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Abstract

Bayesian optimization (BO) based on Gaussian process models is a powerful paradigm to
optimize black-box functions that are expensive to evaluate. While several BO algorithms
provably converge to the global optimum of the unknown function, they assume that the
hyperparameters of the kernel are known in advance. This is not the case in practice and
misspecification often causes these algorithms to converge to poor local optima. In this
paper, we present the first BO algorithm that is provably no-regret and converges to the
optimum without knowledge of the hyperparameters. During optimization we slowly adapt
the hyperparameters of stationary kernels and thereby expand the associated function class
over time, so that the BO algorithm considers more complex function candidates. Based
on the theoretical insights, we propose several practical algorithms that achieve the empir-
ical sample efficiency of BO with online hyperparameter estimation, but retain theoretical
convergence guarantees. We evaluate our method on several benchmark problems.
Keywords: Bayesian optimization, Unknown hyperparameters, Reproducing kernel
Hilbert space (RKHS), Bandits, No regret

1. Introduction

The performance of machine learning algorithms often critically depends on the choice of
tuning inputs, e.g., learning rates or regularization constants. Picking these correctly is a key
challenge. Traditionally, these inputs are optimized using grid or random search (Bergstra
and Bengio, 2012). However, as data sets become larger the computation time required
to train a single model increases, which renders these approaches less applicable. Bayesian
optimization (BO, Mockus (2012)) is an alternative method that provably determines good
inputs within few evaluations of the underlying objective function. BO methods construct
a statistical model of the underlying objective function and use it to evaluate inputs that
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are informative about the optimum. However, the theoretical guarantees, empirical perfor-
mance, and data efficiency of BO algorithms critically depend on their own choice of hyper-
parameters and, in particular, on the prior distribution over the function space. Thus, we
effectively shift the problem of tuning inputs one level up, to the tuning of hyperparameters
of the BO algorithm.

In this paper, we use a Gaussian processes (GP, Rasmussen and Williams (2006)) for
the statistical model. We present the first BO algorithm that does not require knowledge
about the hyperparameters of the GP’s stationary kernel and provably converges to the
global optimum. To this end, we adapt the hyperparameters of the kernel and our BO
algorithm, so that the associated function space grows over time. The resulting algorithm
provably converges to the global optimum and retains theoretical convergence guarantees,
even when combined with online estimation of hyperparameters.

Related work General BO has received a lot of attention in recent years. Typically,
BO algorithms suggest inputs to evaluate by maximizing an acqusition function that mea-
sures informativeness about the optimum. Classical acquisition functions are the expected
improvement over the best known function value encountered so far given the GP distribu-
tion (Mockus et al., 1978) and the Upper Confidence Bound algorithm, GP-UCB, which
applies the ‘optimism in the face of uncertainty’ principle. The latter is shown to provably
converge by Srinivas et al. (2012). Durand et al. (2018) extend this framework to the case
of unknown measurement noise. A related method is truncated variance reduction by Bo-
gunovic et al. (2016), which considers the reduction in uncertainty at candidate locations
for the optimum. Hennig and Schuler (2012) propose entropy search, which approximates
the distribution of the optimum of the objective function and uses the reduction of the
entropy in this distribution as an acquisition function. Alternative information-theoretic
methods are proposed by Herndndez-Lobato et al. (2014); Wang and Jegelka (2017); Ru
et al. (2018). Other alternatives are the knowledge gradient (Frazier et al., 2009), which is
one-step Bayes optimal, and information directed sampling by Russo and Van Roy (2014),
which considers a tradeoff between regret and information gained when evaluating an input.
Kirschner and Krause (2018) extend the latter framework to heteroscedastic noise.

These BO methods have also been successful empirically. In machine learning, they are
used to optimize the performance of learning methods (Brochu et al., 2010; Snoek et al.,
2012). BO is also applicable more broadly; for example, in reinforcement learning to opti-
mize a parametric policy for a robot (Calandra et al., 2014; Lizotte et al., 2007; Berkenkamp
et al., 2016) or in control to optimize the energy output of a power plant (Abdelrahman
et al., 2016). It also forms the backbone of Google vizier, a service for tuning black-box
functions (Golovin et al., 2017).

Some of the previous BO algorithms provide theoretical guarantees about convergence
to the optimum. These theoretical guarantees only hold when the kernel hyperparameters
are known a priori. When this is not the case, hyperparameters are often inferred using
either maximum a posteriori estimates or sampling-based inference (Snoek et al., 2012).
Unfortunately, methods that estimate the hyperparameters online are known to get stuck
in local optima (Bull, 2011). Instead, we propose to adapt the hyperparameters online in
order to enlarge the function space over time, which allows us to provide guarantees in terms
of convergence to the global optimum without knowing the hyperparameters. Wang and de
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Freitas (2014) analyze this setting when a lower bound on the kernel lengthscales is known
a priori. They decrease the lengthscales over time and bound the regret in terms of the
known lower-bound on the lengthscales. Empirically, similar heuristics are used by Wang
et al. (2016); Wabersich and Toussaint (2016). In contrast, this paper considers the case
where the hyperparameters are not known. Moreover, the scaling of the hyperparameters
in the previous two papers did not depend on the dimensionality of the problem, which can
cause the function space to increase too quickly.

Considering larger function classes as more data becomes available is the core idea
behind structural risk minimization (Vapnik, 1992) in statistical learning theory. However,
there data is assumed to be sampled independently and identically distributed. This is not
the case in BO, where new data is generated actively based on past information.

Our contribution In this paper, we present Adaptive GP-UCB (A-GP-UCB), the first
algorithm that provably converges to the globally optimal inputs when BO hyperparameters
are unknown. Our method expands the function class encoded in the model over time, but
does so slowly enough to ensure sublinear regret and convergence to the optimum. Based
on the theoretical insights, we propose practical variants of the algorithm with guaranteed
convergence. Since our method can be used as an add-on module to existing algorithms
with hyperparameter estimation, it achieves similar performance empirically, but avoids
local optima when hyperparameters are misspecified. In summary, we:

e Provide theoretical convergence guarantees for BO with unknown hyperparameters;
e Propose several practical algorithms based on the theoretical insights;

e Evaluate the performance in practice and show that our method retains the empirical
performance of heuristic methods based on online hyperparameter estimation, but
leads to significantly improved performance when the model is misspecified initially.

The remainder of the paper is structured as follows. We state the problem in Sec. 2
and provide relevant background material in Sec. 3. We derive our main theoretical result
in Sec. 4 and use insights gained from the theory to propose practical algorithms. We
evaluate these algorithms experimentally in Sec. 5 and draw conclusions in Sec. 6. The
technical details of the proofs are given in the appendix.

