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Abstract

There exist many problems in science and engineering that involve optimization of an un-
known or partially unknown objective function. Recently, Bayesian Optimization (BO) has
emerged as a powerful tool for solving optimization problems whose objective functions are
only available as a black box and are expensive to evaluate. Many practical problems,
however, involve optimization of an unknown objective function subject to unknown con-
straints. This is an important yet challenging problem for which, unlike optimizing an un-
known function, existing methods face several limitations. In this paper, we present a novel
constrained Bayesian optimization framework to optimize an unknown objective function
subject to unknown constraints. We introduce an equivalent optimization by augmenting
the objective function with constraints, introducing auxiliary variables for each constraint,
and forcing the new variables to be equal to the main variable. Building on the Alternating
Direction Method of Multipliers (ADMM) algorithm, we propose ADMM-Bayesian Opti-
mization (ADMMBO) to solve the problem in an iterative fashion. Our framework leads
to multiple unconstrained subproblems with unknown objective functions, which we then
solve via BO. Our method resolves several challenges of state-of-the-art techniques: it can
start from infeasible points, is insensitive to initialization, can efficiently handle ‘decoupled
problems’ and has a concrete stopping criterion. Extensive experiments on a number of
challenging BO benchmark problems show that our proposed approach outperforms the
state-of-the-art methods in terms of the speed of obtaining a feasible solution and con-
vergence to the global optimum as well as minimizing the number of total evaluations of
unknown objective and constraints functions.
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1. Introduction

Bayesian optimization (BO) has been shown to be a powerful tool for solving optimization
problems whose objective functions are unknown and expensive to evaluate (Brochu et al.,
2010a; Martinez-Cantin et al., 2007; Hutter et al., 2011; Torn and Zilinskas, 1989). For
example, in drug design (Azimi et al., 2012; Scott, 2010; Brochu et al., 2010b), where the
goal is to maximize the efficacy of a drug, the evaluation of the objective function, i.e.,
drug efficacy, across multiple drug formulations requires producing and testing new drugs,
which would be subject to resource and cost limitations. As another example, minimizing
the validation error of a machine learning model, such as hyperparameter tuning of a deep
neural network (LeCun et al., 2015), involves many evaluations of the objective function,
i.e., the validation error, where each evaluation requires training and evaluating a new model
(Bergstra et al., 2011; Hoffman et al., 2014; Snoek et al., 2012; Swersky et al., 2013).

In many real-world problems, the desired solution, in addition to optimizing the objective
function, must satisfy constraints that are also unknown and expensive to evaluate (Shahri-
ari et al., 2016). For example, in the drug design problem, the goal is often to maximize
the drug efficacy while limiting its side effects. In the hyperparameter tuning problem
in machine learning, the optimal hyperparameters not only must minimize the validation
error, but also must ensure that the prediction time of the learned model is sufficiently
short. The majority of existing work on BO has focused on the unknown-objective problem
(Jones et al., 1998; Kushner, 1964; Lizotte, 2008; Jones, 2001; Hernández-Lobato et al.,
2014; Cox and John, 1992; Wu et al., 2017), while only a few recent reports have addressed
the problem in the unknown-objective unknown-constraint setting (Snoek, 2013; Gelbart
et al., 2014; Gardner et al., 2014; Bernardo et al., 2011; Hernández-Lobato et al., 2015;
Picheny et al., 2016; Gramacy et al., 2016; Picheny, 2014), (see Section 4 for a review).

1.1. Existing Challenges & Paper Contributions

In this subsection, we describe some of the limitations of the state-of-the-art constrained
Bayesian optimization methods. First, several of these methods, including Expected Im-
provement with Constraints (EIC) (Schonlau et al., 1998; Snoek, 2013; Gelbart et al., 2014),
Integrated Conditional Expected Improvement (IECI) (Bernardo et al., 2011) and Expected
Volume Reduction (EVR) (Picheny, 2014), require a feasible initial point. However, in
practice, a feasible point is often not available; hence, these algorithms require finding a
feasible point first, which consumes part of the computational budget. Second, most ex-
isting constrained BO methods, including EIC, IECI, EVR, Augmented Lagrangian for
Bayesian Optimization (ALBO) (Gramacy et al., 2016) and Slacked-augmented Lagrangian
for Bayesian Optimization (Slack-AL) (Picheny et al., 2016), require joint evaluation of
the objective function and all constraints at a candidate point in each step, in order to
quantify its utility for finding a global optimum. However, for a large class of problems,
labeled as “decoupled”, the objective function and the constraints can each be evaluated
independently. This can be especially advantageous in settings where some functions might
be significantly more expensive to evaluate than the others (Gelbart, 2015). For example, in
the hyperparameter tuning problem, evaluating the prediction time may not require training
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the model and is often much cheaper than evaluating the validation error. Thus, methods
that require joint evaluation of all unknown functions, including EIC, IECI, EVR, ALBO,
and Slack-AL could increase the overall cost of solving decoupled problems more than might
be necessary. Third, the majority of existing methods, including IECI, EVR, ALBO and
Predictive Entropy Search with Constraints (PESC) (Hernández-Lobato et al., 2015), do
not have closed form expressions for the so-called ‘acquisition function’, which is a key step
in the BO algorithm. Thus, these methods need to approximate the acquisition function,
typically via algorithms such as Expectation Propagation (Minka, 2001) or Monte-Carlo
Sampling (Picheny et al., 2013), which often suffer from implementation difficulty and slow
execution time, or may cause instabilities (Picheny et al., 2016; Gelbart, 2015). Finally,
most of the BO methods fix a computational budget in terms of either wall-clock time or
the number of function evaluations, and stop when the budget is exhausted. However, this
budget is an additional parameter which must be hand tuned, and the performance of the
BO method typically is highly dependent on it. A value that is too small may result in
missing easy improvement while one that is too large might incur additional cost for an
insignificant gain. Thus, having an automatic stopping criterion is highly desirable while
many BO methods, including EIC, IECI, EVR and PESC, lack such a criterion.

In this paper, we propose a novel constrained BO framework for optimizing an unknown
objective function subject to unknown constraints that resolves all the aforementioned chal-
lenges. First, we reformulate the problem into an equivalent unconstrained optimization.
Since the joint (Bayesian) optimization of the unconstrained problem over the unknown ob-
jective function and unknown augmented constraints is challenging, we introduce auxiliary
variables, one per constraint, and then force these variables to be equal to the the original
variable, resulting in an equivalent constrained formulation, where the constraints are now
known. The new formulation allows to perform the (Bayesian) optimization over each term
independently, decoupling the objective function optimization from constraint satisfaction.
To efficiently solve our proposed optimization, we adopt the Alternating Direction Method
of Multipliers (ADMM) framework (Boyd et al., 2011; Hong and Luo, 2017; Parikh et al.,
2014), which leads to solving an ‘optimality subproblem’, and a ‘feasibility subproblem’
for each constraint, at each iteration. The optimality subproblem minimizes the objective
function close to current solutions of the feasibility subproblems, while each feasibility sub-
problem searches for a feasible solution of its constraint close to the current solution of
the optimality subproblem. Our framework, which we call Alternating Direction Method
of Multipliers for Bayesian Optimization (ADMMBO), provides the following advantages
compared to the state-of-the-art methods (see Table 1 for a summary).

– Unlike many existing methods, ADMMBO can start from an infeasible initial point and
gradually move towards a feasible point via solving the feasibility subproblems.

– Due to its separation of the optimizations over each expensive to evaluate function,
i.e., objective function and each constraint, ADMMBO can handle decoupled problems
efficiently, without requiring joint evaluation of all such functions at each candidate point.

