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Abstract

Algorithmic decision making is employed in an increasing number of real-world applications
to aid human decision making. While it has shown considerable promise in terms of im-
proved decision accuracy, in some scenarios, its outcomes have been also shown to impose
an unfair (dis)advantage on people from certain social groups (e.g., women, blacks). In
this context, there is a need for computational techniques to limit unfairness in algorithmic
decision making. In this work, we take a step forward to fulfill that need and introduce
a flexible constraint-based framework to enable the design of fair margin-based classifiers.
The main technical innovation of our framework is a general and intuitive measure of deci-
sion boundary unfairness, which serves as a tractable proxy to several of the most popular
computational definitions of unfairness from the literature. Leveraging our measure, we
can reduce the design of fair margin-based classifiers to adding tractable constraints on
their decision boundaries. Experiments on multiple synthetic and real-world datasets show
that our framework is able to successfully limit unfairness, often at a small cost in terms
of accuracy.

Keywords: Supervised learning, margin-based classifiers, fairness, discrimination, dis-
parate impact.

1. Introduction

Algorithmic decision making systems are assisting, or in some cases even replacing, hu-
man decision making in an increasing number of application domains. Examples of such
domains include credit approval (FICO, 2017), criminal risk assessment (Perry, 2013), hir-
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ing (Posse, 2016; Taylor, 2016) and education (Romero and Ventura, 2011). By leveraging
vast amounts of (training) data and modern machine learning methods, algorithmic deci-
sion systems are able to provide highly accurate predictions, often surpassing even human
accuracy (Kleinberg et al., 2017a; Liu et al., 2017). However, recent studies by civil or-
ganizations (Bhandari, 2016), governments (Podesta et al., 2014; Muñoz et al., 2016), and
researchers (Sweeney, 2013) alike have raised concerns about the unfairness of these algo-
rithmic decision systems towards people from certain social groups (e.g., women, blacks).
Importantly, in various countries, these concerns are often grounded on anti-discrimination
laws which prohibit unfair treatment of people based on one or more sensitive features, such
as gender and race (Civil Rights Act, 1964; Barocas and Selbst, 2016).

To overcome the above concerns, a number of recent studies in the emerging field of
ethical machine learning have proposed mechanisms to ensure that algorithmic decision
systems do not lead to unfair outcomes (Kamiran and Calders, 2009; Corbett-Davies et al.,
2017; Hardt et al., 2016; Feldman et al., 2015; Zafar et al., 2017b,a; Zemel et al., 2013;
Dwork et al., 2012). In doing so, they have have measured the (un)fairness of a decision
making process through the distribution of its outcomes among people from different sensi-
tive feature groups (e.g., men, women). More specifically, they have typically adopted one
of the following three notions of (un)fairness: 1

— Disparate treatment : a decision making process suffers from disparate treatment if
its outcomes change based on a change in the sensitive feature value with all other features
being the same.

— Disparate impact : a decision making process suffers from disparate impact if it grants
disproportionately large fraction of beneficial (or positive classification) outcomes to certain
sensitive feature groups (e.g., men, women).

— Disparate mistreatment : a decision making process suffers from disparate mistreat-
ment if its accuracy (or error rate) is different for different sensitive feature groups.

However, the mechanisms proposed in prior studies typically lack flexibility with respect
to one or more of the following aspects:

(i) They are specifically designed for only one of the above notions. As a consequence,
they cannot accommodate more than one of them simultaneously (e.g., disparate
treatment and disparate impact).

(ii) They cannot ensure fairness with respect to multiple sensitive features simultaneously
(e.g., gender and race).

(iii) They are only limited to a narrow range of classification models (e.g., logistic regres-
sion).

In this work, we propose a flexible framework to design a variety of fair classifiers that
do not suffer from the above limitations. More specifically, for any convex boundary-based
classifier, our framework defines an intuitive measure of decision boundary unfairness: the
covariance between the sensitive features and the signed distance between the (non sensi-
tive) feature vectors and the decision boundary of the classifier for a subset the subjects
which depends on the fairness notion of interest. This measure can be readily incorporated
into the classifier formulation in the form of convex of convex-concave constraints, one per
sensitive feature or fairness notion, which can be efficiently solved using well-known meth-

1. As we later discuss in Section 2, the same notions are often referred to by different names by different
studies.

2



Fairness Constraints: A Flexible Approach for Fair Classification

ods (Boyd and Vandenberghe, 2004; Shen et al., 2016). Interestingly, our framework also
allows for a dual formulation which maximizes fairness under accuracy constraints and, as a
consequence, it ensures compliance with the business necessity clause of anti-discrimination
doctrines (Barocas and Selbst, 2016), an aspect not considered by prior studies. Experi-
ments on multiple synthetic and real-world datasets show that our framework is able to
successfully limit disparate treatment, disparate impact and disparate mistreatment, often
at a small cost in terms of accuracy, and it provides more flexibility than state-of-the-art
methods (see Table 3).

The rest of the paper is organized as follows. First, we first revisit several well-known
fairness notions from the literature and discuss the type of scenarios each notion is most
suitable for (Section 2). Then, we formally state the problem of fairness-aware classification
(Section 3) and describe our framework (Section 4). Later, we experiment with several
datasets, including comparisons with related methodologies to highlight the effectiveness of
our mechanism in controlling unfairness (Section 5). Finally, we conclude with a review of
the related work on unfairness in algorithmic decision making and strategies proposed to
mitigate unfairness (Section 6) as well as a discussion of future work (Section 7).

2. Background on different notions of (un)fairness

In this section, we revisit three of the most popular notions of fairness used in the machine
learning literature: disparate treatment, disparate impact, and disparate mistreatment.
More specifically, we first elaborate on each of these notions separately in the context of
automated decision making systems and then highlight the differences between them.

— Disparate treatment. A decision making system suffers from disparate treatment if
it provides different outputs for groups of people with the same (or similar) values of non-
sensitive features but different values of sensitive features (Barocas and Selbst, 2016). In
other words, (partly) basing the decision outcomes on the sensitive feature value amounts
to disparate treatment. 2 This notion has been also referred to as direct discrimination (Pe-
dreschi et al., 2008).

Figure 1 provides examples of binary classifiers with and without disparate treatment
in a stop-and-frisk (Gelman et al., 2007) application. In all cases, the classifiers need to
decide whether to stop a pedestrian on the suspicion of possessing an illegal weapon based
on a set of features such as bulge in clothing and proximity to a crime scene. The “ground
truth” on whether a pedestrian actually possesses an illegal weapon is also shown. We deem
classifiers C2 and C3 to be unfair due to disparate treatment since C2’s (C3’s) decisions
for Male 1 and Female 1 (Male 2 and Female 2) are different even though they have the

2. Technically, the disparate treatment doctrine tries to counter explicit as well as intentional discrimina-
tion (Barocas and Selbst, 2016). It follows from the specification of disparate treatment that a decision
maker with an intent to discriminate could try to disadvantage a group with a certain sensitive feature
value (e.g., a specific race group) not by explicitly using the sensitive feature itself, but by intentionally
basing decisions on a correlated feature (e.g., the non-sensitive feature location might be correlated with
the sensitive feature race). This practice is often referred to as redlining in the US anti-discrimination
law and also qualifies as disparate treatment (Gano, 2017). However, such hidden intentional disparate
treatment maybe be hard to detect, and some authors argue that disparate impact might be a more
suitable framework for detecting such covert discrimination (Siegel, 2014). Hence, in this paper, when
discussing disparate treatment, we will focus only on explicit disparate treatment.
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User Attributes Ground Truth Classifier’s Disp. Disp. Disp.

Sensitive Non-sensitive (Has Weapon) Decision to Stop Treat. Imp. Mist.

Gender Clothing Bulge Prox. Crime C1 C2 C3

Male 1 1 1 3 1 1 1
C1 7 3 3

Male 2 1 0 3 1 1 0
Male 3 0 1 7 1 0 1

C2 3 7 3
Female 1 1 1 3 1 0 1
Female 2 1 0 7 1 1 1

C3 3 7 7
Female 3 0 0 3 0 1 0

Figure 1: Decisions of three fictitious classifiers (C1, C2 and C3) on whether (1) or not (0)
to stop a pedestrian on the suspicion of possessing an illegal weapon. Gender is a sensitive
attribute, whereas the other two attributes (suspicious bulge in clothing and proximity to a
crime scene) are non-sensitive. Ground truth on whether the person is actually in possession
of an illegal weapon is also shown. C1 has no disparate treatment. It has disparate impact
because it stops disproportional fractions of males and females (1.0 and 0.66, respectively).
It has disparate mistreatment because it has different false negative rates (0.0 and 0.5,
respectively) for males and females. C2 has disparate treatment since, of a male and a
female having same non-sensitive attributes (Male 1 and Female 1), it stops only one of
them. It has no disparate impact, since it stops equal fractions (0.66) of males and females.
It has disparate mistreatment because of different false positive (0.0 and 1.0, respectively)
and false negative rates (0.0 and 0.5, respectively) for males and females. C3 has disparate
treatment and no disparate impact. It has no disparate mistreatment because both false
positive rates (1.0) and false negative rates (0.5) for males and females are equal.

same values of non-sensitive features. On the other hand, classifier C1 does not suffer from
disparate treatment since, with all feature values except gender being equal, its decisions
are identical.

— Disparate impact. A decision making system suffers from disparate impact if it pro-
vides outputs that benefit (hurt) a group of people sharing a value of a sensitive feature
more frequently than other groups of people (Barocas and Selbst, 2016). This notion has
been also referred to as statistical parity (Corbett-Davies et al., 2017) or demographic par-
ity (Dwork et al., 2012).

Similarly as with disparate treatment, Figure 1 provides examples of binary classifiers
with and without disparate impact in a stop-and-frisk application. Under the assumption
that a pedestrian benefits from a decision of not being stopped, we deem classifier C1 to be
unfair due to disparate impact because the fraction of males and females that were stopped
are different (1.0 and 0.66, respectively), where the latter benefit from a decision of not
being stopped. On the other hand, classifiers C2 and C3 do not suffer from disparate
impact because the fractions of males and females that were stopped are the same (0.66).

— Disparate mistreatment. A decision making system suffers from disparate mistreat-
ment if it achieves different classification accuracy (or conversely, error rate) for groups of
people sharing different values of a sensitive feature (Zafar et al., 2017a). This notion has
been also referred to as equality of opportunity (Hardt et al., 2016) and predictive equal-
ity (Corbett-Davies et al., 2017). In addition to overall classification accuracy, this notion
has been also particularized to different types of misclassifications, i.e., false positives and
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false negatives. In that context, a decision making system suffers from disparate mistreat-
ment if individual misclassification rates (e.g., false positive rate, false negative rate) are
different for groups of people sharing different values of a sensitive feature.

In Figure 1, we deem classifiers C1 and C2 to be unfair due to disparate mistreatment
since their rate of erroneous decisions for males and females are different: C1 has different
false negative rates for males and females (0.0 and 0.5, respectively), whereas C2 has dif-
ferent false positive rates (0.0 and 1.0) as well as different false negative rates (0.0 and 0.5)
for males and females. Finally, classifier C3 does not suffer from disparate mistreatment
because it has the same false negative and false positive rates for males and females.

Differences among (un)fairness notions. The above (un)fairness notions account for
either direct (or intentional) and indirect (or unintentional) unfairness (Altman, 2016).
More specifically, disparate treatment accounts for direct unfairness, i.e., a situation where
a decision making process directly (or intentionally) uses the sensitive feature information to
put a group of people sharing a value of a sensitive feature on relative disadvantage. In this
way, removing disparate treatment corresponds to a very intuitive notion of fairness: two
otherwise similar persons should not be treated differently solely because of the difference
in gender. On the other hand, disparate impact and disparate mistreatment account for
indirect unfairness, i.e., a situation where the decision making process can indirectly or
unintentionally leverage the correlation between sensitive features and class labels to put a
sensitive feature group at relative disadvantage (through low beneficial outcome rate under
disparate impact and through high misclassification rate under disparate mistreatment).

