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Abstract

Sparse reduced-rank regression is an important tool for uncovering meaningful dependence
structure between large numbers of predictors and responses in many big data applications
such as genome-wide association studies and social media analysis. Despite the recent
theoretical and algorithmic advances, scalable estimation of sparse reduced-rank regression
remains largely unexplored. In this paper, we suggest a scalable procedure called sequential
estimation with eigen-decomposition (SEED) which needs only a single top-r sparse singu-
lar value decomposition from a generalized eigenvalue problem to find the optimal low-rank
and sparse matrix estimate. Our suggested method is not only scalable but also performs
simultaneous dimensionality reduction and variable selection. Under some mild regularity
conditions, we show that SEED enjoys nice sampling properties including consistency in
estimation, rank selection, prediction, and model selection. Moreover, SEED employs only
basic matrix operations that can be efficiently parallelized in high performance computing
devices. Numerical studies on synthetic and real data sets show that SEED outperforms
the state-of-the-art approaches for large-scale matrix estimation problem.
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1. Introduction

Identifying complex dependence structures among predictors and responses is an important
problem in statistics and machine learning, since these structures reveal hidden domain
knowledge about the data. For example, in bioinformatics, identifying gene regulatory net-
works is crucial for understanding gene regulatory paths and gene functions, which helps
disease prediction and diagnosis. Similarly, in social media analysis, inferring the influ-
ence networks from user activities, that is, Diffusion Network Inference problem (Leskovec
et al., 2008; Zhou et al., 2013; Embar et al., 2014) is an important problem and it has found
applications in social media marketing (Gomez-Rodriguez et al., 2012) and crisis manage-
ment (Starbird and Palen, 2012). In these big data applications, inferring the dependence
structures is challenging since the responses and predictors may be related through a few
latent pathways and/or associated through only a subset of responses and predictors. More-
over, the curse of dimensionality and massive amounts of data, that is, scalability issues
make the dependence structure discovery problem even harder to solve. To recover sparse
response-predictor associations and latent predictors, regularization methods such as lasso
(Tibshirani, 1996) and group lasso (Yuan and Lin, 2006), and reduced-rank regression ap-
proaches (Izenman, 1975; Velu and Reinsel, 2013) have been proposed, respectively. Chen
et al. (2012) and Chen and Chan (2015) have proposed sparse reduced-rank regression ap-
proaches by combining the regularization and reduced-rank regression techniques to find
the complex dependence structures between responses and predictors.

Sparse reduced-rank regression works by modeling the associations between the predictor
and response variables via a sparse and low-rank representation of the coefficient matrix.
It not only enhances the interpretability of the estimated matrix by eliminating irrelevant
features (Chen et al., 2012), but also reduces the number of free parameters of the model
and thus the number of observations required for desired estimation consistency (Yuan
et al., 2007; Bunea et al., 2011; Candès and Plan, 2011; Negahban and Wainwright, 2011;
Chen et al., 2013). Sparse reduced-rank regression has found applications in micro-array
biclustering (Chen et al., 2012), subspace clustering (Wang et al., 2013), social network
community discovery (Richard et al., 2012; Zhou et al., 2013), and motion segmentation
(Feng et al., 2014). In these applications, joint sparsity and low-rankness has been used to
enforce a clustered dependence structure among data points. In particular, the key idea is
to estimate a similarity matrix among data points that is simultaneously sparse and low-
rank and then permute the rows and columns of the matrix to yield approximately block-
diagonal structures, which naturally lead to clustering of data points into several groups.
Note that Chandrasekaran et al. (2010), Agarwal et al. (2012), and the references therein
have considered estimating matrices with a low-rank plus sparse representation which is
different from our work as we are interested in estimating a matrix that is jointly low-rank
and sparse.

A natural approach to solving the sparse reduced-rank regression problem is to simulta-
neously penalize the parameter matrix using the L1 and nuclear norm regularizers, as they
are convex relaxations to sparsity and low-rankness of a matrix, respectively. The resulting
optimization problem is convex and can be solved using the alternating direction method
of multipliers (ADMM) (Boyd et al., 2010) as proposed by Richard et al. (2012) and Zhou
et al. (2013). In Bunea et al. (2012), an alternative approach, called rank constrained group
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lasso (RCGL), was proposed which directly penalizes the rank and the number of nonzero
rows of the parameter matrix. They showed oracle rates for the estimated matrix and
also provided a practical algorithm which iteratively and jointly solves a L1-regularization
and low-rank estimation problem. To further improve the estimation accuracy, Chen et al.
(2012) borrowed ideas from adaptive Lasso (Zou, 2006) and proposed the iterative exclusive
extraction algorithm (IEEA) which finds a locally optimal solution in the neighborhood of
the initial value. They also showed model selection consistency and asymptotic normality
results along with the improved empirical performance of IEEA on microarray biclustering
analysis data.

All the above approaches for sparse reduced-rank regression achieve both desirable the-
oretical properties and strong empirical results. However, they cannot scale to large matrix
estimation problems in many big data applications. The ADMM algorithm of Richard et al.
(2012) and Zhou et al. (2013) uses iterative singular value thresholding (Cai et al., 2010) for
solving the joint L1 and nuclear norm regularization. Iterative singular value thresholding is
known to be computationally expensive since it performs a full singular value decomposition
of the parameter matrix in each iteration. On the other hand, RCGL (Bunea et al., 2012)
is computationally much faster than ADMM since it only performs top-r singular value de-
composition for estimating a rank-r matrix in each iteration. Despite a lower computational
cost per iteration, it is unclear how many iterations RCGL needs for convergence. IEEA
(Chen et al., 2012) performs nested loops of alternating L1-penalized regression for each
singular vector which can be expensive, especially on parallel computing devices. The iter-
ative nature of these three approaches makes them not scalable and renders them inefficient
for large matrix estimation even on high performance computing devices.

To overcome the scalability issues of the previous approaches, we propose a simple and
scalable sparse reduced-rank regression procedure called sequential estimation with eigen-
decomposition (SEED). SEED is designed for high-performing computing platforms. It
converts the sparse and low-rank regression problem to a sparse generalized eigenvalue
problem and then solves the problem using the recent algorithms for sparse eigenvalue
decomposition (Cai et al., 2013; Ma, 2013; Yuan and Zhang, 2013). As a pure learning
algorithm, SEED is expected to perform only a single top-r sparse eigenvalue decomposition
for estimating a rank-r matrix, which makes it truly scalable and efficient for large matrix
estimation problems.

The main contributions of our paper are threefold. First, for the sparse reduced-rank
regression problem, our proposed procedure SEED provides a scalable approach to un-
covering the sparse predictor-response association network while simultaneously achieving
dimension reduction and variable selection. Second, for the high-dimensional settings, our
theoretical analysis shows that SEED can consistently estimate the singular vectors, latent
factors as well as the regression coefficient matrix, identify the correct rank of the matrix,
accurately predict the multivariate response vector, and recover the support of the singular
vectors under mild conditions. Note that, compared with Chen et al. (2012), we do not
make any assumption on the positive definiteness of the design matrix for proving our con-
sistency results. Third, we empirically demonstrate that SEED can not only be efficiently
implemented on both central processing units (CPU) and graphics processing units (GPU)
for large-scale applications, but it also outperforms the state-of-the-art sparse reduced-rank
regression approaches.
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Recently, Mishra et al. (2017) proposed the sequential co-sparse factor regression in
a similar sparse and low-rank model setting, where a unit rank sparse coefficient matrix
was recovered at each step such that both the left and the right singular vectors could be
estimated with co-sparse pattern (an earlier version of the current paper was cited in theirs).
Compared with their method, our approach separates the estimation of the singular vectors
at each step with the left ones obtained through a generalized sparse eigenvalue problem and
the right ones recovered directly based on the left ones. Moreover, we provide comprehensive
theoretical properties to justify the validity of sequential estimation for sparse and low-rank
coefficient matrices in high dimensions.

The rest of this paper is organized as follows. Section 2 introduces our SEED method.
We discuss the implementation details of SEED in Section 3 and present its asymptotic
properties in Section 4. We demonstrate the advantages of SEED on both synthetic and
real data sets in Section 5, and in Section 6 we discuss some extensions of our SEED method.
The proofs of some main results are relegated to the Appendix. Additional technical details
are provided in the Supplementary Material.

2. Sequential Estimation with Eigen-Decomposition

We will first introduce the model setup and then the proposed methodology.

2.1. Model and Problem Formulation

Denote by {(xi,yi)}ni=1 n observations in the fixed design setting, where xi ∈ Rp and yi ∈ Rq
represent the ith predictor and the corresponding response vectors, respectively. Given a
predictor vector x, the corresponding response vector y is drawn from the following model

y = C∗Tx + ε,

where the noise vector ε ∼ N (0,Σ) is a q-dimensional multivariate Gaussian random vector
with mean zero and covariance matrix Σ, and C∗ ∈ Rp×q is the regression coefficient
matrix.1 We can rewrite the model in the matrix form as follows

Y = XC∗ + E, (1)

where Y = [y1, . . . ,yn]T , X = [x1, . . . ,xn]T , and E = [ε1, . . . , εn]T denote the matrices of
stacked response, predictor and noise vectors, respectively.