– Because it decomposes the overall problem into separate subproblems, each involving only
one expensive to evaluate function, resulting in simpler BO steps, ADMMBO may be able
to facilitate derivation of closed-form acquisition functions.
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Advantages Infeasible initialization Decoupled problems Closed-form acquisition func. Stopping criterion

EIC – – X –

IECI – – – –

PESC X X – –

EVR – – – –

ALBO X – – X
Slack-AL X – X X

ADMMBO X X X X

Table 1: Advantages of ADMMBO with respect to the state-of-the-art methods.

– ADMMBO offers a well-defined stopping criterion, inherited from ADMM, which in prac-
tice avoids unnecessary function evaluations. The stopping criterion is satisfied when the
solutions of the optimality and feasibility subproblems converge to each other.

– Our experiments empirically show that ADMMBO achieves good solutions significantly
faster than the state-of-the-art methods, is relatively insensitive to initialization, and re-
quires fewer function evaluations to find desirable solutions. Moreover, our results suggest
that ADMMBO’s performance does not depend on whether the optimal solution lies on the
boundary of or inside the feasible region, and is also insensitive to the relative volume of
the feasibility region.

1.2. Paper Organization

In Section 2, we review both BO and the ADMM algorithm that we build upon. We
motivate and introduce our proposed reformulation of the constrained problem and present
our ADMMBO algorithm to solve this reformulated optimization in Section 3. In Section
4, we discuss existing related work on constrained BO that handles unknown-objective
unknown-constraint optimization problems. We present experimental results on synthetic
and real data in Section 5. Finally, in Section 6, we discuss our results and open avenues
for future research and conclude the paper.

2. Background

In this section, we review the underlying components of our proposed method: Bayesian
Optimization in its standard settings, with a focus on EI as the acquisition function, and
the ADMM algorithm.

2.1. Bayesian Optimization

Bayesian optimization (Shahriari et al., 2016; Brochu et al., 2010b) addresses the problem of
finding a global minimum (or maximum), x∗, of an objective function f(x) over a bounded
box B ∈ Rd, where f is unknown but available to evaluate pointwise via computationally
costly queries. Thus, the goal is to find x∗ with as few evaluations of f(x) as possible.
Given a collection of initial points in B and their observed objective values, denoted by
F = {

(
xl, f(xl)

)
}nl=1, BO methods iteratively suggest the next best candidate xl+1, and
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evaluate the corresponding objective value at iteration l+ 1. More specifically, to find xl+1,
BO first assumes a prior probability model for the unknown function f , denoted by p

[
f(x)

]
,

and then uses the observed data, F , to update the posterior probability p
[
f(x)|F

]
. This

posterior is then used to build an acquisition function, denoted by α(x), which provides an
estimate of the optimization usefulness of any candidate point x ∈ B if it is chosen as xl+1

for the next function evaluation. In contrast to f(x), the acquisition function α(x) has a
known form and can be maximized over x ∈ B, using analytical or numerical optimization
techniques. The optimum of the acquisition function provides a recommendation for xl+1

that is used to evaluate f(xl+1) and then to update the data F accordingly. BO iteratively
repeats this process, guiding the search towards sampling a global minimizer of f .

Many BO methods assume that the unknown function f(x) is a Lipschitz continuous
bounded function over B, and then model p

[
f(x)

]
as a Gaussian Process (GP) (Močkus,

1975; Jones et al., 1998; Hernández-Lobato et al., 2014; Kushner, 1964; Cox and John, 1992).
GPs are non-parametric Bayesian models which are widely used in the Bayesian optimiza-
tion literature since they provide a flexible fit for modeling unknown functions. Moreover
given GP models, some acquisition functions give closed-form expressions, which can be ef-
ficiently optimized with numerical optimization techniques (Rasmussen and Williams, 2006;
Houlsby et al., 2012). As an example, which we will then employ in the exposition of our
method below, we describe a popular acquisition function called Expected Improvement
(Jones et al., 1998; Brochu et al., 2010b).

Given data F , let f+ denote the best objective value achieved by the points in F . Then
the improvement of any given point x, denoted by I(x), corresponds to the improvement of
f(x) relative to f+, i.e., I(x) , max(0, f+ − f(x)). An efficient strategy in BO would be
to choose the next candidate for function evaluation by finding a point x which offers the
largest improvement (Jones et al., 1998). However, since f(x) is unknown and expensive
to evaluate pointwise, it is difficult to calculate improvement I(x). Alternatively, Expected
Improvement of x, denoted by EI(x), is an acquisition function which computes the expec-
tation of I(x) with respect to p

[
f(x)|F

]
. Močkus (1975); Jones et al. (1998); Brochu et al.

(2010b) has shown that assuming a GP model for p
[
f(x)

]
, the Expected Improvement can

be computed using the closed-form expression

EI(x) = Ef |F
[
I(x)

]
= σf (x)

[
mf (x)− f+

σf (x)
Φ
(mf (x)− f+

σf (x)

)
+ φ

(mf (x)− f+

σf (x)

)]
, (1)

where the expectation is computed with respect to the posterior probability p [f(x)|F ].
Here, Φ(·) denotes the normal cumulative distribution function, φ(·) is the standard normal
probability density function, and mf (x) and σf (x) are the posterior mean and standard
deviation of p

[
f(x)|F

]
, respectively. All four of these components can be cheaply and

easily evaluated for any given x. Thus, one advantage of EI(x) over I(x) is that EI(x) can
be cheaply evaluated pointwise without requiring evaluation of f(x). Moreover, according to
(1), EI(x) can be efficiently maximized using numerical optimization techniques to suggest
the most promising point (from the perspective of EI) for function evaluation.
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2.2. Alternating Direction Method of Multipliers (ADMM) Optimization

Our reformulation of the optimization of an unknown-objective unknown-constraint prob-
lem allows us to build a framework based on a popular numerical optimization technique,
ADMM (Boyd et al., 2011; Hong and Luo, 2017; Parikh et al., 2014), which we briefly
review here. Consider the problem of minimizing f(x) + g(x) with respect to x, where
x ∈ Rd and f, g : Rd → R. Specifically, consider the case where separately minimizing
f(x) and g(x) is relatively easy, while optimizing their sum is challenging. For example in
the Least Absolute Shrinkage and Selection Operator (LASSO) problem (Tibshirani, 1996;
Mota et al., 2013), we are interested in minimizing ‖Ax − b‖22 + λ‖x‖1 with respect to x,
with an overdetermined dictionary, A. While each term can be easily minimized, it is much
harder to minimize the sum of the two terms. ADMM is a powerful numerical optimization
method which handles such cases (Boyd et al., 2011; Hong and Luo, 2017).

In order to minimize f(x) + g(x), ADMM first defines an auxiliary variable z ∈ Rd for
the function g, and considers the following optimization, which is equivalent to the original
minimization problem,

min
x,z

f(x) + g(z) s.t. x = z. (2)

To solve (2), ADMM first builds the augmented Lagrangian function (ALF) for (2), where
the ALF provides an unconstrained surrogate function for the constrained problem. Specif-
ically, ALF augments the objective function of a constrained problem with terms penalizing
the infeasibility of the constraints. These penalty terms include the product of the feasibility
gap with a dual variable vector, also called a Lagrange multiplier vector, and the squared
Euclidean norm of the feasibility gap. More specifically, ALF for (2) is given by

Lρ(x, z, y) , f(x) + g(z) + yT (x− z) +
ρ

2

∥∥x− z∥∥2
2
, (3)

where y ∈ Rd denotes the Lagrange multiplier vector corresponding to the constraint, x− z
is the feasibility gap, and ρ is a positive penalty parameter.

