′k is the orthogonal complement of S ′′k restricted in Sk. Obviously, we have Zk 6= 0
when J̃ik 6= Jik, and hence, Zk is nondegenerate since the MSS {Xk} is intersected non-
degenerately. Therefore, r([Xk, XJc

ik
]) = r([Yk, XJc

ik
]) + r(Zk) = r([Zk, XJc

ik
]). Similarly,

r(XJi) = r([XJik , XJc
ik

]) = r([Z ′k, XJc
ik

]), r(XJ̃i
) = r([XJ̃ik

, XJc
ik

]) = r([Z̃ ′k, XJc
ik

]),

where Z ′k and Z̃ ′k are two subsets of Zk corresponding to the subsets XJik and XJ̃ik
of Xk,

respectively. We have r(Z̃ ′k) = r(Z ′k) since r(XJ̃i
) = r(XJi). By the nondegeneracy of Zk,

r(Z ′k) = r(Zk). Therefore, r([Xk, XJc
ik

]) = r(XJi), and the proof is completed.

Theorem 18 Assume that nk > dk + (K − 1)d0 for all k. After segment extension on all
the extendable segments of J one-by-one, then each nonempty segment J̃i of the resulting
segmentation J̃ must be a union of several segments of the MSS {Xk}. Furthermore, J̃ = J∗

if all the J̃i’s are nonempty.

Proof Consider the changes of Jik during the extension process. In the step involving an
extendable Ji, Jik is unchanged or changed to J∗k by Proposition 17. After this extension
step, for other j 6= i, Jjk is unchanged or changed to the empty set. That is, after an
extension step, Jik is unchanged or becomes to J∗k or the empty set. By Lemma 10, for
each k, there is an ik such that |Jik,k| ≥ dk for the original Jik . Hence, Jik,k becomes J∗k in
the extension of Jik if it is unchanged in the earlier extension steps. Otherwise, Jik,k has
already been changed to the empty set. Therefore, after all the extension steps, for each k,
the eventually modified J̃ik must be empty or J∗k . That is, each J̃i must be a union of some
J∗k or the empty set.

Note that the extension results may depend on the extending order of each Ji. We
suggest extending in the ascending order of {r(XJi)} because if XJi has a smaller rank,
most of its pieces {Jik} are likely to be empty or small. These small pieces will be removed,
leaving the largest pieces after extension. This strategy reduces the risk of merging multiple
minimal segments (Xk’s) together into a single segment of J̃ .

The extension procedure cannot increase the rank sum of the segments, and the rank
sum is decreased if a J̃i is empty. In this case, J̃ has a smaller number of nonempty segments.
Hence, J̃ /∈ J (K, d, dmin). Assume that J̃ has ` nonempty segments, say J̃1, · · · , J̃`, and
let Kt be the index set of those Xk that are merged to XJ̃t

because of the extension. MSS

{Xk} is then partitioned into ` smaller groups X(t), t = 1, · · · , `, each of which is a union
of the minimal segments {Xk : k ∈ Kt}. Therefore, one may further determine the MSS of

X(t) via determining J (K(t), d(t), d
(t)
min) on Xt, where K(t) = |Kt|, d(t) =

∑
k∈Kt

r(Xk), and

d
(t)
min = mink∈Kt r(Xk). This amounts to a divide-and-conquer approach. We do not touch

upon this technique further in this paper.
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5. Computable Modeling for Minimal Subspace Segmentation

Our study of MSS detection simplifies its inspection. However, because detecting the MSS
works on K-partitions of indices, it is difficult to implement efficiently. Thus, computable
modeling is needed. To this end, we adopt the commonly used self-expressiveness approach.

The self-expressiveness method looks for a matrix C with special structures to represent
the sample matrix X as X = XC, hoping that subspace clustering is well-determined
via spectral clustering on the graph matrix |C| + |C|T . The effectiveness of the self-
expressiveness method is conditioned by two issues: (1) the correctness of the learned
partition J = {Jk} under which C has a block-diagonal form, and (2) the connection of
each diagonal block Ck = C(J∗k , J

∗
k ) of C in the minimal partitions {J∗k}. As mentioned

before, the connection of matrix Ck refers to the connection of the undirected graph con-
structed from |Ck|+ |Ck|T . Our previous analysis addresses the first issue for theoretically
detecting the MSS.

In this section, we address the issue of connection to support a computable optimization
problem that we will propose for determining the MSS. Closed-form representation matrices
are first given. Based on these closed-form representation matrices, we then exploit the
conditions of connected diagonal blocks of a representation matrix in block-diagonal form.
In addition, we discuss solutions of SSC and LRR.

5.1. Structures of Representation Matrices

Obviously, the representation matrix C of X is not unique since adding a matrix of null
vectors of X to C results in another representation matrix of X. Notice that because C
solves the linear system X = XC, it should have a closed-form structure. We use the
singular value decomposition (SVD) of X in thin form:

X = UΣV T , (17)

to represent the closed-form representation matrices, where U and V are the orthonormal
matrices of the left and right singular vectors of X corresponding to its nonzero singular
values σ1 ≥ · · · ≥ σr > 0, where r = r(X), which are given in the diagonals of the diagonal
matrix Σ. If r < n, V has an orthogonal complement V⊥ for forming an orthogonal matrix
[V, V⊥]. We use the SVD together with orthogonal complement V⊥ to characterize the
representation matrix.

Lemma 19 C is a representation matrix of X if and only if it has the following form

C = V V T + V⊥H, (18)

with a matrix H ∈ R(n−r)×n. Thus, r(C) ≥ r(X) and ‖C‖∗ ≥ r(X). Furthermore,

(a) If C is symmetric, H = SV T
⊥ , that is, C = V V T + V⊥SV

T
⊥ with a symmetric S.

(b) If tr(C) = 0, then r(C) ≥ r(X) + 1.

Proof Based on the SVD given in (17), C is a representation matrix of X, i.e., X = XC, if
and only if V T = V TC. Hence, C = V V TC+V⊥V

T
⊥ C = V V T +V⊥H with an arbitrarily H.
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We rewrite H = TV T +SV T
⊥ with arbitrary T and S. Then C = [V, V⊥]

[
Ir 0
T S

]
[V, V⊥]T ,

where r = r(X). Thus, r(C) ≥ r and ‖C‖∗ ≥ r.
Furthermore, if C is symmetric, T = 0 and S is symmetric obviously. That is (a). Since

tr(C) = r + tr(S) by the proposition tr(AB) = tr(BA), if C is imposed the restriction
tr(C) = 0, then tr(S) = −r. Hence, S 6= 0 and r(C) = r + r(S) ≥ r + 1. That is (b).

We note that a representation matrix C of X could be of arbitrary rank r′ varying from
r(X) to n(X). Practically, if we choose H = diag(Hr′ , 0)V T

⊥ with any nonsingular matrix
Hr′ of order r′ − r(X) in (18), then obviously r(C) = r′.

5.2. Minimal Subspace Detectable Representation

The self-expressiveness approach seeks a block-diagonal representation matrix C. That is,
there is a permutation matrix Π such that, within a given or existing partition J = {J`},

C = Πdiag(CJ1 , · · · , CJ|J|)Π
T ,

where |J | defines the number of partition pieces. Simultaneously, X is also partitioned as
X = [XJ1 , · · · , XJ|J| ]Π

T . A given partition {J`} is not naturally assumed to contain all the
connected diagonal blocks {CJ`}. In this subsection, we inspect the rank propositions of
the state-of-art LRR and SSC, when their solution has a block-diagonal form. The risk of
non-connected diagonal blocks is discussed even when partition {J`} is ideally chosen as a
minimal partition for detecting the MSS. Finally, we prove that the connection is guaranteed
under a rank restriction similar to that in the set J (K, d, dmin), and hence, the MSS can
be correctly detected.

5.2.1. Propositions of LRR and SSC

LRR is known to give a representation matrix that has the smallest nuclear norm, which
implies that H = 0 in Lemma 19, and hence, it also has the smallest rank. Meanwhile, an
SSC solution has a larger rank or nuclear norm due to a nonzero H. The following lemma
further characterizes the solutions of LRR and SSC.5

Theorem 20 LRR provides a block-diagonal solution if and only if r(X) =
∑

` r(XJ`) with
a partition {J`}. If SSC provides a block-diagonal C with a total of T connected blocks, then
r(C) ≥

∑
` r(XJ`) + T .

Proof For the sake of simplicity, let C ′` = CJ` and X ′` = XJ` . If LRR has a block-
diagonal C with diagonal blocks {C ′`} by X ′` = X ′`C

′
`, we have r(X ′`) ≤ r(C ′`) and r(C) =∑

` r(C
′
`) ≥

∑
` r(X

′
`) ≥ r(X). On the other hand, since the LRR solution is uniquely given

by C = V V T , we have r(C) = r(X). Thus, r(X) =
∑

` r(X
′
`).

Conversely, if r(X) =
∑

` r(X
′
`) for a segmentation {X ′`} of X, we partition V TΠ =

[BT
1 , · · · , BT

|J |] as {J`}. Based on the thin SVD (17), we get X ′` = UΣBT
` and r(B`) = r(X ′`).

Let B` = Q`R` be the QR decomposition of B` with an orthonormal Q` of r(X ′`) columns

5. The sufficient condition for LRR was given by Liu et al. (2013).
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and a matrix R` of order r(X ′`) × r(X). Then, V = ΠQR, where Q = diag(Q1, · · · , Q|J |)
and RT = [RT1 , · · · , RT|J |]. The condition r(X) =

∑
` r(X

′
`) means that R is a square matrix.

Since V is orthonormal, R must be orthogonal. Therefore, the LRR solution C = V V T can
be rewritten as follows

C = Π(ΠTV V TΠ)ΠT = ΠQTQΠT = Πdiag
(
Q1Q

T
1 , · · · , Q|J |QT|J |

)
ΠT .

That is, C is block-diagonal.

If SSC provides an MSDR of X with a block-diagonal C of T connected diagonal blocks
{C ′`}, then r(C ′`) ≥ r(X ′`) + 1 by Lemma 19(b) since X ′` = X ′`C

′
` and tr(C ′`) = 0. Hence,

the lower bound of r(C) follows immediately since r(C) =
∑

` r(C
′
`).

Strict sufficient conditions are given by Soltanolkotabi and Candès (2012) for SSC to
have a block-diagonal representation matrix according to ideal segmentation {XJ∗k

}. These
conditions are very strict and may be difficult to satisfy in applications. We will briefly
discuss these sufficient conditions in Section 5.4. In addition, the block-diagonal form does
not guarantee the connection of all the diagonal blocks. This phenomenon was reported by
Nasihatkon and Hartley (2011). There is a notably large gap between ranks r(C) = r(X)
and r(C) ≥

∑
` r(X

′
`)+T � r(X) of the possible block-diagonal solutions of LRR and SSC,

respectively. In the next subsection, we show how such a block-diagonal representation may
be unconnected, even if it is ideally partitioned.

5.2.2. Nonconnectivity

Even if we have a block-diagonal representation matrix C in the ideal partition J∗ = {J∗k},
it is possible to have unconnected diagonal blocks in C, mainly because the solution does not
have a suitable rank. This observation stems from the closed-form structure given in Lemma
19. Practically, because of the block-diagonal form of C, Xk = XkCk, where Xk = X(:, J∗k )
and Ck = C(J∗k , J

∗
k ) as before. Hence, each Ck has the form Ck = VkV

T
k + (Vk)⊥Hk, where

Vk is based on the SVD of segment Xk: Xk = UkΣkV
T
k . An unsuitable Hk may result

in an unconnected Ck. To further verify this observation, we consider the construction of
an unconnected representation matrix of a given subset Xk, no matter whether it spans a
minimal subspace or not. For the sake of simplicity, let

dk = r(Xk), nk = n(Xk), d = d1 + · · ·+ dK .

The following lemma shows how to construct such an unconnected Ck with a given rank.

Lemma 21 Given r′ ∈ (dk, nk], there is an unconnected representation Ck of Xk with
r(Ck) = r′.

Proof Write the integer r′ ∈ (dk, nk] as r′ = pdk + t with t ∈ [0, dk). If t = 0, we partition
Xk = [Xk,1, · · · , Xk,p], where each Xk,j has at least dk columns. As metioned below the
proof of Lemma 19, we have a representation Ck,j of Xkj with rank r(Ck,j) = dk since
dk ≤ n(Xk,j). Thus, Ck = diag(Ck,1, · · · , Ck,p) is a representation of Xk. If t 6= 0, we
partition Xk = [X ′k, X

′′
k ], where X ′k has nk − t columns. Since pdk = r′ − t ≤ nk − t, as
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mentioned below Lemma 19 again, we have a representation matrix C ′k of X ′k with rank
pdk. Thus, Dk = diag(C ′k, It) is a representation of Xk. Obviously, r(Ck) = r′ and Ck is
unconnected in both cases.

Similarly, we can construct an unconnected block-diagonal representation matrix C of
X in a given segmentation {X1, · · · , XK} of X.

Theorem 22 Given a segmentation {Xk} of X and an integer d+ ∈ (d, n], there is a
block-diagonal representation matrix C of X such that r(C) = d+ and some diagonal blocks
partitioned as per (19) are not connected.

Proof Since d1 + · · ·+ dK = d < d+ ≤ n = n1 + · · ·+nK , we can write d+ = r1 + · · ·+ rK
with {rk} satisfying rk ∈ (dk, nk] for k ≤ ` and rk = dk for k = `+ 1, · · · ,K with a suitable
` ≥ 1. Applying Lemma 21 to the first ` segments, we obtain the unconnected represen-
tation matrices Ck of Xk with rank rk for k ≤ `. For each k > `, we also have a Ck with
rank dk via the SVD of Xk as previously mentioned. Thus, C = ΠTdiag(C1, · · · , CK)Π is
obviously a representation matrix of X with rank d+.

5.2.3. MSDR: Minimal Subspace Detectable Representation

We seek a representation matrix of X that can be used to correctly detect the minimal
subspace segmentation. This representation matrix should be partitioned block-diagonally
as the MSS and all the diagonal blocks are connected. We call such a matrix the minimal
subspace detectable representation (MSDR) of X.

