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Abstract

The global Markov property for Gaussian graphical models ensures graph separation im-
plies conditional independence. Specifically if a node set S graph separates nodes u and v
then Xu is conditionally independent of Xv given XS . The opposite direction need not be
true, that is, Xu ⊥ Xv | XS need not imply S is a node separator of u and v. When it does,
the relation Xu ⊥ Xv | XS is called faithful. In this paper we provide a characterization of
faithful relations and then provide an algorithm to test faithfulness based only on knowledge
of other conditional relations of the form Xi ⊥ Xj | XS . We study two classes of separable
Gaussian graphical models, namely, weakly K-separable and strongly K-separable Gaus-
sian graphical models. Using the above test for faithfulness, we introduce algorithms to
learn the topologies of weakly K-separable and strongly K-separable Gaussian graphical
models with Ω(K log p) sample complexity. For strongly K-separable Gaussian graphical
models, we additionally provide a method with error bounds for learning the off-diagonal
precision matrix entries.

Keywords: Gaussian graphical model selection, separable graphs, high-dimensional sta-
tistical learning, faithful conditional independence relations, structural consistency

1. Introduction

Graphical models (Pearl (1988); Lauritzen (1996); Whittaker (1990); Wainwright and Jor-
dan (2008)) are a popular and important means of representing certain conditional inde-
pendence relations between random variables. In particular, the Gaussian graphical model
is a popular model with applications to many areas such as object recognition and track-
ing (Sudderth (2006)), protein sequencing (Durbin et al. (1999)), pyschological modeling
(Epskamp et al. (2018)), gene networks (Mohan et al. (2012); van Wieringen et al. (2018)),
computer vision (Isard (2003)) and neuroimaging (Ryali et al. (2012); Belilovskym et al.
(2016)). In a Gaussian graphical model, each variable is associated with a node in a graph,
and any two nodes are connected by an undirected edge if and only if their two corre-
sponding variables are dependent conditioned on the rest of the variables. An edge between
two nodes therefore corresponds directly to the non-zero entries of the precision matrix
Ω = Σ−1, where Σ is the covariance matrix of the multivariate Gaussian distribution in
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question. With the graphical model defined in this way, the Gaussian distribution satisfies
the global Markov property: for any pair of nodes i and j, if all paths between the two
pass through a set of nodes S, then the variables associated with i and j are conditionally
independent given the variables associated with S.

The converse of the global Markov property does not always hold. When it does hold for
a conditional independence relation, that relation is called faithful. If it holds for all relations
in a model, that model is faithful. Faithfulness is important for the use of conditional
independence relations in structural estimation of graphical models, that is, identifying the
zeros of Ω. It can be challenging to simply invert Σ. With faithfulness, to determine an
edge between nodes i and j, one could run through all possible separator sets S and test
for conditional independence (Liang et al. (2015); Koldanov et al. (2017)). If S is small, the
computation becomes more accurate. In the work of (Meinshausen and Bühlmann (2006);
Ravikumar et al. (2011); Anandkumar et al. (2012); Wu et al. (2013)), different assumptions
are used to bound S to this end.

The main problem of faithfulness in graphical models is one of identifiability. Can
we distinguish between a faithful graphical model and an unfaithful one? The idea of
faithfulness was first explored for conditional independence relations that were satisfied in a
family of graphs, using the notion of θ-Markov perfectness (Frydenberg (1990); Kauermann
(1996)). For Gaussian graphical models with a tree topology the the distribution has been
shown to be faithful (Becker et al. (2005); Malouche and Rajaratnam (2009)). In directed
graphical models, the class of unfaithful distributions has been studied in (Spirites et al.
(1993); Meek (1995)). In more recent work, a notion of strong-faithfulness as a means
of relaxing the conditions of faithfulness was defined (Uhler et al. (2013); Lin et al., and
some answers were given as to whether a faithful graph representation existed for a given
probability distribution (Sadeghi (2017)).

Being able to distinguish between faithful and unfaithful relations is the first step. Our
main goal is to learn the structure of the graphical model. Many literature (Meinshausen
and Bühlmann (2006); Ravikumar et al. (2011); Ren et al. (2015); Dalal and Rajaratnam
(2017)) involve a form of sparsity to make learning of the graphical model easier. This
sparsity comes in the form of node degree, so that a graph is sparse if the node degree is
small. However, in studying the use of conditional independence relations, another form of
sparsity may prove to be more useful. This form of sparsity is the size of the set S that
we are conditioning upon. We can make the set S small, by limiting the number of vertex
disjoint paths between any two nodes in a graph that are not neighbors. Graphs that exhibit
this property are what is known as K-separable graphs (Cicalese and Melanic̆ (2012)). It
is natural therefore to study these kinds of graphs. We will examine graph learning for this
graph class in this paper.

In our paper, we make the following contributions:

• We propose an algorithm to test the faithfulness of a conditional independence re-
lation of the form Xu ⊥ Xv | XS , where Xu, Xv and XS are the random variables
associated with the nodes u, v and the node set S. This algorithm uses other condi-
tional independence relations of the form Xi ⊥ Xj | XS , where i, j /∈ S to determine
this. The faithfulness test does not require any assumption on the population version
of covariance matrix Σ and can be applied to any Gaussian graphical model. To
the best of our knowledge, this is the first algorithm that uses local information of
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a matrix to test for the faithfulness of a conditional independence relation. We also
provide sample complexity bounds for this algorithm.

• We propose a structure learning algorithm for weakly K-separable Gaussian graphical
models. The quantity K controls the size of S that we need to condition on to learn the
graph. This algorithm searches through different possible node sets S and makes use
of the faithfulness test to identify when a conditional independence relation implies
that there is no edge between two nodes in the topology of the graphical model.
There is no particular assumption on how small K needs to be, except that K scales
according to O(n/ log p) where n is the number of samples and p is the dimension of
the multivariate Gaussian distribution. There are two main novelties of this algorithm.
The first is that we make no assumption on the model of the graph other than it is
weakly K-separable. Therefore, we do not require assumptions for the graph to be
faithful or to satisfy certain irrepresentability conditions, which tend to be hard to
verfiy. The second novelty is that the weakly K-separable condition subsumes other
known degree bound (sparsity) assumptions. This means that our algorithm caters
to a larger class of Gaussian graphical models.

• We propose a precision matrix learning algorithm for strongly K-separable Gaussian
graphical models. This algorithm not only learns the structure of the graph, it learns
the entries of the precision matrix (edge weights) as well. Of course, to do so we can
simply invert the matrix. However, with small K, we can get better sample complexity
in the high-dimensional setting. The algorithm is similar to the weakly K-separable
learning algorithm in the sense that it again runs through different node sets S to
condition on. However, it uses the faithfulness test somewhat differently to identify
separator nodes S. The goal is, for any pair of nodes i and j, to find S such that
all paths from i to j that is of edge length greater than one must pass through some
node in S. This gives us a nice expression for the precision matrix entries Ωij .

This paper is structured as follows: In Section 2, we discuss some preliminaries about
Gaussian graphical models. In Section 3, we state our algorithm for testing the faithfulness
of a conditional independence relation and the theoretical guarantees of the algorithm. In
Section 4, we lay out an algorithm that learns the structure of a weakly K-separable Gaus-
sian graphical model. In Section 5, we introduce our algorithm for learning the structure
and precision matrix entries of a strongly K-separable Gaussian graphical model. In Section
6, we look at some examples where our algorithm can perform structural estimation while
others that rely on sparsity cannot.

1.1. Related Work

The use of conditional independence relations to infer graph structure in the high dimen-
sional setting was first introduced in Anandkumar et al. (2012). The authors in this work
also use a search algorithm to search through different node sets S for every node pair i
and j so as to determine whether an edge exists between i and j. They consider walk-
summable Gaussian graphical models that satisfy a separability condition known as the
local separability property. Because conditional independence relations are used to imply
something about the topology of the graphical model, the problem of unfaithful conditional
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independence relations needed to be dealt with. An assumption on the precision matrix
(Assumption A4) restricts their models to faithful graphical models. We also note here that
this assumption along with a minimum precision matrix entry assumption (Assumption A1)
implies that the maximum node degree of the graph is O(

√
n/ log p).

Another class of papers that work on high-dimensional Gaussian graphical models struc-
tural estimation are those that make use of convex optimization on sparse precision matrices
(Meinshausen and Bühlmann (2006); Ravikumar et al. (2011); Ren et al. (2015)). These
papers make use of optimization procedures such as `1-regularization to learn the structure
of the graphical model. These techniques exploit the sparsity of the precision matrix of the
graphical model, which takes the form of bounded node degree. The order of the maximum
node degree is different for different papers, and we discuss this later when we compare our
results to theirs. Besides the sparsity element, the optimization methods (Meinshausen and
Bühlmann (2006); Ravikumar et al. (2011)) also require some assumptions on the preci-
sion matrix that are hard to verify in general, which are the incoherence assumptions and
neighborhood stability assumptions. Part of the motivation of our work was to overcome
the need for such assumptions.

