
Journal of Machine Learning Research 20 (2019) 1-32 Submitted 7/18; Revised 2/19; Published 3/19

Tunability: Importance of Hyperparameters of Machine
Learning Algorithms

Philipp Probst probst@ibe.med.uni-muenchen.de
Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich
Marchioninistr. 15, 81377 München, Germany

Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich
Marchioninistr. 15, 81377 München, Germany

Bernd Bischl bernd.bischl@stat.uni-muenchen.de
Department of Statistics, LMU Munich
Ludwigstraße 33, 80539 München, Germany

Editor: Ryan Adams

Abstract
Modern supervised machine learning algorithms involve hyperparameters that have to be
set before running them. Options for setting hyperparameters are default values from
the software package, manual configuration by the user or configuring them for optimal
predictive performance by a tuning procedure. The goal of this paper is two-fold. Firstly,
we formalize the problem of tuning from a statistical point of view, define data-based
defaults and suggest general measures quantifying the tunability of hyperparameters of
algorithms. Secondly, we conduct a large-scale benchmarking study based on 38 datasets
from the OpenML platform and six common machine learning algorithms. We apply our
measures to assess the tunability of their parameters. Our results yield default values for
hyperparameters and enable users to decide whether it is worth conducting a possibly time
consuming tuning strategy, to focus on the most important hyperparameters and to choose
adequate hyperparameter spaces for tuning.
Keywords: machine learning, supervised learning, classification, hyperparameters, tun-
ing, meta-learning

1. Introduction

Machine learning (ML) algorithms such as gradient boosting, random forest and neural net-
works for regression and classification involve a number of hyperparameters that have to
be set before running them. In contrast to direct, first-level model parameters, which are
determined during training, these second-level tuning parameters often have to be carefully
optimized to achieve maximal performance. A related problem exists in many other algo-
rithmic areas, e.g., control parameters in evolutionary algorithms (Eiben and Smit, 2011).

In order to select an appropriate hyperparameter configuration for a specific dataset
at hand, users of ML algorithms can resort to default values of hyperparameters that are
specified in implementing software packages or manually configure them, for example, based
on recommendations from the literature, experience or trial-and-error.

c©2019 Philipp Probst, Anne-Laure Boulesteix and Bernd Bischl.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-444.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-444.html


Probst, Boulesteix and Bischl

Alternatively, one can use hyperparameter tuning strategies, which are data-dependent,
second-level optimization procedures (Guyon et al., 2010), which try to minimize the ex-
pected generalization error of the inducing algorithm over a hyperparameter search space
of considered candidate configurations, usually by evaluating predictions on an independent
test set, or by running a resampling scheme such as cross-validation (Bischl et al., 2012). For
a recent overview of tuning strategies, see, e.g., Luo (2016). These search strategies range
from simple grid or random search (Bergstra and Bengio, 2012) to more complex, iterative
procedures such as Bayesian optimization (Hutter et al., 2011; Snoek et al., 2012; Bischl
et al., 2017b) or iterated F-racing (Birattari et al., 2010; Lang et al., 2017).

In addition to selecting an efficient tuning strategy, the set of tunable hyperparameters
and their corresponding ranges, scales and potential prior distributions for subsequent sam-
pling have to be determined by the user. Some hyperparameters might be safely set to
default values, if they work well across many different scenarios. Wrong decisions in these
areas can inhibit either the quality of the resulting model or at the very least the efficiency
and fast convergence of the tuning procedure. This creates a burden for:

1. ML users—Which hyperparameters should be tuned and in which ranges?

2. Designers of ML algorithms—How do I define robust defaults?

We argue that many users, especially if they do not have years of practical experience in
the field, here often rely on heuristics or spurious knowledge. It should also be noted that
designers of fully automated tuning frameworks face at least very similar problems. It is
not clear how these questions should be addressed in a data-dependent, automated, optimal
and objective manner. In other words, the scientific community not only misses answers to
these questions for many algorithms but also a systematic framework, methods and criteria,
which are required to answer these questions.