Definition 23 A representation matrix C of X is minimal subspace detectable if there is
a permutation matrix Π such that:

XΠ = [X1, · · · , XK ], C = Πdiag(C1, · · · , CK)ΠT , (19)

where {Xk} is an MSS of X, and each Ck is connected.

Theorem 22 also shows that, if X has an MSS {Xk}, its representation matrix C with
rank r(C) >

∑
k r(Xk) may be not an MSDR for the MSS, even if C has a block-diagonal

form partitioned according to the MSS, since some of the diagonal blocks may be un-
connected. In such a case, the unconnected diagonal blocks can be divided into smaller
(connected) ones. Thus, C is also a block-diagonal representation matrix with greater than
K connected diagonal blocks. In addition, the K-partition learned by spectral clustering
may give a nonminimal segmentation. Fortunately, connection issues can be addressed if
the representation matrix has a rank equal to

∑
k r(Xk).

Theorem 24 Under the same assumptions of Theorem 11, if C is a block-diagonal repre-
sentation matrix of X with rank(C) = d and K diagonal blocks, each greater than dmin in
size, then C is an MSDR. Furthermore, C is unique if it is restricted to be symmetric.
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Proof Let J = {Jk} be the partition with K pieces corresponding to the block-diagonal
form and let Xk = XJk . Obviously, XJkCk = XJk . Since d = r(C) =

∑
k r(Ck) ≥∑

k r(XJk) and the size |Jk| of Ck is greater than dmin, we have J = {Jk} ∈ J (K, d, dmin).
By Theorem 11, J (K, d, dmin) is a singleton and thereby {XJk} is an MSS.

Next, we show that all the diagonal blocks of C are connected. Assume, inversely, that
there is an unconnected Ci, which can be further partitioned into block-diagonal form with
at least two diagonal blocks. That is, there is a permutation Πi such that:

ΠiCiΠ
T
i = diag(C ′i, C

′′
i ), XJiΠi = [X ′i, X

′′
i ].

Let n′i = n(X ′i) and n′′i = n(X ′′i ). Since XJi is minimal, r(X ′i) = min{di, n′i} and r(X ′′i ) =
min{di, n′′i }. Hence, using n′i + n′′i = |Ji| > di,

r(Ci) = r(C ′i) + r(C ′′i ) ≥ r(X ′i) + r(X ′′i ) = min{di, n′i}+ min{di, n′′i }
≥ min{di + n′i, di + n′′i , di + di, n

′
i + n′′i } > di.

Combining this inequality with r(Ck) ≥ dk for k 6= i, we obtain r(C) =
∑

k r(Ck) >∑
k dk = d, a contradiction to rank(C) = d. Hence, C is an MSDR of X. If C is symmetric,

each Ck is also symmetric, and Ck = VkV
T
k by r(Ck) = r(XJk) = dk. Hence, C is unique.

5.3. Computable Modeling for MSDR

We are now ready to model the MSDR as an optimization problem, mainly motivated by
Theorem 24. As in previous sections, we also assume that the number K and the rank
sum d of segments are known for the MSS {Xk}. By Theorem 24, we restrict the feasible
representation C to be of rank d. Since the symmetric MSDR is unique, we further restrict
it to be symmetric as C = C(S) with the following:

C(S) = V V T + V⊥SV
T
⊥ , r(S) = d− r, ST = S,

where r = r(X) is known. The mapping from a symmetric S to a symmetric C is one-to-
one. That is, given a symmetric C with rank(C) = d in the imaging domain, there is a
unique S = V T

⊥ CV⊥ satisfying C(S) = C. To enforce C to be block-diagonal reasonably,
we hope that the off-block-diagonal part of C, defined as Coff(J)(S) with entries

(
Coff(J)(S)

)
ij

=

{
0 i, j ∈ Jk, ∀k;
cij i ∈ Js, j ∈ Jt, ∀s 6= t,

is as small as possible with J = {Jk} ∈ J (K, d, dmin). We adopt the `1-norm for minimizing
this off-block-diagonal part of C. That is, we solve the following optimization model

min
J∈J (K,d,dmin)

min
S∈S

‖Coff(J)(S)‖1 (20)

for determining an MSDR C of X, where S is a feasible domain of symmetric matrices of
order n− r. Theorem 24 supports the model (20) to give an MSDR, because the solution C
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of (20) should be a block diagonal matrix of K diagonal blocks, with the size of each block
greater than dmin.

There are various options for the feasible domain S. By Theorem 24, the symmetric
MSDR should be a positive semidefinite matrix and orthogonal projection operator with
rank d. A feasible domain should contain such a matrix. For example, choose S as the set
of orthogonal projection matrices as follows:

Pn−rd−r = {S = QQT : Q ∈ On−rd−r
}
,

where On−rd−r = {Q ∈ R(n−r)×(d−r) : QTQ = Id−r
}

is a Stiefel manifold. Obviously, for an

S = QQT with Q ∈ On−rd−r , C(S) = GGT ∈ Pnd with an orthonormal G = [V, V⊥Q] ∈ Ond .

However, the Stiefel manifold On−rd−r is strongly nonconvex; thus, one may encounter a local

optimum with a solution far from the MSDR, taking Q as a variable in On−rd−r . The largely

flat domain is the subspace R(n−r)×(n−r), but it misses the special structure of the MSDR.
In this paper, we choose the feasible domain as the set of symmetric positive semidefinite
matrices with rank d for C = C(S),

Sn−rd−r =
{
S = WW T : W ∈ R(n−r)×(d−r)

+

}
,

where R(n−r)×(d−r)
+ is the set of full rank matrices in R(n−r)×(d−r). Sn−rd−r is a slightly larger

manifold than Pn−rd−r . However, it is much flatter than Pn−rd−r , which benefits convergence
when we iteratively solve the optimization problem (22) presented later in the paper.

5.4. Comparison with Related Work

The optimization model (22) can handle cases wherein the minimal sample subspaces are
intersected with each other and the intersections of pairwise subspaces are potentially sig-
nificant and variant. To showcase this advantage, we compare the sufficient conditions in
Theorem 11 with the conditions for LRR, iPursuit (Rahmani and Atia, 2017), SSC, and
LRSSC.

As shown in Theorem 20, the LRR obtains the MSDR if and only if the subspaces are
independent, that is, dim(

∑
j Sj) =

∑
j dim(Sj). This condition implies that each subspace

does not intersect with the sum of the other subspaces, or equivalently, dint = d0 = 0, which
is a much stricter condition than that given in Theorem 11. It was proven by Rahmani and
Atia (2017) that the iPursuit can separate two subspaces (K = 2) with high probability.
This amounts to one of the special cases shown in Corollary 12. The condition for LRSSC
is similar to that of SSC in the same form, yet it is stricter. We omit a comparison of our
method’s sufficient condition with that of LRSSC, but a detailed comparison with SSC is
given below.

For the SSC, Soltanolkotabi and Candès (2012) showed that if the samples are uni-
formly distributed in the union of subspaces {Sk}, and, for the basis matrices {Uk} of {Sk},
‖UTk U`‖2F < min{γk,`, γ`,k} with the following:

γk,` =
1

256

d` log((nk − 1)/dk)

(log(nk(n` + 1)) + log(K) + t)2 , (21)
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where t > 0 is a given parameter, then SSC can give a block-diagonal solution partitioned as
the ideal subspace segmentation with a probability approximately equal to one, depending
on t, nk, dk, and K. We note that this claim does not imply a connected solution as we
have explained earlier and mentioned by Nasihatkon and Hartley (2011).

Obviously, a small ‖UTk U`‖F implies approximate orthogonality between Sk and S`.
The following lemma further shows that the inequality ‖UTk U`‖2F < 1 implies that the two
subspaces are not intersected with each other.

Lemma 25 Let S1 and S2 be two arbitrary subspaces with basis matrices U1 and U2, re-
spectively. Then,

dim (S1 ∩ S2) ≤ ‖UT1 U2‖2F .

Proof The orthogonal basis matrices of two intersected subspaces can be extended via the
basis of their intersected subspace. That is, using the basis U0 of S1 ∩ S2, the orthogonal
basis matrices U1 and U2 of S1 and S2, respectively, can be represented as U1 = [U0, Û1]G1

and U2 = [U0, Û1]G2 with orthogonal G1 and G2, and orthonormal Û1 and Û2 satisfying
UT0 Û1 = 0, UT0 Û2 = 0. Hence,

‖UT1 U2‖2F = ‖[U0, Û1]T [U0, Û2]‖2F = ‖UT0 U0‖2F + ‖ÛT1 Û2‖2F = dim(S1 ∩ S2) + ‖ÛT1 Û2‖2F ,

which implies dim (S1 ∩ S2) ≤ ‖UT1 U2‖2F .

Therefore, if ‖UT1 U2‖F < 1, dim (S1 ∩ S2) = 0, that is, S1 and S2 are independent by
Lemma 25. Since the upper bound γk,` tends to zero quickly as nk or t increases, even with
a small K such as K = 2, the sufficient conditions ‖UTk U`‖2F < min{γk,`, γ`,k} for all k, `
with γ`,k defined in (21) generally imply the existence of pairwise independent subspaces.
In practice, if d` ≤ 1937, then

γk,` ≤
1

256

d`
log(nk(n` + 1))

log((nk − 1)/dk)

log(nk(n` + 1))
<

1

256

d`
log(nk) + log(n` + 1)

<
1

256

d`
log d`

< 1

since n` > d`. Furthermore, if nk ≤ d2
`n`, then γk,` <

1
512

d`
log d`

, and hence, γk,` < 1 if
d` ≤ 4281. In real applications, the subspace dimensions are generally much smaller than
1937. Hence, if the conditions for SSC are satisfied, then dint = 0, which differs from the
independence condition, i.e., dint = d0 = 0, for LRR.

In the conditions of Theorem 11, we permit a relatively large intersection that does not
depend on the number of samples in each subspace. By Theorems 7 and 11, the minimal
sample subspaces can be recovered by the optimal solution of (20) with probability 1.

6. Algorithms

We encounter several computational difficulties when we try to solve the problem (20). First,
it is difficult to check whether the restriction |Jk| > dmin is satisfied since dmin is unknown if
{dk} are variant.6 Second, it is inconvenient to check the restriction

∑
k r(XJk) ≤ d. Third,

the objective function of (22) is neither continuous nor convex, and contains discrete and

6. If all the minimal segments have equal rank, dmin = d/K is known.
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continuous variables with respect to the partition J and S or the factor in its symmetric
factorization. Fortunately, the strict condition |Jk| > dmin can be implicitly satisfied when
the strategy of normalized cutting is adopted for updating J generally. In the case when C
is block-diagonal with K diagonal blocks, the inequality

∑
k r(XJk) ≤ d holds automatically

since r(XJk) ≤ r(Ck) and
∑

k r(Ck) = r(C) = d. Hence, we can remove the restrictions
|Jk| > dmin and

∑
k r(XJk) ≤ d in J (K, d, dmin). That is, we relax J (K, d, dmin) to the set

J (K) of all K-partitions, and (20) is slightly modified to

min
J∈J (K)

min
S∈S

‖Coff(J)(S)‖1, (22)

where S = Sn−rd−r =
{
S = WW T : W ∈ R(n−r)×(d−r)

+

}
.

The difficulty of mixing discrete and continuous variables can be addressed via alterna-
tively optimizing J and C(S). However, special strategies should be considered to improve
the efficiency of this computation. We offer two types of alternative algorithms for this
purpose. One algoritm solves (22) directly based on a manifold conjugate gradient (MCG)
method for optimizing C. The other algorithm solves an equivalent pseudo-dual problem of
(22) based on subspace estimation. Both methods solve the problem using the alternative
rule: Optimize C given J , and update J according to the current C.

However, these two methods cannot guarantee a globally optimal solution in any case.
Thus, We hybridize them by taking the solution of one method as the initial guess for
the other. The motivation for this strategy is the rarity of falling into a common local
minimizer of the both problems. Using this hybrid strategy, we can obtain the true minimal
segmentation in our experiments if the subspaces are not heavily-intersected with each other.

6.1. Alternative Method for the Primal Problem

In the literature, alternative strategies are commonly used for optimizing multiple variables.
For instance, an alternative strategy is adopted by Li et al. (2017) for minimizing the
similar objective function ‖Coff(J)‖1 + α‖C‖1. It is potentially easy to optimize C given
partition J , and J can be updated via normalized spectral clustering on the symmetric graph
|C|+ |C|T given C. However, if the spectral clustering is unstable, it may give an undesired
partition when C is far from the ideal solution. Conversely, a poor partition also leads to
an unacceptable solution. To decrease instability, a soft version is also considered by Li
et al. (2017), in which the function ‖Coff(J)‖1 is modified to the weighted `1-norm function∑

ij wij |cij | with weights wij = 1
2‖ui − uj‖

2, where ui is a the vector of i-th components

of the K eigenvectors corresponding to the K smallest eigenvalues of |C|+ |C|T . However,
this method blurs block separation, and hence, it may also result in an unacceptable C.

We apply two types of modifications for solving the primal problem (20) using an alterna-
tive strategy. The first modification acts on the K-partition J . Different from the commonly
used weight strategy, we slightly extend the support domain off(J) in the objective function
‖Coff(J)(S)‖1 to an active index set Ω that covers off(J). For the sake of simplicity, Ω also
refers to an indication matrix whose entries ωij are 1 for the indices in Ω and zero otherwise.
Hence, the function ‖Coff(J)(S)‖1 becomes ‖Ω�C(S)‖1 =

∑
(i,j)∈Ω |cij(S)|. This modifica-

tion can significantly reduce the risk of obtaining an incorrect partition J , especially in the
initial case when J is poorly estimated. Initially, we choose Ω to be the coarsest Ωc with
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ωij = 1 for i 6= j and ωii = 0, i.e., ‖Ωc � C(S)‖1 =
∑

i 6=j |cij |. In a later subsection, we
discuss how to update the active index set Ω so that it can approach the subdomain off(J)
as soon as J is approximately optimal.