2. Preliminaries

2.1. Linear Algebra

We first define some linear algebra notation. For a matrix M , let MT denote its transpose
and let |M | denote its determinant. If I is a subset of its row indices and J a subset of its
column indices, then we define the submatrix M IJ as the |I| × |J | matrix with elements
with both row and column indices from I and J respectively. If I = J , we use the notation
M I for convenience. In the same way, for a vector v, we define vI to be the subvector of v
with indices from I. Let the spectral norm of M be denoted by ‖M‖2, and let the trace of
M be denoted by tr(M). For a square matrix M , we denote its maximum and minimum
eigenvalues by λmax(M) and λmin(M). In this paper, we will often refer to the p by p
covariance matrix Σ, so we will use the shorthand λmax = λmax(Σ) and λmin = λmin(Σ).

Let M ∈ Rp×p and let W = {1, . . . , p} be the index set of M . Let S ⊂ W and let
Sc =W \ S. The matrix M has the block structure

M =

[
MS MSSc

MScS MSc

]
. (1)

The Schur complement of MS in M is defined by

MSc|S = MSc −MScSM
−1
S MSSc . (2)

Using the Schur complement, we can write the inverse of M−1 in the form

M−1 =

[
M−1

S|Sc −M−1
S|ScMScSM

−1
S

−M−1
S MSScM

−1
S|Sc M−1

S +M−1
S MSScM

−1
S|ScMScSM

−1
S

]
. (3)

2.2. Graph Theory

Let G = (W, E) be an undirected graph, where W = {1, . . . , p} is the set of nodes and
E is the set of edges, namely, a subset of the set of all unordered pairs {(u, v) | u, v ∈
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W}. In our paper, we are dealing with graphs that have no self-loops and no multiple
edges between the same pair of nodes. For I ⊆ W, we denote the induced subgraph on
nodes I by GI . For two distinct nodes u and v, a path of length t from u to v is a series
{(u,w1), (w1, w2), . . . , (wt−2, wt−1), (wt−1, v)} of edges in E , where w1, . . . , wk−1 ∈ W.

Let S ⊆ W \ {u, v}. We say that the node set S is a node separator of u and v if all
paths from u to v must pass through some node in S. The graph G is connected if for any
distinct nodes u, v ∈ W, there is at least one path from u to v. Otherwise, the graph G
is disjoint. A connected component of G is a subgraph of G that is connected. A disjoint
graph can be divided into a number of connected components, where nodes from distinct
connected components are not connected by a path. Therefore, S is a node separator of u
and v if and only if GSc is a disjoint graph with u and v in distinct connected components.

Definition 1 A graph G = (W, E) is weakly K-separable if for every (u, v) /∈ E, there exists
a node set S ⊂ W \ {u, v}, |S| ≤ K, such that S separates nodes i and j in G.

Definition 2 A graph G = (W, E) is strongly K-separable if for any two nodes u and v,
there exists a node set S ⊂ W \{u, v}, |S| ≤ K, such that every path from u to v consisting
of more than two nodes must contain a node in S.

For any two nodes, let G−(u,v) be the resulting graph with the edge (u, v) deleted from
G. This means that G−(u,v) = G if and only if (u, v) /∈ E . The following proposition is an
equivalent definition for a strongly K-separable graph.

Proposition 3 Let G be an undirected graph. G is strongly K-separable if and only if for
any two nodes u and v, there exists a node set S ⊂ W\{u, v}, |S| ≤ K, such that (G−(u,v))Sc

is a disjoint graph with nodes u and v in distinct connected components.

A graph that is strongly K-separable graph is weakly K-separable as well.

Example 1 (Tree Graphs) A tree graph is a weakly 1-separable graph, since any two
nodes on a tree graph that are not neighbors are connected by one unique path (there are no
cycles), so any node on that unique path would separate the two nodes. A tree graph is also
trivially strongly 1-separable, since any two nodes connected by an edge is separated in the
resultant graph where that particular edge is removed.

Example 2 (Degree Bounded Graphs) A graph G where the degree of each node is
bounded by K is a weakly K-separable graph. For any pair of non-neighboring nodes u and
v, the neighborhood of u separates u from v. Since this neighborhood size is bounded by K,
so the graph must also be a weakly K-separable graph. This degree bounded graph is also a
strongly K-separable graph as well, by the same logic. Let v be a neighbor node of u, that is,
they are connected by the edge (u, v). Then the rest of the neighbors of u must separate u
and v in G−(u,v). This fact, along with the fact that the graph is already weakly K-separable,
makes G strongly K-separable as well. It is important to note here that weakly K-separable
graphs are not degree bounded graphs. A star graph of arbitrary degree is a tree and is thus
a weakly 1-separable graph. However, it is not degree bounded.
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Example 3 (Locally Separated Graphs) In Anandkumar et al. (2012), the notion of
local separability was introduced. Let G be a graph with p nodes. For any two nodes u, v,
we say that the number of hops required to reach v from u is the minimum number of edges
in a path from u to v. If v is a neighbor of u, then v is 1-hop from u. For any i ∈ W,
let Bγ(i) be the set of all nodes that are k-hop from i, including the node i, where k ≤ γ.
Let GBγ(u)∪Bγ(v) be the induced subgraph of G on the node set Bγ(u) ∪ Bγ(v). The graph
satisfies the (η, γ)-local separation property if for any two non-neighboring nodes u and v,
the minimum number of nodes required to separate u and v in GBγ(u)∪Bγ(v) is less than or
equal to η. Of course, any graph satisfies the local separation property with the appropriate
η and γ values. Let S be such a local separator node set for nodes u and v in the induced
subgraph GBγ(u)∪Bγ(v). Then any path in G from u to v that does not pass through S must
have at least 2γ number of edges. Using the pigeonhole principle, it is easy to see that
the graph is also weakly K-separable, where K = η + p−η

2γ . The graph may not be strongly
K-separable however.

Example 4 (Weakly K-separable Graphs that are not Strongly K-separable) There
are many examples of graphs that are weakly K-separable but not strongly K-separable. A
simple example is the complete graph, with number of nodes p > K + 2. Because each node
is a neighbor of every other node, it is trivially weakly K-separable. However, there are at
least p − 2 vertex disjoint paths from u to v in G−(u,v), namely, the paths of length 2 that
go from u to any other node in G, excluding u and v, to v. By Menger’s theorem, at least
p− 2 nodes are required to separate u and v in G−(u,v), thus making the complete graph not
strongly K-separable for K < p− 2.

2.3. Gaussian Graphical Model

Let X = (X1, . . . , Xp) be a multivariate Gaussian distribution with mean µ and covariance
matrix Σ. For the rest of this paper, we will only consider zero mean Gaussian distributions,
that is, µ = 0. Let Ω = Σ−1 be the precision or concentration matrix of the graph. The
random variable X has the distribution function

fX(x) =
1√

(2π)p|Σ|
exp

{
−1

2
(x− µ)TΩ(x− µ)

}
. (4)

For any set S ⊂ W, we define XS = {Xi | i ∈ S}. We note here that Σuv = 0 if and
only if Xu is independent of Xv, which we denote by Xu ⊥ Xv. If Xu is independent
of Xv conditioned on some random variable Z, we denote this independence relation by
Xu ⊥ Xv | Z. Note that Ωuv = 0 if and only if Xu ⊥ Xv |XW\{u,v}.

For any set S ⊆ W, the conditional distribution of XSc given XS = xS follows a
multivariate Gaussian distribution with conditional mean µSc − ΣScSΣ−1

S (xS − µS) and
conditional covariance matrix

ΣSc|S = ΣSc −ΣScSΣ−1
S ΣSSc . (5)

Observe that the conditional covariance is the Schur complement of ΣS in Σ. For distinct
nodes u, v ∈ W and S ⊆ W \ {u, v}, we have

(ΣSc|S)uv = Σuv −ΣuSΣ−1
S ΣSv. (6)
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The following property easily follows.

Proposition 4 Xu ⊥ Xv |XS if and only if (ΣSc|S)uv = 0 .

To denote conditional covariance, we use the notations Σ(u, v | S) and (ΣSc|S)uv inter-
changeably.

The concentration graph GΣ = (W, E) of a multivariate Gaussian distribution X is
defined as follows: We have node set W = {1, . . . , p}, with random variable Xu associated
with node u, and edge set E where unordered pair (u, v) is in E if and only if Ωuv 6= 0.
The multivariate Gaussian distribution, along with its concentration graph, is also known
as a Gaussian graphical model. Any Gaussian graphical model satisfies the global Markov
property, which is the following.

Proposition 5 (Global Markov Property) If S is a node separator of nodes u and v
in GΣ, then Xu ⊥ Xv |XS.

The converse, however, is not necessarily true. Therefore, this motivates us to define faith-
fulness in a graphical model.

