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Abstract

Probabilistic linear discriminant analysis (PLDA) is a method used for biometric problems
like speaker or face recognition that models the variability of the samples using two latent
variables, one that depends on the class of the sample and another one that is assumed
independent across samples and models the within-class variability. In this work, we propose
a generalization of PLDA that enables joint modeling of two sample-dependent factors: the
class of interest and a nuisance condition. The approach does not change the basic form of
PLDA but rather modifies the training procedure to consider the dependency across samples
of the latent variable that models within-class variability. While the identity of the nuisance
condition is needed during training, it is not needed during testing since we propose a scoring
procedure that marginalizes over the corresponding latent variable. We show results on a
multilingual speaker-verification task, where the language spoken is considered a nuisance
condition. The proposed joint PLDA approach leads to significant performance gains in this
task for two different data sets, in particular when the training data contains mostly or only
monolingual speakers.

Keywords: Probabilistic linear discriminant analysis, speaker recognition, factor analysis,
language variability, robustness to acoustic conditions

1. Introduction

PLDA was proposed by Prince (2007) for doing inferences about the identity of a person from
an image of their face. A closely related model had been previously proposed by Ioffe (2006)
and also tested on image processing tasks. The technique was later widely adopted by the
speaker recognition community, becoming the state-of-the-art scoring technique for this task
(Kenny, 2010; Burget et al., 2011; Brümmer, 2010a; Senoussaoui et al., 2011; Matejka et al.,
2011). PLDA assumes that each sample1 is represented by a feature vector of fixed dimension
and that this vector is given by a sum of three terms: a term that depends on the class of the
sample, a term that models the within-class variability and is assumed independent across
samples, and a final term that models any remaining variability and is also independent across

1. Throughout this paper, the word sample is used to refer to an audio signal or recording containing speech.
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samples. These assumptions imply that all samples from the same class are independent of
each other and also independent of samples from other classes once the class is known.

In contrast with the assumptions made by PLDA, many training data sets consist of sam-
ples that come from a small set of distinct conditions. For example, many speaker recognition
data sets contain only a few acoustic conditions (different microphones or noise conditions),
speech styles (conversational, monologue, read), and languages. Samples corresponding to
the same condition will most likely be statistically dependent.

The literature proposes a few approaches that generalize PLDA to consider metadata
about the samples during training. The main motivation for these approaches, though, is not
to relax the conditional independence assumption but rather to enable a more flexible model
that can adapt to each of the available conditions rather than assuming that samples from
all conditions can be modeled with the same linear model. Yet, a side effect of the proposed
generalizations is the introduction of a dependency between samples from the same condition.
The simplest approach of this family is to train a separate PLDA model for each condition,
as proposed by Garcia-Romero et al. (2012). Nevertheless, in this paper, the authors show
that pooling the data from all conditions, as proposed by Lei et al. (2012), leads to better
performance than training separate models. This result is reasonable, since training separate
PLDA models does not allow the overall model to learn how samples from the same class
vary across conditions; only within-condition variation is learned.

The tied PLDA model proposed by Li et al. (2012) is designed to tackle this problem. In
this approach, one PLDA model is trained for each condition, but these models are tied by
forcing the latent variable corresponding to each class to be the same across all conditions.
The approach was shown to outperform standard PLDA with pooled training data when each
class in the training data is seen under both considered conditions, frontal and profile, in a
face recognition task. A similar approach is proposed by Mak et al. (2016), but in this case,
the mixture component is not given during training. Instead, the PLDA mixture components
depend on a continuous metadata value, which is modeled with a mixture of Gaussians. The
approach is tested by adding noise to the training data at different SNR levels. The resulting
training data then contains samples for each speaker at different SNR levels. Under these
conditions, the authors show gains from the proposed approach compared to pooling all the
data to train a single PLDA model.

In this paper, we consider a scenario where each speaker in the training data is seen only
under a small subset of the conditions present in the training set (potentially, only one).
Further, we expect some conditions to have much less training data than others. Under this
scenario, the tied PLDA approach does not work well, since it requires training a PLDA
model of the same dimensions for each condition, which may be impossible or suboptimal for
the conditions with less data. Further, the tied PLDA model can only learn how the nuisance
conditions affect the classes of interest if it is provided samples for each class under different
conditions during training.

We propose a novel generalization of the PLDA model that relaxes the conditional inde-
pendence assumption without increasing the size of the parameter space, keeping the same
functional form of the original PLDA model but modifying the training and scoring proce-
dures to consider the dependency across samples originating from the sample’s condition. In
the proposed approach, which we call Joint PLDA (JPLDA), the condition is assumed to be
known during training but not during testing. An expectation-maximization (EM) training
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procedure is formulated that takes into account the condition of each sample. Scoring is per-
formed, as in standard PLDA, by computing a likelihood ratio between the null hypothesis
that the two sides of a trial belong to the same speaker versus the alternative hypothesis that
the two sides belong to different speakers. The two likelihoods are computed by marginalizing
over two hypotheses about the condition in both sides of a trial: that they are the same and
that they are different. This way, we expect that the new model will be better at coping
with same-condition versus different-condition trials than standard PLDA, since knowledge
about the condition is used during training and implicitly considered during scoring. Further,
we expect this model to behave better than tied PLDA under a training scenario where the
number of samples is highly imbalanced across conditions and each speaker is seen only under
one or a small subset of conditions.

The mathematical formulation for the proposed JPLDA approach was first published in
arXiv (Ferrer, 2017), without results or analysis. A similar model with a significantly different
formulation for the EM and scoring algorithms was later published, also in arXiv, by other
authors (Shi et al., 2017). They show significant improvements from this approach on a
text-dependent speaker verification task. In this paper, we show results and detailed analysis
on two multilingual speaker recognition data sets, one composed of Mixer data (Cieri et al.,
2007) from the speaker recognition evaluations organized by NIST and another that uses
LASRS data (Beck et al., 2004). We evaluate two training scenarios, one using all available
training data from the PRISM data set (Ferrer et al., 2011), which contains a small percentage
of speakers speaking two different languages, and one where we subset the training data to
contain only one language per speaker. We show that JPLDA significantly outperforms two
standard PLDA approaches with different structures and tied PLDA, especially when the
training data contains mostly or only a single language per speaker.

2. Standard PLDA Models

In this work, we adopt the nomenclature usually used by the speaker recognition community.
Yet, the model proposed can be used for the original image processing task or any other task
for which standard PLDA is used.

Standard PLDA (Prince, 2007) assumes that the vector mi representing a certain sample
from speaker si is given by

mi = µ+ V ysi + Uxi + zi, (1)

where µ is a fixed bias; ysi is a vector of size Ry, the dimension of the speaker subspace;
and xi is a vector of size Rx, the dimension of the subspace corresponding to the nuisance
condition or, as usually called in speaker recognition, the channel. The model assumes that

ysi ∼ N(0, I),

xi ∼ N(0, I),

zi ∼ N(0, D−1),

where the matrix D is assumed to be diagonal. All these latent variables are assumed
independent: speaker variables are independent across speakers, and the nuisance variable xi
and noise variable zi are independent across samples.
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This model is equivalent (Sizov et al., 2014) to assuming the following distributions

mi|γsi ∼ N(γsi , UU
T +D−1), (2)

γsi ∼ N(µ, V V T ). (3)

where we can see that V V T is the between-speaker and UUT + D−1 is the within-speaker
covariance matrix of the mi vectors. Note that, in the general case, the matrix V V T could
be singular. This fact, though, does not cause any theoretical or practical problems for the
PLDA model.

