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Erik Štrumbelj erik.strumbelj@fri.uni-lj.si

University of Ljubljana

Faculty of Computer and Information Science
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Abstract

Ensemble methods are a powerful tool, often outperforming individual prediction models.
Existing Bayesian ensembles either do not model the correlations between sources, or they
are only capable of combining non-probabilistic predictions. We propose a new model,
which overcomes these disadvantages. Transforming the probabilistic predictions with the
inverse additive logistic transformation allows us to model the correlations with multivari-
ate normal mixtures. We derive an efficient Gibbs sampler for the proposed model and
implement a regularization method to make it more robust. We compare our method to
related work and the classical linear opinion pool. Empirical evaluation on several toy and
real-world data sets, including a case study on air-pollution forecasting, shows that the
method outperforms other methods, while being robust and easy to use.

Keywords: correlated classifiers, ensemble, probabilistic models, additive logistic trans-
formation, Bayesian inference

1. Introduction

Classifier combination (or ensemble learning) is an important area of applied machine learn-
ing and statistics. The idea behind these methods is that combining several prediction mod-
els should achieve better performance. Intuitively, if the models make different mistakes,
we can combine them and overcome their individual drawbacks. Zhou (2012) highlights
the importance of diversity between individual models and argues that understanding such
diversity is an open problem in ensemble learning. A theoretical result on how the gener-
alization error of a combination (weighted average of individual methods) decreases as the
correlations between individual errors decrease can be found in Ueda and Nakano (1996).
That ensembles achieve better performance in practice proved to be the case, as they are
extensively used in various machine learning challenges and competitions to great effect—
for example an ensemble method won the KDD Cup 2017 (SIGKDD, 2017). The classifiers
in an ensemble can be trained on the same data, or on different data sets. In practice, one
might want to combine predictions from various sources, for example, a classifier and expert
predictions.

Our work was motivated by Kim and Ghahramani (2012) who proposed a Bayesian
approach to combining classifiers—the independent Bayesian classifier combination (IBCC)
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and its dependent extension, the dependent Bayesian classifier combination (DBCC). Their
method is able to combine categorical predictions of classifiers, humans, and other sources,
not necessarily trained on the same data. They used Markov networks to model the depen-
dencies between classifiers. One drawback of their method is that it can only be used to
combine non-probabilistic (categorical) classifiers. Another drawback is that the method’s
time complexity grows exponentially in the number of classifiers. Simpson et al. (2013) ap-
plied the IBCC to a crowdsourcing problem. They observed that the sampler for IBCC can
have difficulties with convergence, and proposed a variational IBCC. Additionally Simpson
(2014) presented a simplification of Kim and Ghahramani’s IBCC, which led to a more
efficient Gibbs sampler for parameter inference. Venanzi et al. (2014) extended the IBCC
specifically for crowdsourcing problems. They proposed CommunityBCC, where each source
(worker) is assumed to belong to some community with a common confusion matrix. The
method is able to model the dependencies implicitly through community membership. The
results show that CommunityBCC outperforms IBCC on sparse data sets. Nazábal et al.
(2016) extended the IBCC model to combine probabilistic models by modeling the predic-
tions with the Dirichlet distribution, however they do not model correlations explicitly.

Another approach that is closely related to IBCC are supra-Bayesian methods, which
rely on Bayes’ rule to combine the information gathered from several experts and thus
improve the predictions. They assume a multivariate normal (MVN) distribution of the
predictions and are therefore able to model correlations. Lindley (1985) presented a method
for combining probabilistic predictions of categorical data. The author proposed modeling
of log-odds instead of original data to deal with the non-normality. The method also
uses a common covariance matrix, independent of true labels. Due to the use of a MVN
distribution and the assumption of a common covariance matrix the described method lacks
flexibility to model the latent space well.

Hoeting et al. (1999) presented Bayesian model averaging that combines several prob-
abilistic models, weighted by their posterior probability. However this approach assumes
that one of the combining models is the true data generating model and that the mod-
els represent mutually exclusive situations. These assumptions can lead to severe loss of
performance, as Cerquides and De Mántaras (2005) have shown.

Lacoste et al. (2014) proposed the agnostic Bayesian learning of ensembles, where they
produced ensembles of predictors based on holdout estimations of their generalization per-
formances. Their ideas are based on the inductive learning paradigm and they use Bayesian
treatment to find the posterior probability of each hypothesis being the best. They defined
the risk of each hypothesis as its expected loss and examined various priors over the joint
risk. The inputs to the model can be probabilistic and they account for correlations between
inputs. Agnostic Bayes differs from IBCC, its extensions, and supra-Bayesian methods, as it
focuses on finding the best performing models and weighting them accordingly, as opposed
to relying on finding a latent structure of the predictions.

We propose a new model based on the IBCC that is able to combine probabilistic predic-
tions by learning the latent structure of the sources. We extend the IBCC to probabilistic
predictions with a change of the model’s distribution for the predictions. First we trans-
form the predictions with the inverse of the additive logistic transformation and then model
them with MVN mixtures to account for correlation explicitly. The correlation matrices
grow quadratically in the number of classifiers and the number of classes. We construct
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the model with a fully Bayesian framework and use Gibbs sampling (Casella and George,
1992) for parameter inference. Since the complexity of the model grows with the number
of classifiers, we implement a regularization method, which makes the model more robust.
Our method can also be viewed as an extension of the supra-Bayesian method, where we
use mixtures of normals as the likelihood and condition the means and covariance matrices
on the true label—increasing the method’s flexibility.