2. Problem Statement

In general, BO considers global optimization problems of the form

x* = argmax f(x), (1)
xeD

where D C R? is a compact domain over which we want to optimize inputs x, and f: D — R
is an objective function that evaluates the reward f(x) associated with a given input config-
uration x. For example, in a machine learning application, f(x) may be the validation loss
and x may be the tuning inputs (e.g., regularization parameters) of the training algorithm.
We do not have any significant prior knowledge about the structure of f. Specifically, we
cannot assume convexity or that we have access to gradient information. Moreover, eval-
uations of f are corrupted by o-sub-Gaussian noise, a general class of noise models that
includes, for example, bounded or Gaussian noise.
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Regret We aim to construct a sequence of input evaluations x;, that eventually maximizes
the function value f(x;). One natural way to prove this convergence is to show that an
algorithm has sublinear regret. The instantaneous regret at iteration t is defined as r; =
maxxep f(x)— f(x¢) > 0, which is the loss incurred by evaluating the function at x; instead
of at the a priori unknown optimal inputs. The cumulative regret is defined as Rp =
> o<t<T Tt, the sum of regrets incurred over 71" steps. If we can show that the cumulative
regret is sublinear for a given algorithm, that is, limy_,o, R/t = 0, then eventually the
algorithm evaluates the function at inputs that lead to close-to-optimal function values most
of the time. We say that such an algorithm has no-regret. Intuitively, if the average regret
approaches zero then, on average, the instantaneous regret must approach zero too, since ry
is strictly positive. This implies that there exists a ¢ > 0 such that f(x;) is arbitrarily close
to f(x*) and the algorithm converges. Thus, we aim to design an optimization algorithm
that has sublinear regret.

Regularity assumptions Without further assumptions, it is impossible to achieve sub-
linear regret on (1). In the worst case, f could be discontinuous at every input in D. To
make the optimization problem in (1) tractable, we make regularity assumptions about f.
In particular, we assume that the function f has low complexity, as measured by the norm
in a reproducing kernel Hilbert space (RKHS, Christmann and Steinwart (2008)). An
RKHS H}, contains well-behaved functions of the form f(x) = Y., k(x,x;), for given
representer points x; € R? and weights ; € R that decay sufficiently quickly. The ker-
nel k(-,-) determines the roughness and size of the function space and the induced RKHS
norm || f|lx = +/(f, f) measures the complexity of a function f € Hj with respect to the
kernel.

In the following, we assume that f in (1) has bounded RKHS norm || f||z, < B with
respect to a kernel kg that is parameterized by hyperparameters #. We write Hy for the
corresponding RKHS, Hy,. For known B and 6, no-regret BO algorithms for (1) are known,
e.g., GP-UCB (Srinivas et al., 2012). In practice, these hyperparameters need to be tuned.
In this paper, we consider the case where # and B are unknown. We focus on stationary
kernels, which measure similarity based on the distance of inputs, k(x,x’) = k(x —x’). The
most commonly used hyperparameters for these kernels are the lengthscales # € R?, which
scale the inputs to the kernel in order to account for different magnitudes in the different
components of x and effects on the output value. That is, we scale the difference x — x’ by
the lengthscales 0,

(2)

ko(x,x') = k ([X]l — I (xla — [X/]d> |

O (4P

where [x]; denotes the ith element of x. Typically, these kernels assign larger similarity
scores to inputs when the scaled distance between these two inputs is small. Another
common hyperparameter is the prior variance of the kernel, a multiplicative constant that
determines the magnitude of the kernel. We assume k(x,x) = 1 for all x € D without loss
of generality, as any multiplicative scaling can be absorbed by the norm bound B.

In summary, our goal is to efficiently solve (1) via a BO algorithm with sublinear re-
gret, where f lies in some RKHS Hy, but neither the hyperparameters ¢ nor the norm-
bound || f|[x, are known.
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3. Background

In this section, we review Gaussian processes (GPs) and Bayesian optimization (BO).

3.1. Gaussian processes (GP)

Based on the assumptions in Sec. 2, we can use GPs to infer confidence intervals on f. The
goal of GP inference is to infer a posterior distribution over the nonlinear map f(x) : D — R
from an input vector x € D to the function value f(x). This is accomplished by assuming
that the function values f(x), associated with different values of x, are random variables and
that any finite number of these random variables have a joint Gaussian distribution (Ras-
mussen and Williams, 2006). A GP distribution is parameterized by a prior mean function
and a covariance function or kernel k(x,x’), which defines the covariance of any two func-
tion values f(x) and f(x') for x,x" € D. In this work, the mean is assumed to be zero
without loss of generality. The choice of kernel function is problem-dependent and encodes
assumptions about the unknown function.

We can condition a GP(0, k(x,x’)) on a set of t past observations y; = (y1,...,yt)
at inputs A; = {x1,...,%x¢} in order to obtain a posterior distribution on f(x) for any
input x € D. The GP model assumes that observations are noisy measurements of the true
function value, y: = f(x¢) + wt, where w; ~ N(0,02). The posterior distribution is again a
GP(u(x), kt(x,x’)) with mean p;, covariance k¢, and variance oy, where

p(x) = ki (x) (K¢ + 10”) "y, (3)
ki(x,x) = k(x,x") — k(%) (K; + IUQ)_lktT(x'), (4)
o7 (%) = ki (x,%). (5)

The covariance matrix K; € R™* has entries [Kq]; jy = k(x4,%;), 4,7 € {1,...,t}, and the
vector ke(x) = [k(x,x1),...,k(x,x;)] contains the covariances between the input x and the
observed data points in A;. The identity matrix is denoted by I; € R¥*?.

3.2. Learning RKHS functions with GPs

The GP framework uses a statistical model that makes different assumptions from the ones
made about f in Sec. 2. In particular, we assume a different noise model, and samples from
a GP(0, k(x,x’)) are rougher than RKHS funtions and are not contained in Hj. However,
GPs and RKHS functions are closely related (Kanagawa et al., 2018) and it is possible to
use GP models to infer reliable confidence intervals on f in (1).

Lemma 1 (Abbasi-Yadkori (2012); Chowdhury and Gopalan (2017)) Assume that
f has bounded RKHS norm | f|lx < B and that measurements are corrupted by o-sub-

Gaussian noise. If 5151/2 = B +40+\/I(ys; f) + 1 +1In(1/0), then for allx € D and t > 0 it
holds jointly with probability at least 1 — ¢ that | f(x) — u(x) | < 5751/2@()().

Lemma 1 implies that, with high probability, the true function f is contained in the confi-
dence intervals induced by the posterior GP distribution that uses the kernel k from Lemma 1
as a covariance function, scaled by an appropriate factor ;. Here, I(y;; f) denotes the mu-
tual information between the GP prior on f and the ¢ measurements y;. Intriguingly, for
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GP models this quantity only depends on the inputs x; and not the corresponding mea-
surement 1. Specifically, for a given set of measurements y 4 at inputs x € A, the mutual
information is given by

I(ya; f) =0.5log I+ 0 *Kyl, (6)

where K 4 is the kernel matrix [k(x,x')]xxc4 and |- | is the determinant. Intuitively,
the mutual information measures how informative the collected samples y 4 are about the
function f. If the function values are independent of each other under the GP prior, they
will provide large amounts of new information. However, if measurements are taken close to
each other as measured by the kernel, they are correlated under the GP prior and provide
less information.