Moreover, while disparate impact and disparate mistreatment both account for indi-
rect unfairness, their application scenarios strongly differ. Unlike in the case of disparate
mistreatment, the notion of disparate impact is independent of the “ground truth” infor-
mation about the decisions, i.e., whether or not the decisions are correct or valid. Thus, the
notion of disparate impact is particularly appealing in application scenarios where ground
truth information for decisions does not exist and the historical decisions used during train-
ing are not reliable and thus cannot be trusted (Barocas and Selbst, 2016). Unreliability
of historical decisions for automated decision making systems is particularly concerning
in scenarios like recruiting or loan approvals, where biased judgments by humans in the
past may be used when training classifiers for the future. In such application scenarios, it is
hard to distinguish correct and incorrect decisions, making it hard to assess or use disparate
mistreatment as a notion of fairness.

However, in scenarios where ground truth information for decisions can be obtained, dis-
parate impact can be quite misleading as a notion of fairness. That is, in scenarios where
the validity of decisions can be reliably ascertained, it would be possible to distinguish dis-
proportionality in decision outcomes for sensitive groups that arises from justifiable reasons
(e.g., qualification of the candidates) and disproportionality that arises for non-justifiable
reasons (i.e., discrimination against certain groups). By requiring decision outcomes to
be proportional, disparate impact risks introducing reverse-discrimination against qualified
candidates. Such practices have previously been deemed unlawful (e.g., Ricci vs. DeSte-
fano, 2009 ). In contrast, when the correctness of decisions can be determined, disparate
mistreatment can not only be accurately assessed, but also avoids reverse-discrimination,
making it a more appealing notion of fairness (Hardt et al., 2016; Zafar et al., 2017a).

5



Zafar, Valera, Gomez-Rodriguez, Gummadi

3. Fairness in classification

In a binary classification task, 3 one aims to find a mapping function f(x) between user
feature vectors x ∈ Rd and class labels y ∈ {−1, 1}. This task is achieved by utilizing a
training set, D = {(xi, yi)}Ni=1, to construct a mapping that works well on an unseen test set.
For decision boundary-based classifiers, finding this mapping usually reduces to building a
decision boundary in feature space that separates users in the training set according to their
class labels. One typically looks for a decision boundary, defined by a set of parameters θ∗,
that achieves the greatest classification accuracy in a test set, by minimizing a loss function
over a training set L(θ), i.e., θ∗ = argminθ L(θ). Then, given an unseen feature vector
xi from the test set, the classifier predicts the label ŷi = fθ(xi) = 1 if dθ∗(xi) ≥ 0 and
ŷi = −1 otherwise, where dθ∗(x) denotes the signed distance from the feature vector x to
the decision boundary.

In the context of fairness in binary classification, each user also has an associated sen-
sitive feature z ∈ {0, 1}4 and the goal is finding a mapping (or decision boundary) that
provides both accurate predictions and fairness guarantees. More formally, we can express
the absence of disparate treatment, disparate impact and disparate mistreatment in a binary
classifier as follows:

1. No disparate treatment. A binary classifier does not suffer from disparate treatment
if the probability that the classifier outputs a specific value of ŷ given a feature vector x
does not change after observing the sensitive feature z, i.e.,

P (ŷ|x, z) = P (ŷ|x). (3.1)

2. No disparate impact. A binary classifier does not suffer from disparate impact if the
probability that a classifier assigns a user to the positive class, ŷ = 1, is the same for both
values of the sensitive feature z, i.e.,

P (ŷ = 1|z = 0) = P (ŷ = 1|z = 1). (3.2)

Notice that neither disparate treatment nor disparate impact depend on the subjects’ ground
truth label (y).

3. No disparate mistreatment. A binary classifier does not suffer from disparate mis-
treatment if the misclassification rates for different groups of people having different values
of the sensitive feature z are the same. Table 1 describes various ways of measuring misclas-
sification rates. Specifically, misclassification rates can be measured as fractions over the
class distribution in the ground truth labels, i.e., as false positive and false negative rates, or
over the class distribution in the predicted labels, i.e., as false omission and false discovery
rates. 5 Consequently, the absence of disparate mistreatment in a binary classification task

3. For simplicity, we consider binary classification tasks in this work. However, our ideas can be easily
extended to m-ary classification.

4. For ease of exposition, we assume z to be unidimensional and binary, however, our setup can be easily
generalized to categorical as well as multiple sensitive features.

5. In prediction tasks where a positive prediction entails a large cost (e.g., cost involved in the treatment of
a disease), one might be more interested in measuring error rates as fractions over the class distribution
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Predicted Label
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Table 1: In addition to the overall misclassification rate, error rates can be measured in
two different ways: false negative rate and false positive rate are defined as fractions over
the class distribution in the ground truth labels, or true labels. On the other hand, false
discovery rate and false omission rate are defined as fractions over the class distribution in
the predicted labels.

can be specified with respect to the different misclassification measures as follows:

— Overall misclassification rate (OMR):

P (ŷ 6= y|z = 0) = P (ŷ 6= y|z = 1), (3.3)

— False positive rate (FPR):

P (ŷ 6= y|y = −1, z = 0) = P (ŷ 6= y|y = −1, z = 1), (3.4)

— False negative rate (FNR):

P (ŷ 6= y|y = 1, z = 0) = P (ŷ 6= y|y = 1, z = 1), (3.5)

— False omission rate (FOR):

P (ŷ 6= y|ŷ = −1, z = 0) = P (ŷ 6= y|ŷ = −1, z = 1), (3.6)

— False discovery rates (FDR):

P (ŷ 6= y|ŷ = 1, z = 0) = P (ŷ 6= y|ŷ = 1, z = 1). (3.7)

Remarks. We would like to note that the formal criteria to avoid disparate impact and
disparate mistreatment, as given by Eqs.(3.2–3.7), represent equality in certain group-
conditional probabilities for the two sensitive feature groups, i.e., P (·|z = 0) and P (·|z = 1).
For example, the disparate impact criterion in Eq. (3.2) requires the group-conditional
probabilities of positive class outcomes to be the same for users with z = 0 and z = 1,
whereas the disparate mistreatment criterion in Eq. (3.3) requires the group-conditional

in the predicted labels, rather than over the class distribution in the ground truth labels, e.g., to ensure
that the false discovery rates, instead of false positive rates, for all groups are the same.
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probabilities of users being misclassified to be the same. In Section 4, we will show that
these group-conditional equalities can be relaxed by various decision boundary covariances
to facilitate efficient training of fair classifiers.

Finally, we would also like to highlight that some recent works have explored the cost
of achieving fairness in a decision making process and pointed out some inherent tensions
between fairness and accuracy (Chouldechova, 2016; Corbett-Davies et al., 2017; Kleinberg
et al., 2017b; Menon and Williamson, 2017). In fact, this cost can become prohibitively high
if one aims to achieve multiple fairness criteria simultaneously. For example, Chouldechova
(2016) and Kleinberg et al. (2017b) have recently shown that, when the fraction of users with
positive class labels differ between members of different sensitive attribute value groups, it
is impossible to construct classifiers that are equally well-calibrated (where well-calibration
essentially measures the false discovery and false omission rates of a classifier) and also sat-
isfy the equal false positive and false negative rate criterion (except for a “dumb”, or null,
classifier that assign all examples to a single class). Pleiss et al. (2017) further expand on
this impossibility result. These results suggest that satisfying all five criteria of disparate
mistreatment (Table 1) simultaneously is impossible when the underlying distribution of
data is different for different groups. Similarly, Kleinberg et al. (2017b) show that when the
fraction of users with positive class labels differ between members of different sensitive at-
tribute value groups, it is impossible to satisfy disparate impact and disparate mistreatment
simultaneously—where disparate mistreatment is defined in terms of false positive and false
negative rates, in terms of false discovery and false omission rates, or both. However, in
practice, it may still be interesting to explore the best, even if imperfect, extent of fairness
a classifier can achieve.

4. Our fair classification framework

In this section, we present our framework to design boundary-based classifiers which are
free of disparate treatment, disparate impact and disparate mistreatment, as defined in
Section 3.

4.1. Fairness criteria as constraints during training

To design a fair convex boundary-based classifier, one can think of including fairness con-
straints during training. More specifically, minimizing the corresponding loss function under
fairness constraints, i.e.,

minimize L(θ)
}

Classifier loss function

subject to P (.|z = 0) = P (.|z = 1)
}

Fairness constraints, (4.1)

where the probabilities in the constraint(s) can be replaced with the respective disparate
impact and disparate mistreatment criteria in Eqs. (3.2–3.7). Here, note that, if z /∈ x
(i.e., x and z consist of disjoint feature sets), the resulting classifier does not suffer from
disparate treatment since z is not used during test (i.e., at decision time).

Due to its flexibility, the above formulation exhibits several advantages:
(i) it can satisfy both disparate impact and (any version of) disparate mistreatment by

including the corresponding constraints. Disparate treatment can be achieved by
excluding the sensitive features z from x so that they are not used during test.
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(ii) it can accommodate any convex decision boundary based classifier.
(iii) it can ensure fairness with respect to multiple sensitive features (e.g., gender, race)

by including constraints for each sensitive feature separately.

Unfortunately, solving the formulation given by Eq. (4.1) is very challenging. First,
for many such classifiers (e.g., SVM), the probabilities in Eqs. (3.2–3.7) are a non-convex
function of the classifier parameters θ, therefore leading to non-convex formulations, which
are difficult to solve efficiently. Second, as long as the user feature vectors lie on the same
side of the decision boundary, the probabilities are invariant to changes in the decision
boundary. In other words, the probabilities are functions having saddle points. The presence
of saddle points furthers complicate the procedure for solving non-convex optimization
problems (Dauphin et al., 2014).

To overcome these challenges, we next introduce a relaxation of the group-conditional
probability constraints given by Eqs. (3.2–3.7) using a novel covariance measure of decision
boundary unfairness.

4.2. Designing fair classifiers using decision boundary covariances

In this section, we first introduce our covariance measure of decision boundary unfairness
in the context of disparate impact, use this measure to design classifiers free of disparate
impact, and then generalize our measure to disparate mistreatment.

4.2.1. Disparate impact

We measure the decision boundary (un)fairness due to disparate impact by means of the
covariance between the users’ sensitive attribute z and the signed distance from the users’
feature vectors to the decision boundary dθ(x), i.e.,

CovDI(z, dθ(x)) = E[(z − z̄)dθ(x)]− E[(z − z̄)]d̄θ(x) ≈ 1

N

∑
(x,z)∈D

(z − z̄) dθ(x), (4.2)

where E[(z − z̄)]d̄θ(x) cancels out since E[(z − z̄)] = 0. Note that, if a decision boundary
satisfies Eq. (3.2), i.e., P (dθ(x) ≥ 0|z = 0) = P (dθ(x) ≥ 0|z = 1), then the (empirical)
covariance defined above will be (approximately) zero (for a sufficiently large training set)6.
Moreover, in contrast to the group-conditional probabilities given by Eq. (3.2) the decision
boundary covariance in Eq. (4.2) is a convex function with respect to the decision boundary
parameters θ because dθ(x) is convex with respect to θ for all linear, convex boundary-
based classifiers. 7 Hence, it can be easily included in the formulation of these classifiers
without increasing the complexity of their training.