Definition 6 The conditional independence relation Xu ⊥ Xv |XS is said to be faithful if
S is a node separator of u and v in the concentration graph GΣ. Otherwise, it is unfaithful.
A multivariate Gaussian distribution is faithful if all its conditional independence relations
are faithful. The distribution is unfaithful if it is not faithful.

Example 5 (Example of an unfaithful Gaussian distribution) Consider the multi-
variate Gaussian distribution X = (X1, X2, X3, X4) with zero mean and positive definite
covariance matrix

Σ =


3 2 1 2
2 4 2 1
1 2 7 1
2 1 1 6

 . (7)

By Proposition 4, we have X1 ⊥ X3 | X2 since Σ13 = Σ12Σ
−1
22 Σ23. However, the precision

matrix Ω = Σ−1 has no zero entries, so the concentration graph is a complete graph. This
means that node 2 is not a node separator of nodes 1 and 3. The independence relation
X1 ⊥ X3 | X2 is thus not faithful and the distribution X is not faithful as well.

We can think of the submatrix ΣS∪{u,v} as a local patch of the covariance matrix Σ.
When Xu ⊥ Xv | XS , nodes u and v are not connected by an edge in the concentration
graph of the local patch ΣS∪{u,v}, that is, we have (Σ−1

S∪{u,v})uv = 0. This does not imply

that u and v are not connected in the concentration graph GΣ. If Xu ⊥ Xv |XS is faithful,
then the implication follows. If Xu ⊥ Xv |XS is unfaithful, then u and v may be connected
in GΣ (See Figure 1).

Faithfulness is important in structural estimation, especially in high-dimensional set-
tings. If we assume faithfulness, then finding a node set S such that Xu ⊥ Xv | XS would
imply that there is no edge between u and v in the concentration graph. When we have
access only to the sample covariance instead of the population covariance matrix, if the
size of S is small compared to n, the error of computing Xu ⊥ Xv | XS is much less than
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Figure 1: Even though ΣS∪{u,v} is a submatrix of Σ, GΣS∪{u,v} need not be a subgraph
of GΣ. Edge properties do not translate as well. That means the local patch
ΣS∪{u,v} need not reflect the edge properties of the global graph structure of Σ.

the error of inverting the entire covariance matrix. This method of searching through all
possible node separator sets of a certain size is employed in Anandkumar et al. (2012); Wu
et al. (2013). As mentioned before, these authors impose other restrictions on their models
to overcome the problem of unfaithfulness. We do not place any restriction on the Gaussian
models.

2.4. Sample Covariance

Let x(1), . . . ,x(n) ∈ Rp be n samples of the random variable X with distribution N (0,Σ).
The scatter matrix S is defined as

S =
n∑
i=1

x(i)(x(i))T . (8)

The sample covariance matrix determined by these n samples is defined as

Σ̂ =
1

n
S. (9)

In determining the sample conditional covariances, we will make use of the scatter matrix
S instead of Σ̂. Let u and v be distinct elements of W and let S ⊆ W \{u, v}. The sample
conditional covariance of Xu and Xv given XS is denoted by

Σ̂(u, v | S) =
1

n− |S|
(
Suv − SuSS−1

S SSv
)
. (10)

In our algorithms, we usually have to decide whether a conditional independence relation
holds. We have to determine whether Xu ⊥ Xv |XS or Xu 6⊥ Xv |XS . To do so with the
sample covariance matrix, we need to define a conditional independence threshold α > 0,
such that if

|Σ̂(u, v | S)| < α, (11)

we will decide that Xu ⊥ Xv | XS . Otherwise, we decide that Xu 6⊥ Xv | XS . In our
analysis, α will scale depending on p, n and |S|.
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3. Testing Conditional Independence Relations

In this section, we will describe a novel algorithm for testing faithfulness of a conditional
independence relation Xu ⊥ Xv |XS . Our main goal is to decide if a conditional indepen-
dence relation Xu ⊥ Xv |XS is faithful or not. For convenience, we will denote GΣ simply
by G = (W, E) for the rest of this paper. Now let us suppose that it is faithful; S is a node
separator for u and v in G. Then we should not be able to find a path from u to v in the
induced subgraph GSc . The main idea therefore is to search for a path between u and v in
GSc . If this fails, then we know that the conditional independence relation is faithful.

By the global Markov property, for any two distinct nodes i, j ∈ Sc, if Xi 6⊥ Xj | XS ,
then we know that there is a path between i and j in GSc . Thus, if we find some w ∈
W \ (S ∪ {i, j}) such that Xu 6⊥ Xw | XS and Xv 6⊥ Xw | XS , then a path exists from
u to w and another exists from v to w, so u and v are connected in GSc . This would
imply that Xu ⊥ Xv | XS is unfaithful. However, testing for paths this way does not
necessarily rule out all possible paths in GSc . The problem is that some paths may be
obscured by other unfaithful conditional independence relations. There may be some w
whereby Xu 6⊥ Xw |XS and Xv ⊥ Xw |XS , but the latter relation is unfaithful. This path
from u to v through w is thus not detected by these two independence relations.

We will show however, that if there is no path from u to v in GSc , then we cannot find
a series of distinct nodes w1, . . . , wt ∈ W \ (S ∪ {u, v}) for some natural number t > 0 such
that Xu 6⊥ Xw1 | XS , Xw1 6⊥ Xw2 | XS , . . ., Xwt−1 6⊥ Xwt | XS , Xwt 6⊥ Xv | XS . This
is to be expected because of the global Markov property. What is more surprising about
our result is that the converse is true. If we cannot find such nodes w1, . . . , wt, then u and
v are not connected by a path in GSc . This means that if there is a path from u to v in
GSc , even though it may be hidden by some unfaithful conditional independence relations,
ultimately there are enough conditional dependence relations to reveal that u and v are
connected by a path in GSc . This gives us an equivalent condition for faithfulness that is in
terms of conditional independence relations.

This is the backbone of our algorithm to test for the faithfulness of a conditional inde-
pendence relation. We define a new graph Ḡ = (W̄, Ē), where W̄ = Sc, and (i, j) ∈ Ē if and
only if Xi 6⊥ Xj |XS . The algorithm seeks to find a path from u to v in Ḡ. If there exists a
path, then Xu ⊥ Xj |XS is unfaithful. Otherwise, it is faithful. If we consider each test of
whether two nodes are conditionally independent given XS as one step, the running time
of the algorithm is the that of the algorithm used to determine set U . If a breadth-first
search is used, the running time is O(|Sc|2).

Theorem 7 Suppose Xu ⊥ Xv |XS. If S is a node separator of u and v in the concentra-
tion graph, then Algorithm 1 will classify Xu ⊥ Xv | XS as faithful. Otherwise, Algorithm
1 will classify Xu ⊥ Xv |XS as unfaithful.

Example 6 (Testing an Unfaithful Distribution (1)) Let us take a look again at the
4-dimensional Gaussian distribution in Example 5. Suppose we want to test if X1 ⊥ X3 | X2

is faithful or not. From its covariance matrix, we have Σ14 −Σ12Σ
−1
2 Σ24 = 2 − 2 · 1/4 =

3/2 6= 0, so this implies that X1 6⊥ X4 | X2. Similarly, X3 6⊥ X4 | X2. So there exists a
path from X1 to X3 in G{1,3,4} that passes through node 4. Indeed there is such a path since
the concentration graph is complete. Therefore, the relation X1 ⊥ X3 | X2 is unfaithful.

9



Soh and Tatikonda

Algorithm 1: Testing Faithfulness of Relation Xu ⊥ Xv |XS

Input: Covariance matrix Σ.

1. Generate set U to be the set of all nodes in W̄ that are connected to u by a path in
Ḡ, including u. (A breadth-first search could be used.)

2. If v ∈ U , there exists a path from u to v in Ḡ, output Xu ⊥ Xv |XS as unfaithful.

3. If v /∈ U , let V = W̄ \ U . Output Xu ⊥ Xv |XS as faithful.

Figure 2: The concentration graph of the distribution in Example 8.

Example 7 (Testing an Unfaithful Distribution (2)) Consider a 6-dimensional Gaus-
sian distribution X = (X1, . . . , X6) that has the covariance matrix

Σ =



7 1 2 2 3 4
1 8 2 1 2.25 3
2 2 10 4 3 8
2 1 4 9 1 6
3 2.25 3 1 11 9
4 3 8 6 9 12

 . (12)

We want to test if the relation X1 ⊥ X2 | X6 is faithful or unfaithful. Working out the
necessary conditional independence relations to obtain Ḡ with S = {6}, we observed that
(1, 3), (3, 5), (5, 4), (4, 2) ∈ Ē This means that 2 is reachable from 1 in G, so the relation is
unfaithful. In fact, the concentration graph is the complete graph K6, and 6 is not a node
separator of 1 and 2.