3.3. Bayesian Optimization (BO)

BO aims to find the global maximum of an unknown function (Mockus, 2012). The frame-
work assumes that evaluating the function is expensive in terms of time required or monetary
costs, while other computational resources are comparatively inexpensive. In general, BO
methods model the objective function f with a statistical model and use it to determine
informative sample locations. A popular approach is to model the underlying function with
a GP, see Sec. 3.1. GP-based BO methods use the posterior mean and variance predictions
in (3) and (5) to compute the next sample location.

One commonly used algorithm is the GP-UCB algorithm by Srinivas et al. (2012). It
uses confidence intervals on the function f, e.g., from Lemma 1, in order to select as next
input the point with the largest plasuble function value according to the model,

Xi1 = argmax p(x) + B,/ o(x). (7)
xeD

Intuitively, (7) selects new evaluation points at locations where the upper bound of the
confidence interval of the GP estimate is maximal. Repeatedly evaluating the function f
at inputs x;y1 given by (7) improves the mean estimate of the underlying function and
decreases the uncertainty at candidate locations for the maximum, so that the global max-
imum is provably found eventually (Srinivas et al., 2012). While (7) is also an optimization
problem, it only depends on the GP model of f and solving it therefore does not require
any expensive evaluations of f.

Regret bounds Srinivas et al. (2012) show that the GP-UCB algorithm has cumulative
regret Ry = O(\/tBiy:) for all t > 1 with the same (1 — §) probability as the confidence
intervals, e.g., in Lemma 1, hold. Here -y, is the largest amount of mutual information that
could be obtained by any algorithm from at most ¢ measurements,

L (Y3 f)- (8)
We refer to 7, as the information capacity, since it can be interpreted as a measure of
complexity of the function class associated with a GP prior. It was shown by Srinivas et al.
(2012) that -, has a sublinear dependence on t for many commonly used kernels such as
the Gaussian kernel. As a result, R; has a sublinear dependence on ¢ so that R;/t — 0 and
therefore GP-UCB converges to function evaluations close to f(x*). These regret bounds
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Figure 1: A sample from the GP prior in Fig. 1a typically varies at a consistent rate over
the input space. However, RKHS functions with the same kernel may be less consistent
and can have bumps, as in Fig. 1b (gray). As a result, inferring the posterior lengthscales
based on measurements (blue crosses in Fig. 1b) can lead to erroneous results. In Fig. lc,
most of the probability mass of the posterior lengthscales has concentrated around large
lengthscales that encode smooth functions. Consequently, the GP’s 20 confidence intervals
in Fig. 1b (blue shaded) based on the posterior samples do not contain the true function.

were extended to Thompson sampling, an algorithm that uses samples from the posterior
GP as the acquisition function, by Chowdhury and Gopalan (2017).

Online hyperparameter estimation In the previous section, we have seen that the GP-
UCB algorithm provably converges. However, it requires access to a RKHS norm bound
IIflle < B under the correct kernel hyperparameters 6 in order to construct reliable confi-
dence intervals using Lemma 1. In practice, these are unknown and have to be estimated
online, e.g., based on a prior distribution placed on 6. Unfortunately, it is well-known
that online estimation of the inputs, be it via maximum a posteriori (MAP) or sampling
methods, does not always converge to the optimum (Bull, 2011). The problem does not
primarily lie with the inference scheme, but rather with the assumptions made by the GP.
In particular, typical samples drawn from a GP with a stationary kernel tend to have a
similar rate of change throughout the input space, see Fig. 1la. In contrast, the functions
inside the RKHS, as specified in Sec. 2, can have different rates of change and are thus im-
probable under the GP prior. For example, the grey function in Fig. 1b is almost linear but
has one bump that defines the global maximum, which makes this function an improbable
sample under the GP prior even though it belongs to the RKHS induced by the same kernel.
This property of GPs with stationary kernels means that, for inference, it is sufficient to
estimate the lengthscales in a small part of the state-space in order to make statements
about the function space globally. This is illustrated in Fig. lc, where we show samples
from the posterior distribution over the lengthscales based on the measurements obtained
from the GP-UCB algorithm in Fig. 1b (blue crosses). Even though the prior distribution
on the lengthscales 6 is suggestive of short lengthscales, most of the posterior probability
mass is concentrated around lengthscales that are significantly larger than the true ones.
As a result, even under model averaging over the samples from the posterior distribution
of the lengthscales, the GP confidence intervals do not contain the true function in Fig. 1b.
This is not a problem of the inference method applied, but rather a direct consequence of
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Figure 2: BO algorithms get stuck in local optima when the hyperpararameters of the model
are misspecified. In Fig. 2a, the true function is not contained within the GP’s confidence
intervals (blue shaded), so that GP-UCB only collects data at the local optimum on the
right (green arrow), see also Fig. 1. Our method expands the function class over time
by scaling the hyperparameters, which encourages additional exploration in Fig. 2b. The
function class grows slowly enough, so that the global optimum is provably found in Fig. 2c.

the probabilistic model that we have specified based on the stationary kernel, which does
not consider functions with different rates of change to be likely.

4. The Adaptive GP-UCB Algorithm

In this section, we extend the GP-UCB algorithm to the case where neither the norm
bound B nor the lengthscales § are known. In this case, it is always possible that the
local optimum is defined by a local bump based on a kernel with small lengthscales, which
has not been encountered by the data points as in Fig. 1b. The only solution to avoid this
problem is to keep exploring to eventually cover the input space D (Bull, 2011). We consider
expanding the function space associated with the hyperparameters slowly over time, so that
we obtain sublinear regret once the true function class has been identified. Intuitively, this
can help BO algorithms avoid premature convergence to local optima caused by misspecified
hyperparameters 6 and B. For example, in Fig. 2a, the GP-UCB algorithm has converged
to a local maximum. By decreasing the lengthscales, we increase the underlying function
class, which means that the GP confidence intervals on the function increase. This enables
GP-UCB to explore further so that the global optimum is found, as shown in Fig. 2c.
Specifically, we start with an initial guess 6y and By for the lengthscales and norm
bound on f, respectively. Over the iterations, we scale down the lengthscales and scale up

the norm bound,
1

9(t)
where g: N — Ryg and b: N — R-g with (0) = g(0) = 1 are functions that can addi-

tionally depend on the data collected up to iteration ¢, A; and y;. As g(t) increases, the
lengthscales ; of the kernel become shorter, which enlarges the underlying function space:

;= ——00,  By=0b(t)g(t)! By, (9)
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Figure 3: The function f in Fig. 3a has RKHS norm || f|lg, > Bo. To account for this, we
expand the norm ball by b(t) over time. When we scale down the lengthscales by g(t), the
norm of f in the resulting RKHS is larger, see Lemma 2. We account for this when defining
the norm ball By in (9). In Fig. 3b, the GP-UCB algorithm based on the misspecified
hyperparameters By and 6y does not converge (constant regret). Our method scales the
lengthscales and norm bound by ¢(t) and b(t), so that we eventually capture the true model.
Scaling the hyperparameters beyond the true ones leads to additional exploration and thus
larger cumulative regret than GP-UCB with the true, unknown hyperparameters 8 and
B. However, as long as the cumulative regret is upper bounded by a sublinear function p,
ultimately the A-GP-UCB algorithm converges to the global optimum.

