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Abstract

Bayesian Non-negative Matrix Factorization (BNMF) is a promising approach for under-
standing uncertainty and structure in matrix data. However, a large volume of applied
work optimizes traditional non-Bayesian NMF objectives that fail to provide a principled
understanding of the non-identifiability inherent in NMF—an issue ideally addressed by
a Bayesian approach. Despite their suitability, current BNMF approaches have failed to
gain popularity in an applied setting; they sacrifice flexibility in modeling for tractable
computation, tend to get stuck in local modes, and can require many thousands of samples
for meaningful uncertainty estimates. We address these issues through a particle-based
variational approach to BNMF that only requires the joint likelihood to be differentiable
for computational tractability, uses a novel transfer-based initialization technique to iden-
tify multiple modes in the posterior, and thus allows domain experts to inspect a small
set of factorizations that faithfully represent the posterior. On several real datasets, we
obtain better particle approximations to the BNMF posterior in less time than baselines
and demonstrate the significant role that multimodality plays in NMF-related tasks.

Keywords: Bayesian, Non-negative Matrix Factorization, Stein discrepancy, Non-identifiability,
Transfer Learning

1. Introduction

The goal of non-negative matrix factorization (NMF) is to find a rank-RNMF factorization
for a non-negative data matrix X (D dimensions by N observations) into two non-negative
factor matrices A and W . Typically, the rank RNMF is much smaller than the dimensions
and observations (RNMF � D,N).

X ≈ AW | X ∈ RD×N+ , A ∈ RD×RNMF
+ , W ∈ RRNMF×N

+

The linear, additive structure of these non-negative factor matrices makes NMF a popular
unsupervised learning framework for discovering and interpreting latent structure in data.
Each observation in the data X is approximated by an additive combination of the RNMF

columns of A with the combination weights given by the column of W corresponding to
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that observation. In this way, the basis matrix A provides a part-based representation of
the data and the weights matrix W provides an RNMF-dimensional latent representation of
the data under this part-based representation.

The ability to easily interpret NMF solutions in this way has made them appealing
in many applied areas. A few applications of NMF include understanding protein-protein
interactions (Greene et al., 2008), topic modeling (Roberts et al., 2016), hyperspectral un-
mixing (Bioucas-Dias et al., 2012), polyphonic music transcription (Smaragdis and Brown,
2003), discovering molecular pathways from genomic samples (Brunet et al., 2004), and
summarizing activations of a neural network for greater interpretability (Olah et al., 2018).

However, the analysis and interpretation of latent structure in a dataset via NMF is
affected by the possibility that several non-trivially different pairs of A,W may reconstruct
the data X equally well. This non-identifiability of the NMF solution space has been studied
in detail in the theoretical literature (Pan and Doshi-Velez, 2016; Donoho and Stodden, 2003;
Arora et al., 2012; Ge and Zou, 2015b; Bhattacharyya et al., 2016), and domain experts
using NMF as a tool have noticed this issue as well. Greene et al. (2008) use ensembles
of NMF solutions to model chemical interactions, while Roberts et al. (2016) conduct a
detailed empirical study of multiple optima in the context of extracting topics from large
corpora.

Bayesian approaches to NMF promise to characterize this parameter uncertainty in a
principled manner by solving for the posterior p(A,W |X) given prior p(A,W ) and likelihood
p(X|A,W ) e.g. Schmidt et al. (2009); Moussaoui et al. (2006). Having a representation of
uncertainty in the parameters of the factorizations can assist with the proper interpretation
of the factors, allowing us to place low or high confidence on parameters of the factorization.
However, computational tractability of inference limits the application of the Bayesian ap-
proach. Uncertainty estimates obtained from current Bayesian methods are often of limited
use: variational approaches (e.g. Paisley et al. (2015); Hoffman and Blei (2015)) typi-
cally underestimate uncertainty and fit to a single mode; sampling-based approaches (e.g.
Schmidt et al. (2009); Moussaoui et al. (2006)) also rarely switch between multiple modes
and often require many thousands of samples for meaningful uncertainty estimates.

As a result of the limitations of current Bayesian approaches, domain experts tend to rely
on non-Bayesian approaches to characterize uncertainty in NMF parameters. For example,
Greene et al. (2008); Roberts et al. (2016); Brunet et al. (2004) all use random restarts to
find multiple solutions.1 Random restarts have no Bayesian interpretation (as they depend
on the basins of attraction of each mode), but they do often find multiple optima in the
objective that can be used to understand and interpret the data.

Contributions In this work, we present a transfer-learning approach that remains faithful
to a principled Bayesian framework and can efficiently identify multiple, disconnected modes
for any differentiable prior and likelihood model. Our transfer-learning based approach
provides high-quality and diverse NMF initializations to seed a particle-based approximation
to the Bayesian NMF (BNMF) posterior. We demonstrate our inference approach on two
different BNMF models: first, the common exponential-Gaussian model; second, a novel

1. Random restarts involve repeating an optimization procedure with different starting points that are
independently sampled.
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model that corresponds more closely with the desires of domain experts. Through our
experiments, we demonstrate that:

• On a large number of real-world datasets, our particle-based posterior approximations
consistently outperform baselines in terms of both posterior quality and computational
running time.

• Our approach allows us to produce relatively small (less than 100 NMFs) sets of par-
ticles that belong to multiple modes of the posterior landscape, have distinct inter-
pretations, and exhibit variability in performance on downstream tasks—all of which
may be essential for a domain expert to inspect and understand the full solution space.

• Our novel practitioner-friendly BNMF model involves a new scale-fixing prior that
removes many uninteresting multiple optima and captures the kinds of loss-insensitive
regions that are important in many applications. Inference in this non-conjugate
model is significantly more challenging than with more standard BNMF models, but
our approach handles this case with ease.

2. Inference Setting

The general process of Bayesian modeling consists of three main parts. First, we must
select a model (a likelihood and prior). Next, we perform inference on the model given
data (under some objective). Finally, we evaluate the quality of the inference. The main
innovation in this work is a novel transfer-based approach to the inference phase (Section 4).
Along the way, we also introduce a novel model for BNMF that is more closely aligned to
what domain experts desire from NMFs (Section 5.2).

When performing inference, we must choose how we will approximate the true posterior
p(A,W |X). For notational simplicity, let θ represent NMF parameters (A,W ). We approxi-
mate the full BNMF posterior p(θ|X) with a discrete variational distribution q(θ|θ1:M , w1:M )
that has M different point-masses θm. Each θm represents a different NMF solution’s full
set of parameters: θm = vec[ATm,Wm], and is assigned probability mass wm. The functional
form of the variational distribution is given by:

p(θ|X) ≈ q(θ|θ1:M , w1:M ) =
M∑
m=1

wmδ(θ − θm)

s.t w1:M ∈ ∆M−1, where θm = vec[ATm,Wm]

(1)

where δ is the Dirac delta distribution and ∆M−1 is the probability simplex in RM . Particle-
based approximations are attractive to domain experts because each sample represents
something that they can inspect and understand.

While there exist many methods for particle-based approximations (Monte Carlo, Se-
quential Monte Carlo, Markov Chain Monte Carlo), these techniques often only enjoy the-
oretical guarantees in the limit of infinite or very large samples. Recent work in Stein
discrepancy evaluation (Liu and Feng (2016); Chwialkowski et al. (2016); Gretton et al.
(2006); Liu et al. (2016); Gorham and Mackey (2015); Ranganath et al. (2016); details in
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Section 3) now enables us to measure the quality of an arbitrary finite collection as a poste-
rior approximation.2 As such, it opens the door to entirely new classes of particle-generation
techniques, where traditional conditions, such as detailed balance, are now replaced with
minimizing the Stein discrepancy Sp(q)3 between the true BNMF posterior p(θ|X) and the
discrete approximation q(θ|θ1:M , w1:M ):

q∗(θ|θ1:M , w1:M ) = argminq(θ|θ1:M ,w1:M )Sp(θ|X)(q(θ|θ1:M , w1:M )) s.t. w1:M ∈ ∆M−1 (2)

As with all variational inference problems, the problem of posterior inference is now reduced
to the problem of optimizing the objective above; we are free to explore any method for
producing settings {θ1:M , w1:M} to minimize the Stein discrepancy to the true posterior.

In the following, we observe that the task of minimizing this Stein discrepancy often
depends on producing high-quality, diverse factorization collections θ1:M and determining
their associated weights w1:M . In Section 4, we introduce a transfer-learning based approach
to efficiently suggest a diverse collection of particles and optimize their associated weights.
We describe traditional BNMF as well as a novel threshold-based NMF model, and discuss
their merits in the context of our approach in Section 5. Experimental details including
parameter choices for our approach as well as description of baselines and evaluation metrics
is provided in Section 6. In Section 7, we compare our approach to more traditional particle-
based approaches (MCMC), more naive ways of generating candidate particle collections, as
well as directly attempting to optimize the Stein objective above. We evaluate the quality
of different posterior approximations both based on their Stein discrepancies, likelihoods
and reconstruction on held-out data.

3. Background

Bayesian Non-negative Matrix Factorization In BNMF, we define a prior p(A,W )
and a likelihood p(X|A,W ) and seek to characterize the posterior p(A,W |X). These are
related by Bayes’ rule:

p(A,W |X) =
p(X|A,W )p(A,W )

p(X)

There exist many options for the choice of prior and likelihood (e.g., exponential-Gaussian,
(Paisley et al., 2015; Schmidt et al., 2009), Gamma Markov chain priors (Dikmen and
Cemgil, 2009) and volume-based priors (Arngren et al., 2011)). The likelihood and prior
choices are often chosen to have good computational properties (e.g. the resulting partial
conjugacy of the exponential-Gaussian model). One advantage of our work is that we do
not require the computationally convenient priors for inference.