The model described above corresponds to the original PLDA formulation, which we will
call full PLDA (FPLDA). In speaker recognition, a simplified version of PLDA (SPLDA for
the purpose of this paper) is more commonly used, where the nuisance term Uxi is absorbed
into the noise term, which is then assumed to have a full rather than diagonal covariance
matrix. Sizov et al. (2014) gives a comprehensive explanation of the usual flavors of PLDA.

The training of PLDA parameters is done using an EM algorithm. The EM formulation
for SPLDA and FPLDA can be found in two very detailed documents by Brümmer (2010a,b).
For FPLDA, we use a minimum divergence (Kenny, 2010) step after every maximization step.
This step is generally used to speed up convergence of the EM algorithm. For SPLDA, this
step was not necessary for quick convergence since, as we will see, the smart initialization
procedure described below already leads to an excellent model. We will not reproduce the
EM formulas here, but we will describe the two initialization procedures we use, since they
will be compared in the experimental section.

2.1. EM Initialization Procedure

The EM algorithm requires an initial model to start the iterations. This model can be
generated randomly or, in the case of SPLDA, with a “smart” procedure that results in a
much better initial model that, in turn, requires many fewer or no EM iterations to converge
to the final parameters.

In our experiments, for random initialization, we setD to be an identity matrix, and V and
U , when applicable, to be matrices with random elements drawn from a normal distribution
with standard deviation 0.01 and mean 0.

For SPLDA, we also try a smart initialization approach that is directly motivated by
Equations (2) and (3). Namely, we initialize V and D as follows

V = QΛ−1/2,

D = W−1,

where W is the empirical within-speaker covariance matrix of the training data, and Q is
a matrix with the eigenvectors corresponding to the Ry largest eigenvalues of the between-
speaker covariance matrix of the training data and Λ−1/2 is a diagonal matrix containing the
square roots of those eigenvalues. As will be shown in the experiments, this initialization
procedure works quite well, leading to models that are as good as those trained with many
iterations of EM.

2.2. Scoring

In this work, we consider a verification task. Two sets of samples, an enrollment set E and a
test set T , each corresponding to one or more samples from the same speaker, are compared
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to decide whether the two speakers are the same or different. This comparison is usually
called a trial in speaker verification. In some applications, a hard decision is needed; in
others, a soft score is preferable. The PLDA paper (Prince, 2007) showed how to use this
model to compute the likelihood ratio (LR) between the two hypotheses, which can be used
directly as soft score or thresholded to make hard decisions if required. The LR is given by

LR =
p(E, T |HSS)

p(E, T |HDS)
,

where HSS is the hypothesis that the speakers in both sets are the same, while HDS is the
hypothesis that the speakers are different. This value can be computed using a closed form
using the PLDA model. In our code we use the formulation derived by Cumani et al. (2014),
Equation (34). Note, though, that the last term in that equation should not be there (this
mistake was confirmed by one coauthor of the paper).

3. Tied PLDA Model

The tied PLDA model was introduced by Li et al. (2012). The model is a mixture of PLDA
models where the latent variable corresponding to the speaker is tied across components. The
vector representing sample i from speaker si is modeled as

mi = µdi + Vdiysi + Udixi + zi, (4)

where di indicates the mixture component corresponding to sample i, and where

ysi ∼ N(0, I),

xi ∼ N(0, I),

zi ∼ N(0, D−1di ).

Hence, once the mixture component is given, the model reduces to a standard PLDA model.
In this work, we assume that the mixture component is known both during training and
during testing, as in the original work (Li et al., 2012), though the authors note that this is
not a necessary condition. In the simplest case we could take the mixture component to be
the nuisance condition of the sample but, as we will see, this might not be feasible if some
conditions have too few training samples in which case grouping of samples from different
conditions into the same component might be necessary. Note that the latent variable ysi
does not depend on the component. Rather, this variable is tied for all samples from the same
speaker across components. This enables the model to properly represent cross-component
variability.

As for the original PLDA model, a simple PLDA model can be used instead of the full
PLDA model for each component in the mixture. Further, the covariance matrix for the noise
term can be either full or diagonal. In this work, each component is described by a SPLDA
model for simplicity of implementation, since the difference between SPLDA and FPLDA is
very small in practice.

The TPLDA model described by Li et al. (2012) and used here coincides with what Mak
et al. (2016) calls SNR-dependent mixture PLDA model if we assume the SNR to be discrete
rather than continuous so that the posterior probability for each component is fixed to 1 for
the component corresponding to the sample, and to 0 otherwise. The training and scoring
procedures for TPLDA can be found in the supplementary material for Mak et al. (2016).
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4. Joint PLDA Model

In this work, we propose a generalization of the original PLDA model where the nuisance vari-
able is no longer considered independent across samples, but potentially shared (tied) across
samples that correspond to the same nuisance condition. This makes the model symmetric
in the two latent variables corresponding to the speaker and the nuisance condition. To rep-
resent this dependency, we introduce a condition label for each sample, called ci. Given this
label, and the speaker label si, we propose to model vector mi of dimension Rm for sample i
as:

mi = µ+ V ysi + Uxci + zi, (5)

where, as before, ysi is a vector of size Ry and xci is a vector of size Rx, and

ysi ∼ N(0, I),

xci ∼ N(0, I),

zi ∼ N(0, D−1).

The model’s parameters to estimate are λ = {µ, V, U,D}, as in the standard PLDA formu-
lation, but the input data for the training algorithm is now required to have a second set of
labels indicating the nuisance condition of each sample.

The expectation-maximization equations for training this new model are significantly
more involved than for the original PLDA model. This is due to the fact that each speaker
cannot be treated separately from the others since samples from one speaker might be de-
pendent on samples from a different speaker. This creates a potential dependency between
all training samples, which greatly complicates the formulation, increasing the computation
time by orders of magnitude for each EM iteration. Nevertheless, as we will see in the ex-
periments, initializing the model in a smart way basically makes EM unnecessary in our
experiments, reducing the training time of the model to the same order of what is required
to train standard PLDA on the same data. A detailed derivation of the EM algorithm and
scoring procedure for JPLDA is given by Ferrer (2017). In Appendix A we give a summary
of the formulation, including all the equations needed to implement these algorithms. We
have not implemented a minimum divergence step for this model. We plan to add this step
in the future. Yet, given that, as we will see, the smart initialization procedure described
below makes EM unnecessary in our experiments, we believe minimum divergence is unlikely
to result in better models for this approach, at least for the current experiments.

Note that the matrix D in the JPLDA model can be full or diagonal. If we want D
to be diagonal, we simply set D to be the diagonal part of the estimated value for D in
each maximization step of the EM algorithm, as done for the standard PLDA EM algorithm
(Brümmer, 2010a).

4.1. EM Initialization Procedure

The JPLDA model can be randomly initialized using the same procedure as for standard
PLDA described in Section 2.1. We propose an alternative procedure to get the initial
values for the PLDA model, U0, V0 and D0. The procedure first estimates the matrix U0

by training an SPLDA model with condition labels as targets, implicitly absorbing the effect
of the speaker term into the noise term. This PLDA model is used to estimate the effect
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of the condition in the samples, which is then subtracted to obtain condition-compensated
samples. The new training data is then used to estimate another SPLDA model which should
now model the effect of the speaker. This second SPLDA model is used obtain V0 and D0.
Algorithm 1 gives the pseudocode for the proposed initialization algorithm. Note that, as
usually done when training PLDA models, we assume an initial step where µ is set to the
global mean of the data and subtracted from all training samples. The initialization step, as
well as the EM iterations, use the resulting centered samples as input. As we will see this
“smart” initialization leads to such a good starting point that EM iterations are unnecessary
in our experiments.