The second modification aims to reduce the degree of nonconvexity of the function
‖Ω � C(S)‖1 given Ω to render the modified function a bit flatter so that an iteration
algorithm is less likely to fall into a local minimizer. To this end, we add the prior term
λ
2‖c(S)‖22 onto the diagonal vector c(S) of C(S) with parameter λ > 0. This strategy also
benefits the search for a block-diagonal solution. Since we relax the strict zero-restriction
on the diagonals, the prior term penalizes the diagonals of C(S), and hence, the diagonals
are uniformly small in general, which helps to increase the connections within each subspace
in the representation X = XC.7

Combining the two modifications, we modify minS∈S ‖Coff(J)(S)‖1 to the following:

min
S∈S

{
‖Ω� C(S)‖1 +

λ

2
‖c(S)‖22

}
. (23)

Since S (or C(S)) and Ω are updated alternatively, the penalty parameter λ should balance
the two terms ‖Ω� C(S)‖1 and 1

2‖c(S)‖22. Thus, it makes sense to set

λ = min
(
λ0, 2‖Ω� Ĉ‖1/‖ĉ‖22

)
(24)

adaptively, using the solution Ĉ corresponding to the previous (Ω̂, λ̂), ĉ = diag(Ĉ), and λ0

is an initial setting. This strategy is efficient in our experiments.
The basic model (23) works well on some but not all complicated subspaces—it can

recover the minimal segmentation of samples from some intersected subspaces if they are
not heavily intersected with each other. We show the performance of this basic model
compared with other state-of-art methods in the experiment section of this paper.

6.2. MCG: Manifold Conjugate Gradient Method

The problem (23) can be solved using a manifold conjugated gradient (MCG) method,
but some computational issues should be addressed before applying MCG on (23). First,
the objective function in (23) is not derivable. A subgradient is used as a substitute of
the gradient in our analysis. Second, MCG convergence analysis requires the objective
function to be smoothed. The gradient of this smooth function is a good approximate of a
subgradient of the original function. Third, the gradient vectors should be projected onto
the tangent space of the manifold at a point in MCG. However, only a smaller subspace of
the tangent space benefits linear searching in MCG. For efficient computation, this subspace
must be detected. In this subsection, we give a detailed MCG algorithm for solving (23),
taking into account the above concerns and the technique of linear searching, together with
convergence analysis. We also discuss some computational details of the MCG.

6.2.1. Subgradients

Writing S = WW T ∈ S with W ∈ R(n−r)×(d−r), the objective function of (23) is as follows:

f(W ) = ‖Ω� C(WW T )‖1 +
λ

2
‖c(WW T )‖22.

7. If there is a diagonal cii ≈ 1, the connections of sample xi to the others nearly vanish.
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It is known that a subgradient of the function |x| at a real variable x is sign(x) if x 6= 0 or
any real r ∈ [−1, 1] when x = 0. Since the function ‖Ω� C‖1 is separable on its variables,
the set of subgradients of function f(C) at C is

∂C‖Ω� C‖1 =
{

Ω� (sign(C) +R) : R ∈ RC
}

where RC = {R : R� C = 0, ‖R‖∞ ≤ 1}.
For C = C(S) = V V T + V⊥SV

T
⊥ with symmetric S specially, the definition of subgradi-

ents gives the inequality ‖Ω� Y ‖1−‖Ω�C‖1 ≥ 〈B, Y −C〉 for a fixed B ∈ ∂C(S)‖Ω�C‖1
and all Y . Hence, choosing Y = C(T ) with any T , we obtain

‖Ω� C(T )‖1 − ‖Ω� C(S)‖1 ≥ 〈B,C(T )− C(S)〉 = 〈V T
⊥BV⊥, T − S〉. (25)

Obviously, the subgradients of convex function ‖Ω � C(S)‖1 at S are BV = V T
⊥BV⊥ with

symmetric B ∈ ∂C(S)‖Ω� C‖1, which is concluded by setting symmetric T in (25).

The subgradients of the non-convex function ‖Ω � C(WW T )‖1 at W can be also con-
cluded from (25), based on Definition 8.3 in Rockafellar and Wets (1998) for a non-convex
function g(x) at x0, via the inequality

g(x)− g(x0) ≥ 〈s, x− x0〉+ o(‖x− x0‖).

Let S(W ) = WW T as a mapping of W , and choose S = S(W ) and T = S(W + ∆) in (25).
We see that ‖Ω� C(S(W + ∆))‖1 − ‖Ω� C(T )‖1 ≥ 〈2V T

⊥BV⊥W,∆〉+O(‖∆‖2F ). Hence,

∂W ‖Ω� C(WW T )‖1 =
{

2V T
⊥BV⊥W : B ∈ ∂C(S)‖Ω� C‖1

}
.

Combining it with the gradient 2λV T
⊥ diag(c(WW T ))V⊥W of λ

2‖c(WW T )‖22, we get

∂f(W ) =
{

2
(
B̂V + λV T

⊥ diag(c(S))V⊥
)
W : B̂V ∈ ∂S‖Ω� C(S)‖1, S = WW T

}
=
{

2V T
⊥
(
Ω� (sign(C) +R) + λdiag(c)

)
V⊥W : RT = R ∈ RC , C = C(WW T )

}
.

Convergence analysis requires a differentiable objective function. However, f(W ) is
continuous but not differentiable on the zero entries of Ω�C(WW T ). To polish f(W ), we
use the derivable function

qδ(t) =

{
|t| |t| > δ;
1
2δ (t2 + δ2) |t| ≤ δ (26)

that polishes |t| within a small threshold δ > 0. Its derivative q′δ(t) = sign(t) min{|t|/δ, 1} is
an approximate of subgradient st = sign(t) of |t| with error st − q′δ(t) = sign(t)(1− |t|/δ)+,
where t+ = max{t, 0}. Hence,

fδ(W ) = ‖Ω� C(WW T )‖1,δ +
λ

2
‖c(WW T )‖22 (27)

is a polishing function of f(W ), where ‖C‖1,δ = ‖qδ(C)‖1 =
∑

ij qδ(cij). Since ‖C‖1,δ has

the gradient grad‖C‖1,δ = sign(C)�min{|C|/δ, 1}, we obtain that, with C = C(WW T ),

gradfδ(W ) = 2V T
⊥
(
∇‖Ω� C‖1,δ + λdiag(c

))
V⊥W

= 2V T
⊥
(
Ω� sign(C)�min{|Ω� C|/δ, 1}+ λdiag(c)

)
V⊥W. (28)
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Here, we have used the equality Ω� sign(Ω� C) = Ω� sign(C).
The gradient of fδ(W ) is an approximation of subgradiant SW = 2V T

⊥
(
Ω � sign(C) +

λdiag(c)
)
V⊥W of f(W ) corresponding to R = 0. The error matrix is as follows:

E = SW − gradfδ(W ) = 2V T
⊥
(
Ω� sign(C)� (1− |ωijcij |/δ)+

)
V⊥W.

If δ is small enough such that δ ≤ minωijcij 6=0 |ωijcij |, then E = 0, that is, gradfδ(W ) is a
subgradient of f(W ) at W . Furthermore, gradfδ(W ) = 0 means 0 ∈ ∂f(W ). We use fδ(W )
with a small δ in our MCG algorithm. The following lemma shows that a local or global
optimizer of fδ is also an approximately local or global optimizer of f with an approximate
error O(δ) in terms of the following:

nδ(W ) =
∑

|cij(W )|<δ

(δ − |cij(W )|)2

2δ
≤ δ

2

∑
1|cij(W )|<δ.

Lemma 26 Let Wδ and W∗ be the minimizers of fδ(W ) and f(W ), respectively. Then

f(Wδ) ≤ f(W∗) + nδ(W∗).

Proof Since qδ(t) = |t| if |t| ≥ δ, or 0 ≤ qδ(t) − |t| = (δ−|t|)2

2δ otherwise. By definition, we
have that f(W ) ≤ fδ(W ) ≤ f(W )+nδ(W ) for any W . Hence, f(Wδ) ≤ fδ(Wδ) ≤ fδ(W∗) ≤
f(W∗) + nδ(W∗).

6.2.2. Tangent Space

The method of nonlinear conjugate gradient (NCG) updates the current W via a linear
searching as Ŵ = W +α∆ for minimizing fδ(W ), where ∆ is a conjugate gradient direction
involved as a sum of a gradient gradfδ(W ) and a conjugate gradient direction at the previous
point. However, the NCG does not take into account the manifold Sn−rd−r in our case. To
take advantage of the manifold structure, it is required to slightly modify the conjugate
gradient formula on the one hand. We will mention it in the next subsection.

On the other hand, the conjugate gradient ∆ should be further modified (Journée et al.,
2010). Practically, the modified point in the manifold Sn−rd−r ,

S(W + α∆) = S(W ) + α(W∆T + ∆W T ) + α2∆∆T

contains the tangent component TW (∆) = W∆T +∆W T of the manifold at S(W ) = WW T .
Obviously, the component of ∆ that belongs to the null space NW of the linear map TW (∆)
does not contribute to the tangent space. If we split ∆ = ∆N + ∆H with ∆N ∈ NW and
∆H in the orthogonal complement HW of NW , Thus,

W∆T + ∆W T = W∆T
H + ∆HW

T , ‖∆‖2F = ‖∆N‖2F + ‖∆H‖2F .

Clearly, condensing ∆ into the horizontal set HW does not change the tangent component,
but it yields a new point S(W + α∆H). It is closer to the tangent space than S(W + α∆).
Notice that both S(W + α∆H) and S(W + α∆) are retractions of the same modified point
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S(W ) + TW (∆H) onto the manifold Sn−rd−r in the technique of manifold conjugate gradient
(MCG). Therefore, the updating of W should be modified as

Wnew = W + αWPW (∆) (29)

with a suitable step length αW for linear searching for the (modified) conjugate gradient
∆, where PW (∆) = ∆H is the projection of ∆ onto horizontal set HW .

It is not difficult to determine the projection PW (∆), via characterizing the subspaces
NW and HW . Practically, writing each ∆ ∈ NW as ∆ = WN + W⊥F with an orthogonal
complement W⊥ of W ,8 and using the equality ∆W T +W∆T = 0, we have that

0 = W T (∆W T +W∆T )W = W TW (N +NT )W TW.

Hence, N +NT = 0 since W is of full column rank. Moreover,

0 = −WNW T −WNTW T = (W⊥F −∆)W T +W (W⊥F −∆)T

= W⊥FW
T +WF TW T

⊥ = [W,W⊥]

(
0 F T

F 0

)
[W,W⊥]T ,

which implies F = 0. Hence, NW =
{
WN : NT = −N ∈ R(d−r)×(d−r)}. Furthermore,

its orthogonal complement is HW =
{
H ∈ R(n−r)×(d−r) : W TH = HTW

}
obviously since

〈WN,H〉 = 0 for all skew-symmetric N of order d− r.
To determine a skew-symmetric N and H ∈ HW from the splitting ∆ = WN + H, at

first, we eliminate the symmetric W TH in the equality W T∆ = W TWN+W TH, by taking
the skew-symmetric part of W T∆. It yields the equation W TWN + NW TW = E, where
E = W T∆ − ∆TW is known. Thus, using the eigen-decomposition W TW = QΣQT and
setting Ñ = QTNQ and Ẽ = QTEQ, this equation is simplified to ΣÑ + ÑΣ = Ẽ, and Ñ
and N can be easily obtained as that

Ñ =
( ẽij
σi + σj

)
, N = QÑQT . (30)

Therefore, the linear projection of ∆ is PW (∆) = H = ∆−WN .

6.2.3. Manifold Conjugate Gradients

The conjugate gradient direction ∆ in the NCG is recursively defined. In our case, we set
∆ = GW , where the recursive definition of GW is slightly modified as:

GW = −gradfδ(W ) + βWPWold
(GWold

),

and Wold is a previous point. Let PW = PW
(
gradfδ(W )

)
be the projection of gradfδ(W )

onto HW . The projection of GW onto HW , i.e., the conjugate direction HW is also recur-
sively defined (Absil et al., 2009, Algorithm 13),

HW = −PW + βWPW
(
HWold

)
. (31)

8. We assume that W is of full column rank for simplicity.
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Initially, HW = −PW . Thus, the iteration (29) with ∆ = GW becomes

Wnew = W + αWHW , (32)

which is an iteration of the manifold conjugate gradient method.
We use the following formula for setting the βW in (31) for updating the conjugate

direction in the Riemannian manifold

βW =

{ 〈PW ,YW 〉
〈YW ,ZW 〉 −

2〈PW ,ZW 〉
〈YW ,ZW 〉2 ‖YW ‖

2
F , if 〈YW , ZW 〉 6= 0;

0, otherwise,
(33)

where YW = PW −PW (PWold
) and ZW = PW (HWold

), a slight adaptation of that for the CG
method in Euclidean space (Hager and Zhang, 2005). When 〈YW , ZW 〉 = 0, the iteration
is restarted. Obviously, rescaling HWold

does not change the updating process (31). Hence,
one can normalize each HW in (32) to have a unit Frobenius norm if necessary for numerical
stability.

6.2.4. Line Searching

One strategy for linear searching is to choose αW satisfying the Armijo condition on f(W )

f(Wnew) ≤ f(W ) + ταW inf
BW∈∂f(W )

〈PW (BW ),PW (∆)〉. (34)

with τ ∈ (0, 1). Mathematically, 〈PW (Y ),PW (Z)〉 = 〈Y,PW (Z)〉 = 〈PW (Y ), Z〉 for any
Y and Z. Hence, only one projection is required in the inner production. In numerical
computation, f(W ) is replaced by the smooth fδ(W ), and (34) is changed to that

fδ(Wnew) ≤ fδ(W ) + ταW
〈
PW , HW

〉
, (35)

as suggested in Section 4.2 by Absil et al. (2009). Once the Armijo condition (35) is
satisfied and HW is a descending direction, i.e., 〈PW , HW 〉 < 0, then fδ(Wnew) < fδ(W ) is
guaranteed.