Transfer learning The field of transfer learning aims to leverage models and inference
applied to one problem to assist in solving related problems. It is of practical value because

2. While the popular Kullback-Leibler divergence requires comparing the ratio of probability densities or
probability masses, the Stein discrepancy can be used to compare a particle-based collection defined by
probability masses with a continuous target distribution.

3. This notation refers to the Stein discrepancy (a variational objective) between two distributions p and
q. For a precise definition, see Section 3
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there may be an abundance of data and computational resources for one problem but not
another (see Pan and Yang (2010) for a survey). In this work, we shall use the solutions to
BNMF from small, synthetic problems to help solve much larger NMF problems.

Stein discrepancy The Stein discrepancy Sp(q) is a divergence from distributions q(θ)
to p(θ) that only requires sampling from the variational distribution q(θ) and evaluating
the score function of the target distribution p(θ). The Stein discrepancy is computed over
some class of test functions f ∈ F and satisfies the closeness property for operator vari-
ational inference (Ranganath et al., 2016): it is non-negative in general and zero only for
some equivalence class of distributions q ∈ Q0. For a rich enough function class, the only
distribution for which the Stein discrepancy is zero is the distribution p itself. For discrete
distributions like our q(θ|θ1:M , w1:M ) from Section 2, the approximation quality to the pos-
terior distribution p(θ|X) of interest can be analytically computed using recent advances in
Stein discrepancy evaluation with kernels (Liu and Feng, 2016; Chwialkowski et al., 2016;
Gretton et al., 2006; Liu et al., 2016; Gorham and Mackey, 2015). The Stein discrepancy is
related to the maximum mean discrepancy (MMD): a discrepancy that measures the worst-
case deviation between expectations of functions h ∈ H under p and q (Gretton et al.,
2006).

MMD(H, q, p) := sup
h∈H

Eθ∼q[h(θ)]− Eθ′∼p[h(θ′)]

The Stein operator Tp corresponding to the distribution p is given by

(Tph)(x) :=
1

p(x)
〈∇, p(x)h(x)〉

and under its application, the function space H is transformed into another function space
Tp(H) = F . The advantage of applying this operator to the MMD equation is that expec-
tations under p of any f ∈ F are zero, i.e. Eθ′∼pf(θ′)) = 0 (Barbour and Brown, 1992).
The Stein discrepancy is given by:

Sp(H, q) := sup
f∈Tp(H)

(Eθ∼qf(θ))2

Computing the Stein discrepancy is of particular interest when the distribution p is
intractable. Evaluating the Stein discrepancy does not require expectations over p and the
Stein operator Tp only depends on the unnormalized distribution via the score function
∇θ log p(θ).

In this work, we use a kernelized form of the Stein discrepancy. For every positive
definite kernel k(θ, θ′), a unique Reproducing Kernel Hilbert Space (RKHS) H is defined.
Chwialkowski et al. (2016) showed that the Stein operator applied to an RKHS defines a
modified positive definite kernel Kp given by:

Kp(θ, θ′) = ∇θ log p(θ)T∇θ′ log p(θ′)k(θ, θ′)

+∇θ′ log p(θ′)T∇θk(θ, θ′)

+∇θ log p(θ)T∇θ′k(θ, θ′)

+
d∑
i=1

∂2k(θ, θ′)

∂θi∂θ′i

(3)
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Finally, the Stein discrepancy is simply the expectation of the modified kernel Kp under the
joint distribution of two independent variables θ, θ′ ∼ q.

Sp(q) = Eθ,θ′∼q[Kp(θ, θ′)]

For a discrete distribution over θ1:M with probability masses w1:M (of the form in equa-
tion 1), this can be evaluated exactly (Liu and Lee, 2016) as:

Sp(q) =

M∑
i,j=1

wiwjKp(θi, θj)

= wTKw

(4)

The (pure) quadratic form wTKw is a reformulation where K ∈ RM×M is the (positive
definite) pairwise kernel matrix with entries Kij = Kp(θi, θj) and the probability masses
w1:M are embedded into a vector w ∈ RM×1. Our particle-based variational objective
(equation 2) simplifies to the form in equation 4. In Section 4, we will provide a method
for estimating θ1:M and w1:M for the BNMF problem.

4. Approach

In this Section, we describe our transfer-based inference. As noted in Section 2, creating a
particle-based posterior involves two distinct parts: creating a collection of candidate NMFs
θ1:M , and then optimizing their weights w1:M . We introduce a novel transfer-based approach
that uses state-of-the-art (non-Bayesian) algorithms to efficiently generate the candidate
NMFs θ1:M (Section 4.1). Given θ1:M , we optimize the weights w1:M via standard convex
optimization tools to minimize Stein discrepancy. (See Algorithm 1 for the full algorithm.)
In Section 7, we compare our approach for generating candidate NMFs and weights to other
baselines, including those that use traditional methods for particle generation (MCMC),
other ways of creating candidate NMFs (and then again using a convex optimization on the
weights), and gradient-based optimization of the objective.

4.1. Learning factorization parameters θ1:M via Transfer Learning

A natural approach to finding the factorization parameters θ1:M is to optimize for them
directly via the variational objective (equation 2), however, as we shall see in Section 7, the
direct approach tends to get stuck in poor local optima and is computationally expensive.
Since the quality of the variational approximation is determined solely by the value of the
variational objective under a given set of parameters θ1:M , w1:M , we are free to employ any
technique that produces a suitable collection θ1:M .

We observe that to minimize the Stein discrepancy, we will need solutions that are
both high-quality and diverse. Random restarts have been previously used to find multiple
solutions in general (Gendreau and Potvin, 2010) and for NMF in particular (Greene et al.,
2008; Roberts et al., 2016; Brunet et al., 2004). These restarts can take advantage of
specialized (non-Bayesian) optimization algorithms for NMF (Lee and Seung, 2001; Lin,
2007; Hsieh and Dhillon, 2011) that are widely used in applied settings to produce single
factorization parameters θm from some initialization; there also exist algorithms to speed up
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Figure 1: A schematic of the transfer learning procedure for NMF: A small dataset is used
to learn transformation matrices QA, QW . We then apply these transformation matrices to
multiple larger datasets (with any number of dimensions or observations) using its SVD to
obtain a transfer-based initialization.

convergence of these methods (Salakhutdinov et al., 2002; Wild et al., 2004; Xue et al., 2008;
Boutsidis and Gallopoulos, 2008). However, these random restarts do not take advantage
of any structure of NMF; for each new NMF instance they propose random initializations
from scratch. As such, many initializations may converge to the same mode—a waste of
computational effort—while missing other modes (especially when the number of restarts
is small).

In this Section, we introduce a transfer-based technique (which we will call Q-Transform)
to speed-up, as compared to random restarts, the process of finding a diverse set of fac-
torizations from high-density regions of the posterior. Our initializations are determined
by identifying the low-rank subspace of the data (via singular value decomposition (SVD))
and then transforming it in specific ways. Figure 1 shows a schematic illustrating the
idea: we generate subspace transformation matrices QA, QW from a number of small, syn-
thetic datasets and then apply those transformations to the dataset of interest. These
transformations serve as more intelligent initializations—compared to random restarts—
from which to apply NMF algorithms to obtain a more diverse collection of high-quality
NMFs. Because our initializations are almost always already decent NMFs, convergence
is also computationally faster. To explain our Q-Transform procedure, we first define the
subspace transformation matrices, then describe the method for generating transformation
matrices QA, QW using synthetic data, and finally discuss how to apply them to real data
sets (transfer learning).

Subspace transformations QA, QW relating SVD and NMF A low dimensional
approximation for the data X can be obtained via the top RSVD vectors of the SVD
ASVD,WSVD. An NMF A,W of rank RT (which may be different from RSVD) also leads to
an approximation of the data. The NMF factors are interpretable due to the non-negativity
constraint whereas the SVD factors typically violate non-negativity. However, both ap-
proaches describe low dimensional subspaces that can be used to understand and approxi-
mate the data. These subspaces are the same when RSVD = RT and the NMF is exact (i.e.
X = AW ; corresponds to Type I non-identifiability in Pan and Doshi-Velez (2016). Under
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Algorithm 1 Particle-based Variational Inference for BNMF using Q-Transform

Input: Data {X}, Rank {RNMF}, # Factorizations M
Step 1: Perform M repetitions of Algorithm 2 to get matrices {QmA , QmW }Mm=1 or re-use
them if previously constructed
Step 2: Apply Q-Transform (Algorithm 3) to get Initializations {Am0 ,Wm

0 }Mm=1

Step 3: Apply NMF algorithm to get Factorizations {Am,Wm}Mm=1

Step 4: Apply Algorithm 5 using a given BNMF model to get weights {wm}Mm=1 for
approximate posterior
Output: Discrete NMF Posterior {wm, Am,Wm}Mm=1

these conditions, there exist transformation matrices QA, QW to obtain the non-negative
basis and weights exactly in terms of the singular value decomposition matrices:

If X = ASVDWSVD = AW then

A = ASVDQA W = QWWSVD

When the data X is not an exact NMF but rather a perturbation of it (i.e. X =
AW+ε), the singular subspace of the matrix is bounded by Wedin’s theorem (Wedin, 1972).
We therefore still expect that there exist transformation matrices QA ∈ RRSVD×RT , QW ∈
RRT×RSVD to yield approximations of the NMF factorizations that can be expressed in terms
of the singular value decomposition matrices.

AQ = ASVDQA ≈ A WQ = QWWSVD ≈W

Our transfer-based strategy will involve identifying candidate matrices AQ ∈ RD×RT ,WQ ∈
RRT×N such that ASVDQA and QWWSVD are likely to be good initializations for an NMF of
the data X. (Note that we assume that computing the SVD to obtain ASVD and WSVD from
the data X is straight-forward.) We will describe the details for using these initializations
below, but first we describe how we might create a collection of candidate transformation
matrices QA, QW .

