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Abstract

Gaussian belief propagation (BP) is a low-complexity and distributed method for comput-
ing the marginal distributions of a high-dimensional joint Gaussian distribution. However,
Gaussian BP is only guaranteed to converge in singly connected graphs and may fail to
converge in loopy graphs. Therefore, convergence analysis is a core topic in Gaussian BP.
Existing conditions for verifying the convergence of Gaussian BP are all tailored for one par-
ticular pairwise factorization of the distribution in Gaussian Markov random field (MRF)
and may not be valid for another pairwise factorization. On the other hand, convergence
conditions of Gaussian BP in pairwise linear Gaussian model are developed independently
from those in Gaussian MRF, making the convergence results highly scattered with diverse
settings. In this paper, the convergence condition of Gaussian BP is investigated under
a general pairwise factorization, which includes Gaussian MRF and pairwise linear Gaus-
sian model as special cases. Upon this, existing convergence conditions in Gaussian MRF
are extended to any pairwise factorization. Moreover, the newly established link between
Gaussian MRF and pairwise linear Gaussian model reveals an easily verifiable sufficient
convergence condition in pairwise linear Gaussian model, which provides a unified criterion
for assessing the convergence of Gaussian BP in multiple applications. Numerical examples
are presented to corroborate the theoretical results of this paper.

Keywords: Gaussian belief propagation, convergence analysis, Gaussian Markov random
field, pairwise linear Gaussian model, pairwise factorization

1. Introduction

Due to the distributed and parallel computation mechanisms, Gaussian belief propagation
(BP) (Weiss and Freeman, 2000) is a low-complexity method for computing the marginal
distributions of a high-dimensional joint Gaussian distribution, especially for those with a
sparse information matrix. It is known that Gaussian BP is guaranteed to obtain the exact
marginal distributions in singly connected or acyclic graphs. For loopy graphs (Kschischang
et al., 2001), if Gaussian BP converges, the exact means of the marginal distributions can
be obtained (Weiss and Freeman, 2000). These properties make Gaussian BP popular in
many applications, ranging from consensus propagation (Moallemi and Roy, 2006), peer-ro-
peer rating (Bickson et al., 2007), multi-user data detection (Bickson et al., 2008), solving
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systems of linear equations (Shental et al., 2008), quadratic minimization (Moallemi and
Roy, 2009; Ruozzi and Tatikonda, 2013), to network synchronization (Leng and Wu, 2011;
Du and Wu, 2013).

Despite the apparent advantages and popularity, a major hurdle in applying Gaussian
BP is that it may not converge in loopy graphs. Consequently, deriving Gaussian BP con-
vergence conditions is one of the major themes in Gaussian BP research. For Gaussian BP
running in Gaussian Markov random field (MRF) (Rue and Held, 2005), diagonal dom-
inance (Weiss and Freeman, 2000), walk-summability (Malioutov et al., 2006), pairwise-
normalizability (Malioutov et al., 2006) and convex decomposition (Moallemi and Roy,
2009) are well-known sufficient convergence conditions under both synchronous and totally
asynchronous schedulings (Bertsekas and Tsitsiklis, 1989). For these sufficient conditions,
belief means and variances converge upon the same condition, which has been proved to be
unnecessary recently (Su and Wu, 2014, 2015a,b). In particular, the convergence condition
of belief variances was proved to be looser than that of belief means (Su and Wu, 2015a).
Due to the separate treatment of belief means and variances, the necessary and sufficient
convergence condition of Gaussian BP under synchronous scheduling was proposed in Su
and Wu (2015a).

On the other hand, under pairwise linear Gaussian model, the convergence of Gaussian
BP has been investigated in a case-by-case basis (Moallemi and Roy, 2006; Bickson et al.,
2007, 2008; Leng and Wu, 2011; Du and Wu, 2013). In Moallemi and Roy (2006), consensus
propagation for distributed averaging was viewed as an asynchronous implementation of
Gaussian BP, where the convergence was shown to be guaranteed. In Bickson et al. (2007),
Gaussian BP is used to solve the minimization of a quadratic cost function in peer-to-peer
rating, where the convergence of Gaussian BP is shown by numerical results. In Bickson
et al. (2008), multiuser detection problem is solved by Gaussian BP, where the convergence
is checked by the diagonal dominance in the equivalent information matrix. Furthermore, in
distributed synchronization applications (Leng and Wu, 2011; Du and Wu, 2013), Gaussian
BP is guaranteed to converge under a reference node with perfect prior information.

Obviously, the understanding on the convergence conditions of Gaussian BP is far from
complete, as the current results are scattered and derived under different assumptions. For
example, existing convergence conditions for Gaussian MRF are derived under different
pairwise factorizations of the joint Gaussian distribution. Since different factorizations lead
to different Gaussian BP messages, it is not clear if the convergence condition obtained
under one pairwise factorization is valid under another pairwise factorization. Another
missing link is between the convergence results in Gaussian MRF and that of pairwise
linear Gaussian model. On one hand, Bickson et al. (2008) advocate transforming the
linear Gaussian model into Gaussian MRF, and then leveraging on the existing convergence
condition for determining the convergence of Gaussian BP. On the other hand, in Moallemi
and Roy (2006), Leng and Wu (2011), and Du and Wu (2013), Gaussian BP was proved to
be convergent without using existing sufficient convergence conditions from Gaussian MRF.
One may wonder if there is any special characteristic of pairwise linear Gaussian model that
facilitates the Gaussian BP convergence.

To provide a more complete picture, the convergence of Gaussian BP is revisited but
starting from a general pairwise factorization of the joint Gaussian distribution. This gen-
eral pairwise factorization covers all possible pairwise factorizations with the exponents of
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factors being quadratic polynomial, and it includes all the existing pairwise factorizations
used in Gaussian MRF and pairwise linear Gaussian model as special cases. By establishing
the convergence conditions under this general pairwise factorization, existing convergence
conditions can be compared and contrasted in a unified way. It is found that existing
sufficient convergence conditions derived for Gaussian MRF (including walk-summability,
pairwise-normalizability, convex decomposition, and diagonal dominance) are valid under
any factorization within the general pairwise factorization model, and the converged be-
liefs are independent of the choice of pairwise factorization. Moreover, due to the newly
established bridge between Gaussian MRF and pairwise linear Gaussian model under the
generalized setting, the pairwise-normalizability from Gaussian MRF is further applied to
pairwise linear Gaussian model, revealing an easily verifiable sufficient convergence condi-
tion in pairwise linear Gaussian model. This sufficient convergence condition is more general
than the convergence conditions in Moallemi and Roy (2006), Leng and Wu (2011), and
Du and Wu (2013), and further explains the empirical convergence behavior of peer-to-peer
rating application (Bickson et al., 2007). Numerical results and applications are presented
to corroborate the theoretical convergence results.

Notations: Scalars, vectors, matrices and sets are denoted by lower-case letters, bold
lower-case letters, bold upper-case letters and calligraphic upper-case letters, respectively.
Notations a > b, a ≥ b, a < b, and a ≤ b indicate ai > bi, ai ≥ bi, ai < bi, and ai ≤ bi
for all i, respectively, where ai and bi are the i-th element of a and b. For a matrix, A � 0
indicates that A is positive definite, AT denotes the transpose of A, and A−1 denotes the
inverse of A. The notation |A| is a matrix with element-wise absolute value of A, and
ρ(A) is the spectral radius of A. Moreover, diag(D1,D2, · · · ,Dn) denotes a block diagonal
matrix with the diagonal blocks being D1,D2, · · · ,Dn, starting from the upper left corner.
For the notation B, it denotes a set, and |B| denotes the number of elements in B. The
notation B \ i denotes all the elements in set B except i, and the notation B \ C denotes all
the elements in set B but not in C. The notation a ∝ b denotes that a is proportional to b.
For a Gaussian distributed random variable x with mean m and variance v, we denote it as
N (x;m, v). Similarly, for a multivariate Gaussian distributed random vector x with mean
vector m and covariance matrix V, we denote it as N (x; m,V).

2. Gaussian Model and Belief Propagation

In this section, we first discuss the pairwise factorizations of Gaussian model (Section 2.1).
Then, BP algorithm under a general pairwise factorization of Gaussian model is presented
(Section 2.2).

2.1. Gaussian Model and Its Pairwise Factorizations

Consider the joint Gaussian probability density function (pdf) p(x) of a random vector
x , [x1, x2, · · · , xn]T written in a pairwise factorization form

PFF : p (x) ∝
∏
i

fi (xi)
∏
i,j>i

fij (xi, xj) , (1)
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where fi(xi) is a local function of xi while fij(xi, xj) is a local function modeling the inter-
action between xi and xj . In general, given a joint Gaussian distribution1 N (x; J−1h,J−1)
in Gaussian MRF, the PFF is not unique. For example, one of the earliest pairwise factor-
izations in Gaussian MRF is given in Weiss and Freeman (2000) with

F1 : fi(xi) ∝ exp

{
−1

2
pi(xi −

hi
pi

)2
}
, (2a)

fij(xi, xj) ∝ exp

{
−1

2
[xi xj ]

[
aij Jij
Jij aji

]
[xi xj ]

T

}
, (2b)

s.t. J � 0, pi +
∑
k∈Bi

aik = Jii, Bi , {k | Jik 6= 0, k = 1, 2, · · · , n}, (2c)

where Jik is the (i, k)-th element of J and hi is the i-th element of h. On the other hand,
the convex decomposition in Moallemi and Roy (2009) requires

F2 : fi(xi) ∝ exp

−1

2
(Jii −

∑
k∈Bi

ξikJ
2
ik)x

2
i + (hi −

∑
k∈Bi

ςik)xi

 , (3a)

fij(xi, xj) ∝ exp

{
−1

2
ξijJ

2
ijx

2
i − Jijxixj −

1

2
ξjiJ

2
ijx

2
j + ςijxi + ςjixj

}
, (3b)

s.t. J � 0, ξij , ξji > 0, Jii −
∑
k∈Bi

ξikJ
2
ik > 0, ξijξjiJ

2
ij ≥ 1. (3c)

However, given an information matrix J, the conditions in F2 might not be satisfied, thus
this decomposition may not exist. Consequently, a more popular factorization is given by

F3 : fi(xi) ∝ exp

{
−1

2
Jiix

2
i + hixi

}
, (4a)

fij(xi, xj) ∝ exp {−Jijxixj} , (4b)

s.t. J � 0. (4c)

This factorization directly connects the joint distribution without any constraints and is
used in Malioutov et al. (2006), and Su and Wu (2014, 2015a,b).