6. Note that the converse is not true, that is why we call our covariance measure a proxy.
7. For non-linear convex boundary-based classifiers like non-linear SVM, the equivalent of dθ(x) (via Rep-

resenter Theorem) is still convex in the corresponding reproducing kernel Hilbert space as we will discuss
shortly.
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More specifically, to train a classifier free of disparate impact, one can replace the
(intractable) constraint in Eq. (4.1) by an alternative constraint including the decision
boundary covariance constraint as follows:

minimize L(θ)
subject to 1

N

∑
(x,z)∈D (z − z̄) dθ(x) ≤ c,

1
N

∑
(x,z)∈D (z − z̄) dθ(x) ≥ −c,

(4.3)

where c ∈ R+ is a given threshold, which trades off accuracy and unfairness due to dis-
parate impact. Furthermore, note that since the above optimization problem is convex, our
scheme ensures that the trade-off between the classifier loss function and decision boundary
covariance is Pareto optimal.

When considering multiple sensitive features (e.g., gender, race), one can include con-
straints for each sensitive feature separately. For polyvalent sensitive features having k ≥ 2
values, one can first convert the sensitive feature into k binary sensitive features using
one hot encoding, and then add constraints for each of the k sensitive features. To avoid
“fairness-gerrymandering” (Kearns et al., 2018) when considering multiple sensitive fea-
tures, one could construct all possible combinations of the sensitive feature values (e.g.,
white man, black women) and add constraints for each combination separately.

4.2.2. Disparate Mistreatment

We can naturally extend our covariance measure to (un)fairness due to disparate mistreat-
ment. More specifically, for the case disparate mistreatment with respect to the overall
misclassification rate, we compute the covariance between the users’ sensitive attributes
and the signed distance between the feature vectors of misclassified users and the classifier
decision boundary, i.e.,

CovOMR(z, gθ(y,x)) = E[(z − z̄)(gθ(y,x)− ḡθ(y,x))] ≈ 1

N

∑
(x,y,z)∈D

(z − z̄) gθ(y,x), (4.4)

where gθ(y,x) = min(0, ydθ(x)) and the term E[(z− z̄)]ḡθ(x) cancels out since E[(z− z̄)] =
0. As in the case of disparate impact, if a decision boundary satisfies Eq. (3.3), then the
(empirical) covariance defined above will be (approximately) zero (for a sufficiently large
training set) and we can train a classifier free of disparate mistreatment with respect to
overall misclassification rate by replacing the (intractable) constraint in Eq. (4.1) by an
alternative constraint as follows:

minimize L(θ)
subject to 1

N

∑
(x,y,z)∈D (z − z̄) gθ(y,x) ≤ c,

1
N

∑
(x,y,z)∈D (z − z̄) gθ(y,x) ≥ −c,

(4.5)

where c ∈ R+ is a given threshold, which trades off accuracy and unfairness due to dis-
parate mistreatment. Similarly, we can define the above covariance measure for disparate
mistreatment with respect to false positive rates, false negative rates, false omission rates

10



Fairness Constraints: A Flexible Approach for Fair Classification

or false discovery rates. For example, for false positive rates, one needs to consider the set
of misclassified users with (ground-truth) negative labels (D−), i.e.,

CovFPR(z, gθ(y,x)) ≈ 1

N−

∑
(x,y,z)∈D−

(z − z̄) gθ(y,x), (4.6)

where N− represents the size of D−.
In contrast with the covariance measure in the case of disparate impact, defined by

Eq. (4.2), the above covariance measures are not convex. Fortunately, the covariance con-
straints for disparate mistreatment with respect to overall misclassification rates, false pos-
itive rates and false negative rates can be easily converted into convex-concave constraints,
which can be handled efficiently (Shen et al., 2016), as follows. Consider the constraints in
Eq. (4.5), i.e., ∑

(x,y,z)∈D

(z − z̄) gθ(y,x) ∼ c,

where ∼ denotes ‘≥’ and ‘≤’ and, without loss of generality, we just left out the constant
term 1

N . Then, we can split the sum in the above expression into two terms:∑
(x,y)∈D0

(0− z̄) gθ(y,x) +
∑

(x,y)∈D1

(1− z̄) gθ(y,x) ∼ c, (4.7)

where D0 and D1 are the subsets of the training dataset D taking values z = 0 and z = 1,
respectively. Define N0 = |D0| and N1 = |D1|, then one can write z̄ = (0×N0)+(1×N1)

N = N1
N

and rewrite Eq. (4.7) as:

−N1

N

∑
(x,y)∈D0

gθ(y,x) +
N0

N

∑
(x,y)∈D1

gθ(y,x) ∼ c,

which, given that gθ(y,x) is convex in θ, results into a convex-concave (or, difference of
convex) function. Finally, we can rewrite the problem defined by (4.5) as:

minimize L(θ)

subject to −N1
N

∑
(x,y)∈D0

gθ(y,x) + N0
N

∑
(x,y)∈D1

gθ(y,x) ≤ c
−N1
N

∑
(x,y)∈D0

gθ(y,x) + N0
N

∑
(x,y)∈D1

gθ(y,x) ≥ −c,
(4.8)

which is a Disciplined Convex-Concave Program (DCCP) for any convex loss L(θ), and
can be efficiently solved using well-known heuristics (Shen et al., 2016). Note that the
non-convexity of the formulation in Eq. (4.8) implies that the resulting tradeoff between
the classifier loss function and decision boundary covariance is not guarenteed to be Pareto
optimal. This is in contrast with the convex formulation in Eq. (4.3). However, as we show
via comparisons with related methods in Section 5.2.2, Eq. (4.8) can still lead to competitive
results in comparison with the state-of-the-art.

Proceeding similarly, we can convert the covariance constraints for disparate mistreat-
ment with respect to false positive rates and false negative rates to convex-concave con-
straints. For example, Eq. (4.1) can be rewritten to impose equality in false positive rates
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as:
minimize L(θ)

subject to
−N−

1
N−

∑
(x,y)∈D−

0
gθ(y,x) +

N−
0

N−
∑

(x,y)∈D−
1
gθ(y,x) ≤ c

−N−
1

N−
∑

(x,y)∈D−
0
gθ(y,x) +

N−
0

N−
∑

(x,y)∈D−
1
gθ(y,x) ≥ −c,

(4.9)

where D−i is the subset of the training data with z = i and y = −1, and N−i = |D−i |. Note
that unlike in Zafar et al. (2017a), we define the false positive rate covariance (Eq. (4.6))
only over the ground truth negative dataset instead of the whole dataset. In cases where
N−

0
N0
6= N−

1
N1

(or in other words, the base-rates are different for the two sensitive feature
groups), the false positive rate covariance as defined by Zafar et al. (2017a) would not fully
remove disparate mistreatment.

Finally, while the covariance constraints for disparate mistreatment with respect to false
omission and false discovery rates can be readily defined, the corresponding constraints
cannot be easily converted into convex-concave constraints. Handling such constraints effi-
ciently is left as an interesting venue for future work.

4.3. Accounting for the business necessity clause

In the previous section, we have used covariance constraints to design classifiers that max-
imize accuracy under fairness constraints. However, if the underlying correlation between
the class labels and the sensitive attributes in the training set is very high, enforcing these
constraints may results in underwhelming performance (accuracy) and thus be unaccept-
able in terms of business objectives. This is particularly concerning in the case of disparate
impact, where a “business necessity” clause has been argued for—an employer would need
to ensure that the decision making causes least possible disparate impact under the given
performance (accuracy) constraints (Barocas and Selbst, 2016).

Fortunately we can account for the above mentioned “business necessity” clause in dis-
parate impact using an alternative formulation that maximizes fairness (minimizes disparate
impact) subject to accuracy constraints. More specifically, we can find the decision bound-
ary parameters θ by minimizing the corresponding (absolute) decision boundary covariance
over the training set under constraints on the classifier loss function, i.e.:

minimize | 1
N

∑N
i=1 (zi − z̄) dθ(xi)|

subject to L(θ) ≤ (1 + γ)L(θ∗),
(4.10)

where L(θ∗) denotes the optimal loss over the training set provided by the unconstrained
classifier and γ ≥ 0 specifies the maximum additional loss with respect to the loss provided
by the unconstrained classifier. Here, we can ensure maximum fairness with no loss in
accuracy by setting γ = 0.

Remarkably, in many classifiers, including logistic regression and SVMs, the loss function
(or the dual of the loss function) is additive over the points in the training set, i.e., L(θ) =∑N

i=1 Li(θ), where Li(θ) is the individual loss associated with the i-th point in the training
set. Moreover, the individual loss Li(θ) typically tells us how close the predicted label
f(xi) is to the true label yi, by means of the signed distance to the decision boundary.
Therefore, one may think of incorporating loss constraints for a certain set of users, and
consequently, prevent individual users originally classified as positive (by the unconstrained
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classifier) from being classified as negative by the constrained classifier. To do so, we find
the decision boundary parameters θ as:

minimize | 1
N

∑N
i=1 (zi − z̄) dθ(xi)|

subject to Li(θ) ≤ (1 + γi)Li(θ
∗) ∀i ∈ {1, . . . , N}, (4.11)

where Li(θ
∗) is the individual loss associated to the i-th user in the training set provided

by the unconstrained classifier and γi ≥ 0 is her allowed additional loss.

The problem formulation in Eq. (4.11) could be used to ensure that certain set of
users who are correctly classified by the unconstrained classifier are not misclassified by
the fairness-constrained classifier (e.g., to make sure that applying fairness constraints does
not lead to egregious misclassification of certain users). However, note that, in comparison
with Eq. (4.10), Eq. (4.11) involves a tighter set of constraints—it aims to bound individual
users’ losses as opposed to the aggregate loss over all the users. As a result, Eq. (4.11)
could lead to larger drops in accuracy for the same level of fairness (refer to Figure 10 for
an example).

One could also think of extending the formulation of disparate mistreatment-free clas-
sification given by Eq. (4.8) to include a similar business necessity clause. However, such
a formulation would result in an optimization problem—with a convex-concave objective
and convex constraints—that is currently not supported by the standard convex-concave
solvers (Shen et al., 2016). Extending these solvers to cater to such problems, or refor-
mulating the optimization problem and solving it with alternative optimizers (e.g., using
evolutionary multi-objective optimization as in Quadrianto and Sharmanska (2017)) would
be an interesting direction for future work.

4.4. Examples

In this section, we illustrate how to design fair logistic regression classifiers and linear and
nonlinear SVMs using our covariance measures.

Logistic regression free of disparate impact. In logistic regression classifiers, one maps
the feature vectors xi to the class labels yi by means of a probability distribution:

p(y = 1|x,θ) =
1

1 + e−θ
Tx
, (4.12)

where θ is obtained by solving a maximum likelihood problem over the training set, i.e.,
θ∗ = argminθ −

∑
(x,y)∈D log p(y|x,θ). Thus, the corresponding loss function is given by

−
∑

(x,y)∈D log p(y|x,θ), and the problem defined by Eq. (4.3) adopts the following form:

minimize −
∑

(x,y)∈D log p(y|x,θ)
}

Logistic regression formulation

subject to 1
N

∑
(x,z)∈D (z − z̄)θTx ≤ c,

1
N

∑
(x,z)∈D (z − z̄)θTx ≥ −c.

}
Disparate impact constraints (4.13)

Linear SVM free of disparate mistreatment. A linear SVM distinguishes among
classes using a linear hyperplane θTx = 0. In this case, the parameter vector θ of the fair
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linear SVM can be found by solving the problem defined by Eq. (4.8), which becomes the
following quadratic program with convex-concave constraints:

minimize ‖θ‖2 + C
∑N

i=1 ξi
subject to yiθ

Txi ≥ 1− ξi, ∀i ∈ {1, . . . , N}
ξi ≥ 0,∀i ∈ {1, . . . , N},

 SVM
formulation

−N1
N

∑
(x,y)∈D0

min(0, yθTx) + N0
N

∑
(x,y)∈D1

min(0, yθTx) ≤ c,
−N1
N

∑
(x,y)∈D0

min(0, yθTx) + N0
N

∑
(x,y)∈D1

min(0, yθTx) ≥ −c,

} Disparate
mistreatment
constraints

(4.14)

where θ and ξ are the variables, ‖θ‖2 corresponds to the boundary between the support
vectors assigned to different classes, and C

∑n
i=1 ξi penalizes the number of data points

falling inside the boundary.