We note that the computational cost of checking for the Armijo condition is much lower
than that of other strategies for determining an αW . For example, for the strong Wolfe
conditions (Sato and Iwai, 2015)

fδ(Wnew) ≤ fδ(W ) + c1αW 〈PW , HW 〉, |〈PWnew ,PWnew(HW )〉| ≤ |c2〈PW , HW 〉|, (36)

where the constants c1 and c2 satisfy 0 < c1 < c2 < 1, an additional condition must
be checked. For the convergence liminfk→∞‖PWk

‖F = 0 of MCG under the strong Wolfe
conditions, Sato and Iwai (2015) suggests another rule for choosing βW .

6.2.5. Convergence

The following lemma benefits convergence analysis of the MCG with βW in (33) and linear
searching satisfying the Armijo condition (35).

Lemma 27 If βW is chosen as (33), then for arbitrary W ,

〈PW , HW 〉 ≤ −
7

8
‖PW ‖2F . (37)
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Proof From updating (31) of HW , we have 〈PW , HW 〉 = −‖PW ‖2F + βW 〈PW , ZW 〉. If
〈YW , ZW 〉 = 0, then βW = 0 by (33), and 〈PW , HW 〉 = −‖PW ‖2F . Otherwise,

βW 〈PW , ZW 〉 =
1

8

(
8
〈PW , ZW 〉
〈YW , ZW 〉

〈PW , YW 〉 − 16
〈PW , ZW 〉2

〈YW , ZW 〉2
〈YW , YW 〉

)
=

1

8

(
‖PW ‖2F −

∥∥PW − 4
〈PW , ZW 〉
〈YW , ZW 〉

YW
∥∥2

F

)
≤ 1

8
‖PW ‖2F .

Hence, 〈PW , HW 〉 ≤ −‖PW ‖2F + 1
8‖PW ‖

2
F = −7

8‖PW ‖
2
F .

Thus, if the Armijo condition (35) is satisfied with αW , we have the decreasing property

fδ(Wnew) ≤ fδ(W )− 7ταW
8
‖PW ‖2F ≤ fδ(W ). (38)

This equality holds only if PW = 0. Hence, starting with any point, the MCG converges in
the sense that PWk

= 0 at a Wk or

lim
k→∞

PWk
= 0. (39)

That is, the MCG converges globally.
Theoretically, for a sufficiently small δ, the minimizer of fδ is also a local minimizer of f ,

as previously mentioned. However, a smaller δ might yield slower convergence of the MCG
algorithm, which frequently occurs in numerical experiments. We use the stepped strategy
of decreasing δ and use the minimizer Wδ as an initial guess for the MCG with a smaller δ.
This strategy can accelerate convergence.

Theorem 28 Let {δ`} be a decreasing sequence and W (`) be a solution of the manifold
conjugate gradient method with (33), starting with the previous W (`−1) and satisfying the
Armijo condition. Then,

{
fδ`
(
W (`)

)}
is monotonously decreasing.

Proof Obviously, if δ′ < δ′′, then qδ′(t) ≤ qδ′′(t) for qδ(t) given in (26) and all t. Hence,
fδ′(W ) ≤ fδ′′(W ) for all W , and fδ`+1

(
W (`)

)
≤ fδ`

(
W (`)

)
. This equality holds only if

minij |c(`)
ij | ≥ δ` since qδ′(t) = qδ′′(t) only if |t| ≥ δ′′. By (38), fδ`+1

(
W (`+1)

)
≤ fδ`+1

(
W (`)

)
.

This equality holds only if PW (`) = 0. Therefore, fδ`+1

(
W (`+1)

)
≤ fδ`

(
W (`)

)
for all `, and

this strict inequality holds if PW (`) 6= 0 or minij |c(`)
ij | < δ`.

6.2.6. Computational Details

Several computational issues may affect the efficiency of the MCG algorithm: the stopping
condition of the inner iteration of W given δ, the rule for choosing a suitable αW satisfying
the Armijo condition, the choice of the initial testing value of αW , and the choice of δ. We
offer details on these computational issues below.

Stopping criterion. Given δ > 0, we normalize HW to have a unit Frobenius norm prior
to linear searching. Since αW = αW ‖HW ‖F = ‖Wnew −W‖F , a simple stopping criterion
of the iteration of W is that αW ≤ εα with a small constant εα.
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Algorithm 1 MSS using manifold conjugated gradients (MSS−MCG)

Input: V , V⊥, Ω, initial guess W , δ0, and αinit, parameters ρ, γ, εα, εC , εδ, `max, and kmax

Output: W and C.

1: Compute Cv=V V T , Vw=V⊥W , and C=Cv + VwV
T
w , set δ=δ0, and save W (0) =W .

2: For ` = 1, 2, · · · , `max

3: Save Cold = C, and compute f = fδ(W ) as (27) with the current C.
4: For k = 0, 1, 2, · · · , kmax

5: Compute gradfδ(W ) as (28) and P = PW (gradfδ(W )) as (30).
6: Set H=−P if k=0, or compute H as (31) and (33), and H

‖H‖F →H if k>0.

7: Starting with αinit, choose α satisfying the Armijo condition, but α/ρ does not.
8: Update W := W + αH, Vw = V⊥W , and reset αinit = α.
9: Update C = Cv + VwV

T
w , f = fδ(W ).

10: If α < εα, terminate the inner iteration.
11: End
12: If ‖Ω� (C − Cold)‖ < εC and δ < εδ, terminate, otherwise, reduce δ := γδ.
13: End

Choosing αW . To guarantee convergence by Corollary 4.3.2 of Absil et al. (2009), we
determine an αW such that αW satisfies the Armijo condition but α′W = αW /ρ does not.
This is accomplished via repeatedly testing α in the rule: α := α/ρ if (34) holds or α := α∗ρ
otherwise, starting with an initial value α0. This is basically an estimation of the largest α
satisfying the Armijo condition. Taking α∗W as a good approximation of the minimizer of
φ(α) = fδ(W + αHW ), the relative approximation error is bounded,

0 ≤
α∗W − αW

αW
≤ αW /ρ− αW

αW
=

1− ρ
ρ

.

Hence, a ρ closer to 1 yields a better approximate αW to α∗W , and hence, a smaller value of
fδ, roughly speaking. We typically choose ρ ∈ [0.5, 1).

Initial guess of αW . For simplifying the discussion, we normalize HW to have a unit
Frobenius norm prior to linear searching. Since αW tends to zero as the iteration of W
converges, a good estimate for αW is αWold

if the previous αWold
is available. This initial

guess works well in our experiments—it only takes twice testings for each update of W in
general, but may fail when the curvature of φ(α) = fδ(W +αHW ) achieves a local minimum
near α = 0, which may result in a very small αW ≈ 0. This phenomenon happens when
W is close to a local minimizer or when the direction HW is unsuitable, causing very slow
descent. Thus, we change HW back to −PW if the Armijo condition is unsatisfied under at
most kmax testings in case the computational cost becomes prohibitive. In our experiments,
we generally set kmax = 10.

Setting δ. In practice, a sequence of decreasing {δ`} is used. We simply choose δ` =
γ`−1δ0 with γ < 1. Let W (`) be the solution corresponding to δ`. We terminate the outer
iteration if ‖Ω�

(
CW (`) − CW (`−1)

)
‖∞ < εC with a given accuracy or δ` ≤ εδ, where εδ is a

small constant such as εα.

The MCG algorithm is summarized in Algorithm 1.
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Algorithm 2 Construct active set Ω

Input: a symmetric graph A and the parameter τ .
Output: active set Ω and partition J .

1: Compute the sum a =
∑

j aj of all columns of A and set D = diag(a).

2: Compute K unit eigenvectors Q of D−1/2AD−1/2 with the largest eigenvalues.
3: Apply k-means on the normalized rows{ỹj}of Q to get centroids {bk} and partition J .

4: Compute qi` = ψ(q̃i`)∑
k ψ(q̃i`)

via (40) and ψ(t) =

{
1, if t < τ ;
0, if t ≥ τ.

5: Set the active set Ω = {(i, j) : qi`qj` < 1}.

6.3. Active Set Updating

Once we obtain a solution C = C(S) of (23) with an active set Ω, as an estimated solution
of minS∈S ‖Coff(J)(S)‖1, we must update the current Ω together with λ as (24). In this
subsection, we provide an effective approach for updating the active set Ω, that addresses
two issues in the unnormalized spectral clustering for estimating the K-partition J : small
segments and instability of classical k-means.

There is an implicit restriction |Jk| > dmin with unknown dmin for partition J ∈ J (K)
in practice. This restriction implies that Jk should not be small. Hence, we adopt nor-
malized cutting (Shi and Malik, 2000) to avoid small blocks in learning J . For the sake of
completeness, we briefly describe the approach taken in this paper, which is similar to that
of Von Luxburg (2007).

Normalized cutting modifies ‖Coff(J)‖1 = 1
2

∑
ij |cij |‖ui−uj‖22 to 1

2

∑
ij |cij |‖vi−vj‖22, by

just changing the assignment vectors ui = ek of J to the rescaled vector vi = ek/
√∑

j∈Jk αj

for i ∈ Jk, where ek is the k-th column of IK , the identity matrix of order K, and
αj =

∑
i |cji|. Hence, ui = vi/‖vi‖ can be determined by the solution of the equivalent prob-

lem min tr(V LV T ) subjected to V = [v1, · · · , vn] with discrete entries and V DV T = IK ,

where L = D − (|C|+ |C|T )/2 and D is a diagonal matrix of scales
{∑n

j=1
|cij |+|cji|

2

}
. The

discrete restriction is released for computation, and hence, V is estimated by the solution of
min tr(Y LY T ) subjected to Y DY T = IK , which is Y = QTD−1/2 with Q of K unit eigen-
vectors of D−1/2(|C| + |C|T )D−1/2 corresponding to the K largest eigenvalues. Therefore,
{ui} is estimated by {ỹi = yi/‖yi‖}, or equivalently, partition J is estimated by the k-means
clustering of {ỹi}. That is, we assign labels for {ỹi} according to the centroids {bk} given
by k-means as follows:

`(ỹj) = arg min
k
‖ỹj − bk‖2, j = 1, · · · , n

where J = {J1, · · · , JK} with Jk = {j : `(ỹj) = k}.
However, faulty assignment may occur via k-means clustering, especially when some {ỹi}

are located between two centers. A hard assignment strategy may mislead the partition. To
address its effect on the optimization of C, we suggest using the soft strategy of setting the
active set Ω based on a probability estimation pij of points ỹi and ỹj belonging to different
subspaces: ωij = 1 if pij ≥ γ with a constant γ ∈ (0, 1], or ωij = 0 otherwise. By the
law of total probability, we write pij = 1−

∑
` qi`qj`, where qi` is the probability of sample
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Algorithm 3 Minimal subspace segmentation via alternative optimization (MSS−AO)

Input: number of subspace K, d, initial active set Ω, λ0, τ , maximal iteration number tmax.
Output: J and C.

1: Initially set W = [Id, 0]T .
2: For t = 1, 2, · · · , tmax

3: If ` = 1, set λ = λ0. Otherwise, set λ as (24).
4: Save Ωold = Ω and compute C by Algorithm 1 with the current active set Ω.
5: Update the current Ω and J by Algorithm 2 with A = (|C|+ |C|T )/2.
6: If Ω = Ωold, terminate the iteration.
7: End

xi belonging to the estimated subspace span(XJ`). Hence, the probability of xi and xj

belonging the same subspace is
∑

` qi`qj`. We set qi` = ψ(q̃i`)∑
k ψ(q̃i`)

with the rescaled distance

to a centroid,

q̃i` =
‖ỹi − b`‖2 −mink ‖ỹi − bk‖2

maxk ‖ỹi − bk‖2 −mink ‖ỹi − bk‖2
, (40)

where ψ is a nonincreasing function. For example, ψ(t) = 1 for t ≤ τ and ψ(t) = 0 otherwise,
where τ ∈ (0, 1) is a given constant. In our experiments, we simply set τ = 1/2. Algorithm
2 lists the detailed steps of the construction of Ω.

Algorithm 3 summarizes the alternative rule of updating C(S) and Ω for solving (22).
Compared with other state-of-art methods, this algorithm provides improved segmentation,
especially when the minimal subspaces are significantly intersected with each other. We
show the relevant comparisons in the experiment section of this paper. It is possible that the
computed solution is locally optimal. In the next subsection, we further consider algorithmic
improvements to avoid such localization as much as possible.

6.4. The Pseudo-dual Problem and Solver

The alternative method for solving the primal problem (22) provided in previous subsections
may obtain only a locally optimal solution in some cases due to nonconvexity. In this
subsection, we consider an algorithm for solving an equivalent pseudo-dual problem of (22)
for improved capability to jump out of local minima.

6.4.1. The Pseudo-dual Problem

Changing the objective function ‖Coff(J)‖1 of the primal problem (22) as per restriction
Coff(J) = 0 while changing its restrictionX = XC as per function ‖X−XC‖2F for minimizing

and keeping the same restrictions CT = C and r(C) = d, we can easily obtain the following
pseudo-dual problem

min
J∈J (K),C

‖X −XC‖2F s.t. Coff(J) = 0, C = CT , r(C) = d. (41)

The pseudo-dual problem is equivalent to the primal problem under the conditions of The-
orem 11, because both problems have the same unique solution by Theorem 24.
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The pseudo-dual problem can be further simplified because the off-diagonal blocks of C
are zero. Let CJk = C(Jk, Jk) as before. We see that

‖X −XC‖2F =
∑
k

‖XJk −XJkCJk‖
2
F , and r(C) =

∑
k

r(CJk).

Hence, (41) becomes

min
{Ck},{Jk}∈J (K)

K∑
k=1

‖XJk −XJkCJk‖
2
F s.t. C = CT ,

∑
k

r(CJk) = d. (42)

It is convenient to optimize the block-diagonal C in the above problem, since this is equiv-
alent to solving the K independent subproblems

min
r(CJk

)=d′k

‖XJk −XJkCJk‖
2
F , k = 1, · · · ,K, (43)

on a smaller scale, provided that d can be split as d =
∑

k d
′
k with a good estimate d′k of the

true dk = r(Xk) for each k. We discuss how to split d and how to optimize the partition
given C in the next subsection.