Let P = n−1XTX be the Gram matrix of the predictors. We consider model (1) from
a latent factor point of view, where the true regression coefficient matrix C∗ is jointly
low-rank and sparse, similar to Bunea et al. (2012) and Chen et al. (2012). In particular,
rank(C∗) = r∗ with the matrix rank r∗ � min(p, q). Without loss of generality, we assume
that rank(XC∗) = rank(C∗) since if rank(XC∗) < rank(C∗), the redundant part of C∗ can
be removed such that it reflects the true number of latent factors. Then C∗ will have the
following decomposition

C∗ =
r∗∑
k=1

u∗kv
∗T
k =

r∗∑
k=1

C∗k, (2)

1. Note that the Gaussianity of noise variables is not essential to either our procedure or the theoretical
results and similar results would hold under the sub-Gaussian assumption (Bühlmann and van de Geer,
2011, Chapter 14).
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where the left singular vectors u∗k ∈ Rp are P-orthogonal with unit length, that is, u∗Tk Pu∗k′ =
0 if k 6= k′ and ‖u∗k‖2 = 1, while the right singular vectors v∗k ∈ Rq are orthogonal, that is,
v∗Tk v∗k′ = 0 for k 6= k′, and C∗k is the layer k unit rank matrix of C∗. The singular vectors
are sorted by the magnitudes of the singular values σk = 1√

nq‖XC∗k‖F in descending order,

consistent with their contributions to the prediction of Y.

We consider the left singular vectors (both the population and estimated ones) in the
constraint space u ⊥ Ker(P), where Ker(P) denotes the null space of P, to guarantee the
model identifiability. Otherwise, u would contain certain component ũ such that Xũ = 0,
which does not contribute to the prediction of Y. It is worth noticing that the decomposition
in the form of C∗ =

∑r∗

k=1 u∗kv
∗T
k is not unique without orthogonality constraints and the

entrywise sparsity in the singular vectors is not invariant to rotations. The decomposition in
(2) is a special one since the P-orthogonality of u∗k arises naturally from the power method
and leads to a latent factor analysis interpretation of the reduced rank estimation in which
the latent factors Xu∗k are uncorrelated. Moreover, decomposition (2) coincides with the
singular value decomposition of XC∗ except for different scalings on the singular vectors.
We defer the discussion on the identifiability of decomposition (2) (existence and uniqueness
up to simultaneous sign changes of u∗k and v∗k) to Supplementary Material.

The aforementioned modeling of the regression coefficient matrix gives a latent factor
model with r∗ latent factors, where Xu∗k is the kth latent factor and v∗k describes the impacts
of the kth factor on the response variables. As illustrated in Yuan et al. (2007), the low-
rankness of C∗ renders dimension reduction such that all responses can be predicted by a
relatively small set of common factors. Furthermore, the left singular vectors u∗k are assumed
to be sparse, yielding the necessity of predictor selection. Similar sparsity assumptions were
made in Bunea et al. (2012) and Chen et al. (2012) to enhance model interpretability by
removing irrelevant features in high dimensions. Specifically, Chen et al. (2012) assumed
that both the left and right singular vectors are sparse while Bunea et al. (2012) imposed
restriction on the number of nonzero rows of the regression coefficient matrix. In this
paper, we are interested in two cases: (i) when the right singular vectors are not required
to be sparse and (ii) when it is desirable to have sparse right singular vectors, which entails
the response selection. We will show that both cases are efficiently accommodated by our
procedure.

Our goal is to accurately estimate the singular vectors u∗k and v∗k, and the true rank r∗

such that we can recover the latent factors, their impacts, and the underlying number of
latent factors as well as the significant predictors. As a singular vector can have two opposite
directions, we always assume that the estimated left singular vector takes the correct one,
that is, the angles between estimated and population left singular vectors are no more than
a right angle. Once the estimated rank and singular vectors are obtained, the estimate Ĉ of
the true matrix C∗ follows immediately from (2). Unlike most existing sparse and low-rank
estimation methods which adopt the regularization framework of minimizing a loss function
plus certain penalties, we will show that the proposed procedure SEED is indeed a pure
learning algorithm that predicts Y using XĈ.
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2.2. Description of SEED

The following proposition provides us insight into estimating the top-r∗ left and right sin-
gular vectors of C∗.

Proposition 1 Consider the noiseless case Y∗ = XC∗ with C∗ =
∑r∗

k=1 u∗kv
∗T
k defined in

(2). Then u∗1, . . . ,u
∗
r∗ are the r∗ non-degenerate left singular vectors of C∗ if and only if

they are eigenvectors of the following generalized eigenvalue problem

XTY∗Y∗TXu = λXTXu (3)

with respect to the nonzero eigenvalues λ1, · · · , λr∗, where λk = nqσ2k is the kth largest
eigenvalue of Y∗Y∗T with σk = ‖XC∗k‖F /

√
nq defined in Section 2.1. Furthermore, given

the left singular vector u∗k, the corresponding right singular vector v∗k can be written as

v∗k =
1

u∗Tk XTXu∗k
Y∗TXu∗k. (4)

Proposition 1 shows that the problem of estimating the singular vectors can be trans-
formed into the generalized eigenvalue problem in (3), thanks to the P-orthogonality of the
left singular vectors. It motivates us to estimate the left singular vectors in the noisy case
Y = XC∗ + E by solving the following generalized eigenvalue problem

XTYYTXu = λXTXu. (5)

The estimation consistency can be guaranteed by the matrix perturbation theory (see Sec-
tion 4 for details). On the other hand, it is not difficult to see that the eigenvectors with
respect to different eigenvalues of problem (5) are P-orthogonal, which further gives the
orthogonality of the right singular vectors estimated according to (4). It implies that the
right and left singular vectors obtained by solving the generalized eigenvalue problem will
automatically be orthogonal and P-orthogonal, respectively.

Related results of principal component analysis in low dimensions can be found in Baldi
and Hornik (1989), Diamantaras and Kung (1996), and De La Torre and Black (2003). Note
that in the high-dimensional setting, the regime of interest for this paper, the Gram matrix
P can not be invertible and the generalized eigenvalue problem is potentially challenging
to solve. We will address the implementation challenges in Section 3.

Based on Proposition 1, our proposed procedure SEED performs a two-step estimation
for the regression coefficient matrix. It first solves the generalized eigenvalue problem (5)
to obtain the estimated left singular vectors û1, . . . , ûr with unit length and then finds the
estimated right singular vectors v̂1, . . . , v̂r according to (4) as follows

v̂k =
1

ûTkXTXûk
YTXûk. (6)

The maximum rank r depends on the magnitude of the estimated singular value σ̂k =
‖XĈk‖F /

√
nq with Ĉk = ûkv̂

T
k (whether it is larger than a threshold µ) and the optimal

rank can be tuned by cross validation or the information criterion described in Section 4.
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Algorithm 1: SEED

Input: (1) Data Y ∈ Rn×q and X ∈ Rn×p (2) Termination accuracy µ and sparsity
parameter θ

1 Compute matrices: P← 1
nXTX, R← 1

nYTX, Q← 1
qR
>R

2 k ← 1
3 repeat
4 (ûk, σ̂k)← kth θ-sparse eigenvector and eigenvalue of Qu = λPu
5 if σ̂k > µ then
6 v̂k ← 1

û>k Pûk
Rûk #Optional thresholding of v̂k for sparsity

7 Ĉk ← ûkv̂
>
k

8 k ← k + 1

9 end

10 until σ̂k < µ
11 tune the optimal rank r̂

12 return Ĉ =
∑r̂

k=1 Ĉk

The details of the procedure are provided in Algorithm 1. To achieve a sparse solution,
we need to find the rank-r sparse matrix via a sparse eigenvalue decomposition procedure
in Line 4 of Algorithm 1. This can be done in a sequential way and practical methods will
be provided in Section 3. The practical methods need a sparsity parameter θ, such as a
threshold (Ma, 2013) or a sparsity size (Yuan and Zhang, 2013). We will show in Section 5
that SEED is robust to the choices of parameters θ and µ. If the right singular vectors are
also required to be sparse, we perform a simple element-wise thresholding on v̂k after we
obtain it in Line 6.

3. Scalable Implementation of SEED

Algorithm 1 requires a sparse solution of (5) which is a generalized eigenvalue problem with
a rank deficient matrix P. In this section, we propose two different procedures to solve (5)
and study multiple practical aspects of SEED.

3.1. Fast Approach

The bottleneck in speeding up Algorithm 1 is Line 4 where we need to solve a sparse
generalized eigenvalue problem. To overcome this bottleneck, we propose a new solution to
estimating the left singular vectors by rewriting equation (5) as

XT (YYT − λI)Xu = 0.

Similar to Proposition 1, when X is of full row rank (which is easy to satisfy in the high-
dimensional setting), the above equation shares the same nonzero eigenvalues with YYT .
Even if X is row rank deficient, we still have nonzero solution u when the perturbation is
relatively small, ensured by the perturbation theory in Lemma 6. Thus, we propose the
following two-step procedure for Line 4 of Algorithm 1:
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(1) λ← λmax(YYT ).

(2) û1 ← sparse eigenvector relative to the zero eigenvalue of XTYYTX− λXTX.

Based on û1, the corresponding right singular vector v̂1 and the unit rank matrix Ĉ1 will be
obtained. To continue, we compute the residual Yk = Y−X

∑k−1
j=1 Ĉj in the kth step and

replace Y with Yk in the above two-step procedure to obtain the kth left singular vector
ûk. Overall, the first step requires calculation of the top-r eigenvalues for an n× n matrix
(or q × q if q < n) while the second step finds the corresponding eigenvectors by solving a
regular sparse eigenvalue problem.

The above procedure significantly accelerates the speed of SEED as it converts a de-
generate sparse generalized eigenvalue problem to two simpler regular sparse eigenvalue
problems. Existing procedures such as the iterative thresholding method (Ma, 2013) can
be used to compute both eigenvalue problems efficiently. Generally speaking, SEED will be
extremely efficient in applications with low rank structure such as image processing as it
stops early after achieving a few important signals. Moreover, the speed of SEED can be
greatly enhanced by parallel implementation on high performance computing devices such
as GPU, due to the fact that it employs only basic matrix operations.