We empirically evaluated our method on several toy and real-world data sets, and com-
pared it to related methods. The results on toy data sets highlight that none of the en-
sembles works well for all data sets. Overall, our method compares favourably to related
methods. Additionally, we provide a case study on combining predictions of air-pollutant
concentration in Slovenia, where we show that our method is well suited for combining
machine learning models with human expert predictions.

The paper is organized as follows. In Section 2 we formulate the problem, present our
main methodological contribution, and provide a description of related work. We present
the data sets, empirical results, and a case study in Section 3. We discuss the results and
provide directions for future work in Section 4.

2. Methods

Let {ti}ni=1 be our data set of n observations that can take one of m different values
ti ∈ {1, . . . ,m}. Additionally, we have r sources of probabilistic predictions and, for

each source, a probabilistic prediction for each observation {p(1)
i , . . . , p

(r)
i }ni=1, where p

(k)
i =[

p
(k)
i1 · · · p

(k)
im

]T
is the k−th source’s prediction for the i−th observation.

The task is to learn how to combine individual sources into more accurate probabilistic
predictions, so that we are able to produce probabilistic predictions {p̂i}n+n∗

i=1 for n observed
and n∗ future/unobserved data, represented with categorical random variables {Ti}n+n∗

i=n+1,

for which only the sources’ predictions {p(1)
i , . . . , p

(r)
i }

n+n∗

i=n+1 are known.

2.1. MVN Mixture Conditional Likelihood Model (MM)

Aitchison (1982) proposed the modeling of correlated data on a simplex with the logit-
normal distribution. The data on a simplex are considered as data drawn from a MVN dis-
tribution, transformed by the additive logistic transformation. This transformation trans-
forms a vector x ∈ Rz into a vector f(x) ∈ Sz+1, where Sz+1 represents a (z+1)-dimensional
simplex. To model the correlations between probabilistic predictions we first transform each
source’s prediction with the inverse of the additive logistic transformation. Applying it to

{p(1)
i , . . . , p

(r)
i }

n+n∗

i=1 , we get {u(1)
i , . . . , u

(r)
i }

n+n∗

i=1 , where u
(k)
i =

[
u

(k)
i1 · · · u

(k)
i(m−1)

]T
. Let

ui =
[
u

(1)T
i · · · u

(r)T
i

]
, be the concatenated vector of u

(k)
i s, where k = 1, ..., r. The di-

mension of ui is then r(m − 1), the number of sources times the number of classes minus
one. Then the vectors ui, can be modeled by a MVN distribution, as described above.
However, the transformation does not guarantee a MVN distribution of ui and in practice
multi-modal distributions can often arise. Therefore we model the transformed data with
MVN mixtures of dimension r(m− 1).
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Our generative model can be described as follows. The probabilistic predictions p
(k)
i =[

p
(k)
i1 · · · p

(k)
im

]T
are generated by applying the additive logistic transformation to realiza-

tions of MVN mixtures, whose parameters depend on the true label. The probability for a
new observation to be in true label j is then proportional to the density of the correspond-
ing MVN mixture. The true labels {ti}ni=1 and {Ti}n+n∗

i=n+1 are assumed to be generated
by a categorical distribution with parameter ρ, and we set a Dirichlet prior on ρ, same
as Nazábal et al. (2016). The mixture memberships gi are assumed to be generated by a
categorical distribution of dimension d. For the parameters of MVN distributions we set
semi-conjugate MVN and inverse-Wishart priors. We write the likelihood and the priors as

ui|ti = j, gi = h, µ,Σ ∼ Nr(m−1)(µjh,Σjh), (1)

ti|ρ ∼ Cat(ρ), (2)

ρ|γ0 ∼ Dir(γ0), (3)

gi ∼ Cat(τ0), (4)

µjh ∼ Nr(m−1)(µ0,Σ0), (5)

Σjh ∼ inv-Wishart(ν0, S
−1
0 ), (6)

where µ = {µjh : j = 1, ...,m∧h = 1, ..., d}, Σ = {Σjh : j = 1, ...,m∧h = 1, ..., d}. Figure 1

shows the proposed model in plate notation. Let vectors ui =
[
u

(1)T
i · · · u

(r)T
i

]
form the

rows of matrix U . Our goal is to sample from∫
p(T, ρ, g, µ,Σ|U, t)dρ = p(T, g, µ,Σ|U, t). (7)

To simplify the sampling we marginalize over ρ. Therefore, we need to sample T , µ,
Σ, and g. In the remainder of the section we derive full-conditional distributions for these
variables and construct a Gibbs sampler. We infer the parameters µ, Σ, and g only on the
data where the true label is known, however, the method would also allow inference over
unlabelled data.