On the other hand, the PFF also covers the pairwise linear Gaussian model that fre-
quently appears in distributed inference. In particular, assume there exists a local rela-
tionship zij = cijxi + cjixj + nij with known coefficients cij , cji. If nij ∼ N (nij ; 0, 1/ηij)
and the prior distribution of xi is p(xi) = N (xi; yi, 1/ζi), then we have the joint posterior
distribution given by the PFF with

F4 : fi(xi) ∝ exp

{
−1

2
ζi (xi − yi)2

}
, (5a)

fij(xi, xj) ∝ exp

{
−1

2
ηij [zij − (cijxi + cjixj)]

2

}
, (5b)

s.t. diag(ζ1, ζ2, · · · , ζn) + C � 0, ζi ≥ 0, ηij > 0, C ∈ Rn×n

with Cii =
∑

k∈Bi
ηikc

2
ik and Cij = ηijcijcji, (5c)

1. The Gaussian distribution is expressed in an information form, where J is the information matrix and
h is the potential vector.
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where diag(ζ1, ζ2, · · · , ζn) + C � 0 is a condition guaranteeing the PFF with factors in F4

represents a valid Gaussian pdf (in fact, diag(ζ1, ζ2, · · · , ζn)+C is the information matrix of
such Gaussian pdf). This model handles a broad class of distributed estimation applications.
In particular, F4 is exactly the model in distributed clock synchronization (Leng and Wu,
2011) and distributed carrier frequency estimation (Du and Wu, 2013). On the other hand,
if zij = 0, cij = −cji = 1, and yi is obtained from local observation, F4 reduces to the model
used in consensus propagation (Moallemi and Roy, 2006) and peer-to-peer rating (Bickson
et al., 2007).

Currently, different convergence conditions of Gaussian BP are developed under different
factorizations. For example, diagonal dominance (Weiss and Freeman, 2000) is developed
from F1, convex decomposition (Moallemi and Roy, 2009) is developed from F2, walk-
summability (Malioutov et al., 2006) and the recent necessary and sufficient condition (Su
and Wu, 2014, 2015a) are developed from F3. One may wonder if the convergence condition
of Gaussian BP developed from one factorization is applicable to another factorization.
More importantly, for different pairwise factorizations, can we develop a unified treatment
in the convergence analysis? In order to answer these questions, we write the general forms
of factors fi(xi) and fij(xi, xj) in the PFF as

F5 : fi(xi) ∝ exp

{
−1

2
φix

2
i + ψixi

}
, (6a)

fij(xi, xj) ∝ exp

{
− 1

2
γijx

2
i −

1

2
γjix

2
j − τijxixj + κijxi + κjixj

}
, (6b)

s.t. τij = τji and


φ1 +

∑
k∈B1 γ1k τ12 · · · τ1n
τ21 φ2 +

∑
k∈B2 γ2k · · · τ2n

...
...

...
...

τn1 τn2 · · · φn +
∑

k∈Bn γnk

 � 0,

(6c)

where the constraints in (6c) guarantee that the PFF with factors in F5 is a valid Gaussian
pdf. Notice that F5 covers F1, F2, F3 and F4 as special cases. For example, when φi = Jii,
ψi = hi, γij = γji = κij = κji = 0, τij = Jij , F5 reduces to F3. Furthermore, when
φi = ζi, ψi = ζiyi, γij = ηijc

2
ij , γji = ηijc

2
ji, τij = ηijcijcji, κij = ηijzijcij and κji = ηijzijcji,

F5 reduces to F4. In fact, F5 covers pairwise factorizations beyond that in F1, F2, F3

and F4, as long as the exponents of fi(xi) and fij(xi, xj) are quadratic polynomials. For

example, when fi(xi) ∝ 1 and fij(xi, xj) ∝ exp
{
−1

2x
2
i − 1

2xixj −
1
2x

2
j + xi + xj

}
for all

i 6= j ∈ {1, 2, · · · , n} in F5, it leads to a valid Gaussian pdf, but fi(xi) and fij(xi, xj)
cannot be represented by F1—F4. The relationships among F1—F5 are shown in Figure 1
at top of next page (relationships among F1—F4 are proved in Appendix A).

2.2. Gaussian Belief Propagation Under F5

In Gaussian BP, messages are updated and passed among variables. In particular, under
synchronous scheduling2, the message mj→i(xi) to be passed from variable xj to variable

2. Synchronous scheduling requires that all messages at each iteration are updated before starting a new
one.
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F1
F2

F3

F4

F5

Figure 1: Relationships among different factorization sets.

xi at the l-th iteration is computed as (Malioutov et al., 2006)

m
(l)
j→i(xi) ∝

∫ ∞
−∞

fij(xi, xj)fj(xj)
∏

k∈Bj\i

m
(l−1)
k→j (xj)dxj , (7)

where m
(l−1)
k→j (xj) denotes the message mk→j(xi) passed from variable xk to variable xj at

the (l − 1)-th iteration.
Based on the expressions of factors in F5 and message update rule in (7), we can derive a

general formula of messages m
(l)
j→i(xi) for all (i, j) ∈ E , where E , {(i, j) | i = 1, 2, · · · , n, j ∈

Bi} denotes the set of index pair (i, j) with τij 6= 0. Without loss of generality, it is assumed

that the message m
(l−1)
j→i (xi) with (i, j) ∈ E at the (l − 1)-th iteration takes the expression

m
(l−1)
j→i (xi) ∝ exp

{
−1

2
α
(l−1)
j→i x

2
i + β

(l−1)
j→i xi

}
, (8)

where the parameters α
(l−1)
j→i and β

(l−1)
j→i are the precision and linear coefficient, respectively.

Substituting (8) into (7) and if φj + γji +
∑

k∈Bj\i α
(l−1)
k→j > 0, the message mj→i(xi) at the

l-th iteration is well-defined and is shown in Appendix B to be in the form m
(l)
j→i(xi) ∝

exp{−1
2α

(l)
j→ix

2
i + β

(l)
j→ixi}, with

α
(l)
j→i = γij −

τ2ij

φj + γji +
∑

k∈Bj\i
α
(l−1)
k→j

, (9)

β
(l)
j→i = κij −

τijψj + τijκji +
∑

k∈Bj\i
τijβ

(l−1)
k→j

φj + γji +
∑

k∈Bj\i
α
(l−1)
k→j

. (10)

After updating the messages m
(l)
j→i(xi) by that of the parameters α

(l)
j→i and β

(l)
j→i for all

(i, j) ∈ E , we can compute the belief of xi at the l-th iteration as

b(l) (xi) ∝ fi (xi)
∏
j∈Bi

m
(l)
j→i(xi). (11)
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By substituting the expression of fi(xi) in F5 and m
(l)
j→i(xi) ∝ exp{−1

2α
(l)
j→ix

2
i + β

(l)
j→ixi}

into (11), it becomes

b(l)(xi) ∝ exp

−1

2

φi +
∑
j∈Bi

α
(l)
j→i

x2i +

ψi +
∑
j∈Bi

β
(l)
j→i

xi
 , (12)

where the precision ν
(l)
xi and linear coefficient ϕ

(l)
xi of belief b(l)(xi) can be denoted as

ν(l)xi = φi +
∑
j∈Bi

α
(l)
j→i, (13)

ϕ(l)
xi = ψi +

∑
j∈Bi

β
(l)
j→i. (14)

For the belief b(l)(xi), it represents a valid Gaussian pdf if and only if ν
(l)
xi > 0. Under

ν
(l)
xi > 0, we can explicitly write b(l)(xi) = N (xi;ϕ

(l)
xi /ν

(l)
xi , 1/ν

(l)
xi ), where ϕ

(l)
xi /ν

(l)
xi and 1/ν

(l)
xi

are the belief mean and belief variance of xi, respectively. It has been proved (Pearl,
1988) that beliefs b(l)(xi) are guaranteed to converge to the exact marginal distributions
in singly connected graphs, such as tree-structured and chain-structured graphs. But for
loopy graphs, it is known that beliefs may not converge. Fortunately, if beliefs do converge
in Gaussian BP, belief means converge to the exact means of the marginal distributions
and belief variances are approximate variances of the marginal distributions (Weiss and
Freeman, 2000). This makes convergence analysis in loopy graphs a core research topic of
Gaussian BP.

3. Convergence Analysis Under General Pairwise Factorization F5

In this section, we analyze the convergence of Gaussian BP under the PFF with general

factors in F5. For notational convenience, we stack α
(l)
j→i, β

(l)
j→i, γij and κij for all (i, j) ∈ E

into vectors α(l), β(l), γ and κ, respectively, where the order of (i, j) ∈ E is ascending first
on i and then on j. For the order of (i, j) ∈ E ascending first on i and then on j, there exists
a one-to-one mapping function order(·, ·) from all (i, j) ∈ E to 1, 2, · · · , |E|. That is, for any
k ∈ {1, 2, · · · , |E|}, there exists only one (i, j) ∈ E satisfying k = order(i, j). Moreover, we
define a set

Q ,
{
q ∈ R|E| | φi +

∑
k∈Bi

γik +
∑

k∈Bi\j

qk→i > 0,
−τ2ij

φi +
∑

k∈Bi γik +
∑

k∈Bi\j qk→i
− qi→j ≥ 0,

∀(i, j) ∈ E , and φi +
∑
k∈Bi

γik +
∑
k∈Bi

qk→i > 0 for i = 1
}
, (15)

where q ∈ R|E| is a vector obtained by stacking qj→i for all (i, j) ∈ E ordered in the same
way as that in α(l). For the set Q, it is non-empty if and only if there exists at least one
vector q ∈ R|E| satisfying the inequalities in (15). As shown later, the set Q would be used
to verify the convergence of α(l).

First, we consider the convergence of BP beliefs under synchronous scheduling. For
synchronous scheduling, if α(l) converge to α∗ with elements α∗j→i for all (i, j) ∈ E ordered
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in the same way as that in α(l), the update of β
(l)
j→i in (10) for all (i, j) ∈ E can be written

in a vector form as

β(l) = Aβ(l−1) + d, (16)

where A is a |E| × |E| matrix with the element

Ai′j′ =

{
− τi1i2
φi1+γi1i2+

∑
k∈Bi1\i2

α∗k→i1

if j1 ∈ Bi1 \ i2 and j2 = i1,

0 otherwise,
(17)

for i′ = order(i1, i2) and j′ = order(j1, j2), and d is a column vector containing elements

κij − τijψj+τijκji
φj+γji+

∑
k∈Bj\i

α∗k→j
for all (i, j) ∈ E ordered in the same way as that in α(l). Condi-

tioned on the convergence of α(l), the convergence of β(l) can be easily analyzed with the
linear update equation in (16). In the following, we present the convergence conditions of
Gaussian BP under general pairwise factorization and synchornous scheduling.