Lemma 2 (Bull, 2011, Lemma 4) If f € Hy, then f € Hg for all 0 < ¢ <6, and

wﬁy§<

d
=1 ¢

(6] 2

Lemma 2 states that when decreasing the lengthscales 0, the resulting function space con-
tains the previous one. Thus, as g(t) increases we consider larger RKHS spaces as candidate
spaces for the function f. In addition, as we increase b(t), we consider larger norm balls
within the function space Hg,, which corresponds to more complex functions. However,
it follows from (10) that, as we increase g(t), we also increase the norm of any existing
function in Hg, by at most a factor of g(t)?. This is illustrated in Fig. 3a: as we scale
up the norm ball to b(t)By, we capture f under the initial lengthscales 6y. However, by
shortening the lengthscales by ¢(t), the function f has a larger norm in the new function
space Ho, = Hg,/q(1)- We account for this through the additional scaling factor g(t)? in the
norm bound By in (9).

Theoretical analysis Based on the previous derivations together with Lemma 2, it is
clear that, if g(¢) and b(t) are monotonically increasing functions and f € Hy,. with || flle,. <
By« for some t* > 0, then f € Hyp, and || f|lg, < B: for all t > t*. That is, once the function f
is contained within the norm ball of By~ for the lengthscales 64+, then, for any further increase
in b(t) or g(t), the function f is still contained in the candidate space {f € Hy, | f < B}.
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Based on this insight, we propose A-GP-UCB in Algorithm 1. At iteration t, A-GP-UCB
sets the GP lengthscales to ; and selects new inputs X441 similar to the GP-UCB algorithm,
but based on the norm bound B;. We extend the analysis of GP-UCB and Lemma 1 to
obtain our main result.

Theorem 1 Assume that f has bounded RKHS norm Hine < B in a RKHS that is
parametrized by a stationary kernel ko(x,x’) with unknown lengthscales 6. Based on an
initial guess, 0y and By, define monotonically increasing functions g(t) > 0 and b(t) > 0

and run A-GP-UCB with ,6’751/2 = b(t)g(t)?Bo+40+\/Ip, (yt; f) + 1 + In(1/8) and GP length-
scales 6, = 6y/g(t). Then, with probability at least (1 — 0), we obtain a regret bound of

R; < 2Bmax (g_l <mlax [';%]Z) bt <§0>) +/CitBidy, (ye; f), (11)

where Iy, is the mutual information in (6) based on the GP model with lengthscales 6,
and Cy = 8/log(1 + o72).

The proof is given in the appendix. Intuitively, the regret bound in (11) splits the run
of the algorithm into two distinct phases. In the first one, either the RKHS space Hy, (D) or
the norm bound B; are too small to contain the true function f. Thus, the GP confidence
intervals scaled by Btl % 4o not necessarily contain the true function f, as in Fig. 1b. In
these iterations, we obtain constant regret that is bounded by 2B, since || f|locc < ||f]lo <
B. After both g and b have grown sufficiently in order for the considered function space
to contain the true function, the confidence bounds are reliable and we can apply the
theoretical results of the GP-UCB algorithm. This is illustrated in Fig. 3b: If the initial
hyperparameters 6y and By are misspecified, the confidence intervals do not contain f and
GP-UCB does not converge. We avoid this problem by increasing b(t) and ¢(t) over time,
so that we eventually contain f in our function class. However, increasing the norm ball
and decreasing the lengthscales beyond the true ones causes additional exploration and thus
additional cumulative regret relative to GP-UCB with the true, unknown hyperparameters.
This additional regret represents the cost of not knowing the hyperparameters in advance.
As long as the overall regret remains bounded by a sublinear function p(t), our method
eventually converges to the global optimum. The regret bound in (11) depends on the true
hyperparameters # and B. However, the algorithm does not depend on them. Theorem 1
provides an instance-specific bound, since the mutual information depends on the inputs
in A;. One can obtain a worst-case upper bound by bounding Iy, (y¢; f) < 7:(6¢), which is
the worst-case mutual information as in (8), but based on the GP model with lengthscales 6;.
While Theorem 1 assumes that the noise properties are known, the results can be extended
to estimate the noise similar to Durand et al. (2018).

For arbitrary functions ¢(t) and b(t), the candidate function space {f € Hy, | f < B;} can
grow at a faster rate than it contracts by selecting informative measurements y; according
to (7). In particular, in the regret term /C1tB;y; both B; and 7; depend on the scaling
factors g(t) and b(t). If these factors grow at a faster rate than /£, the resulting algorithm
does not enjoy sublinear regret. We have the following result that explicitly states the
dependence of 44 on the scaling factor g(t).

Proposition 2 Let kg be a stationary kernel parameterized by lengthscales 8 as in (2) and
define () for lengthscales 6 as in (8). Define the lengthscales as 0y = 0y/g(t) as in (9).

10
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Algorithm 1 Adaptive GP-UCB(A-GP-UCB)

1: Input: Input space D, GP(0, k(x,x)), functions g(t) and b(¢)

2: Set By =1 and 6y = diam(D)

3: for allt=0,1,2,... do

4:  Set the GP kernel lengthscsales to 6, = 0y/g(t)

5. B7 « B(t) +40\/Tp, (ye: f) + 1 + In(1/5) with B(t) = b(t)g(t)’Bo
6:  Choose x;41 = argmax,cp f(X) + 53/2@(}()
7
8

Evaluate y;11 = f(X¢41) + €141
Perform Bayesian update to obtain p;y1 and o4

o If k(x,x') = exp(—3|x — x'||3) is the squared exponential (Gaussian) kernel, then
14(0) = O (9(t)"(10g 1)) (12)

o Ifk(x,x') = (2'7%/T(v))r*B,(r) is the Matérn kernel, where r = \/2v|x — xX'||2, B,
is the modified Bessel function with v > 1, and I' is the gamma function. Then

d(d+1)
(0 = O gle 4755 1oge (13)

Proposition 2 explicitly states the relationship between v; and g(¢). For the Gaussian kernel,
if we scale down the lengthscales by a factor of two, the amount of mutual information that
we can gather in the worst case, y;, grows by 2¢. Given the dependence of v; on g(t), we
can refine Theorem 1 to obtain concrete regret bounds for two commonly used kernels.