With the present paper we aim at filling this gap and formalize the problem of parameter
tuning from a statistical point of view, in order to simplify the tuning process for less
experienced users and to optimize decision making for more advanced processes.

After presenting related literature in Section 2, we define theoretical measures for assess-
ing the impact of tuning in Section 3. For this purpose we (i) define the concept of default
hyperparameters, (ii) suggest measures for quantifiying the tunability of the whole algorithm
and specific hyperparameters based on the differences between the performance of default
hyperparameters and the performance of the hyperparameters when this hyperparameter is
set to an optimal value. Then we (iii) address the tunability of hyperparameter combinations
and joint gains, (iv) provide theoretical definitions for an appropriate hyperparameter space
on which tuning should be executed and (v) propose procedures to estimate these quantities
based on the results of a benchmark study with random hyperparameter configurations with
the help of surrogate models. In sections 4 and 5 we illustrate these concepts and methods
through an application. For this purpose we use benchmark results of six machine learning
algorithms with different hyperparameters which were evaluated on 38 datasets from the
OpenML platform. Finally, in the last Section 6 we conclude and discuss the results.

2



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

2. Related Literature

To the best of our knowledge, only a limited amount of articles address the problem of
tunability and generation of tuning search spaces. Bergstra and Bengio (2012) compute the
relevance of the hyperparameters of neural networks and conclude that some are important
on all datasets, while others are only important on some datasets. Their conclusion is
primarily visual and used as an argument for why random search works better than grid
search when tuning neural networks.

A specific study for decision trees was conducted by Mantovani et al. (2016) who ap-
ply standard tuning techniques to decision trees on 102 datasets and calculate differences
of accuracy between the tuned algorithm and the algorithm with default hyperparameter
settings.

A different approach is proposed by Hutter et al. (2013), which aims at identifying the
most important hyperparameters via forward selection. In the same vein, Fawcett and Hoos
(2016) present an ablation analysis technique, which aims at identifying the hyperparameters
that contribute the most to improved performance after tuning. For each of the considered
hyperparameters, they compute the performance gain that can be achieved by changing
its value from the initial value to the value specified in the target configuration which was
determined by the tuning strategy. This procedure is iterated in a greedy forward search.

A more general framework for measuring the importance of single hyperparameters is
presented by Hutter et al. (2014). After having used a tuning strategy such as sequen-
tial model-based optimization, a functional ANOVA approach is used for measuring the
importance of hyperparameters.

These works concentrate on the importance of hyperparameters on single datasets,
mainly to retrospectively explain what happened during an already concluded tuning pro-
cess. Our main focus is the generalization across multiple datasets in order to facilitate
better general understanding of hyperparameter effects and better decision making for fu-
ture experiments. In a recent paper van Rijn and Hutter (2017) pose very similar questions
to ours to assess the importance of hyperparameters across datasets. We compare it to our
approach in Section 6.

Our framework is based on using surrogate models, also sometimes called empirical
performance models, which allow estimating the performance of arbitrary hyperparameter
configurations based on a limited number of prior experiments. The idea of surrogate models
is far from new (Audet et al., 2000), as it constitutes the central idea of Bayesian optimization
for hyperparameter search but is also used, for example, in Biedenkapp et al. (2017) for
increasing the speed of an ablation analysis and by Eggensperger et al. (2018) for speeding
up the benchmarking of tuning strategies.

3. Methods for Estimation of Defaults, Tunability and Ranges

In this section we introduce theoretical definitions for defaults, tunability and tuning ranges,
then describe how to estimate them and finally discuss the topic of reparametrization.