Generating transformations QA, QW for NMF initialization. To generate candi-
date transformations, we note that if we have already computed an NMF A,W for a
dataset X, the appropriate transforms QA, QW can be computed by relating the SVD
factors ASVD,WSVD to A,W (e.g. via linear least squares). We propose to generate candi-
date transforms by using random restarts on small, synthetic datasets Xs that follow some
generative model for NMF, where we can run (non-Bayesian) NMF algorithms quickly and
solve for QA, QW (Algorithm 2). Multiple pairs of transformation matrices can be obtained
by repeating Algorithm 2 with different random initializations to compute NMF of the
synthetic data Xs, as well as by generating multiple synthetic datasets (see Section 8.1 for
experiments and discussion of alternate generation procedures). Since the transformations
QA, QW act on the inner dimensions (columns of ASVD and rows of WSVD), we emphasize
that they can be applied to new datasets with any number of dimensions D and number of
observations N .
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Algorithm 2 Generate Q-Transform Matrices

Input: Synthetic Data {Xs}, SVD Dimension {RSVD}, Transfer Dimension {RT }
ASVD,WSVD ← Compute top RSVD SVD of Xs

ANMF,WNMF ← Compute rank-RT NMF of Xs using random initialization
QA = arg min

Q
‖ANMF −ASVDQ‖F via linear least squares

QW = arg min
Q

‖WNMF −QWSVD‖F via linear least squares

Output: QA, QW

Algorithm 3 Apply Q-Transform

Input: Real Data {X}, SVD Rank {RSVD}, NMF Rank {RNMF}, Transformation Ma-
trices {QA, QW }
ASVD,WSVD ← Compute top RSVD SVD of X
Ã0 = ASVDQA, W̃0 = QWWSVD

A0,W0 ← Apply non-negativity and fix dimensions: Algorithm 4 (Ã0, W̃0, RNMF)
Output: A0, W0

Creating initializations for a new dataset. Given the top SVD factors of a new
dataset ASVD,WSVD, we apply the Q-Transform (Algorithm 3) which multiplies SVD factors
by the QA, QW matrices and adjusts entries of ASVDQA and QWWSVD to ensure non-
negativity and correct dimensions using Algorithm 4 to obtain initializationsA0,W0 that can
be used as input for any standard (non-Bayesian) NMF algorithm (e.g. Cichocki and Phan
(2009), Févotte and Idier (2011)). Algorithm 4 ensures that all values in the initialization
A0,W0 are non-negative as well as provides a way to pad the initialization if the size RT
of the transforms QA, QW are smaller than the desired NMF rank RNMF. The latter is
an important point: in Section 8.3 we find that it is often the first few dimensions of the
transformation that contain transferable information, and the rest provide little benefit.
This observation also allows us to use transforms of some rank RT on problems with a range
of desired NMF ranks RNMF. Finally, running the algorithm gives us a set of factorization
parameters θm = vec[ATm,Wm] that we may (or may not) ultimately decide to keep in our
approximation of the true posterior.

In the experiments in Section 7, we find that knowledge from these transformations
QA, QW can be transferred to real datasets by re-using them to relate the top SVD factors
of other datasets to high quality, approximately non-negative factorizations.4

4.2. Learning weights w1:M given parameters θ1:M

To infer the weights corresponding to a given factorization collection θ1:M , we minimize
the Stein discrepancy (Algorithm 5) subject to the simplex constraint on the weights. This
process involves first computing the pairwise kernel matrix5 K using the kernel Kp in equa-
tion 3. The objective function is convex and can be solved using standard convex optimiza-
tion solvers. Given point-masses θ1:M , this framework can be employed to infer weights

4. Code and demonstrations at https://github.com/dtak/Q-Transfer-Demo-public-/
5. As the kernel Kp is positive definite, K is also positive definite.
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Algorithm 4 Initialization Adjustment

Input: Approximation matrices {AQ,WQ}, NMF Rank {RNMF}
Ã0 ← Absolute Value(AQ)
W̃0 ← Absolute Value(WQ)
Transfer Rank RT = # Columns of AQ
if NMF Rank RNMF > Transfer Rank RT then
r = RNMF −RT
Pad Ã0, W̃0 with matrices MD×r and MN×r having small random entries so that ini-
tializations are the correct dimensions and matrices MD×r,MN×r have little effect of
the product Ã0W̃0.
A0 ← [Ã0,MD×k]

W0 ← [W̃0
T
,MN×k]

T

else if NMF Rank RNMF < Transfer Rank RT then
Pick the top RNMF columns of Ã0 and rows of W̃0

A0 ← Ã0[:, 0 : RNMF]
W0 ← W̃0[0 : RNMF, :]

end if

Algorithm 5 Kernelized Stein inference for discrete approximations to posterior

Input: Particles θ1:M , Score ∇θ log p(θ), RKHS H defined by kernel k
Step 1: Compute pairwise kernel matrix Ki,j = Kp(θi, θj) (from equation 3)
Step 2: Find probability masses that minimize the Stein discrepancy for the given point-
masses: w∗ = arg minw wTKw s.t. w ∈ ∆M−1 via standard convex optimization.
Output: Probability masses w∗

for discrete approximations to any posterior for which the score function ∇θ log p(θ) can be
computed.

5. BNMF Models

Section 4 outlined a general procedure for producing a particle-based approximation to the
BNMF posterior using transfer learning. In Section 7, we compare our approach to other
particle-based approaches for BNMF. However, before going to the results, we first describe
the two BNMF models (below) as well as our experimental procedure (Section 6).

The first model we shall use in our experiments is the commonly-used exponential-
Gaussian model. This model is computationally convenient to use (e.g. Schmidt et al. (2009)
derive a Gibbs sampler for this model) but the scale-flexible prior allows for multiple optima
that are essentially the same factorization, and the Gaussian likelihood severely penalizes
solutions of differing quality even when all solutions may be far from perfect reconstructions.
These properties make this popular model less desirable from the perspective of a domain
expert seeking to understand their data. The second model is a novel threshold-based model
with a scale-fixing prior that at once removes scale ambiguities and allows for the kinds of
likelihood ambiguities that practitioners expect—in particular, when the NMF is already an
approximation of the data, solutions with different absolute likelihoods but whose relative
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differences are small compared to the magnitude of the likelihood may be considered similar
by a practitioner (Roberts et al., 2016). Our threshold-based likelihood model allows the
practitioner to choose what levels of error are effectively the same for their purposes.

Before continuing, we emphasize again that our transfer-based inference approach can
be applied to any BNMF model; in this paper we demonstrate our approach on the follow-
ing two models because together they include a standard model often-used in the machine
learning community and a novel model of interest to the practitioner community. Impor-
tantly, because our inference approach decouples the process of model choice, particle gen-
eration, and particle weighting, we use the same particle generation process (non-Bayesian
optimization algorithms using the Frobenius objective) for both models. In Section 7, we
demonstrate empirically that this particle generation process is robust enough; that is, we
do not require processes tuned to each model.

5.1. Exponential-Gaussian Model for BNMF

The commonly used exponential-Gaussian BNMF model uses a Gaussian likelihood and
exponential priors for the basis and weights matrices:

pN (X|A,W ) =
∏
d,n

N (Xd,n, (AW )d,n, σ
2
X)

p(A) =

D∏
d=1

R∏
r=1

p(Ad,r), Ad,r ∼ Exp(λd,r)

p(W ) =
N∏
n=1

R∏
r=1

p(Wr,n), Wr,n ∼ Exp(λr,n)

As derived in Schmidt et al. (2009), the combination of exponential priors and Gaussian
likelihoods results in element-wise conjugate parameter updates; in general, this model
enjoys relatively straightforward inference approaches.

That said, as noted above, the exponential-Gaussian has several drawbacks from the
perspective of a domain expert seeking to interpret their data via NMF. First, especially in
settings where the model is misspecified (which will almost always be the case), the recon-
struction error of even the best factorization may be relatively large. Even so, the Gaussian
likelihood will tend to make the posterior highly peaked around the MAP solution—and
exclude factorizations of only slightly worse (relative approximation) quality with respect
to the overall error. However, domain experts may have found those factorizations inter-
esting, as they have about the same relative error. Second, the exponential prior allows for
some amount of uncertainty simply due to scale, which is typically uninteresting for domain
experts. In the following, we introduce a model that addresses both of these shortcomings;
because our transfer-based inference approach does not require conjugacy, we will be able
to efficiently compute approximate posteriors for such more complex models.

5.2. Threshold-based, Scale-Fixing Model for BNMF

The procedure described in Algorithm 1 for finding a discrete approximation to the BNMF
posterior does not depend on any special properties (such as conjugacy) and only requires
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the joint density p(X,W,A) to be differentiable in order to make inference tractable. Such
flexibility is important as different applied domains use different notions of factorization
quality: squared Euclidean distance is commonly used in hyperspectral unmixing (Bioucas-
Dias et al., 2012), Kullback-Leibler divergence in image analysis (Lee and Seung, 2001) and
Itakura-Saito divergence in music analysis (Févotte et al., 2009).

A common theme in many applied domains is that small differences in factorization qual-
ity may not be important if all factorizations have some large level of approximation error.
In such cases, domain experts may be interested in all of these solutions (Roberts et al.,
2016). At the same time, solutions that are different only in scale are likely uninteresting.
Below, we present a novel prior and likelihood that reflect these application-specific prefer-
ences of practitioners in a Bayesian framework. In particular, our model class allows domain
experts to take any application-specific notion of a high-quality factorization—conjugate or
not—and put it into a Bayesian context.

