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Abstract

A common challenge in estimating parameters of probability density functions is the in-
tractability of the normalizing constant. While in such cases maximum likelihood estima-
tion may be implemented using numerical integration, the approach becomes computation-
ally intensive. The score matching method of Hyvärinen (2005) avoids direct calculation of
the normalizing constant and yields closed-form estimates for exponential families of con-
tinuous distributions over Rm. Hyvärinen (2007) extended the approach to distributions
supported on the non-negative orthant, Rm

+ . In this paper, we give a generalized form of
score matching for non-negative data that improves estimation efficiency. As an example,
we consider a general class of pairwise interaction models. Addressing an overlooked inex-
istence problem, we generalize the regularized score matching method of Lin et al. (2016)
and improve its theoretical guarantees for non-negative Gaussian graphical models.

Keywords: exponential family, graphical model, positive data, score matching, sparsity

1. Introduction

Score matching was first developed in Hyvärinen (2005) for continuous distributions sup-
ported on all of Rm. Consider such a distribution P0, with density p0 and support equal
to Rm. Let P be a family of distributions with twice continuously differentiable densities.
The score matching estimator of p0 using P as a model is the minimizer of the expected
squared `2 distance between the gradients of log p0 and a log-density from P. So we min-
imize the loss

∫
Rm p0(x)‖∇ log p(x) −∇ log p0(x)‖22 dx with respect to densities p from P.

The loss depends on p0, but integration by parts can be used to rewrite it in a form that can
be approximated by averaging over the sample without knowing p0. A key feature of score
matching is that normalizing constants cancel in gradients of log-densities, allowing for sim-
ple treatment of models with intractable normalizing constants. For exponential families,
the loss is quadratic in the canonical parameter, making optimization straightforward.
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If the considered distributions are supported on a proper subset of Rm, then the integra-
tion by parts arguments underlying the score matching estimator may fail due to discontinu-
ities at the boundary of the support. For data supported on the non-negative orthant Rm+ ,
Hyvärinen (2007) addresses this problem by modifying the loss to

∫
Rm p0(x)‖∇ log p(x) ◦

x−∇ log p0(x) ◦ x‖22 dx, where ◦ denotes entrywise multiplication. In this loss, boundary
effects are dampened by multiplying gradients elementwise with the identity functions xj .

In this paper, we propose generalized score matching methods that are based on element-
wise multiplication with functions other than xj . As we show, this can lead to drastically
improved estimation accuracy, both theoretically and empirically. To demonstrate these
advantages, we consider a family of graphical models on Rm+ , which does not have tractable
normalizing constants and hence serves as a practical example.

Graphical models specify conditional independence relations for a random vector X =
(Xi)i∈V indexed by the nodes of a graph (Lauritzen, 1996). For undirected graphs, variables
Xi and Xj are required to be conditionally independent given (Xk)k 6=i,j if there is no edge
between i and j. The smallest undirected graph with this property is the conditional
independence graph of X. Estimation of this graph and associated interaction parameters
has been a topic of continued research as reviewed by Drton and Maathuis (2017).

Largely due to their tractability, Gaussian graphical models (GGMs) have gained great
popularity. The conditional independence graph of a multivariate normal vector X ∼
N (µ,Σ) is determined by the inverse covariance matrix K ≡ Σ−1, also termed concentra-
tion or precision matrix. Specifically, Xi and Xj are conditionally independent given all
other variables if and only if the (i, j)-th and the (j, i)-th entries of K are both zero. This
simple relation underlies a rich literature including Drton and Perlman (2004), Meinshausen
and Bühlmann (2006), Yuan and Lin (2007) and Friedman et al. (2008), among others.

More recent work has provided tractable procedures also for non-Gaussian graphical
models. This includes Gaussian copula models (Liu et al., 2009; Dobra and Lenkoski,
2011; Liu et al., 2012), Ising models (Ravikumar et al., 2010), other exponential family
models (Chen et al., 2015; Yang et al., 2015), as well as semi- or non-parametric estimation
techniques (Fellinghauer et al., 2013; Voorman et al., 2014). In this paper, we apply our
method to a class of pairwise interaction models that generalizes non-negative Gaussian
random variables, as recently considered by Lin et al. (2016) and Yu et al. (2016), as well as
square root graphical models proposed by Inouye et al. (2016) when the sufficient statistic
function is a pure power. However, our main ideas can also be applied for other classes of
exponential families whose support is restricted to a rectangular set.

Our focus will be on pairwise interaction power models with probability distributions
having (Lebesgue) densities proportional to

exp

{
− 1

2a
xa>Kxa + η>

xb − 1m
b

}
(1)

on Rm+ ≡ [0,∞)m. Here a > 0 and b ≥ 0 are known constants, and K ∈ Rm×m and
η ∈ Rm are unknown parameters of interest. When b = 0 we define (xb − 1)/b ≡ log x
and Rm+ ≡ (0,∞)m. This class of models is motivated by the form of important univariate
distributions for non-negative data, including gamma and truncated normal distributions.
It provides a framework for pairwise interaction that is concrete yet rich enough to capture
key differences in how densities may behave at the boundary of the non-negative orthant,
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Rm+ . Moreover, the conditional independence graph of a random vector X with distribution
as in (1) is determined just as in the Gaussian case: Xi and Xj are conditionally independent
given all other variables if and only if κij = κji = 0 in the interaction matrix K. Section 5.1
gives further details on these models. We will develop estimators of (η,K) in (1) and the
associated conditional independence graph using the proposed generalized score matching.

A special case of (1) are truncated Gaussian graphical models, with a = b = 1. Let
µ ∈ Rm, and let K be a positive definite matrix. Then a non-negative random vector
X follows a truncated normal distribution for mean parameter µ and inverse covariance
parameter K, in symbols X ∼ TN(µ,K), if it has density proportional to

exp

{
−1

2
(x− µ)>K(x− µ)

}
(2)

on Rm+ . We refer to Σ = K−1 as the covariance parameter of the distribution, and note
that the η parameter in (1) is Kµ. Another special case of (1) is the exponential square
root graphical models in Inouye et al. (2016), where a = b = 1/2.

Lin et al. (2016) estimate truncated GGMs based on Hyvärinen’s modification, with an
`1 penalty on the entries of K added to the loss. However, the paper overlooks the fact
that the loss can be unbounded from below in the high-dimensional setting even with an `1
penalty, such that no minimizer may exist. Since the unpenalized loss is quadratic in the
parameter to be estimated, we propose modifying it by adding small positive values to the
diagonals of the positive semi-definite matrix that defines the quadratic part, in order to
ensure that the loss is bounded and strongly convex and admits a unique minimizer. We
apply this to the estimator for GGMs considered in Lin et al. (2016), which uses score-
matching on Rm, and to the generalized score matching estimator for pairwise interaction
power models on Rm+ proposed in this paper. In these cases, we show, both empirically and
theoretically, that the consistency results still hold (or even improve) if the positive values
added are smaller than a threshold that is readily computable.

The rest of the paper is organized as follows. Section 2 introduces score matching and
our proposed generalized score matching. In Section 3, we apply generalized score match-
ing to exponential families, with univariate truncated normal distributions as an example.
Regularized generalized score matching for graphical models is formulated in Section 4. The
estimators for pairwise interaction power models are shown in Section 5, while theoretical
consistency results are presented in Section 6, where we treat the probabilistically most
tractable case of truncated GGMs. Simulation results and applications to RNAseq data
are given in Section 7. Proofs for theorems in Sections 2–6 are presented in Appendices A
and B. Additional experimental results are presented in Appendix C.

1.1. Notation

Constant scalars, vectors, and functions are written in lower-case (e.g., a, a), random
scalars and vectors in upper-case (e.g., X, X). Regular font is used for scalars (e.g. a,
X), and boldface for vectors (e.g. a, X). Matrices are in upright bold, with constant
matrices in upper-case (K, M) and random matrices holding observations in lower-case (x,
y). Subscripts refer to entries in vectors and columns in matrices. Superscripts refer to
rows in matrices. So Xj is the j-th component of a random vector X. For a data matrix
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x ∈ Rn×m, each row comprising one observation of m variables/features, X
(i)
j is the j-th

feature for the i-th observation. Stacking the columns of a matrix K = [κij ]i,j ∈ Rq×r
gives its vectorization vec(K) = (κ11, . . . , κq1, κ12, . . . , κq2, . . . , κ1r, . . . , κqr)

>. For a matrix
K ∈ Rq×q, diag(K) ∈ Rq denotes its diagonal, and for a vector v ∈ Rq, diag(v) is the q × q
diagonal matrix with diagonals v1, . . . , vq.

For a ≥ 1, the `a-norm of a vector v ∈ Rq is denoted

‖v‖a =

(
q∑
j=1

|vj |a
)1/a

,

with ‖v‖∞ = max
j=1,...,q

|vj |. A matrix K = [κij ]i,j ∈ Rq×r has Frobenius norm

|||K|||F ≡ ‖vec(K)‖2 ≡

√√√√ q∑
i=1

r∑
j=1

κ2
ij ,

and max norm ‖K‖∞ ≡ ‖vec(K)‖∞ ≡ max
i,j
|κij |. Its `a-`b operator norm is

|||K|||a,b ≡ max
x6=0

‖Kx‖b
‖x‖a

with shorthand notation |||K|||a ≡ |||K|||a,a; for instance, |||K|||∞ ≡ max
i=1....,q

r∑
j=1
|κij |.

For a function f : Rm → R, we define ∂jf(x) as the partial derivative with respect
to xj , and ∂jjf(x) = ∂j∂jf(x). For f : R → Rm, f(x) = (f1(x), . . . , fm(x))>, we let
f ′(x) = (f ′1(x), . . . , f ′m(x))> be the vector of derivatives. Likewise f ′′(x) is used for second
derivatives. The symbol 1A(·) denotes the indicator function of the set A, while 1n ∈ Rn is
the vector of all 1’s. For a, b ∈ Rm, a ◦ b ≡ (a1b1, . . . , ambm)>. A density of a distribution
is always a probability density function with respect to Lebesgue measure. When it is clear
from the context, E0 denotes the expectation under a true distribution P0.

2. Score Matching

In this section, we review the original score matching and develop our generalized score
matching estimators.

2.1. Original Score Matching

Let X be a random vector taking values in Rm with distribution P0 and density p0. Let
P be a family of distributions of interest with twice continuously differentiable densities
supported on Rm. Suppose P0 ∈ P. The score matching loss for P ∈ P, with density p, is
given by

J(P ) =

∫
Rm

p0(x)‖∇ log p(x)−∇ log p0(x)‖22 dx. (3)

The gradients in (3) can be thought of as gradients with respect to a hypothetical location
parameter, evaluated at the origin (Hyvärinen, 2005). The loss J(P ) is minimized if and only
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if P = P0, which forms the basis for estimation of P0. Importantly, since the loss depends
on p only through its log-gradient, it suffices to know p up to a normalizing constant. Under
mild conditions, (3) can be rewritten as

J(P ) =

∫
Rm

p0(x)
m∑
j=1

[
∂jj log p(x) +

(∂j log p(x))2

2

]
dx, (4)

plus a constant independent of p. The integral in (4) can be approximated by a sample
average; this alleviates the need for knowing the true density p0, and provides a way to
estimate p0.

2.2. Generalized Score Matching for Non-Negative Data

When the true density p0 is supported on a proper subset of Rm, the integration by parts
underlying the equivalence of (3) and (4) may fail due to discontinuity at the boundary.
For distributions supported on the non-negative orthant, Rm+ , Hyvärinen (2007) addressed
this issue by instead minimizing the non-negative score matching loss

J+(P ) =

∫
Rm+

p0(x)‖∇ log p(x) ◦ x−∇ log p0(x) ◦ x‖22 dx. (5)

This loss can be motivated via gradients with respect to a hypothetical scale parameter
(Hyvärinen, 2007). Under mild conditions, J+(P ) can again be rewritten in terms of an
expectation of a function independent of p0, thus allowing one to form a sample loss.

In this work, we consider generalizing the non-negative score matching loss as follows.

Definition 1 Let P+ be the family of distributions of interest, and assume every P ∈ P+

has a twice continuously differentiable density supported on Rm+ . Suppose the m-variate
random vector X has true distribution P0 ∈ P+, and let p0 be its twice continuously dif-
ferentiable density. Let h1, . . . , hm : R+ → R+ be a.s. positive functions that are absolutely
continuous in every bounded sub-interval of R+, and set h(x) = (h1(x1), . . . , hm(xm))>.
For P ∈ P+ with density p, the generalized h-score matching loss is

Jh(P ) =

∫
Rm+

1

2
p0(x)‖∇ log p(x) ◦ h(x)1/2 −∇ log p0(x) ◦ h(x)1/2‖22 dx, (6)

where h1/2(x) ≡ (h
1/2
1 (x1), . . . , h

1/2
m (xm))>.

Proposition 2 The distribution P0 is the unique minimizer of Jh(P ) for P ∈ P+.

Proof First, observe that Jh(P ) ≥ 0 and Jh(P0) = 0. For uniqueness, suppose Jh(P1) = 0
for some P1 ∈ P+. Let p0 and p1 be the respective densities. By assumption p0(x) > 0

a.s. and h
1/2
j (x) > 0 a.s. for all j = 1, . . . ,m. Therefore, we must have ∇ log p1(x) =

∇ log p0(x) a.s., or equivalently, p1(x) = const × p0(x) almost surely in Rm+ . Since p1 and
p0 are continuous densities supported on Rm+ , it follows that p1(x) = p0(x) for all x ∈ Rm+ .
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Choosing all hj(x) = x2 recovers the loss from (5). In our generalization, we will focus
on using functions hj that are increasing but are bounded or grow rather slowly. This will
alleviate the need to estimate higher moments, leading to better practical performance and
improved theoretical guarantees.

We will consider the following assumptions:

(A1) p0(x)hj(xj)∂j log p(x)
∣∣∣xj↗+∞
xj↘0+

= 0 , ∀x−j ∈ Rm−1
+ , ∀p ∈ P+;

(A2) Ep0‖∇ log p(X) ◦ h1/2(X)‖22 < +∞, Ep0‖(∇ log p(X) ◦ h(X))′‖1 < +∞, ∀p ∈ P+,

where ∂j log p(x) ≡ ∂ log p(y)
∂yj

∣∣∣
y=x

, f(x)
∣∣∣xj↗+∞
xj↘0+

≡ limxj↗+∞ f(x) − limxj↘0 f(x), “∀p ∈
P+” is a shorthand for “for all p being the density of some P ∈ P+”, and the prime
symbol denotes component-wise differentiation. While the second half of (A2) was not
made explicit in Hyvärinen (2005, 2007), (A1)-(A2) were both required for integration by
parts and Fubini-Tonelli to apply.

Once the forms of p0 and p are given, sufficient conditions for h for Assumptions (A1)-
(A2) to hold are easy to find. In particular, (A1) and (A2) are easily satisfied and verified
for exponential families.

Integration by parts yields the following theorem which shows that Jh from (6) is an
expectation (under P0) of a function that does not depend on p0, similar to (4). The proof
is given in Appendix A.1.

Theorem 3 Under (A1) and (A2), the loss from (6) equals

Jh(P ) =

∫
Rm+

p0(x)
m∑
j=1

[
h′j(xj)∂j(log p(x)) + hj(xj)∂jj(log p(x))

+
1

2
hj(xj) (∂j(log p(x)))2

]
dx (7)

plus a constant independent of p.

Given a data matrix x ∈ Rn×m with rows X(i), we define the sample version of (7) as

Ĵh(P ) =
1

n

n∑
i=1

m∑
j=1

{
h′j(X

(i)
j )∂j(log p(X(i)))

+hj(X
(i)
j )

[
∂jj(log p(X(i))) +

1

2

(
∂j(log p(X(i)))

)2
]}

. (8)

Subsequently, for a distribution P with density p, we let Jh(p) ≡ Jh(P ). Similarly, when
a distribution Pθ with density pθ is associated to a parameter vector θ, we write Jh(θ) ≡
Jh(pθ) ≡ Jh(Pθ). We apply similar conventions to the sample version Ĵh(P ). We note that
this type of loss is also treated in slightly different settings in Parry (2016) and Almeida
and Gidas (1993).
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Remark 4 In the one-dimensional case, using the notation in Parry et al. (2012), Jh(P )
and Ĵh(P ) correspond to d(P0, P ) and S(x, P ), respectively, and can be generated by
φ(x, p, p1) ≡ −h(x)p2

1/(2p) (c.f. Equations (39), (51), (53) and Section 10.1 therein). Thus
Theorem 3 follows from this correspondence. While (A1) is equivalent to the condition im-
plied by the boundary divergence db = 0 in that paper, (A2), which we assume for invoking
Fubini-Tonelli due to multi-dimensionality, is not present. On the other hand, while Parry
(2016) treats the multivariate case, it does not cover the connection between our Jh and
Ĵh. Since φ is concave but not strictly concave in (p, p1), the results in Parry (2016) only
imply that P0 is a minimizer, a weaker conclusion than Proposition 2.

3. Exponential Families

In this section, we study the case where P+ ≡ {pθ : θ ∈ Θ} is an exponential family com-
prising continuous distributions with support Rm+ . More specifically, we consider densities
that are indexed by the canonical parameter θ ∈ Rr and have the form

log pθ(x) = θ>t(x)− ψ(θ) + b(x), x ∈ Rm+ , (9)

where t(x) ∈ Rr+ comprises the sufficient statistics, ψ(θ) is a normalizing constant depend-
ing on θ only, and b(x) is the base measure, with t and b a.s. differentiable with respect to
each component. Define t′j(x) ≡ (∂jt1(x), . . . , ∂jtr(x))> and b′j(x) ≡ ∂jb(x).

Theorem 5 Under Assumptions (A1)-(A2) from Section 2.2, the empirical generalized h-
score matching loss (8) can be rewritten as a quadratic function in θ ∈ Rr:

Ĵh(pθ) =
1

2
θ>Γ(x)θ − g(x)>θ + const, where (10)

Γ(x) =
1

n

n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))> and (11)

g(x) = − 1

n

n∑
i=1

m∑
j=1

[
hj(X

(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X

(i)) + h′j(X
(i)
j )t′j(Xi)

]
(12)

are sample averages of functions of the data matrix x only.

Define Γ0 ≡ Ep0Γ(x), g0 ≡ Ep0g(x), and Σ0 ≡ Ep0 [(Γ(x)θ0 − g(x))(Γ(x)θ0 − g(x))>].

Theorem 6 Suppose that

(C1) Γ is a.s. invertible, and

(C2) Γ0, Γ−1
0 , g0 and Σ0 exist and are entry-wise finite.