Example 8 (Testing a Faithful Distribution) We consider a 6-dimensional Gaussian
distribution X = (X1, . . . , X6) that has a covariance matrix which is similar to the distri-
bution in Example 7,

Σ =



7 1 2 2 3 4
1 8 2 1 2.25 3
2 2 10 4 6 8
2 1 4 9 1 6
3 2.25 6 1 11 9
4 3 8 6 9 12

 . (13)

Observe that only Σ35 is changed. We again test the relation X1 ⊥ X2 | X6. Running the
algorithm produces a viable partition with U = {1, 3} and V = {2, 4, 5}. This agrees with
the concentration graph, as shown in Figure 2.

10



Learning Unfaithful K-separable Gaussian Graphical Models

The proof of Theorem 7 reflects another interesting property of the graph Ḡ, which is
that the connected components of Ḡ are exactly the same connected components of GSc .
Suppose Ḡ is a disjoint graph. Then the node set Sc can be partitioned into sets S1, . . . , Sk,
for some k ≥ 2, such that ḠSi is connected for all i = 1, . . . , k, and there are no edges in
Ē between nodes belonging to different partitions. This also implies that the graph GSc is
disjoint in the same manner, in that (GSc)Si is connected for all i = 1, . . . , k, and there are
no edges in E between nodes belonging to different partitions.

So far, we have not placed any assumption on the multivariate Gaussian distribution.
Given the exact covariance matrix Σ, for any general Gaussian graphical model, we can
determine whether a node set S is a separator of two nodes u and v using conditional
independence relationships to test for faithfulness. If the node set S is indeed a separator
set of i and j, we can then conclude that there is no edge between nodes i and j. The next
step therefore is to learn the entire structure of the graphical model.

3.1. Faithfulness Test Using Sample Conditional Covariances

Suppose now instead of the true covariance matrix Σ, we only have access to n samples
x(1), . . . ,x(n) ∈ Rp of the p-dimensional multivariate Gaussian distribution N (0,Σ). Since
the faithfulness test only considers conditional relationships between pairs of nodes, we
make use of the scatter matrix S to calculate the conditional covariances, according to
Section 2.4.

Theorem 8 Let S be used according to (10) to determine the sample conditional covari-
ances in Algorithm 1 for testing the faithfulness of a conditional independence relation
Xu ⊥ Xv | XS. Let β = minXi 6⊥Xj |XS

|Σ(i, j | S)|, and let α = β/2. Let Υ be the event in
which:

• Using S, Algorithm 1 correctly outputs whether or not Xu is conditional independent
of Xv given XS.

• If Xu ⊥ Xv |XS, Algorithm 1 correctly outputs whether or not it is faithful using S.

Then,

P (Υ) ≥ 1− ε. (14)

for n = Ω
(
λ2max+βλmax

β2

(
log(p− |S|) + log(ε−1)

)
+ |S|

)
.

Some remarks:

• The algorithm to test the faithfulness of a conditional independent relation requires
no assumption on the true covariance matrix Σ. We only require that the distribution
be multivariate Gaussian.

• The threshold α is used to decide if two variables are conditionally dependent or
independent. If |Σ̂(i, j | S)| < α, then we decide Xi ⊥ Xj | XS , otherwise Xi 6⊥ Xj |
XS . Since we are using α to decide whether Σ(i, j | S) is zero or not, it is natural to
set α = β/2 where β = minXi 6⊥Xj |XS

|Σ(i, j | S)|.

11
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• Using the conditional independence test to determine faithfulness, we see that the
sample complexity, if the dimension p is much larger than separator size |S|, then the
log(p− |S|) term dominates. In this case, the separator size |S| behaves like a kind of
sparsity measure of the graph. However, as |S| increases and gets closer to p, we see
that the term |S| dominates in the sample complexity. This is to be expected because
when |S| tends towards p − 2, we get closer to inverting almost the entire matrix.
Of course, when |S| = p − 2, there is no faithfulness test needed to be done since
Xu ⊥ Xv | XW\{i,j} implies that there is no edge between nodes u and v. However
the sample complexity needed is larger. Therefore, the faithfulness test allows us to
reduce the size of |S| and with that the sample complexity, even though there are
more conditional relations to test between variables in Sc.

• The quantity β = minXi 6⊥Xj |XS
|Σ(i, j | S)| measures how far away the conditional

covariance is from zero when it isn’t zero. When this term is close to zero, more
samples are required to test whether the conditional covariance is zero or non-zero for
a pair of random variables. The relationship between β and the entries of precision
matrix will be discussed later when we compare our recovery results with some of the
other literature. Intuitively, it makes sense that this entry plays a role in the testing
for faithfulness because the foundation of the algorithm is the testing for whether a
pair of random variables are conditionally independent or not.

4. Weakly K-separable Gaussian graphical models

In the process of using conditional independence relationships to infer the structure of a
Gaussian graphical model, if we let the separator size |S| be p − 2, then we do not have
to use any faithfulness test to determine whether any two nodes i and j are connected by
an edge. Therefore, the true value of the faithfulness test is in the case where |S| is small
compared to the number of nodes p.

The main idea of this section is to learn the structure of a weakly K-separable Gaussian
graphical model. For two nodes i and j that are not connected by an edge, there exists a
node set S with |S| ≤ K, such that S separates i and j. Thus, the variable K places a
bound on the minimal node separator size for a node set that separates i and j. Conse-
quently, K affects directly the sample complexity required for structural estimation. For
K significantly smaller than p, the sample complexity involved in computing each of the
conditional independence relations Xi ⊥ Xj |XS is also significantly smaller than inverting
the entire covariance matrix. Using the faithfulness test described in Algorithm 1 of the
previous section, Algorithm 2 is able to learn the structure of a weakly K-separable graph,
that is, it can estimate the edge set E .

Again, considering a computation of a conditional independence relation as one step, the
running time of the algorithm is O(pK+4). This comes from exhaustively checking through
all
(
p−2
K

)
possible separation sets S for each of the

(
p
2

)
(i, j) pairs. Each time there is a

conditional independence relation, we have to check for faithfulness using Algorithm 1, and
the running time for that is O(p2). The novelty of the algorithm is in its ability to learn
graphical models that are unfaithful.

12
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Algorithm 2: Learning topology of weakly K-separable GGM

Input: Covariance matrix Σ.

1. For each node pair (i, j):

• Let F = {S ⊂ W \ {i, j} : |S| = K,Xi ⊥ Xj |XS , and it is faithful}.

• If F 6= φ, output (i, j) /∈ E . If F = φ, output (i, j) ∈ Ê .

2. Output Ê .

Theorem 9 For a weakly K-separable Gaussian graphical model, given the exact covariance
matrix Σ as the input in Algorithm 2, the corresponding output will be the correct edge set
E.

Theorem 10 Let G be a weakly K-separable graph. Let S be used according to (10) to
determine the sample conditional covariances in Algorithm 2, instead of the true covariance
matrix Σ. Let β ≤ min|S|=K,Xi 6⊥Xj |XS

|Σ(i, j | S)|, and let α = β/2. Then,

P
(
Ê = E

)
≥ 1− ε, (15)

for n = Ω(λ
2
max+βλmax

β2 (K log p+ log(ε−1)) +K).

4.1. Comparisons to existing work

We compare this graph recovery algorithm to ones in existing work in the following aspects:

• Faithfulness Assumptions: In our result, we make no assumptions about the condi-
tional independence relations having to be faithful. The purpose of Algorithm 1 is
specifically to test for the faithfulness or unfaithfulness of a conditional independence
relation. In Anandkumar et al. (2012), the authors make use of conditional covariances
in the same way to test whether nodes are neighbors or not. Because they are using
conditional covariances to infer graph structure, they naturally have to overcome the
hurdle of unfaithful conditional independence relations. This is done by assumption
A4 of their paper, which is an assumption on the covariance matrix Σ ensuring that
pairs of nodes which are not neighbors and not separated by a set S will not have
small conditional covariances when conditioned on the variables XS . This assump-
tion is strong; together with Assumption A1, it implies that the node degree of the
graph is bounded by O(

√
n/ log p). Our algorithm is novel in the sense that we can

test for faithfulness and unfaithfulness using only conditional independence relations.
Thus, we do not need an assumption like that of Assumption A4, that prevents the
conditional independence relations from being unfaithful.

• Degree Bounds: The only assumption placed on the graph structure is that it is
weakly K-separable. According to Theorem 10, for consistent structural estimation,

13
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we require

K = O

(
n

log p

)
. (16)

This subsumes all graphs that have bounded node degree K. Degree boundedness is
one of the main type of sparsity constraint in other high-dimensional Gaussian graph-
ical model learning. In Anandkumar et al. (2012), even though the main structural
assumption is the local separation property, their assumptions A1 and A4 imply that
their graphs have node degree bounded by O(

√
n/ log p). In Ravikumar et al. (2011),

the degree of each node is bounded by the same order as well. In Ren et al. (2015);
Meinshausen and Bühlmann (2006), the degree bound required is O(n/ log p). Thus,
the weakly K-separable assumption subsumes all the assumptions on degree bounds,
and Algorithm 2 caters to a wider class of graphical models.