3



Probst, Boulesteix and Bischl

3.1. General Notation

Consider a target variable Y , a feature vector X, and an unknown joint distribution P on
(X,Y ), from which we have sampled a dataset T of n observations. A machine learning (ML)
algorithm now learns the functional relationship between X and Y by producing a prediction
model f̂(X, θ), controlled by the k-dimensional hyperparameter configuration θ = (θ1, ..., θk)
from the hyperparameter search space Θ = Θ1 × ... × Θk. In order to measure prediction
performance pointwise between the true label Y and its prediction f̂(X, θ), we define a loss
function L(Y, f̂(X, θ)). We are naturally interested in estimating the expected risk of the
inducing algorithm, w.r.t. θ on new data, also sampled from P: R(θ) = E(L(Y, f̂(X, θ))|P).
This mapping encodes, given a certain data distribution, a certain learning algorithm and a
certain performance measure, the numerical quality for any hyperparameter configuration θ.
Givenm different datasets (or data distributions) P1, ...,Pm, we arrive atm hyperparameter
risk mappings

R(j)(θ) := E(L(Y, f̂(X, θ))|Pj), j = 1, ...,m. (1)

For now, we assume all R(j)(θ) to be known, and show how to estimate them in Section 3.7.

3.2. Optimal Configuration per Dataset and Optimal Defaults

We first define the best hyperparameter configuration for dataset j as

θ(j)? := arg min
θ∈Θ

R(j)(θ). (2)

Defaults settings are supposed to work well across many different datasets and are usually
provided by software packages, in an often ad hoc or heuristic manner. We propose to define
an optimal default configuration, based on an extensive number of empirical experiments on
m different benchmark datasets, by

θ? := arg min
θ∈Θ

g(R(1)(θ), ..., R(m)(θ)). (3)

Here, g is a summary function that has to be specified. Selecting the mean (or median
as a more robust candidate) would imply minimizing the average (or median) risk over all
datasets.

The measures R(j)(θ) could potentially be scaled appropriately beforehand in order to
make them more commensurable between datasets, e.g., one could scale all R(j)(θ) to [0, 1]
by subtracting the result of a very simple baseline like a featureless dummy predictor and
dividing this difference by the absolute difference between the risk of the best possible
result (as an approximation of the Bayes error) and the result of the very simple baseline
predictor. Or one could produce a statistical z-score by subtracting the mean and dividing
by the standard deviation from all experimental results on the same dataset (Feurer et al.,
2018).

The appropriateness of the scaling highly depends on the performance measure that is
used. One could, for example, argue that the AUC does not have to be scaled by using the
probabilistic interpretation of the AUC. Given a randomly chosen observation x belonging to
class 1, and a randomly chosen observation x′ belonging to class 0, the AUC is the probability
that the evaluated classification algorithm will assign a higher score to x than to x′. Thus,

4



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

an improvement from 0.5 to 0.6 on one dataset could be seen as equally important to an
improvement from 0.8 to 0.9 on another dataset. On the other hand, averaging the mean
squared error on several datasets does not make a lot of sense, as the scale of the outcome of
different regression problems can be very different. Then scaling or using another measure
such as the R2 is reasonable. As our main risk measure is the AUC, we do not use any
scaling.1

3.3. Measuring Overall Tunability of a ML Algorithm

A general measure of the tunability of an algorithm per dataset can then be computed
based on the difference between the risk of an overall reference configuration (e.g., either the
software defaults or definition (3)) and the risk of the best possible configuration on that
dataset:

d(j) := R(j)(θ?)−R(j)(θ(j)?), for j = 1, ...,m. (4)

For each algorithm, this gives rise to an empirical distribution of performance differences
over datasets, which might be directly visualized or summarized to an aggregated tunability
measure d by using mean, median or quantiles.

3.4. Measuring Tunability of a Specific Hyperparameter

The best hyperparameter value for one parameter i on dataset j, when all other parameters
are set to defaults from θ? := (θ?1, ..., θ

?
k), is denoted by

θ
(j)?
i := arg min

θ∈Θ,θl=θ
?
l ∀l 6=i

R(j)(θ). (5)

A natural measure for tunability of the i-th parameter on dataset j is then the difference
in risk between the above and our default reference configuration:

d
(j)
i := R(j)(θ?)−R(j)(θ

(j)?
i ), for j = 1, ...,m, i = 1, ..., k. (6)

Furthermore, we define d(j),rel
i =

d
(j)
i

d(j)
as the fraction of performance gain, when we only

tune parameter i compared to tuning the complete algorithm, on dataset j. Again, one can
calculate the mean, the median or quantiles of these two differences over the n datasets, to
get a notion of the overall tunability di of this parameter.