Then the minimizer of (10) is a.s. unique with closed-form solution θ̂ ≡ Γ(x)−1g(x). More-
over,

θ̂ →a.s. θ0 and
√
n(θ̂ − θ0)→d Nr

(
0,Γ−1

0 Σ0Γ
−1
0

)
as n→∞.
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Theorems 5 and 6 are proved in Appendix A.2. Theorem 5 clarifies the quadratic nature
of the loss, and Theorem 6 provides a basis for asymptotically valid tests and confidence
intervals for the parameter θ. Note that Condition (C1) holds if and only if hj(Xj) > 0
a.s. and [t′j(X

(1)), . . . , t′j(X
(n))] ∈ Rr×n has rank r a.s. for some j = 1, . . . ,m.

The conclusion in Theorem 6 indicates that, similar to the estimator in Hyvärinen (2007)
with hj(x) = x2, the closed-form solution for our generalized θ̂ allows one to consistently
estimate the canonical parameter in an exponential family distribution without needing to
calculate the often complicated normalizing constant ψ(θ) or resort to numerical methods.
Computational details are explicated in Section 5.3.

Below we illustrate the estimator θ̂ in the case of univariate truncated normal distribu-
tions. We assume (A1)-(A2) and (C1)-(C2) throughout.

Example 3.1 Univariate (m = r = 1) truncated normal distributions for mean parameter
µ and variance parameter σ2 have density

pµ,σ2(x) ∝ exp

{
−(x− µ)2

2σ2

}
, x ∈ R+. (13)

If σ2 is known but µ unknown, then writing the density in canonical form as in (9) yields

pθ(x) ∝ exp {θt(x) + b(x)} , θ ≡ µ

σ2
, t(x) ≡ x, b(x) = − x2

2σ2
.

Given an i.i.d. sample X1, . . . , Xn ∼ pµ0,σ2, the generalized h-score matching estimator of
µ is

µ̂h ≡
∑n

i=1 h(Xi)Xi − σ2h′(Xi)∑n
i=1 h(Xi)

.

If limx↘0+ h(x) = 0, limx↗+∞ h
2(x)(x − µ0)pµ0,σ2(x) = 0 and the expectations are finite

(for example, when h(x) = o(exp(Mx2)) for M < 1
4σ2 ), then

√
n(µ̂h − µ0)→d N

(
0,

E0[σ2h2(X) + σ4h′2(X)]

E2
0[h(X)]

)
.

We recall that the Cramér-Rao lower bound (i.e. the lower bound on the variance of any
unbiased estimator) for estimating µ is

σ4

var(X − µ0)
.

Example 3.2 Consider the univariate truncated normal distributions from (13) in the set-
ting where the mean parameter µ is known but the variance parameter σ2 > 0 is unknown.
In canonical form as in (9), we write

pθ(x) ∝ exp {θt(x) + b(x)} , θ ≡ 1

σ2
, t(x) ≡ −(x− µ)2/2, b(x) = 0.

Given an i.i.d. sample X1, . . . , Xn ∼ pµ,σ2
0
, the generalized h-score matching estimator of

σ2 is

σ̂2
h ≡

∑n
i=1 h(Xi)(Xi − µ)2∑n

i=1 h(Xi) + h′(Xi)(Xi − µ)
.

8
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If, in addition to the assumptions in Example 3.1, lim
x↗+∞

h2(x)(x− µ)3pµ,σ2
0
(x) = 0, then

√
n(σ̂2

h − σ2
0)→d N

(
0,

2σ6
0E0[h2(X)(X − µ)2] + σ8

0E0[h′2(X)(X − µ)2]

E2
0[h(X)(X − µ)2]

)
.

Moreover, the Cramér-Rao lower bound for estimating σ2 is

4σ8
0

var(X − µ)2
.

Remark 7 In Example 3.2, if µ0 = 0, then h(x) ≡ 1 also satisfies (A1)-(A2) and (C1)-(C2)
and one recovers the sample variance 1

n

∑
iX

2
i , which obtains the Cramér-Rao lower bound.

In these examples, there is a benefit in using a bounded function h, which can be
explained as follows. When µ � σ, there is effectively no truncation to the Gaussian
distribution, and our method adapts to using low moments in (6), since a bounded and
increasing h(x) becomes almost constant as it reaches its asymptote for x large. Hence, we
effectively revert to the original score matching (recall Section 2.1). In the other cases, the
truncation effect is significant and our estimator uses higher moments accordingly.

Figure 1 plots the asymptotic variance of µ̂h from Example 3.1, with σ = 1 known.
Efficiency as measured by the Cramér-Rao lower bound divided by the asymptotic variance
is also shown. We see that two truncated versions of log(1 + x) have asymptotic variance
close to the Cramér-Rao bound. This asymptotic variance is also reflective of the variance
for smaller finite samples.

Figure 2 is the analog of Figure 1 for σ̂2
h from Example 3.2 with µ = 0.5 known. While

the specifics are a bit different the benefits of using bounded or slowly growing h are again
clear. We note that when σ is small, the effect of truncation to the positive part of the real
line is small.

In both plots we order/color the curves based on their overall efficiency, so they have
different colors in one from the other, although the same functions are presented. For all
functions presented here (A1)–(A2) and (C1)–(C2) are satisfied.

4. Regularized Generalized Score Matching

In high-dimensional settings, when the number r of parameters to estimate may be larger
than the sample size n, it is hard, if not impossible, to estimate the parameters consistently
without turning to some form of regularization. More specifically, for exponential families,
condition (C1) in Section 3 fails when r > n. A popular approach is then the use of `1
regularization to exploit possible sparsity.

Let the data matrix x ∈ Rn×m comprise n i.i.d. samples from distribution P0. Assume
P0 has density p0 belonging to an exponential family P+ ≡ {pθ : θ ∈ Θ}, where Θ ⊆ Rr.
Adding an `1 penalty to (10), we obtain the regularized generalized score matching loss

1

2
θ>Γ(x)θ − g(x)>θ + λ‖θ‖1 (14)

as in Lin et al. (2016). The loss in (14) involves a quadratic smooth part as in the familiar
lasso loss for linear regression. However, although the matrix Γ is positive semidefinite,

9
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the regularized loss in (14) is not guaranteed to be bounded unless the tuning parameter
λ is sufficiently large—a problem that does not occur in lasso. We note that here, and
throughout, we suppress the dependence on the data x for Γ(x), g(x) and derived quantities.

For a more detailed explanation, note that that by (11), Γ = H>H for some H ∈ Rnm×r.
In the high-dimensional case, the rank of Γ, or equivalently H, is at most nm < r. Hence,
Γ is not invertible and g does not necessarily lie in the column span of Γ. Let Ker(Γ) be
the kernel of Γ. Then there may exist ν ∈ Ker(Γ) with g>ν 6= 0. In this case, if

0 ≤ λ < sup
ν∈Ker(Γ)

|g>ν|/‖ν‖1,

there exists ν ∈ Ker(Γ) with 1
2ν
>Γν = 0 and −g>ν+λ‖ν‖1 < 0. Evaluating at θ(a) = a ·ν

for scalar a > 0, the loss becomes a
(
−g>ν + λ‖ν‖1

)
, which is negative and linear in a, and

thus unbounded below. In this case no minimizer of (14) exists for small values of λ. This
issue also exists for the estimators from Zhang and Zou (2014) and Liu and Luo (2015),
which correspond to score matching for GGMs. We note that in the context of estimating
the interaction matrix in pairwise models, r = m2; thus, the condition nm < r reduces to
n < m, or n < m+ 1 when both K and η are estimated.

To circumvent the unboundedness problem, we add small values γ` > 0 to the diagonal
entries of Γ, which become Γ`,` + γ`, ` = 1, . . . , r. This is in the spirit of work such as
Ledoit and Wolf (2004) and corresponds to an elastic net-type penalty (Zou and Hastie,
2005) with weighted `2 penalty

∑r
`=1 γ`θ

2
` . After this modification, Γ is positive definite,

our regularized loss is strongly convex in θ, and a unique minimizer exists for all λ ≥ 0.
For the special case of truncated GGMs, we will show that a result on consistent estimation
holds if we choose γ` = δ0Γ`,` for a suitably small constant δ0 > 0, for which we propose a
particular choice to avoid tuning. This choice of γ` depends on the data through Γ`,`.

Definition 8 For γ ∈ Rr+\{0}, let Γγ ≡ Γ + diag(γ). The regularized generalized h-score
matching estimator with tuning parameter λ ≥ 0 and amplifier γ is the estimator

θ̂ ∈ argmin
θ∈Θ

Ĵh,λ,γ(θ) ≡ argmin
θ∈Θ

1

2
θ>Γγ(x)θ − g(x)>θ + λ‖θ‖1. (15)

In the case where γ = (δ − 1)diag(Γ) for some δ > 1, we also call δ the multiplier. We
note that θ̂ from (15) is a piecewise linear function of λ (Lin et al., 2016).

5. Score Matching for Graphical Models for Non-negative Data

In this section we apply our generalized score matching estimator to a general class of
graphical models for non-negative data.

5.1. A General Framework of Pairwise Interaction Models

We consider the class of pairwise interaction power models with density introduced in (1).
We recall the form of the density:

pη,K(x) ∝ exp

(
− 1

2a
xa>Kxa + η>

xb − 1m
b

)
1Rm+ (x), (16)

11
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where a and b are known constants, and the interaction matrix K and the vector η are
parameters. When b = 0, we use the convention that x0−1

0 ≡ log x and apply the logarithm
element-wise. Our focus will be on the interaction matrix K that determines the conditional
independence graph through its support S(K) ≡ {(i, j) : κij 6= 0}. However, unless η is
known or assumed to be zero, we also need to estimate η as a nuisance parameter. In the
case where we assume η ≡ 0 is known (i.e. the linear part (xb − 1m)/b is not present), we
call the distribution (and the corresponding estimator) a centered distribution (estimator),
in contrast to the general case termed non-centered when we assume η 6= 0 or unknown.

We first give a set of sufficient conditions for the density to be valid, i.e., the right-hand
side of (16) to be integrable. The proof is given in Appendix A.3.

Theorem 9 Define conditions

(CC1) K is strictly co-positive, i.e., v>Kv > 0 for all v ∈ Rm+\{0};

(CC2) 2a > b > 0;

(CC3) a > 0, b = 0, and ηj > −1 for j = 1, . . . ,m (η � −1m).

In the non-centered case, if (CC1) and one of (CC2) and (CC3) holds, then the function
on the right-hand side of (16) is integrable over Rm+ . In the centered case, (CC1) and a > 0
are sufficient.

We emphasize that (CC1) is a weaker condition than positive definiteness. Criteria for
strict co-positivity are discussed in Väliaho (1986).

5.2. Implementation for Different Models

In this section we give some implementation details for the regularized generalized h-score
matching estimator defined in (15) applied to the pairwise interaction models from (16).

We again let Ψ ≡
(
K>,η

)> ∈ R(m+1)×m. The unregularized loss is then

Ĵh(P ) =
1

2
vec(Ψ)>Γ(x)vec(Ψ)− g(x)>vec(Ψ).

The general form of the matrix Γ and the vector g in the loss were given in equations
(10)–(12). Here Γ ∈ R(m+1)m×(m+1)m is block-diagonal, with the j-th R(m+1)×(m+1) block

Γj(x) ≡
[
Γ11,j Γ12,j

Γ>12,j Γ22,j

]
(17)

≡ 1

n

n∑
i=1

hj (X(i)
j

)
X

(i)
j

2a−2
X(i)aX(i)a> −hj

(
X

(i)
j

)
X

(i)
j

a+b−2
X(i)a

−hj
(
X

(i)
j

)
X

(i)
j

a+b−2
X(i)a> hj

(
X

(i)
j

)
X

(i)
j

2b−2


=

1

n
y>y, y ≡

[
−(
√
hj(Xj) ◦Xa−1

j ) ◦ xa
√
hj(Xj) ◦Xb−1

j

]
∈ Rn,m+1, (18)

where the ◦ product between a vector and a matrix means an elementwise multiplication of

the vector with each column of the matrix, and hj(Xj) ≡ [hj(X
(1)
j ), . . . , hj(X

(n)
j )>] ∈ Rm.

12
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Furthermore, g ≡
[
vec(g1)
g2

]
∈ R(m+1)m, where g1 and g2 correspond to each entry of K

and η, respectively. The j-th column of g1 ∈ Rm×m, written as g1,j(x), is

1

n

n∑
i=1

(
h′j

(
X

(i)
j

)
X

(i)
j

a−1
+ (a− 1)hj

(
X

(i)
j

)
X

(i)
j

a−2
)
X(i)a + ahj

(
X

(i)
j

)
X

(i)
j

2a−2
ej,m,

where ej,m is the m-vector with 1 at the j-th position and 0 elsewhere, and the j-th entry
of g2 ∈ Rm is

g2,j =
1

n

n∑
i=1

−h′j
(
X

(i)
j

)
X

(i)
j

b−1
− (b− 1)hj

(
X

(i)
j

)
X

(i)
j

b−2
.

These formulae also hold for b = 0 since Γ and g only depend on the gradient of the

log density, and d(xb−1)/b
dx = xb−1 also holds for b = 0. In the centered case where we know

η0 ≡ 0, we only estimate K ∈ Rm×m, and Γ ∈ Rm2×m2
is still block-diagonal, with the j-th

block being the Γ11,j submatrix in (17), while g is just vec(g1). Since b only appears in the
η part of the density, the formulae only depend on a in the centered case.

We emphasize that it is indeed necessary to introduce amplifiers γ � 0 or a multiplier
δ > 1 in addition to the `1 penalty. It is clear from (18) that rank(Γj) ≤ min{n,m+ 1} (or
min{n,m} if centered). Thus, Γ is non-invertible when n ≤ m (or n < m if centered) and
g need not lie in its column span.

We claim that including amplifiers/multipliers for the submatrices Γ11,j only is sufficient
for unique existence of a solution for all penalty parameters λ ≥ 0. To see this, consider
any nonzero vector ν ∈ Rm+1. Partition it as ν ≡ (ν1,ν2) with ν1 ∈ Rm. Let Γj,γ be our
amplified version of the matrix Γj from (21), so

Γj,γ =

(
Γ11,j + diag(γ1, . . . , γm) Γ12,j

Γ>12,j Γ22,j

)
.

As Γj itself is positive semidefinite, we find that if at least one of the first m entries of ν is
nonzero then

ν>Γj,γν ≥ ν>Γjν +
m∑
k=1

ν2
kγk ≥

m∑
k=1

ν2
kγk > 0.

If only the last entry of ν is nonzero then

ν>Γj,γν = ν2
m+1Γ22,j > 0

almost surely; recall that Γ22,j = 1
n

∑n
i=1 hj

(
X

(i)
j

)
X2b−2
j . We conclude that Γj,γ (and thus

the entire amplified Γ) is a.s. positive definite, which ensures unique existence of the loss
minimizer.

Given the formulae for Γ and g, one adds the `1 penalty on Ψ to get the regularized loss
(24). Our methodology readily accommodates two different choices of the penalty parameter
λ for K and η. This is also theoretically supported for truncated GGMs, since if the ratio
of the respective values λK and λη is fixed, the proof of the theorems in Section 6 can be

13
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easily modified by replacing η by (λη/λK)η. To avoid picking two tuning parameters, one
may also choose to remove the penalty on η altogether by profiling out η and solve for

η̂ ≡ Γ−1
22

(
g2 − Γ>12vec(K̂)

)
, with K̂ the minimizer of the profiled loss

Ĵh,λ,γ,profile(K) ≡ 1

2
vec(K)>Γγ,11.2vec(K)− (g1 − Γ12Γ

−1
22 g2)>vec(K) + λ‖K‖1, (19)

where the Schur complement Γγ,11.2 ≡ Γγ,11 − Γ12Γ
−1
22 Γ>12 is a.s. positive definite such

that the profiled estimator exists a.s. for all λ ≥ 0. This profiled approach corresponds to
choosing λη/λK = 0. A detailed theoretical analysis of the profiled estimator is beyond the
scope of this paper, however. We note that in the other extreme, with λη/λK = +∞, the
non-centered estimator reduces to the estimator from the centered case.

Example 5.3 The truncated normal model comprises the density

pµ,K(x) ∝ exp

{
−1

2
(x− µ)>K(x− µ)

}
1[0,∞)m(x). (20)

This corresponds to (16) with a = b = 1, and η = Kµ. The j-th (m+ 1)× (m+ 1) block of
Γ(x) is

1

n

[
x>diag(hj(Xj))x −x>hj(Xj)
−hj(Xj)

>x hj(Xj)
>1n

]
. (21)

Partitioning the vector g(x) into m subvectors gj(x) ∈ Rm+1, where the entries of gj(x)
correspond to column Ψj, the k-th entry of gj(x) is

gjk(x) ≡


1
n

∑n
i=1 h

′
j

(
X

(i)
j

)
X

(i)
k if k ≤ m, k 6= j,

1
n

∑n
i=1 h

′
j

(
X

(i)
j

)
X

(i)
k + hj

(
X

(i)
j

)
if k = j,

− 1
n

∑n
i=1 h

′
j

(
X

(i)
j

)
if k = m+ 1.

(22)

Example 5.4 The exponential square-root graphical model in Inouye et al. (2016) has

pη,K(x) ∝ exp
(
−
√
x
>

K
√
x+ 2η>

√
x
)
1[0,∞)m(x),

which corresponds to (16) with a = b = 1/2. We refer to this as the exponential model. In
this case, the j-th R(m+1)×(m+1) block of Γ is

Γj(x) ≡ 1

n

n∑
i=1

hj

(
X

(i)
j

)
X

(i)
j

(
−
√
X(i)

1

)(
−
√
X(i)

>
, 1

)

and g = vec(g0), where the j-th column of g0 ∈ R(m+1)×m is

gj(x) ≡ 1

n

n∑
i=1

2h′j

(
X

(i)
j

)
X

(i)
j − hj

(
X

(i)
j

)
2X

(i)
j

3/2

(√
X(i)

−1

)
+
hj

(
X

(i)
j

)
2X

(i)
j

ej,m+1.
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Example 5.5 If a = 1/2 and b = 0, then (16) becomes

pη,K(x) ∝ exp
(
−
√
x
>

K
√
x+ η> log(x)

)
1(0,∞)m(x). (23)

If K is diagonal in this case, then X ∼ pη,K has independent entries with Xj following the
gamma distribution with rate κjj and shape ηj + 1, which gives an intuition for condition
(CC3) ηj > −1 in Theorem 9. We can thus view (23) as a multivariate gamma distribution
with pairwise interactions among the covariates, and call this the gamma model. For this
model, the j-th block of Γ is

Γj(x) ≡ 1

n

n∑
i=1

hj

(
X

(i)
j

)
X

(i)
j

2

(
−
√
X

(i)
j X

(i)

1

)(
−
√
X

(i)
j X

(i)
>
, 1

)
and the part of g corresponding to Kj is

g1,j(x) ≡ 1

n

n∑
i=1

2h′j

(
X

(i)
j

)
X

(i)
j − hj

(
X

(i)
j

)
2X

(i)
j

3/2

√
X(i) +

hj

(
X

(i)
j

)
2X

(i)
j

ej,m,

while the part for ηj is

g2.j(x) =
1

n

n∑
i=1

hj

(
X

(i)
j

)
X

(i)
j

2 −
h′j

(
X

(i)
j

)
X

(i)
j

.