• General Gaussian Graphs: Besides requiring the graph to be weakly K-separable, we
place no other assumptions on the Gaussian graphical model. In Anandkumar et al.
(2012), the authors require the model to be walk-summable, so that the normalized
covariance matrix can be written using the Neumann series for matrix inverses. They
also require assumption A4 to hold, which is a restriction on the entries of the precision
matrix with respect to its corresponding row entries. In Ravikumar et al. (2011) and
other works using `-1 minimization, certain incoherence conditions need to hold, and
these incoherence conditions are a restriction on the precision matrix and are hard to
check in general. In Meinshausen and Bühlmann (2006), they place assumptions on
neighborhood stability that allows them to do support recovery. The neighborhood
stability assumption is hard to verify and the precision matrices that satisfy form a
subset of diagonally dominant matrices.

5. Strongly K-separable Gaussian graphical models

In this section, we impose an additional assumption on the graphical model so that we can
not only learn the topology of the graph, but learn the entries of the precision matrix as
well. We can think of the precision matrix as the matrix of edge weights, where Ωij is the
weight of edge (i, j). If the edge weight is zero, it means that there is no edge between the
corresponding two nodes.

The additional assumption is that the graphical model must not only be weakly K-
separable, but it must be strongly K-separable as well. This means that even for edges
(i, j) that belong to E , there is a node set S ⊂ W \ {i, j}, |S| ≤ K, such that the removal
of edge (i, j) from G results in a graph where S separates nodes i and j. This separation
property is exactly where we can apply our faithfulness test. If we can remove the edge
(i, j) from the graph and use our faithfulness test to find a node separator S of i and j
in the resultant graph G−(i,j), we can deduce the precision matrix entry Ωij . As shown in
the following algorithm, if we can find such an S, the entry Ωij can be calculated from the
conditional covariance of Xi and Xj , and the conditional variances of Xi and of Xj , all of
which are conditioned on XS .

The main idea behind the algorithm is to find such a node separator S, by appropriately
“removing” the edge (i, j). We cannot simply condition on XS , because, if (i, j) is in E , we

14
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will have the condition dependence relation Xi 6⊥ Xj |XS . We could remove the influence
of the edge (i, j) in the graph by conditioning on XS∪{i,j}, however this does not ensure
that i and j are separated by S in G−(i,j).

To overcome this problem, we condition on both XS∪{i} and XS∪{j}. We use the
conditional independence relations given these random variables to deduce that S is a node
separator of i and j in G−(i,j). Running through node subsets S ⊂ W \ {i, j} of size k, we
first condition on XS∪{j} to see how S separates GSc\{j}. We then condition on XS∪{i} to
see how S separates GSc\{i}. Using these two pieces of information, we can infer whether S
separates i and j in G−(i,j).

In the faithfulness test for a relation Xu ⊥ Xv |XS in Section 3.1, we defined the graph
of conditional dependences, Ḡ. The connectivity of Ḡ reflects the connectivity of GSc , which
further implies whether S separates u and v. Here, we need to define Ḡ for different node
subsets S. For any subset S ⊂ W, we denote the graph ḠSc = (Sc, ĒSc), where (i, j) ∈ ĒSc

if and only if Xi 6⊥ Xj | XS . For a node h ∈ Sc, let the connected node set component of
ḠSc containing h be denoted by ŪSc(h). Therefore ŪSc(h) is the set of nodes in Sc that are
connected to h by a path in ḠSc , including h.

For any node i ∈ W, we denote the set

Γ(i,j) = {S ⊂ W \ {i, j} : |S| ≤ K}. (17)

of all possible node subsets S of size K in W \ {i, j}. We define a subset of this set, which
is

Γi|j = {S ∈ Γ(i,j) : ∃h ∈ Sc \ {i, j} s.t. Σ(i, h | S ∪ {j}) = 0 and is faithful}. (18)

This quantity encompasses the different sets S such that GS∪{j} is a disjoint graph. However,
this set does not subsume all possible S that separate i and j in G−(i,j). To include all such
possible node sets S, we specify a subset of Γi|j , namely,

Ψi|j = {S ∈ Γ(i,j) : |S| ≤ K,Σ(i, h | S ∪ {j}) = 0, ∀h ∈ Sc \ {i, j}}. (19)

These quantities allow us to bring definition to Λ1, Λ2 and Λ3, which are given in Algorithm
3. Basically, all S in Λ1 ∪ Λ2 ∪ Λ3 are node sets that separate i and j in G−(i,j). The set
Λ1 ∪ Λ2 ∪ Λ3 also has to be non-empty, which we prove in the appendix.

We only need to find one element of the set Λ1 ∪ Λ2 ∪ Λ3. It is easy to test if S is an
element of the set Ψi|j or Ψj|i. Finding an element of Ψi|j or Ψj|i is a special case of the
test for faithfulness. To do so, in the case of Ψi|j , run through the subsets S of size K, and
determine if Σ(i, h | S ∪ {j}) = 0 for all h ∈ Sc \ {i, j}.

To test if S belongs to Γi|j , we have to run through the K+1 node set of S∪{h}, where
h ∈ Sc \ {i, j}. For each node set S ∪ {h}, we employ Algorithm 1, the faithfulness test, to
test whether Σ(i, h | S ∪ {j}) is zero and is a faithful conditional independence relation. If
we can find such a node set S ∪ {h}, then S belongs to Γi|j . If there is no h ∈ Sc \ {i, j}
whereby Σ(i, h | S ∪ {j}) is zero and faithful, then S belongs to Γ(i,j) \ Γi|j .

In this way, using Algorithm 1, we can determine whether S belongs to the set Λ1 ∪
Λ2∪Λ3. Let each computation of a conditional independence relation be one step. For each
(i, j) pair, there are

(
p−2
K

)
possible sets S. For each S, there are p − 2 −K possible nodes

h ∈ Sc \ {i, j} to pick from, with each h possibly require a faithfulness test, of which the
running time is O(p2). Therefore, Algorithm 3 has a running time of O(pK+5).
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Algorithm 3: Learning the precision matrix of strongly K-separable GGM

Input: Covariance matrix Σ

1. For each pair (i, j):

• Let Λ1 =
{
S ∈ Γi|j ∩ Γj|i : ŪSc\{i}(j) ⊆

(
Sc \ ŪSc\{j}(i)

)}
.

• Let Λ2 = Ψj|i.

• Let Λ3 = Ψi|j .

• Choose a set S∗ ∈ Λ1 ∪ Λ2 ∪ Λ3.

• Let Ω̂ij = −Σ(i, j | S∗)/
[
Σ(i, i | S∗)Σ(j, j | S∗)−Σ(i, j | S∗)2

]
.

2. Output Ω̂.

Theorem 11 For a strongly K-separable Gaussian graphical model, given the exact co-
variance matrix Σ as the input in Algorithm 3, the corresponding output will be the correct
precision matrix Ω.

For each node pair i, j, we define

Λ0(i, j) = {S ∈ Γ(i,j), S separates i and j in G−(i,j)}. (20)

Theorem 12 Let K ≤ p − 2. Let G be a strongly K-separable graph, and let S be used
according to (10) to determine the sample conditional covariances in Algorithm 3, instead
of the true covariance matrix Σ. Let L be a constant such that 0 < L < 1. Let

C1 =
Lλ2

min + 2λmax(1 + 2λmax)

(1− L)Lλ4
min

. (21)

Then, for

ε ∈
(

0, C1 ·min

{
1,

Lλ2
min

2(1 + 2λmax)

}]
, (22)

we have

P

 max
i,j∈W,i 6=j,
S∈Λ0(i,j)

|Ω̂ij −Ωij | ≥ ε

 ≤ 4pK+2 exp

{
− (n−K)ε2

6C2
1λ

2
max + 4C1ελmax

}
. (23)

Again, when we use the scatter matrix S to determine Ω̂ij , we get

Ω̂ij = − Σ̂(i, j | S∗)
Σ̂(i, i | S∗)Σ̂(j, j | S∗)− Σ̂(i, j | S∗)2

, (24)

where the sample conditional covariance are derived from S using (10).
Some remarks:
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• Similar to the weakly K-separable case, we make no faithfulness assumptions about
the model and we also do not make other assumptions besides the graph being strongly
K-separable.

• Structural Estimation of a strongly K-separable graph using samples depends on
accurately identifying the conditional independence relations. Therefore, the sample
complexity required to estimate the structure of a strongly K-separable graph is the
same as that of a weakly K-separable graph.

• The bounded degree assumption of other work is still subsumed under the strongly
K-separable assumption. A K bounded degree graph is a strongly K-separable graph.
As such, this algorithm learns a broader variety of Gaussian graphical models.

6. Discussion

So far, in both the weakly and strongly K-separable cases, the graphs with bounded degree
can be learned as well. In this section, we will examine some graphs without bounded
degree that our recovery algorithms can learn.