Corollary 3 If, under the assumptions of Theorem 1, g(t) and b(t) grow unbounded, then
we obtain the following, high-probability regret bounds for Algorithm 1:

e Squared exponential kernel: Ry < O (b(t) tg(t)3dy:(6p) + g(t)d’yt(ﬁo)\/i) ;

e Matérn kernel: Ry < O (b(t) Vtg(t)2+3d,(0g) + g(t)”+d’yt(00)\/i>.

If b(t) and g¢(t) grow unbounded, the first term of the cumulative regret in (11) can be
upper bounded by a constant. The remaining result is obtained by plugging in 8; and
the bounds from (8). Thus, any functions g(¢) and b(¢) that render the regret bounds in
Corollary 3 sublinear allow the algorithm to converge, even though the true lengthscales
and norm bound are unknown.

The specific choices of b(t) and g(t) matter for the regret bound in Theorem 1 in prac-
tice. Consider the one-dimensional case d = 1 for the Gaussian kernel. Given the true
hyperparameters B and 6, if we set g(t) = 6y/60 and b(t) = B/Bj to be constant, we recover
the non-adaptive regret bounds of GP-UCB with known hyperparameters. If g(¢) depends
on t and grows slowly, then the algorithm incurs constant regret during the initial rounds
when the model is misspecified, while functions g that grow to values larger than the op-
timal ones lead to additional exploration and incur an additional O(b(t)g(t)*¥?)) factor in
the cumulative regret in later rounds, as in Corollary 3. In the following section, we discuss
appropriate choices for these functions in practice.

11
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4.1. Choosing the scaling functions g¢(¢) and b(t)

It follows from Theorem 1 that A-GP-UCB achieves no-regret for any functions g¢(t)
and b(t) that increase without bound and render (11) sublinear in ¢. Thus, the correspond-
ing BO routine converges to the optimal value eventually. For example, b(t) = g(t) = log(t)
satisfy this condition. However, the convergence guarantees in Theorem 1 are only mean-
ingful once t has grown sufficiently so that the true function is contained in the confidence
intervals. In practice, BO is often used with objective functions f that are expensive to
evaluate, which imposes a hard constraint on the number of evaluations. For the regret
bounds to be meaningful in this setting, we must choose functions g and b that grow fast
enough to ensure that the constant regret period in (11) is small, yet slow enough that the
effect of the sublinear regret is visible for small enough ¢. In the following, we propose two
methods to choose g(t) and b(t) adaptively, based on the observations seen so far.

For convenience, we fix the relative magnitude of ¢g(t) and b(t). In particular, we define
b(t) = 1+ e(t) and g(t)? = 1+ €4(t) together with a weighting factor A = €,(t)/¢,(t) that
encodes whether we prefer to scale up the norm bound using b(t) or decrease the lengthscales
using ¢(¢). This allows us to reason about the overall magnitude of the scaling h(t) =
(1 +€4(t))(1 + ep(t)) > 1, which can be uniquely decomposed into g(t) and b(t) given A.
For A = 0 we have g(t) = h(t), b(t) = 1 and the algorithm prefers to attribute an increase
in h(t) to g(t) and shorten the lengthscales, while for A — oo the algorithm prefers to scale
up the RKHS norm. The assumptions in Corollary 3 hold for any A € (0, 00) if h(t) grows
unbounded. Moreover, we have that g(t)¢ < h(t) and b(t) < h(t).

Reference regret While any function h(t) that grows unbounded and renders the cu-
mulative regret in Theorem 1 sublinear makes our method to converge to the optimum
eventually, we want to ensure that our method performs well in finite time too. For fixed
hyperparameters with h(t) = 1, which implies g(t) = b(t) = 1, our algorithm reduces
to GP-UCB with hyperparameters 6y and By and the regret bound term +/C15:v:(6o) is
sublinear, which is illustrated by the bottom curve in Fig. 3b. However, this does not imply
no-regret if hyperparameters are misspecified as in Fig. 2a, since the first term in Theorem 1
is unbounded in this case. To avoid this, we must increase the scaling factor h(t) to consider
larger function classes.

We propose to define a sublinear reference regret p(t), see Fig. 3b, and to scale h(t)
to match an estimate of the regret with respect to the current hyperparameters to this
reference. As GP-UCB converges, the regret estimate with respect to the current hyper-
parameters levels off and drops below the reference p(t). In these cases, we increase h(t) to
consider larger function classes and explore further. The choice of p(t) thus directly specifies
the amount of additional regret one is willing to incur for exploration. Specifically, given a
regret estimate R;(h) that depends on the data collected so far and the selected scaling h,
we obtain h(t) from matching the reference, R;(h) = p(t), as

R (t) = R (p(t),  h(t) = max(h*(1), h(t —1)). (14)
Here we explicitly enforce that h(Z) must be an increasing function. In the following, we

consider estimators R; that are increasing functions of h, so that (14) can be solved efficiently
via a line search.

12



UNKNOWN HYPERPARAMETERS

Whether choosing h(t) according to (14) leads to a sublinear function depends on the
regret estimator R;. However, it is always possible to upper bound the h(t) obtained
from (14) by a fixed sublinear function. This guarantees sublinear regret eventually. In the
following, we consider two estimators that upper bound the cumulative regret experienced
so far with respect to the hyperparameters suggested by h(t).

Regret bound As a first estimator for the cumulative regret, we consider the regret
bound on R; in (11). We focus on the Gaussian kernel, but the arguments transfer directly
to the case of the Matérn kernel. The term \/C’lt Bt Iy, (y¢; f) bounds the regret with
respect to the current function class specified by ;. In addition to the direct dependence
on b(t)g(t)? in B¢, the regret bound also depends on g(t) implicitly through the mutual
information Iy, (y; f), where 6; = 6y/g(t). To make the dependence on g(t) more explicit,
we use Theorem 2 and rewrite the mutual information as (g(t)/g(t—1))%Iy,_, (y+; f) instead.
Note that the scaling factor was derived for +;, but remains a good indicator of increase in
mutual information in practice. With this replacement we use

Ru(h) = /Crt B (b(1), 9(1)) 9(t) T, (353 ) (15)

to estimate the regret, where the term [;(b,¢g) is as in Theorem 1, but with the mutual
information similarly replaced with the explicit dependence on g(t). Solving (14) together
with (15) is computationally efficient, since computing R; does not require inverting the
kernel matrix.