Nonlinear SVM free of disparate impact. In a nonlinear SVM, the decision boundary
takes the form θTΦ(x) = 0, where Φ(·) is a nonlinear transformation that maps every fea-
ture vector x into a higher dimensional transformed feature space. Similarly as in the case
of a linear SVM, one may think of finding the parameter vector θ by solving a constrained
quadratic program, similar to the one defined by Eq. (4.14). However, the dimensionality of
the transformed feature space can be large, or even infinite, making the corresponding opti-
mization problem difficult to solve. Fortunately, we can leverage the kernel trick (Schölkopf
and Smola, 2002) both in the original optimization problem and the fairness inequalities,
and resort instead to the dual form of the problem, which can be solved efficiently. In par-
ticular, the dual form is given by (for conciseness, we use the dual form notation of Gentle
et al. (2012)):

minimize 1
2α

TGα− 1Tα
subject to 0 ≤ α ≤ C,

yTα = 0,

 SVM formulation

1
N

∑
(x,z)∈D (z − z̄) dα(x) ≤ c,

1
N

∑
(x,z)∈D (z − z̄) dα(x) ≥ −c,

}
Disparate impact

constraints (4.15)

where α = [α1, α2, . . . , αN ]T are the dual variables, y = [y1, y2, . . . , yN ]T are the class
labels, G is the N × N Gram matrix with Gi,j = yiyjk(xi,xj), and the kernel function
k(xi,xj) = 〈φ(xi), φ(xj)〉 denotes the inner product between a pair of transformed feature

vectors. Here, dα(xi) =
∑N

j=1 αjyjk(xi,xj) can still be interpreted as a signed distance to
the decision boundary in the transformed feature space.

5. Evaluation

In this section, we first experiment with synthetic datasets in which we simulate various
kind of unfairness and analyze both quantitatively and qualitatively the effectiveness of our
framework at designing fair classifiers. We then evaluate the performance of our framework
on several real-world datasets in comparison with multiple baselines.

14



Fairness Constraints: A Flexible Approach for Fair Classification

Across this section, we quantify disparate impact (Eq. 3.2) as the absolute difference
between the positive class probability for the sensitive feature groups with z = 0 and z = 1,
as various prior studies (Corbett-Davies et al., 2017; Calders and Verwer, 2010; Menon and
Williamson, 2017), i.e.,

DI =
∣∣∣P (ŷ = 1|z = 0)− P (ŷ = 1|z = 1)

∣∣∣, (5.1)

where a value of DI closer to zero denotes a smaller degree of disparate impact. Similarly,
we quantify disparate mistreatment with respect to false positive rates and false negative
rates (Eqs. (3.4-3.5)) as the difference between false positive (negative) rate probabilities,
i.e.,

DMFPR = P (ŷ 6= y|z = 0, y = −1)− P (ŷ 6= y|z = 1, y = −1), (5.2)

DMFNR = P (ŷ 6= y|z = 0, y = 1)− P (ŷ 6= y|z = 1, y = 1), (5.3)

where the closer the values of DMFPR and DMFNR to 0, the lower the degree of disparate
mistreatment. Note that unlike in the case of disparate impact in Eq. (5.1), we do not
use the absolute difference while quantifying disparate mistreatment. As we later show
in Section 5.1.2, the (in)equality in the signs of DMFPR and DMFNR carries significant
consequences when considering disparate mistreatment w.r.t. false positive rate and false
negative rate simultaneously. In such cases, the sign of the differences should also be taken
into account.

5.1. Experiments on synthetic data

In this section, we first generate synthetic data where a classifier optimizing for accuracy
would lead to disparate impact and then generate data where the accuracy-optimizing
classifier would lead to disparate mistreatment. In both the cases, we simultaneously control
for disparate treatment as well, that is, the classifiers do not leverage sensitive feature during
decision time in either of the cases.

5.1.1. Mitigating disparate impact

To simulate different degrees of disparate impact in classification outcomes, we generate
two synthetic datasets with different levels of correlation between a single, binary sensitive
attribute and class labels. Specifically, we generate 4,000 binary class labels uniformly at
random and assign a 2-dimensional user feature vector per label by drawing samples from
two different Gaussian distributions:

p(x|y = 1) = N ([2; 2], [5, 1; 1, 5])

p(x|y = −1) = N ([−2;−2], [10, 1; 1, 3]).

Then, we draw each user’s sensitive attribute z from a Bernoulli distribution: p(z = 1) =
p(x′|y = 1)/(p(x′|y = 1) + p(x′|y = −1)), where x′ = [cos(φ), − sin(φ); sin(φ), cos(φ)]x is
simply a rotated version of the feature vector, x. We generate two datasets with different
values for the parameter φ (π/4 and π/8), which controls the correlation between the
sensitive attribute, z, and the class labels, y (and hence, the resulting degree of disparate
impact). Here, the closer φ is to zero, the higher the correlation between z and y.
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Acc=0.87; AR=0.33:0.74

Acc=0.82; AR=0.44:0.62

Acc=0.74; AR=0.50:0.51

Acc=0.87; AR=0.21:0.87

Acc=0.71; AR=0.38:0.62

Acc=0.60; AR=0.47:0.46

φ = π/4 φ = π/8

Figure 2: [Disparate impact constraints] Performance of different (unconstrained and con-
strained) classifiers along with their accuracy (Acc) and positive class acceptance rates
(AR) for groups z = 0 (crosses) and z = 1 (circles). Green points represent examples with
y = 1 and red points represent example with y = −1. The solid lines show the decision
boundaries for logistic regression classifiers without fairness constraints. The dashed lines
show the decision boundaries for logistic regression classifiers trained to maximize accuracy
under fairness constraints (Eq. (4.13)). Each column corresponds to a dataset with different
correlation value between sensitive attribute values and class labels.

Next, we train logistic regression classifiers optimizing for accuracy on both the datasets.
The accuracy of the classifiers in both cases is 0.87 (note that the datasets only differ in terms
of the correlation between z and y). However, the classifiers lead to DI = |0.33−0.74| = 0.41
and DI = |0.21 − 0.87| = 0.66 on datasets with φ = π/4 and φ = π/8, respectively.
To overcome the unfairness, we train logistic regression classifiers with disparate impact
constraints (Eq. 4.13) on both datasets.

Figure 2 shows the decision boundaries provided by the classifiers for two (successively
decreasing) covariance thresholds, c. We compare these boundaries against the uncon-
strained decision boundary (solid line). As expected, given the data generation process,
fairness constraints map into a rotation of the decision boundary (dashed lines), which is
greater as we decrease threshold value c or increase the correlation in the original data (from
φ = π/4 to φ = π/8). This movement of the decision boundaries shows that our fairness
constraints are successfully undoing (albeit in a highly controlled setting) the rotations we
used to induce disparate impact in the dataset. Moreover, a smaller covariance threshold (a
larger rotation) leads to a more fair solution, although, it comes at a larger cost in accuracy.

Next, we illustrate how the decision boundary of an non-linear classifier, a SVM with
radial basis function (RBF) kernel, changes under disparate impact constraints (Eq. (4.15)).
To this end, we generate 4,000 user binary class labels uniformly at random and assign a
2-dimensional user feature vector per label by drawing samples from

p(x|y = 1, β) = βN ([2; 2], [5 1; 1 5]) + (1− β)N ([−2;−2], [10 1; 1 3])

p(x|y = −1, β) = βN ([4;−4], [4 4; 2 5]) + (1− β)N ([−4; 6], [6 2; 2 3])

where β ∈ {0, 1} is sampled from Bernoulli(0.5). Then, we generate each user’s sensitive
attribute z by applying the same rotation as described earlier.

Figure 3 shows the decision boundaries provided by the SVM that maximizes accuracy
under fairness constraints with c = 0 for two different correlation values: φ = π/4 and
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Acc=0.94; AR=0.28:0.66(π/4),0.11:0.85(π/8)

(a) Unconstrained

Acc=0.83; AR=0.55:0.57

(b) φ = π/4

Acc=0.56; AR=0.45:0.37

(c) φ = π/8

Figure 3: [Disparate impact constraints] Decision boundaries for SVM classifier with RBF
Kernel trained without fairness constraints (left) and with fairness constraints (middle and
right) on two synthetic datasets. Also shown are the classification accuracy (Acc) and
acceptance rate (AR) for each group.

φ = π/8, in comparison with the unconstrained SVM. We observe that, in this case, the
decision boundaries provided by the constrained SVMs are very different to the decision
boundary provided by the unconstrained SVM, and are not just simple shifts or rotations
of the latter.

5.1.2. Mitigating disparate mistreatment

In a manner similar to the previous section, we now experiment with synthetic datasets
where training classifiers optimizing for accuracy would lead to disparate mistreatment.
However, disparate mistreatment can arise in multiple different ways, as detailed below. To
study these different situations, we first start with a simple scenario in which the classifier
is unfair in terms of only false positive rate or false negative rate. Then, we focus on a
more complex scenario in which the classifier is unfair in terms of both.

Disparate mistreatment on only false positive rate or false negative rate. The
first scenario considers a case where a classifier maximizing accuracy leads to disparate
mistreatment in terms of only the false positive rate (false negative rate), while being fair
with respect to false negative rate (false positive rate), i.e., DMFPR 6= 0 and DMFNR = 0
(or, alternatively, DMFPR = 0 and DMFNR 6= 0).

To simulate this scenario, we generate 10,000 binary class labels (y ∈ {−1, 1}) and cor-
responding sensitive attribute values (z ∈ {0, 1}), both uniformly at random, and assign a
two-dimensional user feature vector (x) to each of the points. To ensure different distribu-
tions for negative classes of the two sensitive attribute value groups (so that the two groups
have different false positive rates), the user feature vectors are sampled from the following
distributions (we sample 2500 points from each distribution):

p(x|z = 0, y = 1) = N ([2, 2], [3, 1; 1, 3])

p(x|z = 1, y = 1) = N ([2, 2], [3, 1; 1, 3])

p(x|z = 0, y = −1) = N ([1, 1], [3, 3; 1, 3])

p(x|z = 1, y = −1) = N ([−2,−2], [3, 1; 1, 3]).
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Acc=0.85; FPR=0.25:0.04; FNR=0.15:0.15
Acc=0.82; FPR=0.15:0.10; FNR=0.24:0.25

Figure 4: [Disparate mistreatment constraints] The figure shows the original decision bound-
ary (solid line) and fair decision boundary (dashed line), along with corresponding accuracy
and false positive rates for groups z = 0 (crosses) and z = 1 (circles). Fairness constraints
cause the original decision boundary to rotate such that previously misclassified subjects
with z = 0 are moved into the negative class (decreasing false positives), while well-classified
subjects with z = 1 are moved into the positive class (increasing false positives), leading to
equal false positive rates for both groups.

Next, we train a logistic regression classifier optimizing for accuracy on this data. The
classifier is able to achieve an accuracy of 0.85. However, due to difference in feature
distributions for the two sensitive attribute groups, it achieves DMFNR = 0.15 − 0.15 = 0
and DMFPR = 0.25− 0.04 = 0.21, which constitutes a clear case of disparate mistreatment
in terms of false positive rate. We then train a logistic regression classifier subject to fairness
constraints on false positive rate, with a covariance threshold c = 0.