We note that the Γ11,j sub-matrix of Γj and the g1,j sub-vector of gj for the gamma
model are the same as those for the exponential model, since a = 1/2 in both cases and the
parts involving K in the densities are the same.

5.3. Computational Details

In the most general exponential family setting, as in Eq. (10)–(12) in Theorem 5, the time
complexity for forming Γ ∈ Rr×r and g ∈ Rr is O

(
nm(fb′(m) + r2 + r(ft′(m) + ft′′(m)))

)
.

Here fb′(m) is the average time complexity for calculating ∂jb(x) over j = 1, . . . ,m, and
similarly ft′(m) for ∂jt`(x) and ft′′(m) for ∂jjt`(x) over j = 1, . . . ,m and ` = 1 . . . , r. In
many applications, however, these three functions would be constant in m, thus giving an
O(nmr2) computational complexity, with the dominating term coming from the operations
for t′jt

′
j
> in Γ since Γ is of dimension r × r.

For pairwise interaction power models, r = m2 and the formula above becomes O(nm5).
However, since Γ is block-diagonal with only m3 nonzero entries and by the special form of
t(x) = xaxa>, the true complexity is in fact O(nm3).

While the introduction of the `1 penalty inevitably precludes the estimator from having a
closed-form solution and introduces non-differentiability, state-of-art numerical optimization
algorithms, such as coordinate-descent (Friedman et al., 2007), can be applied for fast
estimation. To speed up estimation, one can usually use warm starts using the solution
from the previous λ’s, as well as lasso-type strong screening rules (Tibshirani et al., 2012)
to eliminate components of θ̂ that are known a priori to have zero estimates.
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In our implementation for pairwise interaction models of Section 5.1 (that will become
available in an R package), we optimize our loss functions with respect to a symmetric
matrix K̂; in the non-centered case the vector η̂ is also included. We use a coordinate-
descent method analogous to Algorithm 2 in Lin et al. (2016), where in each step we
update each element of K̂ and η̂ based on the other entries from the previous steps, while
maintaining symmetry. In our simulations in Section 7 we always scale the data matrix
by column `2 norms before proceeding to estimation. Note that estimation of K̂ without
symmetry can be parallelized as the loss can be decomposed into a sum over the columns.

5.4. Choice of the Function h

In this subsection we discuss the requirements on the function h as well as some reasonable
choices of h.

5.4.1. Requirements on h

In Section 2.2, we presented two assumptions (A1) and (A2) under which the generalized
score-matching loss is valid, i.e., the integration by parts is justified and Theorem 3 holds.
In this section, we present some sufficient (and nearly necessary) requirements on h such
that (A1) and (A2) are satisfied.

Definition 10 Suppose h : Rm+ → Rm+ with h(x) = (h1(x1), . . . , hm(xm))>. We write that
h ∈ Ha,b (for simplicity we omit the dependency on m) if for all j = 1, . . . ,m:

i) hj is absolutely continuous in every bounded sub-interval of R+, and thus has deriva-
tive h′j a.s.;

ii) hj(x) > 0 a.s. on R+;

iii) hj and h′j are both bounded by some piecewise powers of x a.s. on R+;

iv) lim
x↘0+

hj(x)/xqj = 0, where q ≡

{
max{1− a, 1− b} if b > 0,

1− η0,j if b = 0.

Theorem 11 Assume every P in the family of distribution P+ satisfies (CC1)–(CC3) and
thus has finite normalizing constants. If h ∈ Ha,b, then (A1) and (A2) are satisfied.

In centered models, where η ≡ 0, we can assume b = 2a and iv) in the definition of
Ha,2a has q = 1 − a. For truncated GGMs, a = b = 1, so iv) in Definition 10 is simply
limxj↘0+ hj(xj) = 0.

In the case of b = 0, η is an unknown parameter, and (CC3) requires each of its com-
ponent to be greater than −1. If one has prior information on η or restricts the parameter
space for η, the requirement reduces to hj(xj) = o(x

1−η0,j
j ) as xj ↘ 0+. Otherwise, it

suffices to require hj(xj) = o(x2
j ). Note that this is only a condition for xj ↘ 0+, and the

globally quadratic behavior of hj(xj) = x2
j from the original score matching is not needed

on the entire R+, leaving opportunities for improvements.
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5.4.2. Reasonable Choices of h

Assume a common univariate h for all components in h. Inspired by Theorem 11, we
consider h that behaves like a power of x both as x ↗ +∞ and as x ↘ 0+. Since the
requirements on the two tails are separate, we can choose h to be a piecewise defined function
that joins two powers with possibly different degrees. In other words, h(x) = min(xp1 , cxp2)
for some powers p1 ≥ p2 ≥ 0 and constant c > 0. Only one constant c is required since
generalized score matching is invariant to scaling of h. In determining the exact power of
p1 we have the following considerations:

a) In the centered case:

(i) (A1) and (A2): Theorem 11 requires that p1 ≥ 1− a.

(ii) “Controlled Γ and g for xa”: We propose avoiding poles at the origin for the
entries of Γ and g. The formula for Γ11 in (18) shows that to this end

√
h(x)xa−1

needs to have a non-negative degree . This requires p1 ≥ 2 − 2a. The formula
for g1 similarly shows that h′(x)xa−1, h(x)xa−2 and h(x)x2a−2 all need to have
a non-negative degree for small x. This requires p1 ≥ 2− a.

b) In the non-centered case, in addition to (i) and (ii),

(iii) (A1) and (A2): Theorem 11 requires p1 ≥ max{1 − a, 1 − b} for b > 0, or
1−minj η0,j for b = 0.

(iv) “Controlled Γ and g for xb”: From the definition of Γ22 and g2 and by the same
reasoning as above,

√
h(x)xb−1, h′(x)xb−1 and h(x)xb−2 need to be non-negative

powers of x, thus requiring p1 ≥ max{2− b, 2− 2b} = 2− b.

The choice of p2, is only relevant for large data points. Our main consideration is then
merely how well Γ and g concentrate on their true population values (Theorem 13). From
this perspective, our intuition is that p2 should be chosen small so that the tails of the
distributions of the entries of Γ and g are well-behaved. Thus, we can choose p2 = 0, in
which case h(x) = min(xp1 , c) is a truncated power.

5.5. Tuning Parameter Selection

By treating the unpenalized loss (i.e., λ = 0, γ = 0) as a negative log-likelihood, we may use
the extended Bayesian Information Criterion (eBIC) to choose the tuning parameter (Chen
and Chen, 2008; Foygel and Drton, 2010). Consider the centered case as an example. Let
Ŝλ ≡ {(i, j) : κ̂λij 6= 0, i < j}, where K̂λ be the estimate associated with tuning parameter
λ. The eBIC is then

eBIC(λ) =− nvec(K̂)>Γ(x)vec(K̂) + 2ng(x)>vec(K̂) + |Ŝλ| log n+ 2 log

(
p(p− 1)/2

|Ŝλ|

)
,

where K̂ can be either the original estimate associated with λ, or a refitted solution obtained
by restricting the support to Ŝλ.

We use the eBIC instead of the ordinary BIC (Bayesian Information Criterion) since
the BIC tends to choose an overly complex model when the model space is large, as en-
countered in the high-dimensional setting. The extension in eBIC comes from the last
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term in the above display which can be motivated by a prior distribution under which the
number of edges in the conditional independence graph is uniformly distributed; see also
Żak-Szatkowska and Bogdan (2011) and Barber and Drton (2015).

6. Theory for Graphical Models

In our regularized generalized score matching framework, we introduced the amplifiers/
multipliers to address the inexistence problem. We also proposed using a general function
h in place of x2 as a means to improve estimation accuracy. This section provides a
theoretical analysis of these two aspects.

In Section 6.1, we present the theory for our regularized generalized score matching
estimators for general pairwise interaction models before going into the details for the special
cases of (truncated) GGMs. Next, we show that a specific choice of amplifiers/multipliers
yields consistent estimation without the need for tuning. This point is important even in the
case of Gaussian models on all of Rm. Therefore, in Section 6.2 we digress from non-negative
data and consider the original score matching of Hyvärinen (2005) for centered Gaussian
distributions. Finally, in Section 6.3, we derive probabilistic results for Ψ̂ based on Theorem
13, justifying the benefits of using a general bounded h over x2 in the non-negative setting.
As the most important models from the class of pairwise interaction power models over Rm+ ,
we only treat truncated GGMs since they have the most tractable concentration bounds;
this case also provides a comparison to Corollary 2 in Lin et al. (2016), which uses x2.

6.1. Theory for Pairwise Interaction Models

The graphical models we treat are parametrized by the interaction matrix K and the coeffi-
cients η on (xb−1m)/b. It is convenient to accommodate this setting with a matrix-valued
parameter Ψ ∈ Rr1×r2 (in place of θ) and specify our regularized h-score matching loss as

Ĵh,λ,γ(Ψ) ≡ argmin
Ψ∈Rr1×r2

1

2
vec(Ψ)>Γγ(x)vec(Ψ)− g(x)>vec(Ψ) + λ‖Ψ‖1. (24)

In the non-centered case we thus take Ψ = [K,η]> ∈ Rm(m+1)×m. In the centered case,
Ψ is simply the m×m interaction matrix K. Following related prior work such as Lin et al.
(2016), for ease of proof we allow the matrix K to be nonsymmetric, which allows us to
decouple optimization over the different columns of K or Ψ, while in our implementations
we ensure that K is symmetric.

Definition 12 Let Γ0 ≡ E0Γ(x) and g0 ≡ E0g(x) be the population versions of Γ(x) and
g(x) under the distribution given by a true parameter matrix Ψ0. The support of a matrix
Ψ is S(Ψ) ≡ {(i, j) : ψij 6= 0}, and we let S0 = S(Ψ0). For a matrix Ψ0, we define dΨ0 to
be the maximum number of non-zero entries in any column, and cΨ0 ≡ |||Ψ0|||∞,∞. Writing
Γ0,AB for the A×B submatrix of Γ0, we define

cΓ0 ≡ |||(Γ0,S0S0)−1|||∞,∞. (25)

Finally, Γ0 satisfies the irrepresentability condition with incoherence parameter α ∈ (0, 1]
and edge set S0 if

|||Γ0,Sc0S0(Γ0,S0S0)−1|||∞,∞ ≤ (1− α). (26)
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Our analysis of the regularized generalized h-score matching estimator builds on the
following theorem taken from Lin et al. (2016, Theorem 1).

Theorem 13 Suppose Γ0 has Γ0,S0S0 invertible and satisfies the irrepresentability condition
(26) with incoherence parameter α ∈ (0, 1]. Assume that

‖Γγ(x)− Γ0‖∞ < ε1, ‖g(x)− g0‖∞ < ε2, (27)

with dΨ0ε1 ≤ α/(6cΓ0). If

λ >
3(2− α)

α
max{cΨ0ε1, ε2},

then the following holds:

(a) The regularized generalized h-score matching estimator Ψ̂ minimizing (24) is unique,
with support Ŝ ≡ S(Ψ̂) ⊆ S0, and satisfies

‖Ψ̂−Ψ0‖∞ ≤
cΓ0

2− α
λ.

(b) If

min
1≤j<k≤m

|Ψ0,jk| >
cΓ0

2− α
λ,

then Ŝ = S0 and sign(Ψ̂jk) = sign(Ψ0.jk) for all (j, k) ∈ S0.

This result is deterministic, and the improvement of our generalized estimator over the
one in Lin et al. (2016) is in its probabilistic guarantees, as shown for truncated GGMs in
Theorems 16 and 17 in Section 6.3. Before going into these examples, we state a general
corollary.

Corollary 14 Under the assumptions of Theorem 13, the matrix Ψ̂ minimizing (24) sat-
isfies

‖Ψ̂−Ψ0‖F ≤
cΓ0

2− α
λ
√
|S0| ≤

cΓ0

2− α
λ
√
dΨ0m,

‖Ψ̂−Ψ0‖2 ≤
cΓ0

2− α
λmin(

√
|S0|, dΨ0).

6.2. Revisiting Gaussian Score Matching

In this section we consider estimating the inverse covariance matrix K of a centered Gaussian
distribution N(0,K), which of course has density proportional to (2) on all of Rm. As shown,
e.g., in Example 1 of Lin et al. (2016), the `1-regularized score matching loss then takes the
form

1

2
tr(KKxx>)− tr(K) + λ‖K‖1, (28)

which can be written as (14) with θ = vec(K), Γ = diag(xx>, . . . ,xx>) and g = vec(Im).
Thus, in general, the kernel of Γ need not be orthogonal to g, and for λ small the loss can
be unbounded below as discussed above. Hence, an amplifier/multiplier on the diagonals
of Γ is needed. We have the following theorem on the estimator using the amplification.
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Theorem 15 Suppose the data matrix x holds n i.i.d. copies of X ∼ N(0,K0). Adopt the
amplifying in Section 4 and redefine the loss in (28) as

1

2
tr(KKG)− tr(K) + λ‖K‖1, Gjk = (xx>)jk

(
1{j 6=k} + (δ − 1)1{j=k}

)
, (29)

where 1 < δ < 2 −
(

1 + 80
√

logm/n
)−1

. Let K̂ be the resulting estimator. Let c∗ ≡
12800 (maxj Σ0,jj)

2 and c1 = 4cΓ0/α. If for some τ > 2, the regularization parameter and
the sample size satisfy

λ > (2cK0(2− α)
√
c∗(τ logm+ log 4)/n)/α,

n > max(c∗c2
1d

2
K0
, 2)(τ logm+ log 4),

then ‖K̂−K0‖∞ ≤
cΓ0
2−αλ with probability 1−m2−τ .

In Corollary 1 of Lin et al. (2016) the same results were shown with c∗ ≡ 3200 (maxj Σ0,jj)
2

when a unique minimizer exists, but the existence was not guaranteed.

6.3. Generalized Score Matching for Truncated GGMs

Next, we provide theory for the regularized generalized h-score matching estimator Ψ̂ in
the special case of truncated GGMs. Again, assume a common h for all components in h.

Theorem 16 Suppose the data matrix x holds n i.i.d. copies of X ∼ TN(0,K0), where
the mean parameter is known to be zero. Assume that h ∈ H1,1 and that 0 ≤ h ≤ M ,
0 ≤ h′ ≤M ′ a.s. for constants M,M ′, and choose γ = (δ − 1)diag(Γ) with

1 < δ < C(n,m) ≡ 2−
(

1 + 4emax{6 logm/n,
√

6 logm/n}
)−1

.

Suppose that the Γ0,S0S0 block of Γ0 is invertible and Γ0 satisfies the irrepresentability

condition (26) with α ∈ (0, 1] and true edge set S0. Define cX ≡ 2 maxj

(
2
√

(K−1
0 )jj +

√
eE0Xj

)
. If for τ > 3 the sample size and the regularization parameter satisfy

n > O

(
τ logmmax

{
M2c2

Γ0
c4
Xd

2
K0

α2
,
McΓ0c

2
XdK0

α

})
, (30)

λ > O

[
(McK0c

2
X +M ′cX +M)

(√
τ logm

n
+
τ logm

n

)]
, (31)

then the following statements hold with probability 1−m3−τ :

(a) The regularized generalized h-score matching estimator K̂ that minimizes (24) is
unique, has its support included in the true support, Ŝ ≡ S(K̂) ⊆ S0, and satisfies

‖K̂−K0‖∞ ≤
cΓ0

2− α
λ,
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|||K̂−K0|||F ≤
cΓ0

2− α
λ
√
|S0|,

|||K̂−K0|||2 ≤
cΓ0

2− α
λmin(

√
|S0|, dK0),

where cΓ0 is defined in (25).

(b) Moreover, if

min
j,k:(j,k)∈S0

|κ0,jk| >
cΓ0

2− α
λ,

then Ŝ = S0 and sign(κ̂jk) = sign(κ0,jk) for all (j, k) ∈ S0.

The theorem is proved in Appendix A.4, where details on the dependencies on constants
are provided. A key ingredient of the proof is a tail bound on ‖Γγ − Γ0‖∞, which features

products of the X
(i)
j ’s. In Lin et al. (2016), the products are up to fourth order. Using

bounded h, our products automatically calibrates to a quadratic polynomial when the
observed values are large, and resort to higher moments only when they are small. This
leads to improved bounds and convergence rates, underscored in the new requirement on
the sample size n, which should be compared to n ≥ O(d2

K0
(logmτ )8) in Lin et al. (2016).

For the non-centered case, by definition, cΨ0 ≡ |||Ψ0
>|||∞,∞ ≤ cK0 + ‖η0‖∞, dΨ0 ≤

dK0 +1. The proof given for Theorem 16 goes through again here, and we have the following
consistency results.

Theorem 17 Suppose the data matrix holds n i.i.d. copies of X ∼ TN(µ0,K0). Assume
that h ∈ H1,1 and that 0 ≤ h ≤ M , 0 ≤ h′ ≤ M ′ a.s. for constants M,M ′. Let γ be a
vector of amplifiers that are non-zero only for the diagonal entries of the matrices Γ11,j,
amplifying those by (δ − 1)diag(Γ11,j) with

1 < δ < C(n,m) ≡ 2−
(

1 + 4emax{6 logm/n,
√

6 logm/n}
)−1

.

Suppose further that Γ0,S0S0 is invertible and satisfies the irrepresentability condition (26)

with α ∈ (0, 1]. Define cX ≡ 2 maxj

(
2
√

(K−1
0 )jj +

√
eE0Xj

)
. Suppose for τ > 3 the

sample size and the regularization parameter satisfy

n > O

(
τ logmmax

{
M2c2

Γ0,Ψ0
c4
Xd

2
Ψ0

α2
,
McΓ0,Ψ0c

2
XdΨ0

α

})
, (32)

λ > O

[
(McΨ0c

2
X +M ′cX +M)

(√
τ logm

n
+
τ logm

n

)]
, (33)

where cΓ0,Ψ0 is cΓ0 as in (25) but with notation Ψ0 to differentiate it from the centered
case. Then the following statements hold with probability 1−m3−τ :

(a) The regularized generalized h-score matching estimator Ψ̂ that minimizes (24) is
unique, has its support included in the true support, Ŝ ≡ S(Ψ̂) ⊆ S0, and satisfies

‖K̂−K0‖∞ ≤
cΓ0,Ψ0

2− α
λ, ‖η̂ − η0‖∞ ≤

cΓ0,Ψ0

2− α
λ,
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|||K̂−K0|||F ≤
cΓ0,Ψ0

2− α
λ
√
|S0|, |||η̂ − η0|||F ≤

cΓ0,Ψ0

2− α
λ
√
|S0|,

|||K̂−K0|||2 ≤
cΓ0,Ψ0

2− α
λmin

(√
|S0|, dΨ0

)
, |||η̂ − η0|||2 ≤

cΓ0,Ψ0

2− α
λmin

(√
|S0|, dΨ0

)
.

