
Journal of Machine Learning Research 20 (2019) 1-47 Submitted 3/18; Revised 4/19; Published 4/19

Redundancy Techniques for Straggler Mitigation in
Distributed Optimization and Learning

Can Karakus cakarak@amazon.com
Amazon Web Services∗

East Palo Alto, CA 94303, USA

Yifan Sun ysun13@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

Suhas Diggavi suhas@ee.ucla.edu
Department of Electrical and Computer Engineering
University of California, Los Angeles
Los Angeles, CA 90095, USA

Wotao Yin wotaoyin@math.ucla.edu

Department of Mathematics

University of California, Los Angeles

Los Angeles, CA 90095, USA

Editor: Tong Zhang

Abstract

Performance of distributed optimization and learning systems is bottlenecked by “straggler”
nodes and slow communication links, which significantly delay computation. We propose
a distributed optimization framework where the dataset is “encoded” to have an over-
complete representation with built-in redundancy, and the straggling nodes in the system
are dynamically treated as missing, or as “erasures” at every iteration, whose loss is com-
pensated by the embedded redundancy. For quadratic loss functions, we show that under
a simple encoding scheme, many optimization algorithms (gradient descent, L-BFGS, and
proximal gradient) operating under data parallelism converge to an approximate solution
even when stragglers are ignored. Furthermore, we show a similar result for a wider class
of convex loss functions when operating under model parallelism. The applicable classes
of objectives covers several popular learning problems such as linear regression, LASSO,
support vector machine, collaborative filtering, and generalized linear models including lo-
gistic regression. These convergence results are deterministic, i.e., they establish sample
path convergence for arbitrary sequences of delay patterns or distributions on the nodes,
and are independent of the tail behavior of the delay distribution. We demonstrate that
equiangular tight frames have desirable properties as encoding matrices, and propose effi-
cient mechanisms for encoding large-scale data. We implement the proposed technique on
Amazon EC2 clusters, and demonstrate its performance over several learning problems, in-
cluding matrix factorization, LASSO, ridge regression and logistic regression, and compare
the proposed method with uncoded, asynchronous, and data replication strategies.

∗. Work done while at University of California, Los Angeles.

c©2019 Can Karakus, Yifan Sun, Suhas N. Diggavi, Wotao Yin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-148.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-148.html

Karakus, Sun, Diggavi, Yin

Keywords: Distributed optimization, straggler mitigation, proximal gradient, coordinate
descent, restricted isometry property

1. Introduction

Solving learning and optimization problems at present scale often requires parallel and
distributed implementations to deal with otherwise infeasible computational and memory
requirements. However, such distributed implementations often suffer from system-level
issues such as slow communication and unbalanced computational nodes. The runtime
of many distributed implementations are therefore throttled by that of a few slow nodes,
called stragglers, or a few slow communication links, whose delays significantly encumber
the overall learning task Dean and Barroso (2013). In this paper, we propose a distributed
optimization framework based on proceeding with each iteration without waiting for the
stragglers, and encoding the dataset across nodes to add redundancy in the system in order
to mitigate the resulting potential performance degradation due to lost updates.

We consider the master-worker architecture, where the dataset is distributed across a
set of worker nodes which directly communicate to a master node to optimize a global
objective. The encoding framework consists of an efficient linear transformation (coding)
of the dataset that results in an overcomplete representation, which is then partitioned
and distributed across the worker nodes. The distributed optimization algorithm is then
performed directly on the encoded data, with all worker nodes oblivious to the encoding
scheme, i.e., no explicit decoding of the data is performed, and nodes simply solve the
effective optimization problem on the encoded data. In order to mitigate the effect of
stragglers, in each iteration, the master node only waits for the first k updates to arrive
from the m worker nodes (where k ≤ m is a design parameter) before moving on; the
remaining m− k node results are treated as missing (erasures), whose loss is compensated
by the data encoding.

The framework is applicable to both the data parallelism and model parallelism paradigms
of distributed learning, and can be applied to distributed implementations of several pop-
ular optimization algorithms, including gradient descent, limited-memory-BFGS, proximal
gradient, and block coordinate descent. Under data parallelism, we focus on quadratic loss
functions with arbitrary convex regularization terms or arbitrary convex constraint sets,
whereas for model parallelism, we consider general convex objectives where the vector of
parameters act linearly on input data, such as logistic regression. We show that if the linear
transformation is designed to satisfy a spectral condition resembling the restricted isometry
property, the iterates resulting from the encoded version of these algorithms deterministi-
cally converge to an exact solution for the case of model paralellism, and an approximate
one under data parallelism, where the approximation quality only depends on the properties
of encoding and the parameter k. These convergence guarantees are deterministic in the
sense that they hold for any pattern of node delays, i.e., even if an adversary chooses which
nodes to delay at every iteration. In addition, the convergence behavior is independent of
the tail behavior of the node delay distribution, and can tolerate unbounded delay. Such
a worst-case guarantee is not possible for the asynchronous versions of these algorithms,
whose convergence rates deteriorate with increasing node delays. We point out that our
approach is particularly suited to computing networks with a high degree of variability and

2

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

unpredictability, where a large number of nodes can delay their computations for arbitrarily
long periods of time.

Our contributions are as follows: (i) we propose the encoded distributed optimization
framework, and prove deterministic convergence guarantees under this framework for gra-
dient descent, L-BFGS, proximal gradient and block coordinate descent algorithms; (ii) we
provide three classes of encoding matrices, and discuss their properties, and describe how
to efficiently encode with such matrices on large-scale data; (iii) we implement the proposed
technique on Amazon EC2 clusters and compare their performance to uncoded, replication,
and asynchronous strategies for problems such as ridge regression, collaborative filtering,
logistic regression, and LASSO. In these tasks we show that in the presence of stragglers,
the technique can result in significant speed-ups (specific amounts depend on the underlying
system, and examples are provided in Section 5) compared to the uncoded case when we
wait for all workers in each iteration, to achieve the same test error.

Related work. The approaches to mitigating the effect of stragglers can be broadly
classified into three categories: replication-based techniques, asynchronous optimization,
and coding-based techniques.

Replication-based techniques consist of either re-launching a certain task if it is de-
layed, or pre-emptively assigning each task to multiple nodes and moving on with the copy
that completes first. Such techniques have been proposed and analyzed in Gardner et al.
(2015); Ananthanarayanan et al. (2013); Shah et al. (2016); Wang et al. (2015); Yadwadkar
et al. (2016), among others. Our framework does not preclude the use of such system-level
strategies, which can still be built on top of our encoded framework to add another layer
of robustness against stragglers. However, it is not possible to achieve the worst-case guar-
antees provided by encoding with such schemes, since it is still possible for both replicas to
be delayed.

Perhaps the most popular approach in distributed learning to address the straggler prob-
lem is asynchronous optimization, where each worker node asynchronously pushes updates
to and fetches iterates from a parameter server independently of other workers, hence the
stragglers do not hold up the entire computation. This approach was studied in Recht
et al. (2011); Agarwal and Duchi (2011); Dean et al. (2012); Li et al. (2014) (among many
others) for the case of data parallelism, and Liu et al. (2015); You et al. (2016); Peng et al.
(2016); Sun et al. (2017) for coordinate descent methods (model parallelism). Although this
approach has been largely successful, all asynchronous convergence results depend on either
a hard bound on the allowable delays on the updates, or a bound on the moments of the
delay distribution, and the resulting convergence rates explicitly depend on such bounds. In
contrast, our framework allows for completely unbounded delays. Further, as in the case of
replication, one can still consider asynchronous strategies on top of the encoding, although
we do not focus on such techniques within the scope of this paper.

A more recent line of work that address the straggler problem is based on coding-theory-
inspired techniques Tandon et al. (2017); Lee et al. (2018); Dutta et al. (2016); Karakus et al.
(2017a,b); Yang et al. (2017); Halbawi et al. (2017); Reisizadeh et al. (2017). Some of these
works focus exclusively on coding for distributed linear operations, which are considerably
simpler to handle. The works in Tandon et al. (2017); Halbawi et al. (2017) propose coding
techniques for distributed gradient descent that can be applied more generally. However,

3

Karakus, Sun, Diggavi, Yin

‖X1w − y1‖2 ‖X2w − y2‖2 ‖Xmw − ym‖2
N1 N2 Nm

M

Figure 1: Uncoded distributed optimiza-
tion with data parallelism, where X and
y are partitioned as X = [Xi]i∈[m] and
y = [yi]i∈[m].

‖S1(Xw − y)‖2 ‖S2(Xw − y)‖2 ‖Sm(Xw − y)‖2
N1 N2 Nm

M

Figure 2: Encoded setup with data par-
allelism, where node i stores (SiX,Siy),
instead of (Xi, yi). The uncoded case cor-
responds to S = I.

the approach proposed in these works require a redundancy factor of r + 1 in the code,
to mitigate r stragglers. Our approach relaxes the exact gradient recovery requirement of
these works, consequently reducing the amount of redundancy required by the code.

The proposed technique, especially under data parallelism, is also closely related to ran-
domized linear algebra and sketching techniques in Mahoney et al. (2011); Drineas et al.
(2011); Pilanci and Wainwright (2015), used for dimensionality reduction of large convex
optimization problems. The main difference between this literature and the proposed cod-
ing technique is that the former focuses on reducing the problem dimensions to lighten
the computational load, whereas encoding increases the dimensionality of the problem to
provide robustness. As a result of the increased dimensions, coding can provide a much
closer approximation to the original solution compared to sketching techniques. In addi-
tion, unlike these works, our model allows for an arbitrary convex regularizer in addition to
the encoded loss term.

2. Encoded Distributed Optimization

We will use the notation [j] = {i ∈ Z : 1 ≤ i ≤ j}. All vector norms refer to 2-norm, and all
matrix norms refer to spectral norm, unless otherwise noted. The superscript c will refer
to complement of a subset, i.e., for A ⊆ [m], Ac = [m]\A. For a sequence of matrices
{Mi} and a set A of indices, we will denote [Mi]i∈A to mean the matrix formed by stacking
the matrices Mi vertically. The main notation used throughout the paper is provided in
Table 1.

We consider a distributed computing network where the dataset {(xi, yi)}ni=1 is stored
across a set of m worker nodes, which directly communicate with a single master node. In
practice the master node can be implemented using a fully-connected set of nodes, but this
can still be abstracted as a single master node.

It is useful to distinguish between two paradigms of distributed learning and optimiza-
tion; namely, data parallelism, where the dataset is partitioned across data samples, and
model parallelism, where it is partitioned across features (see Figures 1 and 3). We will
describe these two models in detail next.

4

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Notation Explanation
[j] The set {i ∈ Z : 1 ≤ i ≤ j}
m Number of worker nodes
n, p The dimensions of the data matrix X ∈ Rn×p, vector y ∈ Rn×1

kt Number of updates the master node waits for in iteration t, before moving on

ηt Fraction of nodes waited for in iteration, i.e., ηt = kt

m
At The subset of nodes [m] which send the fastest kt updates at iteration t

f(w), f̃(w) The original and encoded objectives, respectively, under data parallelism
g(w) = φ(Xw) The original objective under model parallelism
g̃(v) = φ(XS>v) The encoded objective under model parallelism

h(w) Regularization function (potentially non-smooth)
ν Strong convexity parameter
L Smoothness parameter for h(w) (if smooth), and g(w)
λ Regularization parameter
Ψt Mapping from gradient updates to step {∇fi(t)}i∈At

7→ dt
dt Descent direction chosen by the algorithm

αt, α Step size
M,µ Largest and smallest eigenvalues of X>X, respectively
β Redundancy factor (β ≥ 1)
S Encoding matrix with dimensions βn× n
Si ith row-block of S, corresponding to worker i
SA Submatrix of S formed by {Si}i∈A⊆[m] stacked vertically

Table 1: Notation used in the paper.

2.1. Data parallelism

We focus on objectives of the form

f(w) =
1

2n
‖Xw − y‖2 + λh(w), (1)

where X ∈ Rn×p and y ∈ Rn are the data matrix and data vector, respectively. We assume
each row of X corresponds to a data sample, and the data samples and response variables

can be horizontally partitioned as X =
[
X>1 X>2 · · · X>m

]>
and y =

[
y>1 y>2 · · · y>m

]>
. In

the uncoded setting, machine i stores the row-block Xi (Figure 1). We denote the largest
and smallest eigenvalues of X>X with M > 0, and µ ≥ 0, respectively. We assume λ ≥ 0,
and h(w) ≥ 0 is a convex, extended real-valued function of w that does not depend on data.
Since h(w) can take the value h(w) =∞, this model covers arbitrary convex constraints on
the optimization. Several important learning problems, such as ridge regression, LASSO,
collaborative filtering (solved via alternating minimization), and support vector machine1

fall within this formulaton.
The encoding consists of solving the proxy problem

f̃(w) =
1

2n
‖S (Xw − y) ‖2 + λh(w) =

1

2n

m∑
i=1

‖Si (Xw − y) ‖2︸ ︷︷ ︸
fi(w)

+λh(w), (2)

1. The dual formulation of SVM with squared hinge loss can be solved as a quadratic minimization over
the simplex (Jaggi (2013); Li et al. (2009))

5

Karakus, Sun, Diggavi, Yin

instead, where S ∈ Rβn×n is a designed encoding matrix with redundancy factor β ≥ 1,

partitioned as S =
[
S>1 S>2 · · · S>m

]>
across m machines. Based on this partition, worker

node i stores (SiX,Siy), and operates to solve the problem (2) in place of (1) (Figure 2).
We will denote ŵ ∈ arg min f̃(w), and w∗ ∈ arg min f(w).

In general, the regularizer h(w) can be non-smooth. We will say that h(w) is L-smooth
if ∇h(w) exists everywhere and satisfies

h(w′) ≤ h(w) + 〈∇h(w), w′ − w〉+
L

2
‖w′ − w‖2

for some L > 0, for all w,w′. The objective f is ν-strongly convex if, for all x, y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
ν

2
‖x− y‖2.