3.2. Alternative with Enhanced Stability

In cases where the perturbation can be large, for numerical stability purposes, we can also
solve (5) by the following modified problem with a very small positive ρ:

XTYYTXu = λ(XTX + ρI)u. (7)

Note that XTX + ρI is invertible since the eigenvalues of XTX are nonnegative. Denote

by X̃ ∈ Rp×p the modified predictor matrix such that X̃
T
X̃ = XTX + ρI, which can be

obtained via the Cholesky decomposition, and Ỹ = (X̃
T

)−1XTY the modified response
matrix. Then the above equation (7) can be rewritten as

X̃
T
ỸỸ

T
X̃u = λX̃

T
X̃u, (8)

which adopts the same form as (5).

A computationally efficient technique for solving equation (8) is to solve the sparse

eigenvalue problem P̃
−1

Q̃u = λu, where the modified Gram matrix P̃ = n−1X̃
T
X̃ and Q̃

is defined accordingly as in Algorithm 1. We can compute P̃
−1

by the Sherman-Morrison-
Woodbury formula as follows:

(ρIp + XTX)−1 =
1

ρ
Ip −

1

ρ2
XT (In +

1

ρ
XXT )−1X.

The above equation requires inversion of an n× n matrix instead of a p× p matrix, which
is significantly faster in the high-dimensional setting when p� n.

Remark. The formulation of X̃ and Ỹ can be regarded as a generalization of the
ridge regression to the multivariate response setting. In fact, since C∗ is the minimizer
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of ‖Y∗ −XC‖2F , we can enhance the stability by adding a small Frobenius norm regular-
ization as follows:

C̃ = argminC

{
‖Y−XC‖2F + ρ ‖C‖2F

}
,

where the Frobenius norm is defined as ‖C‖2F =
∑

i,j C2
i,j for any matrix C. After complet-

ing the squares, we get

C̃ = argminC

{
‖Ỹ− X̃C‖2F

}
,

which means that X̃ and Ỹ are the corresponding predictor and response matrices that
take into account the shrinkage effects (James and Stein, 1961; Zheng et al., 2014).

3.3. Practical Aspects

Now we analyze several practical aspects of SEED as follows.

Refitting. In Algorithm 1, a refitting can be performed during the eigenvalue decompo-
sition in Line 4 to enhance the stability. The refitting procedure is as follows. In the kth
step, we perform the top-k singular value decomposition Ĉ = UŜVT for Ĉ =

∑k
j=1 Ĉj and

refit the solution by finding S̃ = argminS
∥∥Y−XUSVT

∥∥2
F

. The estimate with refitting

is defined as C̃ = US̃VT . In practice, we find this approach more stable and report the
results based on this variation of SEED in numerical studies.

Sparse eigenvector estimation. The previous approaches for solving the generalized
eigenvalue decomposition problem indicate that we can solve the problem via regular sparse
eigenvalue decomposition. This allows us to reuse the existing procedures for sparse eigen-
value decomposition such as Cai et al. (2013), Ma (2013), Yuan and Zhang (2013), and
Lei and Vu (2015) to solve the problem in (5). In numerical studies, we use the iterative
thresholding method (Ma, 2013), which is detailed in Algorithm 2 for estimating the sparse
eigenvector relative to the largest eigenvalue of a given sparse eigenvalue problem Su = λu
with sparsity parameter θ (threshold level).

It is worth pointing out that although sparse eigenvalue decomposition is a nonconvex
problem, Ma (2013) proved that the sparse eigenvectors obtained by the iterative threshold-
ing algorithm will converge to their population counterparts with asymptotic probability
one within O(log n) iterations. The initial estimate û(0) is generated from the diagonal
thresholding sparse PCA algorithm proposed in Johnstone and Lu (2009), which is a reg-
ular eigenvalue problem after constraining on the significant coordinates (variances). This
iterative thresholding algorithm can also be applied to recover several sparse eigenvectors
simultaneously.

Parallel implementation. In order to scale up the procedures, we often need to utilize
the parallel computing tools. Given that SEED only uses basic matrix operations, we can
employ parallel implementation of the large matrix operations in high performance com-
puting devices to accelerate SEED. In Section 5, our experiments with GPU which contain
thousands of processing units show that the matrix operations in SEED can be efficiently
parallelized and it significantly enhances the speed of SEED. Whenever the data can not
be loaded into the memory of a single device, efficient distributed algorithms can be used.
See for example, Kang et al. (2011) and the references therein.
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Algorithm 2: Iterative thresholding

Input: Matrix S ∈ Rp×p, threshold level θ, and initial estimate û(0) ∈ Rp.
1 k ← 1
2 repeat

3 Multiplication: t(k) = (t
(k)
ij ) = Sû(k−1)

4 Thresholding: t̂
(k)

= (t̂
(k)
ij ) with t̂

(k)
ij = t

(k)
ij 1(|tij |≥θ)

5 QR factorization: û(k)R(k) = t̂
(k)

with R(k) = ‖t̂(k)‖2
6 k ← k + 1.

7 until convergence

8 return û(k) at convergence

4. Asymptotic Properties of SEED

In this section, we will analyze the statistical properties of SEED. Define the maximum
sparsity level of the left singular vectors as s∗ = maxr

∗
k=1 ‖u∗k‖0 � p, which is assumed

mainly for theoretical analysis (see Condition 1 below) and unknown in our practical im-
plementation. We consider the estimated left singular vectors with the number of nonzero
elements less than certain sparsity level s > s∗, that is, ‖ûk‖0 ≤ s for k = 1, · · · , r, where
r > r∗ is an upper bound of the estimated rank that can be controlled by the algorithm in
practice. When the generalized eigenvalue problem (5) does not have an s-sparse solution,
the estimated largest s-sparse eigenvalue can be reformulated as

λ̂ = max
u6=0,‖u‖0≤s

uT (XTYYTX)u

uT (XTX)u

due to the extremal property of eigenvalues, and the corresponding maximizer û will be
treated as the estimated left singular vector. Note that there is no sparsity constraint on
either the population or the estimated right singular vectors since v∗k can be recovered from
(4) based on accurate estimation of u∗k.

4.1. Technical Conditions

Here we list a few technical conditions and discuss their relevance in detail.

Condition 1 (Restricted Isometry) There exists a positive constant φs such that the
Gram matrix P satisfies

φs ≤ min
z∈Rp

{
‖Pz‖2
‖z‖2

: ‖z‖0 ≤ 2s

}
≤ max

z∈Rp

{
‖Pz‖2
‖z‖2

: ‖z‖0 ≤ 2s

}
≤ φ−1s

for some s > s∗.

Condition 2 (Minimum Singular Value Separation) The non-zero singular values σk
satisfy σ2k − σ2k+1 ≥ dσ > 0 for some positive constant dσ and k = 1, . . . , r∗.

10



SEED

Condition 3 (Bounded Eigenvalues) The eigenvalues of the population covariance ma-
trix of the noise vector ε satisfy 0 < γ2l ≤ λj(Σ) ≤ γ2u < ∞ for j = 1, . . . , q, where γl and
γu are positive constants with γu ≤ cγσr∗ for some positive constant cγ.

Condition 4 (Minimum Signal Strength) There exists some positive constant δ ∈ (0, 1)
such that the following lower bounds on the magnitudes of the non-zero elements of u∗k and
v∗k hold for any 1 ≤ k ≤ r∗

min
i∈supp(u∗k)

|u∗i | ≥ 3Cu

√
s

n
log

pq

δ
,

min
i∈supp(v∗k)

1
√
q
|v∗i | ≥ 3Cv

√
s

n
log

pq

δ
,

where Cu and Cv are constants defined in Theorem 1.

Condition 1 imposes bounds on the 2s-sparse eigenvalues of P, which is weaker than
the regular bounded eigenvalue assumption since the sparse eigenvalues do not grow as fast
as the regular eigenvalues when the dimensionality p increases. As a typical condition in
high dimensions, it restricts the correlations between small numbers of features and thus
guarantees the identifiability of the true support. See, for instance, Candès and Tao (2005)
and Zhang (2011) for more discussion on it.

Recall that σk is the kth largest singular value of XC∗/
√
nq. Condition 2 requires strict

separation among the singular values such that the left singular vectors are distinguishable.
For ease of presentation, we assume dσ to be a constant and indicate the roles of dσ clearly
in the constants of the theoretical results. In fact, XC∗ adopts a spiked eigen-structure
(Johnstone, 2001; Shen et al., 2016) with the spiked singular values allowed to diverge at
the rate of

√
nq. This rate is reasonable for an n by q matrix as we do not impose any

sparsity on the columns of C∗.
The elements of the unobserved noise vector ε were assumed to be independent and

identically distributed (i.i.d.) in Bunea et al. (2012). We relax it a bit in Condition 3 by
imposing bounded eigenvalues for the noise covariance matrix for recovering the true rank
in Theorem 2. Our technical argument still applies when either γl → 0 or γu →∞ as long
as their rates of convergence can be controlled within certain magnitudes.

The two inequalities in Condition 4 are imposed for the model selection consistency of
the predictors and responses, respectively. The magnitude of the minimum signal strength

is O
(√

s log(pq)/n
)

, which is relatively mild as it converges to zero in our setting. Since

u∗k is assumed to have unit length, the singular values of C∗ are absorbed into v∗k in view
of decomposition (2) so that there is an extra scaling factor 1√

q in the second inequality.

4.2. Main Results

Denote by P 2 = maxpj=1 Pjj and γ2 = maxqj=1 Σjj the maximum diagonal components of
the Gram matrix and noise covariance matrix, respectively. Without loss of generality, we
assume that V = maxr

∗
k=1

1√
q‖v

∗
k‖2 is finite for the q-dimensional vectors v∗k. Moreover, it

is clear that under Conditions 1 and 3, P and γ are also finite constants. The estimated
regression coefficient matrix is given by Ĉ =

∑r̃
k=1 Ĉk, where r̃ is the optimal rank tuned

11
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by information criterion (9) and Ĉk = ûkv̂
T
k . The following theorem bounds the estimation

errors of SEED with the estimated left singular vectors ûk taking the correct signs as
discussed before.