First we observe that full-conditional distributions of µ and Σ are conditionally inde-
pendent of ρ and proportional to the product of likelihood and the respective prior. Let
U (jh) be the matrix of observations where the true label is j and that belong to the h−th
mixture. Using the standard formulas for semi-conjugate priors and using Eq. (1), (5), and
(6), we get the following full-conditionals
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ui tigi

i ∈ {1, ..., n}

Σjh
µjh

j ∈ {1, ...,m}, h ∈ {1, ..., d}

ρ

Figure 1: Bayesian plate notation for the proposed model. The transformed predictions
ui for the i−th observation are assumed to be generated conditional on the true
label ti = j from the corresponding MVN distribution with parameters µjh and
Σjh, which also depend on the latent group gi = h. The true label is distributed
categorically with parameter ρ. Priors are omitted for brevity.

µjh|U, t, ρ, g,Σ ∼ Nr(m−1)(µ
∗,Σ∗), (8)

Σjh|U, t, ρ, g, µ ∼ inv-Wishart(ν∗, S∗−1), (9)

µ∗ = Σ∗(Σ−1
0 µ0 + njhΣ−1

jh ū
(jh)),

Σ∗ = (Σ−1
0 + njhΣ−1

jh )−1,

ν∗ = ν0 + njh,

S∗ = S0 +

njh∑
l=1

(u
(jh)
l − µjh)(u

(jh)
l − µjh)T ,

where njh is the number of true labels equal to j in group h and ū(jh) are the column means
of U (jh).

The mixture membership variable g is also conditionally independent of ρ. Using Eq.
(1) and (4), the full-conditional of g is

p(g|U, t, ρ, µ,Σ) ∝ p(U |g, t, ρ, µ,Σ)p(g, t, ρ, µ,Σ)

∝
( n∏
i=1

p(ui|gi, ti, ρ, µ,Σ)
)
p(g)

∝
n∏
i=1

p(ui|gi, ti, µ,Σ)p(gi). (10)

For the predictive distribution of a new observation Ti, we do not have samples of gi.
Therefore we need to marginalize over gi. Using Eq. (1), (2), and (3), the full-conditional
for T is

5
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p(Ti = j|U, t, ρ, g, µ,Σ) ∝
∫ d∑

l=1

p(Ti = j, gi = l, U, t, ρ, g, µ,Σ)dρ

∝
∫ d∑

l=1

p(ui|Ti = j, gi = l, t, ρ, g, µ,Σ)p(Ti = j, gi = l, t, ρ, g, µ,Σ)dρ

∝
∫ d∑

l=1

p(ui|µjl,Σjl)p(gi = l|Ti = j, g)p(Ti = j, t, ρ)dρ

∝
d∑
l=1

p(ui|µjl,Σjl)p(gi = l|Ti = j, g)

∫
p(Ti = j, ρ)p(t|ρ)p(ρ)dρ,

(11)

where we integrate over all ρ ∈ Sm. The integral in Eq. (11) can be solved by observing
that the expression is the multivariate beta function. Some algebra with gamma functions
leads to (γ0j + nj), where nj =

∑n
l=1 I(tl = j). Additionally let ngjl = p(gi = l|Ti = j, g) =

|{gs = l ∧ ts = j : s = 1, . . . , n}|/|{ts = j : s = 1, . . . , n}|, which represents the probability
of the new observation being in a specific mixture. Inserting this into Eq. (11) and using
Eq. (8), (9), and (10) we construct a Gibbs sampler for Eq. (7)

µjh|U, t, ρ, g,Σ ∼ Nr(m−1)(µ
∗,Σ∗),

Σjh|U, t, ρ, g, µ ∼ inv-Wishart(ν∗, S∗−1),

p(gi = h|U, ti = j, ρ, µ,Σ) ∝ p(ui|µjh,Σjh)τ0h,

p(Ti = j|U, t, ρ, g, µ,Σ) ∝
d∑
l=1

ngjlp(ui|µjl,Σjl)(γ0j + nj),

where we use the conditional independence of group memberships in Eq. (10) and sample
each gi separately. Due to an efficient group collapsing property, the number of mixture
groups d can be set to some arbitrary high number and the model finds the suitable number
automatically. Some groups tend to be closer together at the beginning. This causes
the data points to interchange between groups and pairs of groups often merge into one,
resulting in fewer mixture components.

If we constrain the covariance matrices Σ to be diagonal, the model is still able to find
mixture-components where the correlations are relatively low. This way the correlations are
still modelled, while the method becomes less complex. Therefore, we can exchange some
flexibility for simplicity, which results in faster inference (inverse of the covariance matrices
becomes trivial), while still remaining flexible enough to model the correlations well in most
situations. We included this method in the empirical evaluation (MM-diag).

2.1.1. Regularization

To make the method more robust, we implemented regularization by discounting individual
dimensions in transformed observation space U . Let λ∗ be a vector of length r(m− 1) and
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λ∗i ≥ 0. We modify Eq. (11) by changing p(ui|µjl,Σjl) to p(ui|µjl,Σjl + diag(λ∗)). Adding
a positive number to an element on the diagonal increases the variance of the density,
reducing the variance of the data in that dimension (and their covariance with all other
dimensions). This effectively decreases the differences in density (between observations) in
that dimension. That is, it reduces the influence of that dimension on the distribution of
Ti.