Once the encoding is done and appropriate data is stored in the nodes, the optimization
process works in iterations. At iteration t, the master node broadcasts the current iterate
wt to the worker nodes, and wait for kt gradient updates ∇fi(w) to arrive, corresponding to
that iteration, and then chooses a step direction dt and a step size αt (based on algorithm
Ψt that maps the set of gradients updates to a step) to update the parameters. We will
denote ηt = kt

m . We will also drop the time dependence of k and η whenever it is kept
constant.

The set of fastest kt nodes to send gradients for iteration t will be denoted as At.
Once kt updates have been collected, the remaining nodes, denoted Act , are interrupted
by the master node2. Algorithms 1 and 2 describe the generic mechanism of the proposed
distributed optimization scheme at the master node and a generic worker node, respectively.

The intuition behind the encoding idea is that waiting for only kt < m workers prevents
the stragglers from holding up the computation, while the redundancy provided by using a
tall matrix S compensates for the information lost by proceeding without the updates from
stragglers (the nodes in the subset Act).

We next describe the three specific algorithms that we consider under data parallelism,
to compute dt.

Gradient descent. In this case, we assume that h(w) is L-smooth. Then we simply set
the descent direction

dt = −

(
1

2nη

∑
i∈At

∇fi(wt) + λ∇h(wt)

)
.

We keep kt = k constant, chosen based on the number of stragglers in the network, or based
on the desired operating regime.

2. If the communication is already in progress at the time when kt faster gradient updates arrive, the
communication can be finished without interruption, and the late update can be dropped upon arrival.
Otherwise, such interruption can be implemented by having the master node send an interrupt signal,
and having one thread at each worker node keep listening for such a signal.

6

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Limited-memory-BFGS. We assume that h(w) = ‖w‖2, and assume µ + λ > 0. Al-
though L-BFGS is traditionally a batch method, requiring updates from all nodes, its
stochastic variants have also been proposed by Mokhtari and Ribeiro (2015); Berahas et al.
(2016). The key modification to ensure convergence in this case is that the Hessian estimate
must be computed via gradient components that are common in two consecutive iterations,
i.e., from the nodes in At∩At−1. We adapt this technique to our scenario. For t > 0, define
ut := wt − wt−1, and3

rt :=
m

2n |At ∩At−1|
∑

i∈At∩At−1

(∇fi(wt)−∇fi(wt−1)) .

Then once the gradient terms {∇fi(wt)}i∈At
are collected, the descent direction is computed

by dt = −Btg̃t, where g̃t = 1
2ηn

∑
i∈At
∇fi(wt), and Bt is the inverse Hessian estimate for

iteration t, which is computed by

B
(`+1)
t = V >j`,tB

(`)
t Vj`,t + ρj`,tuj`,tu

>
j`,t
, ρj =

1

r>j uj
, Vj = I − ρjrju>j

with j`,t = t − σ̃ + `, B
(0)
t =

r>t rt
r>t ut

I, and Bt := B
(σ̃)
t with σ̃ := min {t, σ}, where σ is

the L-BFGS memory length. Once the descent direction dt is computed, the step size is
determined through exact line search4. To do this, each worker node computes SiXdt, and
sends it to the master node. Once again, the master node only waits for the fastest kt nodes,
denoted by Dt ⊆ [m] (where in general Dt 6= At), to compute the step size that minimizes
the function along dt, given by

αt = −ρ d>t g̃t

d>t X̃
>
DX̃Ddt

, (3)

where X̃D = [SiX]i∈Dt
, and 0 < ρ < 1 is a back-off factor of choice.

Proximal gradient. Here, we consider the general case of non-smooth h(w) ≥ 0, λ ≥ 0.
The descent direction dt is given by

dt = arg min
w

F̃t(w)− wt,

where

F̃t(w) :=
1

2ηn

∑
i∈At

fi(wt) +

〈
1

2ηn

∑
i∈At

∇fi(wt), w − wt

〉
+ λh(w) +

1

2α
‖w − wt‖2.

We keep the step size αt = α and kt = k constant.

3. Note that we assume here that the intersection At∩At−1 is non-empty. This can be ensured by adaptively
choosing kt (waiting for sufficiently many workers) so that At ∩ At−1 6= ∅. This is further discussed in
Section 3. However, our experiments indicate that convergence is still possible even when this condition
does not hold.

4. Note that exact line search is not more expensive than backtracking line search for a quadratic loss, since
it only requires a single matrix-vector multiplication.

7

Karakus, Sun, Diggavi, Yin

Algorithm 1 Generic encoded distributed optimization procedure under data parallelism,
at the master node.

1: Given: Ψt, a sequence of functions that map gradients {∇fi(wt)}i∈At
to a descent

direction dt
2: Initialize w0, α0

3: for t = 1, . . . , T do
4: broadcast wt to all worker nodes
5: wait to receive kt gradient updates {∇fi(wt)}i∈At

6: send interrupt signal to the nodes in Act
7: compute the descent direction dt = Ψt

(
{∇fi (wt)}i∈At

)
8: determine step size αt
9: take the step wt+1 = wt + αtdt

10: end for

Algorithm 2 Generic encoded distributed optimization procedure under data parallelism,
at worker node i.

1: Given: fi(w) = ‖Si(Xw − y)‖2
2: for t = 1, . . . , T do
3: wait to receive wt
4: while not interrupted by master do
5: compute ∇fi(wt)
6: end while
7: if computation was interrupted then
8: continue
9: else

10: send ∇fi(wt)
11: end if
12: end for

2.2. Model parallelism

Under the model parallelism paradigm, we focus on objectives of the form

min g(w) := min
w
φ (Xw) = min

w
φ

(
m∑
i=1

Xiwi

)
, (4)

where the data matrix is partitioned as X = [X1 X2 · · · Xm], the parameter vector is

partitioned as w =
[
w>1 w>2 · · · w>m

]>
, φ is convex, and g(w) is L-smooth. Note that

the data matrix X is partitioned horizontally, meaning that the dataset is split across
features, instead of data samples (see Figure 3). This class of objectives is applicable to
any classification or regression problem with generalized linear models, such as logistic
regression, softmax regression, and multinomial regression.

We encode the problem (4) by setting w = S>v, and solving the problem

min
v
g̃(v) := φ

(
XS>v

)
= min

v
φ

(
m∑
i=1

XS>i vi

)
, (5)

8

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

N1 N2 Nm

M

φ (X1w1 + z1) φ(X2w2 + z2) φ(Xmwm + zm)

Figure 3: Uncoded distributed optimiza-
tion with model parallelism, where ith
node stores the ith partition of the model
wi. For i = 1, . . . ,m, zi =

∑
j 6=iXjwj .

N1 N2 Nm

M

φ
(
XS>

1 v1 + z̃1
)

φ(XS>
2 v2 + z̃2) φ(XS>

mvm + z̃m)

Figure 4: Encoded setup with model par-
allelism, where ith node stores the par-
tition vi of the model in the “lifted”
space. For i = 1, . . . ,m, z̃i =

∑
j 6=i uj =∑

j 6=iXS
>
j vj .

where w ∈ Rp and S> =
[
S>1 S>2 · · · S>m

]
∈ Rp×βp (see Figure 4). As a result, worker i

stores the column-block XS>i , as well as the iterate partition vi. Note that we increase
the dimensions of the parameter vector by multiplying the dataset X with a wide encoding
matrix S> from the right, and as a result we have redundant coordinates in the system.
As in the case of data parallelism, such redundant coordinates provide robustness against
erasures arising due to stragglers. Such increase in coordinates means that the problem is
simply lifted onto a larger dimensional space, while preserving the original geometry of the
problem. We will denote ui,t = XS>i vi,t, where vi,t is the parameter iterates of worker i at
iteration t. In order to compute updates to its parameters vi, worker i needs the up-to-date
value of z̃i :=

∑
j 6=i uj , which is provided by the master node at every iteration.

Let S = arg minw g(w), and given w, let w∗ be the projection of w onto S. We will say
that g(w) satisfies ν-restricted-strong convexity (Lai and Yin (2013)) if

〈∇g(w), w − w∗〉 ≥ ν‖w − w∗‖2

for all w. Note that this is weaker than (implied by) strong convexity since w∗ is restricted
to be the projection of w, but unlike strong convexity, it is satisfied under the case where φ
is strongly convex, but X has a non-trivial null space, e.g., when it has more columns than
rows.

For a given w ∈ Rp, we define the level set of g at w as Dg(w) := {w′ : g(w′) ≤ g(w)}.
We will say that the level set at w0 has diameter R if

sup
{
‖w − w′‖ : w,w′ ∈ Dg(w0)

}
≤ R.

As in the case of data parallelism, we assume that the master node waits for k updates
at every iteration, and then moves onto the next iteration (see Algorithms 3 and 4). We
similarly define At as the set of k fastest nodes in iteration t, and also define

Ii,t =

{
1 i ∈ At
0 i /∈ At.

9

Karakus, Sun, Diggavi, Yin

Algorithm 3 Encoded block coordinate descent at worker node i.

1: Given: Xi, vi.
2: for t = 1, . . . , T do
3: wait to receive (Ii,t−1, z̃i,t)
4: if Ii,t == 1 then
5: take step vi,t = vi,t−1 + di,t−1

6: else
7: set vi,t = vi,t−1

8: end if
9: while not interrupted by master do

10: compute next step di,t = αSiX
>∇φ

(
XS>i vi,t + z̃i,t

)
11: compute ui,t = XS>i vi,t
12: end while
13: if computation was interrupted then
14: continue
15: else
16: send ui,t to master node
17: end if
18: end for

Algorithm 4 Encoded block coordinate descent at the master node.

1: for t = 1, . . . , T do
2: for i = 1, . . . ,m do
3: send (Ii,t−1, z̃i,t) to worker i
4: end for
5: wait to receive k updated parameters {ui,t}i∈At

6: send interrupt signal to the nodes in Act
7: set ui,t = ui,t−1 for i ∈ Act
8: compute z̃i,t =

∑
j 6=i uj,t for all i

9: end for

Under model parallelism, we consider block coordinate descent, described in Algo-
rithm 3, where worker i stores the current values of the partition vi, and performs updates
on it, given the latest values of the rest of the parameters. The parameter estimate at time
t is denoted by vi,t, and we also define z̃i,t =

∑
j 6=i ui,t =

∑
j 6=iXS

>
j vj . The iterates are

updated by

vi,t − vi,t−1 = ∆i,t :=

{
−α∇ig̃(vt−1), if i ∈ At

0, otherwise,

for a step size parameter α > 0, where∇i refers to gradient only with respect to the variables
vi, i.e., ∇g̃ = [∇ig̃]i∈[m]. Note that if i /∈ At then vi does not get updated in worker i, which
ensures the consistency of parameter values across machines. This is achieved by lines 4–8
in Algorithm 3. Worker i learns about this in the next iteration, when Ii,t−1 is sent by the
master node.

10

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

3. Main Theoretical Results: Convergence Analysis

In this section, we prove convergence results for the algorithms described in Section 2.
Note that since we modify the original optimization problem and solve it obliviously to this
change, it is not obvious that the solution has any optimality guarantees with respect to
the original problem. We show that, it is indeed possible to provide convergence guarantees
in terms of the original objective under the encoded setup.

3.1. A spectral condition

In order to show convergence under the proposed framework, we require the encoding matrix
S to satisfy a certain spectral criterion on S. Let SA denote the submatrix of S associated
with the subset of machines A, i.e., SA = [Si]i∈A. Then the criterion in essence requires that
for any sufficiently large subset A, SA behaves approximately like a matrix with orthogonal
columns. We make this precise in the following statement.

Definition 1 Let β ≥ 1, and 1
β ≤ η ≤ 1 be given. A matrix S ∈ Rβn×n is said to satisfy

the (m, η, ε)-block-restricted isometry property ((m, η, ε)-BRIP) if for any A ⊆ [m] with
|A| ≥ ηm,

(1− ε)In �
1

η
S>ASA � (1 + ε)In. (6)

Note that this is similar to the restricted isometry property used in compressed sensing
(Candes and Tao (2005)), except that we do not require (6) to hold for every submatrix of
S of size Rηn×n. Instead, (6) needs to hold only for the submatrices of the form SA = [Si]i∈A,
which is a less restrictive condition. In general, it is known to be difficult to analytically
prove that a structured, deterministic matrix satisfies the general RIP condition. Such diffi-
culty extends to the BRIP condition as well. However, it is known that i.i.d. sub-Gaussian
ensembles and randomized Fourier ensembles satisfy this property (Candes and Tao (2006)).
In addition, numerical evidence suggests that there are several families of constructions for
S whose submatrices have eigenvalues that mostly tend to concentrate around 1. We point
out that although the strict BRIP condition is required for the theoretical analysis, in prac-
tice the algorithms perform well as long as the bulk of the eigenvalues of SA lie within a
small interval (1 − ε, 1 + ε), even though the extreme eigenvalues may lie outside of it (in
the non-adversarial setting). In Section 4, we explore several classes of matrices and discuss
their relation to this condition.

3.2. Convergence of encoded gradient descent

We first consider the algorithms described under data parallelism architecture. The follow-
ing theorem summarizes our results on the convergence of gradient descent for the encoded
problem.

Theorem 2 Let wt be computed using encoded gradient descent with an encoding matrix
that satisfies (m, η, ε)-BRIP, with step size αt = 2ζ

M(1+ε)+λL for some 0 < ζ ≤ 1, for all

t. Let {At} be an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t.
Then, for f as given in (1),

11

Karakus, Sun, Diggavi, Yin

1.