Starting from an initial value for y, z, ADMM iteratively updates the values of variables
x, y, z by minimizing the ALF, until convergence. Let xk, zk, yk denote the values of variables
at iteration k. At iteration k + 1, ADMM solves two optimization problems, one over x
while fixing z = zk and y = yk and one over z while fixing x = xk+1 and y = yk, and
updates the Lagrange multiplier vector afterwards. More specifically, at iteration k + 1,
ADMM solves

xk+1 = argmin
x

Lρ(x, z
k, yk) = argmin

x
f(x) + (yk)T (x− zk) +

ρ

2

∥∥x− zk∥∥2
2
,

zk+1 = argmin
z

Lρ(x
k+1, z, yk) = argmin

z
g(z) + (yk)T (xk+1 − z) +

ρ

2

∥∥xk+1 − z
∥∥2
2
,

yk+1 = yk + ρ (xk+1 − zk+1).

(4)

The primal residual is defined as rk+1 , xk+1 − zk+1, i.e., the gap between the main
variable x and the auxiliary variable z, and the dual residual can be shown to be sk+1 ,
−ρ(zk+1 − zk) (Boyd et al., 2011; Hong and Luo, 2017). Assuming f and g are closed,

proper and convex, and also that the unaugmented Lagrangian Lρ(x, z, y)− ρ
2

∥∥x− z∥∥2
2

has

a saddle point, Boyd et al. (2011) proves that as k →∞, rk → 0, f(xk) + g(zk)→ p∗, and
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yk → y∗ where p∗ is the optimal objective value of primal problem (2) and y∗ is the dual
optimal point. The necessary and sufficient optimality conditions for the ADMM problem
are primal feasibility and dual feasibility, and they are effecively met in practice when the
`2-norm of both the primal and dual residuals of (2) fall below an appropriately small
tolerance.

Boyd et al. (2011) shows that ADMM can be extended to problems optimizing sum of
more than two functions. In this situation, ADMM defines a distinct auxiliary variable zi
for each additional function gi, i = 1, . . . , N , and enforces each such variable to be equal to
the main variable x. The rest of the algorithm naturally follows. See (Boyd et al., 2011),
chapter 7 for a detailed discussion.

3. Constrained Bayesian Optimization via ADMMBO

In this section, we describe our proposed framework, which we refer to as ADMMBO, for
solving the Bayesian optimization problem under unknown constraints. More specifically,
we consider the constrained optimization problem of

min
x∈B

f(x)

s.t. ci(x) ≤ 0, i = 1, . . . , N,
(5)

where, B ⊂ Rd is a bounded domain and f, ci : Rd → R are unknown functions which can
be evaluated pointwise. However, such evaluations are expensive. Our goal is to determine
a sampling procedure for x that sequentially approaches a global optimum, x∗, with as few
function queries from f and all ci’s as possible.

To tackle the problem, we first reformulate (5) into the unconstrained optimization

min
x∈B

f(x) +
N∑
i=1

M 1(ci(x) > 0),
(6)

where 1(·) is an indicator function, which is one when its argument is true and is zero
otherwise, and M is a positive constant (Boyd et al., 2011). For a sufficiently large M , the
constrained problem in (5) will be equivalent to the unconstrained one in (6).

Proposition 1. Given Lipschitz continuity of f and compactness of B, f is bounded for
every x in B. Let η` and ηu denote, respectively, the lower and upper bound of f , i.e.,
η` ≤ f(x) ≤ ηu, ∀x ∈ B. Assume the feasible region of (5) is non-empty. For M > ηu − η`,
the unconstrained optimization in (6) will be equivalent to (5).

Proof. Let J(x) denote the value of the objective function of (6). For any infeasible point of
(5) xi ∈ B, we have J(xi) ≥ η`+M , since the minimum value that f can attain is η` and the
second term in (6) will be at least M , as xi is infeasible for at least one constraint. On the
other hand, for any feasible point xf ∈ B of (5), we have J(xf ) ≤ ηu. Since M > ηu − η`,
we always have J(xf ) < J(xi), hence (6) always finds a feasible solution, which makes the
second term of the objective function vanish. As a result, the minimization in (6), obtains
the minimizer of f , which satisfies all the constraints, hence being equivalent to (5).
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A key observation in our proposed framework is that while jointly minimizing the objec-
tive function in (6) is difficult, individually minimizing each term of the objective function
using Bayesian optimization allows independent function evaluations for f and each ci.
More specifically, we can minimize f(x) with respect to x by assuming a GP model for
p
[
f(x)

]
and using BO afterwards. Similarly, we can minimize 1(ci(x) > 0) with respect to

x by assuming a GP model for p
[
ci(x)

]
and using it to build a Bernoulli random variable

with parameter θi , p
[
ci(x) > 0

]
to represent 1(ci(x) > 0), and then applying BO. In con-

trast, optimizing the entire objective function in (6) is difficult and also may require joint
function evaluations for f and every ci. To take advantage of the simplicity of individually
optimizing each term in the objective function of (6), we introduce N auxiliary variables,
one per constraint function, and consider the following optimization problem

min
x,z1,...,zN∈B

f(x) +

N∑
i=1

M 1(ci(zi) > 0)

s.t. x = zi, i = 1, . . . , N.

(7)

which clearly is equivalent to (6). Notice that in contrast to the unknown-objective unknown-
constraint problem in (5), in (7) the equality constraints are known (deterministic) and only
the objective function is unknown. Moreover, each of the unknown terms in the objective
function of (7) is defined over a different variable, leading to a variable separation property
which we will take advantage of. Next, we describe how ADMMBO combines Bayesian
optimization with an ADMM-inspired framework to solve (7) efficiently.

3.1. ADMMBO Formulation

In this section, we describe our approach to combine the ADMM algorithm with BO steps
to solve the proposed equivalent reformulation in (7). We first need to build the ALF for
the optimization in (7), which is given by

Lρ(x, zi, yi) = f(x) +

N∑
i=1

[
M 1(ci(zi) > 0) + yTi (x− zi) +

ρ

2

∥∥x− zi∥∥22]
= f(x) +

N∑
i=1

[
M 1(ci(zi) > 0) +

ρ

2

∥∥x− zi +
yi
ρ

∥∥2
2
− ρ

2

∥∥yi∥∥22],
(8)

where yi ∈ Rd is a Lagrange multiplier vector, and ρ is a positive penalty parameter.
Note that the second line in (8) follows from the first line by completing the square and
reordering terms. Having formed the ALF, to apply the ADMM algorithm, as discussed
in Section 2.2, we initialize the unknown variables and the Lagrange multiplier vectors and
at ADMM iteration k, we solve for each variable in turn, using BO, having fixed the rest.
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More specifically, for (8), the kth ADMM iteration will become

xk+1 = argmin
x∈B

f(x) +
N∑
i=1

ρ

2

∥∥x− zki +
yki
ρ

∥∥2
2
,

zk+1
i = argmin

zi∈B
M 1(ci(zi) > 0) +

ρ

2
‖xk+1 − zi +

yki
ρ
‖22, ∀i = 1, . . . , N

yk+1
i = yki + ρ (xk+1 − zk+1

i ), ∀i = 1, . . . , N.

(9)

The x update, which we refer to as the optimality subproblem, minimizes the unconstrained
objective function of the original problem in (5), f , plus a sum of quadratic terms that force
the solution to be close to the feasible region. On the other hand, each zi update, which we
refer to as feasibility subproblems, looks for a feasible point of the constraint ci that is also
close to the unconstrained optimum found in the optimality subproblem.