Algorithm 1 Smart EM initialization approach for JPLDA. The matrix M , of size N ×
Rm contains the centered training vectors. Lc and Ls are vectors of size N containing the
condition and speaker labels for the training data, respectively. Function SPLDAtrain returns
the parameters of an SPLDA model (the subspace matrix and the noise precision matrix)
after running 20 EM iterations, while function SPLDAlatent returns the estimated latent
variables for each of the training samples. Note that all samples with the same label have
the same latent variable.
1: procedure JPLDAInitialization(M,Lc, Ls, Rx, Ry)
2: U0, D = SPLDAtrain(M,Lc, Rx)
3: X = SPLDAlatent(M,Lc, U0, D) . X is a matrix of size N ×Rx
4: Mc = M −XUT0
5: V0, D0 = SPLDAtrain(Mc, Ls, Ry)
6: return V0, U0, D0

4.2. Scoring

As for standard PLDA, we define the score as the likelihood ratio between the two hypotheses:
that the speakers are the same and that the speakers are different. Nevertheless, in this case
we need to marginalize both likelihoods over two new hypotheses: that the nuisance conditions
are the same and that they are different. This is because, in general, we cannot assume that
the nuisance condition is known during testing. Hence, the LR is computed as follows:

LR =
p(E, T |HSS , HSC)P (HSC |HSS) + p(E, T |HSS , HDC)P (HDC |HSS)

p(E, T |HDS , HSC)P (HSC |HDS) + p(E, T |HDS , HDC)P (HDC |HDS)
(6)

where, as before, HSS is the hypothesis that the speakers for both sets are the same, and
HDS is the hypothesis that they are different, while HSC is the hypothesis that the nuisance
condition for both sets is the same, and HDC is the hypothesis that they are different. This
LR value can be computed using a closed form derived in Appendix A and, in more detail,
in (Ferrer, 2017).

Note that here we assume that all samples from the enrollment set come from the same
condition and all samples from the test set come from the same condition, which could be
the same or different from the enrollment condition. This is trivially true when the sets are
composed of a single sample, which is the case we consider in the experiments in this paper.
The formulation would become more complex without this assumption since we would need to
consider the possibility that each sample in each set could come from different conditions. In
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(Ferrer, 2017), we also derive the scoring formula for a multi-enrollment single-test case where
the enrollment conditions are known and different from the test condition. This formulation
is used when applying JPLDA to language identification (LID). Experiments on LID will be
the subject of another paper. Further, the generalization of the scoring formula to multiple
enrollment or test samples with unknown conditions will be considered in future work.

Another implicit assumption made in Equation (6) is that the conditions in the test
trials have not been seen during training. This assumption is also made with respect to the
speakers, both in JPLDA and standard PLDA scoring. While, in many applications, the
assumption that test speakers are unseen during training is appropriate, this may not always
be the case for nuisance conditions. In particular, in our experiments, where the nuisance
condition is given by the language spoken in the signal, this assumption does not hold for
some trials, since some of the test languages are seen during training. In the future, we plan
to relax this assumption, which may allow for further performance improvements.

The scoring formula above depends on two prior probabilities, the probability that the en-
rollment and test conditions are the same given that the speakers are the same, P (HSC |HSS),
and the probability that the conditions are the same given that the speakers are differ-
ent, P (HSC |HDS). The other two prior probabilities are dependent on these two since
P (HSC |HSS) + P (HDC |HSS) = 1 and P (HSC |HDS) + P (HDC |HDS) = 1. These two in-
dependent prior probabilities are parameters that could be computed from the training data,
tuned using a development set, or set to arbitrary values based on what is known about the
test data. In some applications, the nuisance condition might be known also in testing. In
that case, the same-condition priors can be set to 1.0 for same-condition trials and to 0 for
different-condition trials.

5. Experimental Setup

In this section we describe the task, the performance metrics, the data used for the exper-
iments and the procedure used to convert each audio sample to a fixed-length vector to be
modeled by the different PLDA methods.

5.1. Multilanguage Speaker Verification

The task considered for our experiments is speaker verification, which consists of determining
whether two sets of samples, an enrollment and a test set, belong to the same speaker or not.
Here we consider the simplest case, where both enrollment and test sets each contain a single
speech sample. A pair of enrollment and test samples is called a trial. A trial is a target trial
if the enrollment and test speakers are the same and an impostor trial if the two speakers are
different. In this paper we explore the problem of multilanguage speaker verification where
test trials can be composed of two samples in the same language (same-language trials) or
two samples in different languages (cross-language trials).

Most state-of-the-art speaker verification systems are inherently language-independent in
the sense that they do not use information about the language spoken in order to generate
the output score. Yet, this does not mean that they are robust to language variation. In fact,
speaker verification performance is known to degrade significantly in cross-language trials as
well as in same-language trials from languages not found in the training set (Auckenthaler
et al., 2001; Misra and Hansen, 2014; Rozi et al., 2016).

8



Joint PLDA for Simultaneous Modeling of Two Factors

Rozi et al. (2016) discusses a problem that occurs when training PLDA models with mul-
tilingual data: the distribution of the speaker factors becomes broader to cover the different
languages that a speaker might speak, which could result in suboptimal performance on same-
language trials. They propose to mitigate this problem by training a standard PLDA model
using both language and speaker as targets (i.e., samples from the same speaker but different
language are considered as different speakers). This language-aware PLDA model performs
significantly better on same-language trials than the model trained with speaker targets, but
degrades on cross-language trials, since it cannot model cross-language variation. JPLDA, on
the other hand, can simultaneously model language and speaker factors, allowing the speaker
factors to keep a sharper distribution, while still modeling the effect of language, resulting
in improved performance both in same-language and cross-language trials with respect to
standard PLDA.

5.2. Performance Metrics

We compute performance using the equal-error rate (EER) and detection error (DET) curves.
The DET curves and the EER measure the performance of a system that uses the scores (in
our case, the LRs) to make final decisions on the label of each sample by comparing these
scores with a decision threshold. Samples whose scores are above the threshold are labeled
as targets and samples whose scores are below the threshold are labeled as impostors. Two
types of error are then possible: (1) misses, the true target trials that are labeled as impostors
by the system, and (2) false alarms, the impostor trials that are labeled as targets by the
system. The EER is given by the miss rate when the decision threshold is set such that the
miss rate is equal to the false alarm rate.

DET curves (Martin et al., 1997) are a variation over the traditional receiver operat-
ing characteristic (ROC) curves that have been widely used for speaker verification for two
decades. A DET curve is a plot of the false alarm rate versus the miss rate obtained while
sweeping a decision threshold over a certain range where the axes are transformed to a probit
scale. The probit transformation, the inverse of the cumulative distribution function of the
standard normal distribution, converts the miss versus false alarm rate curve into a straight
line if the score distribution for the two classes is Gaussian with the same standard devia-
tion (Martin et al., 1997), which is a reasonable approximation for many speaker verification
systems.