Likelihood: Soft Insensitive Loss Function (SILF) over NMF objectives We
define a likelihood that is maximum (and flat) in the region of high quality factorizations
and decays as factorization quality decreases. To do so, we use the soft insensitive loss
function (SILF) (Chu et al., 2004): a loss function defined over the real numbers R, where
the loss is negligible in some region around zero defined by the insensitivity threshold ε,
and grows linearly outside that region (see figure 2). A quadratic term depending on the
smoothness parameter β, makes the transition between the two main regions smooth. This
transition region has length 2β, making smaller values of β correspond to sharper transitions
between the flat and linear loss regions. We adapt the SILF from (Chu et al., 2004) to only
be defined over the non-negative numbers R+ (as is typical with NMF objectives) and define
it as:

SILFε,β(y) =


0 0 ≤ y ≤ (1− β)ε
(y−(1−β))2

4βε (1− β)ε ≤ y ≤ (1 + β)ε

y − ε y ≥ (1 + β)ε

To form the likelihood, we apply the SILF loss to an NMF objective fX(A,W ) to give:

P (X|W,A) =
1

Z
e(−C×SILFε,β(fX(A,W ))) (5)

We emphasize that the SILF-based likelihood allows the domain expert to use an NMF
objective fX(A,W ) that is best suited to their task and can specify a threshold under that
objective for identifying high-quality factorizations. Once an NMF objective is chosen, the
domain expert can easily choose appropriate parameters for the SILF-based likelihood since
the parameters (insensitivity factor ε and smooth transition factor β) are interpretable and
the likelihood can be visually inspected (as a one-dimensional function of a chosen NMF
objective) to validate parameter choices.

Prior: uniform over basis and unambiguous in factorization scaling Often, do-
main experts do not have specific notions of what the prior over factorizations should be.
However, prior distributions can have a large effect. These effects are undesirable if the
prior was chosen for computational convenience rather than based on some true knowledge
about the problem. Another concern is that NMF has a scaling and permutation ambiguity
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Figure 2: A comparison of SILF loss and commonly used l1, l2 loss functions. The SILF
insensitivity parameter ε is set to 0.5, and the smooth transition factor β is varied. Small
values of β lead to sharp transition in the SILF loss profile whereas the transition is less
abrupt for large values of β. In contrast, other popular loss functions such as l1 or l2 do not
have insensitive regions, and in the case of NMF, treat the objective function as the sole
guide for factorization quality.

that is uninteresting in practice:

AW = ASP︸ ︷︷ ︸
Ã

(SP )−1W︸ ︷︷ ︸
W̃

where S is a positive diagonal matrix, P is a permutation matrix

(6)

Depending on the priors chosen, this ambiguity can add redundancy to the posterior dis-
tribution.

To facilitate exploration of the space of distinct high-quality factorizations, we propose
an NMF prior that eliminates redundancy due to scale and is also uniform over the space
of factorizations. Specifically, we let each column of the basis matrix Ar be generated by
a symmetric Dirichlet distribution with parameter α = 1. This prior determines a unique
scale of the factorization and is uniform over the basis matrix A for that scaling. For W , we
use a prior where each entry Wr,n is i.i.d from an exponential distribution with parameter
λr,n. The exponential distribution has support over all R+ ensuring that any weights matrix
W corresponding to a column-stochastic basis matrix A is a valid parameter setting under
our model, and that the posterior is proper.

p(A) =

R∏
r=1

p(Ar), Ar ∼ Dir(1D)

p(W ) =

N∏
n=1

R∏
r=1

p(Wr,n), Wr,n ∼ Exp(λr,n)

6. Experimental Setup

In this Section, we provide details of our experimental settings and parameter choices, and
describe our baseline algorithms and datasets. Our experiments are performed on a wide
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array of benchmark NMF datasets as well as on Electronic Health Records (EHR) data of
patients with Autism Spectrum Disorder (ASD) that is of interest to the medical community
(see quantitative and qualitative results in Section 7).

6.1. Model, Evaluation, and Inference Settings

Model: exponential-Gaussian model parameters: We set the standard deviation
σX to be equal to the empirical standard deviation of a reference NMF. The exponential
parameter was set to one for each entry in the basis and weights matrices (λd,r = λr,n = 1).

Model: SILF model parameters: While any objective can be put into the SILF likeli-
hood, in the following, we used the squared Frobenius objective fX(A,W ) = ‖X −AW‖2F .
To set the threshold parameter ε for each dataset, we use an empirical approach where
we find a collection of 50 high-quality factorizations under default settings of scikit-learn
(Pedregosa et al., 2011). The objective function is evaluated for each of them {fi}50i=1 and
ε = 1.2 maxi fi. We set the remaining SILF likelihood sensitivity parameters β = 0.1,
C = 2. For the prior, we identically set the exponential parameter for each entry: λr,n = 1.

Inference: Generating Q-transform matrices for transfer: For the Q-Transform
initializations, we set the transfer rank and SVD rank RT = RSVD = 3. We generated
twenty sets of synthetic data Xs ∈ R12×12

+ using non-negative matrices of rank RT with
truncated Gaussian noise. For each synthetic dataset, we find five pairs of transformation
matrices through random restarts. In all our experiments, the same set of Mmax = 100
pairs of transformation matrices {QmA , QmW }100m=1 are applied to each of the real datasets.

Inference: Solver for inferring weights w1:M : The optimization for the weights w1:M

(Step 2 in Algorithm 5) is carried out using the Splitting Conic Solver (SCS) in the convex
optimization package CVXPY (Diamond and Boyd, 2016).

Inference and evaluation: Stein discrepancy base RKHS and parameters: The
Stein discrepancy for our variational objective requires a function space to optimize over.
This optimization over the function space has an analytical solution when a Reproducing
Kernel Hilbert Space (RKHS) is used. Gorham and Mackey (2017) show that the Inverse
Multiquadric (IMQ) kernel is a suitable kernel choice for Stein discrepancy calculations as
it detects non-convergence to posterior6 for c > 0 and b ∈ (−1, 0).

kIMQ(θi, θj) = (‖θi − θj‖2 + c2)b

Since the length scales of the basis and weights matrix differ, we define a kernel via a linear
combination of two IMQ kernels defined separately over the basis A and weights W .

k([A1,W1], [A2,W2]) =
1

2γA
(‖A1 −A2‖2 + c2A)bA +

1

2γW
(‖W1 −W2‖2 + c2W )bW (7)

Here γA = (c2A)bA and similarly γW = (c2W )bW are scaling factors that ensure the kernel
takes values between 0 and 1. In general, across our datasets, the Dirichlet prior on the

6. Gorham and Mackey (2017) also prove that popular Gaussian and Matern kernels fail to detect non-
convergence when the dimensionality of its inputs is greater than 3.

14



A particle-based variational approach to BNMF

basis matrix induces a small length scale for A and a larger length scale for the weights W .
We uniformly set cA = 1× 10−2, cW = 1× 103 and bA = bW = −0.5 across all our datasets.

We note that choosing sensible values for these parameters—and validating them—is
important. Kernel parameters that induce length scales that are too small or too large give
rise to a similarity measure that either considers all factorizations completely dissimilar or
completely similar respectively. In our experiments, our kernel choice gives rise to a simi-
larity measure that distinguishes across collections of factorizations obtained from different
algorithms. Our kernel similarity analysis shows agreement with difference between factor-
izations as measured by the Frobenius distances between basis and weights matrices (see
figures 24, 25, 26 in Appendix). The range in kernel similarity values and its agreement
with alternative measures indicates that our parameter choices for the kernel are reasonable
and fairly robust.7

Evaluation: Measuring computational time In experiments, we keep track of the
time taken (initialization and optimization) to produce each of the Mmax = 100 factoriza-
tions. We sample collections of size M = {5, 25, 50} from these factorizations and report
the total time taken to produce the factorizations in the collection alongside reporting the
Stein Discrepancies for the approximate BNMF posteriors.

For the baselines below, the reported runtimes correspond to time taken to generate
NMFs {θm}Mm=1 in the approximate posterior. For initialization approaches this corresponds
to the time taken to generate the initialization and subsequent optimization time. To allow
for a transparent comparison of the performance of these initialization approaches with
MCMC and gradient-based algorithms, we report runtimes at various points in the duration
of the MCMC chain and for the gradient-based algorithms. For more details on measuring
computational time, see Appendix E in supplementary materials.

6.2. Baselines

In the previous Section, we described the implementation details for our transfer-based
inference approach. In this Section, we describe implementation details for three classes
of baselines for our experiments: MCMC, which represents standard practice for generat-
ing particle-based posteriors; gradient-based approaches which directly minimize the Stein
variational objective, which represent our main competitors; and alternate initialization
approaches, which represent simpler ablations on our approach.

Markov Chain Monte Carlo baselines MCMC approaches involve sampling from a
Markov Chain whose stationary distribution is the posterior of interest, and are often consid-
ered the gold-standard for approximating posterior distributions (as opposed to variational
methods). That said, for a finite sample size, MCMC will still be approximate—and thus we
must still evaluate its quality with respect to the Stein objective. In this work, we consider
two different MCMC baselines:

• Hamiltonian Monte Carlo (HMC) Our HMC was initialized with an NMF ob-
tained using the default settings of scikit-learn (Pedregosa et al., 2011) (warm start),
and adaptively selects the step-size using the procedure outlined in Neal et al. (2011).

7. Factorizations across our different datasets have different scales but the kernel parameters were fixed
across all datasets.
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We run the chain for a total of 10000 samples and at various intermediate points
thin it to M = {5, 25, 50} factorizations and compute the Stein discrepancy using
Algorithm 5. We repeat this experiment three times to capture variability in the
performance of the HMC.