For each Gibbs iteration, the λ∗ for that iteration is determined before predicting for
the unobserved data T using

p(λ|U, t, ρ, g, µ,Σ) ∝ p(ti = ji|U, t, ρ, g, µ,Σ, λ)p(λ),

where ji is the true class label for example i.
In general, we could make our predictions by integrating over λ. However, the posterior dis-
tribution for λ is intractable and in practice typically very difficult to sample from efficiently.
For the purposes of this work, we use only the MAP estimate

λ∗ = arg max
λ

log p(λ) +
n∑
i=1

log p(ti = ji|U, t, ρ, g, µ,Σ, λ).

2.2. Related Work

To empirically evaluate our method, we also implemented four Bayesian approaches to
combining classifiers and the classical linear opinion pool.

2.2.1. Supra-Bayesian

Lindley (1985) presented the supra-Bayesian method for combining probabilistic predictions
of a categorical variable of r experts. The method relies on Bayes’ theorem to calculate
the posterior distribution of predictions of the decision maker, given the predictions of the
experts. Let A1, A2, ..., Am be the possible outcomes of the categorical variable and let
S1, S2, ..., Sr be classifiers. Let H be the decision maker’s prior probability for the response
and qij = log(Pri(Aj)) the log-probability assigned to true label Aj by the i−th classifier.
Then the decision maker updates his probabilities via the Bayes’ theorem

p(Aj |Q,H) ∝ p(Q|Aj , H)p(Aj |H). (12)

To model the correlations between given predictions, Lindley proposes a MVN dis-
tribution for p(Q|A,H). Additionally, Lindley argues that the classifiers’ belief in their
prediction is independent of the label of their prediction, therefore the MVN distributions
share a common covariance matrix between predictions for different labels. The author also
proposes the modeling of log-odds instead of log-probabilities, as log-odds are expected to
be distributed normally. We implemented a ML estimation of the multivariate parameters
for Eq. (12), where the matrix Q represented log-odds.

Note that the described method is the one proposed by Lindley (1985) and that supra-
Bayesian methods are a very general term for combination methods that rely on the Bayes’
theorem. By selecting the appropriate likelihoods we arrive at IBCC and (unregularized)
MM as special cases.
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2.2.2. IBCC

IBCC (Kim and Ghahramani, 2012) assumes that the true labels t are generated by a

categorical distribution with parameter κ. The prediction c
(k)
i of individual classifier k is

also generated by a categorical distribution with parameters π
(k)
j for each possible value j

of the true label. Let ν be the prior for κ and α
(k)
0,j prior for π

(k)
j . Kim and Ghahramani

additionally put an exponential prior on α
(k)
0,j , but Simpson (2014) observed that the model

without this additional flexibility performs comparably well and derived the Gibbs sampler
for κ, Π, and the true labels

p(κ|t, ν0) =
1

B(ν)

m∏
j=1

κ
νj
j ,

p(π
(k)
j |t, c, α

(k)
0,j ) =

1

B(α
(k)
ti

)

m∏
l=1

(
π

(k)
j,l

)α(k)
j,l
,

p(ti = j|Π, κ, c) ∝ κj
r∏

k=1

π
(k)

j,c
(k)
i

,

where νj = ν0,j +
∑n+n∗

i=1 δ(ti − j) and α
(k)
j,l = α

(k)
0,j,l +

∑n+n∗

i=1 δ(ti − j)δ(c(k)
i − l).

2.2.3. IBCC QPI

The IBCC method can be extended to allow for quasi-probabilistic inputs (QPI). Proba-

bilistic classifiers provide us with probabilities of each outcome p
(k)
i =

[
p

(k)
i1 · · · p

(k)
im

]T
.

For the IBCC to exploit probabilistic predictions, we can first take a sample from a categor-

ical distribution with parameter p
(k)
i for each source k. The categorical samples can then

be represented as binary vectors, which are of appropriate form for the inputs of IBCC. We
then take ntsamp such samples and use them to create a new training set of size n× ntsamp.

For prediction, we use the same procedure. We sample according to the sources’ proba-
bilistic predictions. We retrieve the final prediction as the average probabilistic prediction
over all samples. This allows the IBCC to take advantage of probabilistic predictions,
instead of simply using the class with the highest probability, as the sources’ predictions.

2.2.4. Agnostic Bayes

The agnostic Bayes approach (Lacoste et al., 2014) combines sources based on the probabil-
ity of being the best source, where best is defined in terms of some task-dependent measure.
The combined prediction is defined as

p̂i =
r∑

k=1

P (k? = k|p, t)p(k)
i ,

where P (k? = k|p, t) is the probability of source k being the best source, given the available
data (all predictions p and observed values t). In our case of categorical target variables and
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log-score performance measure, we can simplify P (k? = k|p, t) = P (∀k′ ∈ 1..r : E[l(k)] ≥
E[l(k

′)]|l) = P (k|l), where E[l(k)] is the k−th source’s expected log-score and l all the
observed log-scores (for this model, a sufficient statistic for p and t).