(b) Moreover, if

min
j,k:(j,k)∈S0

|κ0,jk| >
cΓ0

2− α
λ and min

j:(m+1,j)∈S0

|η0,j | >
cΓ0

2− α
λ,

then Ŝ = S0 and sign(κ̂jk) = sign(κ0,jk) for all (j, k) ∈ S0 and sign(η̂j) = sign(η0j)
for (m+ 1, j) ∈ S0.

Remark 18 The quantity cX in Theorem 17 depends on E0Xj , which in turn depends
on the structure of both µ0 and K0. If µ0,j is large compared to (K0)−1

jj , then cX seems
to scale as µ0, which negatively impacts the guarantees stated in Theorem 17. However,
as in the one-dimensional case for estimation of µ0 (Example 3.1), our estimator should
automatically adapt to the large mean parameter. This suggests that it might be possible
to improve our analysis involving cX .

7. Numerical Experiments

In this section, we compare the performance of our estimator with different choices of h
to the existing approaches for pairwise interaction power models. In our simulation exper-
iments, we consider m = 100 variables and n = 80 and n = 1000 samples, corresponding
to high- and low-dimensional settings. We also tried intermediate sample sizes between
these two extremes, but found no interesting result worth reporting. For n = 80, ampli-
fication is necessary. Except in Section 7.2.2, the amplifier is set based on Theorem 16
to δ = C(n,m) = 1.8647 for truncated GGMs. The same amplifier is also used for set-
tings with other a and b. For n = 1000, we consider δ = 1, i.e., no amplification, and
δ = C(n,m) = 1.6438 (again, based on Theorem 16). Throughout, we assume a common
univariate h for all components in h.

7.1. Structure of K

The underlying interaction matrices are selected as follows: Proceeding as in Section 4.2 of
Lin et al. (2016), the graph is chosen to have 10 disconnected subgraphs, each containing
m/10 nodes. Thus, K0 is block-diagonal. In each block, each lower-triangular element is set
to 0 with probability 1−π for some π ∈ (0, 1), and is otherwise drawn from Uniform[0.5, 1].
The upper triangular elements are determined by symmetry. The diagonal elements of K0

are chosen as a common positive value such that the minimum eigenvalue of K0 is 0.1.

We generate 5 different true precision matrices K0, and run 10 trials with each of these
precision matrices. For n = 1000, we choose π = 0.8, which is in accordance with Lin et al.
(2016). For n = 80, we set π = 0.2. This way n/(d2

K0
logm) is roughly constant; recall

Theorems 16 and 17 for truncated GGMs.

In Appendix C, we report results on Erdös-Rényi graphs, which lead to similar conclu-
sions.
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7.2. Truncated GGMs

Given our focus on truncated GGMs and their relevance in graphical modeling applications,
we start with experiments for these models.

7.2.1. Choice of h

Our estimator requires choosing a function h : Rm+ → Rm+ . For simplicity, we will always
specify h(x) = (h(x1), . . . , h(xm)) for a single non-decreasing univariate function h : R+ →
R+, i.e. all coordinates share the same h function.

As previously explained, h ∈ Ha,b is a sufficient condition for assumptions (A1)-(A2),
as well as (C1)-(C2) in the case of unregularized estimators. Only in the proofs of our
theoretical guarantees in Section 6 for truncated GGMs, did we require h to be bounded
and to have bounded derivatives. As motivated by the discussion in Section 5.4.2, we
consider truncated and untruncated powers, min(x, c) and x (since 2− a = 2 − b = 1); we
evaluate this choice by contrasting them with powers x1.5 and x2. We also explore functions
like log(1 + x) that seem natural and are linear near 0. In particular, we make a further
comparison to functions linear near 0 with a finite asymptote as x↗ +∞ but differentiable
everywhere: MCP- (Fan and Li, 2001) and SCAD-like (Zhang, 2010) functions defined
below. The results we report are based on selections of best performing choices of h.

SCAD(x;λ, γ) ≡


λx if 0 ≤ x ≤ λ,
2γλx−x2−λ2

2(γ−1) if λ < x < γλ,
λ2(γ+1)

2 if x ≥ γλ;

MCP(x;λ, γ) ≡

{
λx− x2

2γ if 0 ≤ x ≤ γλ,
1
2γλ

2 if x > γλ.

We do not observe any clear relationship between features such as convexity, differen-
tiability or the slope of h at 0, and performance of the estimator. Nonetheless, for many
choices of rather simple functions h, our estimator provides a significant improvement over
existing methods. In particular, most h functions that behave linearly for small x, namely
log(1 + x) and x and their truncations, and additionally MCP and SCAD, always perform
better than x1.5 and x2. This agrees with our discussion in Section 5.4.2, where 2− a = 1
is a reasonable choice of the power for small x; also see Section 7.3. However, we conclude
that there is no real gain from making the function smoother by using MCP or SCAD.

Truncated Centered GGMs: For data from a truncated centered Gaussian distribution,
we compare our generalized score matching estimator with various choices of h, to SpaCE
JAM (SJ, Voorman et al., 2014), which estimates graphs using additive models for condi-
tional means, a pseudo-likelihood method SPACE (Peng et al., 2009) in the reformulation
of Khare et al. (2015), graphical lasso (GLASSO, Yuan and Lin, 2007; Friedman et al.,
2008), the neighborhood selection estimator (NS) of Meinshausen and Bühlmann (2006),
and nonparanormal SKEPTIC (Liu et al., 2012) with Kendall’s τ . Recall that the choice
of h(x) = x2 corresponds to the estimator from Lin et al. (2016).

The ROC (receiver operating characteristic) curves for different estimators are shown
in Figure 3 on Page 26. Each plotted curve corresponds to the average of 50 ROC curves,
where the averaging is based on the vertical averaging from Algorithm 3 in Fawcett (2006),
and is mean AUC-preserving. The x and y axes of each ROC curve represent the false
positive and true positive rates at varying levels of penalty parameter λ, defined as

23



Yu, Drton and Shojaie

Centered, n = 80, multiplier 1.8647

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.694 0.033 ∞ 0.702 0.031
2 0.694 0.033 3 0.702 0.031
1 0.692 0.033 2 0.698 0.033

0.5 0.664 0.038 1 0.686 0.030

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

10 0.701 0.032 10 0.702 0.031
5 0.700 0.032 5 0.701 0.032
1 0.672 0.036 2 0.696 0.033

x1.5: (0.683, 0.030) x2: (0.630, 0.029)

GLASSO (0.600,0.032) SPACE: (0.587, 0.031)

NS: (0.587,0.031) SJ: (0.540,0.036)

Centered, n = 1000, multiplier 1

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

2 0.826 0.015 2 0.820 0.014
∞ 0.826 0.015 3 0.820 0.015
1 0.824 0.014 ∞ 0.819 0.015

0.5 0.804 0.015 1 0.817 0.014

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.824 0.015 2 0.823 0.014
10 0.822 0.015 5 0.822 0.015
1 0.810 0.015 10 0.821 0.015

x1.5: (0.782,0.014) x2: (0.732,0.015)

SPACE: (0.780,0.015) NS: (0.779,0.015)

GLASSO (0.764,0.014) SJ: (0.703,0.015)

Centered, n = 1000, multiplier 1.6438

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.857 0.011 3 0.855 0.011
2 0.857 0.011 ∞ 0.855 0.011
1 0.855 0.011 2 0.854 0.011

0.5 0.833 0.012 1 0.847 0.011

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.857 0.011 5 0.856 0.011
10 0.856 0.011 10 0.855 0.011
1 0.840 0.012 2 0.855 0.011

x1.5: (0.812,0.011) x2: (0.736,0.011)

SPACE: (0.780,0.015) NS: (0.779,0.015)

GLASSO (0.764,0.014) SJ: (0.703,0.015)

Table 1: Mean and standard deviation of areas under the ROC curves (AUC) using different
estimators in the centered setting, with n = 80 and multiplier 1.8647, or n = 1000
and multiplier 1 and 1.6438. Methods include our estimator with different choices
of h, GLASSO, SPACE, neighborhood selection (NS), and Space JAM (SJ).

FPR ≡
|Ŝoff\S0,off|

m(m− 1)− |S0,off|
and TPR ≡

|Ŝoff ∩ S0,off|
|S0,off|

,

where S0,off ≡ {(i, j) : i 6= j ∧ κ0,ij 6= 0}, and Ŝoff ≡ {(i, j) : i 6= j ∧ κ̂ij 6= 0}.
To reduce clutter, we only report the results for the top performing competing methods.

In particular, results for nonparanormal SKEPTIC are omitted, as the method always
performs the worst in our experiments. The corresponding means and standard deviations
of AUCs (areas under the curves) over 50 curves are given in Table 1.

Looking at the mean AUCs, with the standard deviations in mind, all choices of h
considered here perform better than h(x) = x2 from Hyvärinen (2007) and Lin et al. (2016)
and the competing methods. The results for n = 1000 in Table 1 also show that the
multiplier does help improve the AUCs, a matter to be discussed in Section 7.2.2.
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Truncated Non-Centered GGMs: We generate data from a truncated non-centered Gaus-
sian distribution with both parameters µ and K unknown. In each trial, we form the true
K0 as in Section 7.1, and generate each component of µ0 independently from the normal
distribution with mean 0 and standard deviation 0.5.

We compare the performance of our profiled estimator based on (19), with different h
functions, but with no penalty on η ≡ Kµ, to SPACE, SpaCE JAM (SJ), GLASSO, and
neighborhood selection (NS). As before, we consider 50 trials. Representative ROC curves
are plotted in Figure 4, and the corresponding AUCs are summarized in Table 2.

Non-centered profiled, n = 80, multiplier 1.8647

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.632 0.032 ∞ 0.634 0.032
2 0.632 0.032 3 0.634 0.032
1 0.631 0.032 2 0.632 0.032

0.5 0.619 0.033 1 0.628 0.032

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

10 0.634 0.032 5 0.634 0.032
5 0.634 0.032 10 0.634 0.032
1 0.622 0.032 2 0.634 0.032

x1.5: (0.623,0.031) x2: (0.607,0.030)

GLASSO: (0.614,0.029) NS: (0.604,0.028)

SPACE: (0.602,0.029) SJ: (0.561,0.036)

Non-centered profiled, n = 1000, multiplier 1

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.783 0.020 2 0.779 0.020
2 0.783 0.020 ∞ 0.779 0.020
1 0.782 0.020 3 0.779 0.020

0.5 0.767 0.021 0.5 0.758 0.020

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.782 0.020 2 0.780 0.020
10 0.780 0.020 5 0.780 0.020
1 0.771 0.021 10 0.779 0.020

x1.5: (0.751,0.019) x2: (0.713,0.018)

SPACE: (0.786,0.020) NS: (0.785,0.02)

GLASSO (0.770,0.019) SJ: (0.720,0.019)

Non-centered profiled, n = 1000, multiplier 1.6438

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.764 0.018 ∞ 0.766 0.019
2 0.764 0.018 3 0.765 0.019
1 0.762 0.018 2 0.764 0.018

0.5 0.738 0.018 1 0.753 0.018

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

10 0.766 0.019 10 0.766 0.019
5 0.766 0.019 5 0.766 0.019
1 0.745 0.018 2 0.763 0.018

x1.5: (0.748,0.018) x2: (0.718,0.017)

SPACE: (0.786,0.020) NS: (0.785,0.020)

GLASSO (0.770,0.019) SJ: (0.720,0.019)

Table 2: Mean and standard deviation of AUC using different profiled estimators in the non-
centered setting, with n = 80 and multiplier 1.8647, or n = 1000 and multipliers 1
and 1.6438. Methods include our estimator with different choices of h, GLASSO,
SPACE, neighborhood selection (NS), and Space JAM (SJ).
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(a) n = 80, mult = 1.8647 (b) n = 1000, mult = 1 (c) n = 1000, mult = 1.6438

Figure 3: Average ROC curves of our centered estimator with various choices of h, compared
to SPACE and GLASSO, for the truncated centered GGM case; m = 100 variables
and n = 80 or 1000 samples are considered. Squares indicate average true positive
rate (TPR) and false positive rate (FPR) of models picked by eBIC with refitting
for the estimator in the same color.

(a) n = 80, mult = 1.8647 (b) n = 1000, mult = 1 (c) n = 1000, mult = 1.6438

Figure 4: Average ROC curves of our non-centered profiled estimator with various choices
of h, compared to SPACE and GLASSO, for the truncated non-centered GGM
case; m = 100 variables and n = 80 or 1000 samples are considered. Squares
indicate average true positive rate (TPR) and false positive rate (FPR) of models
picked by eBIC with refitting for the estimator in the same color.
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Even without tuning the extra penalty parameter on η ≡ Kµ, our profiled estimator
beats the competing methods by a large margin when n = 80. With multipliers 1 and n =
1000, our estimators still do better than Space JAM and GLASSO, and have performance
comparable to other competing methods. It might appear that the performance of our
estimators deteriorate with a multiplier larger than 1; however, as we will see, there can
be significant improvement in AUCs if we tune an additional parameter for the multiplier.
As in the centered case, the leading h functions in each category perform similarly, and the
exact choice is not crucial. Subsequently, we will simply use h(x) = min(x, 3).

7.2.2. Choice of multiplier

Truncated Centered GGMs: In Figure 5, the ROC curves for GLASSO, SPACE, and our
estimator with h(x) = min(x, 3), but with different levels of amplification, via different
choices of multipliers δ, are compared for the centered case of Section 7.2.1.

While Theorem 16 guarantees consistency only for δ < C(n,m), we observe that there
can be a gain from going beyond the upper-bound multiplier C(n,m), which is 1.8647 for
n = 80 and 1.6438 for n = 1000 (when n = 1000, C(n,m) turns out to be the best-
performing multiplier). However, the effect deteriorates fast as the multiplier grows larger.
The figure suggests that while some additional gains are possible by tuning over the choice
of multiplier, the upper-bound multiplier is a good default.

(a) n = 80 (b) n = 1000

Figure 5: Performance of min(x, 3) for truncated centered GGMs using different multipliers,
compared to GLASSO and SPACE, in the centered setting, n = 80 or 1000.

Truncated Non-Centered GGMs : In Figure 6, we consider the non-centered case of Sec-
tion 7.2.1, and use the non-profiled estimator; that is, the non-centered estimator with `1
penalty on both K and η ≡ Kµ. The ROC curves are compared to competing methods
GLASSO and SPACE. For the choice of amplification in our estimator, we consider the
upper-bound multiplier C(n,m) from Theorem 17 as the default. We refer to this as high
amplification. We also consider lower amplification, with δ = 2 − (1 + 24e logm/n)−1, re-
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ferred to as medium. For n = 1000, we also consider a low multiplier 1, which corresponds
to no amplification. We compare these possible defaults to a finer grid of multipliers of
which we show some representatives in the plots.

We see that among our defaults, the upper-bound choice C(n,m) performs best. Some
additional gains are possible by tuning the multiplier over a grid of values containing this
choice. Moreover, we see that it can be beneficial to tune over both λK and λK/λη.

We remark that while for each run, the best model picked by BIC falls on the ROC curve,
a few squares are off the curve in Figure 6 (c). This is because these squares correspond
to the average of the true and false positive rates of the chosen BIC models over 50 runs,
potentially due to multimodality of the distribution of the models. Nonetheless, in all cases,
the average of the models picked by BIC tuned over both λK and λK/λη looks reasonable.

(a) n = 80, mult = 1.7897 (b) n = 80, mult = 1.8647

(c) n = 1000, mult = 1 (d) n = 1000, mult = 1.2310 (e) n = 1000, mult = 1.6438

Figure 6: Performance of the non-centered estimator with h(x) = min(x, 3). Each curve
corresponds to a different choice of λK/λη. Squares indicate models picked by
eBIC with refit. The square with black outline has the highest eBIC among all
models (combinations of λK, λη). Multipliers correspond to medium or high for
n = 80, and low, medium or high for n = 1000, respectively.
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7.3. Other a/b Models

We now turn to the non-Gaussian (a 6= 1 or b 6= 1) setting. Based on the observations in
Section 5.4.2, we focus on functions of type min(xp, c) for some power p > 0 and truncation
point c > 0. For simplicity, for the non-centered models we use the profiled estimator (19)
(i.e., λη = 0) and use the multiplier C(n,m) in Theorem 16 for truncated GGMs as a
guidance. We note that tuning over the λη parameter and the multiplier can potentially
give a significant improvement as seen in Section 7.2.

These simulations suggest that among the class of functions of the form min(xp, c), x2−a

or min(x2−a, c) with a moderately large c can be used as the default choice of h(x). This
agrees with our findings in Section 7.2.1. We note that bounded h functions were only
used in the proof for truncated GGMs, and picking a moderately large truncation point can
correspond to having an untruncated power.

7.3.1. Exponential Setting

For the exponential models, a = b = 1/2. Since a = b, for both centered and non-centered
settings, based on the principle in Section 5.4.2, choosing h(x) = min(x3/2, c) satisfies (A1)
and (A2) and also ensures that entries in Γ and g are bounded (for small x), while choosing
h(x) = min(

√
x, c) only guarantees (A1) and (A2).

In Figure 7, we present the AUCs for the ROC curves of edge recovery with different
choices of h(x) = min(xpow, c). As before, we set n = 80 or 1000 and m = 100, but
we use an η0 with each component uniformly equal to −0.5, 0 or 0.5; for η0 ≡ 0, we
assume this information is known and use the centered estimator. The results suggest that
pow = 3/2 = 2 − a is the best choice of power. For this optimal choice, the performance
improves with larger c, so x2−a gives the best results. For sub-optimal powers, including
truncation gives better results.

7.3.2. Gamma Setting

The centered gamma models reduce to the centered exponential models. Thus, in this
section, we only consider the non-centered settings, with a = 1/2, b = 0. From Section 5.4.2,
we have the following choices:

• min(x2, c) both satisfies (A1)–(A2) and ensures Γ and g are bounded;

• min(xmax{3/2,1−minj η0,j}, c) ensures (A1)–(A2) and bounds Γ11 and g1; by default
without prior information on η0 this is min(x2, c);

• min(x3/2, c) satisfies both conditions on the interaction part only (xa), but does not
guarantee (A1)–(A2);

• min(x1/2, c) satisfies the sufficient conditions for (A1)–(A2) on the interaction only.

The results are shown in Figure 8, where we consider n = 80, 1000, and η = ±0.51100. They
suggest that pow = 2− a = 1.5 works consistently well, although slightly outperformed by
1 and 1.25 in one case. As in the exponential case, with the optimal power it is beneficial to
choose a large truncation point, or work with an untruncated power x1.5. We conclude that
the performance is likely only dependent on the (2− a) power requirement for the xa>Kxa

part or 2−minj η0,j ; simulations in the next section rule out the possibility of the latter.
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(b) n = 1000, η = −0.51100, profiled estimator

Truncation point

A
U

C

0.5 1.0 1.5 2.0 2.5 3.0 5.0

0.
44

7
0.