5.3. Training Data

We consider two training conditions, one that includes all our available training data (FULL)
and a subset that keeps only one language for each speaker (MONOLING). The second con-
dition is designed to help us analyze performance of the PLDA methods under this extremely
challenging scenario where no explicit information is available in the training data of the
effect that language has on the vectors representing the samples.

The FULL training set is composed of:

• Switchboard Cellular Part 1 (Graff et al., 2001) and Cellular Part 2 (Graff et al., 2004),
consisting of English cellphone conversations

• Switchboard 2 Phase 2 (Graff et al., 1999) and Phase 3 (Graff et al., 2002) samples,
consisting of English telephone conversations
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• Mixer data (Cieri et al., 2007) from the 2004 to 2008 speaker recognition evaluations
organized by the National Institute of Standards and Technology (NIST). This data
contains English samples recorded both on telephone and microphone channels and non-
English samples recorded on telephone channels. With very few exceptions, speakers
that recorded non-English samples also recorded English samples. Only one speaker has
data in two non-English languages and no data in English. Only a subset of this data is
used for training, leaving some speakers out for testing (Section 5.4). We also discard
data from languages for which only one or two speakers are available and samples where
the language was unavailable or ambiguous (e.g., more than one language listed in the
language key) in NIST’s keys.

The MONOLING training set is created by randomly keeping the samples from only one
of the languages spoken by each speaker from the FULL training set.

Finally, in Section 6.4, we analyze results when subsetting these two training sets to
contain a more balanced representation of channels while keeping all data from bilingual
speakers for the FULL training set. Specifically, we subset the FULL training set to discard all
the telephone data from speakers that do not have data in both English and another language.
This is data that is not adding much new information, since all non-English data is recorded
over telephone line, and all speakers with non-English data also have telephone recordings
in English. By subsetting the data this way, we achieve a more balanced representation of
the telephone data with respect to the microphone data, while emphasizing the data from
bilingual speakers, which is a very small minority on the original set including all the data.
To create the subset for the MONOLING training set, we simply use the samples that appear
in the subset from the FULL training set and also appear in the MONOLING set.

Table 1 shows statistics on the two training sets and their corresponding subsets. The
languages included under “Other” are: Arabic (with 440 samples); Bengali (88); French (25);
Chinese (868); Farsi (25); Hindi (143); Italian (11); Japanese (124); Korean (78); Russian
(478); Spanish (170); Tagalog (26); Thai (185); Vietnamese (169); Chinese Wu (63); and
Cantonese (216).

5.4. Test Data

We consider two testing conditions, one composed of Mixer data and used for development
and one composed of LASRS data and used as held-out set for final evaluation of the selected
methods.

The Mixer test data is composed of telephone samples from Mixer collections (Cieri
et al., 2007) from the 2005 to 2010 NIST speaker recognition evaluations, from speakers not
used for training. We include 119 samples in Arabic from 21 speakers; 200 samples in Russian
from 47 speakers; 309 samples in Thai from 38 speakers; 827 samples in Chinese from 163
speakers; and 5755 samples in English from 701 speakers (including those that also speak
one of the other languages). The trials are created by selecting the same number of target
and impostor same-language and cross-language trials such that the final set of trials is a
balanced union of both types of trials. Further, the same-language trials are created as a
balanced union of English versus non-English trials. The final set of trials contains 11,522
target trials and 858,119 impostor trials.

The LASRS test data is composed of samples from a bilingual, multi-modal voice
corpus (Beck et al., 2004). The corpus is composed of 100 bilingual speakers from each of
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Sample count Speaker count

Name Sel Eng Eng Other Total MonoLing BiLing Total

Mic Phn Phn Eng Other

FULL
all 11017 38382 3109 52508 2764 34 495 3293

subset 11017 3711 2733 17461 207 0 494 701

MONOLING
all 10797 36619 1688 49104 3026 267 0 3293

subset 10797 1948 1332 14077 468 233 0 701

Table 1: Statistics for the four training sets considered in our experiments. “Eng” refers to
English data while “Other” refers to any language other than English. “Phn” refers
to telephone or cellphone data, and “Mic” refers to all other microphones in the
training set. “Monoling” refers to speakers for which we only have samples in a
single language, and “Biling” refers to speakers for which we have samples in two
languages (English plus one other language in most cases).

three languages: Arabic, Korean and Spanish. In all cases, the other language of the speakers
is English. Each speaker is asked to perform a series of tasks, including talking with a partner
on the phone and reading various texts, in English and also in their native language. Each
task is recorded using several recording devices and repeated in two separate sessions recorded
on different days. The LASRS trials for this work are created by enrolling with data from the
first recorded session and testing on the second recorded session in each of the two spoken
languages. We use only the conversational data from each session. This results in the same
number of same-language and cross-language trials for a total of 848 target trials and 100336
impostor trials for each of seven different microphones: a camcorder microphone (Cm); a
Desktop microphone (Dm); a studio microphone (Sm); an omnidirectional microphone (Om);
a local telephone microphone (Tm); a remote telephone microphone (Tk); and a telephone
earpiece (Ts). For this study, we only consider same-microphone trials for simplicity of
analysis. For more details on the collection protocol, see (Beck et al., 2004).

5.5. I-vector Extraction

For validation of the proposed approach, we use a traditional i-vector framework for speaker
recognition (Dehak et al., 2011). I-vectors are fixed-dimensional vectors that attempt to
represent, as fully as the assumptions allow, the characteristics of the speech in an audio
recording. In this framework, each recording is first represented by a sequence of short-term
feature vectors x = {x1, . . . , xL}. The length L of this sequence is variable and depends on the
duration of the recording. The i-vector approach then assumes each of these feature vectors xj
is independently drawn from an N-component Gaussian mixture model (GMM) with weights
wi, covariance matrices Ci and means µi + Tiω, for i ∈ {1, . . . , N}. The parameters of the
i-vector model are the set of wi, Ci, µi, and Ti. While weights and covariances are fixed for
all recordings, the means vary in a subspace determined by the matrices Ti. Each recording
is then modeled by a different GMM, determined by the vector ω. These vectors are assumed
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to have a prior normal standard distribution. The mean of the posterior distribution of ω
given the sequence of features x is the i-vector, used to represent the recording.

The posterior distribution of the i-vector model is intractable. It cannot be used in an EM
algorithm to obtain the model’s parameters or even to obtain the i-vectors for a new sample,
given the model. A mean-field Variational Bayes (VB) EM approach can be used to estimate
the model’s parameters and the i-vectors, as described by Brümmer (2015). In this approach,
the parameters are iteratively reestimated, along with the posterior distribution for ω and
the responsibilities for each recording. The responsibilities are variational parameters that
can be interpreted as soft assignments for the frames to each of the N components of the
model.

In the classical i-vector approach, though, the parameters wi, Ci and µi are fixed in an
initial step. They are given by the weights, covariances and means of a GMM, called the
universal background model (UBM), trained using recordings from many different speakers.
An approximate posterior distribution of ω is then obtained using a simplifying assumption:
the responsibilities are set to be the UBM state posteriors. With the responsibilities and
the wi, Ci and µi parameters fixed, the Ti matrices are estimated by maximizing the VB
lower bound. Finally, once the parameters of the model have been estimated, i-vectors are
extracted as the mean of the approximate posterior distribution of ω given the features for
the recording, again fixing the responsibilities to be the UBM state posteriors.