Theorem 1 (Consistency of Estimation and Prediction) Suppose that Conditions 1
and 2 hold, γ is finite, and s log(pq) = o(n), then with probability at least 1 − δ for any
δ ∈ (0, 1) and uniformly over k = 1, . . . , r∗, we have

‖ûk − u∗k‖2 ≤ Cu
√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
,

1
√
q
‖v̂k − v∗k‖2 ≤ Cv

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
,

‖X(ûk − u∗k)‖2√
n

≤ Cu√
φs

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
,

1
√
q
‖Ĉk −C∗k‖F ≤ (V Cu + Cv)

(√
s

n
log

pq

δ

)
+ o

(√
s

n
log

pq

δ

)
,

‖X(Ĉk −C∗k)‖F√
nq

≤ (V Cu + Cv)√
φs

(√
s

n
log

pq

δ

)
+ o

(√
s

n
log

pq

δ

)
,

where the constants Cu = 4γPσ1

dσφ
5/2
s

and Cv = 2
√

2φ
−3/2
s (2V φ

−1/2
s + σ1)Cu + 2

√
2φ−1s γP .

Theorem 1 is established based on the perturbation theory of sparse generalized eigen-
value problem (Lemma 6). It shows that the uniform estimation error bounds for both
top-r∗ singular vectors u∗k and 1√

qv
∗
k, top-r∗ latent factors 1√

n
Xu∗k and unit rank matrices

1√
qC
∗
k, and the uniform prediction error bounds of the top-r∗ latent factors are all in the

same order of O
(√

s
n log pq

δ

)
. The tail probability δ can decay to zero quickly as p and q

grow with rates such as δ ∝ (pq)−α for some positive constant α > 1. This is due to the fact

that when δ ∝ (pq)−α, we have
√

s
n log pq

δ → 0 under the assumption that s log(pq) = o(n).

Furthermore, the estimation and prediction accuracy would then be within the rate of

O
(√

s log(pq)/n
)

, where the factor log(pq) reflects the curse of dimensionality as there are

pq parameters in total from the regression coefficient matrix C∗.

If the true rank r∗ can be correctly identified, it is not difficult to see that the estimation
accuracy for 1√

qC
∗ will be within the rate of O{

√
r∗s log(pq)/n} (see Corollary 3 below),

which coincides with the minimax error bound for estimating the regression coefficient vector
in the univariate response setting (Raskutti et al., 2011) with the dimensionality p and
sparsity level s replaced by the overall dimensionality pq and the product r∗s, respectively.

Similarly, with the true rank r∗, the normalized prediction error ‖X(Ĉ − C∗)‖F /
√
nq

will be within the rate of O
{√

r∗s log(pq)/n
}

, which is similar to the prediction error

bound established in Bunea et al. (2012). But we have an extra scaling factor of
√
q since

the singular values of XC∗ are allowed to diverge at the rate of
√
nq, larger than the

rate
√
n +

√
q in Bunea et al. (2012). Our theoretical results show that when the left

singular vectors are consistently estimated, the normalized prediction error will converge to

12



SEED

zero asymptotically. Overall speaking, the prediction error bound in Bunea et al. (2012)
was derived from the regularization framework, while the prediction accuracy of SEED is
obtained from the matrix perturbation theory (Lemmas 5 and 6).

Based on the discussion before, a desirable statistical property of any low-rank estima-
tion procedure is accurately recovering the true rank of the parameter matrix. Similar to
Lasso, the nuclear norm regularization needs to be enhanced by techniques such as adaptive
regularization to accurately recover the rank of the matrix (Bach, 2008; Chen et al., 2013).
In contrast, we can directly control the rank of the solution in SEED by limiting the number
of steps. In particular, we propose a GIC-type (Fan and Tang, 2013) information criterion
that guarantees rank recovery by SEED when the optimal rank is tuned according to it.

Theorem 2 (Consistency of Rank Recovery) Suppose Conditions 1-3 hold, s log(pq) =

o(n), r∗ = o

(
1√

(log logn)∨
√
s
·
[

n
log(pq)

] 1
4

)
, and r = o

([
n

s log(pq)

] 1
4

)
. Define the following in-

formation criterion

Cn =
√
n logLn(Y,X, Ĉ) + rank(Ĉ)

√
log(pq) log log n, (9)

where Ln(Y,X,C) = 1
qn‖Y −XC‖2F . Under the above information criterion, with proba-

bility at least 1 − (pq)−α for some positive constant α > 1 and sufficiently large n, SEED
will select the true rank, that is, rank(Ĉ) = rank(C∗).

In the high-dimensional setting where the number of predictors can increase exponen-
tially with the sample size, it is demonstrated in Fan and Tang (2013) that we need some
power of the logarithmic factor of dimensionality (

√
log(pq) for our setting) in the model

complexity penalty of the information criterion to consistently identify the true model, and
the slow diverging rate log log n is set to prevent underfitting. The proof of Theorem 2
indeed shows that information criterion (9) will keep decreasing until the estimated rank
reaches the true rank r∗, where in each step the amount of decrease in the objective function
Ln(Y,X, Ĉ) equals to the squared singular value obtained by solving the generalized eigen-
value problem (5). After reaching the true rank, the estimated singular value becomes small
such that the model complexity penalty will overweight the decrease and then information
criterion (9) would start increasing. Therefore, in the sequence of solutions generated by
SEED, the estimate Ĉ with rank r∗ will be the minimizer of (9) such that the true rank
can be correctly identified.

As discussed before, correct identification of the true rank will yield the estimation
accuracy of C∗ as well as the prediction accuracy of XC∗. Therefore, combined with
Theorem 2, it is immediate that the results in Theorem 1 give the following corollary.

Corollary 3 (Consistency of Overall Estimation and Prediction) Given Conditions

1-3, s log(pq) = o(n), r∗ = o

(
1√

(log logn)∨
√
s
·
[

n
log(pq)

] 1
4

)
, and r = o

([
n

s log(pq)

] 1
4

)
, if the

optimal rank is tuned by information criterion (9), then with probability at least 1− (pq)−α
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for any constant α > 0 and sufficiently large n, we have

1
√
q
‖Ĉ−C∗‖F ≤ (1 + α)(V Cu + Cv)

(√
r∗s log(pq)

n

)
+ o

(√
r∗s log(pq)

n

)
,

‖X(Ĉ−C∗)‖F√
qn

≤ (1 + α)(V Cu + Cv)√
φs

(√
r∗s log(pq)

n

)
+ o

(√
r∗s log(pq)

n

)
.

Besides estimation consistency and rank recovery, SEED is also able to find the true
support of the singular vectors. To achieve this goal, after selecting the optimal rank, we
need to further refine the model selection procedure by performing a hard-thresholding.
See, for example, Fan and Lv (2013) for applications of thresholding in high-dimensional
sparse modeling. Specifically, denote by Tθ(z) the estimator after the hard-thresholding
operation on every element of z = (z1, · · · , zp) ∈ Rp such that

Tθ(zi) =

{
0 if |zi| < θ
zi otherwise

, i = 1, . . . , p.

Based on the results of Theorems 1 and 2 and the signal strength assumption in Condition
4, we have the following properties for the estimator with a further thresholding.

Theorem 4 (Support Recovery of Singular Vectors) Given Conditions 1-4, s log(pq)

= o(n), r∗ = o

(
1√

(log logn)∨
√
s
·
[

n
log(pq)

] 1
4

)
, and r = o

([
n

s log(pq)

] 1
4

)
, for every pair of sin-

gular vectors, (ûk, v̂k), k = 1, . . . , r∗, the following results hold.

a) If the threshold θ ∈ (54Tu,
7
4Tu) with Tu = Cu

√
s
n log pq

δ , then with probability at least

1− δ, we have supp(Tθ(ûk)) = supp(u∗k);

b) If the threshold θ ∈ (54Tv,
7
4Tv) with Tv = Cv

√
qs
n log pq

δ , then with probability at least

1− δ, we have supp(Tθ(v̂k)) = supp(v∗k).

Theorem 4 shows that both supports of the left and right singular vectors can be ac-
curately recovered with properly chosen tuning parameter θ. Together with the correctly
identified true rank r∗, the above results indeed yield consistent selection of both predictors
and responses. In practice, this threshold θ can be tuned by criteria such as cross-validation.

Besides the statistical properties established before, the proposed procedure SEED en-
joys great flexibility in the sense that it does not rely on exact eigenvalue decomposition
and the perturbation errors in the generalized eigenvalue problem (5) will be linearly incor-
porated into the estimated singular vectors ûk and v̂k. Furthermore, our analysis does not
reply on the positive definiteness of the Gram matrix (Chen et al., 2012) in high dimensions.
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5. Numerical Studies

In this section, we conduct experiments on three data sets, including two simulation data
sets (one for a medium-scale experiment and one for a large-scale experiment) and one
application data set in social media analysis, to examine the empirical performance of
SEED.

5.1. Simulation Studies

5.1.1. Simulation Example 1

We generate a medium-scale synthetic data set as follows: the predictors x are drawn from
a multivariate Gaussian distribution as x ∼ N (0p×1,ΣX), where ΣX is the p×p covariance
matrix with auto-regressive structure, that is, ΣX,i,j = ρ|i−j| for some 0 < ρ < 1 which
will be specified later. The responses y are drawn according to conditional distribution
y|x ∼ N (C>x, γΣE) where the noise covariance matrix ΣE is also selected to have the
autoregressive structure with ρ = 0.5 and we set γ = 0.3. We generate the parameter
matrix C as follows: first we generate a block-sparse matrix C̃ with 5% non-zero elements.
Each non-zero element of C̃ is drawn from a N (0, 1). To achieve a low-rank structure, we
find the top-r singular value decomposition of C̃ as C̃ = USVT , and then set the elements
of U and V whose magnitude is smaller than 0.01 to zero to obtain Ū and V̄. The final
parameter matrix is obtained as C = ŪS̄V̄

T
where the first r diagonal elements of the

diagonal matrix S̄ are set to 100, 99, . . . , 101− r. Without loss of generality, we add a few
vectors to the design matrix to ensure the orthogonality condition of Section 4.1. In all of
the simulation experiments, we generate 100 data sets and report the mean and standard
error of performance for different methods.