6.4.2. Subspace Correction

Since r(CJk) = d′k, r
(
XJkCJk

)
≤ d′k and ‖XJk −XJkCJk‖2F ≥ minr(Z)≤d′k ‖XJk − Z‖2F . It is

known that the minimum is given by the truncated SVD of XJk with rank d′k. That is, the
minimizer Zk = GkDkQ

T
k , where Gk and Qk consist of the d′k left and right singular vectors

of XJk , respectively, corresponding to the d′k largest singular values, and Dk is a diagonal
matrix of the d′k largest singular values. If we choose CJk = QkQ

T
k , then XJkCJk = GkDkQk.

That is, QkQ
T
k solves the subproblem minr(CJk

)=d′k
‖XJk −XJkCJk‖2F , and

min
r(CJk

)=d′k

‖XJk −XJkCJk‖
2
F = ‖XJk −GkDkQ

T
k ‖2F =

∑
j

σ2
k,j −

∑
j≤d′k

σ2
k,j ,

where σk,1 ≥ · · · ≥ σk,dk are all the singular values of XJk .
The splitting d =

∑
k d
′
k can be easily determined. Since∑

k

‖XJk −XJkCk‖
2
F =

∑
k

∑
j

σ2
k,j −

∑
k

∑
j≤d′k

σ2
k,j ,

minimizing
∑

k ‖XJk − XJkCk‖2F is equivalent to collecting the d largest values of {σk,j}.
Once the selection is completed, the splitting d =

∑
k d
′
k is immediately available by setting

d′k as the number of selected {σk,j} in the d largest values.
We now consider how to update partition J = {Jk} given {Ck}. Because we have ob-

tained the spanning subspaces {span(Gk)}, partition J can be updated by the new partition
J̃ = {J̃1, · · · , J̃K} according to the rule of the nearest subspace for each sample, that is,

J̃k =
{
j : k = arg min

`
‖xj −G`GT` xj‖22

}
. (44)
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Algorithm 4 Subspace correction for solving the pseudo-dual problem (41)

Input: X, d, initial K-partition J , and max iteration number smax

Output: {Jk} and {Ck}.
1: For s = 1, 2, · · · , smax

2: Save Jold = J and compute the d largest singular triples {gki, σki, qki} of each XJk .
3: Pick up d largest values from {σki}, containing d′k selected ones for each k.
4: Set Gk = [gk1, · · · , gkd′k ] and update Jold to J = {Jk} according to (44).

5: If J = Jold, set Ck = QkQ
T
k with Qk = [qk1, · · · , qkd′k ] for each k, and terminate.

6: End

Our subspace correction method for solving the pseudo-dual problem (41) is summa-
rized in Algorithm 4. We note that the above method is a bit similar to the K-Subspace
algorithm proposed by Bradley and Mangasarian (2000) in which the dimension dk of each
true subspace Sk is known, and each Jk is assumed to match dimension dk correctly. These
two assumptions cannot be satisfied in the complicated case that we consider because the
spanning subspaces of the minimal segments are unknown.

6.4.3. Convergence

Algorithm 4 decreases the objective function of (42). On the one hand, given J = {Jk}, the
optimal blocks {Ck} are provided by Ck = QkQ

T
k as shown above. Hence,∑

k

‖XJk−XJkCJk‖
2
F =

∑
k

‖XJk−GkG
T
kXJk‖

2
F

=
∑
k

∑
j∈Jk

‖xj−GkGTk xj‖22 ≥
∑
j

min
`
‖xj−G`GT` xj‖22.

On the other hand, as XJkCJk = GkDkQk, we also have XJ̃k
C̃J̃k = G̃kD̃kQ̃

T
k for the updated

pairs {C̃J̃k , J̃k} of {CJk , Jk} since G̃kD̃kQ̃
T
k is a truncated SVD of XJ̃k

. Hence,∑
j

min
`
‖xj−G`GT` xj‖22 =

∑
k

∑
j∈J̃k

‖xj−GkGTk xj‖22 =
∑
k

‖XJ̃k
−GkGTkXJ̃k

‖2F

≥
∑
k

‖XJ̃k
−G̃kD̃kQ̃

T
k ‖2F =

∑
k

‖XJ̃k
−XJ̃k

C̃k‖2F .

Therefore,
∑

k ‖XJk−XJkCJk‖2F ≥
∑

k ‖XJ̃k
−XJ̃k

C̃k‖2F . The alternative iteration converges
in the sense of decreasing the value of the objective function. Because only a finite number
of partitions exist, the alternative iteration can be terminated within a finite number of
steps as the function value is unchanged, though J may have a differently modified J̃ .

Theorem 29 The algorithm of subspace correction yields a decreasing sequence of objective
values and terminates within a finite number of iterations.

It should be pointed out that multiple partitions achieving the same objective values
may exist if some samples have the same minimal distances to different estimated sample
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subspaces. If this happens at a terminated partition J and its modified J̃ , the equalities of
objective values imply the equalities∑

k

∑
j∈Jk

‖xj−GkGTk xj‖22 =
∑
j

min
`
‖xj−G`GT` xj‖22 =

∑
k

∑
j∈J̃k

‖xj−G̃kG̃Tk xj‖22.

One may understand the difference between J and J̃ by the arbitrary labeling of such
samples because of their equal distances. To clearly show this, let

Mj =
{
k : ‖xj−GkGTk xj‖2 = min

`
‖xj−G`GT` xj‖2

}
for each j. Then, each Jk can be split as Jk = J0

k ∪ J ′k, where J0
k consists of the j’s with a

singleton Mj = {k}, and J ′k is a set of partial j’s whose Mj has at least two indices, one of
which is k. Similarly, J̃k = J0

k ∪ J̃ ′k. Obviously, Jk 6= J̃k is equivalent to J ′k 6= J̃ ′k. Randomly
labeling these j’s according to the multiple k’s in Mj results in multiple partitions. That is,
there are multiple options for setting J̃ in this case. It is unclear whether there is a J̃ among
the multiple choices that achieves a smaller value of the objective function. Choosing such
a J̃ may obtain better convergence but requires a complicated labeling rule, rather than the
simple one (44). We do not intend to further exploit the multiplicity of partitions because
of the nonsingletons {Mj}.

6.5. Hybrid Optimization

Both Algorithms 3 and 4 may fall into local minimizers, but exhibit their own convergence
behaviors. Algorithm 3 is relatively stable on the initial setting of partition J or active set
Ω, in the sense that the convergent solution C or J always has good accuracy with respect
to the minimal partition, although the solution may not be completely correct. Algorithm
4 heavily depends on the initial guess of J and may give a completely incorrect solution if
the initial partition is poor. A good initial J for Algorithm 4 should ensure that each Jk
dominates samples from the same minimal segment. In this case, the algorithm 4 converges
to the true minimal partition quickly.

In this subsection, we consider a hybrid strategy for minimal subspace learning that
combines primal and pseudo-dual optimization, which we term hybrid optimization. Es-
sentially, starting with the coarsest active set Ωc covering all index pairs (i, j) except the
diagonal indices {(i, i)}, the hybrid strategy first solves the primal problem (22) with an
active set Ω and then solves the pseudo-dual problem (41) using the primal solution as its
initial guess. This procedure is repeated if necessary.

The key issue for hybrid optimization is constructing an initial guess for the primal
(pseudo-dual) algorithm from the solution of the pseudo-dual (primal) algorithm. It is
easy to construct an initial partition for the pseudo-dual algorithm (Algorithm 4) based on
subspace correction using the solution given by the primal algorithm (Algorithms 3). Here,
we focus on constructing a suitable Ω for Algorithms 3, based on partition J = {J`} given
by Algorithm 4. Here, Ω means the matrix with entries ωij . We may slightly change the
0−1 setting of the entries to that with one of the three values 0, 1, β because of the property
of subspace correction.
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Algorithm 5 Minimal subspace segmentation via hybrid optimization (MSS−HO)

Input: X, K, parameter β, maximal iteration number hmax of HO
Output: J and C

1: Initially set Ω = Ωc with ωij = 1 if i 6= j and ωii = 0.
2: For h = 1, 2, · · · , hmax

3: Save Ωold = Ω, and solve the primal problem (22) to get Jprim and C by
4: Algorithm 3 with Ω.
5: Solve the pseudo-dual problem (41) to get J by Algorithm 4 using Jprim initially.
6: Update Ω as (46) if there is Jk = ∅, or as (45) otherwise. If Ω = Ωold, terminate.
7: End

If all the K subsets are not empty, it is highly possible that each J` is dominated by a
single true segment. Thus, we modify Ω as follows:

ωij =

{
1 if i ∈ Js, j ∈ Jt, s 6= t;
0 if i, j ∈ Jk.

(45)

However, if there are some empty Jk, without loss of generality, let J1, · · · , J` be all
the nonempty subsets with ` < K. Since some true minimal segments are approximately
merged together into a nonempty Jk because of the subspace correction, the entries in the
off-diagonal block C(Js, Jt) decrease faster than those C(J∗k′ , J

∗
k′′) with k′ 6= k′′ if J∗k′ and

J∗k′′ are merged together. We slightly modify the coarse Ωc to Ωβ = (ωij) with the following

ωij =


β if i ∈ Js, j ∈ Jt, s 6= t;
1 if i, j ∈ Jk, i 6= j;
0 if i = j.

(46)

The constant β plays a special role in controlling the convergent behavior of C = C(S)
in the iteration of Algorithm 3 using Ωβ. Compared with the iteration of C in Algorithm 3
before shifting to Algorithm 4 for updating the partition, a larger β > 1 can accelerate the
decreasing of the blocks C(Js, Jt) with s 6= t because of the larger weights in the function

‖Ωβ � C‖1 =
∑
k

∑
i 6=j∈Jk

|cij |+ β
∑
s 6=t
‖C(Js, Jt)‖1.

Once these C(Js, Jt) are small, block C(J∗k′ , J
∗
k′′) begins decreasing, a bit similar to the

result of applying Algorithm 3 on the smaller block C(Jk, Jk). Thus, a larger β helps to turn
off the decreasing early. Note that a smaller β < 1 can balance {C(Js, Jt)} and {C(J∗k′ , J

∗
k′′)}

since it can delay the decreasing of the C(Js, Jt), or equivalently, relatively accelerate the
decreasing of C(J∗k′ , J

∗
k′′). When such balance occurs, the merging of multiple minimal

segments might also be delayed in Algorithm 4 using such a locally optimal solution of
Algorithm 3. However, the value of β must be carefully chosen to balance the decreasing of
these blocks. For the sake of simplicity, we just suggest using a β > 1. In our experiments,
we always set β = 1.25. See Algorithm 5 for the procedure of our hybrid optimization
procedure.

Figure 2 plots four indication matrices EJ of four partitions obtained by the hybrid
algorithm, where (EJ)ij = 1 if i, j ∈ Jk, or (EJ)ij = 0 if i, j belong to different Jk’s.
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Figure 2: Indication matrix EJ(t) of the computed partition of Algorithm 3 using Ωc (left)
or Ωβ (middle right) corresponding to the solution (middle left) of Algorithm 4
starting with the left J . The right J is a solution of Algorithm 4 initially using
the middle right J .

The data set has minimal segmentation consisting of five minimal segments of equal size.
Starting with the coarsest Ωc, Algorithm 3 obtains a solution J whose indication matrix
is plotted on the left. J contains five nonempty pieces {Jk}; three of them have relatively
dominant indices from a single minimal segment and other two are mixed by multiple
minimal segments. Due to this mixture, the pseudo-dual step gives a partition with four
nonempty pieces, in which two of them are very small, one almost contains the indices
of a minimal segment, and the largest one is dominated by other minimal segments. The
initial setting (46) can significantly reduce the mixture at the primal step; see the indication
matrix plotted third in Figure 2. Due to the improvement, the second pseudo-dual step
correctly recovers all the minimal segments.

7. Generalization for Noisy Samples

Given a noisy sample set X = X∗ + E, where X∗ is a set of unknown clean samples and
E is a noise set, we seek an MSDR with respect to the subspaces {Sk} spanned by the
minimal segments of X∗ theoretically. Our algorithms discussed in previous sections are
based on the orthonormal matrix V of the right singular vectors of X∗ corresponding to
nonzero singular values and its orthogonal complement V⊥. If we can estimate V from noisy
samples with high accuracy, these algorithms can also be used for subspace segmentation
from noisy samples. Numerically, the required orthonormal matrix V can be estimated by
the dominant right singular vectors of X. The classical perturbation theory of singular
values shows that the estimation of V , or more preciously, the estimation of the subspace
spanned by the dominant singular vectors, is robust if the noise is relatively smaller than
the smallest singular value. This means that if the smallest singular value of X∗ is large, the
data noise could be somewhat relatively large. Further, we could apply the MSS algorithms
on the estimated V and its orthogonal complement V⊥ for segmenting the noisy samples.
Perturbation theory on solutions is an interesting topic. We leave it as further work.
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In this section, we consider a robust approach for the complicated cases of considerable
noise or an incorrectly estimated dimension sum d. A generalized sparse model is given to
handle noisy samples. We solve this sparse problem by applying an ADMM method.

7.1. The Relaxed Optimization

Let C∗ be an MSDR of the latent samples X∗, that is, X∗ = X∗C∗ and C∗ is a block-
diagonal matrix with rank d. By Theorem 24 on the one hand, C∗ = G∗G

T
∗ with an

orthonormal G∗ of d columns. On the other hand, since X∗ = X − E, the required SDR
also satisfies X = XC∗ + E(I − C∗). That is, the self-expressive error X − XC∗ should
be as small as the noise in magnitude. Therefore, it makes sense for approximating the
MSDR to minimize the sparsity ‖Coff‖1 subjected to C = GGT with an orthonormal G =
V∗+ (V∗)⊥Q of d columns, if the correct sum d of subspace dimensions is known, we should
also simultaneously minimize the self-expressive error X −XC in a suitable measurement
φ(X −XC). That is, we may consider the optimization problem

min
C=GGT ,GTG=Id

{
‖Coff‖1 + αφ(X −XC)

}
.