Figure 4 shows the decision boundaries for both the unconstrained classifier (solid)
and the fairness-constrained classifier (dashed). We observe that applying the fairness
constraint successfully causes the false positive rates for both groups (z = 0 and z = 1) to
converge, and hence, the outcomes of the classifier become more fair, i.e., DMFPR → 0,
while DMFNR remains close to zero. We note that the invariance of DMFNR may however
change depending on the underlying distribution of the data.

Disparate mistreatment on both false positive rate and false negative rate. In
this part, we consider a more complex scenario, where the outcomes of the classifier suffer
from disparate mistreatment with respect to both false positive rate and false negative rate,
i.e., both DMFPR and DMFNR are non-zero. This scenario can in turn be split into two
cases:

I. DMFPR and DMFNR have opposite signs, i.e., the decision boundary disproportionately
favors subjects from a certain sensitive attribute value group to be in the positive class
(even when such assignments are misclassifications) while disproportionately assigning the
subjects from the other group to the negative class. As a result, false positive rate for one
group is higher than the other, while the false negative rate for the same group is lower.
II. DMFPR and DMFNR have the same sign, i.e., both false positive as well as false
negative rate are higher for a certain sensitive attribute value group. These cases might
arise in scenarios when a certain group is harder to classify than the other.

Next, we experiment with each of the above cases separately.
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Acc=0.79; FPR=0.12:0.30; FNR=0.30:0.12
Acc=0.76; FPR=0.23:0.21; FNR=0.26:0.27

(a) FPR constraints

Acc=0.79; FPR=0.12:0.30; FNR=0.30:0.12
Acc=0.76; FPR=0.25:0.23; FNR=0.23:0.24

(b) FNR constraints

Acc=0.79; FPR=0.12:0.30; FNR=0.30:0.12
Acc=0.76; FPR=0.25:0.23; FNR=0.23:0.24

(c) Both constraints

Figure 5: [Disparate mistreatment constraints] DMFPR and DMFNR have opposite signs.
Removing disparate mistreatment on FPR can potentially help remove disparate mistreat-
ment on FNR. Removing disparate mistreatment on both at the same time leads to very
similar results.

— Case I: To simulate this scenario, we first generate 2,500 samples from each of the
following distributions:

p(x|z = 0, y = 1) = N ([2, 0], [5, 1; 1, 5])

p(x|z = 1, y = 1) = N ([2, 3], [5, 1; 1, 5])

p(x|z = 0, y = −1) = N ([−1,−3], [5, 1; 1, 5])

p(x|z = 1, y = −1) = N ([−1, 0], [5, 1; 1, 5])

An accuracy-maximizing logistic regression classifier on this dataset attains an overall accu-
racy of 0.79 but leads to a false positive rate of 0.12 and 0.30 (i.e., DMFPR = 0.12−0.30 =
−0.18) for the sensitive attribute groups z = 0 and z = 1, respectively; and false negative
rates of 0.30 and 0.12 (i.e., DMFNR = 0.30− 0.12 = 0.18). To remove this disparate mis-
treatment, we train three different classifiers, with fairness constraints on (i) false positive
rates (ii) false negative rates and (iii) on both false positive and false negative rates.

Figure 5 summarizes the results for this scenario by showing the decision boundaries for
the unconstrained classifier (solid) and the constrained fair classifiers. Here, we can observe
several interesting patterns. First, removing disparate mistreatment on only false positive
rate causes a rotation in the decision boundary to move previously misclassified subjects
with z = 1 into the negative class, decreasing their false positive rate. However, in the
process, it also moves previously well-classified subjects with z = 1 into the negative class,
increasing their false negative rate. As a consequence, controlling disparate mistreatment on
false positive rate (Figure 5(a)), also removes disparate mistreatment on false negative rate.
A similar effect occurs when we control disparate mistreatment only with respect to the
false negative rate (Figure 5(b)), and therefore, provides similar results as the constrained
classifier for both false positive and false negative rates (Figure 5(c)). This effect is explained
by the distribution of the data, where the centroids of the clusters for the group with z = 0
are shifted with respect to the ones for the group z = 1.
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Acc=0.81; FPR=0.30:0.07; FNR=0.26:0.13
Acc=0.76; FPR=0.22:0.26; FNR=0.33:0.13

(a) FPR constraints

Acc=0.81; FPR=0.30:0.07; FNR=0.26:0.13
Acc=0.74; FPR=0.69:0.05; FNR=0.13:0.12

(b) FNR constraints

Acc=0.81; FPR=0.30:0.07; FNR=0.26:0.13
Acc=0.58; FPR=0.80:0.85; FNR=0.02:0.01

(c) Both constraints

Figure 6: [Disparate mistreatment constraints] DMFPR and DMFNR have the same sign.
Removing disparate mistreatment on FPR can potentially increase disparate mistreatment
on FNR. Removing disparate mistreatment on both at the same time causes a larger drop
in accuracy.

— Case II: To simulate the scenario where both DMFPR and DMFNR have the same sign,
we generate 2,500 samples from each of the following distributions:

p(x|z = 0, y = 1) = N ([1, 2], [5, 2; 2, 5])

p(x|z = 1, y = 1) = N ([2, 3], [10, 1; 1, 4])

p(x|z = 0, y = −1) = N ([0,−1], [7, 1; 1, 7])

p(x|z = 1, y = −1) = N ([−5, 0], [5, 1; 1, 5])

We then train a accuracy-optimizing logistic regression classifier on this dataset. It attains
an accuracy of 0.81 but leads to DMFPR = 0.30 − 0.07 = 0.23 and DMFNR = 0.26 −
0.13 = 0.13, resulting in disparate mistreatment in terms of both false positive and negative
rates. Then, similarly to the previous scenario, we train three different kind of constrained
classifiers to remove disparate mistreatment on (i) false positive rate, (ii) false negatives
rate, and (iii) both.

Figure 6 summarizes the results by showing the decision boundaries for both the un-
constrained classifiers (solid) and the fair constrained classifier (dashed) when controlling
for disparate mistreatment with respect to false positive rate, false negative rate and both,
respectively. We observe following noticeable patterns. First, controlling disparate mistreat-
ment for only false positive rate (false negative rate), leads to a minor drop in accuracy,
but in contrast to Case I, can exacerbate the disparate mistreatment on false negative rate
(false positive rate). For example, while the decision boundary is moved to control for
disparate mistreatment on false negative rate, that is, to ensure that more subjects with
z = 0 are well-classified in the positive class (reducing false negative rate), it also moves
previously well-classified negative subjects into the positive class, hence increasing the false
positive rate. A similar phenomenon occur when controlling disparate mistreatment with
respect to only false positive rate. As a consequence, controlling for both types of disparate
mistreatment simultaneously brings DMFPR and DMFNR close to zero, but causes a large
drop in accuracy.
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5.2. Real-world datasets

We now evaluate the effectiveness of our covariance framework in removing disparate impact
and disparate mistreatment on several real-world datasets. In doing so, we also compare the
performance of our framework to several methods from the fair machine learning literature.

In all the experiments, to obtain more reliable estimates of accuracy and fairness, we
repeatedly split each dataset into a train (70%) and test (30%) set 5 times and report the
average statistics for accuracy and fairness.

5.2.1. Mitigating disparate impact

Datasets and experimental setup. Here, we experiment with two real-world datasets:
The Adult income dataset (Adult, 1996) and the Bank marketing dataset (Bank, 2014).

The Adult dataset contains a total of 45,222 subjects, each with 14 features (e.g., age,
educational level) and a binary label, which indicates whether a subject’s incomes is above
(positive class) or below (negative class) 50K USD. With the aim of experimenting with
binary as well as non-binary (polyvalent) sensitive attributes, we consider the features
gender and race to be sensitive. Here, gender (with feature values: men and women) serves
as an example of binary sensitive attribute and race (with feature values: American-Indian,
Asian, Black, White and Other) serves as an example of a non-binary sensitive attribute.

The Bank dataset contains a total of 41,188 subjects, each with 20 attributes (e.g., mar-
ital status) and a binary label, which indicates whether the client has subscribed (positive
class) or not (negative class) to a term deposit. In this case, we consider age as (binary)
sensitive attribute, which is discretized to indicate whether the client’s age is between 25
and 60 years. For detailed statistics about the distribution of different sensitive attributes
in positive class in these datasets, we refer the reader to Appendix A.

For the sake of conciseness, while presenting the results for binary sensitive attributes,
we refer to women and men, respectively, as protected and non-protected groups in Adult
data. Similarly, in Bank data, we refer to users between age 25 and 60 as protected and
rest of the users as non-protected group.

Methods. In our experiments, we also compare our approach to well-known competing
method from fairness-aware machine learning literature (detailed in Section 6). More specif-
ically, we consider the following methods:
• Our method (C-LR and C-SVM): Implements our covariance constraints-based

methods for controlling disparate impact with a logistic regression classifier (Eq. (4.13))
and a dual-form SVM classifier with a linear kernel (Eq. (4.15)). 8 On the datasets
considered here, different choices of kernel (linear vs. RBF) lead to a very similar
performance in terms of accuracy and disparate impact. This method does not use
the sensitive feature information at decision time.
• Preferential sampling (PS-LR and PS-SVM): Implements the data pre-processing

technique of Kamiran and Calders (2010) on a logistic regression and a SVM classifier.
Specifically, this method operates as follows: (i) We first train a standard (potentially

8. For the SVM classifier, the hyperparameter C (in Eq. (4.15)) is only cross-validated for the unconstrained
classifier, and the same hyperparameter is used for the fairness-constrained classifiers. One could further
optimize the classifier performance by cross-validating the value of C for each value of the covariance
threshold separately.
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unfair) classifier on the given dataset. (ii) Next, we move / replicate the protected
group data points to / on the positive side of the decision boundary (and vice versa
for the non-protected group) until the decision boundary leads to zero disparate im-
pact, i.e., until it satisfies Eq. (3.2). (iii) We then train the final (fair) classifier on
the perturbed dataset. This method does not use the sensitive feature information at
decision time.
• Fairness-regularized logistic regression (FR-LR): The in-processing technique

of Kamishima et al. (2011). This technique is only limited to the logistic regression
classification model. This technique works by adding a fairness regularization term
in the objective function that penalizes the mutual information between the sensi-
tive feature and the classifier decisions. In this way, this method treats the mutual
information as the unfairness proxy, as opposed to covariance in our case. This tech-
nique needs the sensitive feature information at decision time, hence cannot remove
disparate treatment.
• Post-Processing (PP-LR and PP-SVM): The post-processing technique dis-

cussed in Corbett-Davies et al. (2017). This method works by first training a standard
logistic regression or SVM classifier on the given dataset and then finding a pair of
positive class acceptance thresholds 9 such that the decisions based on those thresh-
olds lead to maximum accuracy while having no disparate impact. This technique also
requires the sensitive feature information at decision time so it cannot avoid disparate
treatment.

Results. First, we experiment with two standard (unconstrained) logistic regression and
SVM classifiers. In the Adult dataset, the logistic regression classifier leads to an accuracy
of 0.846. However, the classifier results in highly disparate positive class acceptance rates
for protected and non-protected groups: 0.08 and 0.26. The SVM classifier leads to a
similar accuracy (0.847) and disparity in positive class acceptance rates (0.08 vs 0.25). In
the Bank dataset, the two classifiers lead to accuracies of 0.911 and 0.910, respectively, and
acceptance rates of 0.06 vs. 0.25, and 0.05 vs. 0.23 respectively. The high disparity in
acceptance rates over the two datasets clearly constitutes a case of disparate impact.

We then apply our framework to limit disparate impact with respect to a single binary
sensitive attribute, gender and age, for respectively, the Adult and Bank datasets. For each
dataset, we train several logistic regression and SVM classifiers (denoted by ‘C-LR’ and ‘C-
SVM’, respectively), each subject to fairness constraints with different values of covariance
threshold, c (Eqs.(4.13, 4.15)). Next, we study the effect of covariance constraints on the
loss function value, level of disparate impact and accuracy of the classifier.