The complete graph: The complete graph on p nodes, as shown before, is a weakly K-
separable graph, for any K ≥ 1. In particular, it is weakly 1-separable graph. However, the
node degree is the maximum possible, which is p−1. In this dense graph, our algorithm for
weakly K-separable graphs can be used to learn the structure of the complete graph. We can
learn the structure of the complete graph in O(p3), since every conditional independence
in a weakly 1-separable graph is faithful. Edge estimation methods that require degree
bounds will fail in this case. In fact, a weakly K-separable graph can contain many cliques
of arbitrary size (). The presence of a large clique in a graph would render these methods
inaccurate. For example, consider the p node graph with p− 1 of its nodes forming a clique
and the last node is connected to only one of the other p−1 nodes. This graph is weakly 1-
separable as well. Therefore, our algorithm is able to deal with graphs that have arbitrarily
large cliques in them. These graphs do not have bounded degree. However, the complete
graph and graphs with large cliques are not strongly K-separable.

The star graph: Consider the star graph on p nodes. One node has degree p−1 and every
other node has degree 1. This graph is weakly 1-separable and it is strongly 1-separable as
well. Using Algorithm 3, we can learn the precision matrix entries of the star graph with
low sample complexity. This algorithm has a running time of O(p4) in order to recover the
structure of the graph, since all conditional independence relations in strongly K-separable
graph are faithful. The precision matrix entries can then be derived according to 3. The
ensemble of star graphs, however, clearly do not fall under the bounded degree regime.
The star graph, in its essence, describes other graphs that are strongly K-separable, but
not degree bounded. For example, as long as there is a node that is connected to a large
number of degree 1 nodes, the graph is no longer degree bounded. However, in this case,
the graph is still strongly K-separable, and we can use our algorithm to retrieve the graph
structure and the entries of the precision matrix.
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7. Conclusion

We have presented an equivalence condition for faithfulness in Gaussian graphical models
and an algorithm to test whether a conditional independence relation is faithful or not.
Gaussian distributions are special because its conditional independence relations depend
on its covariance matrix, whose inverse, the precision matrix, provides us with a graph
structure. The question of faithfulness in other Markov random fields, like Ising models,
is an area of study that has much to be explored. The same questions can be asked,
such as when unfaithful conditional independence relations occur, and whether they can
be identified. Being able to test faithfulness allows us to learn a wider class of Gaussian
graphical models, such as the weakly and strong K-separable graphs. In the future, we plan
to extend some of these results to other Markov random fields.
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Appendix A. Correctness of Algorithms based on exact covariance
matrix Σ

A.1 Proof of Theorem 7

Proof Suppose Algorithm 1 decides that Xu ⊥ Xv |XS is unfaithful. It does so by finding
a series of distinct nodes w1, . . . , wt ∈ Sc \ {u, v} for some natural number t > 0 such that
Xu 6⊥ Xw1 | XS , Xw1 6⊥ Xw2 | XS , . . ., Xwt−1 6⊥ Xwt | XS , Xwt 6⊥ Xv | XS . By the global
Markov property, this means that u is connected to w1 by a path in GSc , wi is connected
to wi+1 a path in GSc for i = 1, . . . , t− 1, and wt is connected to v by a path in GSc . This
implies u is connected to v by a path in GSc , so Xu ⊥ Xv |XS is unfaithful and Algorithm
1 has correctly deduced that it is so.

Now suppose Algorithm 1 decides that Xu ⊥ Xv | XS is faithful. That means that
there is no path from u to v in Ḡ. Thus, Ḡ is a disjoint graph with u and v in separate
distinct components. The graph ḠU is the connected component that contains u. By the
way we defined Ḡ, it follows that Xi ⊥ Xj | XS for all i ∈ U and j ∈ V . Equivalently, by
Proposition 4,

(ΣSc|S)ij = 0, ∀i ∈ U, j ∈ V. (25)

The matrix ΣSc|S therefore has a block diagonal structure, with

(ΣSc|S)UV = (ΣSc|S)TV U = 0. (26)

From (5) and (3), it follows that

(ΣSc|S)−1 = (ΣSc −ΣScSΣ−1
S ΣSSc)

−1 = ΩSc . (27)

Since the inverse of a block diagonal matrix is also block diagonal, it follows that

(ΩSc)UV = ΩUV = 0. (28)
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As the non-zero entries of ΩSc reflect the edges between the nodes in GSc , the last equation
implies that for any i ∈ U and j ∈ V , the edge (i, j) is not in the edge set E . This means
u is not connected to v by a path in GSc , which further implies that S is a separator of
u and v in G. Thus, Algorithm 1 has correctly deduced that Xu ⊥ Xv | XS is a faithful
conditional independence relation.

A.2 Proof of Theorem 9

Proof If F 6= φ, F is non-empty so there exists an S such that Xi ⊥ Xj | XS is faithful.
Therefore, S separates i and j in G and (i, j) /∈ E . If F = φ, then for any S ⊆ W, |S| ≤ K,
we have either Xi 6⊥ Xj | XS or Xi ⊥ Xj | XS but it is unfaithful. In both cases, S does
not separate i and j in G, for any S ⊆ W, |S| ≤ K. By the assumption on the graphical
model, (i, j) must be in E . This shows that Algorithm 2 will correctly output the edges of
G.

A.3 Conditional covariance in terms of the precision matrix

We establish some properties of the covariance matrix in terms of the precision matrix. In
most of the work in this paper, we are trying to learn properties of the precision matrix,
such as the support or the entries of the matrix, using conditional independence relations.
These conditional independence relations are reflected by entries of the covariance matrix.
Here, in this section, we further describe some of the relationship between the covariance
matrix Σ and the precision matrix Ω.

Let i, j be two elements of the index set W = {1, . . . , p} of the square matrix Σ and let
Q = {i, j}. Let S be a subset of W \ Q. Let Sc = W \ S and let T = Sc \ Q. Consider
the matrix ΩSc . Computing the Schur complement of ΩSc\Q with respect to ΩSc and using
(3), we get

[(Ω−1
Sc )Q]−1 = ΩQ −ΩQTΩ−1

T ΩTQ. (29)

Using (27), we get

[(ΣSc|S)Q]−1 = ΩQ −ΩQTΩ−1
T ΩTQ. (30)

Now (ΣSc|S)Q has the form

(ΣSc|S)Q =

[
Σ(i, i | S) Σ(i, j | S)
Σ(i, j | S) Σ(j, j | S)

]
. (31)

Therefore, comparing off-diagonal entries in (30), we get

−Σ(i, j | S)

Σ(i, i | S)Σ(j, j | S)−Σ(i, j | S)2
= Ωij −ΩiTΩ−1

T ΩTj . (32)

We will make use of this last equation to learn the entries of the precision matrix for a
strongly K-separable graph.
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A.4 Proof of Theorem 11

Proof If S∗ separates i and j in the edge-truncated graph G−(i,j), this means that there
exists node sets Ti, Tj ⊂ W \ S∗, such that

• Ti ∪ Tj =W \ S∗ and Ti ∩ Tj = φ;

• i ∈ Ti, j ∈ Tj ;

• Ωh1h2 = 0, for all h1 ∈ Ti, h2 ∈ Tj , (h1, h2) 6= (i, j).

This implies that

ΩiTΩ−1
T ΩTj =

[
ΩiTi 0

] [ΩTi 0
0 ΩTj

]−1 [
0 ΩTjj

]
=

[
ΩiTi 0

] [Ω−1
Ti

0

0 Ω−1
Tj

] [
0 ΩTjj

]
= 0. (33)

This reduces (32) to

Ωij =
−Σ(i, j | S)

Σ(i, i | S)Σ(j, j | S)−Σ(i, j | S)2
, (34)

which is the correct output that we want from the algorithm.
To complete the proof, we need to show that the set Λ1 ∪Λ2 ∪Λ3 is non-empty for any

pair of nodes i and j, and that any element of Λ1∪Λ2∪Λ3 separates i and j in G−(i,j). Let

Λ0 = {S ∈ Γ(i,j) : S separates i and j in G−(i,j)}. (35)

If Λ0 = Λ1 ∪ Λ2 ∪ Λ3, by the definition of a strongly K-separable graph, there exists
a set S ∈ Γi,j such that S separates i and j in G−(i,j). This means that Λ0 is non-empty,
and by association, Λ1 ∪ Λ2 ∪ Λ3 is non-empty as well. It also follows that any element of
Λ1 ∪ Λ2 ∪ Λ3 separates i and j in G−(i,j).