1

t

t∑
τ=1

f(wτ)− κ1f(w∗) ≤
4εf(w0) + 1

2α‖w0 − w∗‖2

(1− 7ε) t

2. If f is in addition ν-strongly convex, then

f(wt)−
κ2

2(κ2 − γ)

1− κ2γ
f (w∗) ≤ (κ2γ)t f(w0), t = 1, 2, . . . ,

where κ1 = 1+3ε
1−7ε , κ2 = 1+ε

1−ε , and γ =
(

1− 4νζ(1−ζ)
M(1+ε)+λL

)
, where ε is assumed to be small

enough so that κ2γ < 1.

The proof is provided in Appendix A, which relies on the fact that the solution to the
effective “instantaneous” problem corresponding to the subset At lies in a bounded set
{w : f(w) ≤ κf(w∗)} (where κ depends on the encoding matrix and strong convexity
assumption on f), and therefore each gradient descent step attracts the iterate towards a
point in this set, which must eventually converge to this set. Theorem 2 shows that encoded
gradient descent can achieve the standard O

(
1
t

)
convergence rate for the general case5, and

linear convergence rate for the strongly convex case, up to an approximate minimum. For
the convex case, the convergence is shown on the running mean of past function values,
whereas for the strongly convex case we can bound the function value at every step. Note
that although the nodes actually minimize the encoded objective f̃(w), the convergence
guarantees are given in terms of the original objective f(w). Note that under the strongly
convex case, linear convergence requires condition κ2γ < 1. Since γ, which is slightly smaller
than 1, is a decreasing function of the fraction of the strong convexity parameter to the
smoothness parameter, the practical implication of this is that the less the curvature of the
function (the smaller the strong convexity parameter ν), the more workers we need to wait
in each iteration, so that κ2 is small enough to satisfy κ2γ < 1, which ensures the linear
convergence guarantee of the theorem. Note that even if this condition is not satisfied, the
algorithm can still converge, but not necessarily at the linear rate promised by the theorem.

Theorem 2 provides deterministic, sample path convergence guarantees under any (ad-
versarial) sequence of active nodes {At}, which is in contrast to the stochastic methods,
which show convergence typically in expectation. Further, the convergence rate is not af-
fected by the tail behavior of the delay distribution, since the delayed updates of stragglers
are not applied to the iterates.

Note that since we do not seek exact solutions under data parallelism, we can keep the
redundancy factor β fixed regardless of the number of stragglers. Increasing number of
stragglers in the network simply results in a looser approximation of the solution, allowing
for a graceful degradation. This is in contrast to existing work Tandon et al. (2017) seeking
exact convergence under coding, which shows that the redundancy factor must grow linearly
with the number of stragglers.

5. Since the convergence result is deterministic, the variance reduction factor 1
m

present in stochastic
algorithms does not appear in our convergence rate.

12

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

3.3. Convergence of encoded L-BFGS

We consider the variant of L-BFGS described in Section 2. For our convergence result
for L-BFGS, we need another assumption on the matrix S, in addition to (6). Defining
S̆t = [Si]i∈At∩At−1

for t > 0, we assume that for some δ > 0,

δI � S̆>t S̆t (7)

for all t > 0. Note that this requires that one should wait for sufficiently many nodes
to send updates so that the overlap set At ∩ At−1 has more than 1

β nodes, and thus the

matrix S̆t can be full rank. When the columns of X are linearly independent, this is
satisfied if η ≥ 1

2 + 1
2β in the worst-case, and in the case where node delays are i.i.d. across

machines, it is satisfied in expectation if η ≥ 1√
β

. One can also choose kt adaptively so that

kt = min
{
k : |At(k) ∩At−1| > 1

β

}
. We note that although this condition is required for the

theoretical analysis, the algorithm may perform well in practice even when this condition
is not satisfied.

We first show that this algorithm results in stable inverse Hessian estimates under the
proposed model, under arbitrary realizations of {At} (of sufficiently large cardinality), which
is done in the following lemma.

Lemma 3 Let µ + λ > 0. Then there exist constants c1, c2 > 0 such that for all t, the
inverse Hessian estimate Bt satisfies c1I � Bt � c2I.

The proof, provided in Appendix A, is based on the well-known trace-determinant method.
Using Lemma 3, we can show the following convergence result.

Theorem 4 Let µ+ λ > 0, and let wt be computed using the L-BFGS method described in
Section 2, with an encoding matrix that satisfies (m, η, ε)-BRIP. Let {At}, {Dt} be arbitrary
sequences of subsets of [m] with cardinality |At| , |Dt| ≥ ηm for all t. Then, for f as described
in Section 2,

f(wt)−
κ2(κ− γ)

1− κγ
f (w∗) ≤ (κγ)t f(w0),

where κ = 1+ε
1−ε , and γ =

(
1− 4(µ+λ)c1c2

(M+λ)(1+ε)(c1+c2)2

)
, where c1 and c2 are the constants in

Lemma 3.

Similar to Theorem 2, the proof is based on the observation that the solution of the effective
problem at time t lies in a bounded set around the true solution w∗. As in gradient descent,
coding enables linear convergence deterministically, unlike the stochastic and multi-batch
variants of L-BFGS, e.g., Mokhtari and Ribeiro (2015); Berahas et al. (2016).

3.4. Convergence of encoded proximal gradient

Next we consider the encoded proximal gradient algorithm, described in Section 2, for ob-
jectives with potentially non-smooth regularizers h(w). The following theorem characterizes
our convergence results under this setup.

13

Karakus, Sun, Diggavi, Yin

Theorem 5 Let wt be computed using encoded proximal gradient with an encoding matrix
that satisfies (m, η, ε)-BRIP, with step size αt = α < 1

M , and where ε < 1
7 . Let {At} be

an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t. Then, for f as
described in Section 2,

1. For all t,

1

t

t∑
τ=1

f(wτ)− κf(w∗) ≤
4εf(w0) + 1

2α‖w0 − w∗‖2

(1− 7ε) t
,

2. For all t,

f(wt+1) ≤ κf(wt),

where κ = 1+7ε
1−3ε .

As in the previous algorithms, the convergence guarantees hold for arbitrary sequences of
active nodes {At}. Note that as in the gradient descent case, the convergence is shown on
the mean of past function values. Since this does not prevent the iterates from having a
sudden jump at a given iterate, we include the second part of the theorem to complement
the main convergence result, which implies that the function value cannot increase by more
than a small factor of its current value.

3.5. Convergence of encoded block coordinate descent

Finally, we consider the convergence of encoded block coordinate descent algorithm. The
following theorem characterizes our main convergence result for this case.

Theorem 6 Let wt = S>vt, where vt is computed using encoded block coordinate descent
as described in Section 2. Let S satisfy (m, η, ε)-BRIP, and the step size satisfy α < 1

L(1+ε) .

Let {At} be an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t. Let
the level set of g at the first iterate Dg(w0) have diameter R. Then, for g(w) = φ(Xw) as
described in Section 2, the following hold.

1. If φ is convex, then

g(wt)− g(w∗) ≤ 1
1
π0

+ Ct
,

where π0 = g(w0)− g(w∗), and C = (1−ε)α
R2

(
1− αL′

2

)
.

2. If g is ν-restricted-strongly convex, then

g(wt)− g(w∗) ≤
(

1− 1

ξ

)t
(g(w0)− g(w∗)) ,

where ξ = 2
ν(1−ε)α

(
1− L(1+ε)α

2

)−1
.

14

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Theorem 6 demonstrates that the standard O
(

1
t

)
rate for the general convex, and linear

rate for the strongly convex case can be obtained under the encoded setup. Similar to the
previous cases, encoding allows for deterministic convergence guarantees under adversarial
failure patterns.

Note that unlike the data parallelism setup, we can achieve exact minimum under model
parallelism, since the underlying geometry of the problem does not change under encoding;
the same objective is simply mapped onto a higher-dimensional space, which has redundant
coordinates. In every iteration, such redundancy serves as a “soft” error correction mecha-
nism, by allowing each worker to receive sufficient information about the up-to-date values
of the rest of the parameters hosted in the other nodes, even though a subset of them are not
able to send their updates sufficiently fast. The smaller the ε is in the BRIP condition, the
more representative the redundant coordinates are for the missing ones, which is reflected
in the convergence rate, as a non-zero ε slightly weakens the constants in the convergence
expressions. Still, note that this penalty in convergence rate only depends on the encoding
matrix and not on the delay profile in the system. This is in contrast to the asynchronous
coordinate descent methods; for instance, in Liu et al. (2015), the step size is required to
shrink exponentially in the maximum allowable delay, and thus the guaranteed convergence
rate can exponentially degrade with increasing worst-case delay in the system. The same is
true for the linear convergence guarantee in Peng et al. (2016).

4. Code Design

4.1. Block RIP condition and code design

We first discuss two classes of encoding matrices with regard to the BRIP condition; namely
equiangular tight frames, and random matrices.

Tight frames. A unit-norm frame for Rn is a set of vectors F = {ai}nβi=1 with ‖ai‖ = 1,
where β ≥ 1, such that there exist constants ξ2 ≥ ξ1 > 0 such that, for any u ∈ Rn,

ξ1‖u‖2 ≤
nβ∑
i=1

|〈u, ai〉|2 ≤ ξ2‖u‖2.

The frame is tight if the above is satisfied with ξ1 = ξ2. In this case, it can be shown that
the constants are equal to the redundancy factor of the frame, i.e., ξ1 = ξ2 = β. If we
form S ∈ R(βn)×n by rows that form a tight frame, then we have S>S = βI, which ensures
‖Xw − y‖2 = 1

β‖SXw − Sy‖2. Then for any solution ŵ to the encoded problem (with
k = m),

∇f̃(ŵ) = X>S>S(Xŵ − y) = βX>(Xŵ − y) = β∇f(ŵ).

Therefore, the solution to the encoded problem satisfies the optimality condition for the
original problem as well:

−∇f̃(ŵ) ∈ ∂h(ŵ), ⇔ −∇f(ŵ) ∈ ∂h(ŵ),

and if f is also strongly convex, then ŵ = w∗ is the unique solution. This means that for
k = m, obliviously solving the encoded problem results in the same objective value as in
the original problem.

15

Karakus, Sun, Diggavi, Yin

Figure 5: Sample spectrum of S>ASA for
various constructions with high redun-
dancy, and small k (normalized).

Figure 6: Sample spectrum of S>ASA for
various constructions with moderate re-
dundancy, and large k (normalized).

Define the maximal inner product of a unit-norm tight frame F = {ai}nβi=1, where ai ∈
Rn, ∀i, by

ω(F) := max
ai,aj∈F
i 6=j

|〈ai, aj〉| .

Definition 7 (Equiangular tight frame (ETF)) A tight frame is called an equiangular
tight frame (ETF) if |〈ai, aj〉| = ω(F) for every i 6= j.

Proposition 8 (Welch (1974)) Let F = {ai}nβi=1 be a tight frame, where ai ∈ Rn for

i = 1, . . . , nβ. Then ω(F) ≥
√

β−1
nβ−1 . Moreover, equality is satisfied if and only if F is an

equiangular tight frame.

Therefore, an ETF minimizes the correlation between its individual elements, making each
submatrix S>ASA as close to orthogonal as possible. This, combined with the property that
tight frames preserve the optimality condition when all nodes are waited for (k = m), make
ETFs good candidates for encoding, in light of the required property (6). We specifically
evaluate the Paley ETF from Paley (1933) and Goethals and Seidel (1967); Hadamard ETF
from Szöllősi (2013) (not to be confused with Hadamard matrix); and Steiner ETF from
Fickus et al. (2012) in our experiments.

Although the derivation of tight eigenvalue bounds for subsampled ETFs is a long-
standing problem, numerical evidence (see Figures 5, 6) suggests that they tend to have
their eigenvalues more tightly concentrated around 1 than random matrices (also supported
by the fact that they satisfy Welch bound, Proposition 8 with equality).

Random matrices. Another natural choice of encoding could be to use i.i.d. random
matrices. Although encoding with such random matrices can be computationally expensive
and may not have the desirable properties of encoding with tight frames, their eigenvalue
behavior can be characterized analytically. In particular, using the existing results on the
eigenvalue scaling of large i.i.d. Gaussian matrices from Geman (1980); Silverstein (1985)
and union bound, it can be shown that

P

(
max
A:|A|=k

λmax

(
1

βηn
S>ASA

)
>

(
1 +

√
1

βη

)2
)
→ 0 (8)

16

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

P

(
min

A:|A|=k
λmin

(
1

βηn
S>ASA

)
<

(
1−

√
1

βη

)2
)
→ 0, (9)

as n → ∞, if the elements of SA are drawn i.i.d. from N(0, 1). Hence, for sufficiently
large redundancy and problem dimension, i.i.d. random matrices are good candidates for
encoding as well. However, for finite β, even if k = m, in general the optimum of the
original problem is not recovered exactly, for such matrices.

4.2. Discussion on required redundancy

A common problem with worst-case bounds is that they are often pessimistic when com-
pared against actual performance on real instances. In our case, directly computing the
redundancy for small enough ε < 1 (as required by Theorem 5, for instance) suggests a
required redundancy β of more than 200. However, as we also show in Section 5, in practice
much lower values values of redundancy (such as β = 2) results in good performance.
The reason for this apparent discrepancy is that in the proofs of the theorems, we take a
conservative approach and bound quadratic terms of the form

ξ(w) =

∣∣(Xw − y)>(S>ASA − I)(Xw − y)
∣∣

‖Xw − y‖2
,

which is at worst

ξ(w) ≤ ε = max
{
λmax

(
S>ASA − I

)
,−λmin

(
S>ASA − I

)}
.

Note that the inequality is tight if Xw − y is an extremal eigenvector of STASA − I, which,
although possible, is highly unlikely. We illustrate this point through an example experiment
shown in Figure 7, which plots ξ(wt) for a run of gradient descent on linear regression with
random data, where wt is the tth iterate. In the entire optimization process, it is clear that
ε is a very pessimistic upper bound on ξ(wt).