We draw samples from P (k|l) with bootstrap inference (this was shown to be very
effective in Lacoste et al. 2014, at least as effective as placing priors over joint risk and
performing Bayesian inference). That is, we draw a replacement set of observations and
compute the average log-score. This gives us the best source on this replacement set—one
sample from P (k|l). The process is repeated for several iterations to obtain a set of samples
that approximate P (k|l).

2.2.5. Linear Opinion Pool (LOP)

The linear opinion pool (Cooke et al., 1991) is the classical approach to combining pre-
dictions. The combined prediction p̂i is expressed as a linear combination of individual
sources

p̂i = Xiβ,

where Xi =

p(r)
i p

(r−1)
i · · · p

(1)
i p

(0)
·

 and β =
[
βr βr−1 · · · β1 β0

]T
.

The parameters βi and p
(0)
· were fit by maximizing the likelihood, subject to 0 ≤ βi ≤ 1,∑r

i=0 βi = 1, 0 ≤ p(0)
ij ≤ 1, and

∑m
j=1 p

(0)
· j = 1.

We also included a combination of LOP and MM, where the probabilistic predictions
obtained by MM are added to the sources before LOP is applied (LOP+MM).

2.2.6. Discussion of Related Work

We can divide the methods for classifier combination into two groups. Methods that aim
to estimate the performance of each classifier and then weigh their predictions by their per-
formance (LOP, agnostic-Bayes, etc.). And methods that aim to learn the latent structure
of the classifications and then provide probabilistic classifications (IBCC and extensions,
supra-Bayesian, etc.).

The former are expected to perform poorly when there is a latent structure to learn,
for example, biased classifiers or systematic errors in classifiers. On the other hand, these
methods have an advantage that they are not expected to perform discernibly worse than
the best source. The latter are the exact opposite—they can learn complex latent structure
and perform better than the first group, but can also perform extremely poorly, discernibly
worse than the best source. In Section 3 we present 5 toy data sets, which serve to show
the differences in performance of these groups, depending on the structure of the data.

The main difference between IBCC and our method (MM) lies in the conditional likeli-
hood for the true label. IBCC models sources’ predictions with a multinomial distribution,
while MM assumes a latent space of transformed predictions and models it with multivariate
normal mixtures. The advantage of this is that it allows us to model both probabilistic pre-
dictions and correlations between sources, while the computational complexity is quadratic
in the number of sources and outcomes (as opposed to DBCC, where it is exponential).
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IBCC QPI is similar to MM in that it is able to exploit probabilistic nature of predictions,
however it does not model correlations.

Nazábal et al. (2016) used a Dirichlet distribution to model probabilistic outputs of the
sources. A similar (but not equivalent) model would result if we used diagonal covariances
without mixtures in the proposed MM. Therefore the proposed MM improves on the draw-
backs of Nazábal et al. as it allows for the modeling of correlations between sources, and
additionally adds flexibility through the use of mixtures.

MM could also be interpreted as a regularized supra-Bayesian method with MVN-
mixture likelihood. The modeling of log-odds described by Lindley (1985) is equivalent
to the modeling of the transformed classifiers by MM. A major difference between the
methods is that MM does not assume the same covariances over all true labels. Further-
more, each mixture component has its own covariance matrix, which further improves the
flexibility of our method.

3. Empirical Evaluation

We empirically evaluated and compared the methods on several toy and real-world data
sets. We estimated out-of-sample log-score using train-test splits. To compare the best-
performing method with the rest, we used the differences between log-scores. Let a be the
vector of length nt of log-scores of the best performing method, b the vector of log-scores of
another method, and d = a− b. If∣∣∣∣ 1

nt

nt∑
i=1

di

∣∣∣∣ > 2

√
VAR[d]

nt
,

we argue that there is a discernible difference in performance. Details on how the data were
generated and split are provided below.

For IBCC and its extension, we selected priors that assume each class has the same prior
probability. We used the same priors (α0,j = 1) for all confusion matrices, which represents
a weak belief that the models are random. For MM we selected vague priors that put
prior belief that the mean values of transformed predictions are zero with large variances.
However, MM has proved to be somewhat robust to the prior selection. We set the same
priors for Bayesian methods over all data sets. For λ, we use uniform priors λi ∼iid U(0, 105).
We set the maximum number of mixture components for MM to 15, however this number
dynamically falls, depending on the problem, as we described in Section 2.1.

3.1. Data Sets

In this section we describe the data sets we used for empirical evaluation.

3.1.1. Toy Data Sets

Each of the 5 toy data sets is a combination of the same underlying data set and two sources
of probabilistic predictions from a set of sources with different properties. The purpose of
the toy data sets is to illustrate some of the shortcomings of the methods for combining
categorical predictions.
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The data set has a target variable with three possible outcomes. The target vari-
able’s value is generated for each sample i separately by first drawing the underlying
probability vector p∗i from Dirichlet(1.5, 0.9, 0.6) and then drawing the target value from
Categorical(p∗i ). We generated 500 samples for training and 5000 samples for testing.

We then generated the following sources of probabilities, based on the underlying prob-
ability vectors p∗:

• Random 1 & 2: The probabilities are drawn independently for each sample from
Dirichlet(1, 1, 1).

• Good 1 & 2: The probabilities are drawn independently for each sample from
Dirichlet(10p∗i ).