Since both the optimality and feasibility subproblems involve unknown objectives, we
solve each of them using Bayesian optimization with unconstrained acquisition functions.
Thus, in ADMMBO there are two levels of iteration: ADMM iterations (from now on
referred to as main loop iterations), and BO iterations, which are performed to solve each
subproblem during each main loop iteration. ADMMBO’s general framework allows it
to incorporate any unconstrained acquisition function, including EI, Predictive Entropy
Search (PES)(Hernández-Lobato et al., 2014), and Knowledge Gradient (KG)(Wu et al.,
2017), as best fits a given problem. For example, while PES is reported to outperform EI
by Hernández-Lobato et al. (2014), but has also been reported to be relatively slow due to
its need to sample x∗ and compute expectation propagation approximations (Hernández-
Lobato et al., 2016). EI has a closed-form solution which, in practice, may make it faster
than PES (Jones et al., 1998). The choice of acquisition function for each subproblem in
any main loop iteration of ADMMBO is a matter of user preference and does not change
ADMMBO’s structure. In this paper we chose to use EI to solve both the optimality and
feasibility subproblems because of its wide popularity and because its structure more easily
leads to closed form solutions. In addition, while we could have modeled the objective
function of each subproblem with a single GP, this would have ignored available partial
knowledge about the structure of these objectives. Instead, we designed a specific Bayesian
model for each subproblem objective that takes advantage of this knowledge to better guide
the optimization. We show that EI still maintains a closed-form solution given these new
Bayesian models.

3.1.1. Expected Improvement for the Optimality Subproblem

For the kth main loop iteration, the optimality subproblem associated with (9) requires
optimizing the sum of the unknown objective function, f , and a known function, i.e.,

min
x∈B

uk(x), where uk(x) , f(x) +

N∑
i=1

ρ

2

∥∥x− zki +
yki
ρ

∥∥2
2
. (10)

As f(x) is an unknown function, we solve (10) via BO by assuming that f follows a GP
prior. Since zki and yki are given and fixed, the second term in the definition of uk(x) is
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constant for any given x. Thus, we can still model p
[
uk(x)

]
as a GP. Given observed data

F = {
(
xl, f(xl)

)
}nl=1, xl ∈ B, we compute Uk = {

(
xl, u

k(xl)
)
}nl=1 and denote the best

objective value of (10) so far by uk+. Then, similar to the standard EI, we compute the
Expected Improvement for the optimality subproblem, which will be

EI(x) = Euk|Uk

[
max

(
0, uk+ − uk(x)

)]
= σuk(x)

[
muk(x)− uk+

σuk(x)
Φ
(muk(x)− uk+

σuk(x)

)
+ φ

(muk(x)− uk+

σuk(x)

)]
,

(11)

where muk(x), σuk(x) are, respectively, the mean and standard deviation of the posterior
distribution p

[
uk(x)|Uk

]
. Thus, for any given x, we can calculate its EI via (11).

3.1.2. Expected Improvement for the Feasibility Subproblem

For kth main loop iteration, the ith feasibility subproblem associated with (9) requires
optimizing the sum of an unknown function and a known function, i.e,

min
zi∈B

hki (zi), where hki (zi) , 1(ci(zi) > 0) +
ρ

2M
‖xk+1 − zi +

yki
ρ
‖22. (12)

Let us call qki (zi) = ρ
2M ‖x

k+1 − zi +
yki
ρ ‖

2
2. Since ci(zi) is unknown, we solve (12) via BO

by assuming that ci follows a GP prior. Then, we model 1(ci(zi) > 0) as a Bernoulli
random variable with the parameter θi , p

[
ci(zi) > 0

]
. Since xk+1

i and yki are given
and fixed, qki (zi) will be constant for any given zi. Thus, we model hki (zi) as a shifted
Bernoulli random variable, again with the parameter θi, which is equal to qki (zi) + 1 with
probability θi, and equal to qki (zi) with probability 1 − θi. Note that 1 − θi for any zi is a
Gaussian Cumulative Distribution Function (CDF) based on the marginal Gaussianity of
GPs (Houlsby et al., 2012; Gardner et al., 2014; Rasmussen and Williams, 2006). Given
Ci = {

(
zl,i, ci(zl,i)

)
}mil=1, zl,i ∈ B, we generate Hki = {

(
zl,i, h

k
i (zl,i)

)
}mil=1 using Ci, and denote

the best objective value of (12) by hk+i . We then compute the Expected Improvement for
the ith feasibility subproblem, which is given by

EI(zi) = Ehki |Hki

[
max

(
0, hk+i − h

k
i (zi)

)]
= max

(
0, hk+i − q

k
i (zi)− 1

)
θi

+ max
(
0, hk+i − q

k
i (zi)

)(
1− θi

)
,

(13)

Given any zi, if hk+i −qki (zi) is non-positive, then EI(zi) is zero. If hk+i −qki (zi) lies between
zero and one, the first term in (13) is zero while the second term has a positive value. When
hk+i − qki (zi) is larger than one, both terms are positive. Thus, we can simplify (13) to

EI(zi) =


0, if hk+i − qki (zi) ≤ 0

max
(
0, hk+i − qki (zi)

)(
1− θi

)
, if 0 < hk+i − qki (zi) ≤ 1

max
(
0, hk+i − qki (zi)

)(
1− θi

)
+ max

(
0, hk+i − qki (zi)− 1

)
θi, else.

(14)
Notice that according to the closed-form expressions in (11) and (14) , EIs can be cheaply
evaluated pointwise at any given point. As a result, these acquisition functions can be
maximized with standard numerical optimization methods such as DIRECT or stochastic
gradient descent (Finkel, 2003; Bottou, 2010)
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Algorithm 3.1 ADMMBO

1: Input: B, n,mi, δ,K, α
k, βki , ρ, ε,M, y1i , z

1
i ; ∀i = 1, . . . , N, ∀k = 1, . . . ,K

2: Randomly generate {xl ∈ B}nl=1 and {zl,i ∈ B}mil=1, ∀i = 1, . . . , N
3: Initialize: k=1,F1={(xl, f(xl))}nl=1, C1i={(zl,i, ci(zl,i))}

mi
l=1, S = False;

4: while (k ≤ K) and (S == False) do
5: [xk+1,Fk+1]← OPT(Fk,B, αk, zki , yki ) (See Algorithm 3.2)
6: for i = 1, . . . , N do
7: [zk+1

i , Ck+1
i ]← FEAS(Cki ,B, βki , xk+1, yki ) (See Algorithm 3.3)

8: yk+1
i = yki + ρ(xk+1 − zk+1

i )
9: rk+1[i] = xk+1 − zk+1

i

10: sk+1[i] = −ρ(zk+1
i − zki )

11: end for
12: if

(∥∥rk+1
∥∥
2
≤ ε
)

and
(∥∥sk+1

∥∥
2
≤ ε
)

then
S = True

13: end if
14: k ← k + 1
15: end while
16: if S==True then

Output: xk+1

17: elseOutput: argmin
x∈FK∪CK1 ∪···∪CKN

Ef |FK
[
f(x)

]
s.t. p

[
ci(x) ≤ 0

]
≥ 1− δ

18: end if

3.2. ADMMBO Algorithm

Algorithm 3.1 summarizes the steps of ADMMBO. The parameters to the algorithm are the
search space B, the coefficient M , the number of initial function evaluations for the objective
function n, number of initial function evaluations for each constraint mi for i = 1, . . . , N ,
the maximum number of ADMM iterations K, the ADMM’s penalty parameter ρ, and the
total BO iteration budget, the maximum number of function evaluations throughout the
algorithm. We distribute this budget among main loop where at iteration k, αk denotes
the BO budget for the optimality subproblem and βki is the BO budget for ith feasibil-
ity subproblem, the tolerances for the stopping criterion ε, and a confidence parameter δ
to determine the final solution returned in the case that the budget is exhausted before
convergence.