Figure 7 (top row) shows the empirical decision boundary covariance against the relative
loss incurred by the classifier. The ‘relative loss’ is normalized between the loss incurred by
an unconstrained classifier and by the classifier with a covariance threshold of 0. We notice
that as expected, a decreasing value of empirical covariance results in an increasing loss.
However, each pair of (covariance, loss) values is guaranteed to be Pareto optimal, since
our problem formulation is convex.

The bottom row in Figure 7 investigates the correspondence between decision boundary
covariance and disparate impact, as defined in Eq. (5.1), computed on the training set (solid

9. The acceptance threshold is zero for a standard logistic regression or SVM classifier.
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Figure 7: [Disparate impact constraints: Single, binary sensitive attribute] Panels in the
top row show the trade-off between the empirical covariance in Eq. (4.2) and the relative
loss with respect to the unconstrained classifier, for the Adult and Bank (training) datasets.
Here each pair of (covariance, loss) values is guaranteed to be Pareto optimal by construc-
tion. Panels in the bottom row show the correspondence between the empirical covariance
and disparate impact in Eq. (5.1) for classifiers trained under fairness constraints. Solid
lines correspond to the training data whereas dashed lines correspond to the test data.
The figure shows that a decreasing empirical covariance leads to higher loss but lower dis-
parate impact. Moreover, the classifiers do not lead to “fairness overfitting”—in fact, the
dashed lines for the Adult data are barely visible due to strong correspondance between the
performance on the training and test sets.

lines) as well as the test set (dashed lines). The figure shows that, as desired: (i) the lower
the covariance, the lower the disparate impact of the classifier; (ii) zero disparate impact
maps to roughly zero covariance; and, (iii) there is a strong correspondence between the
covariance-fairness relationship across the training and the test set, that is, a fair classifier
on the training data also leads to fair outcomes on the test data.

We next compare the performance of our constrained classifiers in terms of disparate
impact–accuracy tradeoffs with the baselines methods mentioned above. The results pre-
sented in Figure 8, top row, show that: (i) the performance of our classifiers (C-LR, C-SVM)
and fairness-regularized logistic regression (FR-LR) is comparable, ours are slightly better
for Adult data (left column) while slightly worse for Bank data (right column); (ii) the pref-
erential sampling presents the worst performance and results in high disparate impact; and,
(iii) the post-processing technique leads to the best performance among all methods. How-
ever, we note that both FR-LR and PP-LR / PP-SVM use the sensitive feature information
at decision time while the other two techniques do not use it.
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Figure 8: [Disparate impact constraints: Single, binary sensitive attribute] The figure shows
the accuracy against disparate impact in Eq. 5.1 (top) and the percentage of protected
(dashed) and non-protected (solid) users in the positive class against the disparate impact
value (bottom). For all methods, a decreasing degree of disparate impact also leads to a
decreasing accuracy. The post-processing technique (PP-LR and PP-SVM) achieves the
best disparate impact-accuracy tradeoff. However, this technique as well as FR-LR use the
sensitive feature information at decision time (as opposed to C-LR, C-SVM, PS-LR and
PS-SVM), and would hence result in disparate treatment.

For a more fair comparison, we also train our method with access to sensitive features
at decision time. Specifically, we train constrained logistic regression classifiers (C-LR)
under the same setup as above, with the exception that the non-sensitive (x) and sensitive
features (z) are not disjoint feature sets—that is, the classifier learns a non-zero weight for
the sensitive feature z.

Under this setup, on the Adult dataset, our constrained logistic regression classifier (C-
LR) achieves an accuracy of 0.839 and DI of 0.09, as compared to 0.828 accuracy and 0.01
DI achieved by the PP-LR classifier. In this case C-LR achieves a better accuracy than
PP-LR, but does not remove DI as well as PP-LR. Next, we adjust the thresholds of PP-LR
in a way that the resulting classifier has DI ≤ 0.9 (i.e., it tries to match the DI of C-LR)
while maximizing accuracy. Under these thresholds, PP-LR achieves an accuracy of 0.840
and DI of 0.07. On the Bank dataset, C-LR achieves an accuracy of 0.908 (0.909 for PP-LR)
and DI of 0.01 (0.0 for PP-LR). On both Bank and Adult datasets, both methods achieve
similar accuracy for a similar level of DI (with PP-LR performing marginally better).

The bottom row of Figure 8 shows the percentage of users from protected and non-
protected groups in the positive class along with the degree of disparate impact. We note
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(a) Non-binary (polyvalent) sensitive attribute
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Figure 9: [Disparate impact constraints: Non-binary and several sensitive attributes] The
figure shows accuracy (top) and percentage of users in positive class (bottom) against a
multiplicative factor a ∈ [0, 1] such that c = ac∗, where c∗ denotes the unconstrained
classifier covariance.

that in the Adult data, all classifiers move non-protected users (men) to the negative class
and protected users (women) to the positive class to remove disparate impact. In contrast,
in the Bank data, they only move non-protected (young and old) users originally labeled
as positive to the negative class since it provides a smaller accuracy loss. However, the
latter can be problematic: from a business perspective, a bank may be interested in finding
potential subscribers rather than losing existing customers. This observation could motivate
the business necessity clause of the disparate impact doctrine. To counter such situations,
one can use our alternative formulation in Section 4.3. We experiment with this formulation
later in this section.

Finally, we apply our framework to control disparate impact with respect to non-binary
(race) and several (gender and race) sensitive attributes in the Adult dataset. We do not
compare with competing methods since they cannot handle non-binary or several sensitive
attributes. Figure 9 summarizes the results by showing the accuracy and the percentage of
subjects sharing each sensitive attribute value classified as positive against a multiplicative
covariance factor a ∈ [0, 1] such that c = ac∗, where c∗ is the unconstrained classifier
covariance10 (note that disparate impact in Eq. (5.1) is only defined for a binary sensitive
feature). As expected, as the value of c decreases, the percentage of subjects in the positive

10. For several sensitive features, we compute the initial covariance c∗k for each of the sensitive feature k,
and then compute the covariance threshold separately for each sensitive feature as ac∗k.
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Figure 10: [Business necessity clause] Panels in top row show the accuracy (solid) and
disparate impact (dashed) against γ. Panels in the bottom row show the percentage of
protected (P, dashed) and non-protected (N-P, solid) users in the positive class against γ.

class from sensitive attribute value groups become nearly equal 11 while the loss in accuracy
is modest.

Disparate impact’s business necessity clause. We now experiment with our formu-
lation for handling the business necessity clause (Section 4.3) to avoid scenarios where
removing disparate impact leads to almost all the users being assigned the negative class
label (Figure 8). Specifically, we demonstrate that our formulation in Section 4.3 can min-
imize disparate impact while precisely controlling loss in accuracy. We also demonstrate
that our formulation can additionally provide guarantees for classifying certain users in the
positive class while minimizing disparate impact.

To this end, we first train several logistic regression classifiers (denoted by ‘γ-LR’), which
minimize the decision boundary covariance subject to accuracy constraints over the entire
dataset by solving problem (4.10) with increasing values of γ. Then, we train logistic regres-
sion classifiers (denoted by ‘Fine-γ-LR’) that minimize the decision boundary covariance
subject to fine-grained accuracy constraints by solving problem (4.11). Here, we prevent the
non-protected users that were classified as positive by the unconstrained logistic regression

11. The scarce representation of the race value ‘Other’ (only 0.8% of the data) hinders an accurate estimation
of the decision boundary covariance and, as a result, the classifier does not reach perfect fairness with
respect to this sensitive attribute value.
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classifier from being classified as negative by constraining that their distance from decision
boundary stays positive while learning the fair boundary. We then increase γi = γ for
the remaining users. In both cases, we increased the value of γ until we reach 0 disparate
impact during training. Figure 10 summarizes the results for both datasets, by showing (a)
the average accuracy (solid curves) and disparate impact (dashed curves) against γ, and
(b) the percentage of non-protected (N-P, solid curves) and protected (P, dashed curves)
users in the positive class against γ. We observe that, as we increase γ, the classifiers
that constrain the overall training loss (γ-LR) remove non-protected users from the positive
class and add protected users to the positive class, in contrast, the classifiers that prevent
the non-protected users that were classified as positive in the unconstrained classifier from
being classified as negative (Fine-γ-LR) add both protected and non-protected users to the
positive class. As a consequence, the latter achieves lower accuracy for the same value of
disparate impact.

5.2.2. Mitigating disparate mistreatment

Datasets and experimental setup. In this section, we experiment with two real-world
datasets: COMPAS risk assessment dataset (Larson et al., 2016a) and the NYPD stop-
question-and-frisk (SQF) dataset (Stop, Question and Frisk Data, 2017).

The ProPublica COMPAS dataset consists of data about 7, 215 pretrial criminal defen-
dants, and contains a number of features such as age of the criminal defendant, number of
prior criminal offenses etc., and a class label indicating whether a person would recidivate
within two years (positive class) or not (negative class). For more information about the
data collection, we point the reader to a detailed description (Larson et al., 2016b) and
some of the follow-up discussion on this dataset (Angwin and Larson; Flores et al., 2016).
We designate race as the sensitive feature. Following ProPublica’s analysis (Larson et al.,
2016b), we only consider a subset of offenders whose race (the sensitive feature) is either
black or white. Recidivism rates for the two groups are shown in Table 6 in Appendix A.
For modeling the classification task, we use the same set of features as used by ProPub-
lica (Larson et al., 2016b). 12 After performing the filtering described above, we obtain
5, 287 subjects and 5 features.

The NYPD SQF dataset consists of 84, 868 pedestrians who were stopped in the year
2012 on the suspicion of having a weapon. The dataset also contains over 100 features (e.g.,
gender, height, reason for stop) and a binary label which indicates whether (negative class)
or not (positive class) a weapon was discovered. For our analysis, we consider the race
to be the sensitive feature with values blacks and whites. The classes in this dataset are
highly imbalanced (97% of subjects in positive class), and as a result, a logistic regression
classifier classifies almost all data points into the positive class. To counter this imbalance,
we subsample the dataset to have equal number of subjects from each class. Information
about weapon discovery rate for both races in included in Tables 7 and 8 in Appendix A.

12. Notice that goal of this section is not to analyze the best set of features for recidivism prediction, rather,
we focus on showing that our method can effectively remove disparate mistreatment in a given dataset.
Hence, we chose to use the same set of features as used by ProPublica for their analysis. Moreover, since
race is one of the features in the learnable set, we additionally assume that all the methods have access
to the sensitive attributes while making decisions.
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Algorithm 1: Baseline method for removing disparate mistreatment w.r.t. FPR.

Input: Training set D = {(xi, yi, zi)}Ni=1, ∆ > 0 ε > 0
Output: Fair baseline decision boundary θ
Initialize: Penalty C = 1

1 Train (unfair) classifier θ = argminθ
∑

d∈D L(θ,d)
2 Compute ŷi = sign(dθ(xi)) and DFP on D.
3 if DFP > 0 then s = 0
4 else s = 1
5 P = {xi, yi, zi|ŷ 6= yi, zi = s}, P̄ = D \ P.
6 while DFP > ε do
7 Increase penalty: C = C + ∆.
8 θ = argminθ C

∑
d∈P L(θ,d) +

∑
d∈P̄ L(θ,d)

9 end

Furthermore, for training the classifiers, we consider a similar set of features as Goel et al.
(2015). After performing these two filtering steps, we obtain 5, 832 subjects and 19 features.

Methods. In our experiments, we compare our approach to two baseline methods. More
specifically, we consider the following methods:

• Our method : Implements our scheme to avoid disparate treatment and disparate
mistreatment simultaneously. Disparate mistreatment is avoided by using fairness con-
straints on false positive and / or false negative rates. Disparate treatment is avoided
by ensuring that sensitive attribute information is not used while making decisions,
i.e., by keeping user feature vectors (x) and the sensitive features (z) disjoint.