Theorem 1 (Convergence conditions under synchronous scheduling) Under syn-
chronous scheduling and any initialization α(0) ≥ γ, belief variances converge to the same
positive values if and only if the set Q is non-empty. Furthermore, if Q is non-empty, belief
means converge to unique values if and only if ρ(A) < 1 under synchronous scheduling.

Proof See Appendix C.

Theorem 1 states that after we fix the factorization parameters in F5, Gaussian BP
converges if and only if the set Q is non-empty and ρ(A) < 1. Furthermore, the converged
values of BP beliefs are independent of the choice of initialization as long as α(0) ≥ γ.
Notice that the spectral radius ρ(A) depends on the converged value of α(l), which can be
obtained by running the update of α(l) until convergence. On the other hand, the condition
ρ(A) < 1 will be useful in analyzing the invariant convergence properties of Gaussian BP
in Section 4 without the need to know the converged value α∗.

Synchronous scheduling requires each variable receiving updated messages from all
neighbors before computing the next round messages. In contrast, asynchronous scheduling
allows distributed processors to operate more efficiently and flexibly without waiting for
all its neighbors’ messages. For totally asynchronous scheduling (Bertsekas and Tsitsiklis,
1989), the convergence condition is given by the following Theorem.

Theorem 2 (Convergence conditions under totally asynchronous scheduling) Un-
der totally asynchronous scheduling and any initialization α(0) ≥ γ, belief variances con-
verge to the same positive values if and only if the set Q is non-empty. Moreover, if Q
is non-empty and ρ(|A|) < 1, belief means converge to unique values under totally asyn-
chronous scheduling.

Proof See Appendix D.
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From Theorems 1 and 2, it is noticed that the convergence condition of belief variances
under synchronous and totally asynchronous schedulings stays the same, i.e., Q 6= ∅. Fur-
thermore, since totally asynchronous scheduling includes synchronous scheduling as a special
case, the converged value of BP message precision α∗ stays the same for both synchronous
and totally asynchronous schedulings. Consequently, the matrix A in both Theorems 1 and
2 are the same. On the other hand, for the convergence condition of belief means, the condi-
tion in Theorem 2 is stricter than that in Theorem 1 since ρ(A) ≤ ρ(|A|). This implies that
if the convergence condition in Theorem 2 for totally asynchronous scheduling is satisfied,
the convergence condition in Theorem 1 for synchronous scheduling would automatically be
satisfied. But Theorem 1 has its own value since it is the necessary and sufficient condition,
while Theorem 2 is only a sufficient condition. Notice that the initialization α(0) also plays
a role in the convergence of BP beliefs, but α(0) is a parameter controllable by the user,
therefore the requirement α(0) ≥ γ can easily be satisfied.

For the verification of the non-emptiness of the setQ, one may directly solve the following
semidefinite programming (SDP) (Vandenberghe and Boyd, 1996) problem:

min
q∈R|E|,a

a, (18a)

s.t.

[
φi +

∑
k∈Bi γik +

∑
k∈Bi\j qk→i τij

τij −qi→j

]
� 0, ∀(i, j) ∈ E , (18b)

a+ φ1 +
∑
k∈B1

γ1k +
∑
k∈B1

qk→1 ≥ 0, (18c)

where the constraints in (18b) are equivalent to the first two constraints in Q, and the
constraint in (18c) corresponds to the third constraint in Q after introducing a slack variable
a. If the SDP problem in (18a)—(18c) is feasible with the solution (q†, a†) and a† < 0, then

q† satisfies the constraints in (18b) and (18c) with φ1+
∑

k∈B1 γ1k+
∑

k∈B1 q
†
k→1 ≥ −a

† > 0,
which implies Q is non-empty. Otherwise, Q would be empty. For solving the SDP problem
in (18a)—(18c), interior point methods, with available solvers such as SeDuMi, SDPT3,
and MOSEK, can be used.

On the other hand, the optimization problem in (18a)—(18c) can be reformulated in
the form:

min
S∈S2|E|+1,q∈R|E|,a

a, (19a)

s.t. S � 0, (19b)

aMa +
∑

(i,j)∈E

qj→iMj→i + S = B, (19c)

where Sm denotes the set of m ×m symmetric matrix, Ma , diag(−1,0) ∈ S2|E|+1, B ,

diag(φ1 +
∑

k∈B1 γ1k,D
(B)
1,k1

, · · · ,D(B)
i,ki
, · · · ,D(B)

n,kn
) ∈ S2|E|+1 with

D
(B)
i,ki

=

[
φi +

∑
k∈Bi γik τiki

τiki 0

]
for all i = 1, 2, · · · , n and ki ∈ Bi,

9
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and Mj→i , diag(d(M),D
(M)
1,k1

, · · · ,D(M)
i,ki

, · · · ,D(M)
n,kn

) ∈ S2|E|+1 with

d(M) =

{
−1 if i = 1 and j ∈ B1,
0 otherwise,

D
(M)
i1,j1

=



[
−1 0
0 0

]
if i1 = i and j1 ∈ Bi \ j,[

0 0
0 1

]
else if i1 = j and j1 = i,

0 otherwise.

The form of the SDP problem in (19a)—(19c) is exactly the same as that of the SDP
problem in equation (3) of Wen et al. (2010). Therefore, the alternating direction augmented
Lagrangian methods in Wen et al. (2010) can also be used to solve the SDP problem in
(19a)—(19c).

Furthermore, we can interpret the physical meaning of the convergence condition in
Theorems 1 and 2 as follows. Under initialization α(0) ≥ γ, the first two constraints
in the set Q correspond to the condition for guaranteeing the validity of integration in
(32). Together with the third constraint in the set Q, they correspond to the condition for
guaranteeing the BP beliefs in (12) remain as valid Gaussian pdfs at each iteration. This
is summarized and formally proved in the following Corollary.

Corollary 3 (Physical meaning of non-emptiness of Q) Under any initialization
α(0) ≥ γ, BP beliefs at each iteration are valid Gaussian pdfs if and only if the set Q is
non-empty.

Proof See Appendix E.

Note that being a valid Gaussian pdf in F5 does not necessarily imply that the BP
beliefs are valid Gaussian pdfs at all iterations. Rather, being a valid Gaussian pdf in F5

is a prerequisite for Theorems 1, 2, and Corollary 3.

4. Invariant Properties of Convergence Conditions Under F5

For the PFF with factors in F5, it can be equivalently written as a Gaussian pdfN (x; J−1h,J−1)
with the information matrix

J ,


φ1 +

∑
k∈B1 γ1k τ12 · · · τ1n
τ21 φ2 +

∑
k∈B2 γ2k · · · τ2n

...
...

...
...

τn1 τn2 · · · φn +
∑

k∈Bn γnk

 , (20)

and the potential vector

h ,

ψ1 +
∑
k∈B1

κ1k, ψ2 +
∑
k∈B2

κ2k, · · · , ψn +
∑
k∈Bn

κnk

 . (21)

10
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Conversely, for a given Gaussian pdf N (x; J−1h,J−1), there are many possible pairwise
factorizations with each obtained by choosing different φi, ψi, γij , τij and κij while satisfying
the constraints in F5. Since the convergence conditions in Theorems 1 and 2 seem to
depend on the factorization parameters. One may wonder would different factorizations
demonstrate different convergence behaviors? We will give the answer by the following
discussions.

From (20) and (21), it is obvious that for a Gaussian pdf with information matrix J and
potential vector h, the factorization parameters of any pairwise factorization with factors
in the form of F5 should satisfy φi +

∑
k∈Bi γik = Jii, τij = Jij and ψi +

∑
k∈Bi κik = hi.

Using these relationships, the definition of the set Q can be rewritten as

Q ,
{
q ∈ R|E| | Jii +

∑
k∈Bi\j

qk→i > 0,
−J2

ij

Jii +
∑

k∈Bi\j qk→i
− qi→j ≥ 0, ∀(i, j) ∈ E ,

and Jii +
∑
k∈Bi

qk→i > 0 for i = 1
}
. (22)

From (22), one can obtain that the emptiness or non-emptiness of the set Q only depends
on the information matrix J and is independent of φi, ψi, γij , τij and κij as long as they
obey F5. The above discussion is summarized in the following Lemma.

Lemma 4 For a Gaussian pdf with information matrix J, the emptiness or non-emptiness
of the set Q is independent of factorization parameters in F5.

Furthermore, when belief variances converge, it can be proved that the matrix A is
independent of the choice of factorization parameters φi, ψi, γij , τij and κij . This is
formalized in the following Lemma.

Lemma 5 For a Gaussian pdf with information matrix J, if the set Q is non-empty, matrix
A is independent of factorization parameters in F5 for any initialization α(0) ≥ γ.

Proof See Appendix F.

SinceQ and A are independent of the specific pairwise factorization, and the convergence
conditions in Theorems 1 and 2 only depend on Q and A, we obtain the invariant properties
of Gaussian BP convergence in the following two Corollaries.

Corollary 6 (Convergence or divergence being independent of factorization) For
a Gaussian pdf with information matrix J, under synchronous scheduling and any initializa-
tion α(0) ≥ γ, the convergence or divergence of Gaussian BP is independent of factorization
parameters in F5.

Proof See Appendix G.

Corollary 6 is a very strong result as convergence (or divergence) in one factorization
automatically implies convergence (or divergence) in all other factorizations. On the other

11
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(b) New relationships revealed by Corollary 7.

Figure 2: Relationships of classical convergence conditions and factorization sets.

hand, for totally asynchronous scheduling, due to the fact that Theorem 2 is only a sufficient
condition under F5, we cannot have a similar conclusion to that of Corollary 6.

Previously, walk-summability was proved to be equivalent to pairwise-normalizability
(Malioutov et al., 2006) and convex decomposition (Moallemi and Roy, 2009), thus they
are all valid within factorizations F2 and F3. On the other hand, diagonal dominance is
valid within F1 (Weiss and Freeman, 2000), and was proved to be a special case of walk-
summability (Malioutov et al., 2006). These relationships are illustrated in Figure 2(a). But
whether these classical conditions are valid for other pairwise factorizations is still unknown.
To this end, we obtain a result that is practically very useful in the following Corollary.

Corollary 7 (Validity of existing sufficient conditions under any pairwise fac-
torization) For a Gaussian pdf with information matrix J, if J is diagonally dominant,
walk-summable, pairwise-normalizable or convex decomposable, Gaussian BP converges un-
der any pairwise factorization within F5 in both synchronous and totally asynchronous
schedulings as long as initialization α(0) ≥ γ.

Proof See Appendix H.