For our scale-fixing prior in Section 5.2, we needed to simulate Hamiltonian dy-
namics as defined on the manifold of the simplex. To do this, we incorporate a
reparametrization trick (Betancourt, 2012; Altmann et al., 2014) to sample under the
column-stochastic (simplex) constraints of the basis matrix A, and a mirroring trick
(Patterson and Teh, 2013) for sampling from the positive orthant for the weights
matrix W .

• Gibbs Sampling. Only the exponential-Gaussian model admits a conjugate form
for straight-forward Gibbs sampling. For experiments using the exponential-Gaussian,
we use the same number of samples and thinning factor as with HMC for a Gibbs
sampler. Similarly to the HMC baseline, the Gibbs sampler was also initialized with
an NMF obtained using the default settings of scikit-learn (Pedregosa et al., 2011)
(warm start).

Gradient-based baselines Gradient-based baselines optimize the collection of factor-
izations directly via gradient descent on the Stein variational objective. They represent
the class of inference approaches most similar to ours. Gradient-based approaches typically
require fixing the size of the collection. In our experiments, we set the size of this collection
to be equal to M = 5. Due to the large memory requirement of running this algorithm with
automatic differentiation using autograd (Maclaurin et al., 2015), we were unable to run
these algorithms for larger M . We impose scaling and non-negativity constraints after every
gradient step (for a total of 2000 steps) and keep track of the Stein discrepancy in relation
to the algorithm’s runtime. The experiment is repeated three times to capture variability
in its performance over multiple iterations. We use the following three algorithms:

• SVGD: Stein Variational Gradient Descent is a functional gradient descent algorithm
(Liu and Wang, 2016) that optimizes a collection of particles (factorizations) to ap-
proximate the posterior. We replace the RBF kernel from the original work with the
more principled IMQ-based kernel defined in equation 7.

• SVGD-Q is a variant were we initialize SVGD with the Q-Transform.

• DSGD: Direct Stein Gradient Descent is a variant where we replace the functional
gradient descent of SVGD with the gradient of the Stein discrepancy (using automatic
differentiation (Baydin et al., 2015; Maclaurin et al., 2015)).

Initialization-based baselines Our Q-transform approach can be thought of as an ini-
tialization approach: we provide a way of creating a collection of particles that we believe
are likely to be representative of the posterior. Our main algorithm can be run with any pro-
cess for creating the collection (step 2 of Algorithm 1). Our final set of baselines considers
other alternatives to creating the collection.

• Random restarts Our random restart initializations for NMF in scikit-learn (Pe-
dregosa et al., 2011) set each entry of the factors A,W as independent, coming
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from a truncated standard normal distribution. These entries are all scaled by η =√
1

RNMF

∑
D,N Xd,n and are given by: A0

d,k,W
0
k,n ∼ η|N (0, 1)|.

• NNDSVDar NNDSVDar is a variant of a popular initialization technique called
Nonnegative Double Singular Value Decomposition (NNDSVD) which was introduced
by Boutsidis and Gallopoulos (2008). It is based on approximating the SVD expansion
with non-negative matrices. Since the NNDSVD algorithm is deterministic, this only
gives a single initialization. The NNDSVDar variant of this initialization replaces the
zeros in the NNDSVD initialization with small random values. We use the scikit-learn
initialization for NNDSVDar which uses a randomized SVD algorithm (Halko et al.,
2011), and note that it introduces some additional variability in the initializations.

6.3. Datasets

Our datasets cover a range of different types and can be divided into three main categories
(count data, grayscale face images and hyperspectral images). The ranks for hyperspectral
data are chosen according to ground truth values. In the 20-Newsgroups data, we select
articles from 16 newsgroups (hence the rank 16) and for other datasets we pick a rank that
corresponds to explaining at least 70 percent of the variance in the data (as measured by the
SVD). Table 1 provides a description of each dataset as well as the rank used and a citation.
The Autism dataset is of interest to the medical community for understanding disease
subtypes in the Autism spectrum and is not publicly available. The remaining datasets
are public and are considered standard benchmark datasets for NMF. In our experiments,
we hold out ten percent of the observations and report performance on both provided and
held-out observations.

Table 1: Datasets for NMF

Dataset Dimension Observations Rank Description

20-Newsgroups 1000 8926 16 Newspaper articles (20NG, 2013)
Autism 2862 5848 20 Patient visits (Doshi-Velez et al., 2014)

LFW 1850 1288 10 Grayscale Faces Images (LFW, 2017)
Olivetti Faces 4096 400 10 Grayscale Faces Images (Samaria, 1994)
Faces CBCL 361 2429 10 Grayscale Faces Images (CBCL, 2000)
Faces BIO 6816 1514 10 Grayscale Faces Images (Jesorsky et al., 2001)

Hubble 100 2046 8 Hyperspectral Image (Nicolas Gillis, 1987)
Salinas A 204 7138 6 Hyperspectral Image (SalinasA, 2015)
Urban 162 10404 6 Hyperspectral Image (Zhu et al., 2014)

7. Results

In this Section, we compare computational time and Stein discrepancy values for variational
posteriors obtained through different algorithms. For the exponential-Gaussian model, our
approach using Q-Transform is either the most-competitive or second in performance to the
Gibbs sampler for this model. Under the SILF model, we find that our approach for BNMF

17



Masood, Doshi-Velez

posterior approximation using transfer learning (Q-Transform) consistently produces the
highest quality posterior approximations in the shortest amount of time (see Section 6.1 for
details on runtime calculation). Inspection of factorization parameters from Q-Transform
reveals that the parameter uncertainty captured by the BNMF posterior approximation has
meaningful consequences for interpreting and utilizing these factorizations.

In the supplement, we provide an in-depth look at our results. We report on quality
metrics for both the training data (figures 18, 19, 15 and 16) as well as held-out data
(figures 20 and 17); we report on multiple metrics for measuring diversity of factorizations
obtained from different algorithms (figures 24, 25, 26, 21, 22 and 23). Overall, these results
support the notion that the Stein discrepancy is lowest for algorithms with the most diverse
collection of high-quality factorizations.

7.1. Exponential-Gaussian Model Results

In figure 3, we show the performance of our algorithm and other competing baselines across
our various datasets. Overall, we note that the best approximate posteriors are produced
in the shortest time either by our Q-Transform algorithm or the Gibbs sampler for this
model. Using random restarts for initialization yields approximate posteriors with similar
Stein discrepancies to our approach but typically takes more time. The gradient-based
approaches (even Q-SVGD which is initialized with Q-Transform) rarely do well, often
plateauing at much higher discrepancies.

While the likelihood term in this model is invariant to (redundant) scalings8, a limitation
is that the prior (chosen for computational convenience) is dependent on the scaling. We
find that this is an undesirable feature because the posterior landscape includes infinite
redundant scalings and therefore requires greater effort from the inference procedure to find
appropriate scalings of factorizations. Another concern is that the likelihood model is not
directly expressible in terms of whatever properties might be of interest to a practitioner. To
address our concerns regarding the exponential-Gaussian model, we focus for the remainder
of this work on the threshold-based model with scale-fixing prior.

7.2. SILF-based Model Results

In figure 4, we show the performance of our algorithm and other competing baselines across
our various datasets. Recall that the Stein discrepancy variational objective involves terms
that consider both the quality of the factorizations (as given by the score function∇θ log p(θ)
) and their similarity (as given by the base RKHS kernel k(θi, θj)). The NNDSVDar initial-
izations and thinned HMC samples lead to factorizations that are high-quality but often not
diverse (see diversity analysis in supplementary material: figures 24, 25, 26). The SVGD
and the DSGD are generally the worst performing algorithms. These methods are often
unable to find factorization parameters that meet the quality criteria of the SILF likelihood
(see quality analysis in supplementary material: figures 18 and 19). This is understandable
because even using simple gradient-based approaches to find a single high-quality NMF
turns out to be difficult, hence the existence of a literature on specialized algorithms for
performing NMF. Our Q-transform algorithm and random restarts are able to find sam-

8. Basis and weights matrices can be multiplied by any positive diagonal matrix and its inverse (respectively)
to yield ‘new’ factors that identically reconstruct the data but differ in scale
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Stein discrepancy over time for exponential-Gaussian BNMF Discrete
Posteriors

Figure 3: For each dataset we show the quality of the BNMF approximate posterior (M = 5)
and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to the exponential-Gaussian BNMF (lowest
Stein discrepancy) are produced either using the Q-Transform initializations (in red) for the
Gibbs sampler (in yellow).
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ples that are both high-quality and diverse, thus achieving the lowest Stein discrepancies;
however, our Q-transform algorithm does so in the shortest time.

Figures 31 and 32 in the Appendix show results for M = {25, 50} where Q-Transform
continues to have a runtime advantage over other baselines. Additionally, for some datasets
(Olivetti Faces, LFW and Faces BIO) Q-Transform also produces higher quality of the
posterior approximations. Variational posteriors constructed using thinned samples from
HMC significantly lack diversity as the Stein discrepancies for collections of size 5, 25 and
50 are comparable. This indicates that the HMC chain only explores a small region of the
posterior distribution and can be confirmed through the diversity analysis in the Appendix
(figures 24, 25, 26). Sminchisescu et al. (2007) notes that in high dimensional spaces, we
expect there to be many ridges of probability as there are likely to be some directions in
which the posterior density decays sharply. Alternatively, there may be several isolated
modes with no connecting regions of high probability making it particularly challenging for
the HMC chain to avoid getting stuck in a local mode of the BNMF posterior.