• Our methodsen: Implements our scheme to avoid disparate mistreatment only. The
user feature vectors (x) and the sensitive features (z) are not disjoint, that is, the
classifier learns a non-zero weight for z. Therefore, the sensitive feature information
is used for decision making, resulting in disparate treatment.

• Hardt et al. (Hardt et al., 2016): Operates by post-processing the outcomes of a
possibly discriminatory classifier (logistic regression in this case) and using different
decision thresholds for different sensitive feature value groups to remove disparate
mistreatment. By construction, it needs the sensitive feature information while mak-
ing decisions, and hence cannot avoid disparate treatment. This method is similar to
the post-processing scheme discussed in Corbett-Davies et al. (2017).

• Donini et al. (Donini et al., 2018): This pre- / in-processing method aims to remove
the discrepancy in the false negative rate of the two groups by adding constraints to
a SVM classifier. We use the implementation provided by the authors13 and train the
method such that it has access to the sensitive feature information at decision time.

• Baseline : Baseline introduced by us to facilitate a third comparison method. Tries
to remove disparate mistreatment by introducing different penalties for misclassified

13. https://github.com/jmikko/fair ERM
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data points with different sensitive attribute values during training phase. Specifically,
it proceeds in two steps. First, it trains an (unfair) classifier minimizing a loss function
(e.g., logistic loss) over the training data. Next, it selects the set of misclassified data
points from the sensitive attribute value group that presents the higher error rate.
For example, if one wants to remove disparate mistreatment with respect to false
positive rate and DMFPR > 0 (which means the false positive rate for points with
z = 0 is higher than that of z = 1), it selects the set of misclassified data points in the
training set having z = 0 and y = −1. Next, it iteratively re-trains the classifier with
increasingly higher penalties on this set of data points until a certain fairness level
is achieved in the training set (until DMFPR ≤ ε). The algorithm is summarized in
Figure 1, particularized to ensure fairness in terms of false positive rate. This process
can be intuitively extended to account for fairness in terms of false negative rate or
for both false positive rate and false negative rate. This method can be trained with
or without using sensitive feature information while making decisions. We opt for the
latter option.

Results. First, we experiment with a standard logistic regression classifier optimizing for
accuracy on both datasets. For the COMPAS dataset, the (unconstrained) logistic regres-
sion classifier leads to an accuracy of 0.664. However, the classifier yields false positive rates
of 0.35 and 0.17, respectively, for blacks and whites (i.e., DMFPR = 0.18), and false neg-
ative rates of 0.32 and 0.61 (i.e., DMFNR = −0.29). These results constitute a clear case
of disparate mistreatment in terms of both false positive rate and false negative rate. The
classifier puts one group (blacks) at relative disadvantage by disproportionately misclassify-
ing negative (did not recidivate) subjects from this group into positive (did recidivate) class.
This disproportional assignment results in a significantly higher false positive rate for blacks
as compared to whites. On the other hand, the classifier puts the other group (whites) on
a relative advantage by disproportionately misclassifying positive (did recidivate) subjects
from this group into negative (did not recidivate) class (resulting in a higher false negative
rate). Note that this scenario resembles our synthetic example Case I in Section 5.1.2.

For the SQF data, the (unconstrained) logistic regression classifier leads to an accuracy
of 0.751. However, the classifier yields false positive rates of 0.38 and 0.11, respectively,
for blacks and whites (i.e., DMFPR = 0.27), and false negative rates of 0.19 and 0.31 (i.e.,
DMFNR = −0.12). Notice that unlike the COMPAS dataset, being classified positive in
here is an advantageous outcome—positive class in this case is not being stopped whereas
the positive class in the COMPAS dataset is being classified as being a recidivist. This
scenario also resembles our synthetic example Case I in Section 5.1.2.

Next, we apply our framework on a logistic regression classifier to mitigate disparate
mistreatment with respect to false positive rate, false negative rate, and on both. Figure 11
shows the link between the empirical decision boundary covariance when imposing the
constraints to remove disparate mistreatment based on false positive rate or false negative
rate on the ProPublica COMPAS and NYPD SQF datasets. The figure shows that: (i) a
lower value of false positive or false negative rate covariance corresponds to a lower degree
of disparate mistreatment with respect to the corresponding error rate, i.e., Eqs. (5.2)
and (5.3) respectively; and, (ii) a zero disparate mistreatment roughly corresponds to zero
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Figure 11: [Disparate mistreatment constraints] The figure shows the effect of applying
Our methodsen to limit disparate mistreatment with respect to false positive rate and false
negative rate, as defined by Eqs. (5.2) and (5.3)), respectively. Each type of constraint is
applied separately. The plots show the correspondence between the empirical covariance
(for each constraint type) and disparate mistreatment caused by the classifiers trained under
fairness constraints on ProPublica COMPAS (left) and NYPD SQF (right) datasets. Solid
lines correspond to the training data whereas dashed lines correspond to the test data. The
figure shows that a decreasing empirical covariance leads to lower disparate mistreatment.
Moreover, the statistics for training and test sets show a close correspondence, meaning
that the constraints do not seem to be overfitting on the training data.

FPR constraints FNR constraints Both constraints

Acc DFPR DFNR Acc DFPR DFNR Acc DFPR DFNR

ProPuclica
COMPAS

Our methodsen 0.653 0.03 −0.10 0.656 −0.05 −0.01 0.654 −0.02 −0.03

Baseline 0.631 0.01 −0.18 0.656 −0.03 −0.03 0.615 −0.19 0.13

Hardt et al. 0.661 0.01 −0.08 0.654 −0.06 0.01 0.632 0.02 0.01

Donini et al. − − − 0.649 0.03 −0.09 − − −

NYPD
SQF

Our method 0.633 0.06 −0.01 0.705 0.22 −0.07 0.642 0.05 0.04

Our methodsen 0.727 0.08 0.07 0.743 0.18 0.00 0.726 0.07 0.07

Baseline 0.527 0.02 −0.08 0.734 0.14 0.01 0.435 −0.71 0.95

Hardt et al. 0.725 0.03 0.12 0.734 0.14 0.04 0.722 0.02 0.06

Donini et al. − − − 0.737 0.21 −0.04 − − −

Table 2: Performance of different methods while removing disparate mistreatment with respect to
false positive rate, false negative rate and both.

covariance (though the correspondence is not completely strict on the ProPublica COMPAS
data).

Next, we compare the performance of our scheme with the three alternative methods.
While controlling for disparate mistreatment with respect to FPR and FNR simultaneously,
the method of Hardt et al. can be interpreted as finding the optimal point that minimizes
the loss on the average of the two group-conditional ROC curves (one curve for each sensitive
feature group), or the one that minimizes the loss on the point-wise minimum of the two
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curves. The optimal point in both cases lies on the point-wise minimum of the two curves.
Both variants lead to similar performance, hence we report the results for the former.

Table 2 summarizes the results by showing the trade-off between fairness and accuracy
achieved by our method, the methods by Hardt et al. and Donini et al., and the baseline.
Similarly to the results in Section 5.1.2, we observe that for all four methods, controlling for
disparate mistreatment on false positive rate (false negative rate) also helps decrease dis-
parate mistreatment on false negative rate (false positive rate), at least to a limited extent.
Moreover, our method and the methods by Hardt et al. and Donini et al. achieve similar
accuracy for a given level of fairness when provided with the same amount of information
(sensitive attribute information). The baseline on the other hand leads to the worst per-
formance (especially on the NYPD SQF data.) We also note that the baseline tends to be
somewhat unstable and fails to converge to a fair solution in some cases (e.g., both FPR
and FNR constraints on COMPAS and SQF datasets).

6. Related Work

6.1. Algorithmic decision making and evidence of unfairness

Algorithmic (or, automated) decision making has been used in applications involving human
subjects since several decades. For example, previous works have studied the factors deter-
mining whether a criminal defendant would recidivate if granted bail (Burgess, 1928), or
whether a loan applicant is likely to return their loan or not (Furletti, 2002). However, with
the advent of complex learning methods, and convenient accessibility of ‘big data’ in several
domains, automated decision making has permeated into a large number of human-centric
applications, e.g., job screening (Posse, 2016; Taylor, 2016), community safety (Perry, 2013;
Lowenkamp, 2009; Kleinberg et al., 2017a), product personalization (Covington et al., 2016;
Gomez-Uribe and Hunt, 2015) and online ad delivery (Google AdSense).

Several recent studies have shown that algorithmic decision making systems can poten-
tially lead to (unintentional) unfairness against certain legally “protected” groups (Civil
Rights Act, 1964). For example, Sweeney (2013) showed that Google ad platform is more
likely to link typically African-American names with having criminal records as compared
to typically white names. A recent study by ProPublica (Larson et al., 2016a) found that
a criminal risk assessment tool used in Broward County, Florida was disproportionately
marking African-American defendants as high risk (as compared to whites), even when
they did not recidivate. Since the fairness of a decision making process is often a legally
mandated criterion (Barocas and Selbst, 2016; Civil Rights Act, 1964), in the face of poten-
tial unfairness by automated decision making systems, a number of studies by regulatory
authorities have called for taking fairness into account while designing algorithmic decision
systems. (Podesta et al., 2014; Muñoz et al., 2016; Ramirez et al., 2016).

While automated decision making spans a variety of tasks including classification, rank-
ing and recommendations, in this paper, we only focus on fairness in the context of clas-
sification. Next, we discuss the state-of-the-art in the context of the notions of unfairness
discussed in Section 1.
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6.2. Avoiding unfairness in classification

In this section, we will discuss techniques that aim to remove disparate treatment, disparate
impact or disparate mistreatment from classification outcomes.

The first study on fair classification dates back to 2008 when Pedreschi et al. (2008)
proposed techniques to avoid unfairness in classification rule mining. In the years that
followed, a number of studies proposed techniques to remove unfairness from classification
outcomes. Especially, last year or so has seen a flurry of methods proposed to control
unfairness in classification. These studies operate by first specifying one or more measures of
unfairness that they aim to control, i.e., disparate treatment, disparate impact or disparate
mistreatment, and then propose techniques to control for the selected measure(s).

These techniques can be divided into three different categories: pre-processing, in-
processing and post-processing. Below, we discuss each of these categories separately.

6.2.1. Pre-processing

This technique consists of pre-processing the training data that would later be fed to a
training algorithm Kamiran and Calders (2010); Luong et al. (2011); Feldman et al. (2015);
Calmon et al. (2017). The goal is to pre-process the training data such that any classification
algorithm trained on this data would generate unfairness-free outcomes. This strategy
can be roughly divided into two different sub-categories. Below, we briefly discuss these
subcategories:

The first sub-category involves changing the values of class labels for certain data
points Kamiran and Calders (2010); Luong et al. (2011). For example, Kamiran and Calders
(2010) propose a pre-processing technique that operates by first training an unconstrained
classifier, and then moving / duplicating the data points from the group with lower accep-
tance rate (as compared to the other group) until the classification outcomes are free of
disparate impact.

The second sub-category involves perturbing the non-sensitive features Feldman et al.
(2015), or mapping the data to a transformed space Calmon et al. (2017). For example,
building on ideas in the area of privacy-preserving data analysis (specifically t-closeness),
Feldman et al. (2015) “repair” the non-sensitive features such that it is impossible to predict
the sensitive features from non-sensitive features (which in turn means that the classifier
trained on this data will not incur disparate impact), while ensuring that the resulting
distribution is close to the original data distribution.

On the plus side, the pre-processing techniques have an advantage that the transformed
dataset can be used to train any downstream algorithm.