• Permuted 1: The probabilities are drawn independently for each sample from
Dirichlet(100p∗i ) and permuted (2, 3, 1). This results in a source that gives very
accurate probabilities, but does not correctly assign them to the possible values of the
target variable.

• Permuted 2: Identical to Good 2, but permuted (2, 3, 1).

The two sources, Source 1 and Source 2, were assigned as follows: toy A (Random
1, Random 2), toy B (Good 1, Random 1), toy C (Good 1, Good 2), toy D (Good 1,
Permuted 1), and toy E (Good 1, Permuted 2).

3.1.2. Bookies

Each sample in this data set is a football game and the four sources of probabilistic predic-
tions are four major online bookmakers. Probabilistic predictions were calculated by nor-
malizing the reciprocals of odds offered for the outcome of the game (home, draw, away).
Therefore, the target variable has 3 outcomes. The data set has 5434 samples, we used
2000 for training and 3434 for testing. Bookmakers are very good sources of probabilistic
predictions (Forrest et al., 2005) and their predictions are highly correlated—the lowest
correlation is 0.92. We do not expect any ensemble method to outperform the best source.

3.1.3. DNA

Two data sets were constructed using the StatLog DNA data set in a way similar to the
experiments in Kim and Ghahramani (2012).

DNA A: 2000 samples were partitioned into 5 partitions, 400 samples each, and a C4.5
decision tree classifier was trained on each partition. These classifiers were used to classify
the remaining 1186 samples, 400 of which were used for training and 786 for testing.

DNA B: 2000 samples were used to train 5 different classifiers: a multinomial logis-
tic regression (Source 1), linear discriminant analysis (Source 2), a decision tree classifier
(Source 3), a random forest classifier (Source 4), and a k-nearest-neighbour classifier (Source
5, k = 50). These classifiers were used to classify the remaining 1186 samples, 400 of which
were used for training and 786 for testing.
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3.2. Results

The results are shown in Table 1. No method clearly outperforms other methods over all
data sets. LOP and MM perform well on most data sets. For LOP the exceptions are data
sets with a more complex relationship between the sources’ predictions and the outcome
(toy D). And for MM the exceptions are the two simple toy data sets with a continuous
relationship between the sources’ predictions and the probability of the outcome (toy B,
toy C). MM-diag performs worse than the MM on all data sets, however, the differences are
small on average. A combination of LOP and MM nullifies the drawbacks of each individual
method and performs the best on average. Toy D, with systematic errors in otherwise good
sources, is a good example of a data set where the methods that rely on finding the best
source are inferior to models that learn the latent structure, providing a good argument for
the latter.

Agnostic Bayes will assign a lot of weight to the best source, unless it is difficult to
discern the best source. The latter is in cases where there is not a lot of data, relative
to the magnitude of the differences between the sources in terms of performance (toy A,
DNA A). Therefore, as expected, it performs well when the most accurate source performs
well (toy B, toy C, toy E, bookies), and performs poorly, when it does not (DNA B). Note
that there is no correlation between the true labels and sources in the toy A data set—the
best possible model would assign the same probabilities to all outcomes. Agnostic Bayes
performs poorly because it tries to identify the best performing model, but none of the
sources perform well. The same would happen to LOP if we did not include an intercept
term.

IBCC performs poorly on the toy data sets but performs well on the DNA data sets.
However, it is strictly outperformed by MM. The quasi-probabilistic IBCC outperforms the
IBCC on DNA data sets and performs similarly on most of the toy data sets. Furthermore,
it performs well on the toy A data set, where it is the best performing model, with the
proposed MM showing a similar level of performance. IBCC QPI therefore proved to be
better suited for probabilistic input than the IBCC, as expected. The supra-Bayesian
approach of Lindley (1985), which can be viewed as a very simple case of the proposed
approach, performs the worst on average, among all the Bayesian approaches.

As expected, all methods fail to outperform the best source on the bookies data set,
which has very accurate and highly correlated sources. This relates heavily to the theoret-
ical results mentioned in the introduction—the data set lacks diversity to exploit. Meth-
ods that do not model correlations perform exceptionally poorly. However, methods that
weigh/select sources perform at least as good as the best source.
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toy A toy B toy C toy D toy E bookies DNA A DNA B

IBCC QPI agnostic LOP MM LOP+MM Source 1 LOP+MM LOP+MM

−−−1.03± 0.005 −−−0.831± 0.009 −−−0.81± 0.008 −−−0.001± 0 −−−0.821± 0.008 −−−0.965± 0.008 −−−0.197± 0.022 −−−0.129± 0.017

MM Source 1 LOP+MM MM-diag agnostic agnostic MM MM

−−−1.031± 0.005 −−−0.831± 0.009 −−−0.811± 0.008 −−−0.002± 0 −−−0.826± 0.009 −−−0.966± 0.008 −−−0.206± 0.025 −−−0.132± 0.028

MM-diag LOP agnostic LOP+MM Source 1 LOP+MM LOP IBCC QPI

−−−1.032± 0.006 −−−0.831± 0.009 −−−0.822± 0.009 −−−0.007± 0 −−−0.826± 0.009 −−−0.967± 0.008 −−−0.22± 0.026 −−−0.134± 0.023