50
8

0.
56

9
0.

63
1

0.
69

2
0.

75
4

             power

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.5

3

(c) n = 80, η = 0, centered estimator
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(d) n = 1000, η = 0, centered estimator
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(e) n = 80, η = 0.51100, profiled estimator
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(f) n = 1000, η = 0.51100, profiled estimator

Figure 7: AUCs for edge recovery using generalized score matching for the exponential
models. Each curve represents a different choice of power p in h(x) = min(xp, c),
and the x axis marks the truncation point c. Colors are sorted by p.
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7.3.3. Other Choices of a and b

In this section, we consider other choices of a and b. Specifically, a = 3/2 and b = 1/2 or 0.
These combinations are chosen to confirm, in a more extreme setting, that the performance
is mainly determined by requirements on the power based on a, which correspond to choosing
a power of 1− a or 2− a, but not those on b (or on η when b = 0) that correspond to 1− b
and 2 − b. The relationship between these two settings is analogous to that between the
exponential and gamma models (same a, b nonzero/zero).

The results are shown in Figures 9 and 10, and indeed confirm that x2−a = x0.5 consis-
tently gives the optimal results, even though η>xb is in favor of x2−b = x1.5 for b = 0.5,
and η> log(x) is in favor of x2 or at least x1−minj η0,j when b = 0. There are two possible
explanations for the optimality of 2− a over max{2− a, 2− b} or max{2− a, 1−minj η0,j}:
(1) The AUC metric is measured only on our interest, edge recovery for the interaction
matrix, which only depends on xa; (2) using the profiled estimator weakens the effect of b.
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(b) n = 1000, η = −0.51100, profiled estimator
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(c) n = 80, η = 0.51100, profiled estimator
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(d) n = 1000, η = 0.51100, profiled estimator

Figure 8: AUCs for edge recovery using generalized score matching for the gamma models.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.
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(c) n = 80, η = 0, centered estimator
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(d) n = 1000, η = 0, centered estimator
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(e) n = 80, η = 0.51100, profiled estimator
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(f) n = 1000, η = 0.51100, profiled estimator

Figure 9: AUCs for edge recovery using generalized score matching for a = 3/2, b = 1/2.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.
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(a) n = 80, η = −0.51100, profiled estimator
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(c) n = 80, η = 0.51100, profiled estimator
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(d) n = 1000, η = 0.51100, profiled estimator

Figure 10: AUCs for edge recovery using generalized score matching for a = 3/2, b = 0.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.
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7.4. RNAseq Data

In this section we apply our regularized generalized h-score matching estimator for truncated
non-centered GGMs to RNAseq data also studied in Lin et al. (2016), since the same model
is considered therein. The data consists of n = 487 prostate adenocarcinoma samples from
The Cancer Genome Atlas (TCGA) data set. Following Lin et al. (2016), we focus on
m = 333 genes that belong to the known cancer pathways in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and that have no more than 10% missing values. Missing
values are set to 0. We choose h(x) = min(x, 3) and use the upper-bound multiplier (high),
as discussed in Section 7.2.2. For simplicity, we use the profiled estimator, and choose the
regularization parameter λ so that the estimated graph has exactly m = 333 edges, all these
choices being as in Lin et al. (2016).

We compare our graph to the one in Lin et al. (2016), which corresponds to h(x) = x2

with no multiplier. Shown in Figure 11 are the estimated graphs, with their intersection
in the middle. To improve visualization, isolated nodes are removed and the layouts are
optimized for each plot. Red-colored points are the “hub nodes”, namely nodes with degree
at least 10. In Figure 12, we plot the same graphs in a fixed layout optimized for the graph
corresponding to h = min(x, 3), and include the isolated nodes.

Out of 333 edges, the two estimated graphs share 117 edges in common. Assuming
that edges are placed at random between nodes and the two graphs are independent, the
distribution of the number R of common edges follow a hypergeometric distribution, so

P (R = r) =
(mr )

(
m(m−1)/2−m

m−r
)

(
m(m−1)/2

m

) . For m = 333 the probability of at least 117 common

edges is essentially zero. The large number of shared edges between the two methods can
be explained by the fact that they both minimize the same underlying score-matching loss.

(a) min(x, 3) (b) Common edges (c) Lin et al.

Figure 11: Graphs estimated by regularized generalized score matching estimator with
h(x) = min(x, 3) with upper-bound multiplier (left) and h(x) = x2 with no
multiplier (Lin et al., 2016, right), and their intersection graph (middle). Iso-
lated nodes with no edges are removed, and the layout is optimized for each plot.
In (a) and (c), red points indicate nodes with degree at least 10 (“hub nodes”).
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(a) min(x, 3) (b) Common edges (c) Lin et al.

Figure 12: Graphs estimated by regularized generalized score matching estimator with
h(x) = min(x, 3) with upper-bound multiplier (left) and h(x) = x2 with no
multiplier (Lin et al., 2016, right), and their intersection graph (middle). Iso-
lated nodes are included and the layout is fixed across plots and optimized for
graph (a). In (b) the red nodes are hub nodes shared by both graphs, the green
ones are hub nodes in graph (a) only, and the magenta ones are hub nodes in
graph (c) only.

The graph using h(x) = min(x, 3) has much more isolated nodes (204) than the other
(108), and has a slightly smaller max degree (16 versus 19). Table 3 provides another way
of comparing between the two graphs by listing the genes with the highest node degrees.

min(x, 3) with multiplier 1.63 Lin et al.

LAMB3 (16) CCNE2 (19)
PIK3CG (16) PIK3CG (16)

MMP2 (15) BRCA2 (13)
GLI2 (13) BIRC5 (12)

LAMA4 (13) LAMB3 (10)
PDGFRB (13) PIK3CD (10)
PIK3CD (13) SKP2 (10)
RASSF5 (13) HRAS (9)
BIRC5 (12) STAT5B (9)

FLT3 (12) GSTP1(8)
GSTP1 (12) PDGFRB (8)
LAMA2 (12)
RAC2 (12)

Table 3: List of genes with the highest node degrees in each estimated graph.

In Table 3 we list the top ten genes in terms of node degree for both estimated graphs.
Due to ties, 13 genes are listed for h(x) = min(x, 3) and 11 for Lin et al. (2016). As noted
in Lin et al. (2016), genes with high node-degrees are known to be important in biological
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networks (Carter et al., 2004; Jeong et al., 2001; Han et al., 2004). Among these top genes,
six are common in both graphs, and are discussed in Lin et al. (2016). We next elaborate
on the evidence supporting the first four of the newly discovered genes.

• MMP2 (Matrix metalloproteinase 2): According to Trudel et al. (2003), increased
MMP-2 expression is an independent predictor of decreased prostate cancer disease-
free survival. Morgia et al. (2005) state that activity of MMP-2 can be useful in
diagnosis, therapy, and assessment of malignant progression in prostate cancer.

• GLI2 (GLI family zinc finger 2): GLI2 is a primary mediator of the hedgehog signaling
pathway, which has been reported in prostate cancer, and plays a critical role in the
malignant phenotype of prostate cancer cells (Thiyagarajan et al., 2007). Its increased
level of expression is also related to AI prostate cancer, and may be a therapeutic
target in castrate-resistant prostate cancer (Narita et al., 2008).

• LAMA4 (Laminin subunit alpha 4): LAMA4 is consistently upregulated in benign
prostatic hyperplasia when compared to normal prostate tissues (Luo et al., 2002).

• RASSF5 (RAS association domain family member 5): The combination of RASSF5
along with four other DNA methylation markers can effectively differentiate between
benign prostate biopsy cores from non-cancer patients and cancer cores, and can be
used to identify patients at risk without repeat biopsies (Brikun et al., 2014).

We note that the two methods indeed use different estimators (different h functions and
multipliers), and it is thus not surprising to see that some of the top genes by one method
are not among those for the other. In particular, CCNE2, BRCA2, SKP2 and STAT5B,
while previously reported as newly discovered in Lin et al. (2016), are dropped by our new
analysis. Testing and inference (potentially using bootstrapping) is an important problem
but is beyond the scope of this paper.

8. Discussion

In this paper, we proposed a generalization of the score matching estimator of Hyvärinen
(2007), based on scaling the log-gradients to be matched with a suitably chosen function
h. The generalization retains the advantages of Hyvärinen’s method: Estimates can be
computed without knowledge of normalizing constants, and for canonical parameters of
exponential families, the estimation loss is a quadratic function.

For high-dimensional exponential family graphical models, following Lin et al. (2016), we
add an `1 penalty to regularize the generalized score matching loss. One practical issue that
is overlooked in Lin et al. (2016) is the fact that the score matching loss can be unbounded
below for a small tuning parameter, when the dimension m exceeds the sample size n. We
fix this issue by amplifying the diagonal entries in the quadratic matrix in the definition of
the generalized score matching loss by a factor/multiplier, and we give an upper bound on
that multiplier that guarantees consistency.

As examples we consider pairwise interaction power models on the non-negative orthant
Rm+ . Specifically, the considered models are exponential families in which the log density is
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the sum of pairwise interactions between entries in of powers xa plus linearly weighted ef-
fects xb, or log(x) when b = 0. Our main interest is in the matrix of interaction parameters
whose support determines the distributions’ conditional independence graph. The consid-
ered framework covers truncated normal distributions (a = b = 1), exponential square root
graphical models (a = b = 1/2) from Inouye et al. (2016), as well as a class of multivariate
gamma distributions (a = 1/2, b = 0).

In the case of multivariate truncated normal distributions, where the conditional inde-
pendence graph is given by the underlying Gaussian inverse covariance matrix, the sample
size required for the consistency of our method using bounded h is Ω(d2 logm), where d is
the degree of the graph. This matches the rates for Gaussian graphical models in Raviku-
mar et al. (2011) and Lin et al. (2016). In contrast, the sample complexity for truncated
Gaussian models given in Lin et al. (2016) is Ω(d2 log8m).

For the considered class of pairwise interaction models, we recommend using the function
h with coordinates hj(x) = min

(
x2−a, c

)
for some moderately large c, or simply hj(x) =

x2−a. While this choice is effective, it would be an interesting problem for future work to
develop a method that adaptively chooses an optimized function h from data.
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Appendix A. Proofs

A.1. Proof of Theorem 3

The following integration by parts lemma is used in the proof of Theorem 3.

Lemma 19 Let f, g : R+ → R be functions that are absolutely continuous in every bounded
sub-interval of R+. Then

lim
x↗+∞

f(x)g(x)− lim
x↘0+

f(x)g(x) =

∫ ∞
0

f(x)
dg(x)

dx
dx+

∫ ∞
0

g(x)
df(x)

dx
dx.

Proof This is an analog of Lemma 4 from Hyvärinen (2005) that can be proved by inte-
grating the partial derivatives, and follows from the fundamental theorem of calculus for
absolutely continuous functions and the product rule. In particular, we work on integrals
in bounded [0, c], where the product of two absolutely continuous functions in a bounded
interval is again absolutely continuous, and the result is then obtained by letting c↗ +∞.

Proof [Proof of Theorem 3] Recall the following assumptions from Section 2.2:

(A1) p0(x)hj(xj)∂j log p(x)
∣∣∣xj↗+∞
xj↘0+

= 0 , ∀x−j ∈ Rm−1
+ , ∀p ∈ P+;

(A2) Ep0‖∇ log p(X) ◦ h1/2(X)‖22 < +∞, Ep0‖(∇ log p(X) ◦ h(X))′‖1 < +∞, ∀p ∈ P+.

Without explicitly writing the domains R+ or Rm+ in all integrals, by (6) we have

Jh(p) =
1

2

∫
p0(x)

[
‖∇ log p(x) ◦ h1/2(x)‖22

−2(∇ log p(x) ◦ h1/2(x))>(∇ log p0(x) ◦ h1/2(x)) + ‖∇ log p0(x) ◦ h1/2(x)‖22
]

dx

=
1

2

∫
p0(x)

m∑
j=1

hj(xj)

(
∂ log p(x)

∂xj

)2

dx︸ ︷︷ ︸
≡A

+
1

2

∫
p0(x)

m∑
j=1

hj(xj)

(
∂ log p0(x)

∂xj

)2

dx︸ ︷︷ ︸
≡C

−
∫
p0(x)

m∑
j=1

hj(xj)
∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dx︸ ︷︷ ︸

≡B

,

where A will simply appear in the final display as is, C is a constant as it only involves the
true pdf p0, and we wish to simplify B by integration by parts. We can split the integral
into these three parts since A and C are assumed finite in the first part of (A2), and the
integrand in B is integrable since |2ab| ≤ a2 + b2. Thus, by linearity and Fubini’s theorem,
we can write

B = −
m∑
j=1

∫
p0(x)hj(xj)

∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dx

= −
m∑
j=1

∫ [∫
p0(x)hj(xj)

∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dxj

]
dx−j .
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By the fact that ∂ log p0(x)
∂xj

= 1
p0(x)

∂p0(x)
∂xj

, this can be simplified to

B = −
m∑
j=1

∫ [∫
∂p0(x)

∂xj
hj(xj)

∂ log p(x)

∂xj
dxj

]
dx−j .

But, we assume p0 and p are twice continuously differentiable, for every j = 1, . . . ,m and
fixed x−j ∈ Rm−1

+ . Hence, in every bounded sub-interval of R+, p0(x−j ;xj) is an absolutely
continuous function of xj , ∂j log p(x−j , xj) = ∂jp(x−j , xj)/p(x−j , xj) is a continuously dif-
ferentiable (and hence absolutely continuous) function of xj by the quotient rule. Thus
hj(xj)∂j log p(x−j ;xj) is also absolutely continuous by the absolute continuity assumption
on hj . Then, by Lemma 19, where we take f ≡ p0(x−j ;xj) and g ≡ hj(xj)∂j log p(x−j ;xj)
as functions of xj , followed by assumption (A1),

B = −
m∑
j=1

∫ [
lim

a↗+∞,b↘0+
[p0(x−j ; a)hj(a)∂j log p(x−j , a)− p0(x−j ; b)hj(b)∂j log p(x−j , b)]

−
∫
p0(x)

∂ (hj(xj)∂j log p(x))

∂xj
dxj

]
dx−j

=
m∑
j=1

∫ [∫
p0(x)

∂(hj(xj)∂j log p(x))

∂xj
dxj

]
dx−j .

Justified by the second half of (A2), by Fubini-Tonelli and linearity again

B =

m∑
j=1

∫
p0(x)

∂(hj(xj)∂j log p(x))

∂xj
dx,

=
m∑
j=1

∫
h′j(xj)

∂ log p(x)

∂xj
p0(x) dx+

m∑
j=1

∫
hj(xj)

∂2 log p(x)

∂x2
j

p0(x) dx.

Thus,

Jh(p)

=B +A+ C

=

∫
Rm+

p0(x)
m∑
j=1

[
h′j(xj)

∂ log p(x)

∂xj
+ hj(xj)

∂2 log p(x)

∂x2
j

+
1

2
hj(xj)

(
∂ log p(x)

∂xj

)2
]

dx+ C,

where C is a constant that does not depend on p.

A.2. Proof of Theorems and Examples in Section 3

Proof [Proof of Theorem 5] For exponential families and under the assumptions, the em-
pirical loss Ĵh(pθ) in (8) becomes (up to an additive constant)
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Ĵh(pθ)

=
1

n

n∑
i=1

m∑
j=1

[
h′j(X

(i)
j )

∂ log pθ(X(i))

∂X
(i)
j

+ hj(X
(i)
j )

∂2 log pθ(X(i))

∂(X
(i)
j )2

+
1

2
hj(X

(i)
j )

(
∂ log pθ(X(i))

∂X
(i)
j

)2


=
1

n

n∑
i=1

m∑
j=1

[
h′j(X

(i)
j )(θ>t′j(X

(i)) + b′j(X
(i))) + hj(X

(i)
j )(θ>t′′j (X

(i)) + b′′j (X
(i)))

+
1

2
hj(X

(i)
j )(θ>t′j(X

(i)) + b′j(X
(i)))2

]

=
1

n

1

2
θ>

 n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))>

θ+

 n∑
i=1

m∑
j=1

hj(X
(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X

(i)) + h′j(X
(i)
j )t′j(X

(i))

> θ
+ const,

which is quadratic in θ. Let

Γ(x) =
1

n

n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))>, (34)

g(x) = − 1

n

n∑
i=1

m∑
j=1

[
hj(X

(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X

(i)) + h′j(X
(i)
j )t′j(Xi)

]
. (35)

Then we can write Ĵh(pθ) = 1
2θ
>Γ(x)θ − g(x)>θ + const.

Proof [Proof of Theorem 6] By Theorem 5, Ĵh(pθ) = 1
2θ
>Γθ−g>θ+const. The minimizer

of Ĵh(pθ) is thus available in the unique closed form θ̂ ≡ Γ(x)−1g(x) as long as Γ is
invertible (C1). Since Γ and g are sample averages, the weak law of large numbers yields
that Γ →p Ep0Γ ≡ Γ0 and g →p Ep0g ≡ g0, where existence of Γ0 and g0 is assumed in
(C2). Since Jh(pθ) = E[Ĵh(pθ)] = E[1

2θ
>Γ(x)θ − g(x)>θ] = 1

2θ
>Γ0θ − g0θ and we know

θ0 minimizes Jh(pθ) by definition, by the first-order condition we must have Γ0θ0 = g0.
Then by the Lindeberg-Lévy central limit theorem,

√
n(g(x)− Γ(x)θ0)→d Nm(0,Σ0),

where Σ0 ≡ Ep0 [(Γ(x)θ0 − g(x))(Γ(x)θ0 − g(x))>], as long as Σ0 exists (C2). Thus, by
Slutsky’s theorem,

√
n(θ̂ − θ0) ≡

√
n(Γ(x)−1(g(x)− Γ(x)θ0))→d Nr(0,Γ−1

0 ΣΓ−1
0 ),
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as long as Γ0 is invertible (C2).
For the second half of the theorem, (C2) Ep0Γ(x) < ∞ and Ep0g(x) < ∞ implies

Ep0 |Γ(x)| <∞ and Ep0 |g(x)| <∞, so by strong law of large numbers (and a union bound
on at most k2 null sets)

Γ(x)→a.s. Γ0, g(x)→a.s. g0.

Then outside a null set,

θ̂ ≡ Γ(x)−1g(x)→a.s. Γ−1
0 g0 = θ0.