In particular, most of the energy of the vector Xwt− y lies in the eigenspace associated
with the bulk of the eigenvalues of S>ASA. From another perspective, if we were to use
the “empirical” maximum of the value ε for this particular run (instead of the worst-case
bound, the largest eigenvalue), we would achieve ε = 0.074 at redundancy β = 2, a dramatic
improvement compared to the above requirement of β > 200 for ε = 1

7 .
This observation implies that for good practical performance, what is more important

is to ensure that most eigenvalues lie close to, or is exactly 1. The following proposition
shows that for ETFs, the bulk of the eigenvalues can be identically 1.

Proposition 9 If the rows of S are chosen to form an ETF with redundancy β, then for
η ≥ 1− 1

β , 1
βS
>
ASA has n(1− β(1− η)) eigenvalues equal to 1.

This follows immediately from Cauchy interlacing theorem, using the fact that SAS
>
A and

S>ASA have the same spectra except zeros. Therefore for sufficiently large η, ETFs have a
mostly flat spectrum even for low redundancy, and thus in practice one would expect ETFs
to perform well even for small amounts of redundancy. This is also confirmed by Figure 6,
as well as our numerical results.

17

Karakus, Sun, Diggavi, Yin

0 50 100 150 200

Iteration count

0

0.2

0.4

0.6

0.8

1
(w

t
)

Figure 7: The evolution of ξ(wt) and ε against iteration count. The parameters are
(n, d, β) = (2001, 1400, 2), where we encode the data variables with a Paley ETF. We
initialize the elements of w0 with a standard normal distribution. We set η = 0.9, i.e., we
wait for 90% of the machines at every step.

4.3. Efficient encoding

In this section we discuss some of the possible practical approaches to encoding. Some of
the practical issues involving encoding include the computational complexity of encoding,
as well as the loss of sparsity in the data due to the multiplication with S, and the resulting
increase in time and space complexity. We address these issues in this section.

4.3.1. Efficient distributed encoding with sparse matrices

Let the dataset (X, y) lie in a database, accessible to each worker node, where each node
is responsible for computing their own encoded partitions SiX and Siy. We assume that
S has a sparse structure. Given S, define Bi(S) = {j : Sij 6= 0} as the set of indices of the
non-zero elements of the ith row of S. For a set I of rows, we define BI(S) = ∪i∈IBi(S).

Let us partition the set of rows of S, [βn], into m machines, and denote the partition
of machine k as Ik, i.e.,

⊔m
k=1 Ik = [βn], where t denotes disjoint union. Then the set of

non-zero columns of Sk is given by BIk(S). Note that in order to compute SkX, machine k
only requires the rows of X in the set BIk(S). In what follows, we will denote this submatrix

of X by X̃k, i.e., if x>i is the ith row of X, X̃k :=
[
x>i
]
i∈BIk (S)

. Similarly ỹk = [yi]i∈BIk (S),

where yi is the ith element of y.
Consider the specific computation that needs to be done by worker k during the it-

erations, for each algorithm. Under the data parallelism setting, worker k computes the
following gradient:

∇fk(w) = X>S>k Sk(Xw − y)
(a)
= X̃>k S

>
k Sk(X̃kw − ỹk) (10)

where (a) follows since the rows of X that are not in BIk get multiplied by zero vector. Note
that the last expression can be computed without any matrix-matrix multiplication. This
gives a natural storage and computation scheme for the workers. Instead of computing
SkX offline and storing it, which can result in a loss of sparsity in the data, worker k

18

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

can store X̃k in uncoded form, and compute the gradient through (10) whenever needed,
using only matrix-vector multiplications. Since Sk is sparse, the overhead associated with
multiplications of the form Skv and S>k v is small.

Similarly, under model parallelism, the computation required by worker k is

∇kg̃(v) = SkX
>∇kφ

(
XS>k vk + z̃k

)
= SkX̃

>
k ∇kφ

(
X̃kS

>
k vk + z̃k

)
, (11)

and as in the data parallelism case, the worker can store X̃k uncoded, and compute (11)
online through matrix-vector multiplications.

Example: Steiner ETF. We illustrate the described technique through Steiner ETF,
based on the construction proposed in Fickus et al. (2012), using (2, 2, v)-Steiner systems.
Let v be a power of 2, let H ∈ Rv×v be a real Hadamard matrix, and let hi be the ith
column of H, for i = 1, . . . , v. Consider the matrix V ∈ {0, 1}v×v(v−1)/2, where each column
is the incidence vector of a distinct two-element subset of {1, . . . , v}. For instance, for v = 4,

V =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .
Note that each of the v rows have exactly v − 1 non-zero elements. We construct Steiner
ETF S as a v2 × v(v−1)

2 matrix by replacing each 1 in a row with a distinct column of H,
and normalizing by

√
v − 1. For instance, for the above example, we have

S =
1√
3


h2 h3 h4 0 0 0
h2 0 0 h3 h4 0
0 h2 0 h3 0 h4

0 0 h2 0 h3 h4

 .
We will call a set of rows of S that arises from the same row of V a block. In general, this
procedure results in a matrix S with redundancy factor β = 2v

v−1 . In full generality, Steiner
ETFs can be constructed for larger redundancy levels; we refer the reader to Fickus et al.
(2012) for a full discussion of these constructions.

We partition the rows of the V matrix into m machines, so that each machine gets
assigned v

m rows of V , and thus the corresponding v
m blocks of S.

This construction and partitioning scheme is particularly attractive for our purposes
for two reasons. First, it is easy to see that for any node k, |BIk | is upper bounded by
v(v−1)
m = 2n

m , which means the memory overhead compared to the uncoded case is limited
to a factor6 of β. Second, each block of Sk consists of (almost) a Hadamard matrix,
so the multiplication Skv can be efficiently implemented through Fast Walsh-Hadamard
Transform.

6. In practice, we have observed that the convergence performance improves when the blocks are broken
into multiple machines, so one can, for instance, assign half-blocks to each machine.

19

Karakus, Sun, Diggavi, Yin

Example: Haar matrix. Another possible choice of sparse matrix is column-subsampled
Haar matrix, which is defined recursively by

H2n =
1√
2

[
Hn ⊗ [1 1]
In ⊗ [1 − 1]

]
, H1 = 1,

where ⊗ denotes Kronecker product. Given a redundancy level β, one can obtain S by
randomly sampling n

β columns of Hn. It can be shown that in this case, we have |BIk | ≤
βn log(n)

m , and hence encoding with Haar matrix incurs a memory cost by logarithmic factor.

4.3.2. Fast transforms

Another computationally efficient method for encoding is to use fast transforms: Fast
Fourier Transform (FFT), if S is chosen as a subsampled DFT matrix, and the Fast Walsh-
Hadamard Transform (FWHT), if S is chosen as a subsampled real Hadamard matrix. In
particular, one can insert rows of zeroes at random locations into the data pair (X, y), and
then take the FFT or FWHT of each column of the augmented matrix. This is equivalent to
a randomized Fourier or Hadamard ensemble, which is known to satisfy the RIP with high
probability by Candes and Tao (2006). However, such transforms do not have the memory
advantages of the sparse matrices, and thus they are more useful for the setting where the
dataset is dense, and the encoding is done offline.

4.4. Cost of encoding

Since encoding increases the problem dimensions, it clearly comes with the cost of increased
space complexity. The memory and storage requirement of the optimization still increases
by a factor of 2, if the encoding is done offline (for dense datasets), or if the techniques
described in the previous subsection are applied (for sparse datasets)7. Note that the
added redundancy can come by increasing the amount of effective data points per machine,
by increasing the number of machines while keeping the load per machine constant, or a
combination of the two. In the first case, the computational load per machine increases
by a factor of β. Although this can make a difference if the system is bottlenecked by the
computation time, distributed computing systems are typically communication-limited, and
thus we do not expect this additional cost to dominate the speed-up from the mitigation of
stragglers.

5. Numerical Results

We implement the proposed technique on four problems: ridge regression, matrix factoriza-
tion, logistic regression, and LASSO.

7. Note that the increase in space complexity is not higher for sparse matrices, since the sparsity loss can
be avoided using the technique described in Section 4.3.1

20

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Figure 8: Left: Sample evolution of uncoded, replication, and Hadamard (FWHT)-coded
cases, for k = 12, m = 32. Right: Runtimes of the schemes for different values of η,
for the same number of iterations for each scheme. Note that this essentially captures the
delay profile of the network, and does not reflect the relative convergence rates of different
methods.

5.1. Data parallelism

5.1.1. Ridge regression

We generate the elements of matrix X i.i.d. ∼ N(0, 1), and the elements of y are generated
from X and an i.i.d. N(0, 1) parameter vector w∗, through a linear model with Gaussian
noise, for dimensions (n, p) = (4096, 6000). We solve the problem minw

1
2n ‖S (Xw − y)‖2 +

λ
2‖w‖

2, for regularization parameter λ = 0.05. We evaluate column-subsampled Hadamard
matrix with redundancy β = 2 (encoded using FWHT), replication and uncoded schemes.
We implement distributed L-BFGS as described in Section 3 on an Amazon EC2 cluster
using mpi4py Python package, over m = 32 m1.small instances as worker nodes, and a
single c3.8xlarge instance as the central server.

Figure 8 shows the result of our experiments, which are aggregated from 20 trials. In
addition to uncoded scheme, we consider data replication, where each uncoded partition
is replicated β = 2 times across nodes, and the server discards the duplicate copies of a
partition, if received in an iteration. It can be seen that for low η, uncoded L-BFGS may not
converge when a fixed number of nodes are waited for, whereas the Hadamard-coded case
stably converges. We also observe that the data replication scheme converges on average,
but its performance may deteriorate if both copies of a partition are delayed. Figure 8
suggests that this performance can be achieved with an approximately 40% reduction in
the runtime, compared to waiting for all the nodes.

Note that in the left plot of Figure 8, iteration count does not equal time. The combined
message of the two plots is that although encoding incurs a computational overhead due to
increased dimensions (as can be seen by the fact that for the same η, Hadamard-encoded
case takes longer than the uncoded case), the time savings due to waiting for fewer nodes
per iteration (reduced η) dominates this overhead, especially for communication-limited
scenarios. However, when η is reduced, uncoded optimization can destabilize or lead to

21

Karakus, Sun, Diggavi, Yin

Figure 9: Test RMSE for m = 8 (left) and m = 24 (right)
nodes, where the server waits for k = m/8 (top) and k =
m/2 (bottom) responses. “Perfect” refers to the case where
k = m.

Figure 10: Total runtime with
m = 8 and m = 24 nodes
for different values of k, under
fixed 100 iterations for each
scheme.

less accurate solutions, as can be seen from the aggregated sample evolution on the left.
The left plot shows that, encoding effectively counteracts this effect, maintaining smooth
convergence due to the redundant data in the nodes.

5.1.2. Matrix factorization

We next apply matrix factorization on the MovieLens-1M dataset (Riedl and Konstan
(1998)) for the movie recommendation task. We are given R, a sparse matrix of movie
ratings 1–5, of dimension #users × #movies, where Rij is specified if user i has rated
movie j. We withhold randomly 20% of these ratings to form an 80/20 train/test split.
The goal is to recover user vectors xi ∈ Rp and movie vectors yi ∈ Rp (where p is the
embedding dimension) such that Rij ≈ xTi yj + ui + vj + b, where ui, vj , and b are user,
movie, and global biases, respectively. The optimization problem is given by

min
xi,yj ,ui,vj

∑
i,j: observed

(Rij − ui − vj − xTi yj − b)2 + λ

∑
i

‖xi‖22 + ‖u‖22 +
∑
j

‖yj‖22 + ‖v‖22

 .

(12)
We choose b = 3, p = 15, and λ = 10, which achieves test RMSE 0.861, close to the current
best test RMSE on this dataset using matrix factorization8.

Problem (12) is often solved using alternating minimization, minimizing first over all
(xi, ui), and then all (yj , vj), in repetition. Each such step further decomposes by row
and column, made smaller by the sparsity of R. To solve for (xi, ui), we first extract

8. http://www.mymedialite.net/examples/datasets.html

22

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Ii = {j | rij is observed}, and minimize([
yTIi ,1

] [xi
ui

]
− (RTi,Ii − vIi − b1)

)2

+ λ

(∑
i

‖xi‖22 + ‖u‖22

)
(13)

for each i, which gives a sequence of regularized least squares problems with variable w =
[xTi , ui]

T , which we solve distributedly using coded L-BFGS; and repeat for w = [yTj , vj]
T ,

for all j.
The Movielens experiment is run on a single 32-core machine with Linux 4.4. In or-

der to simulate network latency, an artificial delay of ∆ ∼ exp(10 ms) is imposed each
time the worker completes a task. Small problem instances (n < 500) are solved locally
at the central server, using the built-in function numpy.linalg.solve. To reduce over-
head, we create a bank of encoding matrices {Sn} for Paley ETF and Hadamard ETF,
for n = 100, 200, . . . , 3500, and then given a problem instance, subsample the columns of
the appropriate matrix Sn to match the dimensions. Overall, we observe that encoding
overhead is amortized by the speed-up of the distributed optimization.

Figure 9 gives the final performance of our distributed L-BFGS for various encoding
schemes, for each of the 5 epochs, which shows that coded schemes are most robust for
small k. A full table of results is given in Appendix D.

5.1.3. LASSO

We solve the LASSO problem, with the objective

min
w

1

2n
‖Xw − y‖2 + λ‖w‖1,

where X ∈ R130,000×100,000 is a matrix with i.i.d. N(0, 1) entries, and y is generated from
X and a parameter vector w∗ through a linear model with Gaussian noise:

y = Xw∗ + σz,

where σ = 40, z ∼ N(0, 1). The parameter vector w∗ has 7695 non-zero entries out of
100,000, where the non-zero entries are generated i.i.d. from N(0, 4). We choose λ = 0.6
and consider the sparsity recovery performance of the corresponding LASSO problem, solved
using proximal gradient (iterative shrinkage/thresholding algorithm).