We compare the performance of SEED with two state-of-art methods: (1) RCGL (Bunea
et al., 2012) and (2) Penalized regression with simultaneous L1 and nuclear-norm penaliza-
tion. The optimization problem is solved by the popular alternating direction method of
multipliers (Boyd et al., 2010) and we will refer to this baseline as the “ADMM” algorithm.
For a fair comparison, all model parameters are set based on a separate validation set with
size nvalid = 500. To tune the parameters in SEED, we created a grid of sparsity thresholds
θ and for each value of θ, the validation errors were recorded while increasing the rank of
the solution matrices. The robustness of sparsity threshold θ and termination parameter µ
will also be analyzed.

The quality of the estimator Ĉ is evaluated via four performance metrics listed as follows.
(1) Normalized Prediction Error defined as

Normalized Prediction Error =
‖Ytest −XtestĈ‖F

‖Ytest‖F
.

(2) Normalized Parameter Estimation Error defined as

Normalized Parameter Estimation Error =
‖Ĉ−C‖F
‖C‖F

,

where C is the true parameter matrix.
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(3) Rank Recovery Error defined as

Rank Recovery Error = |rank(Ĉ)− rank(C)|.

Since the solution of the nuclear norm always leads to small non-zero singular values (which
prevents Ĉ from being low-rank), we threshold the singular values of Ĉ that are more than
100 times smaller than its largest singular value to have a fair comparison.

(4) Support Recovery AUC, that is, the area under the receiver operating characteristic
(ROC) curve of comparing support of Ĉ with the ground truth, which is always between
0 and 1. It is computed by varying the decision threshold and obtaining the false positive
and true positive curve. Then the area under the false positive and true positive curve is
reported as AUC. The value of AUC indicates the probability that a procedure assigns a
higher value to a randomly chosen non-zero element than a randomly chosen zero element
(Hanley and McNeil, 1982). It is an appropriate metric for measuring support recovery
accuracy because in sparse support recovery we have more zeros than non-zeros which
inflates the result of the simple 0-1 accuracy measure. In contrast, AUC is more robust to
imbalanced positive/negative prediction labels.

Table 1 shows the results of all algorithms on a variety of regimes by varying the dimen-
sionality p and the rank r. We can see that SEED is superior or comparable to the baseline
algorithms across all four measures. As the results show and the theory predicts, in most
high-dimensional cases, nuclear norm usually overestimates the true rank of the matrix.
Furthermore, we find that the iterative SVD procedure in the RCGL algorithm often re-
sults in significant underestimation of the true rank, when the true rank is large. Note that
in addition to accuracy, SEED also significantly reduces the variance of the estimation.

Figure 1a shows the solution path for SEED on one example data set (p = 400, r = 5, q =
200, ρ = 0.5, and n = 100). The corresponding singular values are set to 30, 27, 24, 21, and
18. In the horizontal axis, we show the termination parameter µ normalized by ‖Y‖2F /(nq).
We can see that SEED can identify the correct rank with medium values of µ. Figure 1b
shows the solution path for the top left singular vector u1 of C on an example data set
(p = 200, q = 100, n = 50, ρ = 0.5, and r = 1). Both of the solution paths indicate that
SEED is robust to the particular choice of parameters and in a large range of parameters
SEED is able to successfully recover the true rank of the matrix and the support of the
singular vectors.

5.1.2. Simulation Example 2

In order to study scalability of SEED, we conduct the experiments on two computing envi-
ronment, including: (1) an off-the-shelf personal computer (PC) and (2) a graphics process-
ing unit (GPU), to demonstrate the runtime efficiency and the parallelization capability of
SEED.

First, we run our experiments on an off-the-shelf PC with Intel i7 at 3.4GHz and 8GB
of memory. The system runs MATLAB R2013b on the Windows operating system. We
generate 5 data sets with r = 1, non-zero ratio of 10%, q = 1000, and n = 1000. Figure 2a
shows the average CPU runtime of three algorithms as the dimension p increases. We can
see that SEED can achieve a speed up of 10-100 times in runtime compared with baseline
methods.
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p
Normalized Normalized Rank Support

Algorithm Prediction Estimation Recovery Recovery
Error Error Error AUC

n = 100, q = 200, r = 3, and ρ = 0.5

100
SEED 0.039 (0.013) 0.012 (0.006) 0.06 (0.445) 0.980 (0.024)
ADMM 0.041 (0.012) 0.015 (0.004) 0.01 (0.100) 0.975 (0.026)
RCGL 0.053 (0.013) 0.040 (0.009) 0.03 (0.171) 0.979 (0.028)

400
SEED 0.026 (0.005) 0.011 (0.002) 0 (0) 0.970 (0.015)
ADMM 0.035 (0.007) 0.035 (0.008) 0.06 (0.278) 0.961 (0.018)
RCGL 0.158 (0.050) 0.193 (0.066) 0 (0) 0.934 (0.027)

800
SEED 0.019 (0.003) 0.010 (0.002) 0 (0) 0.970 (0.014)
ADMM 0.076 (0.020) 0.127 (0.031) 4.14 (1.614) 0.954 (0.020)
RCGL 0.482 (0.072) 0.603 (0.074) 0.01 (0.100) 0.834 (0.030)

1500
SEED 0.015 (0.002) 0.010 (0.002) 0 (0) 0.971 (0.011)
ADMM 0.072 (0.015) 0.145 (0.024) 3.02 (0.141) 0.968 (0.010)
RCGL 0.698 (0.054) 0.820 (0.022) 0.09 (0.379) 0.809 (0.047)

2000
SEED 0.014 (0.001) 0.010 (0.002) 0 (0) 0.973 (0.011)
ADMM 0.066 (0.010) 0.136 (0.016) 3 (0) 0.970 (0.011)
RCGL 0.746 (0.041) 0.857 (0.021) 0.2 (0.603) 0.789 (0.045)

n = 100, q = 200, r = 30, and ρ = 0.5

100
SEED 0.010 (0.001) 0.043 (0.003) 0.29 (0.456) 0.989 (0.003)
ADMM 0.015 (0.002) 0.066 (0.006) 48.51 (0.882) 0.964 (0.027)
RCGL 0.058 (0.010) 0.220 (0.017) 0.04 (0.243) 0.774 (0.064)

400
SEED 0.035 (0.018) 0.155 (0.082) 1.17 (1.092) 0.770 (0.023)
ADMM 0.037 (0.002) 0.139 (0.007) 42.34 (3.085) 0.783 (0.018)
RCGL 0.395 (0.029) 0.558 (0.023) 0.02 (0.200) 0.610 (0.010)

800
SEED 0.003 (0.000) 0.005 (0.000) 0.02 (0.141) 0.999 (0.000)
ADMM 0.014 (0.003) 0.022 (0.004) 9.34 (2.388) 0.999 (0.001)
RCGL 0.286 (0.037) 0.429 (0.020) 0.13 (0.733) 0.966 (0.004)

1500
SEED 0.003 (0.000) 0.007 (0.000) 0 (0) 0.999 (0.000)
ADMM 0.021 (0.001) 0.088 (0.004) 23.61 (1.348) 0.999 (0.000)
RCGL 0.315 (0.024) 0.457 (0.017) 2.31 (3.243) 0.970 (0.002)

2000
SEED 0.002 (0.000) 0.007 (0.000) 0 (0) 0.999 (0.000)
ADMM 0.020 (0.001) 0.091 (0.003) 22.54 (1.275) 0.999 (0.000)
RCGL 0.335 (0.019) 0.472 (0.012) 3.10 (3.538) 0.974 (0.002)

Table 1: Simulation Results
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Figure 1: (a) Solution path for the singular values of the estimated matrices. The plot show
the value of top five singular values of the solution Ĉ as we change the stopping
error µ. (b) Solution path for the top left singular vector u of the estimated
matrices. Only seven coefficients are non-zero. The range of the parameters are
generated as follows: µ = logspace(−5,−1, 5) and θ = logspace(−1, log10(20), 10),
where logspace(a, b, n) indicates the minimum value 10a, maximum value 10b, and
total number n.
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Figure 2: Speedup by SEED on (a) CPU and (b) GPU devices. Note that the vertical axis
is in logarithmic scale.

Next, in order to test scalability of SEED in extremely large data sets, we use a machine
that is equipped with a Tesla K40 GPU which has 2880 processing cores at 745MHz and
12GB of memory. We perform our experiments with MATLAB R2013b on a Debian Linux
operating system. GPUs are built to have many less-powerful processing units which makes
them ideal for parallel implementation (Bekkerman et al., 2012, Chapter 5). Therefore we
apply the two-step fast eigenvalue decomposition described in Section 3, which involves
only simple matrix operation and can be paralleled easily. The experiment results shown in
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Figure 3: Scalability experiments on very large data sets on GPU using the fast approach.
Accuracy results are normalized.

Figures 2b and 3 are obtained under the setting of q = 10000, n = 5000, r = 1 and non-zero
ratio of 10%. The results indicate that while SEED is fast on the GPU, it also achieves
reasonable accuracy. Note that the results show that SEED is able to estimate a sparse and
low-rank matrix with 108 elements in less than a minute, confirming its extreme scalability.