With Corollary 7, it gives a more complete picture: diagonal dominance, walk-summability,
pairwise-normalizability, and convex decompositions are all valid sufficient conditions under
F5, which includes F1, F2 and F3 as special cases. This extension is illustrated in Figure
2(b). Moreover, the initialization set of α(0) in Corollary 7 is larger than that in previous
conditions (Weiss and Freeman, 2000; Malioutov et al., 2006; Moallemi and Roy, 2009).
Notice that from Corollary 7, the initialization set is related to the parameter γ, which
means that typical initialization α(0) = 0 will not always work. This point will be further
illustrated in Section 6.1. For comparison with the results in Su and Wu (2015a), it is no-

12
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ticed that Theorems 1 and 2 can be considered as extensions of the convergence conditions
in Su and Wu (2015a) from a single factorization F3 to a much larger set F5.

Corollaries 6 and 7 only give us the information about the convergence or divergence of
Gaussian BP under different pairwise factorizations. Another important question is if BP
beliefs converge, would the converged values of beliefs be the same under different pairwise
factorizations? The answer is given in the following Theorem.

Theorem 8 (Invariant converged beliefs) For a Gaussian pdf with information matrix
J and potential vector h, under any initialization α(0) ≥ γ, if Gaussian BP converges in
synchronous or totally asynchronous scheduling, the converged beliefs are independent of
factorization parameters in F5.

Proof See Appendix I.

5. A Simple Convergence Condition in Pairwise Linear Gaussian Model

In the pairwise linear Gaussian model F4, we have the parameters of F5 as φi = ζi, ψi = ζiyi,
γij = ηijc

2
ij , γji = ηijc

2
ji, τij = ηijcijcji, κij = ηijzijcij and κji = ηijzijcji. Further setting

different values of ζi, yi, ηij , zij , cij and cji, the model covers various applications (Leng
and Wu, 2011; Du and Wu, 2013; Moallemi and Roy, 2006; Bickson et al., 2007), where the
convergence of Gaussian BP is studied separately. While we can use the general results in
Theorems 1 and 2 to verify whether Gaussian BP converges in a particular pairwise linear
Gaussian model, this approach requires us to verify the non-emptiness of the set Q and
find the spectral radius of matrix A. In the following, by further making use of the special
structure of F4, we will provide an easily verifiable sufficient convergence condition for the
pairwise linear Gaussian model. Before we state the result, we need the following Lemma.

Lemma 9 A Gaussian model obeying F5 is pairwise-normalizable if there exist ωij for all
(i, j) ∈ E such that

ωij ≥ 0 for all (i, j) ∈ E , (23a)

ωijωji − τ2ij ≥ 0 for all (i, j > i) ∈ E , (23b)

φi +
∑
j∈Bi

γij −
∑
j∈Bi

ωij > 0 for all i = 1, 2, · · · , n. (23c)

Proof See Appendix J.

Making use of Lemma 9, we can prove that the pairwise linear Gaussian model F4

with at least one ζi > 0 is pairwise-normalizable, therefore by Theorem 8, Gaussian BP is
convergent under synchronous and totally asynchronous schedulings. The detail is given in
the following Theorem.

Theorem 10 (At least one ζi > 0 guarantees convergence) For pairwise linear Gaus-
sian model F4, under any initialization α(0) ≥ γ, if ζi > 0 for at least one i, Gaussian BP
converges in both synchronous and totally asynchronous schedulings.

13
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Proof See Appendix K.

From Theorem 10, the convergence of Gaussian BP in pairwise linear Gaussian model
can be guaranteed if there exists one ζi > 0, which is much easier to check than directly
verifying the conditions in Theorems 1 and 2. For example, in clock synchronization, ζi
has the physical interpretation of precision of prior distribution of unknown clock offset.
Theorem 10 implies that as long as there is at least one node having an informative prior on
the clock parameter, the distributed clock synchronization algorithm (Leng and Wu, 2011)
would converge. This is a much stronger result than that in Leng and Wu (2011) since
Leng and Wu (2011) proves the convergence under one reference node with perfect prior
information (i.e., p(xi) = δ(xi)). In contrast, Theorem 10 allows the reference node to have
imperfect prior, and more importantly, Theorem 10 allows more than one node having prior
information, possibly with different precisions.

On the other hand, for peer-to-peer rating applications, ζi represents the confidence of
node i’s initial rating yi. Theorem 10 shows that Gaussian BP converges with a minimum
of one initial rating with corresponding confidence ζi > 0. This is obviously true for a
practical peer-to-peer rating system. Notice that while Bickson et al. (2007) requires all ζi
to be the same for different nodes, our model F4 can accommodate different confidences at
different nodes and Gaussian BP still converges due to Theorem 10. This is the first time
that the convergence of Gaussian BP is proved in such an application. Furthermore, if all
the observations {yi} exist with the same confidence ζi = 1, the model F4 becomes the
consensus propagation model in Moallemi and Roy (2006). Due to ζi > 0 for all i, Theorem
10 guarantees the convergence of Gaussian BP in consensus propagation.

6. Numerical Results and Applications

In this section, numerical results are presented to corroborate the newly established the-
oretical results. In the following simulations, we consider two message passing schedules:
synchronous scheduling, and an asynchronous schedule with each variable updating its mes-
sage with probability 0.7 at each iteration.

6.1. Impact of Different Pairwise Factorizations

Consider a joint Gaussian distribution of 6 random variables, where the information matrix
J and potential vector h are

J =



1 1 0 0 0 0
1 6 −1 2 0 0
0 −1 5 −6 0 0
0 2 −6 36 3 −10
0 0 0 3 9 0
0 0 0 −10 0 4

 , h =



1
1
1
1
1
1

 .

We consider two pairwise factorizations with different parameters in F5. In pairwise fac-
torization I, we set φ1 = 1, φ2 = 6, φ3 = 5, φ4 = 36, φ5 = 9, φ6 = 4, ψi = 1 for all
i = 1, 2, · · · , 6, τ12 = 1, τ23 = −1, τ24 = 2, τ34 = −6, τ45 = 3, τ46 = −10, and γij = κij = 0

14
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Figure 3: Convergence of beliefs under different pairwise factorizations and message schedul-
ings.

for all (i, j) ∈ E . The factors in this factorization are used in Malioutov et al. (2006), and
Su and Wu (2014, 2015a). In pairwise factorization II, we set φi = 0 and ψi = 0 for all
i = 1, 2, · · · , 6, γ12 = γ21 = γ23 = γ32 = γ42 = γ45 = 1, γ24 = γ34 = γ64 = 4, γ43 = γ54 = 9,
γ46 = 25, τ12 = 1, τ23 = −1, τ24 = 2, τ34 = −6, τ45 = 3, τ46 = −10, κ12 = κ54 = κ64 = 1,
κ21 = κ23 = κ24 = 1/3, κ32 = κ34 = 1/2, and κ42 = κ43 = κ45 = κ46 = 1/4.

It can be verified that the set Q is non-empty for the considered Gaussian distribution
by solving the SDP problem in (18a)—(18c) (as discussed in Lemma 4, the set Q is inde-
pendent of the chosen factorization). Furthermore, under initialization α(0) ≥ γ, numerical
computation shows that ρ(A) = 0.6934 < 1 and ρ(|A|) = 0.6934 < 1 for both pairwise
factorizations. This corroborates Lemma 5 that A is independent of factorizations. By
Theorems 1 and 2, under initialization α(0) ≥ γ, Gaussian BP beliefs converge in both syn-
chronous and totally asynchronous schedulings. Figure 3 shows belief means and variances
of variable x1 during the iterations, where α(0) is set to γ and β(0) is set to 0 in both pair-
wise factorizations (i.e., α(0) = 0 for factorization I and α(0) = [1 1 1 4 1 4 1 9 1 25 9 4]T for
factorization II). It can be seen that belief means (variances) converge to the same values
for both factorizations under synchronous scheduling and asynchronous scheduling, which
corroborates Theorem 8.

Nevertheless, if we set the initialization α(0) = 0 in factorization II, by the update
equation in (9), α(l) can be easily shown to maintain at 0 for all l ≥ 0. Then belief variance

1/(φi +
∑

j∈Bi α
(l)
j→i) = 1/0 is not defined. But for factorization I, BP beliefs do converge

when α(0) = 0. Therefore, the initialization α(0) = 0 will not always work for different
pairwise factorizations. To guarantee the convergence of Gaussian BP, we need to choose
the initialization α(0) according to the factorization parameter γ.

6.2. Distributed Clock Synchronization

In clock synchronization of wireless sensor networks (Leng and Wu, 2011), xi represents the
unknown clock offset at node i, and the likelihood function can be regarded as fij(xi, xj)
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Figure 4: Network topology in clock synchro-
nization.
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Figure 5: Estimated offsets.

with the expression

fij(xi, xj) ∝ exp

{
− N

2σ2

[
2 (xi − xj) +

1T tij
N

]2}
, (24)

where 1 is the all-ones vector of length N , tij is a column vector collecting N observa-
tions, and the observation errors are Gaussian distributed with zero mean and variance σ2.
Moreover, the prior of xi is Gaussian distributed, and it can be regarded as fi(xi) with the
expression

fi(xi) ∝ exp

{
− 1

2σ̄2i
(xi − µ̄i)2

}
, (25)

where µ̄i and σ̄2i are the mean and variance, respectively. In case there is no prior information
for xi, we can set σ̄2i = ∞ and fi(xi) ∝ 1. On the other hand, if the prior of xi is perfect,
then σ̄2i = 0 and fi(xi) ∝ δ(xi − µ̄i).

We consider a network with topology shown in Figure 4, where there are 50 nodes.
Among these nodes, the clock offsets of nodes with no prior information are drawn uniformly
from [−30, 30]. Moreover, we set N = 4, σ2 = 1 and two reference nodes s1 and s4 with
their offsets drawn from N (x1; 0, 10−1) and N (x4; 0, 10−2), respectively. By Theorem 10,
if there exists at least one node with prior information in the network, BP beliefs always
converge under both synchronous and totally asynchronous schedulings. Figure 5 shows
the estimated offsets of nodes s16, s29, s44 under synchronous scheduling and asynchronous
scheduling. It can be seen that the estimated offsets of each node converge to the same
values under both synchronous and asynchronous schedulings, corroborating the results in
Theorem 8.