Algorithm 3.1 works as follows: first in order to build the initial datasets F and Ci, the
algorithm randomly generate n and mi samples in the search space B, and then evaluate
f and ci at the corresponding points (lines 2 − 3). After initializing the parameters (line
3), ADMMBO iterates through its main loop until it reaches the total BO iteration budget
or the stopping criterion is satisfied (line 4). At the kth iteration of the main loop, AD-
MMBO solves the optimality subproblem with BO given budget αk. Specifically, this step
is done by calling the algorithm 3.2, denoted OPT, which outputs a desirable solution of
the optimality subproblem and the updated dataset F (line 5). Then, for each constraint
i, ADMMBO performs the following steps: first it solves the corresponding feasibility sub-
problem with BO given budget αki , by calling the algorithm 3.3, denoted FEAS, which

11
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Algorithm 3.2 OPT

1: Input: F = {
(
xl, f(xl)

)
}nl=1,B, α, zi, yi; i = 1, . . . , N

2: Initialize: F1 = F
3: for t = 1, . . . , α do
4: Given F t, compute U t = {(xl, f(xl) +

∑N
i=1

ρ
2

∥∥xl − zi + yi
ρ

∥∥2
2
}nl=1

5: Update the GP posterior p[u(x)| U t]
6: xt ← arg maxx∈B EI(x) (use expression (11) for EI(x))
7: F t+1 = F t ∪ {

(
xt, f(xt)

)
}

8: n← n+ 1
9: end for

10: xmin = argmin
x∈Fα

f(x) +
∑N

i=1
ρ
2

∥∥x− zi + yi
ρ

∥∥2
2

11: Output: [xmin, F
α]

outputs a good solution of the ith feasibility subproblem and the updated dataset Ci (line
7). Then, ADMMBO updates the corresponding Lagrange multipliers and components of
the primal and dual residuals (lines 8 − 10). Afterwards, at the end of each main loop
iteration, it checks the stopping criterion, i.e. whether the `2-norms of the primal and dual
residuals are smaller than or equal to a chosen tolerance (line 12). If the stopping criterion
is satisfied, the algorithm stops and reports the most recent x as the desirable solution
for the unknown-objective unknown-constraint problem (5) (line 17). Otherwise, it keeps
iterating. After reaching the maximum number of total iterations without meeting stopping
criterion, ADMMBO reports a final recommendation for the desirable solution of (5). This
recommendation is the point belonging to the merged data F ∪ C1 ∪ · · · ∪ CN which has the
lowest expected objective value subject to the posterior probability of satisfying the con-
straints being at least 1− δ, where δ is a parameter representing the maximum acceptance
probability that a final solution is infeasible.

Algorithm 3.2, denoted by OPT, solves the optimality subproblem with BO under a
budget α. For α iterations, OPT repeats the following steps: Given yi, zi, and dataset
F , it computes U and updates the GP posterior p[u(x)|U ]. Then, OPT uses this posterior
to compute EI(x) using equation (11) and maximizes it over x ∈ B. It evaluates the
objective function f at the global optimum of EI(x), and updates data F accordingly.
After α iterations, OPT gives a final recommendation for the solution of the optimality
subproblem, and outputs the most updated data F .

Algorithm 3.3, denoted by FEAS, solves each feasibility subproblem with BO under a
budget βi. For βi iterations, FEAS repeats the following steps: Given x, yi, and data Ci,
it computes Hi. Then, FEAS updates the GP posterior p[ci(zi)|Ci] and use this posterior
and Hi to compute EI(zi) using equation (13). Next, it maximizes EI(zi) over zi ∈ B,
evaluate the constraint ci at the optimum of the EI(zi) and updates Ci accordingly. After
βi iterations, the algorithm gives a final recommendation of the solution for the feasibility
subproblem, and outputs the most updated data Ci.

ADMMBO has the potential to be parallelized at two different levels: first, the feasibility
subproblems are independent and can be solved independently, in parallel (lines 6 − 11 in
Algorithm 3.1). Second, BO iterations at OPT and FEAS (lines 3−9 in Algorithms 3.2 and
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Algorithm 3.3 FEAS

1: Input: Ci = {
(
zl,i, ci(zl,i)

)
}mil=1,B, βi, x, yi;

2: Initialize: C1i = Ci
3: for t = 1, . . . , βi do
4: Given Cti , compute Hti =

{
(zl,i, 1(ci(zl,i) > 0) + ρ

2M ‖x− zl,i + yi
ρ ‖

2
2

)
}mi
l=1

5: Update the GP posterior p[ci(zi)| Cti ]
6: zti ← arg maxzi∈B EI(zi) (use expression (13) for EI(zi))

7: Ct+1
i = Cti ∪ {

(
zti , ci(z

t
i)
)
}

8: mi ← mi + 1
9: end for

10: zmin = argmin
zi∈C

βi
i

1(ci(zi) > 0) + ρ
2M ‖x− zi + yi

ρ ‖
2
2

11: Output: [zmin, Cβii ]

3.3) can be parallelized according to a scheme suggested by Snoek et al. (2012) where a new
candidate location is selected according to not only the observed data, but also the locations
of pending function evaluations. Both parallelization will lead to speed up of ADMMBO.

3.2.1. Hyperparameter Tuning for ADMMBO

ADMMBO has two sets of parameters: BO-dependent parameters, which are commonly
used by other constrained BO methods, and ADMM-dependent parameters, which lend
themselves to the ADMM framework of ADMMBO. BO-dependent parameters are B, a
box defining the search space, n and mi, the number of initial random samples at which to
evaluate f and each ci, respectively, δ, the parameter used if ADMMBO does not converge,
and a total BO iteration budget.

ADMM-dependent parameters are K, the maximum number of iterations in the main
loop, along with αk and βki , the BO iteration budgets for the optimality and ith feasibility
subproblems during the kth main loop iteration. These three hyperparameters should be
jointly set in a way that

∑K
k=1

(
αk +

∑N
i=1 β

k
i

)
equals to the total BO iteration budget. ρ is

the ADMM penalty parameter, and ε is a small tolerance which controls the stopping rule
for the algorithm. We provide guidance on how to set these hyperparameters in practice
in section 5.1. Finally, M controls the penalization of infeasibility. In Proposition 1, we
suggest to set the value of M based on the range of f over B. The unconstrained range of
f is known for many user-defined objectives. For example, if we define f as the validation
error of a machine learning model, this range equals, the maximum possible error, 1, minus
the minimum possible error 0, 1 − 0 = 1. Since the unconstrained range of f is an upper
bound for the range of f over B, we can use it to set M . However, this range might be
unknown in practice. In such cases, we recommend setting the value of M equal to a large
number with respect to any likely value of f , which can be chosen based on the application
domain. As long as M is reasonably large, its precise value does not affect the performance
of ADMMBO in practice. In section 5.7, we illustrate that ADMMBO’s performance is not
sensitive to the choice of M over a very wide range of values.
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3.2.2. Convergence in Practice

Convergence guarantees for ADMM only hold for convex problems (Boyd et al., 2011). How-
ever, here only limited information is available about the objective function and the feasible
set and thus often the convexity of the problem is unknown. If f is a convex function and
the feasible set is a convex set, ADMM has convergence guarantees given each subproblem
is solved exactly. In ADMMBO, however, the subproblems have unknown objectives which
the algorithm solves using BO methods. These methods offer exact solutions only given
an unlimited budget, which is not realistic in practice. For a limited budget, BO methods
find approximate solutions for the subproblems, and thus similar to the rest of the BO
state-of-the-art, ADMMBO cannot offer convergence guarantees.

However, in fact, we have chosen ADMM precisely to build upon the many studies that
have found that ADMM exhibits a good empirical performance even if the convergence
conditions are not satisfied (Xu et al., 2016; Wang et al., 2015; Hong et al., 2016). We
report in section 5 that ADMMBO converged for the non-convex problems we tested.