Stein discrepancy over time for SILF BNMF Discrete Posteriors

Figure 4: For each dataset we show the quality of the BNMF approximate posterior (M = 5)
and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to BNMF (lowest Stein discrepancy) are
produced in the least time using the Q-Transform initializations (in red).
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Figure 5: The top 15 words for topic A (computers/electronics) and topic B (space) shows
that different factorizations provide an emphasis on different terms. In topic A, the top
word from factorization 1 and 2 is ‘card’, but it does not appear in the top 15 words of
factorizations 3. Instead a similar term ‘chip’ is emphasized in Factorization 3. In topic B,
the terms ‘space’ and ‘nasa’ appear in all three factorizations but factorization 2 is the only
one with digital terms like ‘ftp’, ’server’,’site’ and ’faq’. In contrast factorization 1 and 3
both contain more physical terms like ‘sun’, ‘moon’,‘launch’.

7.2.1. Interpretation and Utilization of Posterior Estimates

BNMF posteriors can provide insight into the non-identifiability present within a particular
dataset. Different factorizations may explain the data as a whole equally well, but do it
through dictionary elements that have different interpretations, or can be used to understand
specific parts of the data better than other factorizations. We show visual examples of
diversity in the top words of the 20 Newsgroups BNMF posteriors and examples of how
performance in downstream tasks for the 20 Newsgroups and Autism dataset is dependent
on the posterior samples. Our analysis yields meaningful insights that could not be gained
through a single factorization.

20-Newsgroups Our BNMF of 20-Newsgroups was a rank 16 decomposition of posts
from 4 categories. In figure 6, we show the held-out AUC of a classifier trained to predict
those categories based on the weights matrix W from each factorization in our variational
posterior. Even though all of these factorizations have essentially equivalent reconstruction
(see figure 19 in supplementary material), there exists a significant variation in the perfor-
mance of these NMFs on the prediction tasks. The best performing NMF for one category
is generally not the best (or even one of the top performing) NMFs for other categories.
This observation may be valuable to a practitioner intending to use the NMF for some
downstream task: different samples explain different patterns in the data. In figure 5, we
see that this is indeed true: even after alignment,9 distinct NMF factorizations have top
words that indicate different emphasis across topics.

Autism Spectrum Disorder (ASD) In addition to core autism symptoms, Doshi-Velez
et al. (2014) describe three major subtypes in autism spectrum disorder: those with higher
rates of neurological disorder, those with higher rates of autoimmune disorders, and those
with higher rates of psychiatric disorders. In figure 7, we show the number of topics that

9. We compare topics after finding the permutation of columns that best aligns them by solving the bipartite
graph matching problem. We minimize the cost given by the angle between topics.
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Figure 6: Classifiers trained on feature vectors from different factorizations yield variability
in prediction performance (as measured by AUC). The dotted lines show the factorization
that produces the best performing classifier for each category. The factorization (blue
dotted line) that predicts the ‘Talk’ category best is actually one of the worst performing
factorizations for the ‘Science’ category. This variability in performance demonstrates that
no single factorization gives the best latent representation for the overall prediction task.

contain key terms corresponding to these areas (expressive language disorder, epilepsy,
asthma, and attention deficit disorder) across different factorizations in the variational pos-
terior obtained via Q-Transform. The large variation suggests that different factorizations
in the particle-based posterior are spending different amount of modeling effort across these
known factors; knowing that such uncertainty exists is essential for clinicians who may be
trying to interpret topics to understand patterns in autism spectrum disorder.

On the same set of patients, we can also ask whether we can predict the onset of certain
medical issues in the subsequent patient trajectory. We train a classifier on the weights of
the NMFs to predict the onset of these medical issues. Similar to the category prediction
results in 20-Newsgroups, figure 8 shows that there is a large variability (around 0.1 in AUC)
in the performance of classifiers trained on the weights matrices of different factorizations
on the prediction task. No single factorization has the best performance across the different
prediction tasks.

7.3. Extension: BNMF in the presence of missing data

In the presence of missing data, there is perhaps an even greater need to understand the
uncertainty in factorization parameters for NMF. The factorization space of a fully observed
dataset forms a subset of the factorization space in the presence of missing data. Our
particle-based approach to BNMF posterior approximation can be applied to the missing
data setting by making some minor adjustments to the experimental settings.

The multiplicative update algorithm for NMF (Lee and Seung, 2001) can be adjusted so
that the update equations for factorization parameters only consider the observed data. We
use an implementation of this modification to the multiplicative update algorithm10 to find
a completion of the data X, compute the SVD subspace and then apply our Q-Transform
initializations. Figure 9 demonstrates that our approach to BNMF can be extended to the

10. https://github.com/scikit-learn/scikit-learn/pull/8474/commits/a838f94c8c832aaf57140f23bd8c8a14daec2626
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Figure 7: We explore top words in the topics relating to key terms of interest to clinicians
and discover that different NMFs place varying amount of emphasis on different terms. Such
variability is of interest to clinicians who may be trying to interpret topics to understand
patterns in ASD.

Figure 8: Classifiers trained on weights matrix of Mmax = 100 different factorizations to
predict the presence of certain medical codes in a patient’s trajectory exhibit significant
variability in prediction on a test set (as measured by AUC). Different factorizations lead
to top predictors for the onset of different medical issues.
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Figure 9: Under different percentages of missingness in the Olivetti Faces dataset (10%,
30%, 50%), the quality of the BNMF approximate posterior and the corresponding runtime
ofQ-Transform and the other baselines is shown. The best discrete posterior approximations
to BNMF are produced using the Q-Transform initializations (in red).

Figure 10: Sample factorizations from the variational posterior using Q-Transforms show
that a diverse range of basis elements can be use to approximate the data. However, HMC
samples seem to be identical indicating that HMC was only exploring a very small region
of the posterior space.

case where the data matrix X is partially observed. For the Olivetti Faces dataset with
varying degrees of missingness, the Q-Transform approach to BNMF consistently finds
posterior approximations that are significantly better (as measured by Stein discrepancy)
than other baselines whereas for a given M , the runtime is second-lowest.

Figure 10 shows sample factorizations from the variational posterior using Q-Transform
and HMC samples. To allow for comparison, we have aligned the positions of the basis
(dictionary) elements to a reference factorization using the bipartite matching algorithm.
It is clear from looking at the Q-Transform factorizations that a diverse range of dictionaries
can be used to approximate the data well whereas the HMC chain only explores one set
of dictionary elements. Interestingly, the diversity of solutions obtained using Q-Transform
have visually interpretable differences, i.e. these are not simply perturbations of some
ground truth basis elements. Some of the basis elements look like faces and some of them
look like different shadow or lighting configurations. In contrast, the factorization samples
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from HMC have basis elements that look identical. This indicates that the HMC has
explored a limited region of the posterior space.

8. Discussion: When is Q-Transform successful?

Our ability to extract transferable low-rank transformation matrices from an SVD and an
instance of NMF indicates that there exist similarities across different NMF problems. In
this Section we seek to develop a better intuition behind the success of the Q-Transform
initializations at exploiting these similarities. In this Section, we provide discussion and
smaller-scale experiments to shed light on when, why, and how our Q-transform approach
is successful.

8.1. Q-Transform Generating Process

In our approach, we generated candidate Q-Transform matrices (Algorithm 2) by applying
random restarts to small, synthetic data sets. We focused on this approach because small
datasets are much faster to train, and with synthetic data sets, we can know at least one
ground truth NMF and level of noise. However, there are obviously a large number of
choices for the data used to generate candidate Q-Transform matrices.

In figure 11, we present results with a variety of different methods for generating candi-
dates. In all cases, the source data was of small dimension (XS ∈ R15×15), and the target
data was larger (XT ∈ R500×500). The target data had a true non-negative rank of 10
and factors were generated with i.i.d. entries from a standard normal. In all these experi-
ments we set the transfer rank to be RT = RSVD = 3. We explored six ways of generating
candidates from the source data:

• Uniform data: Generating a dataset XS where each entry is i.i.d. with a uniform
distribution in [0,1]; then apply random restarts to find candidate transforms.

• Simple sub-sample data: Generating dataset XS by uniformly selecting 15 rows and
columns of the target data XT ; then apply random restarts to find candidate trans-
forms

• Column-projection data: Generating dataset XS by sub-sampling 15 columns of XT

and applying a random projection into R15 for each each column; then apply random
restarts to find candidate transforms.

• Dirichlet factors: Generating factors A, W with each column of A,W from a Dirichlet
distribution (with concentration parameter α set to 1); letXS = AW+Gaussian Noise;
then apply random restarts to find candidate transforms.

• Uniform factors: Generating factors A, W with each entry i.i.d. from a uniform
distribution in [0,1]; let XS = AW + Gaussian Noise; then apply random restarts to
find candidate transforms.

• Gaussian factors: Generating factors A, W with each entry i.i.d. from a standard
normal distribution; let XS = AW + Gaussian Noise; then apply random restarts to
find candidate transforms.
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The methods that produced the source data from some true NMF factors produced candi-
date transformations that resulted in the highest quality initializations on the target data
(figure 11). In settings where a practitioner deals with a collection of similar NMF datasets
(e.g. music analysis, hyper spectral images), there may be more clever ways in which
the NMF solution spaces corresponding to a real dataset may yield more appropriate Q-
Transforms specific to that type of data. Finally, we find in figure 12 that the performance
of Gaussian factors method does not vary with the rank of the synthetic data (the transfer
rank is still held fixed).

Figure 11: For different synthetic data XS

generating procedures, we show the initial-
ization quality obtained via the Q-Transform
matrices on a target data XT . Dirichlet,
Uniform, Gaussian have significantly supe-
rior performance compared to Sub-sample,
Column-projection and Uniform data. For
comparison, we show the quality of NMF so-
lutions (solid line) and random initializations
(dashed line).