Proof [Proof for Example 3.1] We choose to estimate θ ≡ µ/σ2. Then by (11) and (12),

µ̂h = σ2θ̂ ≡ σ2Γ(x)−1g(x)

= −σ2

[
n∑
i=1

h(Xi)t
′(Xi)

2

]−1 [ n∑
i=1

h(Xi)b
′(Xi)t

′(Xi) + h(Xi)t
′′(Xi) + h′(Xi)t

′(Xi)

]

= −σ2

[
n∑
i=1

h(Xi)

]−1 [ n∑
i=1

−h(Xi)
Xi

σ2
+ h′(Xi)

]
.

By Theorem 6,

√
n(µ̂h − µ0)→d N

0,
σ4E0

[
−h(X)X−µ0

σ2 + h′(X)
]2

E2
0[h(X)]


∼ N

(
0,

E0

[
−h(X)(X − µ0) + σ2h′(X)

]2
E2

0[h(X)]

)
.

By integration by parts, (suppressing the dependence of pµ0 on µ0)

E0[h(X)h′(X)(X − µ0)]

=

∫ ∞
0

h′(x)h(x)(x− µ0)p(x) dx

=

∫ ∞
0

h(x)(x− µ0)p(x) dh(x)

= h2(x)(x− µ0)p(x)
∣∣∞
0
−
∫
h(x) dh(x)(x− µ0)p(x)

= −
∫
h2(x)p(x) dx−

∫
h(x)h′(x)(x− µ0)p(x) dx+

∫
h2(x)

(x− µ0)2

σ2
p(x) dx,

where the last step follows from the assumptions lim
x↘0+

h(x) = 0 and lim
x↗+∞

h2(x)(x −

µ0)pµ0(x) = 0. So

E0[h(X)h′(X)(X − µ0)] =
E[h2(X)((X − µ0)2/σ2 − 1)]

2
. (36)
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The asymptotic variance is thus

E0

[
−h(X)(X − µ0) + σ2h′(X)

]2
E2

0[h(X)]

=
E0

[
h2(X)(X − µ0)2 − 2σ2h2(X)

(
(X − µ0)2/σ2 − 1

)
/2 + σ4h′2(X)

]
E2

0[h(X)]

=
E0[σ2h2(X) + σ4h′2(X)]

E2
0[h(X)]

.

The Cramér-Rao lower bound follows from taking the second derivative of log pµ0 with re-
spect to µ0.

Proof [Proof for Example 3.2] We estimate θ ≡ 1/σ2. By (11) and (12),

θ̂ ≡ Γ(x)−1g(x)

= −

[
n∑
i=1

h(Xi)t
′(Xi)

2

]−1 [ n∑
i=1

h(Xi)b
′(Xi)t

′(Xi) + h(Xi)t
′′(Xi) + h′(Xi)t

′(Xi)

]

=

[
n∑
i=1

h(Xi)(Xi − µ)2

]−1 [ n∑
i=1

h(Xi) + h′(Xi)(Xi − µ)

]
.

By Theorem 6,
√
n(θ̂ − θ)→d N (0, ς2), where

ς2 ≡
E0

[
h(X)((X − µ)2/σ2

0 − 1)− h′(X)(X − µ)
]2

E2
0[h(X)(X − µ)2]

=
1

E2
0[h(X)(X − µ)2]

(
E0[h2(X)(X − µ)4/σ4

0 − 2h2(X)(X − µ)2/σ2
0 + h2(X)

+ h′
2
(X)(X − µ)2 − 2h(X)h′(X)(X − µ)3/σ2

0 + 2h(X)h′(X)(X − µ)

)
.

By integration by parts, (suppressing the dependence of pσ2
0

on σ2
0)

E0[h(X)h′(X)(X − µ)3]

=

∫ ∞
0

h′(x)h(x)(x− µ)3p(x) dx

=

∫ ∞
0

h(x)(x− µ)3p(x) dh(x)

= h2(x)(x− µ)3p(x)
∣∣∞
0
−
∫
h(x) dh(x)(x− µ)3p(x)

= −
∫
h(x)h′(x)(x− µ)3p(x) dx− 3

∫
h2(x)(x− µ)2p(x) dx+

∫
h2(x)

(x− µ)4

σ2
0

p(x) dx,
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where the last step follows from the assumptions lim
x↘0+

h(x) = 0 and lim
x↗+∞

h2(x)(x −

µ)3pσ2
0
(x) = 0. Combining this with (36) we get

√
n(θ̂ − θ)→d N (0, ς2) ∼ N

(
0,

2E0[h2(X)(X − µ)2/σ2
0] + E0[h′2(X − µ)2]

E2
0[h(X)(X − µ)2]

)
,

and so by the delta method, for σ̂2
k ≡ θ̂−1,

√
n(σ̂2

h − σ2
0)→d N

(
0,

2σ6
0E0[h2(X)(X − µ)2] + σ8

0E0[h′2(X − µ)2]

E2
0[h(X)(X − µ)2]

)
.

The Cramér-Rao lower bound follows from taking the second derivative of log pσ2
0

with re-

spect to σ2
0.

A.3. Proof of Theorems in Section 5

Proof [Proof of Theorem 9]
Case b 6= 0: We use a strategy similar to that of Inouye et al. (2016). Let V1 = {v : ‖v‖1 =
1,v ∈ Rm+}. Then by Fubini-Tonelli the normalizing constant is,∫

Rm+
exp

(
η>
xb − 1m

b
− 1

2a
xa>Kxa

)
dx

=

∫
V1

∫ ∞
0

exp

(
η>

zbvb − 1m
b

− 1

2a
z2ava>Kva

)
dz dv

∝
∫
V1

∫ ∞
0

exp
(
zb(η>vb)/b− z2a(va>Kva)/(2a)

)
dz dv.

Here V1 is compact and the inner integral, if finite, is continuous in v. It thus suffices to
show that the inner integral is finite at every single v ∈ V1.

Fixing v ∈ V1, write A ≡ A(v) ≡ va>Kva/(2a) and B ≡ B(v) ≡ (η>vb)/b. We need
to show that

N(A,B, a, b) ≡
∫ ∞

0
exp

(
−Az2a +Bzb

)
dz < +∞.

Recall that (CC1) v>Kv > 0 for all v ∈ Rm+\{0}, so A > 0.

(i) Suppose B ≤ 0. Then N(A,B, a, b) ≤
∫∞

0 exp(−Az2a) dz = A−a/2Γ(1 + 1/(2a)), a
finite constant since A > 0 and a > 0.

(ii) Suppose B > 0. We first want to bound exp(−Az2a + Bzb) ≤ N0 exp(−Az2a/2) by
some finite constant N0 > 0, so that N(A,B, a, b) ≤ N0

∫∞
0 exp(−Az2a/2) dz, a finite

constant for a > 0. Thus, it remains to give conditions so that exp(−Az2a/2+Bzb) is
bounded by some finite constant N0, which by continuity only requires a finite limit
as z ↘ 0 and as z ↗ +∞. As z ↗ +∞, Bzb ↗ +∞, while −Az2a/2↘ −∞. We thus
need b < 2a so that the sum of the two does not go to positive infinity. On the other
hand, as z ↘ 0, −Az2a/2↗ 0, so we need b > 0, otherwise zb ↗ +∞. In conclusion,
we require that 2a > b > 0.
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It thus suffices to require (CC1) and (CC2) 2a > b > 0 to eliminate restrictions on B, and
hence on η. That is, η can take value in the entirety of Rm.

Case b = 0: Again in (CC1) we assume v>Kv > 0 for all v ∈ Rm+\{0}. Since V2 ≡
{v : ‖v‖2 = 1,v ∈ Rm+} is compact and v>Kv is continuous in v and strictly pos-
itive on V2, the image of V2 under v>Kv is a compact subset of (0,∞), i.e. NK ≡
minv∈Rm+ \{0} v

>Kv/v>v ≡ minv∈V2 v
>Kv > 0. We thus have

∫
Rm+

exp

(
η> log(x)− 1

2a
xa>Kxa

)
dx

≤
∫
Rm+

exp

(
η> log(x)− NK

2a
xa>xa

)
dx

=
m∏
j=1

∫ ∞
0

exp

(
ηj log(xj)−

NK

2a
x2a
j

)
dxj

=

m∏
j=1

Γ

(
ηj + 1

2a

)
(NK/2a)−

ηj+1

2a

2a

 ,
where the integration follows by change of variable and requires a > 0. Assuming a > 0,
the last quantity is finite if and only if η � −1m, by definition of the gamma function.

In conclusion, given conditions (CC1) minv∈Rm+ \{0} v
>Kv > 0, (CC2) 2a > b > 0, and

(CC3) a > 0, b = 0 and η � −1m, the unnormalized density (16) has a finite normalizing
constant when (CC1) and (CC2) both hold, or (CC1) and (CC3) both hold.

The centered settings, where the term involving xb is excluded, can be considered as a
special case of both (1) and (2) with η ≡ 0, and thus (CC1) and a > 0 are sufficient.

Proof [Proof of Theorem 11] Recall assumptions (A1) and (A2):

(A1) p0(x)hj(xj)∂j log p(x)
∣∣∣xj↗+∞
xj↘0+

= 0 , ∀x−j ∈ Rm−1
+ , ∀p ∈ P+;

(A2) Ep0‖∇ log p(X) ◦ h1/2(X)‖22 < +∞, Ep0‖(∇ log p(X) ◦ h(X))′‖1 < +∞, ∀p ∈ P+.

Let K0 and η0 be the true parameters so that p0 ∈ P+, with P+ corresponding to a param-
eter space in which all parameters satisfy the conditions for a finite normalizing constant.
We now give sufficient conditions for h to satisfy (A1) and (A2).

Conditions for (A1): Fix j = 1, . . . ,m and x−j ∈ Rm−1
+ . We show that the conditions on

hj imply that the limits go to 0 as xj ↗ +∞ and as xj ↘ 0+, which is stronger than (A1);
in fact, from (37) below, the limits cannot go to a nonzero finite constant assuming an h
with polynomial tail, since a > 0 and B1 ≡ κ0,jj > 0 for all j. Now,

p0(x)hj(xj)∂j log p(x)

∝ hj(xj) exp

(
− 1

2a
xa>K0x

a + η>0
xb − 1m

b

)
∂j

(
− 1

2a
xa>Kxa + η>

xb − 1m
b

)
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∝ hj(xj) exp

(
−1

a
(k>0,j,−jx

a
−j)x

a
j −

κ0,jj

2a
x2a
j + η0,j

xbj − 1

b

)
×(

−k>j,−jxa−jxa−1
j − κjjx2a−1

j + ηjx
b−1
j

)
≡ hj(xj) exp

(
A1x

a
j

a
+
B1x

2a
j

2a
+ C1

xbj − 1

b

)(
A2x

a−1
j +B2x

2a−1
j + C2x

b−1
j

)
, (37)

where A1 ≡ −k>0,j,−jxa−j , A2 ≡ −k>j,−jxa−j , B1 ≡ −κ0,jj < 0 and B2 ≡ −κjj < 0 by
condition (CC1). Finally C1 ≡ η0,j , C2 ≡ ηj .

(1) Let xj ↗ +∞. If b > 0, since 2a > b > 0 and B1 < 0, the exponential term in (37)
decreases to 0 exponentially and its reciprocal dominates any polynomial functions.
Thus, the entire product goes to 0 if hj(xj) grows no faster than polynomially as
xj ↗ +∞. If b = 0, the C1 log xj term is again dominated by B1x

2a
j /(2a), and the

same conclusion holds.

(2) Let xj ↘ 0.

(i) Let b > 0. Then the exponential term in (37) goes to constant exp(−C1/b), and
we only need

lim
xj↘0+

hj(xj)(A2x
a−1
j +B2x

2a−1
j + C2x

b−1
j ) = 0. (38)

• If a > 1 and b > 1, the second term in (38) is a polynomial with three terms
having powers ≥ min{a− 1, b− 1}. The product goes to zero if and only if

hj(xj) = o(x
max{1−a,1−b}
j ) as xj ↘ 0. Note that this is satisfied by any hj

that has a finite right limit at 0.

• If a = 1 and b ≥ 1, or a ≥ 1 and b = 1, then the second term in (38) is
a polynomial of non-negative power plus a potentially nonzero constant. A
sufficient condition for (38) is thus limxj↘0 hj(xj) = 0.

• If a < 1 or b < 1, then the second part in (38) is a polynomial having terms
with negative degree ≥ min{a − 1, b − 1}. To counteract this a sufficient

condition is hj(xj) = o(x
max{1−a,1−b}
j ).

In conclusion, limxj↘0+ p0(x)hj(xj)∂j log p(x) = 0 if and only if

lim
xj↘0+

hj(xj)/x
max{1−a,1−b}
j = 0.

(ii) Now assume b = 0. Then, (37) now becomes

hj(xj) exp
(
A1x

a
j/a+B1x

2a
j /(2a) + C1 log xj

) (
A2x

a−1
j +B2x

2a−1
j + C2/xj

)
.

With C1 log xj dominating, the exponential part scales as xC1
j . We thus require

lim
xj↘0+

hj(xj)(A2x
a−1+C1
j +B2x

2a−1+C1
j + C2x

C1−1
j ) = 0,
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which by the previous discussion on (38) holds if and only if

lim
xj↘0+

hj(xj)/x
1−C1
j = 0

since 1− a− C1 < 1− C1.

In summary, (A1) is satisfied if hj(xj) grows at most polynomially as xj ↗ +∞, and

limxj↘0+ hj(xj)/x
max{1−a,1−b}
j = 0 if b > 0, or limxj↘0+ hj(xj)/x

1−η0,j
j = 0 if b = 0.

Conditions for (A2): For (A2), we consider powers of x as the h functions for simplicity;
conclusions for other functions that have the same tail behavior (big-O scaling) as x ↘ 0
and x ↗ +∞ follow similarly. Sufficiency results for piecewise power functions follow by
partitioning, and similarly for other functions h whose function values and derivatives can
be bounded by those of some piecewise power function (e.g. truncated powers), since (A2)
is on integrability of products involving positive powers of h and h′.

Let K0 and η0 be the true parameters from the parameter space that satisfies the
conditions for finite normalizing constant. By part (2) of the proof of Theorem 9, the
assumption that K0 satisfies (CC1) implies that minv∈Rm+ \{0} v

>K0v/v
>v ≡ NK0 > 0.

Then we have the following decomposition

pK0,η0
(x) ≡ exp

(
− 1

2a
xa>K0x

a + η>0
xb − 1m

b

)
≤

m∏
j=1

exp

(
−NK0

2a
x2a
j + η0,j

xbj − 1

b

)
.

Then for any other K and η in the parameter space, for the first part of (A2) it suffices
to show for any j = 1, . . . ,m that D <∞, where

D ≡
∫
Rm+

m∏
j=1

exp

(
−NK0

2a
x2a
j + η0,j

xbj − 1

b

)
hj(xj)×

(
− κjjx2a−1

j −
∑
i 6=j

κjix
a
i x

a−1
j + ηjx

b−1
j

)2

dx

≥
∫
Rm+

p0(x)hj(xj) (∂j log p(x))2 dx.

Note that −κjjx2a−1
j −

∑
i 6=j

κjix
a
i x

a−1
j + ηjx

b−1
j

2

= κ2
jjx

4a−2
j +

∑
i 6=j, 6̀=j

κjiκj`x
a
i x

a
`x

2a−2
j + η2

jx
2b−2
j + 2

∑
i 6=j

κjjκjix
a
i x

3a−2
j

− 2
∑
i 6=j

κjiηjx
a
i x

a+b−2
j − 2κjjηjx

2a+b−2
j .
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Thus, plugging this back in the definition of D, we can split D into a sum of six terms D1

through D6, each of which is a sum of terms of the form∫
Rm+

m∏
k=1

exp

(
−NK0

2a
x2a
k + η0,k

xbk − 1

b

)
hj(xj)x

powi
i x

pow`
` x

powj
j dx

=
∏
k 6=j

∫ ∞
0

exp

(
−NK0

2a
x2a
k + η0,k

xbk − 1

b

)
x

powk
k dxk

×
∫ ∞

0
exp

(
−NK0

2a
x2a
j + η0,j

xbj − 1

b

)
hj(xj)x

powj
j dxj

times a constant involving K and ηj , where powk ≥ 0 for each k 6= j. We have thus
decomposed the integral into a product of univariate integrals. Note that∫ ∞

0
exp

(
−NK0

2a
x2a
i + η0,i

xbi − 1

b

)
x

powi
i dxi

is finite for all powi ≥ 0 regardless of whether b is nonzero, since we assumed K0 and η0

to lie in the parameter space with a finite normalizing constant. Indeed, if b > 0 then the
terms in the exponential is a regular polynomial with positive degree and a negative leading
term; if b = 0 then integrability follows from η0,i + powi ≥ η0,i > −1. Thus, we only need
to consider the univariate integral that involve the xj terms, namely∫ ∞

0
exp

(
−NK0

2a
x2a
j + η0,j

xbj − 1

b

)
hj(xj)x

powj
j dxj ,

where powj takes value in {4a−2, 2a−2, 2b−2, 3a−2, a+b−2, 2a+b−2} ⊆ [2 min{a, b}−
2, 4a− 2]. We split the integral into two parts over [0, 1] and [1,∞], respectively.

• If b > 0, on [0, 1] the exponential part is bounded above and below by positive con-
stants, and for (A1) we require hj(x) = o(x1−min{a,b}) as x ↘ 0+, so the integrand
is o(xmin{a,b}−1) = o(x−1) and is thus integrable on [0, 1]. The integrand on [1,∞) is
integrable as in (A1) we assume h to grow at most polynomially.

• If b = 0, powj ∈ [−2, 4a− 2] and the integrand becomes

exp(−NK0x
2a
j /(2a))hj(xj)x

powj+η0,j
j .

On [0, 1], (A1) requires hj(x) = o(x1−minj η0,j ), so hj(xj)x
powj+η0,j
j = o(x−1) and the

integrand is again integrable. Integrability on [1,∞) follows similarly to the case with
b > 0.

Now consider the second part of (A2). By definition Ep0‖(∇ log p(X) ◦h(X))′‖1 equals∫
Rm+

p0(x)
m∑
j=1

∣∣h′j(Xj)∂j log p(X) + hj(Xj)∂
2
j log p(X)

∣∣ dx
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≤
m∑
j=1

∫
Rm+

exp

(
−NK0

2a
x2a
j + η0,j

xbj − 1

b

)∣∣∣∣∣∣h′j(xj)
−κjjx2a−1

j −
∑
i 6=j

κjix
a
i x

a−1
j + ηjx

b−1
j


+hj(xj)

−κjj(2a− 1)x2a−2
j −

∑
i 6=j

κji(a− 1)xai x
a−2
j + (b− 1)ηjx

b−2
j

∣∣∣∣∣∣dx.
By the triangle inequality and the fact that hj ≥ 0 and h′j ≥ 0, similar to the proof for the
first part, for each j the integral can be bounded by a sum of six integrals, each of the form

const×
∫
Rm+

m∏
k=1

exp

(
−NK0

2a
x2a
k + η0,k

xbk − 1

b

)
hj(xj)x

powi
i x

powj
j dx,

or with hj replaced by h′j . Finiteness thus follows from the same type of discussion by

noting that hj(x) = o
(
x1−min{a,b}) and h′j(x) = o

(
x−min{a,b}).