We implement the algorithm over 128 t2.medium worker nodes which collectively store
the matrix X, and a c3.4xlarge master node. We measure the sparsity recovery perfor-
mance of the solution using the F1 score, defined as the harmonic mean

F1 =
2PR

P +R
,

where P and R are precision recall of the solution vector ŵ respectively, defined as

P =
|{i : w∗i 6= 0, ŵi 6= 0}|

|i : ŵi 6= 0|
, R =

|{i : w∗i 6= 0, ŵi 6= 0}|
|i : w∗i 6= 0|

.

23

Karakus, Sun, Diggavi, Yin

0 10 20 30 40 50 60

Seconds (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1
 s

p
a
rs

it
y
 r

e
c
o
v
e
ry

Uncoded (k=80)

Steiner (k=80)

Uncoded (k=128)

Replication (k=128)

Figure 11: Evolution of F1 sparsity recovery performance for each scheme.

Figure 11 shows the sample evolution of the F1 score of the model under uncoded,
replication, and Steiner encoded scenarios, with artificial multi-modal communication delay
distribution q1N (µ1, σ

2
1) + q2N (µs, σ

2
2) + q3N (µ3, σ

2
3), where q1 = 0.8, q2 = 0.1, q3 = 0.1;

µ1 = 0.2s, µs = 0.6s, µ3 = 1s; and σ1 = 0.1s, σ = 0.2s, σ3 = 0.4s, independently at
each node. We observe that the uncoded case k = 80 results in a performance loss in
sparsity recovery due to data dropped from delayed noes, and uncoded and replication with
k = 128 converges slow due to stragglers, while Steiner coding with k = 80 is not delayed by
stragglers, while maintaining almost the same sparsity recovery performance as the solution
of the uncoded k = 128 case.

5.2. Model parallelism

5.2.1. Logistic regression

In our next experiment, we apply logistic regression for document classification for Reuters
Corpus Volume 1 (rcv1.binary) dataset from Lewis et al. (2004), where we consider the
binary task of classifying the documents into corporate/industrial/economics vs. gov-
ernment/social/markets topics. The dataset has 697,641 documents, and 47,250 term
frequency-inverse document frequency (tf-idf) features. We randomly select 32,500 fea-
tures for the experiment, and reserve 100,000 documents for the test set. We use logistic
regression with `2-regularization for the classification task, with the objective

min
w,b

1

n

n∑
i=1

log
(

1 + exp
{
−z>i w + b

})
+ λ‖w‖2,

where zi = yixi is the data sample xi multiplied by the label yi ∈ {−1, 1}, and b is the bias
variable. We solve this optimization using encoded distributed block coordinate descent as
described in Section 2, and implement Steiner and Haar encoding as described in Section 4,
with redundancy β = 2. In addition we implement the asynchronous coordinate descent,
as well as replication, which represents the case where each partition Zi is replicated across
two nodes, and the faster copy is used in each iteration. We use m = 128 t2.medium

instances as worker nodes, and a single c3.4xlarge instance as the master node, which

24

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

0 500 1000 1500 2000 2500 3000

Time (s)

0.05

0.1

0.15

0.2

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

Bimodal delay distribution

steiner test err.

steiner train err.

haar test err.

haar train err.

uncoded (k=128) test err.

uncoded (k=128) train err.

async. test err.

async. train err.

replication test err.

replication train err.

uncoded (k=64) test err.

uncoded (k=64) train err.

Figure 12: Test and train errors over time
(in seconds) for each scheme, for the bi-
modal delay distribution. Steiner and Haar
encoding is done with k = 64, β = 2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

Power law background tasks

steiner test err.

steiner train err.

haar test err.

haar train err.

uncoded (k=128) test err.

uncoded (k=128) train err.

uncoded (k=64) test err.

uncoded (k=64) train err.

replication test err.

replication train err.

async. test err.

async. train err.

Figure 13: Test and train errors over time
(in seconds) for each scheme. Number
of background tasks follow a power law.
Steiner and Haar encoding is done with
k = 80, β = 2.

Nodes (m) Dimensions (n× d)
8 8000× 3000
32 32000× 12000
128 128000× 48000

Table 2: Problem dimensions for each experiment.

communicate using the mpi4py package. We consider two models for stragglers. In the first
model, at each node, we add a random delay drawn from a Gaussian mixture distribution
qN (µ1, σ

2
1) + (1 − q)N (µs, σ

2
2), where q = 0.5, µ1 = 0.5s, µs = 20s, σ1 = 0.2s, σ2 = 5s.

In the second model, we do not directly add any delay, but at each machine we launch a
number of dummy background tasks (matrix multiplication) that are executed throughout
the computation. The number of background tasks across the nodes is distributed according
to a power law with exponent α = 1.5. The number of background tasks launched is capped
at 50.

Figures 12 and 13 shows the evolution of training and test errors as a function of wall
clock time. We observe that for each straggler model, either Steiner or Haar encoded
optimization dominates all schemes. Figures 14 and 15 show the statistics of how frequent
each node participates in an update, for the case with background tasks, for encoded and
asynchronous cases, respectively. We observe that the stark difference in the relative speeds
of different machines result in vastly different update frequencies for the asynchronous case,
which results in updates with large delays, and a corresponding performance loss.

5.3. Speed tests

In order to quantify the speed-up achieved by the encoding scheme, we design a set of
controlled distributed optimization experiments which compares it against other commonly

25

Karakus, Sun, Diggavi, Yin

0 20 40 60 80 100 120

Node id (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

(k
 A

t)

Figure 14: The fraction of iterations each
worker node participates in (the empirical
probability of the event {k ∈ At}), plotted
for Steiner encoding with k = 80, m =
128. The number of background tasks are
distributed by a power law with α = 1.5
(capped at 50).

0 20 40 60 80 100 120

Node id (k)

0

0.005

0.01

0.015

0.02

0.025

F
ra

c
ti
o

n
 o

f
u

p
d

a
te

s
 p

e
rf

o
rm

e
d

Figure 15: The fraction of updates per-
formed by each node, for asynchronous
block coordinate descent. The horizontal
line represents the uniformly distributed
case. The number of background tasks are
distributed by a power law with α = 1.5
(capped at 50).

Scheme Runtime (s) µs = 0 Runtime (s) µs = γ Runtime (s) µs = 2γ

Steiner 1.71 2.10 2.13
Synchronous 1.00 7.93 14.89
Replication 1.03 2.11 3.16
Asynchronous 0.61 - -

Table 3: The average wall-clock time taken to achieve 1.05 ×MMSE for each scheme, for
m = 8 workers.

Scheme Runtime (s) µs = 0 Runtime (s) µs = γ Runtime (s) µs = 2γ

Steiner 1.84 2.58 3.09
Synchronous 1.12 9.06 17.24
Replication 1.17 4.96 8.69
Asynchronous 0.66 - -

Table 4: The average wall-clock time taken to achieve 1.05 ×MMSE for each scheme, for
m = 32 workers.

Scheme Runtime (s) µs = 0 Runtime (s) µs = γ Runtime (s) µs = 2γ

Steiner 6.64 15.18 18.51
Synchronous 3.69 43.60 84.55
Replication 4.56 26.55 49.75
Asynchronous 8.77 - -

Table 5: The average wall-clock time taken to achieve 1.05 ×MMSE for each scheme, for
m = 128 workers.

26

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

straggler mitigation schemes, namely replication and asynchronous optimization, as well
as the uncoded synchronous case. To do this, we focus on ridge regression, and use the
mean-squared error (MSE) in predicting the test-set response variable y as our metric. We
compare the methods against each other by measuring the wall-clock time of optimization
required to achieve a fixed mean-squared error.

Note that since the speed-up is due to the mitigation of stragglers, the performance
of the proposed technique depends strongly on many cluster- and problem-specific factors,
such as computational power of nodes, number of nodes, background processes running at
nodes, networking configurations, latency and bandwidth available in the network, compute-
to-communication ratio required by the problem, availability of nodes9. Since these experi-
ments are intended purely as speed measurements, we make several design decisions to build
a highly-controlled computing environment, in order to isolate the effects of the straggler
mitigation technique and side-step problem- or network-specific artifacts that might affect
the results.

First, to have direct control over the delays induced by the workers and measure the
exact effect of the delay distribution on the runtime, we use compute-optimized, high-
performance, high-bandwidth c4.4xlarge and c4.large instances available through Ama-
zon EC2, set a node to be a straggler with probability q = 0.25, and for stragglers in each
step we add an artificial delay drawn from Gaussian distribution N

(
µs, σ

2
s

)
, to simulate

more unreliable clusters. In our tests, we vary µs to measure the effect of the amount of
straggler delay (keeping σs = 0.4µs). We sweep µs over the values {0, γ, 2γ}, where γ is
chosen as the amount of time it takes for a non-straggler node to perform 5-6 iterations for
the given problem dimensions. Note that such delays can be observed in practice in un-
reliable/burstable clusters (see, for instance, the EC2 experiments in Tandon et al. (2016)
conducted on t2.micro instances, where the stragglers are 8× slower, or Ananthanarayanan
et al. (2013) which similarly reports 8× straggler delay for latency-limited tasks).

Second, as we scale the number of workers, we scale the problem proportionally as well,
in order to maintain the same computation-communication ratio. To be able to control
exact problem dimensions, we use synthetic data, where the data matrix X ∈ Rn×d is
generated i.i.d. N (0, 1), and y = Xw̄+ η for some ground truth w̄ and noise η ∈ N

(
0, σ2

η

)
,

with σ2
η proportional to n.

Third, since under data-parallelism the proposed method does not converge to the exact
minimum, we first find the minimum MSE (MMSE) achieved for the given problem through
a preliminary experiment using fully synchronous optimization with all nodes, as well as
hyper-parameter optimization to determine a good value for the regularization parameter
λ, which we determine to be λ = 0.025. Then, we set the MSE bar as 1.05×MMSE. Note
that if the exact minimum is desired for encoded scenarios in a real application, one can
always increase kt to m (i.e., start using all nodes) towards the end of the optimization,
after this approximate target is reached.

Under this setup, we perform three experiments, sweeping the number of workers in the
set m ∈ {8, 32, 128}. The problem dimensions for each case is given in Table 2. For encoding
we use Steiner ETFs described in Section 4 with redundancy β = 2, and kt = 0.75m. In

9. For instance, in Amazon EC2 clusters, burstable t2 and t3-type instances can provide high performance
for a limited period of time, before slowing down to a baseline level of performance; or low-cost spot
instances, which can instantly become available or unavailable based on supply and demand.

27

Karakus, Sun, Diggavi, Yin

all cases, we use gradient descent with step size αt = 0.2, which is run for 120 steps. γ is
determined to be 0.2s, 0.3s, and 1.2s for the three problem sizes, respectively.

The results are provided in Tables 3–5, where four methods are compared: Steiner en-
coding, uncoded synchronous optimization, uncoded asynchronous optimization, and repli-
cation, where each data shard is replicated across two nodes, and the faster copy is used in
optimization. Note that Steiner encoding and replication schemes have double the data per
worker. The results are averaged over 5 trials.

We observe that when there is no delay (µs = 0), the additional computation overhead
of encoding (as well as the perturbation of data) results in relatively high runtime to achieve
the desired MSE. We see a similar overhead for replication, although replication enjoys the
advantage of having access to raw, uncoded data. However, in the regime where the system
is bottlenecked by stragglers (µs = γ and µs = 2γ), the scheme results in significant speed
up, ranging from approximately 3× to 7× against the uncoded synchronous; and up to 2×
against the replication baseline. Note that replication still gets impacted by straggler nodes
if both copies of a shard happen to be delayed. When there are no stragglers, and for modest
cluster sizes, asynchronous optimization achieves the best performance. However, since
the gradient staleness scales linearly with the cluster size, asynchronous performance falls
behind Steiner for m = 128 workers even in the absence of stragglers. We also observe that
when stragglers are introduced, outdated gradients significantly degrade the asynchronous
performance, as the desired MSE bar is not reached at the end of 120 steps. We have run
the same experiment for the uncoded case with erasures as well; however, the method failed
to achieve the MSE target in all the experiments, including the case with µs = 0. This is
because the straggler nodes tend to persist their slow computation throughout optimization.
In other words, it is usually approximately the same subset of nodes that provide the
updates, effectively removing the data stored in straggler nodes from the optimization.
Finally, we note that the runtime for the encoded case also increases in the presence of
stragglers (though less severely than the other schemes), due to various implementation
overheads such as the interruption of the stragglers for the next iteration. However, we
believe that part of this overhead could be mitigated in a more efficient implementation.

We conclude from these experiments that encoding can result in large speed-ups in highly
unreliable, low-cost clusters which can induce large delays (such as EC2 t2 instances), or
clusters with intermittent node availability (such as EC2 spot instances). It is less suited
to reliable clusters with high-capacity, high-bandwidth nodes due to the computational
overhead associated with it.

Acknowledgments

The work of Can Karakus and Suhas Diggavi was supported in part by NSF grants #1314937
and #1514531, and by UC-NL grant LFR-18-548554. The work of Wotao Yin was supported
by ONR Grant N000141712162, and NSF Grant DMS-1720237.

28

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Appendix A. Proofs of Theorems 2 and 4

In the proofs, we will ignore the normalization constants on the objective functions for
brevity. We will assume the normalization 1√

η is absorbed into the encoding matrix SA.