Some relaxations on the above problem are required for efficient computation. Here, we
adopt four kinds of relaxations:

1) relax the first term to ‖Ω� C‖1 with an Ω that can be modified iteratively,
2) add a penalty term on the diagonal vector c of C to decrease the nonconvexity,
3) relax the special restriction on G = V∗+ (V∗)⊥Q to be a general G of d columns, and
4) relax the strict expressive matrix C = GGT to C ≈ GGT .
The first two relaxations are similar to those discussed in previous sections without

noise, as in the basic model (23). The third one can avoid estimating the dimension r
of data space, its orthogonal basis V∗, and orthogonal complement of V∗. The last one
considers the case where d may be approximately estimated. The approximation C ≈ GGT
can be implicitly obtained by minimizing the error function ‖C−GGT ‖2F . Combining these
relaxations together results in the following sparse problem,

min
C,Ω,G

{
F(C,Ω, G) = ‖Ω� C‖1 +

λ

2
‖c‖22 + αφ(X −XC) +

β

2
‖C −GGT ‖2F

}
. (47)

We may choose φ as the norm ‖ · ‖1, ‖ · ‖2,1, or ‖ · ‖2F , depending on the noise distribution.
It is reasonable to set the parameters λ, α, and β proportional to the number of samples
in each subspace. If the number of samples in each subspace are approximately equal, we
can set the parameters proportional to n/K. We will show that this strategy works well
numerically.

As in the noiseless case, we also solve (47) via alternatively optimizing (C,G) and Ω:
We solve

min
C,G
F(C,Ω, G) (48)

with a fixed Ω, and then update Ω when (C,G) is updated. The problem (48) is also
addressed via alternatively optimizing C and G because we have the following two sound
propositions:
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Algorithm 6 Graph construction from C

Input: C, γ, σ, and s ≥ 1.
Output: graph matrix A.

1: Cut off small entries of C to get a sparse Cγ with column norms ‖Cγej‖ ≈ γ‖Cej‖.
2: Compute the left singular vectors {ui} of Cγ corresponding to singular values σi≥σ.
3: Construct A =

(
〈gi, gj〉s

)
with the nomalized rows {gj} of [· · · ,√σiui, · · · ].

(1) The subproblem minGF(C,Ω, G) is equivalent to minG∈Rn×d ‖C − GGT ‖2F whose
solution is as follows:

GGT = Pdiag((λ1)+, · · · , (λd)+)P T , (49)

where {λi} are the d largest eigenvalues of (C +CT )/2 and P consists of the corresponding
eigenvectors.

(2) The subproblem minC F(C,Ω, G) is convex and has a unique solution. We can solve
this problem using the ADMM method given in the next subsection.

Therefore, the algorithm for solving (48) consists of an inner-outer iteration scheme.
In addition, because the objective function is monotonously decreasing, the algorithm is
convergent. Numerically, it is unnecessary to solve the inner problem for updating C with
high accuracy. An inaccurate solution by ADMM is sufficient if it can decrease the value of
F , which results in an inaccurate inner-outer iteration method for solving (48).

As soon as (C, S) are updated, we modify Ω using the rule given in Subsection 6.3.
That is, we construct a new Ω by Algorithm 2 with input graph A. The simple input
A = (|C|+ |C|T )/2 is no longer suitable for noisy data since it is not positive semidefinite.
We give an approach for constructing a symmetric graph A as input to Algorithm 2. The
construction combines the advantages of that based on SSC solutions or LRR solutions as
shown in Algorithm 6.

7.2. ADMM Approach

We rewrite the subproblem of (47) for optimizing C given (Ω, G) as the ADMM form

min
C,E,Z

{
‖Ω� C‖1 +

λ

2
‖c‖22 + αφ(E) +

β

2
‖Z −GGT ‖2F

}
s.t. E = X −XZ, Z = C.

Its augmented Lagrangian function is

L(C,E,Z) = ‖Ω� C‖1 +
λ

2
‖c‖22 + αφ(E) +

β

2
‖Z −GGT ‖2F +

ρ′

2
‖C − Z‖2F

+
ρ′′

2
‖X −XZ − E‖2F + 〈C − Z, Y ′〉+ 〈XZ + E −X,Y ′′〉.
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Hence, the ADMM scheme is given by the following alternative rule.

(Ĉ, Ê) = arg min
C,E

L(C,E,Z); (50)

Ẑ = arg min
Z
L(Ĉ, Ê, Z); (51)

Ŷ ′ = Y ′ + ρ′(Ĉ − Ẑ); (52)

Ŷ ′′ = Y ′′ + ρ′′(XẐ + Ê −X). (53)

Notice that the objective function of (50) is separable as L(C,E, ·) = L1(C) + L2(E) +
constant, where

L1(C) = ‖Ω� C‖1 +
λ

2
‖c‖22 +

ρ′

2
‖C − Z +

1

ρ′
Y ′‖2F ,

L2(E) = αφ(E) +
ρ′′

2
‖XZ + E −X +

1

ρ′′
Y ′′‖2F ,

and the constant means a term not depending on the variables C or E. Hence, Ĉ =
arg minC L1(C) and Ê = arg minE L2(E). Below, we provide solutions of the above three
subproblems in closed form. The convergence of this ADMM iteration is guaranteed by
Boyd et al. (2011).

7.2.1. Updating the Representation Matrix

The step of updating C is separable with respect to its entries. That is, updating each entry
of C is an independent procedure. The entry cij is updated by ĉij , the solution

t∗ = arg min
t

{
ω|t|+ a

2
t2 +

ρ′

2
(t− p)2

}
with the parameters ω = ωij , a = λ if i = j or a = 0 otherwise, and p = zij − y′ij/ρ′. Since

the objective function can be rewritten as ρ′+a
2

(
t − ρ′p−sign(t)ω

ρ′+a

)2
, letting t1 = ρ′p−ω

ρ′+a and

t2 = ρ′p+ω
ρ′+a , the solution is as follows:

t∗ =


t2, if t2 ≤ 0
0, if t1 < 0 < t2
t1, if t1 ≥ 0

 =
shrink(ρ′p, ω)

ρ′ + a
,

where shrink(β, α) = sign(β)(|β| − α)+ is a shrinkage operator of β corresponding to α.
Hence, the optimal solution Ĉ is given by the following

Ĉ = R� shrink
(
ρ′Z − Y ′,Ω

)
, (54)

where R has the diagonals 1/(ρ′ + λ) and the off-diagonals 1/ρ′, and shrink(B,A) is the
elementwise operator of shrink(β, α).
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Algorithm 7 Minimal subspace segmentation via relaxed optimization (MSS−RO)

Input: X, K, d, accuracy parameters τ and ε, and max iteration numbers tmax, `max, kmax

Output: J and C.

1: Initially set Ω = Ωc, Z = C = I, Y ′ = 0, and Y ′′ = 0, and save Ωold = Ω.
2: Repeat the following produce for at most tmax times.
3: Solve (47) with fixed Ω via the following inner iterations:
4: For ` = 1, · · · , `max

5: Save Cold = C and run the ADMM iteration for updating C:
6: For k = 1, 2, · · · , kmax

7: Save Zold = Z and update C, E, and Z as (54), (55), and (56), respectively.
8: Modify the multipliers Y ′ and Y ′′ as (52) and (53).
9: If ‖Z − Zold‖F < τ , set C = Z, and terminate the iteration.

10: End
11: If ‖C − Cold‖F < ε, terminate. Otherwise, update G as (49).
12: End
13: Construct the graph A by Algorithm 6 and update Ω and J by Algorithm 2 .
14: If Ω = Ωold, terminate the repeat.
15: End

7.2.2. Updating the Error Matrix

The solution of minL2(E) depends on the function φ. If φ(E) is one of the three functions
‖E‖1, ‖E‖2,1, or ‖E‖2F , the solution is closed-form with ∆ = X −XZ − Y ′′/ρ′′,

Ê =


shrink (∆, α/ρ′′) , if φ(E) = ‖E‖1;
∆diag(β1, · · · , βn), if φ(E) = ‖E‖2,1;
∆/(1 + 2α/ρ′′), , if φ(E) = ‖E‖2F ,

(55)

Here, the first form is similar to that given by Beck and Teboulle (2009). In the second
form, βi = (‖δi‖2−α/ρ′′)+/‖δi‖2 with the columns δi of ∆, as shown by Yang et al. (2011).

7.2.3. Updating the Relaxation Variable

Fixing Ĉ and Ê, L(Ĉ, Ê, Z) is a quadratic function of Z. Hence, its minimizer is unique
and is given by the solution of the equation ∂

∂ZL(Ĉ, Ê, Z) = 0. That is,

β(Z −GGT ) + ρ′(Z − Ĉ) + ρ′′XT (XZ + Ê −X)− Y ′ +XTY ′′ = 0.

Thus, the minimizer of (51) is

Ẑ =
(
(β + ρ′)I + ρ′′XTX

)−1(
βGGT + ρ′Ĉ + ρ′′XT (X − Ê) + Y ′ −XTY ′′

)
. (56)

The whole iterative procedure for solving (47) is summarized in Algorithm 7, which
combines the closed-forms of solutions of the subproblems (50) and (51), the ADMM itera-
tion, and the updating of Ω if necessary. The number of repeats tmax can be small. In some
examples, setting tmax = 1 also gives a good solution.
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8. Experiments

We evaluate the performance of our algorithms on synthetic data sets without noise and two
kinds of real-world data sets for face recognition and motion detection. The synthetic data
vectors are sampled from the union of several known subspaces {Sk} such that the segment
Xk of samples from Sk is minimal and span(Xk) = Sk for each k. The minimal subspaces
are intersected and some samples are close to but do not belong to the intersections of these
subspaces. Two key issues known to affect subspace segmentation are subspace intersections
and samples located near intersected subspaces. The synthetic data are tested to show
how the proposed algorithms perform when the subspaces are heavily intersected and some
samples are close to the intersected subspaces. Two real-world data sets are used to evaluate
how the proposed algorithms perform on noisy data. Our algorithms are also compared with
five algorithms for subspace clustering: LRR (Liu et al., 2013), CLAR (Kang et al., 2015),
SSC (Elhamifar and Vidal, 2013), LRSSC (Wang et al., 2013), and SoftS3C (Li et al.,
2017).9 The reported results of these algorithms were obtained using the codes provided by
algorithm owners or downloaded from open sources. The parameters are set as suggested by
the algorithm owners or carefully chosen by us. The original LRSSC was slightly modified
in the experiments on real-world data sets to achieve better results.

8.1. Evaluation Criteria

We use the following four measurements to evaluate the quality of the computed solutions
from the partition error, the deviation from block-diagonal form, and the connection of
diagonal blocks, according to the ideal minimal segments J∗.

(1) The error of partition J . This error is defined by the percentage of misassigned
samples in partition J compared with the true minimal partition J∗,

ErrParti(J) = min
π

1

n

{
n−

K∑
k=1

|Jπ(k) ∩ J∗k |
}
, (57)

where {π(1), · · · , π(K)} is a permutation of {1, · · · ,K}.
(2) Block-diagonal deviation. Wang et al. (2013) used the metric

‖Coff(J∗)‖1
‖C‖1 to define the

relative deviation. However, relatively large diagonals may cause a relatively small value
of this function, which may lead to an incorrect gloss for the deviation since such a small
value does not imply a small deviation from the ideal block-diagonal form. We modify the
metric to the following

BdiagDevi(C) =
‖Coff(J∗)‖1
‖C‖1 − ‖c‖1

(58)

by removing the diagonals from the denominator, and use it to measure the deviation of C
from the ideal block-diagonal form.

(3) Intra-block connection. The Gini Index was used by Hurley and Rickard (2009)
to measure the sparsity of a vector. Wang et al. (2013) adopted it as a sparsity metric

9. We omit a comparison with the hard version proposed in the same paper (Li et al., 2017) since the soft
version SoftS3C performed slightly better than the hard version in our experiments.
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GiniIndex(CJ∗) of all the diagonal blocks CJ∗ = {CJ∗k}, that is, the sparsity of the vector
of entries in the K diagonal blocks {CJ∗k}. We slightly modify it to measure the intra-block

connection of C by 1−GiniIndex(CJ∗). That is, sorting all the M =
∑

k=1 |J∗k |2 entries of
the diagonal blocks CJ∗ = {CJ∗k} as c̃1 ≤ · · · ≤ c̃M , the intra-block connection is defined as
follows

IntraBConn(C) =

M∑
`=1

|c̃`|
‖CJ∗‖1

(
2(M − `) + 1

M

)
. (59)

(4) K-block-diagonal structure. It was shown by Von Luxburg (2007) that C is a block-
diagonal matrix with K blocks if and only if the (normalized) Laplacian L of (|C|+ |C|T )/2
has only K zero eigenvalues. In the approximate case, C is a block-diagonal matrix with
K diagonal blocks approximately if L has K small eigenvalues and its other eigenvalues are
distinguishable from the K smallest ones. The spectral clustering is just the K partition of
the (normalized) rows of the orthonormal matrix with K unit eigenvectors corresponding to
the smallest eigenvalues as its columns. By classical subspace perturbation theory (Stewart
and Sun, 1990), the stability of the spectral clustering can be characterized by the gap
between the K-th and (K + 1)st smallest eigenvalues λK(L) and λK+1(L) of L. Hence, we
use the relative gap

KblockDiag(L) =
λK+1(L)− λK(L)

λK+1(L)
(60)

to measure the stability of the spectral clustering, similar to
λK+1(L)−λK(L)
λK(L)−λK−1(L) used by Lauer

and Schnorr (2009). Here, RelGap(L) ∈ [0, 1].10

Each metric function above has the same range of [0, 1]. The first two functions mea-
sure the approximation of the K partition to the minimal partition J∗ and the approxi-
mation of C to have a block-diagonal form as an MSDR. The last two functions measure
the. connection of the diagonal blocks from two different viewpoints. Generally, smaller
values of ErrParti(J) and BdiagDev(C) and relatively larger values of IntraBCon(C) and
KblockDiag(L) mean a better solution (J,C) for learning the minimal sample subspaces.