6.3. Peer-to-Peer Rating

The ratings of items, such as movies, doctors and vendors, play an important role in the
social networks and can affect the decisions of people in some degree. Define xi as the rating
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Figure 6: Network topology of peer-to-peer
rating.
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Figure 7: Histograms of consensus values.

at node i, and the peer-to-peer rating problem can be formulated as

min
x1,x2,··· ,xn

∑
i

1

2
ϕii(xi − zi)2 +

∑
i 6=j

1

2
ϕij(xi − xj)2, (26)

where zi is the initial rating of node i, ϕii and ϕij denote the self confidence of node i and
mutual trust between node i and node j, respectively. The term in the first summation of
(26) denotes the rating difference between the final result and its initialization, and the term
in the second summation of (26) denotes the rating difference between a pair of neighboring
nodes. In particular, if we set

fi(xi) ∝ exp

{
−1

2
ϕii(xi − zi)2

}
, (27)

fij(xi, xj) ∝ exp

{
−1

2
ϕij(xi − xj)2

}
, (28)

then Gaussian BP can be performed to estimate {xi}.
We consider a network with topology in Figure 6, where there are 200 nodes. Out

of the 200 nodes, 100 randomly selected nodes (denoted as solid nodes in Figure 6) have
observations zi on a common object or variable with true value 10. The observations are
disturbed by zero-mean Gaussian noise with variance ϕii uniformly sampled from [10, 102],
and we set ϕij to 101.5. Comparing fi(xi) in (27) with that in F4, it is noticed that
ξi = ϕii > 0 for the nodes with observations. By Theorem 10, Gaussian BP beliefs converge
under both synchronous and totally asynchronous schedulings. This can be seen from
Figure 7 that the final values at all nodes concentrate much more closely to the true common
value compared to the initial observed values. Furthermore, the final consensus values are
consistent under synchronous scheduling and asynchronous scheduling.
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Figure 8: (a) Original image, (b) Corrupted image, (c) Recovered image by Gaussian BP,
(d) Recovered image by median filter (5× 5) for all pixels, (e) Recovered image by median
filter (5× 5) only for pixels with values 0 or 255.

6.4. Image Denoising

Consider a M ×N gray level image (with level [0, 255]) corrupted by salt-and-pepper noise.
With the true gray level of pixel at location (i, j) in the original image denoted by xi,j , we
can formulate the image restoration problem as

min
{xi,j}

∑
1≤i≤M,1≤j≤N

1

2
wi,j(xi,j − zi,j)2+

∑
(i,j)∈D

1

2
(xi,j − xi,j−1)2 +

1

2
(xi,j − xi,j+1)

2 +
1

2
(xi,j − xi−1,j)2 +

1

2
(xi,j − xi+1,j)

2,

(29)

where wi,j is the confidence of the observed pixel value zi,j at the location (i, j), and D
denotes the set of the locations of pixels with values 0 or 255. From (29), if we set the
factors

f(xi,j) ∝ exp

{
−1

2
wi,j(xi,j − zi,j)2

}
, (30)

f(xi,j , x̃) ∝ exp

{
−1

2
(xi,j − x̃)2

}
, (31)

where x̃ denotes the neighboring pixel of xi,j (i.e., xi,j−1 or xi,j+1 or xi−1,j or xi+1,j), by
treating all xi,j as continuous variables, we can perform Gaussian BP to recover the image.

As a demonstration, we choose a 256× 256 gray-scale Lena image. The original image
(shown in Figure 8(a)) is corrupted by 50% salt-and-pepper noise on the face and 5% salt-
and-pepper noise on other parts, as shown in Figure 8(b). Figure 8(c) shows the recovered
image by Gaussian BP under synchronous scheduling, where we set wi,j = 10−6 for (i, j) ∈ D
and wi,j = 1 for (i, j) /∈ D. Since wi,j > 0, by Theorem 10, we know that Gaussian BP
converges in solving the problem in (29) under both synchronous and totally asynchronous
schedulings. Moreover, for comparison, Figure 8(d) and (e) show the images recovered by
the median filter (5× 5) for all pixels and only for pixels with values 0 or 255, respectively.
It can be seen that the image recovered by Gaussian BP has a much better visual quality
than those by the median filters.
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7. Conclusions

In this paper, a unified convergence analysis of Gaussian BP in Gaussian MRF and pair-
wise linear Gaussian model was presented. By using a general pairwise factorization of
the joint Gaussian distribution, general convergence conditions of the Gaussian BP beliefs
were derived for both synchronous and totally asynchronous schedulings. With the general
convergence conditions, existing convergence conditions such as walk-summability, pairwise-
normalizability, convex decomposition, and diagonal dominance, were extended from their
original considered pairwise factorizations to the proposed general pairwise factorization.
Moreover, by further linking the pairwise-normalizability in Gaussian MRF to pairwise
linear Gaussian model, an easily verifiable sufficient convergence condition was proposed.
Numerical examples and applications were presented to corroborate the newly established
convergence results.

Appendix A. Relationships Among Factorizations F1—F4

In F1, if we set aij = aji = 0, pi = Jii, then F1 is reduced to F3, which implies that F3 is
a specific setting of F1. On the other hand, from the constraint of F2, ξij , ξji > 0, so the
coefficients of the terms x2i and x2j in fij(xi, xj) cannot be zero. Therefore, F2 cannot reduce
to F3, and vice versa. Furthermore, in the constraint of F4, due to ηij > 0, the coefficients
of the terms x2i and x2j in fij(xi, xj) cannot be zero. Therefore, F4 cannot reduce to F3,
and vice versa.

In F2, if ςij = ςji = 0, by comparing fi(xi) and fij(xi, xj) in F2 with those in F1, we
have ξijJ

2
ij = aij , ξjiJ

2
ij = aji, Jii−

∑
k∈Bi ξikJ

2
ik = pi, therefore F2 becomes the form as F1.

However, if we set ςij 6= 0 or ςji 6= 0, fij(xi, xj) in F2 will never become the form as that in
F1 since fij(xi, xj) in F1 does not contain the first-order terms of variable xi and xj . On
the other hand, in F1, if aijaji − J2

ij < 0, F1 will not satisfy the convex decomposition in
F2, which implies F1 cannot be included in F2 for these cases. Therefore, F1 and F2 are
overlapping, but one cannot include the other.

In F1, if pi, aij , aji > 0 and aijaji = J2
ij , F1 can be converted into F4 with ζi = pi,

yi = hi/pi, ηij = 1, zij = 0, cij =
√
aij and cji =

√
aji. But if pi < 0 in F1, due to ζi ≥ 0

in F4, fi(xi) in F1 cannot be converted into that in F4, which implies F1 is not included
in F4. On the other hand, if zij 6= 0 in F4, fij(xi, xj) in F4 contains the first-order terms
of variable xi and xj while fij(xi, xj) in F1 does not contain the first-order terms of xi and
xj , which implies F4 cannot be included in F1. Therefore, F1 and F4 are overlapping, but
one cannot include the other.

In F4, if ζi = 0, fi(xi) in F4 does not satisfy the condition Jii −
∑

k∈Bi ξikJ
2
ik > 0 of

fi(xi) in F2, which implies F4 is not included in F2 for this case. But if ζi > 0, then F4 can
be converted into F2 with Jii−

∑
k∈Bi ξik = ζi > 0, hi−

∑
k∈Bi ςik = ζiyi, ξijJ

2
ij = ηijc

2
ij > 0,

ξjiη
2
ij = ηijc

2
ji > 0, Jij = ηijcijcji, ςij = ηijzijcij and ςji = ηijzijcji. On the other hand,

comparing F2 with F4, if fi(xi) and fij(xi, xj) in F2 can be expressed by those in F4, we
must have ξijJ

2
ij = ηijc

2
ij , ξjiJ

2
ij = ηijc

2
ji, and Jij = ηijcijcji. From these conditions, we

obtain that ξijξjiJ
4
ij = η2ijc

2
ijc

2
ji = J2

ij . Due to ηij , cij , cji 6= 0, Jij 6= 0 and the above result

reduces to ξijξjiJ
2
ij = 1 if F2 can be expressed by F4. Hence, when ξijξjiJ

2
ij > 1 in F2, it
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implies that F2 cannot be expressed by F4. Therefore, F2 and F4 are overlapping, but one
cannot include the other.

Finally, in F4, if ζi > 0 for all i = 1, 2, · · · , n and zij = 0 for all (i, j) ∈ E , then

fij(xi, xj) reduces to fij(xi, xj) ∝ exp
{
−1

2ηij (cijxi + cjixj)
2
}

. Then, comparing F4 with

F1, if we put ζi = pi, yi = hi/pi, ηijc
2
ij = aij , ηijc

2
ji = aji and ηijcijcji = Jij , then fi(xi) and

fij(xi, xj) in F4 become those in F1. On the other hand, comparing F4 with F2, if we put
ζi = Jii −

∑
k∈Bi ξikJ

2
ik, ζiyi = hi −

∑
k∈Bi ςik, ηijc

2
ij = ξijJ

2
ij , ηijc

2
ji = ξjiJ

2
ij , ηijcijcji = Jij

and ςij = ςji = 0, then fi(xi) and fij(xi, xj) in F4 reduce to those in F2 and satisfy the
convex decomposition. Hence, we found a model that is a special case of F4, but at the
same time can be expressed in the form of F1 and F2. Therefore, there exists an intersection
of F1, F2 and F4.

Appendix B. Derivation of Gaussian BP Messages

By substituting the factors of F5 and (8) into (7), we obtain the expression

m
(l)
j→i (xi) ∝ exp

{
−1

2
γijx

2
i + κijxi

}
×

∫ ∞
−∞

exp

−1

2

φj + γji +
∑
k∈Bj\i

α
(l−1)
k→j

x2j +

ψj + κji − τijxi +
∑
k∈Bj\i

β
(l−1)
k→j

xj

 dxj .

(32)

For the integration in (32), it remains finite if and only if φj + γji +
∑

k∈Bj\i α
(l−1)
k→j > 0.

If the condition φj + γji +
∑

k∈Bj\i α
(l−1)
k→j > 0 is satisfied, by performing the integration in

(32), we have

m
(l)
j→i (xi)

∝exp


−1

2

γij− τ2ij

φj+γji+
∑

k∈Bj\i
α
(l−1)
k→j


︸ ︷︷ ︸

α
(l)
j→i

x2i +

κij−
τijψj+τijκji+

∑
k∈Bj\i

τijβ
(l−1)
k→j

φj+γji+
∑

k∈Bj\i
α
(l−1)
k→j


︸ ︷︷ ︸

β
(l)
j→i

xi


,

(33)

where the message m
(l)
j→i(xi) is maintained the same form as in (8) and parameterized by a

pair of parameters α
(l)
j→i and β

(l)
j→i. If φj + γji +

∑
k∈Bj\i α

(l−1)
k→j ≤ 0, the message m

(l)
j→i (xi)

is not defined.
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Appendix C. Proof of Theorem 1

From (9) and (10), the message parameters update can be rewritten as

α
(l)
j→i − γij = −

τ2ij

φj +
∑
k∈Bj

γjk +
∑

k∈Bj\i
(α

(l−1)
k→j − γjk)

, (34)

β
(l)
j→i − κij = −

τijψj + τij
∑
k∈Bj

κjk +
∑

k∈Bj\i
τij(β

(l−1)
k→j − κjk)

φj +
∑
k∈Bj

γjk +
∑

k∈Bj\i
(α

(l−1)
k→j − γjk)

. (35)

Furthermore, from (13) and (14), the belief parameters update can be rewritten as ν
(l)
xi =

φi+
∑

j∈Bi γij+
∑

j∈Bi(α
(l)
j→i−γij) and ϕ

(l)
xi = ψi+

∑
j∈Bi κij+

∑
j∈Bi(β

(l)
j→i−κij). By taking

α
(l)
j→i − γij and β

(l)
j→i − κij as two new sequences in the updates of messages and beliefs, it

is observed that the updates of messages and beliefs are in the same form as those in Su
and Wu (2014) if we set φi +

∑
k∈Bi γik = Jii, τij = Jij for i 6= j and ψi +

∑
k∈Bi κik = hi.