4. Related Work

Two general strategies have been introduced to extend Bayesian optimization to constrained
Bayesian optimization with unknown constraints. One strategy is to modify the acquisition
function within the Bayesian optimization framework, that the acquisition function simul-
taneously takes into account the feasibility of a candidate point along with its objective
value. Most previous work falls into this category, including EIC, IECI, EVR, and PESC
(Schonlau et al., 1998; Snoek, 2013; Gelbart et al., 2014; Gardner et al., 2014; Bernardo
et al., 2011; Picheny, 2014; Hernández-Lobato et al., 2015).

The second strategy merges Bayesian optimization with numerical optimization tech-
niques which are designed to deal with constrained optimization problems. To the best of
our knowledge, to date there is only one such approach in this category for BO, ALBO,
along with its Slack-AL variant, (Gramacy et al., 2016; Picheny et al., 2016). We describe
some existing methods in both categories next.

4.1. Constrained BO using Modified Acquisition Functions

Several proposed acquisition functions for BO problems with unknown constraints are ex-
tensions of EI (Jones et al., 1998). One such extension, Expected Improvement with Con-
straints is reported by Schonlau et al. (1998); Snoek (2013); Gelbart et al. (2014), and
Gardner et al. (2014). Given a point x, EIC calculates the expectation of the improvement
of the objective value of x over the best observed objective value evaluated at a feasible
point so far, and then weight it by the probability of feasibility of x. Assuming independent
Gaussian process models for the objective function and constraints, EIC yields closed-form
solutions based on the standard normal CDF and PDF. Bernardo et al. (2011) proposed
another variation of EI, Integrated Expected Conditional Improvement, based on a one-step
look-ahead strategy. Given a candidate point x, IECI measures how much reduction in the
improvement of the objective value of a typical point x′ is expected, if we have previously
evaluated the objective value of x and augmented our data with it. IECI does not have a
closed-form solution, and thus its integral is computed numerically over a grid of x′. This
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limits the application of IECI to small dimensional problems (Hernández-Lobato et al.,
2015; Shahriari et al., 2016).

In addition to EI-based methods, there is a class of information-based acquisition func-
tions designed to reduce a chosen measure of uncertainty about the location of the global
optimum. Thus, for a candidate point, such methods evaluate the reduction in their uncer-
tainty measure which will be obtained by evaluating its objective value. Expected Volume
Reduction proposed by Picheny (2014) uses the expected volume of the feasible region as
its measure of uncertainty. For a point x, EVR first computes the probability that, for any
given point x′, f(x′) is less than the minimum of the best observed f so far corresponds
to a feasible point and f(x). It then integrates that probability against the probability of
feasibility of x′ over all x′. Another information-based acquisition function, Predictive En-
tropy Search with Constraints (PESC) uses entropy as its uncertainty measure. Specifically,
PESC first calculates the differential entropy of the posterior of the global optimum and
then for a point x, measures how much reduction is expected in this entropy if we evaluate
the objective function and constraints at point x (Hernández-Lobato et al., 2015).

4.2. Constrained BO using Numerical Optimization

In addition to the approaches based on BO with a modified acquisition function, there is
a second category that solves the unknown constraint problem using ideas from the field
of numerical optimization. Many numerical optimization algorithms tackle a constrained
problem by reformulating it into two or more coupled unconstrained problems, which are
generally easier to handle, and then solving them via alternating iterations (Nocedal and
Wright, 2006). Here, where the constrained problem involves unknown functions, the idea
is to define unconstrained surrogate problems using numerical optimization techniques, and
then solve these problems, which still involve unknown functions, with BO. The first, and
to-date only, methods in this category are based on the augmented Lagrangian method.

Gramacy et al. (2016) proposed the Augmented Lagrangian for BO, ALBO, which uses
the Augmented Lagrangian Function (ALF) to formulate unconstrained surrogate prob-
lems, and then solves them using EI as acquisition function. The challenge in the proposed
approach is that ALF of the original problem involves a complicated mixture of unknown
functions. Thus, the previous calculations for the EI, which assumed a single GP model,
do not hold any more. Building a probabilistic model for this mixture objective and recal-
culating EI based on it is a challenging task. As a result, EI calculations in ALBO do not
result in closed form solutions, and so this method relies on Monte-Carlo approximation.
To address this issue, Picheny et al. (2016) introduced Slack-AL by modifying the original
problem to include a slack variable and then applying the augmented Lagrangian method
on the modified problem. The authors optimized the modified ALF with EI iterations. It
turns out that the modified ALF in Slack-AL is easier to solve than the ALF in ALBO. As
a result, the Expected Improvement in Slack-AL, in contrast to ALBO, has a closed-form
expression, and may be evaluated with library routines.

5. Experiments

In this section, we evaluate the performance of ADMMBO on several synthetic problems,
studied in the constrained Bayesian optimization literature (Gardner et al., 2014; Gramacy
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et al., 2016; Picheny et al., 2016), as well as on the problem of hyperparameter tuning for
a fast neural network on the MNIST digit recognition dataset (LeCun, 1998; Hernández-
Lobato et al., 2015). We compare ADMMBO with four state-of-the-art constrained Bayesian
optimization methods1: EIC (Gelbart et al., 2014; Gardner et al., 2014), ALBO (Gramacy
et al., 2016), Slack-AL (Picheny et al., 2016) and PESC (Hernández-Lobato et al., 2015).

5.1. Implementation Details

In all the synthetic problems, discussed below, similar to (Hernández-Lobato et al., 2015;
Picheny et al., 2016; Gramacy et al., 2016), we assume that f and ci follow independent
GP priors with zero mean and squared exponential kernels. For the problem of hyper-
parameter tuning in Neural Networks on the MNIST dataset, we assume that f and ci ,
follow independent GP priors with zero mean and with Matérn 5/2 kernels (Hernández-
Lobato et al., 2015). For ADMMBO, in all the experiments we set M ∈ {20, 50}, ρ = 0.1,
ε = 0.01, δ = 0.05 and initialize y1i and z1i with the bounds of B. Further, in all the ex-
periments, we set the total BO iteration budget to 100(N + 1), where N is the number of
constraints of the optimization. We empirically observed that ADMMBO performed best
when we assign a higher BO budget for the first iteration of the algorithm. Thus, we set
α1 = β1i ∈ {10, 20, 50} for the first iteration and αk = βki ∈ {2, 5} for the rest. Considering
total BO budget and the budgets for the optimality and feasibility subproblems, we set K
accordingly. We initialize datasets F and Ci with n = mi = 2 points. Notice that initial
points are randomly generated and will not necessarily be feasible.

The convergence speed of ADMM in practice depends on the value of the penalty pa-
rameter ρ (Boyd et al., 2011). Specifically, a large value of ρ imposes a large penalty on
violating the primal feasibility and thus encourages small primal residuals. On the other
hand, a small value of ρ increases the penalty on the dual residual, encouraging it to be
small, but at the same time also reduces the penalty on primal feasibility, resulting in a
larger primal residual. To improve the convergence speed of ADMMBO in practice and
to make the performance less sensitive to the choice of the penalty parameter ρ, following
(Boyd et al., 2011), we use the penalty ρk at iteration k, where

ρk+1 =


τ incrρk if

∥∥rk∥∥
2
> µ

∥∥sk∥∥
2

ρk/τdecr if
∥∥sk∥∥

2
> µ

∥∥rk∥∥
2

ρk otherwise.

(15)

We set µ = 10 and τ incr = τdecr = 2 similar to (Boyd et al., 2011; Hong and Luo, 2017).
Please see our opensource code available at https://github.com/SetarehAr/ADMMBO for
more details on each experiment.

5.2. Performance Metrics

To test the sensitivity of different algorithms to the initialization of {F , C1, . . . , CN}, we
run each algorithm for each synthetic problem with 100 random initializations and for the
hyperparameter tuning problem for 5 random initializations.