One step predictions While (15) is fast to compute, it requires us to know the depen-
dence of 4;(0;) on h(t). Deriving analytic bounds can be infeasible for many kernels. As an
alternative, we estimate the regret one-step ahead directly. In particular, if the considered
function class is sufficiently large and our confidence intervals hold at all time steps ¢ > 0,
then the one-step ahead cumulative regret R;;; for our algorithm at iteration ¢ is bounded
from above by

t
Ri=2% 5"0(xj41), (16)
j=1

where each ; and o; is based on the corresponding hyperparameters ;. In Theorem 1, R;1
is further upper-bounded by (11). The regret estimate in (16) depends on x4, 1, which is the
next input that would be evaluated based on the UCB criterion with GP hyperparameters
scaled according to h(t). As the hyperparameters for previous iterations are fixed, the only
term that depends on h(t) is the bound on the instantaneous regret, ry < 28.0¢(x¢41).
Unlike (15), (16) is not able to exploit the known dependence of ; on h(t), so that it
cannot reason about the long-term effects of changing h(t). This means that, empirically,
the cumulative regret may overshoot the reference regret, only to settle below it later.
Scaling h(t) according to (16) provides an interesting perspective on the method by Wang
and de Freitas (2014). They decrease the kernel lengthscales whenever o¢(x441) < k. In
our framework, this corresponds to p(t) = Z§:1 2 max(k,0;(xj41)) > kt, which is not
sublinear. As a consequence, while they ultimately bound the cumulative regret using the
smallest possible lengthscale, the choice for p(t) forces too much exploration to achieve sub-
linear regret before the lower bound is reached. In contrast, if we choose p(t) to be sublinear,
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then the function class grows slowly enough to ensure more careful exploration. This allows
us to achieve sublinear regret in the case when a lower bound on the hyperparameters it
not known.

4.2. Practical Considerations and Discussion

In this section, we discuss additional practical considerations and show how to combine the
theoretical results with online inference of the hyperparameters.

Online inference and exploration strategies The theoretical results presented in the
previous sections extend to the case where the initial guess 6y of the GP’s lengthscale is
improved online using any estimator, e.g., with MAP estimation to obtain §MAF. Theoret-
ically, as long as the change in 6y is bounded, the cumulative regret increases by at most a
constant factor. In practice, this bound can always be enforced by truncating the estimated
hyperparameters. Moreover, the scaling induced by online inference can be considered to be
part of g(t) according to Lemma 2, in which case the norm bound can be adapted accord-
ingly. In practice, online inference improves performance drastically, as it is often difficult
to specify an appropriate relative initial scaling of the lengthscales 6.

In more than one dimension, d > 1, there are multiple ways that MAP estimation can
be combined with the theoretical results of the paper. The simplest one is to enforce an
upper bound on the lengthscales based on g¢(t),

0; = min(6;™AF 6 / g(t)), (17)

where the min is taken elementwise. This choice is similar to the one by Wang et al.
(2016). If all entries of #y have the same magnitude, this scaling can be understood as
encouraging additional exploration in the smoothest direction of the input space first. This
often makes sense, since MAP estimates tend to assume functions that are too smooth,
see Fig. 1. However, it can be undesirable in the case when the true function only depends
on a subset of the inputs. In these cases, the MAP estimate would correctly eliminate these
inputs from the input space by assigning long lengthscales, but the scaling in (17) would
encourage additional exploration in these directions first. Note that eventually exploring
the entire input space is unavoidable to avoid getting stuck in local optima (Bull, 2011).
An alternative approach is to instead scale down the MAP estimate directly,

0; = OMAY / max(g(t), 1). (18)

This scaling can be understood as evenly encouraging additional exploration in all directions.
While (18) also explores in directions that have been eliminated by the MAP estimate,
unlike (17) it simultaneously explores all directions relative to the MAP estimate. From a
theoretical point of view, the choice of exploration strategy does not matter, as in the limit
as t — oo all lengthscales approach zero. In the one-dimensional case, the two strategies
are equivalent. Both strategies use the MAP lengthscales for BO in the nominal case,
but the g(t) factor eventually scales down the lengthscales further. This ensures that our
method only improves on the empirical performance of BO with MAP estimation.

In practice, maximum likelihood estimates for the inputs are often good enough when
the underlying function resembles a sample from a GP. Thus, the approach presented in
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this paper is most relevant when the underlying function has some ‘nonstationarity’. In
the literature, other approaches to deal with nonstationarity have been proposed. For
example, Snoek et al. (2013) scale the input inputs through a beta function and infer its
hyperparameters online. Our approach can easily be combined with any such method, as
it works on top of any estimate provided by the underlying inference scheme. Moreover,
in high-dimensional spaces one can combine our algorithm with methods to automatically
identify a low-dimensional subspace of D (Djolonga et al., 2013; Wang et al., 2016).

In this paper, we have considered the kernel to be fixed, and only adapted the length-
scales and norm bound. However, often the kernel structure itself is a critical hyperparam-
eter (Duvenaud et al., 2011). The strategy presented in this paper could be used to add
rougher kernels over time or, for example, to adapt the v input of the Matérn kernel, which
determines its roughness.

Confidence intervals FEmpirically, §; is often set to a constant rather than using the
theoretical bounds in Lemma 1, which leads to (point-wise) confidence intervals when f is
sampled from a GP model. In particular, typically measurement data is standardized to
be zero mean and unit variance and S; is set to two or three. This often works well in
practice, but does not provide any guarantees. However, if one were to believe the resulting
confidence bounds, our method can be used to avoid getting stuck in local optima, too. In
this case on can set h(t) = g(¢) and apply our method as before.

General discussion Knowing how the sample complexity of the underlying BO algorithm
depends on the lengthscales also has implications in practice. For example, Wang et al.
(2016) and Wabersich and Toussaint (2016) suggest to scale down the lengthscales by a
factor of 2 and roughly 1.1, respectively, although not at every iteration. As shown in Sec. 4,
this scales the regret bound by a factor of g%, which quickly grows with the number of
dimensions. Exponentiating their factors with 1/d is likely to make their approaches more
robust when BO is used in high-dimensional input spaces D.

Lastly, in a comparison of multiple BO algorithms (acquisition functions) on a robotic
platform, Calandra et al. (2014) conclude that the GP-UCB algorithm shows the best
empirical performance for their problem. They use the theoretical version of the algorithm
by Srinivas et al. (2012), in which 3; grows with an additional factor of O(y/log(t?)) relative
to Lemma 1. In our framework with the bounds in Lemma 1, this is equivalent to scaling
up the initial guess for the RKHS norm bound for f by the same factor at every iteration,
which increases the function class considered by the algorithm over time. We conjecture
that this increase of the function class over time is probably responsible for pushing the
MAP estimate of the lengthscales out of the local minima, which in turn led to better
empirical performance.

5. Experiments

In this section, we evaluate our proposed method on several benchmark problems. As
baselines, we consider algorithms based on the UCB acquisition function. We specify a
strong gamma prior that encourages short lengthscales, and consider both maximum a
posteriori (MAP) point-estimates of the hyperparameters and a Hamiltonian Monte Carlo
(HMC) approach that samples from the posterior distribution of the hyperparameters and
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(a) Simple regret. (b) Cumulative regret. (c) Scaling g(t).