By using Su and Wu (2014, Theorem 4), under any initialization satisfying α(0) − γ ≥ 0,

we obtain that belief variances {1/ν(l)xi } converge to the same positive values if and only

if the set Q̃ = {q ∈ R|E| | Jii +
∑

k∈Bi\j qk→i > 0,− J2
ij

Jii+
∑

k∈Bi\j
qk→i

≥ qi→j , ∀(i, j) ∈
E , and Jii +

∑
k∈Bi qk→i > 0 for i = 1, 2, · · · , n} is non-empty. Furthermore, by Su and

Wu (2014, Lemma 3), the constraint Jii +
∑

k∈Bi qk→i > 0 will be either satisfied for all
i = 1, 2, · · · , n or dissatisfied for all i = 1, 2, · · · , n. Without loss of generality, checking
i = 1 is sufficient. By putting φi +

∑
k∈Bi γik = Jii, τij = Jij for i 6= j into Q̃, it leads to

the set Q , {q ∈ R|E| | φi +
∑

k∈Bi γik +
∑

k∈Bi\j qk→i > 0,− τ2ij
φi+

∑
k∈Bi

γik+
∑

k∈Bi\j
qk→i

≥
qi→j ,∀(i, j) ∈ E , and φi +

∑
k∈Bi γik +

∑
k∈Bi qk→i > 0 for i = 1}. Furthermore, if the set

Q is non-empty, α(l) converges, and the update of β(l) becomes the linear update equation
in (16). With Bertsekas and Tsitsiklis (1989, Proposition 2.6.1), β(l) converges to a unique
value if and only if ρ(A) < 1 under synchronous scheduling. With a similar proof to Su and
Wu (2015a, Theorem 3), belief means converge to unique values if and only if β(l) converges
to a unique value. Therefore, belief means converge to unique values if and only if ρ(A) < 1
under synchronous scheduling.

Appendix D. Proof of Theorem 2

By the proof in Theorem 1, it is shown that the update of beliefs is in the same form as that
in Su and Wu (2014) if we set fi(xi) ∝ exp{−1

2(φi +
∑

k∈Bi γik)x
2
i + (ψi +

∑
k∈Bi κik)xi}

and fij(xi, xj) ∝ exp{−τijxixj}. By Su and Wu (2014, Theorem 4), under any initial-
ization α(0) − γ ≥ 0, belief variances converge to the same positive values under totally
asynchronous scheduling if and only if Q is non-empty. Moreover, if Q is non-empty, α(l)

converges and thus the update of β(l) becomes a linear equation as shown in (16). Accord-
ing to the asynchronous convergence theorem in Bertsekas and Tsitsiklis (1989, Proposition
6.2.1), β(l) converge to a unique value if ρ(|A|) < 1 under totally asynchronous scheduling.
Furthermore, with the converged value of xi’s belief variance being 1/ν∗xi , the xi’s belief
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mean at the l-th iteration is computed as ϕ
(l)
xi /ν

∗
xi = (ψi +

∑
j∈Bi β

(l)
j→i)/ν

∗
xi . If β(l) con-

verges, belief means would also converge. Therefore, belief means converge to unique values
if ρ(|A|) < 1 under totally asynchronous scheduling.

Appendix E. Proof of Corollary 3

Since synchronous scheduling is a special case of totally asynchronous scheduling, we only
need to prove the result under totally asynchronous scheduling. We define a positive integer

set Tj→i denoting the iteration indices when the message m
(l)
j→i(xi) is updated under totally

asynchronous scheduling. If l ∈ Tj→i, we have the update of α
(l)
j→i as

α
(l)
j→i = γij −

τ2ij

φj + γji +
∑

k∈Bj\i
α
(T j→i

k→j(l−1))
k→j

, (36)

where 0 ≤ T j→ik→j(l − 1) ≤ l − 1 and α
(T j→i

k→j(l−1))
k→j denotes the most recently received value of

αk→j for the update of αj→i at the l-th iteration. Otherwise, α
(l)
j→i will be maintained as

the previous value at the (l − 1)-th iteration.
Necessary condition:

We need to prove that if the set Q is non-empty, ν
(l)
xi > 0 for all l ≥ 0. Firstly, we

can rewrite the update of ν
(l)
xi in (25) as ν

(l)
xi = φi +

∑
k∈Bi γik +

∑
k∈Bi(α

(l)
k→i − γik). If

we can prove that α
(l)
k→i − γik > qk→i, where qk→i is the component of any q ∈ Q, then

ν
(l)
xi > φi +

∑
k∈Bi γik +

∑
k∈Bi qk→i > 0, where the last inequality is due to the third

constraint of Q. Hence, our task is to prove α
(l)
k→i − γik > qk→i for all l ≥ 0. This is

done by induction. First, consider l = 0. By putting the first constraint of Q into its

second constraint, we must have qi→j ≤ −
τ2ij

φi+
∑

k∈Bi
γik+

∑
k∈Bi\j

qk→i
< 0. On the other

hand, under any initialization α(0) ≥ γ, we have α
(0)
i→j − γji ≥ 0. Combining with qi→j < 0,

we obtain α
(0)
i→j − γji > qi→j . Therefore, the statement is true for l = 0. Now, suppose

that α
(l−1)
i→j − γji > qi→j is true. On one hand, if l /∈ Ti→j , then α

(l)
i→j is not updated at the

l-th iteration and α
(l)
i→j = α

(l−1)
i→j . Hence, we can directly obtain α

(l)
i→j − γji > qi→j . On the

other hand, if l ∈ Ti→j , then α
(l)
i→j is updated at the l-th iteration. Due to the assumption

α
(l−1)
i→j − γji > qi→j and T i→jk→i (l − 1) ≤ l − 1, we have α

(T i→j
k→i (l−1))

k→i − γik > qk→i and then

φi+γij+
∑

k∈Bi\j α
(T i→j

k→i (l−1))
k→i > φi+γij+

∑
k∈Bi\j(qk→i+γik). Furthermore, due to the third

constraint of Q, we can obtain φi + γij +
∑

k∈Bi\j α
(T i→j

k→i (l−1))
k→i > φi + γij +

∑
k∈Bi\j(qk→i +

γik) > 0, which implies − τ2ij

φi+γij+
∑

k∈Bi\j
α
(T

i→j
k→i

(l−1))

k→i

> − τ2ij
φi+

∑
k∈Bi

γik+
∑

k∈Bi\j
qk→i

. Since we

have − τ2ij
φi+

∑
k∈Bi

γik+
∑

k∈Bi\j
qk→i

≥ qi→j due to the second constraint of Q, we can obtain

− τ2ij

φi+γij+
∑

k∈Bi\j
α
(T

i→j
k→i

(l−1))

k→i

> qi→j . Noticing that the left hand side of this equation is
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simply α
(l)
i→j − γji (see (36)) under totally asynchronous scheduling, we obtain α

(l)
i→j − γji >

qi→j . Therefore, we have proved α
(l)
k→i − γik > qk→i for all l ≥ 0.

Sufficient condition:
We need to prove that if BP beliefs stay as valid Gaussian pdfs at all iterations, the

set Q will be non-empty. When BP beliefs stay as valid Gaussian pdfs at all iterations

under totally asynchronous scheduling, we can obtain φj + γji +
∑

k∈Bj\i α
(T j→i

k→j(l))

k→j > 0 and

φi +
∑

k∈Bi α
(l)
k→i > 0 for all l ≥ 0. When l = 1, if 1 ∈ Tj→i, then α

(l)
j→i is updated. Due

to φj + γji +
∑

k∈Bj\i α
(T j→i

k→j(0))

k→j > 0, further by the update equation (36), we can obtain

α
(1)
j→i = γij −

τ2ij

φj+γji+
∑

k∈Bj\i
α
(T

j→i
k→j

(0))

k→j

< γij . Due to α
(0)
j→i ≥ γij , we have α

(1)
j→i < α

(0)
j→i.

If 1 /∈ Tj→i, we have α
(1)
j→i = α

(0)
j→i. Therefore, α

(l)
j→i ≤ α

(l−1)
j→i is true for l = 1. Suppose

that α
(l)
j→i ≤ α

(l−1)
j→i is true. If l + 1 /∈ Tj→i, α(l+1)

j→i is not updated and α
(l+1)
j→i = α

(l)
j→i. If

l + 1 ∈ Tj→i, then α
(l+1)
j→i is updated. We divide the discussion into two cases:

1) If α
(l)
j→i is updated for the first time at the (l+ 1)-th iteration, we have α

(l)
j→i = α

(0)
j→i.

From (36), we can obtain α
(l+1)
j→i = γij −

τ2ij

φj+γji+
∑

k∈Bj\i
α
(T

j→i
i→j

(l))

k→j

< γij . Due to α
(0)
j→i >

γij , we can obtain α
(l+1)
j→i < α

(l)
j→i.

2) If α
(l)
j→i has been updated before the (l+1)-th iteration, we suppose that l1 is the most

recent iteration for the update of α
(l)
j→i, where l1 ≤ l. Since T j→ik→j(l) ≥ T j→ik→j(l1 − 1)

and due to the assumption α
(l)
k→j ≤ α

(l−1)
k→j , we can obtain α

(T j→i
k→j(l))

k→j ≤ α
(T j→i

k→j(l1−1))
k→j .