5.2. Real Data Analysis

Diffusion Network Inference, that is, the task of inferring influence networks from user
activities, is one of the central tasks in social networks analysis (Gomez-Rodriguez et al.,
2012) because it helps improve social marketing by finding the influential users in a network.
It is a challenging problem because: (i) in many social networks the influence is expressed
implicitly (Gomez-Rodriguez et al., 2012) and (ii) empirical studies show that common
metrics such as number of friends or followers fail to accurately measure the social influence
of the users (Cha et al., 2010).

A popular computational approach in estimating social influence among users is to count
the number of users’ activities over a time span (in regularly or irregularly spaced intervals)
and analyze the resulting time series data (Truccolo et al., 2005). Many different models
have been developed, among which the vector auto-regressive model arises as a simple and
robust solution (Trusov et al., 2009; Bahadori and Liu, 2013). That is, every user i is
described by a time series xi(t) for t = 1, . . . , T and i = 1, . . . , q, such that

xi(t) =

q∑
j=1

βTi,jx
t,Lagged
j + εi(t),

where βi,j is the vector of coefficients modeling the effects of time series xj , xt,Laggedj =

[xj(t − L), . . . , xj(t − 1)]T is the history of xj up to time t with L the maximal time lag,
and εi(t) is the random noise at time t. Denoting by x(t) = [x1(t), . . . , xq(t)]

T , we have the
following multi-response regression model:

x(t) = BTxt,Lagged + ε(t),
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Figure 4: The graph recovery accuracy of the algorithms as the rank of solution varies.

where the predictor vector xt,Lagged = [(xt,Lagged1 )T , . . . , (xt,Laggedq )T ]T , BT =
(
βTi,j
)
1≤i,j≤q is

the evolution matrix, and ε(t) = [ε1(t), . . . , εq(t)]
T . The influence network can be built from

the evolution matrix by establishing an edge from node j to node i if ‖βi,j‖1 is significantly
larger than zero.

In this experiment, we gather a Twitter data set with tweets on the “Haiti earthquake”
and apply vector auto-regressive model to identify the potential top influencers on this topic
(that is, those Twitter accounts with the largest impact on the others). We divide the 17
days after the Haiti Earthquake on Jan. 12, 2010 into 1000 uniformly spaced intervals and
generate a multivariate time series data set by counting the number of tweets on this topic
for the top 1000 users who tweeted most about it. For accurate modeling, we remove the
users that were highly correlated with each other, most of which were operated by the same
users and tweeted exactly the same content. We also remove robot-like user-accounts which
tweeted on very regular intervals, which in total led to a subset of 270 users. We analyze
this data by a VAR model with the maximal time lag L = 5 based on the intuition about
the maximum retweeting delay, which requires estimation of a q = 270 dimensional response
vector using p = 1350 predictors while we have only n = 995 observations.

Since we do not have access to the true influence network, we use the retweet network as
a surrogate of the ground truth following the evaluation convention in the social networks
community. The retweet network is constructed by adding an edge from user i to user j
if user j has retweeted at least 4 of the tweets of user i. Clearly, the retweet network is
not the actual underlying temporal dependency graph, mainly because there are possible
implicit influence patterns as well. However, it is the best possible metric that we could
obtain for graph estimation accuracy evaluation in our data set (Cha et al., 2010). The
retweet network for the 270 selected users is sparse; it has only 0.11% of possible edges.

We apply SEED, ADMM, and RCGL algorithms to uncover the influence network in
our twitter data set. Figure 4 shows the accuracy of the procedures in uncovering the
true influence network in terms of AUC. For every value of the rank parameter, we tune
the sparsity by 5-fold cross-validation. Given the fact that exact rank constraint cannot
be enforced directly in the ADMM algorithm, we find the best value of the nuclear norm
regularization parameter λL by 5-fold cross-validation. Then, we compute the low-rank
approximations of the parameter matrix and evaluate the accuracy at each rank.
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SEED ADMM RCGL

2.83 127.34 256.87

Table 2: Run time (in seconds) of the algorithms on the application data set.

The results in Figure 4 show that SEED significantly outperforms the baseline proce-
dures. They also indicate that, in all of the algorithms, as we increase the rank of the solution
matrix, the accuracy is improved initially and then quickly saturates. SEED achieves the
highest accuracy when the rank is 4. Note that this result also confirms other studies that
the social network connections may be strongly influenced by a few unobserved exogenous
variables (Myers et al., 2012). The results in Table 2 demonstrate the significant speedup
achieved by SEED compared to the baselines.

6. Discussion

In this paper, we propose to convert the problem of sparse reduced-rank regression into a
sparse generalized eigenvalue problem, which allows us to efficiently employ the recently
developed sparse eigenvalue decomposition techniques. After this transformation, the left
singular vectors can be estimated in simple steps and the estimation of both sparse and
dense right singular vectors is unified in a single framework. As a pure learning algorithm,
SEED deviates from traditional regularization frameworks (that is, a loss function plus
certain penalties), leading to computational efficiency and scalability. Furthermore, we
prove that SEED achieves nice estimation and prediction accuracy similar to the minimax
error bound in the univariate regression setting (Raskutti et al., 2011).

Some interesting problems for future research include extending the current formulation
of the regression coefficient matrix in (2) to the case where the singular values can be
repeated such that the left singular vectors (which correspond to latent factors) are not
identifiable. Then we will need to estimate the eigenspaces spanned by important singular
vectors and characterize the estimation accuracy by some new criterion, such as the one
in Cai et al. (2013) and Ma (2013). Another research direction is to explore the theory
of random design matrices and this can be addressed by using an extended version of
perturbation theory (Lemma 6), where the perturbation in P is also included in the analysis.

Moreover, it is computationally straightforward to extend SEED to the generalized linear
models by adapting the sequential quadratic programming framework. For this extension,
we first approximate the loss function by the quadratic loss function and find the optimal
unit rank matrix. Then we can add the unit rank matrix to the solution and re-approximate
the loss function with another quadratic function around this new solution. By performing
these three steps sequentially, we can efficiently estimate the low-rank coefficient matrix.
Statistical properties of such estimator can be analyzed by extending the results in Lozano
et al. (2011) for greedy sparse procedures to reduced-rank regression.
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Appendix A. Proofs of Theorems 1 and 2

We need the following two lemmas in the proofs of Theorems 1 and 2.

Lemma 5 Suppose ε ∼ N (0q,Σ) and γ2 = maxj Σjj. We have stacked n realization of
these random vectors in the rows of n× q matrix E. Denote by P 2 = maxj [

1
nXTX]jj given

a deterministic n× p matrix X. Then for any δ ∈ (0, 1), with probability at least 1− δ,

1

n
‖ETX‖2,s ≤

√
2qs(γP )2

n
log

2pq

δ
.

Lemma 6 (Perturbation Theory for Sparse Symmetric Generalized Eigenvalue Problems)
Suppose Q,P ∈ S+p are two p × p semi-definite matrices. For the following generalized
eigenvalue problem and its perturbed variant with sparse eigenvectors

Qu = λPu, (10)

(Q + δQ)û = λ̂Pû, (11)

where u, û ⊥ Ker(P) with ‖u‖0 ≤ s∗, ‖û‖0 ≤ s and s∗ < s, under Condition 1, we have
uniformly over k = 1, · · · , p− dim{Ker(P)},

|λ̂k − λk| ≤ φ−1s ‖δQ‖2,s. (12)

Here λk and λ̂k are the kth largest eigenvalues of equations (10) and (11), respectively,
‖δQ‖2,s denotes the s-sparse largest singular value of δQ, and φs is defined in Condition 1.

Furthermore, denote by uk and ûk the unit length sparse eigenvectors correspond to λk
and λ̂k, respectively, with ûk taking the correct directions. When there exists some positive
eigengap dλ which is the minimum difference between non-zero eigenvalues of equation (10)
and the perturbation of Q satisfies ‖δQ‖2,s = o(dλ), then uniformly over k such that λk 6= 0,

‖ûk − uk‖2 ≤
√

2φ−2s d−1λ ‖δQ‖2,s + o(d−1λ ‖δQ‖2,s). (13)

A.1. Proof of Theorem 1

The proof is established based on analyzing the impact of perturbation of the matrices in the
solution of equation (3). To do so, in the first step, we bound the amount of perturbation in
the matrix of the generalized eigenvalue problem in Proposition 1. In the second step, using
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the eigenvalue perturbation theory (Lemma 6), we derive the error bound for ûk. Using the
bound for ûk, in the third step, the error bound for v̂k is calculated.

Step 1: Bounding the perturbation of matrix Q. For notational simplicity, define the
noise free response variables as Y∗ = XC∗, Q = 1

qn2 XTY∗Y∗TX and its noisy version

Q̂ = 1
qn2 XTYYTX. Denote by ‖Q̂ −Q‖2,s the s-sparse largest singular value of Q̂ −Q.

Since Y = Y∗ + E, we can derive the following bound,

‖Q̂−Q‖2,s =
1

qn2

∥∥∥XTYYTX−XTY∗Y∗TX
∥∥∥
2,s
≤ 2

n2q

∥∥XTY∗ETX
∥∥
2,s

+
1

n2q
‖ETX‖22,s,

where the last inequality is due to the expansion of XTYYTX and an application of the
triangular inequality.

By Condition 1 and Proposition 1, we have ‖X‖2,s ≤
√
nφ
−1/2
s and

‖XTY∗‖2 ≤ ‖X‖2,s · ‖Y∗‖2 = ‖X‖2,s ·
√
nqσ1 ≤ n

√
qσ1φ

−1/2
s , (14)

where the first inequality holds since the unit length vector v satisfying ‖XTY∗v‖2 =
‖XTY∗‖2 must be one of the v∗k in (2) due to the strict separation of the singular values
by Condition 2, so that XTY∗v∗k = XTXC∗v∗k with C∗v∗k yielding an s-sparse vector for
XTX. Therefore, we get

2

n2q

∥∥XTY∗ETX
∥∥
2,s
≤ 2

n2q

∥∥XTY∗
∥∥
2
·
∥∥ETX

∥∥
2,s
≤ 2σ1φ

−1/2
s

n
√
q

∥∥ETX
∥∥
2,s
.