Figure 12: Using Gaussian factors
for the synthetic data generation
process with different ranks does
not appear to change the quality of
the Q-Transform initialization qual-
ity on the target data XT . This in-
dicates that this generating proce-
dure is not sensitive to the rank in
order to produce high quality (close
to true NMF solution) initializations
using Q-Transform. For comparison,
we show the quality of NMF solu-
tions (solid line) and random initial-
izations (dashed line).

8.2. The Q-Transform Initialization versus Noise

In Section 4, we sought high-quality initializations because they generally require less time
to converge. On synthetic target data XT = AW + εNo (D = N = 500, R = 20) we explore
the effect of increasing noise (ε) on the quality of our transfer-based NMF initializations and
the time taken to converge. Specifically: are there noise regimes in which the Q-transform
method works better, and noise regimes in which it does not?

We normalize the norm of the noise matrix to be equal to the norm of the data ‖No‖ =
‖AW‖ so that the contribution of signal AW and noise εNo to the data is equal when
ε = 1. We continue to use the same 100 pairs of QA, QW matrices. We compare the
performance of Q-Transform over random restarts in terms of initialization quality (ratio of
the reconstruction error from Q-Transform to the reconstruction error from random restart)
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Figure 13: In the low-noise regime, the reconstruction error of Q-Transform initializations
is significantly less than random restart initializations. This relative advantage gets smaller
as the noise level increases. Similarly, the time taken to converge is significantly shorter
than the random restart approach under the low noise scenario and continues to increase
with noise. As expected, at high noise levels there exists no additional advantage to the
Q-Transform approach (the optimization time ratio approaches 1).

and time to convergence (ratio of time taken using Q-Transform initialization to time taken
using random restart). In both metrics, the Q-Transform has an advantage over random
restarts for values of the noise ε smaller than 1, and the advantage is greatest for smallest
noise. Figure 13 shows that the advantage of Q-Transform initializations is highest in a low
noise regime and decreases as the noise increases. This behavior makes sense because as
noise increases, the data is no longer truly low rank.

8.3. Selecting ranks

We emphasize that there are two distinct ranks that need to be chosen when applying our
technique. The first is the rank of the factorization RNMF. There exist multiple approaches
for choosing this rank, e.g. Tan and Févotte (2009); Alquier and Guedj (2017), and they
can be applied to our approach (as well as any other NMF algorithm).

The second is choosing the transfer rank RT . The transformation dimensions RT and
RSVD determine the dimensions of transformation matrices QA, QW which map basis vectors
defining the top SVD subspace of dimension RSVD to a set of RT non-negative basis vectors
that approximate the same subspace. The full initialization for NMF is obtained by either
padding the initialization with small entries (RT < RNMF) or removing extra columns and
rows of the factor matrices (RT > RNMF). (For simplicity, we consider the case where
the transfer rank and SVD rank are equal RT = RSVD and the resulting transformation
matrices QA, QW are square.)

The choice of the transfer rank RT is specific to our algorithm, and in figure 14 we
investigate how well our transfer learning performs for different choices of transfer rank RT .
In the experiment, we extract a set of 100 transformation matrices QA, QW for transfer
dimensions RT = RSVD = {1, 2, . . . , 10} using synthetic source data (D = N = 15). Once
constructed, we applied the transformation matrices to a 500×500 target dataset XT of rank
R = 10. We find that even though the dataset XT has rank 10, the rank 10 transformation
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Figure 14: On a synthetic target dataset (D = N = 500,KNMF = 10), we apply Q-
Transform initializations using varying transfer ranks and SVD ranks RT = RSVD =
{1, 2, . . . , 10}. We see that for a range of low rank values, the Q-Transform initializa-
tions are high quality, but at larger values the quality of initializations gets worse. The
dotted line shows the quality of random initializations and the solid line shows the quality
NMF solutions. The reconstruction errors are normalized by the norm of the data.

matrices found using the 15×15 synthetic source dataset are unable to successfully transfer
to this new dataset. We see that the error initially decreases, but then increases as the
transfer rank increases. This result suggests that the top directions of variation hold the
most transferable information across NMF problems.

8.4. Sign Convention for SVD

In considering when Q-Transform is successful, we note that there exists an intrinsic ambi-
guity in the sign of the singular vectors of X: changing the sign of any column of ASVD and
corresponding row of WSVD gives a valid SVD. For Q-Transform to work, we must apply a
consistent resolution of the sign ambiguity (e.g. from Bro et al. (2008)). This ensures that
learned transformations QA, QW map in a consistent way to SVD decompositions of new
datasets.

9. Related Work

There is a large body of work on inference for BNMF. Sampling-based approaches include
Gibbs sampling (Schmidt et al., 2009), Hamiltonian Monte Carlo (Schmidt and Mohamed,
2009), and reversible jump variants (Schmidt and Mørup, 2010). All of these have trouble
escaping local modes (Masood et al., 2016), and are often constrained to a limited class
of tractable distributions. Variational approaches to BNMF have successfully yielded in-
terpretable factorizations (Bertin et al., 2009; Cemgil, 2009; Paisley et al., 2014; Hinrich
and Mørup, 2018) but also typically only capture one mode and rely on mean-field or other
modeling assumptions to make inference tractable. We note that in many cases, priors of
convenience—for example, exponential distributions—can induce a single dominant mode,
even when that was not the intent of the practitioner.
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Closer to the goals of our work, Gershman et al. (2012) develop a non-parametric ap-
proach to variational inference that provides flexibility in modeling the number of Gaussian
components required to approximate a posterior. However, the isotropic covariance in the
model makes it unsuitable for applying it to BNMF. With regard to the inference pro-
cess, our Q-Transform approach to finding multiple optima is most similar to Ročková and
George (2016) and Paatero and Tapper (1994), who use rotations to find solutions to a sin-
gle matrix factorization problem that are sparse and non-negative respectively. In contrast,
we use rotations to find multiple non-negative solutions, and also demonstrate how these
rotations can be re-used for transfer learning.

More broadly, recent work on NMF has involved theoretical work on non-identifiability
with new algorithms that can provably recover the NMF under certain assumptions (Li and
Liang, 2017; Bhattacharya et al., 2016; Ge and Zou, 2015a). However, these assumptions are
often difficult to check and may indeed be violated in practice; Bayesian methods typically
provide more flexibility in modeling and assumptions.

All of the works above typically assume some desired factorization rank. There also
exists work on models that automatically detect the rank—through automatic relevance
determination for NMF (Tan and Févotte, 2009) or more recently, via a rank-adaptive prior
Alquier and Guedj (2017). These works are complementary to ours, in that those techniques
could be combined with our transfer-based approach of generating candidates of whatever
rank those algorithms determine is appropriate.

The ability of Stein discrepancies to assess the quality of any collection of particles
(Gorham and Mackey, 2015) has resulted in large recent interest in other ways to create
collections of samples (Oates et al., 2017; Liu and Wang, 2016). Liu et al. (2016) and
Chwialkowski et al. (2016) showed that kernelized Stein discrepancy could be computed
analytically in Reproducing Kernel Hilbert Spaces (RKHS); Pu et al. (2017) and Feng
et al. (2017) use neural networks instead. Ranganath et al. (2016) establish the Stein
discrepancy as a valid variational objective. To our knowledge, Stein discrepancy-based
posterior approximation has not been applied to NMF, and yet, we see that it allows us to
leverage existing non-Bayesian approaches to characterize these multi-modal posteriors. In
our work, the Dirichlet prior on the columns of the basis matrix A is important to ensure
that we avoid a known saddle point of the zero factorization (from likelihood term) that
yields a corresponding zero for the score function.

10. Conclusion

In this work, we presented a novel transfer learning-based approach to posterior estima-
tion in BNMF. Simply creating collections of factorizations via random restarts on our
Q-Transform initializations, and then weighing them, produces diverse collections that ap-
proximate the posterior well (the NNDSVDar-based methods fail to produce diverse collec-
tions for posterior estimation). In contrast, the functional gradient descent of SVGD and
direct gradients of Stein discrepancy (DSGD) perform worse to the collection-based ap-
proaches, requiring more time and also limiting the user to specify in advance the number
of factorizations. Hamiltonian Monte Carlo also suffers from difficulties in exploring the
posterior space, something random initializations are well suited to. Our transfer learning
approach consistently produces the highest quality posterior approximations.
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Through Q-Transform, we introduce a way to speed-up the process of finding multiple
diverse NMFs. The discovery that Q-Transform matrices can transfer from synthetic to
multiple real datasets is exciting and also suggests interesting questions for further research.
For example, what is the theoretical nature of the similarities between principal eigenspaces
of different non-negative matrices and the relation between their SVD and NMF bases?
And, how does the synthetic data generation process used to obtain Q-Transform matrices
impact the initializations and the effectiveness of the Q-Transform algorithm in general?

More broadly, our qualitative results demonstrate that even relatively simple models,
such as NMF, can have multiple optima that are comparable under the objective function
but have large variation in how well they explain different portions of the data—or how
they perform on different downstream tasks. Thus, it is important to be able to compute
these posteriors efficiently.
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Appendix A: Quality of factorizations

We measure the quality of factorizations in terms of the log of the joint likelihood (figures 18
and 15) as well the Frobenius NMF objective (figures 19 and 16). We see that both quality
measures are in agreement with each other. We also assess the quality of factorizations via
the reconstruction error of heldout data (figures 20 and 17).

Overall, Q-Transform, Random, NNDSVDar, HMC and (for the exponential-Gaussian
model) Gibbs produce high quality factorizations. The initialization-based approaches all
work well as they use specialized NMF algorithms that are designed to find high quality
factorizations. HMC was given a warm start with a high likelihood initialization and the
chain continues to stay in high likelihood regions. The remaining gradient-based approaches
for optimizing a collection of particles (SVGD and DSGD) fail to produce high quality
factorizations. This is indicative of the need for specialized NMF algorithms designed to
work with the constraints and structure of the NMF problem and highlight how difficult it
is to apply a naive gradient descent approach for finding NMFs.