Further due to φj+γji+
∑

k∈Bj\i α
(T j→i

k→j(l))

k→j > 0 and φj+γji+
∑

k∈Bj\i α
(T j→i

k→j(l1−1))
k→j > 0,

we can obtain γij −
τ2ij

φj+γji+
∑

k∈Bj\i
α
(T

j→i
k→j

(l))

k→j

≤ γij −
τ2ij

φj+γji+
∑

k∈Bj\i
α
(T

j→i
k→j

(l1−1))

k→j

, i.e.,

α
(l+1)
j→i ≤ α

(l1)
j→i. Moreover, since α

(l)
j→i is not updated after the l1-th iteration and before

the (l + 1)-th iteration, we have α
(l)
j→i = α

(l1)
j→i. Hence, we can obtain α

(l+1)
j→i ≤ α

(l)
j→i.

Therefore, α
(l)
j→i is a monotonically decreasing sequence under totally asynchronous schedul-

ing.

Furthermore, if α
(l)
j→i is not bounded below, then it goes to −∞ when the iterations

goes to infinity, which leads to φi +
∑

k∈Bi α
(l)
k→i < 0 when l goes to infinity. This leads

to a contradiction with the condition φi +
∑

k∈Bi α
(l)
k→i > 0 for all l ≥ 0. Therefore, α

(l)
j→i

must be bounded below. Together with the monotonically decreasing property of α
(l)
j→i,

α
(l)
j→i converges. Here, we suppose that α∗ is the converged value of α(l). Defining α∗j→i =
qj→i + γij , and putting it into the condition guaranteeing the validity of integration in (32)

and ν
(l)
xi > 0, we can obtain φi+γij+

∑
k∈Bi\j(qk→i+γik) > 0 and φi+

∑
k∈Bi(qk→i+γik) > 0

for l ≥ 0. Moreover, putting α∗j→i = qj→i + γij into the update equation (36), we have
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qj→i = − τ2ij
φj+γji+

∑
k∈Bj\i

(qk→j+γjk)
. But these are in fact the three constraints of the set Q.

Therefore, we have found a q ∈ Q with the element qj→i = α∗j→i − γij , and the set Q is
non-empty.

Appendix F. Proof of Lemma 5

For synchronous scheduling, by Corollary 3, under any initialization α(0) ≥ γ, if the set
Q is non-empty, BP beliefs stay being valid Gaussian pdfs. Furthermore, from the proof
of sufficient condition in Corollary 3, it is proved that BP beliefs stay in valid Gaussian
form leads to α(l) converges. Then, the matrix A consists of elements

τij
φj+γji+

∑
k∈Bj\i

α∗k→j

for all (i, j) ∈ E , where α∗ is the converged value of α(l). Since τij = Jij and φj + γji +∑
k∈Bj\i α

∗
k→j = φj +

∑
k∈Bj γjk +

∑
k∈Bj\i(α

∗
k→j − γjk) = Jjj +

∑
k∈Bj\i(α

∗
k→j − γjk) for a

Gaussian pdf with information matrix J, the elements of A become
Jij

Jjj+
∑

k∈Bj\i
(α∗k→j−γjk)

for all (i, j) ∈ E . On the other hand, from (34), if we treat α
(l)
j→i−γij , α̃

(l)
j→i as a whole and

putting φi +
∑

k∈Bi γik = Jii and τij = Jij , the resultant equation becomes (12) in Su and
Wu (2014). Furthermore, putting φi +

∑
k∈Bi γik = Jii and τij = Jij , the set Q reduces to

Q̃ defined in the proof of Theorem 1. Therefore, non-empty Q implies that Q̃ is non-empty.
By Su and Wu (2014, Theorem 2), under any initialization α̃(0) ≥ 0 and non-empty Q̃, α̃(l)

converges to the same value α̃∗. Recognizing that α̃∗ = α∗ − γ is the same for any γ, we
can conclude that under synchronous scheduling, the elements of matrix A are independent
of factorization parameters for any initialization α(0) ≥ γ. Since the matrix A in totally
asynchronous scheduling is the same as that in synchronous scheduling, Lemma 5 also holds
for totally asynchronous scheduling.

Appendix G. Proof of Corollary 6

For a Gaussian pdf with information matrix J, under any initialization α(0) ≥ γ, by Lemmas
4 and 5, Q and A are independent of factorization parameters in F5. Furthermore, by
Theorem 1, belief variances converge if and only if the set Q is non-empty and belief means
converge if and only if ρ(A) < 1. Therefore, the convergence or divergence of Gaussian BP
under synchronous scheduling is independent of factorization parameters in F5.

Appendix H. Proof of Corollary 7

Since synchronous scheduling is a special case of totally asynchronous scheduling, proving
the result under totally asynchronous scheduling is sufficient.

Under totally asynchronous scheduling, walk-summability guarantees that the set Q
is non-empty and ρ(|A|) < 1 under pairwise factorization F3 and initialization α(0) ≥ 0
(Su and Wu, 2015a, Theorem 6). Using Lemma 4, Q is non-empty under any pairwise
factorization within F5. Further by Lemma 5, we have ρ(|A|) < 1 under any pairwise
factorization within F5 and any initialization α(0) ≥ γ. Then applying Theorem 2, we ob-
tain walk-summability leads to Gaussian BP convergence under any pairwise factorization
within F5 and any initialization α(0) ≥ γ. Since walk-summability is equivalent to con-
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vex decomposition (Moallemi and Roy, 2009) or pairwise-normalizability (Malioutov et al.,
2006), and includes diagonal dominance as a special case (Malioutov et al., 2006), Gaussian
BP converges under any one of these conditions, and the convergence result is valid under
any pairwise factorization within F5 and any initialization α(0) ≥ γ.

Appendix I. Proof of Theorem 8

As given in the proof of Lemma 5, for a Gaussian pdf with information matrix J, under
any initialization α(0) ≥ γ, if Gaussian beliefs converge, then α̃∗ = α∗ − γ is the same for
any γ. On the other hand, when belief variances converge under synchronous scheduling,

we have β(l) = Aβ(l−1) + d. By taking β
(l)
j→i − κij , β̃

(l)
j→i, we have the update equation

β̃
(l)

= Aβ̃
(l−1)

+ d̃, where d̃ contains the elements −
τij(ψj+

∑
k∈Bj

κjk)

φj+γji+
∑

k∈Bj\i
α∗k→j

for all (i, j) ∈ E

ordered in the same way as that in α(l). Since Jjj = φj +
∑

k∈Bj γjk, Jij = τij and

ψj +
∑

k∈Bj κjk = hj for a Gaussian pdf with information matrix J and potential vector

h (see (20) and (21)), the elements of d̃ become − Jijhj
Jjj+

∑
k∈Bj\i

(α∗k→j−γjk)
for all (i, j) ∈ E .

Due to Jjj , Jij , hj are fixed and α∗ − γ being the same under initialization α(0) ≥ γ,

the elements of d̃ are independent of factorization parameters in F5. Furthermore, from
Theorem 1, when Gaussian BP beliefs converge under synchronous scheduling, we have

ρ(A) < 1. This leads to β̃
(l)

converge to β̃
∗

= (I − A)−1d̃ (Bertsekas and Tsitsiklis,
1989, Proposition 6.1). Since A and d̃ are independent of factorization parameters, we

can obtain β̃
∗

= β∗ − κ is unique for any κ. Moreover, Su and Wu (2015a, Theorem 5)

has proved that the converged α̃∗ = α∗ − γ and β̃
∗

= β∗ − κ under totally asynchronous
scheduling and any initialization α(0)−γ ≥ 0 are the same values as those under synchronous
scheduling. Therefore, under any initialization α(0) ≥ γ, the converged α̃∗ = α∗ − γ and
β̃
∗

= β∗ − κ are the same for different pairwise factorizations under both synchronous
and totally asynchronous schedulings. Since φi +

∑
j∈Bi γij = Jii and ψi +

∑
j∈Bi κij =

hi are fixed for a Gaussian pdf with information matrix J and potential vector h, and
α̃∗ = α∗ − γ, β̃

∗
= β∗ − κ are unique when Gaussian BP converges, xi’s converged belief

mean
ψi+

∑
j∈Bi

β∗j→i

φi+
∑

j∈Bi
α∗j→i

=
ψi+

∑
j∈Bi

κij+
∑

j∈Bi
(β∗j→i−κij)

φi+
∑

j∈Bi
γij+

∑
j∈Bi

(α∗j→i−γij)
=

hi+
∑

j∈Bi
β̃∗j→i

Jii+
∑

j∈Bi
α̃∗j→i

and belief variance

1
φi+

∑
j∈Bi

α∗j→i
= 1

φi+
∑

j∈Bi
γij+

∑
j∈Bi

(α∗j→i−γij)
= 1

Jii+
∑

j∈Bi
α̃∗j→i

are unique and independent

of factorization parameters under both synchronous and totally asynchronous schedulings.

Appendix J. Proof of Lemma 9

For any valid Gaussian pdf, xTJx with J defined in (20) can be written as

xTJx =

n∑
i=1

(Jii −
∑
j∈Bi

ωij)x
2
i +

∑
(i,j>i)∈E

[xi xj ]

[
ωij Jij
Jij ωji

] [
xi
xj

]
for all ωij . (37)

While there are many possible ways to write (37) for an information matrix J, the Gaussian
model is pairwise-normalizable if there exists at least one decomposition (37) with ωij ≥ 0
for all (i, j) ∈ E , ωijωji − J2

ij ≥ 0 for all (i, j > i) ∈ E and Jii −
∑

j∈Bi ωij > 0 for all
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Figure 9: Clustering variables into multiple layers.

i = 1, 2, · · · , n (Koller and Friedman, 2009). Putting Jii = φi +
∑

j∈Bi γij and Jij = τij
into the above conditions, we have the constraints as in (23a)—(23c) if a Gaussian model
is pairwise-normalizable.

Appendix K. Proof of Theorem 10

We put φi = ζi, γij = ηijc
2
ij , τij = ηijcijcji into (23a)—(23c) to reduce the conditions for

the special case of pairwise linear Gaussian model F4:

ωij ≥ 0 for all (i, j) ∈ E , (38a)

ωijωji − η2ijc2ijc2ji ≥ 0 for all (i, j > i) ∈ E , (38b)

ζi +
∑
j∈Bi

ηijc
2
ij −

∑
j∈Bi

ωij > 0, for all i = 1, 2, · · · , n. (38c)

Below we will find ωij such that (38a)—(38c) are satisfied.