We conclude that if the true and the proposed parameters give densities with finite nor-
malizing constants, and if h satisfies assumption (A1), then (A2) is automatically satisfied.

In the centered case where we assume η ≡ 0, we only need limxj↘0+ hj(xj)/x
1−a
j = 0

as it is a special case with b = 2a.

A.4. Proof of Theorems in Section 6

Proof [Proof of Corollary 14] By Theorem 13, under assumptions in that theorem, the
support of Ψ̂ is a subset of the true support of Ψ0, and ‖Ψ̂−Ψ0‖∞ ≤

cΓ0
2−αλ. Since Ψ0 has

|S0| nonzero entries,

|||Ψ̂−Ψ0|||F =

 ∑
Ψ0,jk 6=0

(Ψ̂jk −Ψ0,jk)
2

1/2

≤
√
|S0|‖Ψ̂−Ψ0‖∞ ≤

cΓ0

2− α
λ
√
|S0|.

Similarly, by the definition of matrix `∞-`∞ norm,

|||Ψ̂−Ψ0|||2 ≤ |||Ψ̂−Ψ0|||∞ = max
j=1,...,m

m∑
k=1

|Ψ̂jk −Ψ0,jk| ≤
cΓ0

2− α
λdΨ0 .

The result follows by also noting that |||Ψ̂−Ψ0|||2 ≤ |||Ψ̂−Ψ0|||F .

Proof [Proof of Theorem 15] The proof is based on Theorem 13 and a probabilistic bound
on ‖Γγ − Γ0‖∞, where in the case of centered Gaussian Γ = diag(xx>, . . . ,xx>). Denote
Σ0 = K−1

0 . In particular, given τ > 2 we wish to show that for ε = 80
√

2c0 maxj(Σ0,jj),
assuming c0 ≡

√
(τ logm+ log 4)/n < 1/

√
2,

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j X

(i)
k + γ1j1{j=k} − EXjXk

∣∣∣∣∣ > ε

)
≤ m2−τ ,
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and so the results follow from Theorem 13.
By Lemma 1 of Ravikumar et al. (2011), since Xj/

√
Σ0,jj is Gaussian with mean 0 and

standard deviation 1,

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j X

(i)
k − EXjXk

∣∣∣∣∣ > t

)
≤ 4 exp

(
− nt2

3200 maxj(Σ0,jj)2

)
for t ∈ (0, 40 maxj(Σ0,jj)). Denote the event as Ej,k(t). Note that EX2

j ≤ maxj Σ0,jj =

ε/(80
√

2c0). Then letting t = ε/2 and conditioning on the complement of Ej,j(ε/2), we have

n−1
n∑
i=1

X
(i)
j

2
≤ EX2

j + ε/2 ≤ ε

2

(
1 +

1

40
√

2c0

)
.

Thus, choosing γ`j = (δ− 1)
∑n

i=1X
(i)
j

2
/n for ` = 1, . . . ,m (Γ has m identical blocks) with

1 < δ < 1 +
(
1 + 1/(40

√
2c0)

)−1
, by the triangle inequality and a union bound we have

P

(
max
j,k

∣∣∣∣∣n−1
n∑
i=1

X
(i)
j X

(i)
k + γ1j1{j=k} − EXjXk

∣∣∣∣∣ > ε

)
≤ P(Ej,k(ε/2)) = m2−τ .

Since τ > 2, it holds that 1 +
(
1 + 1/(40

√
2c0)

)−1
= 2 − (1 + 40

√
2c0)−1 is larger than

2−(1+80
√

logm/n)−1 ≡ C(n,m), so it is safe to choose any δ ∈ (1, C(n,m)). Thus by the
requirement on ε, the theorem statement holds when n > max(c∗c2

1d
2
K, 2)(τ logm + log 4)

with c∗ = 12800 maxj(Σ0,jj)
2.

Proof [Proof of Theorem 16] The proof of Theorem 13 from Lin et al. (2016) does not rely
on the fact that the original Γ is an unbiased estimator for the population Γ0, but instead
only requires one to bound ‖Γ − Γ0‖∞. Thus, for Γγ = Γ + diag(γ), by Theorem 13 it
suffices to prove that for any τ > 3, we can bound ‖Γ(x) + diag(γ(x))− Γ0‖∞ by some ε1
and ‖g(x)− g0‖∞ by some ε2, uniformly with probability 1−m3−τ . Recall from (21) that
the jth block of Γγ ∈ Rm2×m2

has (k, `)-th entry

n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
+ γkj · 1{k=`}.

The entry in g ∈ Rm2
(obtained by linearizing a m×m matrix) corresponding to (j, k) is

n−1
n∑
i=1

X
(i)
k h′j

(
X

(i)
j

)
+ n−11{j=k}

n∑
i=1

hj

(
X

(i)
j

)
.

Denote M ≡ maxj supx>0 hj(x), M ′ ≡ maxj supx>0 h
′
j(x), and cX ≡ 2 maxj(2

√
Σjj +√

eE0Xj). Using results for sub-Gaussian random variables from Lemma 22.2 in Appendix
B, we have for any t1 > 0,

P

(∣∣∣∣∣n−1
n∑

i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
− E0XkX`hj(Xj)

∣∣∣∣∣ > t1

)
≤ 2 exp

(
−min

(
nt21

2M2c4X
,
nt1

2Mc2X

))
.
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Thus, choosing ε1 ≡ 2Mc2
Xcn,m, where cn,m ≡ max

{
2(logmτ+log 6)

n ,

√
2(logmτ+log 6)

n

}
, for

γkj ≤ ε1/2, we have

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
+ γkj1{k=`} − E0XkX`hj(Xj)

∣∣∣∣∣ > ε1

)

≤P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
− E0XkX`hj(Xj)

∣∣∣∣∣ > ε1/2

)
(39)

≤ 2 exp

(
−min

(
nε21

8M2c4
X

,
nε1

4Mc2
X

))
≤ 1

3mτ
. (40)

Denote the event inside the probability in (39) as Ek,`,j(ε1/2).
By definition,

c2
X = 4 max

k

(
4Σkk + 4

√
e
√

Σkk E0Xk + e(E0Xk)
2
)
≥ 4emax

k

(
Σkk + (E0Xk)

2
)
.

By Lemmas 21.2 and 22.1 from Appendix B, var(Xk) ≤ Σkk, so c2
X ≥ 4emaxk E0X

2
k ≥

4eE0X
2
khj(Xj)/M . Thus, setting ε1 = 2Mc2

Xcn,m, on the complement of Ek,k,j(ε1/2) we
have

n−1
n∑
i=1

X
(i)
k

2
hj

(
X

(i)
j

)
≤ E0X

2
khj(Xj) + ε1/2 ≤

ε1
2

(
1 +

1

4ecn,m

)
.

Then
1

1 + 1/(4ecn,m)

1

n

n∑
i=1

X
(i)
k

2
hj

(
X

(i)
j

)
≤ ε1/2 (41)

on the complement of Ek,k,j(ε1/2), again with cn,m ≡ max

{
2(logmτ+log 6)

n ,

√
2(logmτ+log 6)

n

}
.

Note that the multiplier on the left of (41) is increasing in cn,m, and that 2(logmτ +log 6) >
6 logm by the assumption that τ > 3. Thus, if we let

γkj ≡
1

1 + 1/
(

4emax
{

6 logm/n,
√

6 logm/n
}) 1

n

n∑
i=1

X
(i)
k

2
hj

(
X

(i)
j

)
,

which is just a constant multiple of the (k, k)-th entry of Γj itself, with the constant explicitly
calculable and a function of p and n only, then for k = `

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
+ γkj − E0XkX`hj(Xj)

∣∣∣∣∣ ≥ ε1
)
≤ P(Ek,`,j(ε1/2)) ≤ 1

3mτ
.

Since this also holds for k 6= ` without the γkj term, by a union bound over m3 events,

P

(
max
j,k,`

∣∣∣∣∣n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
+ γkj1{k=`} − E0XkX`hj(Xj)

∣∣∣∣∣ ≥ ε1
)
≤ 1

3mτ−3
. (42)
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Now, on the other hand, Lemma 22.1 and Hoeffding’s inequality give for any t2,1, t2,2 > 0
that

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
k h′j

(
X

(i)
j

)
− E0Xkh

′
j(Xj)

∣∣∣∣∣ ≥ t2,1
)
≤ 2 exp

(
−

nt22,1
2M ′2c2

X

)
,

P

(∣∣∣∣∣n−1
n∑
i=1

hj

(
X

(i)
j

)
− E0hj(Xj)

∣∣∣∣∣ ≥ t2,2
)
≤ 2 exp

(
−2nt22,2/M

2
)
.

Choosing ε2,1 ≡
√

2M ′cX

√
logmτ−1+log 6

n , ε2,2 ≡M
√

logmτ−2+log 6
2n and taking union bounds

over m2, and m events, respectively, we have

P

(
max
j,k

∣∣∣∣∣n−1
n∑
i=1

X
(i)
k h′j

(
X

(i)
j

)
− E0Xkh

′
j(Xj)

∣∣∣∣∣ ≥ ε2,1
)
≤ 1

3mτ−3
, (43)

P

(
max
j

∣∣∣∣∣n−1
n∑
i=1

hj

(
X

(i)
j

)
− E0hj(Xj)

∣∣∣∣∣ ≥ ε2,2
)
≤ 1

3mτ−3
. (44)

Hence, by (42) (43) (44), with probability at least 1 − m3−τ , ‖Γγ(x) − Γ0‖∞ < ε1 and
‖g(x)− g0‖∞ < ε2 ≡ ε2,1 + ε2,2. Consider any τ > 3, and let

c2 ≡
6

α
cΓ0 ,

n > max{2M2c4
Xc

2
2d

2
K0

(τ logm+ log 6), 2Mc2
Xc2dK0(τ logm+ log 6)},

λ >
3(2− α)

α
max{cK0ε1, ε2}

≡ 3(2− α)

α
max

{
4McK0c

2
X

(logmτ + log 6)

n
,

2McK0c
2
X

√
2(logmτ + log 6)

n
,
√

2M ′cX

√
logmτ−1 + log 6

n
+M

√
logmτ−2 + log 6

2n

}
.

Then dK0ε1 ≤ α/(6cΓ0) and the results follow from Theorem 13.

Proof [Proof of Theorem 17] Similar to the proof of Theorem 16, by Theorem 13 it suffices
to prove that for any τ > 3, we can bound ‖Γγ(x) − Γ0‖∞ by some ε1 and ‖g(x) − g0‖∞
by some ε2, uniformly with probability 1 − m3−τ . Recall that Γ ∈ R(m2+m)×(m2+m) is a
rearrangement of Γ(∗), which is in turn formed by Γ11 ∈ Rm2×m2

, Γ12 ∈ Rm2×m, Γ>12 and
Γ22 ∈ Rm×m, all of which are block-diagonal with m blocks.
The jth block of Γ11 ∈ Rm2×m2

has (k, `)-th entry

n−1
n∑
i=1

X
(i)
k X

(i)
` hj

(
X

(i)
j

)
,

the kth entry in the jth block of Γ12 is

−n−1
n∑
i=1

X
(i)
k hj

(
X

(i)
j

)
,
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the jth diagonal entry of Γ22 is

n−1
n∑
i=1

hj

(
X

(i)
j

)
.

On the other hand, g ∈ R(m2+m) is a rearrangement of g(∗) ≡ [g>1 , g
>
2 ]>, where the entry

in g1 ∈ Rm2
(obtained by linearizing a m×m matrix) corresponding to (j, k), is

n−1
n∑
i=1

X
(i)
k h′j

(
X

(i)
j

)
+ n−11{j=k}

n∑
i=1

hj

(
X

(i)
j

)
,

while the j-th component of g2 ∈ Rm is

−n−1
n∑
i=1

h′j

(
X

(i)
j

)
.

Recalling that the bounds in Lemma 22 also hold when µ 6= 0, we may then use bounds
similar to those in the proof of Theorem 16, and use union bounds to arrive at analogous
consistency results, modulus different constants. The amplifiers γ can be incorporated anal-
ogously.

Appendix B. Auxiliary Lemmas and Definitions

In this appendix, to simplify notation, when it is clear from the context, the operator E is
defined as the expectation under the true distribution, unless otherwise noted.

Definition 20 (Sub-Gaussian and Sub-Exponential Variables)
The sub-Gaussian (r = 2) and sub-exponential (r = 1) norms of a random variable are

‖X‖ψr ≡ sup
q≥1

q−1/r(E|X|rq)1/(rq) ≡ sup
q≥1

q−1/r‖X‖rq.

If ‖X‖ψ2 <∞ we say X is sub-Gaussian; if ‖X‖ψ1 <∞ we call X sub-exponential. For a
zero-mean sub-Gaussian random variable X also define the sub-Gaussian parameter

τ(X) = inf{τ ≥ 0 : E exp(tX) ≤ exp(τ2t2/2), ∀t ∈ R}.

The definition of sub-Gaussian norm here allows for a non-centered variable and differs
from the one in Vershynin (2012), which uses ‖X‖q. Instead, it coincides with θ2 in Buldy-
gin and Kozachenko (2000). The sub-Gaussian parameter is defined as in Buldygin and
Kozachenko (2000) and the sub-exponential norm as in Vershynin (2012).

Lemma 21 (Properties of Sub-Gaussian and Sub-Exponential Variables)

1) For any X and r = 1, 2, ‖X − EX‖ψr ≤ 2‖X‖ψr and ‖X‖ψr ≤ ‖X − EX‖ψr + |EX|,
as long as the expectation and norms are finite.
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2) (Buldygin and Kozachenko, 2000) τ(X) is a norm on the space of all zero-mean sub-
Gaussian variables; so τ(X + Y ) ≤ τ(X) + τ(Y ). If X is zero-mean sub-Gaussian,
then var(X) ≤ τ2(X), ‖X‖ψ2 ≤ 2τ(X)/

√
e, τ(X) ≤

√
e‖X‖ψ2. If X1, . . . , Xn are

i.i.d. zero-mean sub-Gaussian, τ
(
n−1

∑n
i=1Xi

)
≤ n−1/2τ(Xi).

3) If X1 and X2 are sub-Gaussian (not necessarily independent) with ‖X1‖ψ2 ≤ K1 and
‖X2‖ψ2 ≤ K2, then X1X2 is sub-exponential with ‖X1X2‖ψ1 ≤ K1K2.

4) (Buldygin and Kozachenko, 2000) If X is zero-mean sub-Gaussian and q > 0, then

E|X|q ≤ 2(q/e)q/2τ q(X).

5) (Buldygin and Kozachenko, 2000) If X1, . . . , Xn are independent zero-mean, sub-
Gaussian variables, then for any ε > 0,

P(|X1| ≥ ε) ≤ 2 exp

(
− ε2

2τ2(X1)

)
,

P

(∣∣∣∣∣n−1
n∑
i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

2 maxi τ2(Xi)

)
.

6) (Vershynin, 2012) If X1, . . . , Xn are independent zero-mean sub-exponential random
variables with K ≥ maxi ‖Xi‖ψ1, then for any ε > 0,

P(|X1| ≥ ε) ≤ 2 exp

(
−min

(
ε2

8e2K2
,
ε

4eK

))
,

P

(∣∣∣∣∣n−1
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−min

(
nε2

8e2K2
,
nε

4eK

))
.

7) (Boucheron et al., 2013) If for Xi i.i.d. there exists some B > 0 such that

sup
q≥2

(
E|X|q

q!

)1/q

≤ B/2

then for all ε > 0,

P

(∣∣∣∣∣n−1
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−min

(
nε2

2B2
,
nε

2B

))
.

Proof
1) For r = 1, 2, by the triangle inequality, ‖X−EX‖ψr ≤ ‖X‖ψr+‖EX‖ψr = ‖X‖ψr+|EX| ≤
‖X‖ψr + E|X| ≤ 2‖X‖ψr , where in the last step we used the definition of ‖ · ‖ψr with
q = 1 for r = 1 and E|X| ≤ (E|X|2)1/2 with q = 2 for r = 2. On the other hand,
‖X‖ψr ≤ ‖X − EX‖ψr + ‖EX‖ψr = ‖X − EX‖ψr + |EX|.
2) These follow from Theorems 1.2 and 1.3 and Lemmas 1.2 and 1.7 from Buldygin and
Kozachenko (2000), and 4

√
3.1e9/16/

√
2 ≈ 1.6467 ≤ 1.6487 ≈

√
e.
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3) By Hölder’s inequality (or Cauchy-Schwarz),

‖X1X2‖ψ1 = sup
q≥1

q−1(E|X1X2|q)1/q = sup
q≥1

q−1(E|Xq
1X

q
2 |)

1/q

≤ sup
q≥1

q−1
[
(E|X1|2q)1/2(E|X2|2q)1/2

]1/q

≤ sup
q≥1

[
q−1/2(E|X1|2q)1/2q

]
sup
q≥1

[
q−1/2(E|X2|2q)1/2q

]
= ‖X1‖ψ2‖X2‖ψ2 ≤ K1K2.

4-6) These are Lemma 1.4 and Theorem 1.5 in Buldygin and Kozachenko (2000), and a
consequence of Corollary 5.17 in Vershynin (2012).

7) By Theorem 2.10 of Boucheron et al. (2013) wherein we let v ≡ nB2/2 and c ≡ B/2, we
have

P

(∣∣∣∣∣n−1
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2

B2 +Bε

)
for all ε > 0. (Theorem 2.10 gives an one-sided bound; bound for the other side is obtained
by taking Xi = −Xi). The inequality follows by splitting into cases ε ≤ B and ε > B.

Lemma 22 Suppose X follows a truncated normal distribution on Rm+ with parameters µ

and Σ = K−1 � 0. Let X(1), . . . ,X(n) be i.i.d. copies of X, with j-th component of the

i-th copy being X
(i)
j . Then

1. For j = 1, . . . , p, τ(Xj − EXj) ≤
√

Σjj. That is, the sub-Gaussian parameter of
any marginal distribution of X, after centering, is bounded by the square root of its
corresponding diagonal entry in the covariance parameter Σ. Then, for any ε > 0,

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j − EXj

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

2Σjj

)
.

In particular, if h0 is a function bounded by M0, then for any ε > 0,

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j h0

(
X

(i)
k

)
− EXjh0(Xk)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2

8M2
0 (2
√

Σjj +
√
eEXj)2

)
,

τ

(
n−1

n∑
i=1

X
(i)
j h0

(
X

(i)
k

)
− EXjh0(Xk)

)
≤ 2M0√

n

(
2
√

Σjj +
√
eEXj

)
,∥∥∥∥∥n−1

n∑
i=1

X
(i)
j h0

(
X

(i)
k

)
− EXjh0(Xk)

∥∥∥∥∥
ψ2

≤ 4M0√
en

(
2
√

Σjj +
√
eEXj

)
.