In our experiments, the process for extracting an i-vector to represent a variable-length
speech recording is as follows. The first 20 mel-frequency cepstral coefficients (MFCCs) are
extracted from the audio signal using a 25ms window every 10ms. MFCCs are an acoustic
feature vector that captures information regarding the amplitude of different frequencies in
a similar manner to how sounds are perceived by the human ear (Davis and Mermelstein,
1980). The MFCCs are appended with deltas and double deltas to help capture the dynamics
of speech over time (e.g., Gales and Young, 2008). This results in a feature vector of 60
dimensions, with 100 frames (of feature vector) per second.

Speech activity detection (SAD) is then applied to remove any frames that do not contain
speech. For this purpose we use a deep neural network (DNN)-based model trained on
telephone and microphone data from a combination of Fisher (Cieri et al., a,b), Switchboard
(Graff et al., 2001, 2004, 1999, 2002) and Mixer data (Cieri et al., 2007), as well as a 30-
minute long dual-tone multi-frequency (DTMF) signal without speech, and a set of 3740
signals where speech from the Fisher corpora was corrupted with non-vocal music at different
SNR levels. The ground truth labels used to train the DNN were obtained using our previous
SAD system which consisted of a speech/non-speech hidden Markov model (HMM) decoder
and various duration constraints. This system performed very well but was slow, complex
and hard to retrain given new data. The labels for the corrupted data were obtained from
the clean signals. As input to the SAD system we use MFCC features, mean and variance
normalized over each waveform, except for the C0 coefficient, for which the maximum rather
than the mean is subtracted before dividing by the standard deviation. The normalized
features are concatenated over a window of 31 frames. The resulting 620-dimensional feature
vector forms the input to a DNN that consists of two hidden layers of sizes 500 and 100.
The output layer of the DNN consists of two nodes trained to predict the posteriors for the
speech and non-speech classes. These posteriors are converted into likelihood ratios using
Bayes rule (assuming a prior of 0.5), and a threshold of 0.5 is applied to obtain the final
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speech regions. For a more detailed description of the DNN-based SAD approach, please see
(Graciarena et al., 2016).

The UBM is then estimated with an EM algorithm using the speech frames from a ran-
dom subset of 10,000 samples (full recordings) of the data used to estimate the Ti matrices
described next. The subspaces Ti are then estimated using the FULL training data described
in Section 5.3, except that samples from languages for which only one or two speakers are
available or where the language was unavailable or ambiguous are not discarded for this pur-
pose. Finally, once the model is trained, the i-vectors for any audio sample can be extracted
using only the speech frames, as in training.

The i-vectors can then be used for determining speaker similarity between two utterances
using PLDA. For the experiments, we process the i-vectors with multiclass linear discrimi-
nant analysis (LDA) trained on the same training data used for PLDA, after which we sub-
tract the mean over the training data and perform length normalization (Garcia-Romero and
Espy-Wilson, 2011). The length-normalization step serves to better satisfy the Gaussianity
assumption behind PLDA.

6. Results

In this section we compare results for different EM initialization techniques, parameter set-
tings and training data for the proposed and the baseline PLDA techniques described in
previous sections.

The nuisance condition for JPLDA in these experiments is the language spoken in the
sample. During training, this label is known; during scoring, the label is marginalized to
compute the LR, unless otherwise indicated. For TPLDA, on the other hand, we cannot
take the mixture component to be the language spoken in the sample. This is because we
do not have enough training speakers for each language to train a good PLDA model for
each component. Hence, we consider a two-component model with a component modeling all
English data and another component modeling the non-English data. This, as we will see,
turns out to be a good model when matched data is available for training both components.
Note that our implementation of TPLDA assumes that the mixture component is given both
in training and in scoring. This is possible in our experiments because we have the language
spoken during testing.

For SPLDA, FPLDA and JPLDA, the LDA dimension is set to 400; no dimensionality
reduction is done in these cases but the data is still transformed by the LDA matrix, centered
and length normalized. For TPLDA, on the other hand, we use an LDA dimension of 200,
because we found that this value gives significantly better performance than keeping the
original dimension of 400.

The speaker and language ranks for all experiments in this section are fixed to 200 and
16, respectively. These values were chosen for being optimal or approximately optimal for
all methods under study (FPLDA, SPLDA and JPLDA) when using all available training
data. The language rank of 16 is the largest rank that can be used for JPLDA. This value
turned out to be optimal for JPLDA. FPLDA is largely insensitive to this parameter, giving
very similar performance for language ranks between 5 and 16. Unless otherwise stated, all
JPLDA results are obtained using P (HSC |HSS) = P (HSC |HDS) = 0.5. For TPLDA we use
a diagonal matrix for the covariance of the noise model which proved to be slightly better
than a full covariance.
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Figure 1: Comparison of performance as a function of the number of EM iterations on the
Mixer test data using all available training data, for random and smart initialization
for three different PLDA models. Note that a log scale is used for the x-axis.

All tuning decisions above were made based solely on the results on Mixer test data.

6.1. Initialization and Convergence of Training Procedure

We first show results for SPLDA, FPLDA and JPLDA as a function of the number of EM
iterations run for the two initialization procedures, random and smart, explained in Sections
2.1 and 4.1. For FPLDA, no standard way exists of which we are aware to smartly initialize
all parameters of the model. In this case, we only show results for random initialization. For
this section, we use the FULL training data without subsetting and test on the Mixer data.

Results in Figure 1 show that EM iterations are essential when random initialization is
used, leading to large gains over the initial random model as the iterations progress and
converging to an approximately stable value when reaching 50 iterations. On the other hand,
when smart initialization of SPLDA or JPLDA is used, EM iterations are not necessary on
this data set. In fact, JPLDA performance with smart initialization slightly degrades for
larger number of iterations, probably due to overfitting of the training data. For this reason,
for the rest of the experiments we use only one iteration of EM for JPLDA, though zero
iterations could also be safely used.

6.2. Prior Probability of Same Language in JPLDA

In this section we show JPLDA results on the Mixer development set when using all available
training data as a function of the prior probabilities of same language, P (HSC |HSS) and
P (HSC |HDS) (see Section 4.2). We fix these two parameters to the same value and sweep
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this value between 0 and 1 at 0.1 steps. We show results on the full test data but also split
the data into same-language and cross-language trials. We compare these results with those
we would obtain by knowing the language of each sample a priori and using this knowledge
during scoring to set the priors appropriately as explained in Section 4.2.

Figure 2 shows performance as a function of the probability of same language parameter.
Values below 0.1 are optimal for the cross-language trials, while values above 0.1 and below
1.0 are optimal for same-language trials. The fact that a probability of same language of 1.0 is
not optimal for same-language trials might be due to some samples including code-switching,
making trials involving these samples not strictly same-language trials. Further, a value lower
than 1.0 for same-language trials may better accommodate the variation in accent that takes
place when people speak to different interlocutors. Once all trials are pooled together, values
between 0.3 and 0.8 give almost identical performance. For this range of values, we can also
see that performance is very close to what we would obtain if the language of the test files
was known during scoring (the red dashed line in the plot). This performance is obtained
by setting the probability of same language to 1.0 for same-language trials and to 0.0 for
cross-language trials. For the remaining experiments, we use a probability of same language
of 0.5.

Figure 2 shows that the same-language and different-language subsets have a significantly
lower EER than the pooled set of trials. This is due to the fact that the scores for both sets
of trials are misaligned with each other. That is, the EER threshold is different for both
sets, leading to a larger EER than that for either set once the trials are pooled together. As
we will see in Section 6.4, Figure 6, this effect is actually more salient in standard PLDA
approaches, with JPLDA mitigating the problem, though not fully solving it.