Let a∗ = σ1φ
−1/2
s . It follows that

‖Q̂−Q‖2,s ≤
2a∗

n
√
q
‖ETX‖2,s +

1

n2q
‖ETX‖22,s. (15)

Step 2: Error bounds for ûk and Xûk. Using Lemma 5, for any δ ∈ (0, 1) with proba-
bility at least 1− δ, we have

1

n
√
q
‖ETX‖2,s ≤ γP

√
2s

n
log

2pq

δ
.

Since s
n log pq

δ → 0 , substituting the above bound in equation (15) yields

‖Q̂−Q‖2,s ≤ γPa∗
√

8s

n
log

2pq

δ
+ o

(√
s

n
log

pq

δ

)
. (16)

Therefore, under Conditions 1 and 2, applying Lemma 6 with Q̂ = 1
qn2 XTYYTX,

Q = 1
qn2 XTY∗Y∗TX, and P = 1

nXTX gives the following bound for ûk,

‖ûk − u∗k‖2 ≤
4γPa∗

dσφ2s

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
= Cu

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
,
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where Cu = 4γPa∗

dσφ2s
= 4γPσ1

dσφ
5/2
s

is a constant. Since ‖ûk−uk‖0 ≤ 2s, further applying Condition

1 yields

1√
n
‖X(ûk − u∗k)‖2 ≤ φ

−1/2
s Cu

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
.

Step 3: Error bound for v̂k. With the estimated left singular vector ûk, we can further
estimate the corresponding right singular vector as

v̂k =
1

û>k XTXûk
YTXûk,

and compare it to v∗k, which by Proposition 1 can be expressed as

v∗k =
1

u∗>k XTXu∗k
Y∗TXu∗k.

For simplicity of notation, we drop the index k of vk and uk and write

‖v̂ − v∗‖2 =

∥∥∥∥ 1

u∗>XTXu∗ − e1

(
Y∗TXu∗ − e2

)
− 1

u∗>XTXu∗
Y∗TXu∗

∥∥∥∥
2

,

where e1 , u∗>XTXu∗−û>XTXû and e2 , Y∗TXu∗−YTXû. Using the Taylor expansion
of 1

1−x at x = 0, we can write

‖v̂ − v∗‖2 ≤

∥∥∥∥∥ Y∗TXu∗

u∗>XTXu∗
e1

u∗>XTXu∗

∥∥∥∥∥
2

+

∥∥∥∥ e2

u∗>XTXu∗

∥∥∥∥
2

+ Te

= (u∗>XTXu∗/n)−1 (‖v∗‖2|e1|/n+ ‖e2‖2/n) + Te

≤ φ−1s (‖v∗‖2|e1|/n+ ‖e2‖2/n) + Te, (17)

where Te =
(
‖v∗‖2|e1|/n
u∗>Pu∗

+ ‖e2‖2/n
u∗>Pu∗

)∑∞
`=1

(
|e1|/n

u∗>Pu∗

)`
denotes the higher order terms in the

Taylor expansion and the last step is by Condition 1.

Bounding |e1|: Let û = u∗ + δu. Since ‖u∗‖0 ≤ s∗, ‖û‖0 ≤ s and s∗ < s, we have
‖δu‖0 ≤ 2s. As u∗ is a unit length vector, it yields from Condition 1 that

|e1|/n =

∣∣∣∣ 1n(u∗ + δu)>XTX(u∗ + δu)− 1

n
u∗>XTXu∗

∣∣∣∣
= |2u∗>Pδu + δTuPδu| ≤ φ−1s (2‖δu‖2 + ‖δu‖22). (18)

Bounding ‖e2‖2: Similarly, let YTX = Y∗TX + ETX. We obtain

‖e2‖2/n = ‖(Y∗TX + ETX)(u∗ + δu)−Y∗TXu∗‖2/n
≤ ‖Y∗TXδu‖2/n+ ‖ETXu∗‖2/n+ ‖ETXδu‖2/n
≤ a∗√q‖δu‖2 + ‖ETX‖2,s/n+ ‖ETX‖2,s‖δu‖2/n, (19)
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where in the last step we used ‖Y∗TXδu‖2/n ≤ a∗
√
q‖δu‖2 similarly as in (14).

Since 1√
q‖v

∗
k‖2 ≤ V , substituting inequalities (18) and (19) in inequality (17) with

reorganization yields

‖v̂k − v∗k‖2 ≤
V
√
q‖δu‖2
φ2s

(
2 + ‖δu‖2

)
+

1

nφs
‖ETX‖2,s(1 + ‖δu‖2)

+ φ−1s a∗
√
q‖δu‖2 + Te.

When s log(pq/δ) = o(n), we can see that both the events E1 =
{
‖δu‖2 = O

(√
s
n log pq

δ

)}
and E2 =

{
Te = O

(√ qs
n log pq

δ

)}
occur, if the event E0 =

{
1

n
√
q‖E

TX‖2,s = O
(√

s
n log pq

δ

)}
holds for some δ ∈ (0, 1), where in the second event we have used the results in inequalities
(18) and (19) together with an application of geometric series sum. Note that the first term

of Te is O
(√ qs

n log pq
δ

)
and the common ratio is O

(√
s
n log pq

δ

)
.

Therefore, by applying the result in Lemma 5 for bounding ‖ETX‖2,s/n and the result
for the estimation error bound of ‖ûk − u∗k‖2 in Step 2, we can conclude with probability
at least 1− δ that

‖v̂k − v∗k‖2 ≤
(2V φ−1s + a∗)Cu + γP

φs

√
2qs

n
log

pq

δ
+ o

(√
qs

n
log

pq

δ

)
+ Te

≤ 2{(2V φ−1s + a∗)Cu + γP}
φs

√
2qs

n
log

pq

δ
+ o

(√
qs

n
log

pq

δ

)
= Cv

√
qs

n
log

pq

δ
+ o

(√
qs

n
log

pq

δ

)
,

where Cv = 2
√

2φ−1s

{
(2V φ

−1/2
s + σ1)φ

−1/2
s Cu + γP

}
.

Step 4: Error bounds for 1√
q‖Ĉk−C∗k‖F and 1√

qn‖X(Ĉk−C∗k)‖F . With the estimation

error bounds of ûk and v̂k, we write

1

qn
‖X(C∗k − Ĉk)‖2F =

1

q
trace{(C∗k − Ĉk)

TP(C∗k − Ĉk)} = ẽ1 + ẽ2 + ẽ3, (20)

where the last equality follows from the decomposition

C∗k − Ĉk = u∗kv
∗T
k − ûkv̂

T
k = (u∗k − ûk)v

∗T
k + ûk(v

∗
k − v̂k)

T (21)

such that

ẽ1 =
1

q
trace{v∗k(u∗k − ûk)

TP(u∗k − ûk)v
∗T
k },

ẽ2 =
2

q
trace{(v∗k − v̂k)û

T
j P(u∗k − ûk)v

∗T
k },

ẽ3 =
1

q
trace{(v∗k − v̂k)û

T
kPûk(v

∗
k − v̂k)

T }.
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We will bound them separately. Since the estimation error bounds of ûk and v̂k, k =
1, · · · , r∗, hold with probability at least 1− δ. It yields that

ẽ1 =
1

q
trace{(u∗k − ûk)

TP(u∗k − ûk)v
∗T
k v∗k} = V 2 · (u∗k − ûk)

TP(u∗k − ûk)

≤ V 2φ−1s ‖u∗k − ûk‖22 ≤ V 2φ−1s C2
u

( s
n

log
pq

δ

)
+ o

( s
n

log
pq

δ

)
,

where the first inequality follows from Condition 1 and the fact ‖u∗k− ûk‖0 ≤ 2s. Similarly,
we have

ẽ2 ≤ 2V φ−1s CuCv

( s
n

log
pq

δ

)
+ o

( s
n

log
pq

δ

)
,

ẽ3 ≤ φ−1s C2
v

( s
n

log
pq

δ

)
+ o

( s
n

log
pq

δ

)
.

In view of (20), the above bounds together give

1

qn
‖X(Ĉk −C∗k)‖2F ≤ φ−1s (V Cu + Cv)

2
( s
n

log
pq

δ

)
+ o

( s
n

log
pq

δ

)
.

Thus we have

1
√
qn
‖X(Ĉk −C∗k)‖F ≤

(V Cu + Cv)

φ
1/2
s

(√
s

n
log

pq

δ

)
+ o

(√
s

n
log

pq

δ

)
.

By a similar but simpler argument, it follows from the decomposition (21) that

1
√
q
‖C∗k − Ĉk‖F ≤

1
√
q
‖(u∗k − ûk)v

∗T
k ‖F +

1
√
q
‖ûk(v∗k − v̂k)

T ‖F

=
1
√
q
‖u∗k − ûk‖2 · ‖v∗k‖2 +

1
√
q
‖ûk‖2 · ‖v∗k − v̂k‖2

≤ (V Cu + Cv)

(√
s

n
log

pq

δ

)
+ o

(√
s

n
log

pq

δ

)
.

It concludes the proof.

A.2. Proof of Theorem 2

The main idea for proving the rank consistency result is noting that σ̂2k = (û>k Q̂ûk)/(û
>
k Pûk)

which relates to the termination criteria is in fact the kth largest eigenvalue of the problem
Q̂u = λPu. Thus, we will show that the amount of decrease in the objective function in
the kth step equals to the the kth largest eigenvalue of the problem Q̂u = λPu. Given the
perturbation bounds in Lemma 6, we can bound its difference from the true eigenvalue and
show that after r∗ greedy steps, the eigenvalues become almost zero.