Let f(w) = ‖Xw − y‖2 + λh(w). Let f̃At := ‖SAt (Xwt − y) ‖2 + λh(wt), and f̃A(w) :=
‖SAt (Xw − y) ‖2 +λh(w), where we set A ≡ At. Let w̃∗t denote the solution to the effective
“instantaneous” problem at iteration t, i.e., w̃∗t = arg minw f̃

A(w).
Unless otherwise stated, throughout this appendix, we will also denote

w∗ = arg min
w

‖Xw − y‖2 + λh(w)

ŵ = arg min
w

‖SA (Xw − y) ‖2 + λh(w)

unless otherwise noted, where A is a fixed subset of [m].

A.1. Lemmas

Lemma 10 (Approximation error) If S satisfies (6) (BRIP) for any A ⊆ [m] with
|A| ≥ k, for any convex set C,

‖Xŵ − y‖2 ≤ κ2‖Xw∗ − y‖2,

where κ = 1+ε
1−ε , ŵ = arg minw∈C ‖SA (Xw − y) ‖2, and w∗ = arg minw∈C ‖Xw − y‖2.

Proof Define e = ŵ − w∗ and note that

‖Xŵ − y‖ = ‖Xw∗ − y +Xe‖ ≤ ‖Xw∗ − y‖+ ‖Xe‖

by triangle inequality, which implies

‖Xŵ − y‖2 ≤
(

1 +
‖Xe‖

‖Xw∗ − y‖

)2

‖Xw∗ − y‖2. (14)

Note that we have

‖SA (Xŵ − y)‖2 ≤ ‖SA (Xw∗ − y)‖2

by the definition of ŵ. Expanding the quadratic terms and canceling the common term
y>S>ASAy from both sides, we get

ŵ>X>S>ASAXŵ − 2y>S>ASAXŵ ≤ w∗>X>S>ASAXw∗ − 2y>S>ASAXw
∗.

Adding −2w∗>X>S>ASAXŵ + w∗>X>S>ASAXw
∗ to both sides,

ŵ>X>S>ASAXŵ − 2w∗>X>S>ASAXŵ + w∗>X>S>ASAXw
∗ − 2y>S>ASAXŵ

≤ 2w∗>X>S>ASAXw
∗ − 2y>S>ASAXw

∗ − 2w∗>X>S>ASAXŵ,

which can be re-arranged into

‖SAX(ŵ − w∗)‖2 ≤ 2y>S>ASAX(ŵ − w∗)− 2w∗>X>S>ASAX(ŵ − w∗),

29

Karakus, Sun, Diggavi, Yin

which, using the definition e = ŵ − w∗, is equivalent to

‖SAXe‖2 ≤ −2(Xw∗ − y)>S>ASAXe = −2e>X>S>ASA(Xw∗ − y). (15)

Now, for any c > 0, consider

‖Xe‖2
(a)

≤ ‖SAXe‖
2

1− ε
(b)

≤ −2
e>X>S>ASA(Xw∗ − y)

1− ε

= −2
e>X>

(
S>ASA − cI

)
(Xw∗ − y)

1− ε
− 2c

1− ε
e>X>(Xw∗ − y)

(c)

≤ −2
e>X>

(
S>ASA − cI

)
(Xw∗ − y)

1− ε
(d)

≤ 2

∥∥e>X> (cI − S>ASA)∥∥
1− ε

‖Xw∗ − y‖

(e)

≤ 2

∥∥cI − S>ASA∥∥
1− ε

‖Xw∗ − y‖‖Xe‖,

where (a) follows from the BRIP property for SA; (b) follows by (15); (c) follows by the
fact that since ŵ ∈ C, e represents a feasible direction of the constrained optimization, and
thus the convex optimality condition implies 〈∇p(w∗), ŵ − w∗〉 = 2e>X>(Xw∗ − y) ≥ 0,
where p(w) := ‖Xw−y‖2; (d) follows by Cauchy-Schwarz inequality; and (e) follows by the
definition of matrix norm.

The above chain of inequalities then imply that

‖Xe‖
‖Xw∗ − y‖

≤
2
∥∥cI − S>ASA∥∥

1− ε
.

Since this is true for any c > 0, we make the minimizing choice c = λmax+λmin
2 (where λmax

and λmin represent the largest and smallest eigenvalues of S>ASA, respectively), which gives

‖Xe‖
‖Xw∗ − y‖

≤ λmax − λmin

1− ε
≤ 2ε

1− ε
.

Plugging this back in (14), we get the desired result.

Lemma 11 (Approximation error with regularization) If S satisfies (6) (BRIP) for
any A ⊆ [m] with |A| ≥ k,

f(ŵ) ≤ κ2f(w∗),

where κ = 1+ε
1−ε , ŵ = arg minw ‖SA (Xw − y) ‖2 + λh(w), and w∗ = arg minw ‖Xw − y‖2 +

λh(w).

Proof Consider a fixed At = A, and a corresponding

ŵ = w̃∗t ∈ arg min
w

‖SA (Xw − y) ‖2 + λh(w)

30

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Define

ŵ(r) = arg min
w:λh(w)≤r

‖SA (Xw − y) ‖2

w∗(r) = arg min
w:λh(w)≤r

‖Xw − y‖2.

Finally, define

r∗ = arg min
r
‖Xw∗(r)− y‖2 + r.

Now, consider

f(ŵ) = ‖Xŵ − y‖2 + λh(ŵ) = min
r

(
‖Xŵ(r)− y‖2 + r

)
≤ ‖Xŵ(r∗)− y‖2 + r∗

(a)

≤ κ2‖Xw∗(r∗)− y‖2 + r∗

≤ κ2
(
‖Xw∗(r∗)− y‖2 + r∗

)
= κ2f(w∗),

which shows the desired result, where (a) follows by Lemma 10, and by the fact that the
set {w : λh(w) ≤ r} is a convex set.

Lemma 12 (Error evolution) Let κ = 1+ε
1−ε . If

f̃At+1 − f̃A (w̃∗t) ≤ γ
(
f̃At − f̃A (w̃∗t)

)
for all t > 0, and for some 0 < γ < 1 with κγ < 1, where w̃∗t ∈ arg minw f̃

A
t , then

f(wt) ≤ (κγ)t f(w0) +
κ2 (κ− γ)

1− κγ
f (w∗) .

Proof Since for any w,

(1− ε) ‖Xw − y‖2 ≤ (Xw − y)> S>ASA (Xw − y) ,

we have

(1− ε) f(w) ≤ f̃A(w).

Similarly f̃A(w) ≤ (1 + ε) f(w), and therefore, using the assumption of the lemma

(1− ε) f(wt+1)− (1 + ε) f (w̃∗t) ≤ γ ((1 + ε) f(wt)− (1− ε) f (w̃∗t)) ,

which can be re-arranged into the linear recursive inequality

f(wt+1) ≤ κγf(wt) + (κ− γ)f (w̃∗t)
(a)

≤ κγf(wt) + κ2(κ− γ)f (w∗) ,

31

Karakus, Sun, Diggavi, Yin

where κ = 1+ε
1−ε and (a) follows by Lemma 11. By considering such inequalities for 0 ≤ τ ≤ t,

multiplying each by (κγ)t−τ and summing, we get

f(wt) ≤ (κγ)t f(w0) + κ2(κ− γ)f (w∗)

t−1∑
τ=0

(κγ)τ

≤ (κγ)t f(w0) +
κ2 (κ− γ)

1− κγ
f (w∗) .

Lemma 13 (Strong convexity parameter) Under the assumptions of Theorem 4, f̃A(w)
is (1− ε) (µ+ λ)-strongly convex.

Proof It is sufficient to show that the minimum eigenvalue of X̃>A X̃A is bounded away
from zero. This can easily be shown by the fact that

u>X̃>A X̃Au = u>X̂>S>ASAX̂u ≥ (1− ε) ‖X̂u‖2 ≥ (1− ε) (µ+ λ)‖u‖2,

for any unit vector u.

Lemma 14 (Rotation bound) Let M ∈ Rp×p be a symmetric positive definite matrix,
with the condition number (ratio of maximum eigenvalue to the minimum eigenvalue) given
by κ. Then, for any unit vector u,

u>Mu

‖Mu‖
≥ 2
√
κ

κ+ 1
.

Proof We point out that this is a special case of Kantorovich inequality, but provide a
dedicated proof here for completeness.

Let M have the eigen-decomposition M = Q>DQ, where Q has orthonormal columns,
and D is a diagonal matrix with positive, decreasing entries d1 ≥ d2 ≥ · · · ≥ dn, with
d1
dn

= κ. Let y = (Qu)◦2, where ◦2 denotes entry-wise square. Then the quantity we are
interested in can be represented as

ŷ = arg inf
y∈∆

∑n
i=1 diyi√∑n
i=1 d

2
i yi

,

and u>Mu
‖Mu‖ is lower bounded by the optimal objective value of the above optimization prob-

lem. The set ∆ = {y ≥ 0 : 1>y = 1} is the simplex. Note that ŷ is invariant to any positive
scaling on the entire vector d, so we can consider a convexification, where the minimum is
attained since y is confined to a compact set, and where ŷ is the solution to:

min. d̂T y

subj.to
∑n

i=1 d̂
2
i yi = 1

y ≥ 0, yT1 = 1

32

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

and d̂ is the scaled version of d such that
∑n

i=1 d̂
2
i yi = 1. The Lagrange dual is

max. α+ β

subj.to d̂− βd̂◦2 − α1 ≥ 0

where by complementary slackness, the gap in the inequality corresponds to the nonzero
pattern of y, e.g.

yi(d̂i − βd̂2
i − α) = 0, ∀i ∈ [n].

Now we consider the quadratic function d−βd2−α in terms of a scalar d, with fixed α and
β. It is clear that this concave function can have at most 2 zeros. In other words, there can
be at most two indices i, j where

d̂k − βd̂2
k − α = 0, k ∈ {i, j}, yk = 0 k 6∈ {i, j}

and it is possible that i = j. (At least one solution must exist, since yT1 = 1, so y cannot
be all 0.) This reduces our primal optimization problem significantly, to two variables yi
and yj , where the two linear constraints can be inverted directly

yi =
1− d̂2

j

d̂2
i − d̂2

j

, yj =
d̂2
i − 1

d̂2
i − d̂2

j

Plugging back into the primal objective,

yid̂i + yj d̂j =
d̂i − d̂id̂2

j + d̂j d̂
2
i − d̂j

d̂2
i − d̂2

j

=
1 + (d̂id̂j)

d̂i + d̂j

which is minimized when d̂i and d̂j are as far apart as possible; e.g., i = 1 and j = n.
We can equivalently reparametrize y1 and yn in terms of d1 and dn as

y1(c) =
c2 − d2

n

d2
1 − d2

n

, yn(c) =
d2

1 − c2

d2
1 − d2

n

where c2 = d2
1y1 + d2

nyn. Now we consider our original optimization problem, significantly
simplified

inf
y∈∆

∑n
i=1 diyi√∑n
i=1 d

2
i yi

= inf
c≥0

d1y1(c) + dnyn(c)

c
= inf

c≥0

c2 + d1dn
c(d1 + dn)

.

This is now a scalar nonconvex optimization problem, with minimum at either the bound-
aries (c = 0 or c→ +∞) or the one stationary point (c = d1dn). The stationary point is the
only one in which this quantity is not positive infinity, and is thus the solution. Therefore,
simplifying with κ = d1/dn, we arrive at

ŷ1 =
1

κ+ 1
, ŷn =

κ

κ+ 1
.

and for any unit-normed u,

u>Mu

‖Mu‖
≥ c2 + d1dn
c(d1 + dn)

=
(1 + d1dn)

(d1 + dn)
=

(1/dn + d1)

(κ+ 1)
≥

2
√
d1/dn)

(κ+ 1)
=

2
√
κ)

(κ+ 1)
.

where the inequality comes from the arithmetic-geometric mean inequality.

33

Karakus, Sun, Diggavi, Yin

A.2. Proof of Theorem 2

The proof of the first part of the theorem is a special case of the proof of Theorem 5 (with
λ = 0, and the smooth regularizer incorporated into p(w)) and thus we omit this proof and
refer the reader to Appendix B. We prove the second part here.

Note that because of the condition in (6) (BRIP), we have

(1− ε)I � S>ASA � (1 + ε)I.

Using smoothness of the objective, and the choices dt = −∇f̃A(wt) and αt = α, we have

f̃A (wt+1)− f̃A(wt) ≤ α∇f̃A(wt)(wt)
>dt +

1

2
α2d>t X

>S>ASAXdt + λ
L

2
α2‖dt‖2

≤ −α
(

1− (1 + ε)M + λL

2
α

)∥∥∥∇f̃A(wt)
∥∥∥2

= − 2ζ (1− ζ)

(1 + ε)M + λL
‖∇f̃A(wt)‖2

(a)

≤ − 4νζ (1− ζ)

M (1 + ε) + λL

(
f̃A (wt)− f̃A (w̃∗t)

)
,

where (a) follows by strong convexity. Re-arranging this inequality, and using the definition
of γ, we get

f̃At+1 − f̃A (w̃∗t) ≤ γ
(
f̃At − f̃A (w̃∗t)

)
,

which, using Lemma 12, implies the result.