LOP LOP+MM Source 1 IBCC MM LOP agnostic MM-diag

−−−1.032± 0.005 −−−0.831± 0.009 −−−0.826± 0.009 −−−0.018± 0 −−−0.83± 0.007 −−−0.967± 0.007 −−−0.22± 0.02 −−−0.139± 0.027

LOP+MM Supra MM Supra LOP Source 3 MM-diag LOP

−−−1.032± 0.006 −−−0.892± 0.008 −−−0.828± 0.007 −−−0.111± 0.001 −−−0.83± 0.008 −−−0.968± 0.007 −−−0.222± 0.03 −−−0.157± 0.016

IBCC MM Source 2 IBCC QPI MM-diag MM IBCC QPI IBCC

−−−1.043± 0.006 −−−0.893± 0.006 −−−0.832± 0.009 −−−0.204± 0.001 −−−0.838± 0.007 −−−0.968± 0.008 −−−0.248± 0.033 −−−0.181± 0.033

Supra MM-diag MM-diag agnostic Supra Source 4 IBCC agnostic

−−−1.107± 0.002 −−−0.906± 0.006 −−−0.839± 0.008 −−−0.824± 0.009 −−−0.883± 0.007 −−−0.968± 0.007 −−−0.271± 0.037 −−−0.182± 0.033

agnostic IBCC Supra Source 1 IBCC QPI Source 2 Supra Source 2

−−−1.259± 0.009 −−−0.921± 0.008 −−−0.883± 0.007 −−−0.824± 0.009 −−−0.908± 0.005 −−−0.969± 0.007 −−−0.275± 0.017 −−−0.182± 0.033

Source 2 IBCC QPI IBCC QPI LOP IBCC MM-diag Source 4 Supra

−−−1.469± 0.015 −−−0.953± 0.005 −−−0.907± 0.005 −−−0.835± 0.008 −−−0.92± 0.012 −−−0.969± 0.008 −−−0.461± 0.055 −−−0.214± 0.013

Source 1 Source 2 IBCC Source 2 Source 2 IBCC QPI Source 5 Source 4

−−−1.508± 0.016 −−−1.469± 0.015 −−−0.919± 0.012 −−−3.081± 0.006 −−−1.43± 0.011 −−−0.993± 0.006 −−−0.767± 0.074 −−−0.311± 0.011

Supra Source 3 Source 3

−−−1.008± 0.007 −−−0.784± 0.075 −−−0.321± 0.046

IBCC Source 2 Source 5

−−−1.245± 0.02 −−−0.846± 0.078 −−−0.587± 0.01

Source 1 Source 1

−−−0.879± 0.079 −−−4.305± 0.717

Table 1: Estimated log-scores and standard errors on toy and real-world data sets. For each data set, the methods are ordered
in descending order of performance. Highlighted methods are not discernibly worse than the best-performing method
for that data set.
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3.3. Case Study—Prediction of Air-Pollutant Concentration

Air pollution poses a great risk for public health (World Health Organization, 2014). Fore-
casting excessive air pollution is an important task, also regulated by a EU directive (Eu-
ropean Council, 2008). In Slovenia, the Slovenian Environment Agency (ARSO) is tasked
with forecasting daily average concentration of particulate matter (PM10) and daily maxi-
mum concentration of tropospheric ozone (O3) for the same day (in the morning) and the
next day. Currently, models and human experts are used for this task. Faganeli Pucer et al.
(2018) proposed a Bayesian methodology for this problem and empirically compared several
machine learning methods and human experts. Gaussian processes performed the best on
average, but the question remains whether an ensemble method can be used to improve on
individual models. With that aim, we evaluate methods from Section 2 on four air-pollution
data sets used in Faganeli Pucer et al. (2018).

The data sets consist of measurements of daily levels of PM10 and O3 on several sta-
tions across Slovenia from 2013 to 2016. The data were provided by ARSO. According to
reporting guidelines, PM10 levels are categorized into three categories: 0-35 µg/m3, 35-50
µg/m3, greater than 50 µg/m3, and O3 levels are categorized into four categories: 0-60
µg/m3, 60-120 µg/m3, 120-180 µg/m3, greater than 180 µg/m3.

Three prediction models—Bayesian lasso, random forests, and Gaussian processes—and
human expert predictions were used to predict the levels for the same and next day, depend-
ing on covariates available at the current day. Expert predictions were non-probabilistic
(categorical). The models were trained in a time-respecting manner (predictions for 2014
were obtained by training the models on data from 2013, predictions for 2015 were ob-
tained by training the models on data from 2013 and 2014, etc.). We used two thirds of
observations for training and the rest for testing.

The empirical results for the case study are shown in Table 2. The combination of MM
and LOP performs the best over all data sets. MM and LOP are the only methods that
show no discernible differences to LOP+MM over all data sets. This provides a strong
argument for our method, compared to other methods which learn the latent structure of
the data. MM also strictly outperforms MM-diag, as expected. IBCC QPI performs well on
the PM10 data sets, however it does not outperform MM. Agnostic Bayes performs slightly
better than the best source on all data sets, however it is discernibly worse than the best
method on two data sets. The other methods are unable to outperform the best performing
individual classifier on all data sets.