3.5. Tunability of Hyperparamater Combinations and Joint Gains

Let us now consider two hyperparameters indexed as i1 and i2. To measure the tunability
with respect to these two parameters, we define

θ
(j)?
i1,i2

:= arg min
θ∈Θ,θl=θ

?
l ∀l 6∈{i1,i2}

R(j)(θ), (7)

1. We also tried out normalization (z-score) and got qualitatively similar results to the non-normalized
results presented in Section 5.

5



Probst, Boulesteix and Bischl

i.e., the θ-vector containing the default values for all hyperparameters other than i1 and i2,
and the optimal combination of values for the i1-th and i2-th components of θ.

Analogously to the previous section, we can now define the tunability of the set (i1, i2)
as the gain over the reference default on dataset j as

d
(j)
i1,i2

:=R(j)(θ∗)−R(j)(θ
(j)?
i1,i2

). (8)

The joint gain which can be expected when tuning not only one of the two hyperparam-
eters individually, but both of them jointly, on a dataset j, can be expressed by

g
(j)
i1,i2

:= min{(R(j)(θ
(j)?
i1

)), (R(j)(θ
(j)?
i2

))} −R(j)(θ
(j)?
i1,i2

). (9)

Furthermore, one could be interested in whether this joint gain could simply be reached
by tuning both parameters i1 and i2 in a univariate fashion sequentially, either in the order
i1 → i2 or i2 → i1, and what order would be preferable. For this purpose one could compare
the risk of the hyperparameter value that results when tuning them together R(j)(θ

(j)?
i1,i2

) with
the risks of the hyperparameter values that are obtained when tuning them sequentially, that
means R(j)(θ

(j)?
i1→i2) or R(j)(θ

(j)?
i2→i1), which is done for example in Waldron et al. (2011).

Again, all these measures should be summarized across datasets, resulting in di1,i2 and
gi1,i2 . Of course, these approaches can be further generalized by considering combinations
of more than two parameters.

3.6. Optimal Hyperparameter Ranges for Tuning

A reasonable hyperparameter space Θ? for tuning should include the optimal configuration
θ(j)? for dataset j with high probability. We denote the p-quantile of the distribution of one
parameter regarding the best hyperparameters on each dataset (θ(1)?)i, ..., (θ

(m)?)i as qi,p.
The hyperparameter tuning space can then be defined as

Θ? := {θ ∈ Θ|∀i ∈ {1, ..., k} : θi ≥ qi,p1 ∧ θi ≤ qi,p2} , (10)

with p1 and p2 being quantiles which can be set for example to the 5 % quantile and the
95 % quantile. This avoids focusing too much on outlier datasets and makes the definition
of the space independent from the number of datasets.

The definition above is only valid for numerical hyperparameters. In case of categorical
variables one could use similar rules, for example only including hyperparameter values that
were at least once or in at least 10 % of the datasets the best possible hyperparameter
setting.

3.7. Practical Estimation

In order to practically apply the previously defined concepts, two remaining issues need to be
addressed: a) We need to discuss how to obtain R(j)(θ); and b) in (2) and (3) a multivariate
optimization problem (the minimization) needs to be solved.2

2. All other previous optimization problems are univariate or two-dimensional and can simply be addressed
by simple techniques such as a fine grid search.

6



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

For a) we estimate R(j)(θ) by using surrogate models R̂(j)(θ), and replace the original
quantity by its estimator in all previous formulas. Surrogate models for each dataset j are
based on a meta dataset. This is created by evaluating a large number of configurations of the
respective ML method. The surrogate regression model then learns to map a hyperparameter
configuration to estimated performance. For b) we solve the optimization problem—now
cheap to evaluate, because of the surrogate models—through black-box optimization.