6.3. Method Comparison

We now compare the performance of the four methods on all test sets from Mixer and LASRS
divided by microphone type using the two training sets: FULL and MONOLING.

The top plot in Figure 3 shows that FPLDA gives slightly better performance than SPLDA
for some channels (mostly the telephone ones) when the FULL training data is used. For
this reason, for the remaining experiments in this paper, we use FPLDA as the baseline.

Comparing the two methods that consider language labels during training, TPLDA and
JPLDA, on the top plot in Figure 3, we see that they both give significant gains over the
baselines on Mixer data, where the channel is matched to the majority of the training data’s
channel. In this case, both approaches succeed in mitigating the effect of language variability.
On the other hand, when the channel is not exactly the same as the one observed most in
training, TPLDA fails to generalize, leading to consistently worse performance than JPLDA.
This is reasonable: while alternative microphone data is observed for the English training
data, only telephone data is observed for the non-English data. This implies that the PLDA
mixture corresponding to non-English data in TPLDA was only learned with telephone data,
resulting in the poorer performance observed on some of the LASRS channels. On the
other hand, JPLDA can leverage the information about alternative microphones learned
from English data for all languages, since the matrix that models this variability is shared
across languages.

In the bottom plot in Figure 3, we see that when only a single language from each
speaker is available for training (that is, the within speaker variation due to language is not
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Figure 2: Comparison of JPLDA performance as a function of the prior probability of same
language on the Mixer test data using the FULL training data. The known-
language line corresponds to the performance on all trials when using the informa-
tion about the test language during scoring.

observed in training), TPLDA leads to a large degradation over both baselines. Note that,
as far as we know, TPLDA had not been tested under this challenging scenario. Rather,
it was tested using training data where each class of interest (e.g., a face) was seen under
all possible conditions (front and profile) (Li et al., 2012). When each class is seen under a
single condition, the TPLDA model basically degenerates to separate (untied) PLDA models,
each learned on the data from its own condition. This implies that the resulting mixture
will be unable to model the cross-language variability, which results in extremely degraded
performance on the cross-language trials. Indeed, our results indicate that the same-language
trials get reasonable TPLDA performance (results not shown here), it is the degradation on
the cross-language trials that affects the overall performance as observed in the plot.

Finally, focusing on JPLDA, we see that significant gains are observed compared to both
baselines using both training sets, with larger relative gains when the training data contains
only a single language per speaker, in which case we find gains from 13% of up to 65% relative
to the FPLDA baseline.

6.4. Training Data Comparison

Finally, in this section we compare the FPLDA baseline and JPLDA using the two train-
ing sets defined in Section 5.3 and their subsets, where we discard telephone samples from
speakers that only have English samples in an attempt to achieve a better balance between
English and non-English samples and telephone and microphone samples.
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Figure 3: Comparison of performance for four PLDA methods on all test sets using both
training sets, FULL and MONOLING. The numbers on top of the JPLDA bars
show the relative gain of JPLDA relative to FPLDA.

Figure 4 shows that, for FPLDA, using the subset is significantly better than using the full
training set for both training conditions, FULL and MONOLING, for most test conditions.
That is, FPLDA benefits from having a more balanced distribution of conditions within the
training data. This is because, in standard PLDA, the samples from all speakers are assumed
to follow the same distribution, regardless of whether these samples are all in English, or both
in English and some other language. Hence, if a large proportion of speakers only have English
samples, the parameters in the PLDA model will be mostly determined by what is optimal
for these speakers, degrading the performance on non-English and cross-language trials.
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Figure 4: Comparison of performance for FPLDA and JPLDA on all test sets using the two
training sets, FULL and MONOLING. For each case, we compare using the full
training set and a subset where we discard telephone samples from speakers that
only have English samples in the FULL training set.

On the other hand, JPLDA does not seem to require subsetting the data2. In fact, for the
FULL training condition, JPLDA leads to similar or better performance (using either the full
training set or the subset) than FPLDA using the subset. For the MONOLING condition, the
advantage of JPLDA over FPLDA is much larger than for the FULL training set, consistently
showing significant gains over the best FPLDA result. Further, for this training condition we

2. Note that the EER on the better performing test sets (LASRS-Sm, LASRS-Tk and LASRS-Tm) corre-
sponds to very few misses, making that metric somewhat unreliable on those sets. However, DET curves
shown later in the section complement the EER results, supporting the overall conclusions made based on
EERs.
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see a consistent trend showing that JPLDA benefits from using the full training set, which
indicates that, contrary to PLDA, JPLDA can handle the imbalance in the full set of data,
successfully leveraging the additional samples missing from the subset.

To complement the EER results in the bar plots, Figure 5 shows the DET curves for all
test sets. We show these curves for the more challenging training condition, MONOLING,
where JPLDA gives the biggest advantage over FPLDA. The plots show that the gains are not
specific to the EER operating point. Rather, JPLDA gives a significant gain over FPLDA
over a very wide range of operating points corresponding to miss and false alarms rates
between 0.01% to 40%. Further, we also see the advantage of using all the available training
data rather than just the subset when using JPLDA, while the opposite is true for FPLDA,
as already observed in the EER bar plots.

Finally, Figure 6 shows EER results on Mixer test data using the two training sets and
their subsets for all trials (as in previous bar plots) as well as for same-language and cross-
language trials. The performance on all trials is the same as in Figure 4. These plots
show that: (1) Both same-language and cross-language trials benefit from using JPLDA,
particularly for the MONOLING training conditions. (2) The JPLDA benefit from using
the complete training sets holds for both same-language and cross-language subsets of trials.
(3) The FPLDA benefit from using the subset only holds on the same-language trials; cross-
language trial performance is degraded or unchanged by subsetting the training data. And
(4) the relative gain from JPLDA is larger once same-language and cross-language trials
are pooled together. This last observation indicates that JPLDA is not only improving
discrimination for each type of trial (same-language and cross-language), but it is also aligning
the distributions of these two types of trials such that when they are pooled together, the
relative gain from using JPLDA is emphasized. Yet, as we can see, JPLDA does not appear
to fully solve the problem, since the pooled performance is still somewhat worse than that of
the subsets. We plan to study the source of the remaining misalignment in the near future.

7. Conclusions

We have proposed a generalization of PLDA where within-class variability factors are no
longer considered independent across samples. The method assumes that the identity of a
nuisance condition is known during training and ties the latent variable corresponding to the
within-class variability across all samples with the same nuisance condition label. During
scoring, a likelihood ratio is computed as for standard PLDA by marginalizing over the
nuisance condition. Hence, the identity of the nuisance condition can be unknown during
testing.

We show results on a multilingual speaker recognition task comparing the proposed
method with two types of standard PLDA models as well as to a tied PLDA model where the
nuisance condition is used to determine the component in a mixture of PLDA models. Our
results show that large relative gains are obtained from using JPLDA when the training data
contains few or no speakers with data in more than one language. That is, the JPLDA model
is able to extrapolate the effect of language from a small proportion or even zero training
speakers with data from more than one language. Standard PLDA models are only able to
mitigate the effect of language when exposed to a significant proportion of training speakers
with data in more than one language.
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Figure 5: DET curves for FPLDA and JPLDA on all test sets using the MONOLING training
set and its subset. The marker over each curve corresponds to the EER point for
that system.