Figure 4: Mean and standard deviation of the empirical simple and cumulative regret over
ten different random initializations for the function in Fig. 2. The HMC baseline (red) gets
stuck in a local optimum and obtains constant regret in Fig. 4a. GP-UCB with the true
hyperparameters (gray dashed) obtains the lowest cumulative regret in Fig. 4b. However,
our methods (orange/blue) increase the function class over time, see Fig. 4c, and thus obtain
sublinear regret without knowing the true hyperparameters.

marginalizes them out. Unless otherwise specified, the initial lengthscales are set to 6y = 1,
the initial norm bound is By = 2, the confidence bounds hold with probability at least § =
0.9, and the tradeoff factor between b(t) and g(t) is A = 0.1.

We follow several best-practices in BO to ensure a fair comparison with the baselines.
We rescale the input space D to the unit hypercube in order to ensure that both the
initial lengthscales and the prior over lengthscales are reasonable for different problems.
As is common in practice, the comparison baselines use the empirical confidence intervals
suggested in Sec. 4.2, instead of the theoretical bounds in Lemma 1 that are used for our
method. Lastly, we initialize all GPs with 2% measurements that are collected uniformly at
random within the domain D. To measure performance, we use the cumulative regret that
has been the main focus of this paper. In addition, we evaluate the different methods in
terms of simple regret, which is the regret of the best inputs evaluated so far, max,ep f(z)—
maxy «—¢ f(xp). This metric is relevant when costs during experiments do not matter and
BO is only used to determine high-quality inputs by the end of the optimization procedure.

5.1. Synthetic Experiments

Example function We first evaluate all proposed methods on the example function
in Fig. 2, which lives inside the RKHS associated with a Gaussian kernel with 6 = 0.1
and has norm ||f||x, = 2. We evaluate our proposed method for the sublinear reference
function p(t) = %9 together with maximum a posteriori hyperparameter estimation. We
compare against both GP-UCB with the fixed, correct hyperparameters and HMC hyper-
parameter estimation. Additionally, we consider a modified variant of the method suggested
by Wang and de Freitas (2014), see Sec. 4.1. Rather than scaling the lengthscales by a fixed
constant, we conduct a line search to find the smallest possible scaling factor that ren-
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Figure 5: Simple and cumulative regret over 10 random seeds for samples from a GP
with bounded RKHS norm. The GP-UCB algorithm with misspecified hyperparameters
(magenta) fails to converge given only a wrong choice of By. In contrast, our methods
(blue/orange) converge even though 6y is misspecified in addition.

ders o(x¢41) > k = 0.1. This is the most conservative variant of the algorithm. Note that
we do not know a lower bound on the hyperparameters and therefore do not enforce it.

The results of the experiments are shown in Fig. 4. The simple regret plot in Fig. 4a
shows that all methods based on hyperparameter adaptation evaluate close-to-optimal in-
puts eventually, and do so almost as quickly as GP-UCB based on the true hyperparameters
(black, dashed). However, the method based on HMC hyperparameter estimation (red) con-
siders functions that are too smooth and gets stuck in local optima, as in Fig. 2. This can
also be seen in Fig. 4c, which plots the effective scaling ¢(t) based on the combination of
Bayesian hyperparameter estimation and hyperparameter adaptation through h(t). The
HMC hyperparameters consistenly over-estimate the lengthscales by a factor of roughly
two. In contrast, while the MAP estimation leads to the wrong hyperparameters initially,
the adaptation methods in (15) and (16) slowly increase the function class until the true
lengthscales are found eventually. It can be seen that the one step estimate (16) (orange)
is more noisy than the upper bound in (15) (blue).

While all adaptation methods determine good inputs quickly according to the simple
regret, they perform differently in terms of the cumulative regret in Fig. 4b. As expected,
the HMC method (red line) converges to a local optimum and experiences constant regret
increase equal to the simple regret at every time step. The modified method of Wang
and de Freitas (2014) (green line) expands the function class too aggressively and also
achieves constant regret. Empirically, their method always explores and never repeatedly
evaluates close-to-optimal inputs that would decrease cumulative regret. While the method
works well in terms of simple regret, without a lower bound on the hyperparameters it
never converges to sublinear regret. As expected from Theorem 1, GP-UCB based on the
optimal hyperparameters achieves the lowest cumulative regret. Our two methods expand
the function class over time, which allows them to converge to close-to-optimal inputs, even
though MAP estimation estimates the hyperparameters wrongly initially. While the regret
is sublinear, the additional exploration caused by ¢(t) means that the cumulative regret is
larger. This is the additional cost we incur for not knowing the hyperparameters in advance.
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Figure 6: Simple and cumulative regret over 5 random seeds for a logistic regression problem.
All methods determine close-to-optimal parameters. However, our methods explore more
to counteract misspecified hyperparameters.

Samples from a GP As a second experiment, we compare GP-UCB to A-GP-UCB
on samples drawn from a GP when the norm bound By is misspecified. Samples from
a GP are not contained in the RKHS. To avoid this technical issue, we sample function
values from the posterior GP at only a finite number of discrete gridpoints and interpolate
between them using the kernel with the correct lengthscales 6. We rescale these functions
to have RKHS norm of B = 4, but use By = 0.25 as an initial guess for both BO algorithms
and do not use any hyperparameter estimation. Even though we use the correct kernel
lengthscales for GP-UCB, 6y = 8 = 0.1, this discrepancy means that the true function
is not contained in the initial confidence intervals. As before, for our method we use the
reference regret p(t) = t%9 and additionally misspecify the lengthscales, 6y = 1.

The results are shown in Fig. 5. GP-UCB with the correct hyperparameters (black,
dashed) obtains the lowest cumulative regret. However, it fails to converge when hyperpa-
rameters are misspecified (magenta), since the confidence intervals are too small to encour-
age any exploration. In contrast, our methods (blue/orange) converge to close-to-optimal
inputs as in the previous example.

5.2. Logistic Regression Experiment

Lastly, we use our method to tune a logistic regression problem on the MNIST data set (Le-
Cun, 1998). As in the experiment in Klein et al. (2016), we consider four training inputs:
the learning rate, the Iy regularization constant, the batch size, and the dropout rate. We
use the validation loss as the optimization objective.

The results are shown in Fig. 6. Even though the input space is fairly high-dimensional
with d = 4, all algorithms determine close-to-optimal inputs quickly. In particular, MAP
estimation determines that both the dropout rate and the batch size do not influence the
validation loss significantly. Since the theoretical results in A-GP-UCB are compatible with
MAP estimation, our approach achieves the same empirical performance, but has theoretical
worst-case regret bounds. After convergence, the BO baselines repeatedly evaluate the same
inputs, without gaining any new information. In contrast, our method continues to explore
in order to potentially find better inputs. While it does not occur in this case, this allows us
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to be more confident that the global optimum has been identified as t increases. For standard
BO methods, there is no guarantee of convergence with misspecified hyperparameters.