Therefore, it remains to show that Λ0 = Λ1 ∪Λ2 ∪Λ3. Suppose S ∈ Λ0, that is, S ∈ Γi,j
that separates i and j in G−(i,j). If i is an isolated node in (G−(i,j))Sc , then S ∈ Λ3. If j is
an isolated node in (G−(i,j))Sc , then S ∈ Λ2. Suppose i and j are both not isolated nodes.
Let Ui ∈ Sc be the set of nodes connected to i by some path in (G−(i,j))Sc including i, and
let Uj ∈ Sc be the set of nodes connected to j by some path in (G−(i,j))Sc including j. Since
i and j are not isolated nodes, both Ui and Uj contains at least two elements. Let h ∈ Ui
such that h 6= i. Then Σ(j, h | S ∪ {i}) = 0 and is faithful since S ∪ {j} separates h and j
in G. This implies that S ∈ Γj|i. Similarly, S ∈ Γi|j . Observe also that

ŪSc\{i}(j) ⊆ Uj ⊆ (Sc \ Ui) ⊆
(
Sc \ ŪSc\{j}(i)

)
. (36)

The first relation follows from the fact that ŪSc\{i}(j) contains only the nodes from Uj that
are connected to j by some path in (G−(i,j))Sc that does not pass through node i. The
last relation also follows from a similar argument. The middle relation follows because S
separates i and j in G−(i,j). This implies that S ∈ Λ1. Therefore Λ0 ⊆ Λ1 ∪ Λ2 ∪ Λ3.

Now, let S ∈ Λ1. For the sake of contradiction, suppose that there is a path in (G−(i,j))Sc

from i to j. This implies that there is a node h such that

20



Learning Unfaithful K-separable Gaussian Graphical Models

• i is connect by a path to h in (G−(i,j))Sc that does not pass through j;

• j is connect by a path to h in (G−(i,j))Sc that does not pass through i.

The first property is equivalent to there being a path from i to h in (G−(i,j))Sc\{j}, which is if
and only if h ∈ ŪSc\{j}(i). Similarly, h ∈ ŪSc\{i}(j). This implies that h /∈ (Sc \ ŪSc\{j}(i)),
which means that ŪSc\{i}(j) 6⊆ (Sc \ ŪSc\{j}(i)), which contradicts S ∈ Λ1. Therefore, there
is no path in (G−(i,j))Sc from i to j, which implies that S is a node separator of i and j in
G−(i,j), that is, S ∈ Λ0.

Next, let S ∈ Λ2. This means that S ∈ Ψj|i. Suppose that j is connected by a path to
i in (G−(i,j))Sc . Then there exists a node h on this path such that j is connected to h by
a path in (G−(i,j))Sc\i that does not pass through i. Therefore, Σ(i, h | S ∪ {i}) cannot be
zero and faithful at the same time. This contradicts S ∈ Ψj|i, by definition. Therefore, j is
not connected by a path to i in (G−(i,j))Sc , which also means that S ∈ Λ0. Thus Λ2 ⊆ Λ0.
Similarly, by symmetry Λ3 ⊆ Λ0. Therefore, Λ0 = Λ1cupΛ2 ∪ Λ3.

Appendix B. Sample Analysis

B.1 Wishart Distribution

Let X = (X1, . . . , Xp) ∼ N (0,Σ). Let x(1), . . . ,x(n) be n independent samples of X. The
random scatter matrix S follows a Wishart distribution, which depends on parameters Σ,
p and n. We denote the Wishart distribution by W (Σ, p, n). For convenience, we denote

An,Σ =
1

n
‖Σ‖2 (tr(Σ) + ‖Σ‖2) , (37)

Bn,Σ =
2

n
tr(Σ). (38)

We will make use of the following proposition from Zhu (2012) in our sample analysis.

Proposition 13 Let S ∼W (Σ, p, n). The following inequality

P
(∥∥∥∥ 1

n
S −Σ

∥∥∥∥
2

≥ ε
)
≤ 2p exp

{
− ε2

2An,Σ + 2εBn,Σ

}
. (39)

holds for all ε ≥ 0.

We can simplify the above proposition to the following form.

Lemma 14 Let S ∼W (Σ, p, n). Then,

P
(∥∥∥∥ 1

n
S −Σ

∥∥∥∥
2

≥ ε
)
≤ 2p exp

{
− nε2

(2 + C)(p+ 1)‖Σ‖22

}
. (40)

for all ε ∈
[
0, C‖Σ‖24

(
1 + ‖Σ‖2

tr(Σ)

)]
, where C > 0 is a constant.
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Proof

For ε ∈
[
0, C‖Σ‖24

(
1 + ‖Σ‖2

tr(Σ)

)]
, we have

2εBn,Σ ≤ 2Bn,Σ ·
C‖Σ‖2

4

(
1 +
‖Σ‖2
tr(Σ

)
= CAn,Σ. (41)

Also, since

tr(Σ) ≤ p‖Σ‖2, (42)

we have

An,Σ ≤
1

n
(p+ 1)‖Σ‖22. (43)

Therefore, applying both (41) and (43), we get

exp

{
− ε2

2An,Σ + 2εBn,Σ

}
≤ exp

{
− ε2

(C + 2)An,Σ

}
≤ exp

{
− nε2

(2 + C)(p+ 1)‖Σ‖22

}
, (44)

as required.

This inequality provides a bound for the spectral norm of the sample covariance matrix
with respect to the actual covariance matrix. We however want an entry-wise bound for
the sample conditional covariance matrix, conditioned on XS , where S ⊆ {1, . . . , p} = W.
To do so, we make use of the following proposition from Eaton (2007), which gives us the

distribution of the sample conditional covariance matrix. Let Sc = W \ S. We define Σ̂
|S

to be the p− |S| by p− |S| matrix, where

Σ̂
|S
ij = Σ̂(i, j | S), (45)

with Σ̂(i, j | S) defined by (10).

Proposition 15 (Eaton (2007)) The conditonal covariance matrix SSc|S follows a Wishart
distribution with parameters ΣSc|S, p−|S| and n−|S|, that is, SSc|S ∼W (ΣSc|S , p−|S|, n−
|S|).

Using this fact, we can now provide an element-wise bound for the sample conditional
covariance.

Lemma 16 For any i, j ∈ W \ S, the sample conditional covariance satisfies

P
(∣∣∣Σ̂(i, j | S)−Σ(i, j | S)

∣∣∣ ≥ ε) ≤ 4 exp

{
− (n− |S|)ε2

6λ2
max + 4ελmax

}
, (46)

for all ε ≥ 0.
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Proof The submatrix SS∪{i,j} of the scatter matrix S follows a Wishart distribution with
parameters ΣS∪{i,j}, |S|+2 and n, that is, SS∪{i,j} ∼W (ΣS∪{i,j}, |S|+2, n). Let Q = {i, j},
and let

ΣQ|S = ΣQ −ΣQSΣ−1
S ΣSQ. (47)

By Proposition 15, we have SQ|S ∼W (ΣQ|S , 2, n− |S|), where

SQ|S = SQ − SQSS−1
S SSQ. (48)

Applying Proposition ?? to SQ|S , we get

P
(∥∥∥∥ 1

n− |S|
SQ|S −ΣQ|S

∥∥∥∥
2

≥ ε
)

≤ 4 exp

{
− (n− |S|)ε2

2‖ΣQ|S‖2
(
tr(ΣQ|S) + ‖ΣQ|S‖2

)
+ 4ε(tr(ΣQ|S))

}
. (49)

for all ε ≥ 0. Using the eigenvalue interlacing properties for the Schur complement and
submatrices Smith (1992), we have

λ2
min ≤ λ2

min(ΣQ∪S) ≤ ‖ΣQ|S‖22 ≤ ‖ΣQ∪S‖22 ≤ ‖Σ‖22 = λmax. (50)

Also, we have
tr(ΣQ|S) ≤ 2λmax(ΣQ|S) ≤ 2λmax. (51)

This give us the probabilistic bound

P
(∥∥∥∥ 1

n− |S|
SQ|S −ΣQ|S

∥∥∥∥
2

≥ ε
)
≤ 4 exp

{
− (n− |S|)ε2

6λ2
max + 4ελmax

}
. (52)

for all ε ≥ 0.
For any matrix, the maximum of the absolute value of its entries is bounded above by

the spectral norm. Since Σ̂(i, j | S) = 1
n−|S|(SQ|S)ij , we have∣∣∣Σ̂(i, j | S)−Σ(i, j | S)

∣∣∣ ≤ ∥∥∥∥ 1

n− |S|
SQ|S −ΣQ|S

∥∥∥∥
2

. (53)

This gives us,

P
(∣∣∣Σ̂(i, j | S)−Σ(i, j | S)

∣∣∣ ≥ ε) ≤ P
(∥∥∥∥ 1

n− |S|
SQ|S −ΣQ|S

∥∥∥∥
2

≥ ε
)
, (54)

which completes the proof.

Using Lemma 16, we prove the following two useful corollaries.

Corollary 17 Let S ⊂ W, with |S| ≤ p− 2. Then

P
(

max
i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ ε) ≤ 4(p− |S|)2 exp

{
− (n− |S|)ε2

6λ2
max + 4ελmax

}
, (55)

for all ε ≥ 0.
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Proof Let Ai,j be the event
{∣∣∣Σ̂(i, j | S)−Σ(i, j | S)

∣∣∣ ≥ ε}. Then,

P
(

max
i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ ε) = P

 ⋃
i,j∈Sc

Ai,j

 . (56)

Applying the union bound, we get

P

 ⋃
i,j∈Sc

Ai,j

 ≤ ∑
i,j∈Sc

P (Ai,j) ≤ 4(p− |S|)2 exp

{
− (n− |S|)ε2

6λ2
max + 4ελmax

}
, (57)

since there are
(
p−|S|

2

)
possible choices of {i, j}.