To find the ωij , we cluster all the variables into multiple layers as shown in Figure 9.
Without loss of generality, we assume ζ1 > 0 and put x1 into the first layer. Then we define
a variable index set L1 = {1} for variable x1 in the first layer and the collection of variables
indices in the second layer as a set L2 = {i | i ∈ B1}. In general, the set of variables’ indices
in the k-th layer is defined as Lk , {i|i ∈ Bt \{Lk−1∪Lk−2}, for all t ∈ Lk−1} with 2 ≤ k ≤
m, where m is the number of total layers and L1∪L2∪· · ·∪Lm = {1, 2, · · · , n}. Furthermore,

based on the network in Figure 9, we can decompose the set E =
m⋃
k=2

(Ek,k ∪E+k−1,k ∪E
−
k−1,k),

where Ek,k , {(i, j) ∈ E | i, j ∈ Lk}, E+k−1,k = {(i, j) ∈ E | i ∈ Lk−1, j ∈ Lk}, and

E−k−1,k = {(i, j) ∈ E | i ∈ Lk, j ∈ Lk−1}. For the preparation of finding ωij , we first define
εij for all (i, j) ∈ E as follows.
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For (i, j) ∈ E−k−1,k with k ≥ 2, we define

εij =


− ηi1c

2
i1ζ1/(|B1|+1)

ηi1c21i+ζ1/(|B1|+1)
if (i, j) ∈ E−1,2,

ηijc
2
ij

∑
(j,t)∈E−

k−2,k−1
εjt/(|Bj\Lk−2|+1)

ηijc2ji−
∑

(j,t)∈E−
k−2,k−1

εjt/(|Bj\Lk−2|+1)
otherwise.

(39)

We can prove that εij < 0 for all (i, j) ∈ E−k−1,k with k ≥ 2 by induction. When k = 2,

we have j = 1. Due to ηi1 > 0 and ζ1 > 0, we can obtain εi1 = − ηi1c
2
i1ζ1/(|B1|+1)

ηi1c21i+ζ1/(|B1|+1)
< 0.

Therefore, εi1 < 0 is true for k = 2. Suppose εij < 0 is true for all (i, j) ∈ E−k−1,k for some

k ≥ 2. Then, for (i, j) ∈ E−k,k+1, we have εij =
ηijc

2
ij

∑
(j,t)∈E−

k−1,k
εjt/(|Bj\Lk−1|+1)

ηijc2ji−
∑

(j,t)∈E−
k−1,k

εjt/(|Bj\Lk−1|+1)
. Since on

the right hand side of this equation, (j, t) ∈ E−k−1,k, by assumption, εjt < 0. Furthermore,

since ηij > 0, we can obtain εij < 0. Therefore, we have proved εij < 0 for all (i, j) ∈ E−k−1,k
with k ≥ 2.

Based on εij with (i, j) ∈ E−k−1,k, we can define εij for (i, j) ∈ E+k−1,k with k ≥ 2 as

εij =

 0 if (i, j) ∈ E+1,2,

−
∑

(i,t)∈E−
k−2,k−1

εit

|Bi\Lk−2|+1 otherwise.
(40)

Furthermore, we define εij = −
∑

(i,t)∈E−
k−1,k

εit

|Bi\Lk−1|+1 for (i, j) ∈ Ek,k with k ≥ 2.

Based on εij for all (i, j) ∈ E , we define ωij = ηijc
2
ij + ζi

|Bi|+1 + εij for all (i, j) ∈ E . Then

we will prove such defined ωij satisfies the conditions in (38a)—(38c).

Condition in (38a):

For (i, j) ∈ E+k−1,k with k = 2, we have i = 1. Due η1j , ζ1 > 0 and ε1j = 0, we can

obtain ω1j = η1jc
2
1j + ζ1

|B1|+1 + ε1j = η1jc
2
1j + ζ1

|B1|+1 > 0. For (i, j) ∈ E+k−1,k with k > 2,

we have ωij = ηijc
2
ij + ζi

|Bi|+1 + εij = ηijc
2
ij + ζi

|Bi|+1 −
∑

(i,t)∈E−
k−2,k−1

εit

|Bi\Lk−2|+1 . Due to εit < 0 for

(i, t) ∈ E−k−2,k−1, and ηij > 0, ζi ≥ 0, we have ωij > 0.

For (i, j) ∈ E−k−1,k with k = 2, we have j = 1. We can obtain ωi1 = ηi1c
2
i1 + ζi

|Bi|+1 + εi1 =

ηi1c
2
i1 + ζi

|Bi|+1 −
ηi1c

2
i1ζ1/(|B1|+1)

ηi1c21i+ζ1/(|B1|+1)
= ζi
|Bi|+1 +

η2i1c
2
i1c

2
1i

ηi1c21i+ζ1/(|B1|+1)
. Due to ζi ≥ 0 and ηi1 > 0, we

have ωi1 > 0. For (i, j) ∈ E−k−1,k with k > 2, we have

ωij = ηijc
2
ij +

ζi
|Bi|+ 1

+ εij

= ηijc
2
ij +

ζi
|Bi|+ 1

+
ηijc

2
ij

∑
(j,t)∈E−k−2,k−1

εjt/(|Bj \ Lk−2|+ 1)

ηijc2ji −
∑

(j,t)∈E−k−2,k−1
εjt/(|Bj \ Lk−2|+ 1)

=
ζi

|Bi|+ 1
+

η2ijc
2
ijc

2
ji

ηijc2ji −
∑

(j,t)∈E−k−2,k−1
εjt/(|Bj \ Lk−2|+ 1)

> 0, (41)
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due to ζi ≥ 0, ηij > 0, and εjt < 0 with (j, t) ∈ E−k−2,k−1.
Furthermore, for (i, j) ∈ Ek,k with k ≥ 2, we have ωij = ηijc

2
ij + ζi

|Bi|+1 + εij = ηijc
2
ij +

ζi
|Bi|+1 −

∑
(i,t)∈E−

k−1,k
εit

|Bi\Lk−1|+1 . Due to ηij > 0, ζi ≥ 0 and εit < 0 with (i, t) ∈ E−k−1,k, we can obtain
ωij > 0.

Condition in (38b):

First notice that (i, j > i) ∈ E is equivalent to (i, j) ∈
m⋃
k=2

E+k−1,k or (i, j > i) ∈
m⋃
k=2

Ek,k.

Therefore, we only need to examine (38b) for the sets (i, j) ∈ E+k−1,k and (i, j > i) ∈ Ek,k
for k ≥ 2. For (i, j) ∈ E+k−1,k with k = 2, since η1j , ζ1 > 0 and ζj ≥ 0, we can obtain

ω1jωj1 − η21jc
2
1jc

2
j1 = (η1jc

2
1j + ζ1

|B1|+1)(
ζj

|Bj |+1 +
η2j1c

2
j1c

2
1j

ηj1c21j+ζ1/(|B1|+1)
) − η21jc

2
1jc

2
j1 = (η1jc

2
1j +

ζ1
|B1|+1)

ζj
|Bj |+1 ≥ 0. For (i, j) ∈ E+k−1,k with k > 2, we have

ωijωji − η2ijc2ijc2ji =

(
ηijc

2
ij +

ζi
|Bi|+ 1

−

∑
(i,t)∈E−k−2,k−1

εit

|Bi \ Lk−2|+ 1

)

×

(
ζj

|Bj |+ 1
+

η2ijc
2
ijc

2
ji

ηijc2ij −
∑

(i,t)∈E−k−2,k−1
εit/(|Bi \ Lk−2|+ 1)

)
− η2ijc2ijc2ji

=

(
ηijc

2
ij +

ζi
|Bi|+ 1

−

∑
(i,t)∈E−k−2,k−1

εit

|Bi \ Lk−2|+ 1

)
ζj

|Bj |+ 1

+
ζi

|Bi|+ 1

η2ijc
2
ijc

2
ji

ηijc2ij −
∑

(i,t)∈E−k−2,k−1
εit/(|Bi \ Lk−2|+ 1)

≥ 0, (42)

due to ηij > 0, ζi, ζj ≥ 0, and εit < 0 with (i, t) ∈ E−k−2,k−1.
Furthermore, for (i, j > i) ∈ Ek,k, we have

ωijωji − η2ijc2ijc2ji =

(
ηijc

2
ij +

ζi
|Bi|+ 1

−

∑
(i,t)∈E−k−1,k

εit

|Bi \ Lk−1|+ 1

)(
ηijc

2
ji +

ζj
|Bj |+ 1

−

∑
(j,t)∈E−k−1,k

εjt

|Bj \ Lk−1|+ 1

)
−η2ijc2ijc2ji

=

(
ζi

|Bi|+ 1
−

∑
(i,t)∈E−k−1,k

εit

|Bi \ Lk−1|+ 1

)
ηijc

2
ji

+

(
ηijc

2
ij +

ζi
|Bi|+ 1

−

∑
(i,t)∈E−k−1,k

εit

|Bi \ Lk−1|+ 1

)(
ζj

|Bj |+ 1
−

∑
(j,t)∈E−k−1,k

εjt

|Bj \ Lk−1|+ 1

)
.

(43)

Due to ηij > 0, ζi, ζj ≥ 0 and εit, εjt < 0 with (i, t), (j, t) ∈ E−k−1,k, we can obtain ωijωji −
η2ijc

2
ijc

2
ji > 0.

Condition in (38c):

28



CONVERGENCE OF GAUSSIAN BP UNDER GENERAL PAIRWISE FACTORIZATION

For i = 1, we have ζ1 +
∑

j∈B1 η1jc
2
1j −

∑
j∈B1 ω1j = ζ1 +

∑
j∈B1 η1jc

2
1j −

∑
j∈B1(η1jc

2
1j +

ζ1
|B1|+1) = ζ1

|B1|+1 > 0. For i ∈ Lk, we have

ζi +
∑
j∈Bi

ηijc
2
ij −

∑
j∈Bi

ωij =ζi +
∑
j∈Bi

ηijc
2
ij −

∑
j∈Bi∩Lk−1

ωij −
∑

j∈Bi\Lk−1

ωij

=ζi +
∑
j∈Bi

ηijc
2
ij −

∑
j∈Bi∩Lk−1

(ηijc
2
ij +

ζi
|Bi|+ 1

+ εij)

−
∑

j∈Bi\Lk−1

(ηijc
2
ij +

ζi
|Bi|+ 1

−

∑
(i,t)∈E−k−1,k

εit

|Bi \ Lk−1|+ 1
)

=
ζi

|Bi|+ 1
−

∑
(i,t)∈E−k−1,k

εit

|Bi \ Lk−1|+ 1
. (44)

Due to ζi ≥ 0, εit < 0 with (i, t) ∈ E−k−1,k, and
∑

j∈Bi∩Lk−1
εij =

∑
(i,t)∈E−k−1,k

εit, we obtain

ζi +
∑

j∈Bi ηijc
2
ij −

∑
j∈Bi ωij > 0.

Hence, we have found ωij satisfying (38a)—(38c). Therefore, pairwise factorization F4

with at least one ζi > 0 is pairwise-normalizable. By Corollary 7, Gaussian BP converges
in both synchronous and totally asynchronous schedulings.
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