6. Conclusion and Future Work

We introduced A-GP-UCB, a BO algorithm that is provably no-regret when hyperpa-
rameters are unknown. Our method adapts the hyperparameters online, which causes the
underlying BO algorithm to consider larger function spaces over time. FEventually, the
function space is large enough to contain the true function, so that our algorithm provably
converges. We evaluated our method on several benchmark problems, confirming that, on
the one hand, it provably converges even in cases where standard BO algorithms get stuck
in local optima, and, on the other hand, enjoys competitive performance as standard BO
algorithms that do not have theoretical guarantees in this setting.

The main idea behind our analysis is that adapting the hyperparameters increases the
cumulative regret bound, but we do so slowly enough to converge eventually. This idea
is fairly general and could also be applied to other no-regret algorithms. Another poten-
tial future direction is to investigate alternative strategies to select the scaling factors b(t)
and g(t) and consider adapting other parameters such as the kernel structure.
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Appendix A. Proof of Main Theorem

Lemma 3 Let f € Hy,. with | fllo,. < By. Then, for any monotonically increasing func-
tions g(t) > 1 and b(t) > 1 and for allt > t*: f € Hy, with || flle, < B:

Proof Lemma 2 together with monotonicity of g yields Hg, 2 Hy,. so that f € Hy, and

Rl d d
7t < TT 1. < 5B = S0y B = gl0) () By < B

Lemma 4 Under the assumptions of Lemma 1, let 6; be a predictable sequence of kernel
hyperparameters such that | f||x,, < By and let the GP predictions . and oy use the prior

covariance kg, . Ifﬁtl/2 = Bi+40+\/Io,(yt; f) + 1 + In(1/6), then | f(x) — s (x) | < Btl/2at(x)
holds for all x € D and iterations t > 0 jointly with probability at least 1 — 4.

Proof The proof is the same as the one by Abbasi-Yadkori (2012); Chowdhury and Gopalan
(2017), except that the kernel is time-dependent. |
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We are now ready to prove the main result:

Proof [Theorem 1] We split the regret bound into two terms, Ry = tor.+ rs(t). In the ini-
tial rounds, where either B; < g(t)?By or max;[0];/[f]o > 1, the regret is trivially bounded
by 7 < 2||flle < 2||fllo < B. Thus r. < 2B. Let ty € (0,00] be the first iteration such
that f € Hp, with | flle,, < Bi,- From Lemma 3, we have that f € Hy, with [[f[lg, < B

for all ¢ > ¢y. Thus we can use Lemma 4 to conclude |f — us(x)| < ﬁtl/Qat(x) for all x € D
and t > t( jointly with probability at least (1 —0). We use Lemmas 5.2-5.4 in Srinivas et al.
(2012) to conclude that the second stage has a regret bound of 72(t) < C18:1(y+; f), which
concludes the proof. |

Appendix B. Bound on the information capacity ~;

Theorem 4 (Theorem 8 in Srinivas et al. (2012)) Suppose that D C R? is compact,
and k(x,x’) is a covariance function for which the additional assumption of Theorem 2
in Srinivas et al. (2012) hold. Moreover, let By(Ty) = Y ,q As, where {As} is the op-
erator spectrum of k with respect to the uniform distribution over D. Pick T > 0, and
let np = C4T7 (logT') with Cy = 2V(D)(27 + 1). Then, the following bound holds true:

1/2 rng r T+ 1-7
T e T ety =18 ( o2 ) + G~ (1 T)(B’“(T*)T +1)log T+ O(T"" 7).
(19)

yr <

Theorem 4 allows us to bound ~; through the operator spectrum of the kernel with
respect to the uniform distribution. We now consider this quantity for two specific kernels.

B.1. Bounds for the Squared Exponential Kernel

Lemma 5 For all x € [0,22,.]

it holds that log(1 + 2?) > 160 Tnas) .2

max

In this section, we use Theorem 4 to obtain concrete bounds for the Gaussian kernel.
From Seeger et al. (2008), we obtain a bound on the eigenspectrum that is given by

s < chl/d, where ¢ = 27a7 b= i, B = E, and A=a-+b+ a2+ 2ab.
A 202 A
The constant a > 0 parameterizes the distribution u(x) ~ N(0, (4a) 'I). As a consequence
of 6; > 0, we have that b > 0,0 < B < 1, ¢> 0, and A > 0. In the following, we bound the
eigenspectrum. The steps follow the outline of Seeger et al. (2008), but we provide more
details and the dependence on the lengtscales 0; is made explicit:

=Y M<e 3 B =c 3 explog(B™)=c D exp(s/logB),

s>T, s>Ti+1 s>To+1 s>Tot1
oo
=c Z exp(—s'/%a) < / exp(—as'/?) ds,
s>Tu+1 T
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where o = —log B. Now substitute s = ¢(t) = (t/a)?. Then ds = % dt and

oo d—1
By (Ty) < c/ L exp(—t) dt = cda™T(d, aTl/d)
aT,
where T'(d foo el dt = (d — 1)le™” Zz;é B /k! for d € N as in Gradshtein et al.
(2007, (8.352.4)) Then, with 8 = aT/%,
d—1
Bi(T,) < eda—%d —1)! *525’“/kl—c da%e Py (k) Bk,
= k=0

Before we bound the information gain, let us determine how a~% and ¢ depend on the
lengthscales. In particular, we want to quantify their upper bounds in terms of g(t).

=log™%(1/B) = log™* (267 A) = log™* (1 + 2070 + 20, [a? + ;) (20)

t

log(1 + 262 -
< log™@ (1+267a) < <0g(2;—20a)20§a> by Lemma 5 (21)
Oa
=0 (67*) =0 (s*), (22)
where (21) follows from Lemma 5, since g(t) > 1 for all ¢ > 0. Similarly,
/2

2a 2a o d/2 d

c= - — < |5 | = (4a67)"" = O(g(t)™). (23)
a+ W + /a0 + @ @

As in Srinivas et al. (2012), we choose T, = (log(Tnt)/a)?, so that 3 = log(Tnr) and
therefore does not depend on g;. Plugging into (19), the first term of (19) dominates and

yr = O ([log(Td“(log T))} ™ ca_d> " =0 ((1og T)d+1g(t)d) . (24)

B.2. Matérn kernel
Following the proof for Theorem 2 in the addendum to Seeger et al. (2008), we have that

AT < O(1 + 6)s~@Hd/d yg > g (25)
For the leading constant we have C' = C§2y+d)/ ¢ with o = 27% Hiding terms that do
not depend on « and therefore g(t), we have
_Pw+d/f2) 4 —dy 1 _ d
Ct(a7 V) - 7Td/2F(V) Q= O(g(t) ) 1 = (27T)dCt(Oé I/) - O(g(t) )
a_d 20 —d?
Co=——— = O(g(t)" C3 = Co— 2"+d:o t)g(t) ) = O(g(t)?

so that C = O(g(t)>*9). The second term in C3 must be over-approximated as a con-
sequence of the proof strategy. It follows that Bi(T.) = O(g(t )QVdT*l_@Ver)/d) and, as

in Srinivas et al. (2012), that yp = O(T2V+d(d+1) (log T)g(t)>9).
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