The proposed JPLDA method can be used for any task for which standard PLDA is
used whenever a discrete nuisance condition is known during training. Examples include
speaker recognition using channel, speaking style or language labels, among others, as the
sample-dependent nuisance condition, and face recognition using pose as sample-dependent
nuisance condition. The strength of JPLDA lies in its ability to extrapolate the effect that
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Figure 6: Comparison of performance for FPLDA and JPLDA on the Mixer test set on all
trials as well as on same-language and cross-language subsets, using the two training
sets, FULL and MONOLING, and their subsets.

the nuisance condition has on the samples based on few or even no classes (speakers or faces)
seen under several nuisance conditions.

The proposed approach introduces the additional requirement with respect to the original
PLDA approach that the identity of the nuisance condition be known during training. In
future work, we will explore the possibility of automatically detecting the nuisance condi-
tions, using classifiers trained on data for which the factors are known or using clustering
with distance metrics designed to reflect the nuisance of interest. Finally, an interesting gen-
eralization of the proposed approach would be to allow for more than one sample-dependent
nuisance condition. These are directions we plan to explore in the near future.
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Appendix A. JPLDA Formulas

In this appendix we derive the probabilities that are needed during training with the EM
algorithm and during scoring with the likelihood ratio for the proposed JPLDA method.
The derivations closely follow the ones for standard PLDA in (Brümmer, 2010a) with one
main difference: in the new model, most probabilities cannot be formulated by speaker and
then multiplied to get the total probabilities, as is usually done for standard PLDA, since
the condition introduces dependencies across samples from different speakers. Instead, we
formulate all probabilities over all samples.

In the following, we take

Y = {y1, . . . , yS}
X = {x1, . . . , xC}
M = {m1, . . . ,mN}

where S, C and N are the total number of speakers, conditions, and samples, respectively.
Further, we assume that µ = 0. In the general case, as done for standard PLDA, this
parameter is set to the global mean of the training data and subtracted from all samples
before running EM or scoring.

A.1. Probability Distributions

The joint prior for the hidden variables for all the data is given by

p(Y,X) = p(X)p(Y ) ∝ exp(−1

2

∑
s

yTs ys −
1

2

∑
c

xTc xc), (7)

and the full data likelihood is given by

p(M |Y,X, λ) =
∏
i

N(mi|V ysi + Uxci , D
−1) (8)

∝ exp
∑
i

(
−1

2
(mi − V ysi − Uxci)TD(mi − V ysi − Uxci) +

1

2
log |D|

)
.

The joint probability is proportional, as a function of M , X and Y , to the product of the
likelihood and the prior,

p(M,Y,X|λ) ∝ exp

[∑
i

(
−1

2
mT
i Dmi +mT

i DV ysi +mT
i DUxci − xTciJysi

)

−1

2

∑
s

yTs Lsys −
1

2

∑
c

xTc Kcxc

]

where

J = UTDV

Kc = ncU
TDU + I

Ls = nsV
TDV + I
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where nc and ns are the number of samples for condition c and speaker s, respectively.
We can now compute the posterior from two factors:

p(Y,X|M,λ) = p(Y |X,M, λ)p(X|M,λ)

The outer posterior is proportional, as a function of Y , to the joint probability. Keeping only
the terms in the joint probability that depend on Y we get

p(Y |X,M, λ) ∝ exp

[∑
i

(
mT
i DV ysi − xTciJysi

)
− 1

2

∑
s

yTs Lsys

]
∝
∏
s

N(ys|ŷs, L−1s ) (9)

where

ŷs = ỹs − L−1s JT x̄s

ỹs = L−1s V TDfs

x̄s =
∑
i|si=s

xci

fs =
∑
i|si=s

mi

Marginalizing that distribution we can extract the posterior for a single latent variable ys:

p(ys|X,M, λ) = N(ys|ŷs, L−1s ) (10)

The inner posterior is proportional to the joint probability of X and M :

p(X|M,λ) ∝ p(M,X|λ) =
p(Y,X,M |λ)

p(Y |X,M, λ)

∣∣∣∣
Y=0

∝ exp

(∑
c

gTc DUxc −
1

2

∑
c

xTc Kcxc −
∑
c

xTc J ¯̃yc +
1

2

∑
s

x̄Ts JL
−1
s JT x̄s

)

where we have used the candidate’s formula (Besag, 1989) to obtain the joint probability and
where

gc =
∑
i|ci=c

mi

¯̃yc =
∑
i|ci=c

ỹsi =
∑
i|ci=c

L−1si V
TDfsi

We now define vectors which are the concatenation of all individual latent vectors:

X = [xT1 . . . x
T
C ]T

Y = [yT1 . . . y
T
S ]T

and, similarly, for all other vectors. Converting the sums into matrix form, we get

p(X|M,λ) ∝ exp

(
XTΦ− 1

2
X(T2 −HTT4H)X

)
∝ N(X|X̂,Σ) (11)
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where

Σ = (T2 −HTT4H)−1 (12)

X̂ = ΣΦ

Φ = T1G− T3 ¯̃Y

T1 = diagn(UTD,C)

T2 = diag(K1, . . . ,KC)

T3 = diagn(J,C)

T4 = diag(JL−11 JT , . . . , JL−1S JT )

where diagn(M,N) is a block diagonal matrix with matrix M in each of N blocks and
diag(T1, . . . , TN ) is a block diagonal matrix with blocks given by matrices Ti. The matrix H
is of size SRxxCRx, where block Hs,c (Rx rows and columns starting at position (sRx, cRx)
in H) is given by:

Hs,c = ns,cI

where I is the identity matrix of size Rx and ns,c is the number of times that condition c
occurs for speaker s, which could be zero.

As for the outer posterior, we can marginalize the distribution in Equation (11) to get
the distribution for an individual xc

p(xc|M,λ) = N(xc|x̂c,Σc) (13)

where Σc and x̂c are the blocks corresponding to latent variable c in Σ and X̂.

A.2. EM Algorithm

The EM auxiliary function is given by the expected value of the log-likelihood with respect to
the posterior probability of the hidden variables given the data and the previously estimated
model parameters, λk−1.

Q(λk|λk−1) = EX,Y |M,λk−1
[log p(M,Y,X|λk)]

=
N

2
log |D| − 1

2
tr(SD)− 1

2
tr(RW TDW ) + tr(TDW ) + const

where

W = [UV ]

S =
∑
i

mim
T
i

R =
∑
i

〈zizTi 〉

T =
∑
i

〈zi〉mT
i

zi = [xTciy
T
si ]
T

where the 〈 and 〉 symbols stand for the expectation with respect to the distribution of zi
given the data M and the previous parameters λk−1.
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A.2.1. M-Step

Now, differentiating Q with respect to D and W and setting to zero, we get that

D−1 =
1

N
(S −WT )

W T = R−1T

So, the matrices are estimated exactly the same way as in the standard PLDA approach
(Brümmer, 2010a). The additional complexity of JPLDA lies in the forms that R and T
take.