1. We used the open source codes provided by Baldi et al. (2015); Gardner et al. (2014); Gramacy et al.
(2016); Picheny et al. (2016).
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For each method after each additional function evaluation, we report the median of
the best observed objective value at a feasible point, over all random initializations. This
median is shown by a solid curve in our figures (Figures 1 to 6). For each method, we
start to report results (show the median curve) once all 100 runs have found a feasible
point. The budget at which each method attains such a point over 100 runs is denoted
by a dashed vertical line in our figures. Moreover, the variability of the performance is
illustrated after different number of function evaluations by reporting the 25/75 percentiles
of the best feasible objective value over the 100 runs. Moreover, in Figures 1 to 4, we depict
the feasible region of our 2-dimensional problems, their global and local optima, as well
as the final recommendation provided by each method given a specific budget, among 100
runs.

5.3. Test Problem with a Small Feasible Region

Consider the following optimization problem, studied also in (Gardner et al., 2014),

min
x∈B

sin(x1) + x2

s.t. sin(x1) sin(x2) + 0.95 ≤ 0,
(16)

where B = [0, 6]2. This is a challenging problem since both the objective function and the
constraint are highly non-linear. Moreover, the feasible region with respect to the bounded
parameter space B is small, hence, finding a feasible point is difficult.

The left plot in Figure 1 shows the feasible region of (16) and its global and local
optima, while the right figure shows the median of the objective value of the best feasible
point, obtained by each method, among 100 runs as a function of total number of function
evaluations. As the results demonstrate, ADMMBO outperforms EIC, ALBO, Slack-AL
and PESC in terms of finding the global optimum at a lower budget. Moreover, ADMMBO
is the first method to find a feasible point in all 100 runs, followed by PESC second and
then the others. Only ADMMBO, ALBO, and Slack-AL have defined stopping criteria, and
of those three only ADMBBO reaches its criterion and stops before the pre-set budget is
exhausted. Figure 2 shows the best points obtained by ADMMBO, ALBO, and Slack-AL
after 100 function evaluations, over 100 runs. Over all runs, ADMMBO has consistently
found a feasible solution very close to the global optimum (black star in the left figure
in Figure 1). However, the best points obtained by ALBO and Slack-AL are scattered
throughout the entire feasible region and not necessarily close to the global optimum. Note
that in a few runs, the best solutions found by these two methods are outside the feasible
region, and thus are infeasible. We observe that ALBO and Slack-AL require a higher
budget in order to converge to the global optimum of (16).

5.4. Test Problem with Multiple Constraints

Our second benchmark problem is a toy two dimensional problem introduced first in (Gra-
macy et al., 2016), and used later in (Picheny et al., 2016; Hernández-Lobato et al., 2015).
We have chosen this problem specifically to test our ADMMBO on a problem with multiple
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Figure 1: Left: feasible region of (16) consists of two oval regions. The pink and black stars show,
respectively, the local and global optimizer. Right: the curve of the median and 25/75 percentiles
of the best objective value found by each method, among 100 runs that obtain a feasible solution,
as a function of the total budget for function evaluation. We report the results of each method for
a budget once all of its 100 runs obtain a feasible solution.
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Figure 2: Feasible region of (16) and the best solutions obtained by ADMMBO (left), ALBO
(middle) and Slack-AL (right) after 100 function evaluations, over 100 runs. For each method, each
point represents the final solution of that method over one run, after 100 total function evaluations.

constraints. More specifically, for B = [0, 1]2, we consider the optimization problem

min
x∈B

x1 + x2

s.t. 0.5 sin(2π(x21 − 2x2)) + x1 + 2x2 + 1.5 ≤ 0, −x21 − x22 + 1.5 ≤ 0.
(17)

The left plot in Figure 3 shows the feasible region of (17) and its global and local optimizers,
and the right plot shows the performance of different methods as a function of the number
of function evaluation budget. The layout is the same as for the previous figure. Again,
ADMMBO achieves the best performance in terms of converging to the global optimum at
a lower budget, followed by PESC. We believe this is due to the fact that both ADMMBO
and PESC can handle decoupled problems, including this example, via single function
evaluations, while EIC, ALBO and Slack-AL enforce joint function evaluations at each
step. Moreover, as the plot demonstrates, ADMMBO and ALBO are the first methods that
arrive at a feasible point over 100 runs at a lower number of function evaluations.

Figure 4 shows the best points obtained by ADMMBO, EIC, and PESC after 50 function
evaluations, over 100 runs. Over all runs, ADMMBO and PESC have found solutions very
close to the global or local optima (black and pink stars in the left figure in Figure 3).
However, EIC was unable to narrow down its search toward such an optimum, and thus
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Figure 3: Left: feasible region of the optimization problem (17). Right: performance of different
methods as a function of the total budget for function evaluation.
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Figure 4: The feasible region of (17) and the best solutions obtained by ADMMBO (left), EIC
(middle) and PESC (right) after 50 function evaluations, over 100 runs. For each method, each
point represents the final solution of that method over one run, after 50 total function evaluations.

its proposed solutions are scattered throughout the entire feasible region. According to the
Figure 3, all methods, including EIC, ultimately converge to the global optimum. However,
ADMMBO and PESC achieve this sooner and at a lower budget.

5.5. Test Problem in Higher Dimensions

We chose the first two problems, defined over a two-dimensional space, in order to be able
to visualize the feasible regions, global and local optima, as well as the final solution of
different algorithms. Here, we evaluate the performance of ADMMBO on a test problem
which is defined over a higher dimensional space. This is a modification of the example in
(Picheny et al., 2016), where the constraint is the Hartman 4-dimensional function. This
function was used as an equality constraint in (Picheny et al., 2016), however, we modified
it as an inequality constraint to follow the format of (5). More specifically, for B = [0, 1]4,
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Figure 5: Performance of different algorithms
solving (18) as a function of the total budget for
function evaluation.
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Figure 6: Comparison between ADMM and
PESC for hyperparameter tuning for a neural
network with short prediction time.

we consider the optimization problem

min
x∈B

4∑
i=1

xi

s.t. 1.1923

[ 4∑
i=1

Ei exp
(
−

4∑
j=1

Aji(xj − Pji)2
)
− 1.1 ≤ 0

]
,

(18)

where Aji, Ei and Pji denote, respectively, the entries of

A =


10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00

 , E =


1.0
1.2
3.0
3.2

 , P =


0.131 0.232 0.234 0.404
0.169 0.413 0.145 0.882
0.556 0.830 0.352 0.873
0.012 0.373 0.288 0.574

 .
As Figure 5 shows, ADMMBO and PESC compared to EIC, ALBO, and Slack-AL achieve
lower value of the objective function after a smaller number of function evaluation. However,
similar to other examples, ADMMBO arrives at a feasible point after fewer number of
functions evaluations compared to PESC. As an interesting observation, in the budget
range of [5, 25], ADMMBO shows a flat curve, which we speculate is due to being at a
local minima, however, finally ADMMBO escapes this local minimizer. Again, as this
figure shows, an advantage of ADMMBO compared to existing work is its efficient stopping
criterion that allows our algorithm to terminate before consuming the total budget, hence,
avoiding unnecessary function evaluations.