8.2. Synthetic Data without Noise

The synthetic samples are generated such that the sample spanned subspaces are inter-
sected with each other. We randomly choose an r-dimensional subspace in Rm given r, or
equivalently, choose an orthogonal basis matrix U ∈ Rm×r. Then, we arbitrarily choose
K subspaces {Sk} with bases Uk = UPk, k = 1, · · · ,K, where each Pk ∈ Rr×dk is also an
orthonormal matrix with a given column number dk < r. The parameters {dk} and r de-
termine the subspace complexity and subspace segmentation difficulty. Generally, a smaller
sequence {dk} makes segmentation easier. We choose different kinds of {dk} for generating
sample sets with variant complexities of the segmentation. The samples are randomly cho-
sen from each subspace Sk in the form x = Uky, where the entries of y are independent and
identically distributed in the uniform distribution. Thus, the sample set can be written as
{Xk = UkYk}. As shown in Theorem 7, these samples are intersected nondegenerately and

10. The original definition defined by Lauer and Schnorr (2009) could be arbitrarily large.
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S ` dc 4 5 6 7 8 7 8 9 10 11 11 12 13 14 15

τσ = 0.9 0.69 1.54 2.68 4.13 6.01 2.10 3.21 4.51 6.12 8.01 4.00 5.24 6.65 8.17 10.03
0.990 0.03 0.59 2.03 4.00 6.00 0.78 2.11 4.00 6.00 8.00 2.25 4.02 6.00 8.00 10.00
0.999 0.00 0.20 2.00 4.00 6.00 0.27 2.00 4.00 6.00 8.00 2.01 4.00 6.00 8.00 10.00
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le
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w

it
h

sm
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ll

d
is

t(
x
i) [0.00, 0.05) 0.0 0.0 0.0 0.3 3.9 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

[0.05, 0.10) 0.0 0.0 0.2 1.9 10.9 0.0 0.0 0.1 0.5 3.5 0.0 0.0 0.0 0.0 0.2
[0.10, 0.30) 1.1 4.8 16.1 40.1 63.1 1.3 4.6 13.8 32.0 59.0 0.7 2.3 6.3 15.1 32.1
[0.30, 0.50) 17.7 37.1 53.9 49.2 21.1 27.6 47.4 62.3 59.1 35.5 31.9 49.3 65.2 71.8 63.6
[0.50, 1.00) 81.2 58.1 29.8 8.6 1.0 71.2 48.0 23.9 8.3 1.5 67.3 48.4 28.5 13.1 4.2

Table 1: Synthetic data: subspace intersection with neighboring samples

hence, the set {Xk} is the unique minimal segmentation, and we also have Sk = span(Xk)
for each k.

There are two kinds of complexities associated with subspace segmentation. One is the
degree of subspace intersection. We define this degree by the ratios {dk/r}. Generally,
a smaller dk implies better sample construction in this way if r is fixed. The other kind
of complexity involves the existence of samples near another subspace and the percentage
of samples within a short distance. The minimal distance of a sample xi ∈ Sk to other
subspaces is measured by

dist(xi) = min
` 6=k

dist(x,S`) = min
`6=k

‖xi − U`(UT` xi)‖
‖xi‖

.

We estimate the dimension of Ss∩St as the number of singular values of UTs Ut satisfying
σi(U

T
s Ut) ≥ τσ for a τσ ≈ 1, which takes into account the proximity of two subspaces,

excluding the intersection. In the top block of Table 1, we list the average dimensions
of the pairwise-intersected subspaces of K = 5 minimal sample subspaces with an equal
dimension dc for 100 repeated experiments. The average dimension of the pair-wise subspace
intersection is approximately (2dc−r)+. We test three values of r and, for each r, five values
of dc. In the bottom block, we also list the percentage of samples with the distances dist(xi)
in a given interval. Each time, we randomly choose nk = 1000 samples in each subspace.
The quality of the samples improves as r increases if the dimension of the intersected
subspaces is approximately fixed.

We run the MSS algorithms with MCG using Ωc only (MCG(c)), the alternative opti-
mization (AO) or the hybrid optimization (HO) on the synthetic data sets with the same
settings of r and dc as shown in Table 1. To reduce the computation time, we choose nk = 50
samples in each subspace and repeat the experiments 10 times for a total of 150 tests. For
each r, the MSS algorithms succeed in recovering the true minimal sample subspaces on
all the tests with four smaller values of dc, but fail when dc is set to be the largest value.
We choose a large dc for each r to show the case when the MSS algorithms cannot retrieve
the minimal subspaces. In approximately 29% of the 120 successful tests of the MSS al-
gorithms, the MCG(c) method successfully gives a true solution where further alternative
or hybrid optimization is not required. The MCG(c) solutions for the remaining tests are
also suitable as initial guesses for further alternative optimization, and 22% of them can be
further improved to retrieve the minimal subspaces using the AO strategy within at most 5
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Stage Convergence behavior in the successful tests

MCG(c) 35 succeed 85 fail

AO at most 5 iterations 19 succeed 66 fail

HO at most 5 iterations 66 succeed

Table 2: Convergence behavior of the MSS algorithms

AO steps. The other testings require the HO strategy to eventually obtain the true solution
within at most 5 HO steps. Table 2 shows the convergence behavior of the MSS algorithms
with the three strategies MCG(c), AO, and HO.

Table 3 further characterizes the behaviur of the MSS method with the different strate-
gies MCG(c), AO, and HO, measured by the average values of ErrParti, BdiagDevi, IntraB-
Conn, and KblockDiag on 10 repeated tests. As in previous experiments, the strategies AO
and HO improve the connection and estimation accuracy of the K-block structure on both
the minimal partition and MSDR. The error functions ErrParti and BdiagDevi decrease
quickly, while IntraBConn and KblockDiag increase in most cases when the subspaces are
not overly intersected with each other. In the case with the largest dc for r = 10, 14, or 20,
the local minimizer of MSS−MCG(c) is far from the ideal solution, due to heavy subspace
intersection. The average dimension of the subspace intersections is large compared with
the dimension of each subspace. The relative dimensions of the intersected subspaces are
approximately 75%, 72%, and 67% of the dimension of the sample space for r = 10, 14, 20,
respectively. The local optimal solution of MSS−MCG(c) cannot serve as a good initial
guess for the MSS−AO or MSS−HO.

In Table 3, we also compare the MSS method with four other algorithms, LRR, SSC,
SoftS3C, and LRSSC, on the same data. LRR gives relatively strong intra-block connec-
tion but very poor K-block-diagonal structure and large approximation errors to minimal
partitions or MSDRs. SoftS3C slightly improves upon SSC based on the four measure-
ments, and LRSSC performs better than LRR, SSC, and SoftS3C on the approximation
of K-block-diagonal form, but weakens the connections within diagonal blocks. If the sub-
space intersection is very weak, the solutions of SSC, SoftS3C, and LRSSC approximate the
minimal partitions well, but the block-diagonal structures are unclear since the solutions
have large values of BdiagDevi and relatively small values of KblockDiag. The connections
within diagonal blocks are also relatively weak. When r is relatively large or the subspace
intersection slightly increases, LRR, SSC, SoftS3C and LRSSC still fail to give acceptable
solutions. We note that in the noiseless case, the objective function of CLAR is equal to
log det(I + CTC) =

∑n
i=1 log

(
1 + λi(V V

T + HTH)
)

by Lemma 19. It is obvious that
CLAR gives the same solution with H = 0 as LRR in the noiseless case. Hence, we omit a
comparison with CLAR here.

8.3. Real-world Data

We use the benchmark databases Extended YaleB for face clustering (Georghiades et al.,
2001) and Hopkin 155 for motion segmentation (Tron and Vidal, 2007) to evaluate the
performance of Algorithm 7 (MSS−RO) on noisy data. Because ignorable noise exists in
real-world data, segmentation is obtained by applying spectral clustering on a constructed
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ErrParti BdiagDevi IntraBConn KblockDiag

r = 10, dc = 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

MSS−MCG(c) 0.00 0.00 0.02 0.27 0.60 0.02 0.11 0.37 0.66 0.74 0.57 0.58 0.54 0.43 0.37 0.92 0.78 0.39 0.04 0.01
MSS−AO 0.00 0.00 0.01 0.16 0.60 0.00 0.00 0.02 0.30 0.72 0.58 0.58 0.57 0.44 0.24 1.00 0.99 0.97 0.79 0.41
MSS−HO 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.01 0.65 0.58 0.58 0.58 0.57 0.27 1.00 1.00 1.00 0.99 0.45

LRR 0.14 0.27 0.50 0.59 0.67 0.65 0.70 0.73 0.76 0.78 0.57 0.57 0.57 0.57 0.57 0.04 0.02 0.01 0.01 0.01
SSC 0.00 0.01 0.09 0.39 0.62 0.08 0.25 0.42 0.55 0.65 0.11 0.11 0.09 0.08 0.07 0.65 0.31 0.10 0.03 0.01

SoftS3C 0.00 0.01 0.08 0.37 0.61 0.11 0.26 0.41 0.53 0.65 0.14 0.12 0.10 0.08 0.07 0.59 0.32 0.12 0.05 0.03
LRSSC 0.00 0.01 0.06 0.30 0.62 0.02 0.12 0.31 0.47 0.61 0.05 0.05 0.05 0.04 0.03 0.85 0.46 0.14 0.03 0.02

r = 14, dc = 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11

MSS−MCG(c) 0.00 0.00 0.09 0.35 0.59 0.22 0.41 0.62 0.70 0.74 0.57 0.54 0.46 0.40 0.37 0.63 0.36 0.09 0.02 0.01
MSS−AO 0.00 0.00 0.01 0.20 0.56 0.00 0.00 0.03 0.40 0.70 0.57 0.57 0.56 0.44 0.31 1.00 1.00 0.95 0.59 0.37
MSS−HO 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.03 0.66 0.57 0.57 0.57 0.57 0.32 1.00 1.00 1.00 0.94 0.37

LRR 0.08 0.29 0.45 0.56 0.64 0.70 0.72 0.74 0.76 0.77 0.57 0.57 0.57 0.57 0.57 0.02 0.01 0.01 0.00 0.00
SSC 0.00 0.02 0.13 0.42 0.59 0.29 0.41 0.51 0.60 0.66 0.12 0.11 0.10 0.09 0.08 0.33 0.16 0.05 0.02 0.01

SoftS3C 0.00 0.03 0.12 0.38 0.61 0.31 0.41 0.50 0.59 0.65 0.14 0.12 0.11 0.09 0.08 0.32 0.18 0.08 0.04 0.03
LRSSC 0.00 0.02 0.14 0.46 0.61 0.15 0.30 0.44 0.55 0.63 0.07 0.07 0.06 0.05 0.05 0.51 0.21 0.06 0.02 0.01

r = 20, dc = 11 12 13 14 15 11 12 13 14 15 11 12 13 14 15 11 12 13 14 15

MSS−MCG(c) 0.01 0.04 0.14 0.30 0.51 0.55 0.64 0.68 0.71 0.73 0.49 0.44 0.41 0.38 0.37 0.19 0.08 0.04 0.01 0.01
MSS−AO 0.00 0.00 0.02 0.15 0.43 0.00 0.02 0.05 0.50 0.68 0.56 0.56 0.55 0.47 0.38 0.99 0.97 0.92 0.34 0.24
MSS−HO 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.24 0.59 0.56 0.56 0.56 0.56 0.43 1.00 1.00 1.00 0.63 0.24

LRR 0.11 0.18 0.31 0.51 0.58 0.72 0.73 0.75 0.76 0.77 0.56 0.56 0.56 0.56 0.56 0.02 0.01 0.01 0.01 0.00
SSC 0.01 0.04 0.12 0.26 0.50 0.43 0.50 0.56 0.61 0.65 0.13 0.12 0.12 0.11 0.10 0.17 0.11 0.05 0.02 0.01

SoftS3C 0.01 0.04 0.11 0.24 0.47 0.43 0.50 0.55 0.60 0.65 0.15 0.14 0.13 0.12 0.11 0.19 0.13 0.08 0.05 0.03
LRSSC 0.01 0.05 0.13 0.30 0.52 0.33 0.44 0.51 0.57 0.62 0.09 0.08 0.08 0.07 0.07 0.27 0.14 0.05 0.03 0.01

Table 3: Results of the four measurements on the solutions of the compared algorithms

graph A, rather than the solution C itself. Special postprocessing of the computed solution
C might be required for constructing the graph A, which aims to strengthen the block-
diagonal structure of C or increase class similarities. SSC and LRR/CLAR adopt different
postprocessing approaches as shown below, while SoftS3C uses A = (|C|+ |CT |)/2.

The postprocessing of a solution C for SSC cuts of the small entries of C in absolute
value to obtain a sparser Cγ such that each column has the norm ‖Cγej‖ ≈ γ‖Cej‖ with
a given positive γ close to 1. Each column of Cγ should be further normalized to have the
largest entry equal to one in absolute value. Let C̃γ be the normalized Cγ . Then, graph A
is set as the symmetric part of C̃γ , or equivalently, A = |C̃γ | + |C̃Tγ |. In the experiments
on the two databases, we set γ = 1 for Extended YaleB and γ = 0.7 for Hopkins155 as
suggested by SSC.

LRR or CLAR truncates the SVD of C to UσΣσV
T
σ by removing the singular values

smaller than threshold σ and the corresponding singular vectors. Then, the rows {ui} of

UσΣ
1/2
σ are used to construct the graph A = (aij) as per aij = (

〈ui,uj〉
‖ui‖‖uj‖)

s with s ≥ 1. We

set s = 4, σ = 10−4‖C‖2 for LRR and s = 4, σ = 10−6 for CLAR, as suggested by their
authors.