However, these techniques also suffer from some disadvantages. First, since these tech-
niques are not optimized for any specific classification model, and treat the learning algo-
rithm as a black box, as a consequence, the pre-processing can lead to unpredictable loss
in accuracy or may not remove unfairness on the test data (as we saw in Section 5.2.1).
Furthermore, transforming the dataset might also affect the explainability of the classifier—
e.g., since the feature values were transformed during pre-processing, the feature weights of
a linear classifiers might not be interpretable anymore.
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Method Type DT DI DM BN
Polyvalent

sens.
Multiple

sens.
Range of
classifiers

Our framework In 3 3 3 3 3 3 Any convex margin-based

Kamiran and Calders (2010) Pre 3 3 7 7 7 7 Any score-based

Calders and Verwer (2010) In/Post 3 3 7 7 7 7 Naive Bayes

Kamiran et al. (2010) In 3 3 7 7 7 7 Decision tree

Luong et al. (2011) Pre 3 7 7 7 7 7 Any

Kamishima et al. (2011) In 7 3 7 7 7 7 Logistic regression

Zemel et al. (2013) Pre/In 3 3 7 7 7 7 Log loss

Feldman et al. (2015) Pre 3 3 7 7 3 3 Any (only numerical features)

Edwards and Storkey (2016) Pre/In 3 3 7 7 3 3 MLPs

Goh et al. (2016) In 3 3 3 7 3 3 Ramp loss

Hardt et al. (2016) Post 7 7 3 7 3 3 Any score-based

Corbett-Davies et al. (2017) Post 7 3 3 7 3 3 Any score-based

Woodworth et al. (2017) In 7 7 3 7 7 7 Any convex linear

Quadrianto and Sharmanska (2017) In 3 3 3 7 7 7 Hinge loss

Calmon et al. (2017) Pre 3 3 7 7 3 3 Any

Dwork et al. (2018) In/Post 7 3 3 7 3 3 Any score-based

Menon and Williamson (2018) Post 7 3 3 7 7 7 Any score-based

Madras et al. (2018) Pre/In 3 3 3 7 7 7 MLPs

Agarwal et al. (2018) In/Post 3 3 3 7 3 3 Any score-based

Donini et al. (2018) Pre/In 3 7 3 7 3 3 SVM

Table 3: Capabilities of different methods in mitigating disparate treatment (DT), disparate impact (DI) and disparate mistreat-
ment (DM). We also show the type of each method: pre-processing (pre), in-processing (in) and post-processing (post). None
of the prior methods addresses disparate impact’s business necessity (BN) clause. Many of the methods do not generalize to
multiple (e.g., gender and race) or polyvalent sensitive features (e.g., race, that has more than two values). The strategy by
Feldman et al. (2015) is limited to only numerical non-sensitive features.
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6.2.2. In-processing

The second strategy consists of modifying the training procedure of the classifier. Examples
of this scheme include Calders and Verwer (2010); Kamishima et al. (2011); Goh et al.
(2016); Woodworth et al. (2017); Kamiran et al. (2010); Quadrianto and Sharmanska (2017).
Our proposed covariance constraints also fall under this category.

For example, the technique by Kamishima et al. (2011)—which is only limited to a
logistic regression classifier—works by adding a regularization term in the objective that
penalizes the mutual information between the sensitive feature and the classifier decisions.
The method of Kamiran et al. (2010), which is limited to a decision tree classifier, operates
by changing the splitting or the leaf node labeling criterion of the tree learning phase to
remove disparate impact.

Goh et al. (2016), Woodworth et al. (2017) and Quadrianto and Sharmanska (2017)
on the other hand suggest adding constraints similar to ours to the classification model.
However, their works are only limited to a single specific loss function (Goh et al., 2016;
Quadrianto and Sharmanska, 2017) or to a single notion of unfairness (Woodworth et al.,
2017).

Zemel et al. (2013), building on Dwork et al. (2012), combined pre-processing and in-
processing by jointly learning a ‘fair’ representation of the data and the classifier parameters.
The joint representation is learnt using a multi-objective loss function that ensures that (i)
the resulting representations do not lead to disparate impact, (ii) the reconstruction loss
from the original data and intermediate representations is small and (iii) the class label can
be predicted with high accuracy. This approach has two main limitations: i) it leads to a
non-convex optimization problem and does not guarantee optimality, and ii) the accuracy of
the classifier depends on the dimension of the fair representation, which needs to be chosen
rather arbitrarily. Inspired by Zemel et al. (2013), the methods of Edwards and Storkey
(2016) and Madras et al. (2018) also aim at learning fair representations of the data.

6.2.3. Post-processing

The third and final strategy consists of post-processing the classifier scores such that the
new outcomes contain no disparate impact or disparate mistreatment (Hardt et al., 2016;
Corbett-Davies et al., 2017; Dwork et al., 2018; Menon and Williamson, 2018).

This approach usually involves learning different decision thresholds for a given score
function to remove unfairness (specifically, disparate impact or disparate mistreatment).
However, since these strategies require the sensitive feature information at the decision time,
they cannot be used in cases where sensitive feature information is unavailable (e.g., due to
privacy reasons) or prohibited from being used due to disparate treatment laws (Barocas
and Selbst, 2016).

Dwork et al. (2018) combine the in-processing and post-processing scheme by first train-
ing a number of classifiers for each group (with each classifier having different acceptance
rate for the given group), and then selecting the group-conditional classifiers that mini-
mize a certain loss function. The loss function is formulated as a combination of the loss
in accuracy and a penalty term penalizing the deviation from the fairness criterion. Like
Hardt et al. (2016) and Corbett-Davies et al. (2017), this method too requires access to the
sensitive feature information at the decision time.
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Figure 12: Covariance constraints may perform unfavorably in the presence of outliers. The
figure shows a hypothetical dataset with just one feature (x) with values ranging from −5
to 5. Data points belong to two groups: men (M) or women (W). Each box shows the
number of subjects of from a certain group (M or W) with that feature value. The decision
boundary is at x = 0. The decision boundary covariance in this case is 0, yet the disparity
in positive class outcome rates between men and women (0.5 for men and 0.17 for women)
is very high. This situation is caused by one woman with feature value 5—this outlier point
cancels out the effect of five normal examples (W with feature value −1) while computing
the covariance.

In addition to the issues discussed above, most prior studies suffer from one or more
of the following limitations: (i) they only accommodate a single, binary sensitive feature,
(ii) they are restricted to a narrow range of classifiers, and, (iii) they cannot accommodate
multiple unfairness notions simultaneously. Table 3 compares the capabilities of different
methods in meeting different fairness criteria.

Finally, some recent studies (Kusner et al., 2017; Kilbertus et al., 2017) focus on de-
tecting and removing unfairness by leveraging causal inference techniques. However, these
studies often require access to causal graphs specifying causal relationships between different
features, which can be quite challenging to obtain in practice.

7. Discussion, limitations and future work

In this work, we introduced a constraint-based framework to design fair margin-based clas-
sifiers that do not suffer from disparate treatment, disparate impact and disparate mistreat-
ment. The key technical innovation of our framework is a general and intuitive measure of
decision boundary unfairness, which serves as a tractable proxy for the above mentioned un-
fairness notions. Evaluation on various real-world datasets shows that our constrained-based
framework is effective in limiting various forms of unfairness from classification outcomes,
often at a small cost in terms of accuracy.

However, we also note that covariance mechanism only serves as a proxy for the unfair-
ness measure under consideration (i.e., disparate impact or disparate mistreatment). As a
result, one may encounter cases where a zero value of the covariance proxy still results in a
non-zero value of the unfairness measure. Such situations can arise due to various reasons.
Below, we (non-exhaustively) list some of the reasons and leave a detailed formal analysis
of such reasons for future work.

First, since our mechanism relies on empirically estimating the decision boundary co-
variance, very small presence of a certain group in the dataset can lead to poor estimate of
the covariance and might not fully remove unfairness. Moreover, while the post-processing
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schemes to remove unfairness (Hardt et al., 2016; Corbett-Davies et al., 2017) operate on
the data of dimensionality 1 (that is, the scalar score assigned to each item by the classifier),
our method operates by using all the features used in classification in order to compute the
decision boundary covariance. As a result, our method is expected to suffer more from the
data sparsity problem.

Second, we also notice that our method might not perform well in the presence of outliers.
Consider for instance the example shown in Figure 12, where an outlier point causes the
decision boundary covariance with respect to disparate impact (Eq. (4.2)) to be zero, even
when the disparity in positive class outcomes caused by the corresponding decision boundary
is very high. However, such outliers can in fact deteriorate the performance of any learning
task (Bishop, 2006), even when no other constraints are applied, and one might wish to
remove such outliers before training any classification model.

Third, while we observed that a decreasing covariance threshold corresponds to a more
fair classifier (with respect to disparate impact or disparate mistreatment), the relation
between the two is only empirically observed. A precise mapping between covariance and
the precise value of the fairness notion under consideration is quite challenging to derive
analytically, since it depends on the specific classifier and the dataset being used. Such a
theoretical analysis would be an interesting future direction.

Our framework also opens many avenues for future work. For example, one could include
fairness constraints in other supervised (e.g., regression, recommendation) as well as unsu-
pervised (e.g., set selection, ranking) learning tasks. Our fairness constraints can be solved
using standard convex or convex-concave optimizers (e.g., SLSQP and DCCP, respectively)
and we faced no scalability issues during the experiments conducted in this paper. However,
extending these solvers to scale to cases when datasets or resulting optimization problems
are too large to fit into memory would be an interesting future direction.
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Appendix A. Additional dataset details

In this section, we show the distribution of sensitive features and class labels in the real-
world datasets used in the evaluation (Section 5).

Gender Low income (-ve) High income (+ve) Total

Males 20,988(69%) 9,539(21%) 30,527(100%)
Females 13,026(88%) 1,669(12%) 14, 695(100%)

Total 34,014(75%) 11,208(25%) 45,222(100%)

Race Low income (-ve) High income (+ve) Total

American-Indian/Eskimo 382(88%) 53(12%) 435(100%)
Asian/Pacific-Islander 934(72%) 369(28%) 1,303(100%)

White 28,696(74%) 10,207(26%) 38, 903(100%)
Black 3,694(87%) 534(13%) 4, 228(100%)
Other 308(87%) 45(13%) 353(100%)

Total 34,014(75%) 11,208(25%) 45,222(100%)

Table 4: [Adult dataset] High (> 50K USD) and low income (≤ 50K USD) rates in for
gender and race groups.

Age Yes (+ve) No (-ve) Total

25 ≤ age ≤ 60 3,970(10%) 35,240(90%) 39,210(100%)
age < 25 or age > 60 670(34%) 1,308(66%) 1,978(100%)

Total 4,640(11%) 36,548(89%) 41,188(100%)

Table 5: [Bank dataset] Term deposit subscription rates for the two race groups.

Race Yes (+ve) No (-ve) Total

Black 1, 661(52%) 1, 514(48%) 3, 175(100%)
White 8, 22(39%) 1, 281(61%) 2, 103(100%)

Total 2, 483(47%) 2, 795(53%) 5, 278(100%)

Table 6: [ProPublica COMPAS dataset] Recidivism rates both races.
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Race Yes (-ve) No (+ve) Total

Black 2, 113(3%) 77, 337(97%) 79, 450
White 803(15%) 4, 616(85%) 5, 419

Total 2, 916(3%) 81, 953(97%) 84, 869

Table 7: Persons found to be in possession of a weapon in 2012 NYPD SQF dataset (origi-
nal).

Race Yes (-ve) No (+ve) Total

Black 2, 113(43%) 2, 756(57%) 4, 869
White 803(83%) 160(17%) 963

Total 2, 916(50%) 2, 916(50%) 5, 832

Table 8: Persons found to be in possession of a weapon in 2012 NYPD SQF dataset (class-
balanced).
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