5.6. Tuning a Fast Neural Network

In our last experiment, we tune the hyperparameters of a three-hidden-layers fully connected
neural network for a multiclass classification task using MNIST dataset (LeCun, 1998; Le-
Cun et al., 2015). A version of this experiment was previously reported in (Hernández-
Lobato et al., 2015). We train the network using stochastic gradient descent with mo-
mentum. We consider the optimization problem of finding a set of hyperparameters that
minimize the validation error subject to the prediction time being smaller than or equal
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to 0.045 second on NVIDIA Tesla K80 GPU. 2 Here, we focus on eleven hyperparam-
eters: learning rate, decay rate, momentum parameter, two drop out probabilities for
the input layer and the hidden layers as well as two regularization parameters for the
weight decay, the weight maximum value, the number of hidden units in each of the
3 hidden layers, and the choice of activation function (RELU or sigmoid). We define
B = [0 1; 0 1; 0 1;−4 1; 0 100;−4 0;−3 0; 50 500; 50 500; 50 500; 0 1]. We build our network
using Keras with TensorFlow backends (Chollet et al., 2015; Abadi et al., 2016). We com-
pute the prediction time as the average time of 1000 predictions, over a batch size of 128
(Hernández-Lobato et al., 2015). Note that as mentioned in section 1, evaluating the pre-
diction time may not require training the model and could be cheaply done using arbitrary
weights.

We compare ADMMBO only with PESC, since as previously reported (Hernández-
Lobato et al., 2015, 2016) (and also consistent with our results on the synthetic experiments),
PESC typically outperforms EIC and ALBO. Moreover, among state-of-the-art methods,
ADMMBO and PESC are the only ones capable of handling decoupled problems, and thus
are a good fit for this experiment. Note that since the computational cost of evaluating the
validation error and the prediction time are significantly different, we show the results in
terms of total wall-clock time rather than the total number of function evaluations.

As the results in Figure 6 show, PESC performed better at first. PESC found the first
feasible set of hyperparameters slightly faster than ADMMBO, and also was able to find
hyperparameters with lower validation error compared to the hyperparameters suggested
by ADMMBO. However, around 18 minutes after initializing the algorithms, ADMMBO’s
performance started to improve and outperformed PESC from minute 22 on. For exam-
ple, at minute 40, ADMMBO found a desirable set of hyperparameters resulting in 0.05
validation error and less than 0.045 seconds prediction time. After the same time, PESC’s
suggested hyperparameter result in a shorter prediction time less than 0.045 seconds, but
their validation error was around 0.45. One interesting observation is that ADMMBO ter-
minated after around one hour, satisfying its stopping criterion, avoiding extra expensive
evaluations.

5.7. Sensitivity Analysis on M and ρ

In this section, we report on an evaluation of the sensitivity of ADMMBO to the hyper-
parameters M and ρ. In the first set of experiments, we set the value of M to 20 and ran
ADMMBO for fifteen uniformly distributed initial values of ρ ∈ [0.0001, 2], while keeping
the rest of the hyperparameters as in 5.1. In Figure 7 we report on some selected cases,
to avoid cluttering the figure. The figure illustrates that ADMMBO’s performance was not
very sensitive to the initial value of ρ. In particular, for initial ρ = 2, ADMMBO attained a
feasible point over all 100 runs after no more than 27 function evaluations, while for other
values of ρ, the same was achieved after roughly 15 evaluations. Even with ρ = 2, at budget
15, 91 out of 100 runs had already found a feasible solution. The vertical dashed line in
Figure 7 shows the budget at which the last run found a feasible solution.

2. We chose the value 0.045 empirically, as it resulted in an active trade off between the objective and the
constraint, while also ensuring consideration of limitations on the resources that happened to be available
to us in our implementation. Clearly this choice will be highly implementation dependent, both in terms
of problem and computational platform.
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Figure 7: Performance of ADMMBO solving
(17) given M = 20 and different values of ρ.
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Figure 8: Performance of ADMMBO solving
(17) given ρ = 0.1 and different values of M .

In the second set of experiments, we set the value of ρ to 0.1 and ran ADMMBO for ten
uniformly distributed values of M ∈ [0.001, 2] as well as M = 100, 1000. As Figure 8 shows,
again reporting on a subset of the values tested for clarity, the performance of ADMMBO
did not depend strongly on the precise value of M as long as it was large enough. Note
that in problem (17), the range of f over B was 2. Even for M < 2, ADMMBO found good
solutions, failing only when M was 4 order of magnitude smaller than the bound. Also,
ADMMBO with different values of M found a feasible point over 100 runs at the same
budget. Finally, given all different combinations of M and ρ, ADMMBO always converged
before spending the total iteration budget of 300.

6. DISCUSSION

In this paper, we address the problem of solving an optimization whose objective function
and constraints are unknown and available to evaluate pointwise, but at high computational
cost. We proposed a novel constrained Bayesian optimization algorithm, called ADMMBO,
which merges ADMM, a powerful tool from numerical optimization, with Bayesian op-
timization techniques. ADMMBO defines a set of unconstrained subproblems, over the
modified objective function and over modified constraints, and iteratively solves them us-
ing Bayesian optimization on each subproblem. Some key advantages of ADDMBO are its
ability to start from an infeasible point, its ability to effectively handle decoupled problems,
the ability to find closed-form acquisition functions, and its stopping criterion. We showed
the effectiveness of ADMMBO through experiments on benchmark problems and the prob-
lem of hyperparameter tuning for a fast neural network for digit recognition. ADMMBO
consistently outperformed existing methods and obtained the feasible optimum with the
fewest number of black-box evaluations. We speculate that the reason behind this rapid
convergence is that ADMMBO typically first finds the unconstrained optimum of the prob-
lem, and then looks for the closest point to that optimum which belongs to the feasible set,
which turns out to be an effective search strategy.

There are several ways in which we believe ADMMBO could be extended or improved.
One would be to enable ADMMBO to handle problems with unknown equality constraints.
A straightforward approach would be to rewrite an equality constraint as a pair of inequal-
ity constraints and employ our current algorithm. Since ADMMBO is highly parallelizable
(lines 6 − 11 in Algorithm 3.1 can be implemented in parallel), increasing the number of
constraints may not be a significant computational barrier. However, investigating more
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principled ways of handling equality constraints is a topic for future investigation. Another
extension of clear interest is to speed up ADMMBO through augmenting the problem with
environmental variables which directly affect the duration of function evaluations (Klein
et al., 2016). For example, in tuning the hyperparameters of a neural network, the size of
the training set or the number of epochs can be regarded as such variable. Then, similar
to Snoek et al. (2012), one can penalize ADMMBO’s acquisition functions with the inverse
duration of function evaluations. We speculate that this may lead to finding a good solution
for the unknown optimization problem as quickly as possible. A further extension concerns
developing a comprehensive budget management strategy. This will be useful specifically
in cases where we have partial knowledge about the unknown functions, in particular an
estimate of the relative computational complexity of the objective and constraint functions.
In this setting, we may be able to leverage such estimates to more efficiently distribute the
budget. Another direction worth exploring is the flexibility within the ADMMBO frame-
work to adopt different random process models (beyond independent GPs) and different
acquisition functions (beyond EI). In particular using Predictive Entropy as acquisition
function with approximations potentially similar to PESC-F would seem to be a promising
approach to explore, given both the results in the literature and the relative success of
PESC in our experiments. With any new acquisition function we would face the challenge
of efficiently optimizing it. Acquisition functions are often multi-modal and complex, and
it is an open question how best to carry out this particular optimization step.

Finally, we mention one current limitation of ADMMBO, which is the number of hyper-
parameters. Good values will clearly speed up the optimization time of ADMMBO. In our
experiments here, we followed the default initialization suggested in (Boyd et al., 2011; Hong
and Luo, 2017) for the ADMM-related parameters and were able to obtain favorable results.
However, for more complex problems, an adaptive initialization policy, potentially similar
to ρ’s adaption rule based on primal and dual residuals suggested by Boyd et al. (2011),
might make the algorithm less sensitive to the possibility of a poor parameter setting.
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learning for robot planning and exploration under uncertainty. In Robotics: Science and Systems,
volume 3, pages 334–341, 2007.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.
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