2. For j, k, ` ∈ {1, . . . , p}, if h0 is a function bounded by M0, then

‖XjXkh0(X`)− EXjXkh0(X`)‖ψ1 ≤
M0

2e
c2
X , (45)
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where cX ≡ 2 maxj(2
√

Σjj +
√
eEXj). In particular, for any ε > 0,

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j X

(i)
k h0

(
X

(i)
`

)
− EXjXkh0(X`)

∣∣∣∣∣ > ε

)

≤ 2 exp

(
−min

(
nε2

2M2
0 c

4
X

,
nε

2M0c2
X

))
.

Proof [Proof of Lemma 22]
1. Without loss of generality choose j = 1. By the definition of sub-Gaussian parameters,
we need to show that for all t ∈ R,

E exp(tX1) ≤ exp
(
t2Σ11/2 + tEX1

)
,

which is equivalent to

t2Σ11/2 + tEX1 − logE exp(tX1) ≥ 0 ∀t ∈ R. (46)

Since the left-hand side of (46) equals 0 at t = 0, it suffices to show that its derivative,

tΣ11 + EX1 −
d logE exp(tX1)

dt
= tΣ11 + EX1 −

dE exp(tX1)
dt

E exp(tX1)
, (47)

is non-negative on (0,∞) and non-positive on (−∞, 0). By properties of moment-generating
functions, d

dtE exp(tX1) evaluated at t = 0 equals EX1, so (47) equals 0 at t = 0. It in turn
suffices to show the derivative of (47), namely

Σ11 −
d2 logE exp(tX1)

dt2
(48)

is non-negative in t ∈ R.
Given any vector v ∈ Rp, define Rp+−v ≡ {u−v : u ∈ Rp+}. By Tallis (1961), denoting

the first column of Σ as Σ1, the moment-generating function of the marginal distribution
of X1 is ∫

Rp+−(µ+tΣ1) exp
(
−1

2x
>Σ−1x

)
dx∫

Rp+−µ
exp

(
−1

2x
>Σ−1x

)
dx

exp

(
tµ1 +

1

2
t2Σ11

)
.

(48) thus becomes

− d2

dt2
log

∫
Rp+−(µ+tΣ1)

exp

(
−1

2
x>Σ−1x

)
dx.

Showing this is non-negative in t ∈ R is equivalent to showing that the integral itself is
log-concave in t. But∫

Rp+−(µ+tΣ1)
exp

(
−1

2
x>Σ−1x

)
dx =

∫
Rp

exp

(
−1

2
x>Σ−1x

)
1Rp+−µ(x+ tΣ1) dx

with exp
(
−1

2x
>Σ−1x

)
log-concave in x and 1Rp+−µ(x + tΣ1) log-concave in (x, t) since

Rp+ − µ is a convex set. Since log-concavity is closed under multiplication and integration
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over Rp, the integral is indeed log-concave, and our proof of the bound on the sub-Gaussian
parameter of Xj − EXj is complete. The tail bound follows from 5) of Lemma 21.

Now by 1) and 2) of Lemma 21,

‖Xj‖ψ2 ≤ 2
√

Σjj/e+ EXj .

If h0 is a function bounded by M0, then by definition

‖Xjh0(Xk)‖ψ2 ≤M0

(
2
√

Σjj/e+ EXj

)
.

By 1) and 2) of Lemma 21 again,

τ(Xjh0(Xk)− EXjh0(Xk)) ≤
√
e‖Xjh0(Xk)− EXjh0(Xk)‖ψ2

≤ 2
√
e‖Xjh0(Xk)‖ψ2

≤ 2M0(2
√

Σjj +
√
eEXj).

The tail bound thus follows from the first inequality using 5) of Lemma 21. By 2) of the
Lemma 21,

τ

(
n−1

n∑
i=1

X
(i)
j h0

(
X

(i)
k

)
− EXjh0(Xk)

)
≤ 2M0√

n

(
2
√

Σjj +
√
eEXj

)
,∥∥∥∥∥n−1

n∑
i=1

X
(i)
j h0

(
X

(i)
k

)
− EXjh0(Xk)

∥∥∥∥∥
ψ2

≤ 4M0√
en

(
2
√

Σjj +
√
eEXj

)
.

2. By the proof of 1) of this lemma, ‖Xj‖ψ2 ≤ 2
√

Σjj/e+ EXj , and by 3) of Lemma 21,

‖XjXk‖ψ1 ≤
(

2
√

Σjj/e+ EXj

)(
2
√

Σkk/e+ EXk

)
≤ max

j

(
2
√

Σjj/e+ EXj

)2

.

Since h0 is a function bounded by M0, by definition

‖XjXkh0(X`)‖ψ1 ≤M0 max
j

(
2
√

Σjj/e+ EXj

)2

.

Then by 1) of Lemma 21 again,

‖XjXkh0(X`)− EXjXkh0(X`)‖ψ1 ≤ 2M0 max
j

(
2
√

Σjj/e+ EXj

)2

.

The tail bound then follows from 6) of Lemma 21.

Although not used for our consistency results, in the special case of h0 ≡ 1, we also have the
following lemma. The notable difference between bounds (49) below and (45) from Lemma
22.2 is in the constants and dependency on EXj : The constants in the denominator in the
right-hand side of (45) is smaller and thus gives a tighter bound, but (49) is preferred when
EXj is notably large compared to

√
Σjj , since the constant is only linear in EXj .
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Lemma 23 Consider the setting in Lemma 22. Then for j, k ∈ {1, . . . , p}, for any ε > 0,

P

(
n−1

∣∣∣∣∣
n∑
i=1

X
(i)
j X

(i)
k − EXjXk

∣∣∣∣∣ ≥ ε
)
≤ 4 exp

(
−min

(
2nε2

C2
1

,
nε

C1

))
, (49)

where C1 ≡ 91 maxj Σjj + 72 maxj EXj maxj
√

Σjj.

Proof [Proof of Lemma 23] We use a proof similar to Lemma 1 in Ravikumar et al. (2011)
(note that EXj may be nonzero in our case). Define

U
(i)
jk ≡ X

(i)
j +X

(i)
k , Ujk ≡ Xj +Xk, V

(i)
jk ≡ X

(i)
j −X

(i)
k , Vjk ≡ Xj −Xk.

Since X
(i)
j X

(i)
k = 1

4

(
U

(i)
jk

2
− V (i)

jk

2
)

, by union bound we have

P

(∣∣∣∣∣n−1
n∑
i=1

X
(i)
j X

(i)
k − EXjXk

∣∣∣∣∣ ≥ ε
)

≤P

(∣∣∣∣∣n−1
n∑
i=1

U
(i)
jk

2
− EU2

jk

∣∣∣∣∣ ≥ 2ε

)
+ P

(∣∣∣∣∣n−1
n∑
i=1

V
(i)
jk

2
− EV 2

jk

∣∣∣∣∣ ≥ 2ε

)
.

We next define

Z
(i)
jk ≡ U

(i)
jk

2
− EU2

jk = A
(i)
jk

2
+B

(i)
jk + Cjk, X

(i)
j ≡ X

(i)
j − EXj ,

A
(i)
jk ≡ X

(i)
j +X

(i)
k , B

(i)
jk ≡ 2(EXj + EXk)(X

(i)
j +X

(i)
k ), Cjk ≡ −E(X

(i)
j +X

(i)
k )2.

Then since τ is a norm by 2) of Lemma 21, Ajk is sub-Gaussian with parameter≤
√

Σjj+√
Σkk, and Bjk is sub-Gaussian with parameter ≤ 2(EXj +EXk)

(√
Σjj +

√
Σkk

)
. Using 4)

of Lemma 21 together with the inequality (a+ b+ c)q ≤ (3 max{a, b, c})q ≤ 3q(aq + bq + cq)
for all a, b, c ≥ 0 and q > 0, we have for any q ≥ 2

(E|Zjk|q)1/q ≤
(
3q
(
E|Ajk|2q + E|Bjk|q + |Cjk|q

))1/q
≤ 31+1/q

(
(E|Ajk|2q)1/q + (E|Bjk|q)1/q + |Cjk|

)
≤ 31+1/q

(
21/q(2q/e)

(√
Σjj +

√
Σkk

)2

+21/q
√
q/e2(EXj + EXk)(

√
Σjj +

√
Σkk) + var(Xj +Xk)

)
.

Using var(X + Y ) ≤ 2(var(X) + var(Y )) and the fact that var(Xj) = var(Xj − EXj) ≤
τ2(Xj − EXj) ≤ Σjj (by 2) of Lemma 21 and 1) of Lemma 22, we then have

(
E|Zjk|q

q!

)1/q

≤ 31+1/q 23+1/q(q/e) maxj Σjj + 23+1/q
√
q/emaxj EXj ·maxj

√
Σjj + 4 maxj Σjj

(q!)1/q
.
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Since all three coefficients involving q are decreasing in q ≥ 2, we have

sup
q≥2

(
E|Zjk|q

q!

)1/q

≤
(

48
√

3/e+ 6
√

6
)

max
j

Σjj + 24
√

6/emax
j

EXj max
j

√
Σjj .

Thus by 7) of Lemma 21, letting B ≡
(
91 maxj Σjj + 72 maxj EXj maxj

√
Σjj

)
, we have

for all ε > 0:

P

(
n−1

∣∣∣∣∣
n∑
i=1

Z
(i)
jk

∣∣∣∣∣ ≥ 2ε

)
≤ 2 exp

(
−min

(
2nε2

B2
,
nε

B

))
.

A tail bound for the sample average of V 2
jk can be similarly derived, and the result follows.
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Appendix C. Simulation Results for Erdös-Rényi Graphs

We revisit the simulations from Section 7 but use Erdös-Rényi (ER) graphs in which each
possible edge is independently included with probability π. Independent uniform draws from
[0.5, 1] are used to fill the non-zero off-diagonal entries of the symmetric matrix K0. The
diagonal elements are set such that K0 has minimum eigenvalue 0.1. We choose π = 0.08
for n = 1000, and π = 0.02 for n = 80.

C.1. Truncated GGMs

In this section we present the results for truncated GGMs.

C.1.1. Choice of h

The results for truncated centered GGMs are reported in Table 4 and Figure 13. Those for
truncated non-centered GGMs using the profiled estimator are in Table 5 and Figure 14.

Centered, n = 80, multiplier 1.8647, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.632 0.036 ∞ 0.638 0.035
2 0.632 0.036 3 0.638 0.035
1 0.630 0.035 2 0.635 0.035

0.5 0.613 0.033 1 0.623 0.033

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

10 0.637 0.035 10 0.638 0.035
5 0.636 0.036 5 0.637 0.035
1 0.617 0.033 2 0.632 0.035

x1.5: (0.627, 0.032) x2: (0.595,0.028)

GLASSO (0.553,0.029) SPACE: (0.544, 0.026)

NS: (0.543,0.028) SJ: (0.519,0.028)

Centered, n = 1000, multiplier 1, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.716 0.016 2 0.710 0.016
2 0.716 0.016 3 0.710 0.016
1 0.715 0.016 1 0.710 0.017

0.5 0.694 0.017 ∞ 0.709 0.016

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.714 0.016 2 0.713 0.016
10 0.711 0.016 5 0.711 0.016
1 0.707 0.017 10 0.710 0.016

x1.5: (0.678,0.016) x2: (0.64,0.017)

GLASSO: (0.675,0.016) SPACE: (0.675,0.016)

NS: (0.675,0.016) SJ: (0.624,0.017)

Centered, n = 1000, multiplier 1.6438, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

∞ 0.796 0.014 ∞ 0.795 0.014
2 0.796 0.014 3 0.794 0.014
1 0.794 0.014 2 0.792 0.014

0.5 0.772 0.015 1 0.784 0.015

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.796 0.014 5 0.795 0.014
10 0.796 0.014 10 0.795 0.014
1 0.778 0.015 2 0.793 0.014

x1.5: (0.757,0.015) x2: (0.693,0.016)

GLASSO: (0.675,0.016) SPACE: (0.675,0.016)

NS: (0.675,0.016) SJ: (0.624,0.017)

Table 4: Mean and standard deviation of areas under the ROC curves (AUC) using different
estimators in the centered setting, with n = 80 and multiplier 1.8647, or n = 1000
and multipliers 1 and 1.6438. Methods include our estimator with different choices
of h, GLASSO, SPACE, neighborhood selection (NS), and Space JAM (SJ).
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(a) n = 80, mult = 1.8647, ER (b) n = 1000, mult = 1, ER (c) n = 1000, mult = 1.6438, ER

Figure 13: Average ROC curves of our centered estimator for m = 100 variables and two
sample sizes n under various choices of h, compared to SPACE and GLASSO, for
the truncated centered GGM case. Squares indicate average true positive rate
(TPR) and false positive rate (FPR) of models picked by eBIC with refitting for
the estimator in the same color.

Non-centered profiled, n = 80, multiplier 1.8647, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

1 0.588 0.034 3 0.588 0.033
∞ 0.588 0.034 ∞ 0.588 0.033
2 0.588 0.034 2 0.588 0.033

0.5 0.576 0.033 1 0.583 0.033

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.588 0.033 5 0.588 0.033
10 0.588 0.033 10 0.588 0.033
1 0.581 0.033 2 0.587 0.033

x1.5: (0.582,0.028) x2: (0.576,0.028)

GLASSO: (0.572,0.033) SPACE: (0.562,0.031)

NS: (0.560,0.032) SJ: (0.535,0.027)

Non-centered profiled, n = 1000, multiplier 1, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

2 0.692 0.022 1 0.687 0.022
∞ 0.692 0.022 ∞ 0.686 0.022
1 0.691 0.022 3 0.685 0.022

0.5 0.684 0.02 2 0.685 0.022

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.689 0.022 2 0.687 0.022
1 0.689 0.020 5 0.687 0.022
10 0.687 0.022 10 0.686 0.022

x1.5: (0.663,0.020) x2: (0.638,0.019)

GLASSO (0.700,0.022) SPACE: (0.699,0.022)

NS: (0.699,0.022) SJ: (0.655,0.021)

Non-centered profiled, n = 1000, multiplier 1.6438, ER

min(log(1 + x), c) min(x, c)

c Mean sd c Mean sd

2 0.705 0.021 ∞ 0.705 0.022
∞ 0.705 0.021 3 0.705 0.021
1 0.703 0.021 2 0.702 0.022

0.5 0.683 0.019 1 0.695 0.021

MCP(1, c) SCAD(1, c)

c Mean sd c Mean sd

5 0.706 0.021 10 0.705 0.022
10 0.706 0.022 5 0.705 0.022
1 0.690 0.019 2 0.703 0.022

x1.5: (0.689,0.021) x2: (0.664,0.019)

GLASSO (0.700,0.022) SPACE: (0.699,0.022)

NS: (0.699,0.022) SJ: (0.655,0.021)

Table 5: Mean and standard deviation of AUC using different profiled estimators in the non-
centered setting, with n = 80 and multiplier 1.8647, or n = 1000 and multipliers
1 and 1.6438. Methods as for Table 4.
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(a) n = 80, mult = 1.8647, ER (b) n = 1000, mult = 1, ER (c) n = 1000, mult = 1.6438, ER

Figure 14: Average for the truncated non-centered GGM case. n = 80 or 1000, m = 100.

C.1.2. Choice of multiplier

The results for truncated centered GGMs where each curve represents a different multiplier
are shown in Figure 15, and those for truncated non-centered GGMs are in Figure 16, where
each curve corresponds to a different ratio λK/λη.

(a) n = 80, ER (b) n = 1000, ER

Figure 15: Performance of min(x, 3) for truncated centered GGMs with different multipliers,
compared to GLASSO and SPACE, in the centered setting, n = 80 or 1000.
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(a) n = 80, mult = 1.7897, ER (b) n = 80, mult = 1.8647, ER

(c) n = 1000, mult = 1, ER (d) n = 1000, mult = 1.2310, ER (e) n = 1000, mult = 1.6438, ER

Figure 16: Performance of the non-centered estimator with h(x) = min(x, 3). Each curve
corresponds to a different choice of λK/λη. Squares indicate models picked by
eBIC with refit. The square with black outline has the highest eBIC among
all models (combinations of λK, λη). The multipliers correspond to medium or
high for n = 80, and low, medium and high for n = 1000, respectively.
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C.2. Other a/b Models

Figure 17 exhibits the results for the exponential models.
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(a) n = 80, η = −0.51100, profiled est, ER
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(b) n = 1000, η = −0.51100, profiled est, ER
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(c) n = 80, η = 0, centered est, ER
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(d) n = 1000, η = 0, centered est, ER
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(e) n = 80, η = 0.51100, profiled est, ER
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(f) n = 1000, η = 0.51100, profiled est, ER

Figure 17: AUCs for edge recovery using generalized score matching for the exponential
models. Each curve represents a different choice of power p in h(x) = min(xp, c),
and the x axis marks the truncation point c. Colors are sorted by p.
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Figure 18 displays the results for the gamma models.
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(c) n = 80, η = 0.51100, profiled estimator, ER
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(d) n = 1000, η = 0.51100, profiled estimator, ER

Figure 18: AUCs for edge recovery using generalized score matching for the gamma models.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.

64



Generalized Score Matching

Figures 19 and 20 demonstrate the results for a = 3/2 and b = 1/2 or b = 0, respectively.

Truncation point

A
U

C

0.5 1.0 1.5 2.0 2.5 3.0 5.0

0.
53

4
0.

54
9

0.
56

4
0.

58
0

0.
59

5
0.

61
0

             power

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.5

3

(a) n = 80, η = −0.51100, profiled est, ER

Truncation point

A
U

C

0.5 1.0 1.5 2.0 2.5 3.0 5.0

0.
56

5
0.

59
9

0.
63

4
0.

66
8

0.
70

2
0.

73
6

             power

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.5

3
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(c) n = 80, η = 0, centered est, ER
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(d) n = 1000, η = 0, centered est, ER
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(e) n = 80, η = 0.51100, profiled est, ER
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(f) n = 1000, η = 0.51100, profiled est, ER

Figure 19: AUCs for edge recovery using generalized score matching for a = 3/2, b = 1/2.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.
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(b) n = 1000, η = −0.51100, profiled estimator, ER
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(c) n = 80, η = 0.51100, profiled estimator, ER

Truncation point

A
U

C

0.5 1.0 1.5 2.0 2.5 3.0 5.0

0.
64

1
0.

67
3

0.
70

5
0.

73
7

0.
76

9
0.

80
1

             power

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.5

3

(d) n = 1000, η = 0.51100, profiled estimator, ER

Figure 20: AUCs for edge recovery using generalized score matching for a = 3/2, b = 0.
Each curve represents a different choice of power p in h(x) = min(xp, c), and the
x axis marks the truncation point c. Colors are sorted by p.
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