The major arguments for our method are twofold. First, it is a step forward in the state-
of-the-art methods which rely on learning the latent structure of the data (IBCC, IBCC
QPI, Supra). This can be seen as it is the only such method which is never discernibly worse
than the best performing method. Second, LOP+MM performs the best on all data sets
in the case study. It also outperforms LOP on all real-world data sets, which is discernibly
better—it is highly unlikely that this is due to chance.

4. Conclusion

We proposed a new Bayesian method for combining probabilistic predictions, based on
MVN mixtures. Our method improves on the IBCC (and DBCC) as it is able to model
probabilistic classifiers, and on the work of Nazábal et al. (2016) as it also models the
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PM10 tomorrow PM10 today O3 today O3 tomorrow

LOP+MM LOP+MM LOP+MM LOP+MM

−−−0.613± 0.022 −−−0.406± 0.019 −−−0.375± 0.025 −−−0.439± 0.027

MM MM LOP LOP

−−−0.613± 0.023 −−−0.409± 0.021 −−−0.378± 0.024 −−−0.442± 0.028

MM-diag LOP MM MM

−−−0.62± 0.023 −−−0.419± 0.019 −−−0.389± 0.028 −−−0.446± 0.029

IBCC QPI MM-diag agnostic agnostic

−−−0.62± 0.024 −−−0.419± 0.021 −−−0.393± 0.027 −−−0.463± 0.028

LOP IBCC QPI Source 1 Source 1

−−−0.634± 0.02 −−−0.436± 0.024 −−−0.393± 0.027 −−−0.463± 0.028

agnostic agnostic MM-diag MM-diag

−−−0.684± 0.026 −−−0.442± 0.023 −−−0.393± 0.027 −−−0.471± 0.034

Source 2 Source 1 IBCC QPI IBCC QPI

−−−0.684± 0.026 −−−0.442± 0.023 −−−0.394± 0.028 −−−0.49± 0.032

Source 1 Source 2 Source 2 Source 2

−−−0.703± 0.019 −−−0.516± 0.015 −−−0.462± 0.02 −−−0.508± 0.021

Supra Supra Source 3 Source 3

−−−0.732± 0.017 −−−0.533± 0.018 −−−0.511± 0.033 −−−0.53± 0.022

IBCC Source 3 IBCC Supra

−−−0.791± 0.038 −−−0.641± 0.041 −−−0.563± 0.053 −−−0.808± 0.031

Source 3 IBCC Supra IBCC

−−−0.896± 0.042 −−−0.673± 0.041 −−−0.683± 0.036 −−−0.83± 0.067

Source 4 Source 4 Source 4 Source 4

−−−2.23± 0.09 −−−1.578± 0.081 −−−1.18± 0.101 −−−1.371± 0.108

Table 2: Estimated log-scores and standard errors on air-pollution data sets. For each data
set, the methods are ordered in descending order of performance. Highlighted
methods are not discernibly worse than the best-performing method for that data
set. The order of magnitude of the differences is in percent, which shows a practical
significance in the usefulness of the best performing methods.
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correlations between the classifiers. We derived an efficient Gibbs sampler for our method,
along with a regularization method for robustness.

The results on toy data sets highlighted that there is no single method that performs well
over several diverse data sets. However, our method outperforms related Bayesian methods
on all but one real-world data sets. The method proved to be especially useful in the case
study, where we combined three machine learning methods and human expert predictions
for air-pollutant concentration forecasting. This case study illustrates the main use-case
for our method—a relatively small number of probabilistic or crisp (0/1) sources, which
are potentially flawed (biased, etc.) and correlated. Our method is also very robust and
requires practically no tuning. Additionally, a combination of linear opinion pool and our
method proved to be very successful, outperforming all methods on all but one real-world
data sets, and also being robust on the difficult toy data sets.

Our method still has some drawbacks, however. The original model is based on full
covariance matrices, so the number of the parameters grows quadratically with the number
of possible outcomes and the number of classifiers. While this is an improvement over the
exponential growth in the number of classifiers of the DBCC model, it still leads to very
complex models in high dimensions. One possibility of at least partially regulating this
drawback is to constrain the covariance matrices to being diagonal—as in our empirical
evaluation. Alternatively, we could assume the same covariance matrix over all mixture
components in a true label, or assume the same variances/covariances over several predic-
tions. We leave the analysis of possible constraints for future work. As part of future work,
we will also explore if the predictive performance or robustness of the method could be im-
proved by using Gaussian processes and/or variational autoencoders instead of multivariate
normal mixtures to model the sources’ transformed probabilities. Additionally, we could
limit the computational complexity by using sparse Gaussian processes.

As is the case in other areas of learning, there is no single best method of combining
probabilistic predictions. In some cases, the best approach is to combine the sources based
on their predictive performance or to directly maximize the predictive performance of the
combination, such as agnostic Bayes or the linear opinion pool. However, sometimes there
are more complex relationships between classifiers and the target variable and methods that
are able to learn these patterns will perform better. In such cases, our method is in several
ways a superior alternative to existing Bayesian approaches. It is able to model complex
relationships, while still being robust and easy to tune, thus providing us with a useful
approach for combining probabilistic predictions.
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