Corollary 18 Let K < p− 2. The following inequality

P

 max
S⊂W,|S|=K,

i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ ε

 ≤ 4pK+2 exp

{
− (n−K)ε2

6λ2
max + 4ελmax

}
, (58)

holds for all ε ≥ 0.

Proof The proof follows that of Corollary 17, except that the union bound now runs over
all different choices of i, j, and S, with |S| = K. There are altogether

(
p
2

)(
p−2
K

)
such choices,

which gives us the resulting inequality.

B.2 Proof of Theorem 8

Proof Instead of the event Υ, we define a subset of event Υ that is more useful. Let ξ
be the event that, using S, Algorithm 1 correctly identifies, for all i, j ∈ Sc, whether Xi is
conditionally independent of Xj or not givenXS . If each of these

(
p−|S|

2

)
pairs of conditional

independence relations are identified correctly, Algorithm 1 will be able to correctly identify
whether or not Xu ⊥ Xv |XS is faithful. Thus, if ξ occurs, Υ occurs as well.

There are two types of events that occurs in the complement event space ξc of ξ. The first
event or error, is when Xi ⊥ Xj | XS , but Algorithm 1 outputs this relation conditionally

dependent. We name this event ξ
(1)
ij . Thus, the event ξ

(1)
ij occurs when Σ(i, j | S) = 0 but

|Σ̂(i, j | S)| ≥ α, where Σ̂(i, j | S) is defined according to (10). The second type of error
occurs when Xi 6⊥ Xj |XS but Algorithm 1 outputs this relation conditionally independent.

Let this event be ξ
(2)
ij . Event xi

(2)
ij occurs when Σ(i, j | S) 6= 0, but |Σ̂(i, j | S)| ≤ α.

As a result, we have

P (ξc) = P

 ⋃
i,j∈Sc,Xi⊥Xj |XS

ξ
(1)
ij

+ P

 ⋃
i,j∈Sc,Xi 6⊥Xj |XS

ξ
(2)
ij

 . (59)
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We bound the first term of the expression on the right hand side of the equation. When

ξ
(1)
ij occurs for some i and j, we immediately have∣∣∣Σ̂(i, j | S)−Σ(i, j | S)

∣∣∣ =
∣∣∣Σ̂(i, j | S)

∣∣∣ ≥ α. (60)

This gives us the upper bound on the probability

P

 ⋃
i,j∈Sc,Xi⊥Xj |XS

ξ
(1)
ij

 ≤ P
(

max
i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ α) . (61)

Applying Corollary 17, we have

P

 ⋃
i,j∈Sc,Xi⊥Xj |XS

ξ
(1)
ij

 ≤ 4(p− |S|)2 exp

{
− (n− |S|)α2

6λ2
max + 4αλmax

}
, (62)

Since α = β/2, for

n ≥ 24λ2
max + 8βλmax

β2

(
log 8 + 2 log(p− |S|) + log

1

ε

)
+ |S|, (63)

we have

P

 ⋃
i,j∈Sc,Xi⊥Xj |XS

ξ
(1)
ij

 ≤ ε

2
. (64)

The second term is bounded similarly. Since |Σ(i, j | S)| ≥ β when Σ(i, j | S) 6= 0, we have

P

 ⋃
i,j∈Sc,Xi 6⊥Xj |XS

ξ
(2)
ij

 ≤ P
(

max
i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ β − α) . (65)

Since β − α = β/2, we again have

P

 ⋃
i,j∈Sc,Xi 6⊥Xj |XS

ξ
(2)
ij

 ≤ ε

2
, (66)

for n satisfying (63). Substituting equations (64) and (66) into (59), we get

P (Υ) ≥ P (ξ) ≥ 1− ε, (67)

as required.
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B.3 Proof of Theorem 10

Proof The proof follows closely the proof of Theorem 8. In the proof of Theorem 8, the
separator set S is fixed, and the success of the algorithm is based on correctly deciding
whether each of the conditional relation between Xi and Xj given XS is dependent or inde-
pendent for all i, j ∈ Sc. In learning the structure of a weakly K-separable graph however,
we have to run through various separator sets S and apply our faithfulness algorithm on
it. This means that if we correctly decide whether Xi and Xj given XS is conditionally
dependent or independent for all possible i, j and S, that is sufficient for us to correctly
determine E .

Instead of applying Corollary 17, we apply Corollary 18, which gives us

P
(
Ê 6= E

)
≤ ε, (68)

for

n ≥ 24λ2
max + 8βλmax

β2

(
log 8 + (K + 2) log p+ log

1

ε

)
+K. (69)

B.4 Proof of Theorem 12

Lemma 19 Let i and j be separate nodes in W and let S separate i and j in the graph
G−(i,j). Let L < 1 be a positive constant, and let

ε ∈
(

0,
Lλ2

min + 2λmax(1 + 2λmax)

(1− L)Lλ4
min

·min

{
1,

Lλ2
min

2(1 + 2λmax)

}]
. (70)

Also, define

δ =
(1− L)Lλ4

min

Lλ2
min + 2λmax(1 + 2λmax)

· ε. (71)

If we have∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ , ∣∣∣Σ̂(i, i | S)−Σ(i, i | S)

∣∣∣ , ∣∣∣Σ̂(j, j | S)−Σ(j, j | S)
∣∣∣ ≤ δ, (72)

then ∣∣∣Ω̂ij −Ωij

∣∣∣ ≤ ε. (73)

Proof For convenience, we denote Σ(i, j | S),Σ(i, i | S), and Σ(j, j | S) by a, b, and c.
We will also denote Σ̂(i, j | S), Σ̂(i, i | S), and Σ̂(j, j | S) by â, b̂, and ĉ. Let D be the
determinant bc− a2 and let D̂ = b̂ĉ− â2. Rewriting (72), we have

max
{
|â− a|, |b̂− b|, |ĉ− c|

}
≤ δ. (74)
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We first bound |D̂ −D|. We have

|D̂ −D| = |(b̂ĉ− â2)− (bc− a2)|
≤ |b̂ĉ− bc|+ |â2 − a2| (75)

The first term is bounded by

|b̂ĉ− bc| = |(b̂− b)(ĉ− c) + c(b̂− b) + b(ĉ− c)|
≤ δ2 + |c|δ + |b|δ
≤ δ(1 + 2λmax), (76)

where in the last inequality, we make use of the condition that δ ≤ 1, which is derived from
(70) and (71), and the bound on the matrix entries

max{|a|, |b|, |c|} ≤ ‖ΣQ|S‖2 ≤ ‖Σ‖2 = λmax. (77)

We can then bound the second term |â− a| similarly, which gives us

|D̂ −D| ≤ 2δ(1 + 2λmax). (78)

From (70), we have

δ ≤ Lλmin2

2(1 + 2λmax)
, (79)

which give us
|D̂| ≥ |D| − Lλ2

min ≥ (1− L)|D|, (80)

where the last inequality follows from the fact that the two eigenvalues of ΣQ|S are both
bounded below by λmin by the eigenvalue interlacing property.

We are now ready to establish the upper bound for |Ω̂ij −Ωij |. We have

|Ω̂ij −Ωij | =

∣∣∣∣ âD̂ − a

D

∣∣∣∣
=
|âD − aD̂|
|D̂||D|

≤ |D||â− a|+ |a||D̂ −D|
|D̂||D|

≤ 1

(1− L)|D|

(
δ +

|a|
L|D|

· 2δ(1 + 2λmax)

)
≤ 1

(1− L)λ2
min

(
δ +

λmax

Lλ2
min

· 2δ(1 + 2λmax)

)
. (81)

Substituting δ from (70), we get

|Ω̂ij −Ωij | ≤ ε, (82)

which is the result of this lemma.
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We are now ready to prove Theorem 12.
Proof We again define δ according to (71), which can be rewritten as

δ =
ε

C1
. (83)

Applying Lemma 19, we have

P

 max
i,j∈W,i 6=j,
S∈Λ0(i,j)

|Ω̂ij −Ωij | ≥ ε

 ≤ P

 max
S⊂W,|S|=K,

i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ δ

 , (84)

for

ε ∈
(

0, C1 ·min

{
1,

Lλ2
min

2(1 + 2λmax)

}]
. (85)

Using the result of Corollary 18, we have

P

 max
S⊂W,|S|=K,

i,j∈Sc

∣∣∣Σ̂(i, j | S)−Σ(i, j | S)
∣∣∣ ≥ δ

 ≤ 4pK+2 exp

{
− (n−K)δ2

6λ2
max + 4δλmax

}
. (86)

Combining the domains for ε, we get the result.
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