To prove the result in Theorem 2, we need to bound logLk−1 − logLk, where Lk =
1
nq‖Y − XCk‖2F is the objective function with Ck =

∑k
j=1 Ĉj the estimated coefficient

matrix up to the kth step. By using the fact that 1− 1
x ≤ log(x) ≤ x− 1 for x > 0, we can

write

Lk−1 − Lk
Lk−1

≤ log

(
Lk−1
Lk

)
≤ Lk−1 − Lk

Lk
.
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Next, we show that the amount of the decrease in the objective function in the kth step
is equal to the the kth largest eigenvalue of the problem Q̂u = λPu, which satisfies the
following equality

Lk−1 − Lk =
1

nq
‖Y−XCk−1‖2F −

1

nq
‖Y−XCk‖2F

=
1

nq
‖Y−XCk−1‖2F −

1

nq
‖Y−XCk−1 −Xûkv̂

>
k ‖2F

=
1

nq

(
2
〈
Y−XCk−1,Xûkv̂

>
k

〉
− ‖Xûkv̂

>
k ‖2F

)
.

Now, using the P-orthogonality of ûk’s, we have

Lk−1 − Lk =
1

nq

(
2
〈
Y,Xûkv̂

>
k

〉
− ‖Xûkv̂

>
k ‖2F

)
=

1

nq

(
2
û>k XTYYTXûk

û>k XTXûk
−

û>k XTYYTXûk

û>k XTXûk

)

=
û>k Q̂ûk

û>k Pûk
= σ̂2k,

where the second step is due to the substitution of the solution for v̂k in (6) and a few steps
of algebraic rearrangement.

Underfitted regime k ≤ r∗. Under Condition 1, using the perturbation bound in Lemma
6 for the eigenvalues σ2k’s with k ≤ r∗, we can write

σ̂2k ≥ σ2k − φ−1s ‖∆Q‖2,s.

Further applying inequality (16), we know that there exists some positive constant C such
that

φ−1s ‖∆Q‖2,s ≤ 2a∗φ−1s γP

√
2s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
≤ C

√
s

n
log

pq

δ
.

Therefore, it follows that with probability at least 1− δ,

σ̂2k ≥ σ2k − C
√
s

n
log

pq

δ
. (22)

Then we can derive the following lower bound

√
Lk−1 − Lk
Lk−1

≥

√
σ2k − C

√
s
n log pq

δ

1√
nq

(∑r∗

j=k ‖XC∗j‖F +
∑k−1

j=1 ‖X(C∗j − Ĉj)‖F + ‖E‖F
) , (23)

where C∗j = u∗jv
∗T
j , Ĉj = ûjv̂j , in the nominator we have used the result obtained in (22)

and the denominator is the result of the triangular inequality. We will then bound the three
terms in the denominator successively.
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For the first term, given the definition of C∗j = u∗jv
∗T
j , v∗Tj v∗j = qa2j and u∗Tj Pu∗j = c2j ,

we have

‖XC∗j‖F√
nq

=

√
trace(Xu∗jv

∗T
j v∗ju

∗T
j XT )

nq
= aj

√
u∗Tj XTXu∗j

n
= ajcj = σj .

It follows that 1√
nq

∑r∗

j=k ‖XC∗j‖F =
∑r∗

j=k σj .

To bound the second term, by Theorem 1, we have

1

nq
‖X(C∗j − Ĉj)‖2F ≤ φ−1s (V Cu + Cv)

2
( s
n

log
pq

δ

)
+ o

( s
n

log
pq

δ

)
,

which gives

k−1∑
j=1

‖X(C∗j − Ĉj)‖F
√
nq

≤ (k − 1)(V Cu + Cv)

φ
1/2
s

√
s

n
log

pq

δ
+ o

(√
s

n
log

pq

δ

)
. (24)

To bound the last term, as the components of EΣ−1/2 are independent and identically
distributed with the standard Gaussian distribution, given the tail bound for the χ2 distri-
bution in (Laurent and Massart, 2000, Lemma 1), we can see that with probability at least
1− δ,

‖EΣ−1/2‖2F /nq ≤ 1 + 2

√
1

nq
log

1

δ
+

2

nq
log

1

δ
.

Moreover, by Condition 3, we have

‖EΣ−1/2‖2F =
n∑
i=1

‖Ei:Σ
−1/2‖22 ≥

n∑
i=1

‖Ei:‖22/γ2u = ‖E‖2F /γ2u.

It gives

‖E‖F /
√
nq ≤ γu

(
1 +

√
2

nq
log

1

δ

)
. (25)

Thus, applying the union bound, we can see that with probability at least 1 − 2δ, the
results in Theorem 1

(
including inequality (16)

)
, inequalities (24) and (25) hold simultane-

ously. In view of (23), it yields that

√
Lk−1 − Lk
Lk−1

≥
σk +O

(√
s
n log pq

δ

)
∑r∗

j=k σj + γu +O
(
r∗
√

s
n log pq

δ

) , (26)

where we used the inequality
√
b− x ≥

√
b − x/

√
b for 0 ≤ x ≤ b in the numerator. Let

δ−1 = O{(pq)α} for some positive constant α > 1. Since
∑r∗

j=k σj ≤ (r∗ − k + 1)σk,
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γu ≤ cγσr∗ ≤ cγσk by Condition 3 and r∗
{
s log(pq)

n

}1/4
= o(1), we get

√
Lk−1 − Lk
Lk−1

≥ 1

r∗ − k + 1 + cγ
+O

(
r∗
√
s

n
log

pq

δ

)
(27)

=
1

r∗ − k + 1 + cγ
+ o

(
1

r∗

)
.

Overfitted regime k > r∗. Similar to the previous argument, by Condition 1 and Lemma
6, with probability at least 1− δ, for all k > r∗ we have

σ̂2k ≤ φ−1s ‖∆Q‖2,s ≤ C
√
s

n
log

pq

δ
. (28)

Then we derive the following upper bound

√
Lk−1 − Lk
Lk

≤
O
{(

s
n log pq

δ

)1/4}
1√
nq

(
‖E‖F −

∑r∗

j=1 ‖X(C∗j − Ĉj)‖F −
∑k

j=r∗+1 ‖XĈj‖F
) . (29)

Bounds on the three terms in the denominator will be derived successively. First, another
application of the tail bound for the χ2 distribution in (Laurent and Massart, 2000, Lemma
1) gives that with probability at least 1− δ,

‖EΣ−1/2‖2F /nq ≥ 1− 2

√
1

nq
log

1

δ
.

Similarly, together with Condition 3, we have

‖E‖F /
√
nq ≥ γl

(
1− 2

√
1

nq
log

1

δ

)
.

Moreover, by inequality (24), we get

r∗∑
j=1

1
√
nq

∥∥X(C∗j − Ĉj)
∥∥
F
≤ O

(
r∗
√
s

n
log

pq

δ

)
.

For the last term, by the estimation procedure of v̂j in equation (6) and the fact that

ûj is the eigenvector of the generalized eigenvalue problem Q̂u = λPu with respect to the
jth largest eigenvalue σ̂2j , we have

1

nq
‖XĈj‖2F =

1

nq
trace(v̂jû

T
j XTXûjv̂

T
j ) =

1

nq
(ûTj XTXûj)v̂

T
j v̂j

=
1

nq

(
ûTj XTYYTXûj

ûTj XTXûj

)
=

ûTj Q̂ûj

ûTj Pûj
= σ̂2j .
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Thus, it follows from inequality (28) that

k∑
j=r∗+1

1
√
nq
‖XĈj‖F =

k∑
j=r∗+1

σ̂j ≤ O
{

(r − r∗)
( s
n

log
pq

δ

)1/4}
.

In view of inequality (29), using the same argument as in (26), the above bounds yield

√
Lk−1 − Lk
Lk

≤
O
{(

s
n log pq

δ

)1/4}
γl +O

(
r∗
√

s
n log pq

δ

)
+O

{
(r − r∗)

(
s
n log pq

δ

)1/4} .
Since δ−1 = O{(pq)α}, r∗

{
s log(pq)

n

}1/4
= o(1) and r

{
s log(pq)

n

}1/4
= o(1), we conclude that√

Lk−1 − Lk
Lk

≤ O
{( s

n
log

pq

δ

)1/4}
. (30)

In view of the bounds in (27) and (30), using the union bound, it is not difficult to see
that with probability at least 1− 3δ (both bounds are based on the event in Lemma 5 such
that the results in Theorem 1 hold), the following bounds hold,

For k ≤ r∗: log

(
Lk−1
Lk

)
≥ 1

(r∗ − k + 1 + cγ)2
+ o

{
(r∗)−2

}
,

For k > r∗: log

(
Lk−1
Lk

)
≤ O

{( s
n

log
pq

δ

)1/2}
.

Thus, given the information criterion Cn = rank(Ĉ)
√

log(pq) log log n +
√
n logLn and

the assumption (r∗)2
√

log(pq) = o(
√
n/ log log n), by setting δ = 1

3(pq)−α, we can show
that the following statements hold with probability at least 1− (pq)−α:

Cn(rank(Ĉ) = k − 1)− Cn(rank(Ĉ) = k) > 0, if k ≤ r∗;

Cn(rank(Ĉ) = k − 1)− Cn(rank(Ĉ) = k) < 0, if k > r∗.

The above equations indicate that Cn will attain its minimum value when rank(Ĉ) = r∗,
which means the algorithm will stop at rank(Ĉ) = r∗ with probability at least 1 − (pq)−α

for sufficiently large n, which concludes the proof of Theorem 2.
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Béatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by
model selection. The Annals of Statistics, 28(5):1302–1338, 2000.

Jing Lei and Vincent Q. Vu. Sparsistency and agnostic inference in sparse PCA. The Annals
of Statistics, 43(1):299–322, 2015.

32



SEED

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin
Ghahramani. Kronecker graphs: an approach to modeling networks. Journal of Ma-
chine Learning Research, 11(3):985–1042, 2008.
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