We use the strategy of double truncating to construct the graph shown in Algorithm 6
with the same settings γ = 1, σ = 0, and s = 1 for Extended YaleB, and γ = 0.8, σ = 0.001,
and s = 4 for Hopkins155. Notably, the strategy of double truncating does not work well for
SSC or LRR/CLAR. Since no suggestions about graph constructing were given for LRSSC
in the literature, We test the three approaches adopted in SSC, LRR, or our method for
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Algorithm
K = 2 K = 3 K = 5 K = 8 K = 10

I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3

LRR 39.3 13.5 41.7 5.5 9.1 13.0 71.2 6.7 1.5 6.3 74.1 18.1 0.0 0.0 55.1 44.9 0.0 0.0 33.3 66.7
CLAR 44.2 24.5 31.3 0.0 16.6 17.1 66.3 0.0 6.8 14.4 78.8 0.0 0.7 6.6 92.6 0.0 0.0 0.0 100.0 0.0
SSC 58.3 21.5 16.6 3.7 27.6 22.8 42.1 7.5 5.5 18.6 63.2 12.7 0.0 4.4 76.5 19.1 0.0 0.0 66.7 33.3

SoftS3C 67.5 20.2 11.7 0.6 39.9 24.0 36.1 0.0 20.9 24.9 50.0 4.2 2.2 10.3 66.9 20.6 0.0 0.0 66.7 33.3
mLRSSC 73.6 15.3 11.0 0.0 46.4 23.8 28.8 1.0 28.3 20.4 45.9 5.3 11.0 8.1 57.4 23.5 0.0 0.0 66.7 33.3

MSS−RO(c) 82.2 12.9 4.9 0.0 63.0 16.6 18.8 1.7 53.3 20.6 22.8 3.3 28.7 28.7 38.2 4.4 0.0 33.3 66.7 0.0
MSS−RO 82.2 12.9 4.9 0.0 63.7 18.5 16.1 1.7 57.1 25.0 15.5 2.3 44.1 19.1 35.3 1.5 33.3 0.0 66.7 0.0

Table 4: Percentage (%) of computed segmentations with errors belonging to each of the
intervals I0 = [0, 0.005], I1 = (0.005, 0.01], I2 = (0.01, 0.1], and I3 = (0.1, 0.5].

LRSSC, including its two modified versions mLRSSC and aLRSSC that will be mentioned
latter, and report the best results.

8.3.1. Facial Image Clustering

The Extended YaleB database consists of 2432 facial images (192 × 168 pixels) from 38
individuals under 64 illumination conditions. Due to various illumination and shadow con-
ditions, these images have a relatively large amount of noise and corruption. It makes sense
to use images from the same individual as a groundtruth class, and such images in each
class are sampled from the same subspace approximately. It was pointed out by Basri and
Jacobs (2003) that a facial image lives in a 9 dimensional subspace. Thus, each of the
subspaces has dimension 9, and we estimate d = 9K if we have images from K individuals.

The testing sets are chosen as follows. A total of 38 individuals are divided into 4
groups—each of the first three groups contains 10 individuals and the last group contains the
remaining 8 individuals. In each group, we choose K individuals and test the segmentation
of all 64K images from the chosen individuals. Since there are CKp combinations of K

individuals among p individuals, we have 3CK10 + CK8 tests for a fixed K. Since the five
values of K are set as 2, 3, 5, 8, and 10, we have 163, 416, 812, 136, and 3 tests for the
five settings of K, respectively, and we have 1530 tests using different sizes of sample sets
for this database. We downsample the large images to 48× 42 pixels and vectorize them as
2016-dimensional vectors {xj} to obtain a reasonable computational complexity, as done by
Elhamifar and Vidal (2013). The samples are normalized to have the unit norms ‖xj‖2 = 1.
The self-expressive error is measured by the `1-norm φ = ‖ · ‖1. We set the parameters
λ = 5, α = 20

‖X‖∗1
, and β = 5, where ‖X‖∗1 = maxj ‖xj‖1. The strategy for setting α is the

same as that used for SSC and SoftS3C.

Due to the existence of noise, the six algorithms cannot correctly retrieve the true classes
completely. To show the efficiency of these algorithms, we separate the computed clustering
into four groups according to the partition error ErrParti belonging to one of four intervals
I0 = [0, 0.005], I1 = (0.005, 0.01], I2 = (0.01, 0.1], and I3 = (0.1, 0.5]. We point out that
LRSSC adopts ‖X−XC‖2F as a penalty term and imposes the zero restriction on diagonals
as in SSC for combining LRR with SSC. Such a combination cannot give better results
than LRR or SSC on this data set. We modify LRSSC by changing the Frobenius norm
(`2-norm) penalty to the `1-norm penalty ‖X − XC‖1. The modified LRSSC (marked as
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Figure 3: Percentage of average clustering errors (left) and average computation time in
seconds (right) of the algorithms for detecting facial images of K individuals
with K = 2, 3, 5, 8, 10, respectively.

mLRSSC) performs better than LRR, SSC, and CLAR, as shown in Table 4. When K = 2,
mLRSSC can correctly detect the two individuals in approximately 2/3 tests. When K is
slightly increased to 3, its detection percentage decreases to 39.9%, which is also higher
than that of the other four methods. When more individuals are detected, the detecting
error, that is, the partition error, quickly enlarges. For example, the values of ErrParti are
greater than 0.01 for all the solutions of LRR, SSC, mLRSSC, SoftS3C and CLAR when
K = 10. Our MSS−RO(c) and MSS−RO algorithms perform very well in this experiment.
Essentially, the MSS−RO(c) method provides a better solution than those of LRR, SSC,
mLRSSC, SoftS3C and CLAR in most cases, especially with large K. The percentage of
MSS−RO(c) segmentations with errors in I0 are 82.2%, 63.0% and 53.3% for K = 2, 3, or 5
individuals, respectively, which is much higher than those of LRR, SSC, mLRSSC, SoftS3C
and CLAR. Even in the more complicated case for detecting K = 10 individuals, 1/3 of the
tests achieve a detection error less than 0.01. Within at most two updates of Ω (`max ≤ 3),
MSS−RO presents its final results in this example.

The computational cost of MSS−RO is also competitive. MSS−RO(c) is faster than
the other algorithms in the five cases for variant K, without updating the coarsest Ωc. If
Ω is updated within several iterations, the computation time of MSS−RO increases but
remains smaller than SoftS3C. On the right side of Figure 3, we plot the computation time
in seconds. We also plot the average clustering error with the same number of individuals
on the left and do not separate the solutions into several groups as before.11

8.3.2. Motion Segmentation

The Hopkins 155 database contains 155 videos of rigidly moving objects in which 120 videos
have two objects and 35 videos have three objects. To separate the objects in each video,

11. The results of SoftS3C for K = 5, 8, 10 reported in Li et al. (2017) are somehow better than those we
obtained using the codes provided by the authors, but still worse than the results of MSS−RO.
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Figure 4: Percentage of videos whose detection error less than given threshold ε in the set
of 83 ‘hard’ videos. The left one compares different methods, where correct d is
set for MSS−RO. The right one shows the sensitivity of MSS−RO to d that varies
around the correct sum of subspace dimensions d∗.

the feature points (2D coordinates) of the objects are first extracted from the frames of
each video. The 2D coordinates of the same feature point in the sequence of frames form
a long sample vector of length 2F , where F is the number of frames in the video. Because
the objects are rigidly moving, the 2F -dimensional vectors {yi} of the same object belong
to an affine subspace with a dimension of at most 3, as pointed out by Costeira and Kanade
(1998). The affine data set {yi} corresponding to an object can be modified to be a subspace
data set {xi}, where each xi has an additional constant entry 1. The objects in a video are
detected by segmenting {xi}. Since each of the linear subspaces has a dimension of at most
4, we set d = 4K if the number of objects (subspaces) is K. In this data set, K = 2 or
K = 3. SSC and SoftS3C also have affine versions (termed aSSC or aSoftS3C, respectively)
in which the sum of the entries in each column of C is restricted to be one. We report the
results of these affine versions on {yi} because of their improved performance over their
original versions on {xi}. LRR, CLAR, and the noise-handling version MMS−RO of MSS
work on {xi}. Similar to the original SSC/SoftS3C, LRSSC does not work well on {xi}. We
modify LRSSC again (termed aLRSSC) by adding a restriction on C as in SSC/SoftS3C
so that it can works on the affine data {yi} and gives better results similar to the affine
versions of SSC/SoftS3C. In our algorithm MSS−RO, we use φ = ‖ · ‖2F for measuring the
self-expressive error, and set the parameters

λ = 10n/K, α = 50n/K, β = 0.05n/K, (61)

where n is the number of sample vectors, which vary from 39 to 556 in this experiment.
In this data set, there are 72 videos whose objects are easily detected—all of the com-

pared algorithms can correctly detect all the objects. The remaining 83 videos are relatively
hard to detect—no one can be completely detected by all the compared algorithms. In this
experiment, we focus on performances of these algorithms on these 83 challenging videos,
by checking the distribution of the detecting errors. The left panel of Figure 4 plots the
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Figure 5: Percentage of videos with dominance rate larger than 1− ε in the set of 83 ‘hard’
videos (left) or in the set of 72 ‘easy’ videos (right) whenK is chosen asK = K∗+1
(top) or K = K∗ − 1 (bottom, for videos with K∗ = 3 objects only).

percentage of videos whose detecting errors are not larger than the threshold value ε for each
of the six algorithms LRR, CLAR, aSSC, aSoftS3C, aLRSSC, and MSS−RO. The LRR and
CLAR solutions have detection errors relatively smaller than those of aSSC and aSoftSSC.
Our LRSSC modification causes it to perform slightly better than aSSC. MSS−RO(c) still
significantly outperforms all of the compared algorithms.

8.4. Sensitivity

Compared with algorithms in the literature for subspace learning, our MSS method needs
an estimated value d of the true sum d∗ of subspace dimensions as an additional prior. For
some real-world data sets like YaleB and Hopkins155, the correct d∗ is practically known.
In this subsection, we numerically show the sensitivity of MSS−RO when it uses estimated
d and K that slightly vary around the correct ones.

At first, we set d = d∗ ± δ, δ = 0, 2, 4, where d∗ = 4K∗ and K = K∗ are the correct
ones. The data set is the 83 challenging videos as in the last subsection. As in the left
panel of Figure 4, we also plot the percentage curve versus the threshold ε for each d in the
right panel. It seems that MSS−RO is robust on d in this data set. We also checked the
sensitivity of MSS−RO on the set of other 72 videos. Only two videos are wrongly detected
by MSS−RO.
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Second, we slightly increase the subspace number K∗ to K = K∗ + 1 on all of the 155
videos. Two values are chosen for the dimension sum: d = d∗ = 4K∗ or d = 4K = d∗+ 4.12

Since the number of subspaces is larger than the true one, some true subspaces may not
be correctly segmented. In this example, more often than not, only a true subspace is split
into two parts, each is learned as a subspace. That is, two pieces Ji and Jj of the learned
partition are dominantly contained by a true J∗k . To show this phenomenon, let ρk,i be the
number of samples belonging to the true set J∗k that are detected as in Ji. The largest one
ρ+
ki,i

= maxk ρk,i means that Ji is dominated by the members from the true subspace Ski ,
and we can relabel each Ji to J̃ki if necessary. If for each k ≤ K∗, there is a ki = k, then
{J̃k} is a partition of K∗ pieces, and the detection accuracy of {J̃k} is

τ+(J) =
1

n

K∑
i=1

ρ+
ki,i
.

We call τ+(J) as the dominance rate of the original partition J = {Ji} for K > K∗.
We also check the sensitivity when the number of subspace is mistakenly set as K =

K∗−1 on those 35 videos, each containsK∗ = 3 subspaces.13 Because the number of detected
subspaces is less than the number of correct subspaces, it is absolute that some samples
from different correct subspaces must be merged together. If we define ρ−k,ik = maxi ρk,i,
then there are two equal i = ik′ = ik′′ with different k′ and k′′. That is, the two subspaces
Sk′ and Sk′′ may be merged together. One might split Ji into two parts by picking up the
samples belonging to J∗k′′ to form a new piece J̃K+1, while the remaining part and others
have the same labels as J̃j = Jj . If for each i ≤ K, there is an ik = i, then the detection
accuracy of {J̃i} is

τ−(J) =
1

n

K∗∑
k=1

ρ−k,ik .

So, similar with τ+(J) for K > K∗, we also take τ−(J) as the dominance rate of the original
partition J = {Ji} when K < K∗.

Figure 5 plots the percentage curve of videos on which the dominance rate larger than
1− ε for each algorithm when K is mistakenly estimated. We also test MMS−RO with two
choices for d: d = 4K∗ or d = 4K. MMS−RO is relatively stable on the estimation of K and
d. Its dominance rate is larger than that obtained by other compared algorithms generally,
not only on the set of the hard-to-detect videos but also on the set of easy-to-detect videos.

9. Conclusion

Subspace learning is a challenging task not only in theoretical analysis but also in modeling
and computing for applications. In applications, ground-truth subspaces may be different
from those that can be mathematically defined based on finite samples. Mathematically,
these subspaces may be heavily intersected with each other, and some samples may be
difficult to separated if they are proximal to the intersected subspaces. The existence of
noise further complicates the problem. In this paper, we provided the concept of minimal

12. Same parameters are used in MSS−RO for different d = d∗ or d = d∗ + 4.
13. For those videos with K∗ = 2, setting K = K∗ − 1 is meaningless.
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sample subspace and considered the segmentation as a union of minimal sample subspaces,
together with a so-called pure subspace that is mostly nonexistent in applications. How-
ever, even for the minimal subspace segmentation, which is now well-defined, the problem
is also difficult and complicated since the MSS may be not unique. We gave sufficient con-
ditions for addressing this uniqueness, and built some solid theoretical bases to support our
proposed optimization modeling for conditionally recovering the minimal sample subspaces
even if these subspaces themselves are heavily intersected. However, there are still some
theoretical problems that need to be addressed, such as the sensitivity of the MSS problem.
Perturbation analysis should be given to address the reliability of the retrieved MSS and
also help us to understand segmentation on noisy samples. We consider this a difficult but
interesting topic for further research.

We proposed several algorithms for solving the MSS problem with or without noise.
However, because of the complexity of the optimization problems, a globally optimal solu-
tion is not always guaranteed, though we did endeavor to obtain a globally optimal solution
of this nonconvex problem as much as possible. In our experiments, finding a local minimum
seldom occurs when the subspace intersection is slight, but happens more frequently with
increasing intersection. It is unclear how subspace intersection comes into the effect of local
minima. The computational complexity of the basic algorithm MSS−MCG is O(n3). This
disadvantage hinders its applications to large numbers of samples. Since the ideal solution
is basically low-rank, sufficiently utilizing the low-rank structure may be useful for reducing
the computational complexity of MSS−MCG. We will continue our work on this important
topic.
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