A.2.2. E-Step

To find T and R we use the equations we have obtained for the posterior distributions of xc
and ys (Equations 10 and 13). The two components of T are given by:

Tx =
∑
i

〈xci〉mT
i =

∑
c

x̂cg
T
c

Ty =
∑
s

〈ysi〉mT
i =

∑
s

L−1s (V TDfs − JT ¯̂xs)f
T
s

where we use the law of total expectations to get the expectation of ys from its conditional
expectation and where

¯̂xs =
∑
i|si=s

x̂ci

Finally, we can get the components of R as follows:

Rxx =
∑
i

〈xcixTci〉 =
∑
c

nc(Σc + x̂cx̂
T
c )

Ryx =
∑
i

〈ysixTci〉 =
∑
s

ỹs ¯̂xTs − J̃T ∑
i|si=s

∑
j|sj=s

[
x̂ci x̂

T
cj + Σcj ,ci

]
Ryy =

∑
i

〈ysiyTsi〉 =
∑
s

ns

[
L−1s + ỹsỹ

T
s − ỹs ¯̂xTs J̃ − J̃T ¯̂xsỹ

T
s + J̃T 〈x̄sx̄Ts 〉J̃

]
where J̃ = JL−1s and Σcj ,ci is the block in matrix Σ (Equation 12) corresponding to latent
variables ci and cj .

A.3. Scoring

In this paper we assume all trials are composed of a single enrollment and a single test sample.
That is, the sets E and T in Equation (6) are each composed of a single vector, mE and mT ,
respectively. M is then given by {mE ,mT }. We can now use the formulas derived above
to obtain the LR in Equation (6) where we need to compute four probabilities for the data
given different hypotheses. The probabilities can be obtained using the candidate’s formula
(Besag, 1989):

p(M |hs, hc) =
p(M |Xhc , Yhs)p(Xhc)p(Yhs)

p(Yhs |Xhc ,M)p(Xhc |M,hs)

∣∣∣∣
Xhc=0,Yhs=0

(14)
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where hs ∈ {HSS , HDS} and hc ∈ {HSC , HDC}, and where

Xhc =

{
{x}, if hc = HSC

{xE , xT }, if hc = HDC

Yhs =

{
{y}, if hs = HSS

{yE , yT }, if hs = HDS

That is, the latent variables are two independent vectors for the different-condition and
different-speaker hypotheses and a single vector for the same-condition and same-speaker
hypotheses.

The likelihood in the numerator of Equation (14) is the same for all four combination of
hypotheses since, regardless of whether the latent variables are tied or not, Equation (8) has
the same form. Hence, that term cancels out in the computation of the LR. The priors, on
the other hand, will have one factor for the same-speaker or same-condition case and two
identical factors, once evaluated at 0, for the different-speaker or different-condition case. All
that is left to do is compute the inner and outer posteriors in the denominator of Equation
(14) and evaluate them at 0.

The outer posterior p(Yhs |Xhc ,M), given by Equation (9), takes the same value for both
values of hc when the latent variables are set to 0. Its logarithm is given by

log p(Yhs |Xhc ,M)|0 =

{
1
2k + 1

2 log |L1| − 1
2(m̃E + m̃T )TL−11 (m̃E + m̃T ), if hs = HSS

k + log |L2| − 1
2m̃

T
EL
−1
2 m̃E − 1

2m̃
T
TL
−1
2 m̃T , if hs = HDS

where L2 = V TDV + I, L1 = 2V TDV + I, m̃E = V TDmE , m̃T = V TDmT and k =
−Ry log(2π).

The inner posterior is given in Equation (11). For the scoring scenario, its logarithm is
given by

log p(Xhc |M,hs) =

{
−1

2Rxk −Qhc,hs , if hc = HSC

−Rxk −Qhc,hs , if hc = HDC

where Qhc,hs = 1
2 log |Σhc,hs |+ 1

2ΦT
hc,hs

Σhc,hsΦhc,hs with

ΣHSC ,HSS
=

[
2UTDU + I − 4JL−1S JT

]−1
ΣHSC ,HDS

=
[
2UTDU + I − 2JL−1D JT

]−1
ΣHDC ,HSS

=
[
diagn(KD, 2)− [II]TJL−1S JT [II]

]−1
ΣHDC ,HDS

=
[
diagn(KD, 2)− diagn(JL−1D JT , 2)

]−1
ΦHSC ,HSS

=
(
(m̂E + m̂T )− 2JL−1S (m̃E + m̃T )

)
ΦHSC ,HDS

=
(
(m̂E + m̂T )− JL−1D (m̃E + m̃T )

)
ΦHDC ,HSS

=

[
m̂E − JL−1S (m̃E + m̃T )

m̂T − JL−1S (m̃E + m̃T )

]
ΦHDC ,HDS

=

[
m̂E − JL−1D m̃E

m̂T − JL−1D m̃T

]
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where m̂E = UTDmE and m̂T = UTDmT .
Finally, since the outer posterior is independent of the condition hypothesis, the logarithm

of the LR (LLR) can be written as a sum of terms involving the outer posterior and the inner
posteriors

LLR = LLRo + LLRi

where

LLRo = log
p(YHDS

|Xhc ,M)

p(y)p(YHSS
|Xhc ,M)

∣∣∣∣
0

= log |L2| −
1

2
log |L1|+

1

2
m̃T
E(L−11 − L

−1
2 )m̃E +

1

2
m̃T
T (L−11 − L

−1
2 )m̃T + m̃T

TL
−1
1 m̃E

LLRi = log
p(x)p(XHSC

|M,HSS)−1PSS + p(x)2p(XHDC
|M,HSS)−1PDS

p(x)p(XHSC
|M,HDS)−1PSD + p(x)2p(XHDC

|M,HDS)−1PDD

∣∣∣∣
0

= log (exp(QHSC ,HSS
)PSS + exp(QHDC ,HSS

)PDS)−
log (exp(QHSC ,HDS

)PSD + exp(QHDC ,HDS
)PDD)

where we use the fact that log p(x)|0 = −1
2Rxk and log p(y)|0 = −1

2Ryk, and where PSS =
P (HSC |HSS), PSD = P (HSC |HDS), PDS = P (HDC |HSS), and PDD = P (HDC |HDS).

References

R. Auckenthaler, M. J. Carey, and J. S. D. Mason. Language dependency in text-independent
speaker verification. In Proc. ICASSP, Salt Lake City, May 2001.

S. D. Beck, R. Schwartz, and H. Nakasone. A bilingual multi-modal voice corpus for language
and speaker recognition (LASR) services. In Proc. Odyssey-04, Toledo, Spain, May 2004.

J. Besag. A candidate’s formula: A curious result in bayesian prediction. Biometrika, 76(1):
183–183, 1989.
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M. Senoussaoui, P. Kenny, N. Brümmer, N.mmer, E. De Villiers, and P. Dumouchel. Mix-
ture of PLDA models in i-vector space for gender-independent speaker recognition. In
Proc. Interspeech, pages 25–28, Florence, Italy, August 2011.

Z. Shi, L. Liu, and R. Liu. Multi-view (joint) probability linear discrimination analysis for
multi-view feature verification. arXiv:1704.06061, 2017.

A. Sizov, K. A. Lee, and T. Kinnunen. Unifying probabilistic linear discriminant analysis
variants in biometric authentication. In Joint IAPR International Workshops on Statistical
Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR), pages 464–475. Springer, 2014.

29


	Introduction
	Standard PLDA Models
	EM Initialization Procedure
	Scoring

	Tied PLDA Model
	Joint PLDA Model
	EM Initialization Procedure
	Scoring

	Experimental Setup
	Multilanguage Speaker Verification
	Performance Metrics
	Training Data
	Test Data
	I-vector Extraction

	Results
	Initialization and Convergence of Training Procedure
	Prior Probability of Same Language in JPLDA
	Method Comparison
	Training Data Comparison

	Conclusions
	JPLDA Formulas
	Probability Distributions
	EM Algorithm
	M-Step
	E-Step

	Scoring