A.3. Proof of Theorem 4

We first present the proof of Lemma 3, then move on to the main proof.
Proof [Proof of Lemma 3] The reader is referred to Section 2.1 for notation. Define
S̆t := SAt∩At−1 . First note that

r>t ut =
(
X>S̆>t S̆t [(Xwt − y)− (Xwt−1 − y)]

)>
(wt − wt−1)

= (wt − wt−1)>X>S̆>t S̆tX (w − wt−1)

≥ δµ‖ut‖2, (16)

by (7), where recall δ ≥ 0 is the smallest eigenvalue of S̆>t S̆t. Also consider

‖rt‖2

r>t ut
=

(wt − wt−1)>
(
X>S̆>t S̆tX

)(
X>S̆>t S̆tX

)
(wt − wt−1)

(wt − wt−1)>X>S̆>t S̆tX (wt − wt−1)
,

which implies

δµ ≤ ‖rt‖
2

r>t ut
≤ (1 + ε)M,

again by (6). Now, setting j` = t− σ̃ + `, consider the trace

tr
(
B

(`+1)
t

)
= tr

(
B

(`)
t

)
− tr

(
B

(`)
t uj`u

>
j`
B

(`)
t

u>j`B
(`)
t uj`

)
+ tr

(
rj`r

>
j`

r>j`uj`

)

34

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

(a)

≤ tr
(
B

(`)
t

)
+ tr

(
rj`r

>
j`

r>j`uj`

)

= tr
(
B

(`)
t

)
+
‖rj`‖2

r>j`uj`

≤ tr
(
B

(`)
t

)
+ (1 + ε)M,

where (a) follows since the trace of a positive semidefinite matrix is always non-negative.
This implies tr (Bt) ≤ (1 + ε)M (σ̃ + d). We now do a similar exercise for the determinant.
Note first that for two arbitrary vectors a and b,

det(I − aaT + bbT) = det

(
I +

[
−a b

] [aT
bT

])
(a)
= det

(
I +

[
aT

bT

] [
−a b

])
= (1− aTa)(1 + bT b) + (aT b)2

where (a) is by Sylvester’s identity. Since B
(`)
t � 0, we can take the Cholesky factorization

B
(`)
t = LLT and write the recursion for B

(`)
t as a product:

B
(`+1)
t = L

(
I − LT

uj`u
T
j`

uTj`B
(`)
t uj`

L+ L−1
rj`r

T
j`

rTj`uj`
L−T

)
LT .

Using the above identity for

a =
1

uTj`B
(`)
t uj`

LTuj` , b =
1

√
rj`

Tuj`
LT rj`

we can see that aTa = 1, and (aT b)2 =
rTj`
uj`

uTj`
B

(`)
t uj`

. Therefore

det
(
B

(`+1)
t

)
= det

(
B

(`)
t

)
·

r>j`uj`

u>j`B
(`)
t uj`

= det
(
B

(`)
t

)
·
r>j`uj`
‖uj`‖2

· ‖uj`‖
2

u>j`B
(`)
t uj`

≥ det
(
B

(`)
t

)
· δµ · ‖uj`‖

2

u>j`B
(`)
t uj`

≥ det
(
B

(`)
t

)
· δµ · 1

λmin(B
(`)
t)

≥ det
(
B

(`)
t

)
· δµ · 1

tr
(
B

(`)
t

)
≥ det

(
B

(`)
t

) δµ

(1 + ε)M (σ̃ + d)
,

35

Karakus, Sun, Diggavi, Yin

which implies det (Bt) ≥ det
(
B

(0)
t

)(
δµ

(1+ε)M(σ̃+d)

)σ̃
. By construction, tr

(
B

(0)
t

)
is bounded

above and det(B
(0)
t) is bounded below, which means tr (Bt) is bounded above and det(Bt)

is bounded below. Therefore there must exist 0 < c1 ≤ c2 such that

c1I � Bt � c2I.

Proof [Proof of Theorem 4]
Since h(w) is constrained to be quadratic, we can absorb this term into the error term

to get

min
w

∥∥∥∥[S 0
0 I

]([
X√
λI

]
w −

[
y
0

])∥∥∥∥ .
Note that as long as S satisfies (6), the effective encoding matrix diag ([S, I]) also satisfies
the same. Therefore, without loss of generality we can ignore h(w), and consider minimizing
the unregularized quadratic problem

min
w
‖X̂w − y‖, X̂ =

[
X√
λI

]
.

Here,

(µ+ λ)I � X̂>X̂ � (M + λ)I.

We also define the extreme eigenvalues of the encoding matrices as λmin = 1 − ε and
λmax = 1 + ε for convenience. Using convexity and the closed-form expression for the step
size, we have

f̃A (wt+1)− f̃A(wt) ≤ αt∇f̃A(wt)
>dt +

1

2
α2
t d
>
t X̂

>S>ASAX̂dt

= −
ρ
(
∇f̃A(wt)

>dt

)2

d>t X̂
>S>DSDX̂dt

+
1

2

ρ2
(
∇f̃A(wt)

>dt

)2

d>t X̂
>S>DSDX̂dt

·
d>t X̂

>S>ASAX̂dt

d>t X̂
>S>DSDX̂dt

=

d>t X̂> (ρ2S>ASA − 2ρS>DSD
)
X̂dt

2
(
d>t X̂

>S>DSDX̂dt

)2

(d>t ∇f̃A(wt)
)2

(a)
= −ρ

(
z>
(
S>DSD −

ρ
2S
>
ASA

)
z(

z>S>DSDz
)2

) (
d>t ∇f̃A(wt)

)2

‖X̂dt‖2

(b)

≤ −ρ
(
λmin − ρ

2λmax

λ2
min

) (d>t ∇f̃A(wt)
)2

‖X̂dt‖2
(c)

≤ − ρ

M + λ

(
λmin − ρ

2λmax

λ2
min

) (d>t ∇f̃A(wt)
)2

‖dt‖2

(d)
= − ρ

M + λ

(
λmin − ρ

2λmax

λ2
min

) (∇f̃A(wt)
>Bt∇f̃A(wt)

)2

‖Bt∇f̃A(wt)‖2

36

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

(e)

≤ − 4ρ

M + λ

(
λmin − ρ

2λmax

λ2
min

)
c1c2

(c1 + c2)2 ‖∇f̃
A(wt)‖2

(f)

≤ −8(µ+ λ)ρ

M + λ

(
λmin − ρ

2λmax

λ2
min

)
c1c2

(c1 + c2)2

(
f̃ (wt)− f̃ (w̃∗t)

)
(g)
= − 4(µ+ λ)c1c2

(M + λ)(1 + ε) (c1 + c2)2

(
f̃ (wt)− f̃ (w̃∗t)

)
(h)
= − (1− γ)

(
f̃A (wt)− f̃A (w̃∗t)

)
.

where (a) follows by defining z = X̂dt
‖X̂dt‖

; (b) follows by (6); (c) follows by the assumption

that X̂>X̂ � (M + λ)I; (d) follows by the definition of dt; (e) follows by Lemmas 14
and 3; (f) follows by strong convexity of f̃ (by Lemma 13), which implies ‖∇f̃A(wt)‖2 ≥
2(µ + λ)

(
f̃ (θt)− f̃ (w̃∗t)

)
; (g) follows by choosing ρ = λmin

λmax
; and (h) follows using the

definition of γ.

Re-arranging the inequality, we obtain

f̃At+1 − f̃A (w̃∗t) ≤ γ
(
f̃At − f̃A (w̃∗t)

)
,

and hence applying Lemma 12, we get the desired result.

Appendix B. Proof of Theorem 5

Throughout this appendix, we will define p(w) = 1
2‖Xw−y‖

2 and p̃t(w) = 1
2‖SAt (Xw − y) ‖2

for convenience, where the normalization by
√
η is absorbed into SA. We will omit the nor-

malization by n for brevity. Let us also define

w∗ = arg min
w

p(w) + λh(w)

to be the true solution of the optimization problem.

By M -smoothness of p(w),

p(wt+1) ≤ p(wt) + 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

≤ p(w∗)− 〈∇p(wt), w∗ − wt〉+ 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

≤ p(w∗)− 〈∇p(wt), w∗ − wt〉+ 〈∇p(wt), wt+1 − wt〉+
1

2α
‖wt+1 − wt‖2

≤ p(w∗) + 〈∇p(wt), wt+1 − w∗〉+
1

2α
‖wt+1 − wt‖2 (17)

where the second line follows by convexity of p, and the third line follows since α < 1
M .

Since wt+1 = arg minw F̃t(w), by optimality conditions

0 ∈ λ · ∂h(wt+1) +∇p̃t(wt) +
1

α
(wt+1 − wt) . (18)

37

Karakus, Sun, Diggavi, Yin

Since h is convex, any subgradient g ∈ ∂h at w = wt+1 satisfies

h(w∗) ≥ h(wt+1) + 〈g, w∗ − wt+1〉,

and therefore (18) implies

λh(w∗) ≥ λh(wt+1)− 〈∇p̃t(wt), w∗ − wt+1〉 −
1

α
〈wt+1 − wt, w∗ − wt+1〉. (19)

Combining (17) and (19),we have

f(wt+1) = p(wt+1) + λh(wt+1) (20)

= p(w∗) + 〈∇p(wt), wt+1 − w∗〉+
1

2α
‖wt+1 − wt‖2 (21)

≤ f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

− 1

α
〈wt − wt+1, w

∗ − wt+1〉+
1

2α
‖wt − wt+1‖2

= f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

+
1

2α

(
‖wt‖2 − 2w>t w

∗ + ‖w∗‖2 + 2w>t+1w
∗ − ‖w∗‖2 − ‖wt+1‖2

)
= f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

+
1

2α

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
(22)

Define ∆ = I − S>ASA, and consider the second term on the right-hand side of (22).

〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉 =
〈
X>∆(Xwt − y), wt+1 − w∗

〉
= 〈∆(Xwt − y), Xwt+1 − y〉 − 〈∆(Xwt − y), Xw∗ − y〉

=
1

2

[
(X (wt + wt+1)− 2y)>∆ (X (wt + wt+1)− 2y)

− (Xwt+1 − y)>∆ (Xwt+1 − y) + (Xw∗ − y)>∆ (Xw∗ − y)

− (X (wt + w∗)− 2y)>∆ (X (wt + w∗)− 2y)
]

= 2

(
X

(
wt + wt+1

2

)
− y
)>

∆

(
X

(
wt + wt+1

2

)
− y
)

− 2

(
X

(
wt + w∗

2

)
− y
)>

∆

(
X

(
wt + w∗

2

)
− y
)

− 1

2
(Xwt+1 − y)>∆ (Xwt+1 − y) +

1

2
(Xw∗ − y)>∆ (Xw∗ − y)

≤ 4εp

(
wt + wt+1

2

)
+ 4εp

(
wt + w∗

2

)
+ εp(wt+1) + εp(w∗)

(a)

≤ 2εp(wt) + 2εp(wt+1) + 2εp(wt) + 2εp(w∗) + εp(wt+1) + εp(w∗)

= ε [4p(wt) + 3p(wt+1) + 3p(w∗)]

(b)

≤ ε [4f(wt) + 3f(wt+1) + 3f(w∗)] ,

38

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

where (a) is by convexity of p(w) and Jensen’s inequality, and (b) follows by non-negativity
of h. Plugging this back in (22),

(1− 3ε) f(wt+1)− 4εf(wt) ≤ (1 + 3ε) f(w∗) +
1

2α

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
.

Adding this for t = 0, . . . , (T − 1),

(1− 7ε)

T−1∑
t=1

f(wt) + (1− 3ε)f(wT) ≤ T (1 + 3ε) f(w∗) + 4εf(w0) +
1

2α

(
‖w0 − w∗‖2 − ‖wT − w∗‖2

)
⇒ (1− 7ε)

T∑
t=1

f(wt) ≤ T (1 + 3ε) f(w∗) + 4εf(w0) +
1

2α

(
‖w0 − w∗‖2 − ‖wT − w∗‖2

)
≤ T (1 + 3ε) f(w∗) + 4εf(w0) +

1

2α
‖w0 − w∗‖2.

Defining f̄t = 1
T

∑T
t=1 f(wt), and κ = 1+3ε

1−7ε , we get

f̄T − κf(w∗) ≤
4εf(w0) + 1

2α‖w0 − w∗‖2

(1− 7ε)T
,

which proves the first part of the theorem. To establish the second part of the theorem,
note that the convexity of h implies

h(wt) ≥ h(wt+1) + 〈g, wt − wt+1〉,

where g ∈ ∂h(wt+1). By the optimality condition (18), this implies

λh(wt) ≥ λh(wt+1)− 〈∇p̃t(wt), wt − wt+1〉+
1

α
‖wt+1 − wt‖2.

Combining this with the smoothness condition of p(w),

p(wt+1) ≤ p(wt) + 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

and using the fact that α < 1
M , we have

f(wt+1) ≤ f(wt) + 〈∇p(wt)−∇p̃t(wt), wt+1 − wt〉 −
1

2α
‖wt − wt+1‖2.

As in the previous analysis, we can show that

〈∇p(wt)−∇p̃t(wt), wt+1 − wt〉 ≤ ε [7f(wt) + 3f(wt+1)] ,

and therefore

f(wt+1) ≤ 1 + 7ε

1− 3ε
f(wt)−

1

2α(1− 3ε)
‖wt − wt+1‖2

≤ 1 + 7ε

1− 3ε
f(wt).

39

Karakus, Sun, Diggavi, Yin

Appendix C. Proof of Theorem 6

For an iterate vt, let wt := Svt. Define the solution set S = arg minw g(w), and w∗t =
PS (wt), where PS (·) is the projection operator onto the set S. Let v∗t be such that w∗t =
S>v∗t , which always exists since S has full column rank.

We also define L′ := L(1 + ε), and g∗ = minw g(w) = g(w∗t) for any t.

C.1. Lemmas

Lemma 15 g̃(v) is L′-smooth.

Proof For any u, v,

g̃(u) = g(S>u) ≤ g(S>v) + 〈∇g(S>v), S>(u− v)〉+
L

2
‖S>(u− v)‖2,

(a)

≤ g(S>v) + 〈S∇g(S>v), u− v〉+
L(1 + ε)

2
‖u− v‖2,

(b)
= g̃(v) + 〈∇g̃(v), u− v〉+

L(1 + ε)

2
‖u− v‖2,

where (a) follows from smoothness of g, and from (m, η, ε)-BRIP property, and (b) is by the
chain rule of derivatives and the definition of g̃(v). Therefore g̃ is L(1 + ε)-smooth.