Gaussian Exponential BNMF Log of Joint Likelihood

Figure 15: The joint likelihood of factorizations shows that SVGD and DSGD generally
produce the worst quality factorizations. The remaining algorithms produce higher quality
factorizations.
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Exponential-Gaussian BNMF Model Frobenius Error of Reconstruction

Figure 16: The reconstruction error of the factorizations shows that SVGD and DSGD are
typically unable to find factorization parameters that meet the threshold quality (black
line) for useful factorizations. The other approaches consistently produce factorizations
that meet this minimum quality requirement.
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Gaussian Exponential BNMF Frobenius Error on Heldout data

Figure 17: The reconstruction error of the factorizations shows that SVGD and DSGD are
typically unable to find factorization parameters that result in low error on heldout data.
The other approaches consistently produce factorizations which generalize better and give
low error on heldout data.
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SILF BNMF Log of Joint Likelihood

Figure 18: The joint likelihood of factorizations shows that SVGD and DSGD generally
produce the worst quality factorizations. HMC, NNDSVDar, Random and Q-Transform
produce high quality factorizations.
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SILF BNMF Frobenius Error of Reconstruction

Figure 19: The reconstruction error of the factorizations shows that SVGD and DSGD are
typically unable to find factorization parameters that meet the threshold quality (black
line) for useful factorizations. The other approaches consistently produce factorizations
that meet this minimum quality requirement.
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SILF BNMF Frobenius Error on Heldout data

Figure 20: The reconstruction error of the factorizations shows that SVGD and DSGD are
typically unable to find factorization parameters that result in low error on heldout data.
The other approaches consistently produce factorizations which generalize better and give
low error on heldout data. The matrix completion error on the missing data variant of the
Olivetti faces dataset also gives similar results.
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Appendix B: Diversity of factorizations

Similarity of factorizations is measured by the kernel (equation 7) for the base RKHS (fig-
ures 24 and 21) used in evaluating the Stein discrepancy and by pairwise distances between
basis matrices (figures 25 and 22) and weights matrices (figures 26 and 23)11. Generally, the
HMC chain exhibits the least exploration of the factorization space. Remaining algorithms,
particularly Q-Transform exhibits higher amounts of diversity in the factorization space.
The diversity metrics indicate that SVGD and DSGD give diverse factorizations but the
quality metrics indicate that these factorizations are poor quality (do not correspond to
high likelihood regions of the posterior) therefore such diversity is of little interest.

Exponential-Gaussian NMF Kernel similarity

Figure 21: The kernel similarity indicates that factorization collections obtained by HMC
are most similar indicating that the HMC chain is only exploring a small region of the
posterior. In many cases NNDSVDar factorizations are also very similar. Q-Transform and
Random are the only algorithms that produce factorizations of high quality that are not
similar.

11. In the exponential-Gaussian model, we adjust the scalings of the factorizations so that we can meaning-
fully compare pairwise distances between basis and weights matrices.
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Gauss BNMF Frobenius distance between Bases matrices

Figure 22: The pairwise distance between basis matrices shows that factorization collections
obtained by HMC are most similar indicating that the HMC chain is only exploring a
small region of the posterior. In many cases NNDSVDar, Q-SVGD, DSGD and SVGD
factorizations are also very similar. Q-Transform and Random produce basis matrices that
are more distinct than the Gibbs sampler.
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Exponential-Gaussian BNMF Frobenius distance between weights matrices

Figure 23: The pairwise distance between weights matrices shows that factorization col-
lections obtained by DSGD, SVGD and Q-SVGD lead to diverse weights matrices. The
remaining methods lead to similar levels of diversity within the factorization collections.
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SILF BNMF Kernel similarity

Figure 24: The kernel similarity indicates that factorization collections obtained by HMC
are most similar indicating that the HMC chain is only exploring a small region of the
posterior. In many cases NNDSVDar factorizations are also very similar.
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SILF BNMF Frobenius distance between Bases matrices

Figure 25: The pairwise distance between basis matrices shows that factorization collections
obtained by HMC are most similar indicating that the HMC chain is only exploring a small
region of the posterior. In many cases NNDSVDar factorizations are also very similar. Q-
Transform and Random are the only algorithms that produce factorizations of high quality
that are different.
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SILF BNMF Frobenius distance between weights matrices

Figure 26: The pairwise distance between weights matrices shows that factorization collec-
tions obtained by HMC are most similar indicating that the HMC chain is only exploring
a small region of the posterior. In many cases NNDSVDar factorizations are also very sim-
ilar. Q-Transform and Random are the only algorithms that produce factorizations of high
quality that are different.
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Appendix C: Baseline Performance on Prediction Tasks

We show the performance of other baseline algorithms on the prediction tasks for the 20-
Newsgroups and Autism datasets (see figures 6 and 8 in main text for reference)

Autism Prediction Task: Performance of baseline algorithms

Figure 27: Variability in the prediction task on the Autism dataset shows that SVGD
factorizations yield poor prediction (that are slightly improved upon by Q-SVGD), HMC
and NNDSVDar factorizations predictions are high but not diverse, and Gibbs and random
restarts yields performance similar to Q-Transform
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20 Newsgroups Prediction Task: Performance of baseline algorithms

Figure 28: Variability in the prediction task on the 20 Newsgroups dataset shows that
SVGD factorizations yield poor prediction (that is drastically improved upon by Q-SVGD),
HMC factorizations are not diverse, NNDSVDar, Gibbs and random restarts yields some
variability in prediction that is similar to Q-Transform
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Appendix D: Discrete posteriors for M = {25, 50}

We provide results on the quality of discrete BNMF posteriors for the SILF and exponential-
Gaussian models for M = 25 and M = 50.

Exponential-Gaussian BNMF Posterior Quality with M = 25

Figure 29: For each dataset we show the quality of the BNMF approximate posterior (M =
25) and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to BNMF (lowest Stein discrepancy) are
produced in the least time using the Q-Transform initializations (in red).
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Exponential-Gaussian NMF Posterior Quality with M = 50

Figure 30: For each dataset we show the quality of the BNMF approximate posterior (M =
50) and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to BNMF (lowest Stein discrepancy) are
produced in the least time using the Q-Transform initializations (in red).
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SILF BNMF Posterior Quality with M = 25

Figure 31: For each dataset we show the quality of the BNMF approximate posterior (M =
25) and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to BNMF (lowest Stein discrepancy) are
produced in the least time using the Q-Transform initializations (in red).
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SILF BNMF Posterior Quality with M = 50

Figure 32: For each dataset we show the quality of the BNMF approximate posterior (M =
50) and the corresponding runtime of Q-Transform and the other baselines. Across multiple
datasets, we see that the best discrete posteriors to BNMF (lowest Stein discrepancy) are
produced in the least time using the Q-Transform initializations (in red).
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Appendix E: Runtime Calculation

Here we provide full details on how our runtimes were calculated. Recall that both our
transfer-based algorithm and the baselines all can be considered as having two phases: (1)
Producing candidate particles {θm}Mm=1, and (2) Calculating the optimal weights {wm}Mm=1

to minimize the Stein discrepancy. Importantly, to give all the methods their best perfor-
mance, we calculate optimal weights for all the methods, including those such as MCMC
that produce unweighted collections.

Runtime for generating candidate particles Thus, all the methods only differ in how
the candidate particles {θm}Mm=1 are found. To focus on the parts that differ, in our figures,
we only report on the computational time required to produce these candidate particles.
Below we describe the computations for obtaining the candidate particles:

• MCMC Methods: We keep track of the time from the initialization of the chain
through each element added to the chain. At various points, we thin the current chain
to the desired number of particles and record the time elapsed since initialization.

• Gradient-based Optimization: We keep track of the time taken from initialization
through all gradient updates. At various points, we output the current particles and
record the time elapsed since initialization.

• Initialization Approaches: For each factorization θm, we keep track of the time taken
from initialization through optimization using NMF solvers. In the case ofQ-Transform,
we also include the time taken to find the transferable Q matrices (less than 0.5 sec-
onds for all 100 pairs of Q-Transform matrices!), even though that cost is shared by all
the datasets because we re-use the same matrices. The reported runtime is the sum
of the time taken for the initialization procedure and for running the NMF solver.

Runtime for optimizing weights We do not report the time required to weight the
particles because it is the same for all methods. In figure 33 we see the time to optimize the
weights depends only on the number of particles and not their parameter values or quality.

Runtime for calculating weights: NMF with different parameters

Figure 33: The runtime for calculating optimal weights (left: low-quality random param-
eters, right: “good” parameters obtained from NMF solvers) does not depend on the pa-
rameters; both have the same runtime costs and depend only on collection size.
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Note for efficient batch weight optimization To produce the confidence intervals in
our experiments, we had to run our approaches many times. To speed up these repetitions,
we observed that the weight optimization step first requires computing the pairwise kernel
matrix Kij = Kp(θi, θj) (from equation 3) and given K, running a solver to find the weights
{wm}Mm=1. When computing the weights for many subsets of a collection of factorizations
(as is the case with the initialization based approaches), we can avoid recomputing terms in
the kernel matrix multiple times by calculating the pairwise kernel matrix Kmax for a large
collection of Mmax factorizations. Subsequently, the matrix KM for a given subset of size
M (from this large collection) can be determined by simply choosing the relevant columns
and rows of Kmax. We use this approach to compute quickly compute weights for any M -
sized collection sampled from a larger set of Mmax factorizations. Note that this efficiency
in experimental design trick does not affect our reported numbers, which include only the
time to generate the candidate particles, but may help others achieve faster computational
times if they are replicating our results.
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