Lemma 16 For any t,

g̃∗ := min
v
g̃(v) = min

w
g(w) =: g∗.

Proof It is clear that

min
v
g̃(v) = min

v
g(S>v) ≥ min

w
g(w).

To show the other direction, set v∗ = S(S>S)−1w∗, where S>S is invertible since S has full
column rank. Then g(w∗) = g̃(v∗) ≥ minv g̃(v).

Lemma 17 If g is ν-restricted-strongly convex, then

g(w)− g∗ ≥ ν

2
‖w − w∗‖2,

where w∗ = PS(w).

Proof We follow the proof technique in Zhang and Yin (2013). We have

g(w) = g∗ +

∫ 1

0
〈∇g(w∗ + τ(w − w∗)), w − w∗〉dτ

= g∗ +

∫ 1

0

1

τ
〈∇g(w∗ + τ(w − w∗)), τ(w − w∗)〉dτ

40

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

(a)

≥ g∗ +

∫ 1

0

1

τ
ντ2‖w − w∗‖2dτ

= g∗ + ν‖w − w∗‖2
∫ 1

0
τdτ

= g∗ +
1

2
ν‖w − w∗‖2,

which is the desired result, where in (a) we used ν-restricted strong convexity, and the fact
that

PS(w∗ + τ(w − w∗)) = w∗,

for all τ ∈ [0, 1], since w∗ = PS(w) is the orthogonal projection.

C.2. Proof of Theorem 6

Recall that the step for block i at time t, ∆i,t, is defined by

∆i,t :=

{
−α∇ig̃(vt−1), if i ∈ At

0, otherwise.

By smoothness and definition of ∆t,

g̃(vt+1)− g̃(vt) ≤ 〈∇g̃(vt),∆t〉+
L′

2
‖∆t‖2

=
∑
i∈At

(
〈∇ig̃(vt),∆i,t〉+

L′

2
‖∆i,t‖2

)
=
∑
i∈At

(
− 1

α
〈∆i,t,∆i,t〉+

L′

2
‖∆i,t‖2

)
= −

(
1

α
− L′

2

)
‖∆t‖2. (23)

Now, for any t,

g̃(vt)− g̃∗ ≤ 〈∇g̃(vt), v
∗
t − vt〉 =

〈
S∇g(S>vt), v

∗
t − vt

〉
(a)

≤
∥∥∥∇g(S>vt)

∥∥∥ · ∥∥∥S> (v∗t − vt)
∥∥∥ =

∥∥∥∇g(S>vt)
∥∥∥ · ‖w∗t − wt‖ , (24)

where (a) is due to Cauchy-Schwartz inequality. Using

∆t = −αPt
[
SAt∇g(S>vt)

0

]
,

where Pt is a block permutation matrix mapping {1, . . . , k} to the node indices in At, we
have

‖∆t‖2 = α2∇g(S>vt)
>S>At

P>t PtSAt∇g(S>vt) ≥ (1− ε)α2
∥∥∥∇g(S>vt)

∥∥∥2
. (25)

41

Karakus, Sun, Diggavi, Yin

Because of (23), we have

g̃(vt+1)− g̃(vt) = g(wt+1)− g(wt) ≤ 0

when α < 2/L′, and hence wt is contained in the level set defined by the initial iterate for
all t, i.e.,

wt ∈ {w : g(w) ≤ g(w0)} .

By the diameter assumption on this set, we have ‖wt − w∗t ‖ ≤ R for all t. Using this and
(25) in (24), we get

g̃(vt)− g̃∗ ≤
R

α

√
1

1− ε
‖∆t‖.

Note that the fact that ε > 0 weakens the per-step bound here, since we do not take the
steepest descent direction. Another penalty from non-zero ε > 0 comes due to the increase in
the smoothness parameter of the objective L′ = (1+ε)L, which slightly limits the maximum
step size.

Combining the above with (23),

g̃(vt+1)− g̃(vt) ≤ −
(1− ε)α
R2

(
1− αL′

2

)
(g̃(vt)− g̃∗)2 .

Defining πt := g̃(vt)− g̃∗, and C := (1−ε)α
R2

(
1− αL′

2

)
, this implies

πt+1 ≤ πt − Cπ2
t .

Dividing both sides by πtπt+1, and noting that πt+1 ≤ πt due to (23),

1

πt
≤ 1

πt+1
− C πt

πt+1
≤ 1

πt+1
− C

Therefore

1

πt
≥ 1

π0
+ Ct,

which implies

πt ≤
1

1
π0

+ Ct
.

Since g(wt) = g(S>vt) = g̃(vt) by definition, and g∗ = g̃∗ by Lemma 16, πt = g(wt) − g∗,
and therefore we have established the first part of the theorem.

To prove the second part, we make the additional assumption that g satisfies ν-restricted-
strong convexity, which, through Lemma 17, implies g(w) − g∗ ≥ ν

2‖w − w
∗‖2, for w∗ =

PS(w). Plugging in w = wt then gives the bound

‖wt − w∗t ‖2 ≤
2

ν
πt.

42

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Using this bound as well as (25) in (24), we have

π2
t ≤

2‖∆t‖2

ν(1− ε)α2
πt.

Using (23), this gives

πt ≤
2

ν(1− ε)α2

(
1

α
− L′

2

)−1

(πt − πt+1) ,

which, defining ξ = 2
ν(1−ε)α

(
1− L′α

2

)−1
, results in

πt ≤
(

1− 1

ξ

)t
π0,

which shows the desired result.

Appendix D. Full results of the Matrix factorization experiment

Tables 6 and 7 give the test and train RMSE for the Movielens 1-M recommendation task,
with a random 80/20 train/test split.

uncoded replication gaussian paley hadamard
m = 8, k = 1

train RMSE 0.804 0.783 0.781 0.775 0.779
test RMSE 0.898 0.889 0.877 0.873 0.874

runtime 1.60 1.76 2.24 1.82 1.82
m = 8, k = 4

train RMSE 0.770 0.766 0.765 0.763 0.765
test RMSE 0.872 0.872 0.866 0.868 0.870

runtime 2.96 3.13 3.64 3.34 3.18
m = 8, k = 6

train RMSE 0.762 0.760 0.762 0.758 0.760
test RMSE 0.866 0.871 0.864 0.860 0.864

runtime 5.11 4.59 5.70 5.50 5.33

Table 6: Full results for Movielens 1-M, distributed over m = 8 nodes total. Runtime is in
hours. An uncoded scheme running full batch L-BFGS has a train/test RMSE of 0.756 /
0.861, and a runtime of 9.58 hours.

43

Karakus, Sun, Diggavi, Yin

uncoded replication gaussian paley hadamard
m = 24, k = 3

train RMSE 0.805 0.791 0.783 0.780 0.782
test RMSE 0.902 0.893 0.880 0.879 0.882

runtime 2.60 3.22 3.98 3.49 3.49
m = 24, k = 12

train RMSE 0.770 0.764 0.767 0.764 0.765
test RMSE 0.872 0.870 0.866 0.868 0.868

runtime 4.24 4.38 4.92 4.50 4.61

Table 7: Full results for Movielens 1-M, distributed over m = 24 nodes total. Runtime is
in hours. An uncoded scheme running full batch L-BFGS has a train/test RMSE of 0.757
/ 0.862, and a runtime of 14.11 hours.

References

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems, pages 873–881, 2011.

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective straggler
mitigation: Attack of the clones. In NSDI, volume 13, pages 185–198, 2013.

Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for
machine learning. In Advances in Neural Information Processing Systems, pages 1055–
1063, 2016.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions
on information theory, 51(12):4203–4215, 2005.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projec-
tions: Universal encoding strategies? IEEE transactions on information theory, 52(12):
5406–5425, 2006.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56
(2):74–80, 2013.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks.
In Advances in neural information processing systems, pages 1223–1231, 2012.

Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. Numerische mathematik, 117(2):219–249, 2011.

Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. Short-dot: Computing large
linear transforms distributedly using coded short dot products. In Advances In Neural
Information Processing Systems, pages 2092–2100, 2016.

Matthew Fickus, Dustin G Mixon, and Janet C Tremain. Steiner equiangular tight frames.
Linear algebra and its applications, 436(5):1014–1027, 2012.

44

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa Hyytia.
Reducing latency via redundant requests: Exact analysis. ACM SIGMETRICS Perfor-
mance Evaluation Review, 43(1):347–360, 2015.

Stuart Geman. A limit theorem for the norm of random matrices. The Annals of Probability,
pages 252–261, 1980.

J.M. Goethals and J Jacob Seidel. Orthogonal matrices with zero diagonal. Canad. J.
Math, 1967.

Wael Halbawi, Navid Azizan-Ruhi, Fariborz Salehi, and Babak Hassibi. Improving dis-
tributed gradient descent using reed-solomon codes. arXiv preprint arXiv:1706.05436,
2017.

Martin Jaggi. An equivalence between the lasso and support vector machines. arXiv preprint
arXiv:1303.1152, 2013.

Can Karakus, Yifan Sun, and Suhas Diggavi. Encoded distributed optimization. In 2017
IEEE International Symposium on Information Theory (ISIT), pages 2890–2894. IEEE,
2017a.

Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Straggler mitigation in distributed
optimization through data encoding. In Advances in Neural Information Processing Sys-
tems, pages 5440–5448, 2017b.

Ming-Jun Lai and Wotao Yin. Augmented \ell 1 and nuclear-norm models with a globally
linearly convergent algorithm. SIAM Journal on Imaging Sciences, 6(2):1059–1091, 2013.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan
Ramchandran. Speeding up distributed machine learning using codes. IEEE Transactions
on Information Theory, 64(3):1514–1529, 2018.

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397,
2004.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In OSDI, volume 14, pages 583–598, 2014.

Yu-Feng Li, Ivor W Tsang, Jame Kwok, and Zhi-Hua Zhou. Tighter and convex maximum
margin clustering. In Artificial Intelligence and Statistics, pages 344–351, 2009.

Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An
asynchronous parallel stochastic coordinate descent algorithm. The Journal of Machine
Learning Research, 16(1):285–322, 2015.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and
Trends R© in Machine Learning, 3(2):123–224, 2011.

45

Karakus, Sun, Diggavi, Yin

Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory
BFGS. Journal of Machine Learning Research, 16:3151–3181, 2015.

Raymond EAC Paley. On orthogonal matrices. Studies in Applied Mathematics, 12(1-4):
311–320, 1933.

Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. Arock: an algorithmic framework
for asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing,
38(5):A2851–A2879, 2016.

Mert Pilanci and Martin J Wainwright. Randomized sketches of convex programs with
sharp guarantees. IEEE Transactions on Information Theory, 61(9):5096–5115, 2015.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

Amirhossein Reisizadeh, Saurav Prakash, Ramtin Pedarsani, and Salman Avestimehr.
Coded computation over heterogeneous clusters. In Information Theory (ISIT), 2017
IEEE International Symposium on, pages 2408–2412. IEEE, 2017.

J Riedl and J Konstan. Movielens dataset, 1998.

Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant requests
reduce latency? IEEE Transactions on Communications, 64(2):715–722, 2016.

Jack W Silverstein. The smallest eigenvalue of a large dimensional wishart matrix. The
Annals of Probability, pages 1364–1368, 1985.

Tao Sun, Robert Hannah, and Wotao Yin. Asynchronous coordinate descent under more
realistic assumptions. In Advances in Neural Information Processing Systems, pages
6183–6191, 2017.

Ferenc Szöllősi. Complex hadamard matrices and equiangular tight frames. Linear Algebra
and its Applications, 438(4):1962–1967, 2013.

Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. Gradient
coding. ML Systems Workshop (MLSyS), NIPS, 2016.

Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. Gradient cod-
ing: Avoiding stragglers in distributed learning. In International Conference on Machine
Learning, pages 3368–3376, 2017.

Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to reduce latency
in large-scale parallel computing. ACM SIGMETRICS Performance Evaluation Review,
43(3):7–11, 2015.

Lloyd Welch. Lower bounds on the maximum cross correlation of signals (corresp.). IEEE
Transactions on Information theory, 20(3):397–399, 1974.

46

Redundancy Techniques for Straggler Mitigation in Dist. Opt. and Learning

N J. Yadwadkar, B. Hariharan, J. Gonzalez, and R H. Katz. Multi-task learning for straggler
avoiding predictive job scheduling. Journal of Machine Learning Research, 17(4):1–37,
2016.

Yaoqing Yang, Pulkit Grover, and Soummya Kar. Coded distributed computing for inverse
problems. In Advances in Neural Information Processing Systems, pages 709–719, 2017.

Yang You, Xiangru Lian, Ji Liu, Hsiang-Fu Yu, Inderjit S Dhillon, James Demmel, and
Cho-Jui Hsieh. Asynchronous parallel greedy coordinate descent. In Advances in Neural
Information Processing Systems, pages 4682–4690, 2016.

Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under
weaker conditions. arXiv preprint arXiv:1303.4645, 2013.

47

	Introduction
	Encoded Distributed Optimization
	Data parallelism
	Model parallelism

	Main Theoretical Results: Convergence Analysis
	A spectral condition
	Convergence of encoded gradient descent
	Convergence of encoded L-BFGS
	Convergence of encoded proximal gradient
	Convergence of encoded block coordinate descent

	Code Design
	Block RIP condition and code design
	Discussion on required redundancy
	Efficient encoding
	Efficient distributed encoding with sparse matrices
	Fast transforms

	Cost of encoding

	Numerical Results
	Data parallelism
	Ridge regression
	Matrix factorization
	LASSO

	Model parallelism
	Logistic regression

	Speed tests

	Proofs of Theorems 2 and 4
	Lemmas
	Proof of Theorem 2
	Proof of Theorem 4

	Proof of Theorem 5
	Proof of Theorem 6
	Lemmas
	Proof of Theorem 6

	Full results of the Matrix factorization experiment