3.8. Reparametrization

All tunability measures mentioned above can possibly depend on and be influenced by
a reparametrization of hyperparameters. For example, in the case of the elastic net the
parameters λ and α could be reparametrized as λ1 = αλ and λ2 = (1−α)λ. Formally, such
a reparametrization could be defined as a (bijective) function φ : Θ → Θ̃, such that φ(θ)
maps an original configuration θ to a new representation θ̃ = φ(θ) from Θ̃, in a one-to-one
manner. Then defaults (calculated by the approach in Section 3.2) are naturally transformed
via θ̃? = φ(θ?) into the new space Θ̃, but will stay logically the same. Moreover, the general
tunability of the algorithm does (obviously) not change. Depending on the parameters that
are involved in the reparametrization, the tunability of the parameters can change. If, for
example, only one parameter is involved, all tunabilities remain the same. If two or more
parameters are involved, the single tunabilities of the parameters could change but the
tunability of the set of the transformed parameters remains the same.

One might define a reparametrization as ideal (in the sense of simplified tuning) if the
tunability is concentrated on one (or only few) hyperparameter(s), so that only this param-
eter has to be optimized and all remaining hyperparameters can remain at their (optimal)
default values, reducing a multivariate optimization problem to a 1-dimensional or at least
lower dimensional one. Using the definition above, this would imply that the joint gain of
the new parameter(s) is (close to) 0. For example, imagine that the optimal hyperparameter
values per dataset of two hyperparameters θ1 and θ2 lie on the line of equation θ1 = θ2. A
useful reparametrization would then be θ̃1 = θ1 + θ2 and the orthogonal θ̃2 = θ1 − θ2. It
would then only be necessary to tune θ̃1, while θ̃2 would be set to the default value 0.

A more general formulation is possible if we use the definition of 3.4. We could, for
example, search for a bijective and invertible function φ?(.), across a certain parameterized
function space, such that the mean tunability is concentrated on and therefore maximal for
the first parameter and minimal for the other parameters, i.e.:

φ? := arg min
φ∈Φ

1

m

m∑
j=1

min
θ̃∈Θ̃,θ̃l=θ̃

?
l ∀l 6=1

R(j)
(
φ−1

(
θ̃
))

. (11)

We could select a restricted function space for φ, e.g., restrict ourselves to the space of all
linear (invertible) transformations {φ : Rk → Rk|φ(x) = Ax,A ∈ Rk×k, det(A) 6= 0}. If
concentrating the whole tunability on only one parameter is not possible, we could try a
similar approach by concentrating it on a combination of two hyperparameters.

Note that such a reparametrization is not always helpful. For example, imagine we
have two binary parameters and transform them such that (i) one of them has 4 levels that
correspond to all possible combinations of these two parameters and (ii) the other parameter
is set to a fixed constant. This reparametrization would not be useful: all the tunability

7



Probst, Boulesteix and Bischl

is contained in the first parameter, but there is no real advantage, as still four evaluations
have to be executed in the tuning process to get the best hyperparameter combination.

Finally, note that it can also be useful to reparametrize a single hyperparameter for
the purpose of tuning. Imagine, for example, that most of the optimal parameters on
the different datasets are rather small and only a few are large. A transformation of this
parameter such as a log-transformation may then be useful. This is very similar to using
prior probabilities for tuning (based on results on previous datasets) which could be seen as
a useful alternative to a reparametrization and which is already proposed in van Rijn and
Hutter (2017).

4. Experimental Setup

In this section we give an overview about the experimental setup that is used for obtaining
surrogate models, tunability measures and tuning spaces.

4.1. Datasets from the OpenML Platform

Recently, the OpenML project (Vanschoren et al., 2013) has been created as a flexible online
platform that allows ML scientists to share their data, corresponding tasks and results of
different ML algorithms. We use a specific subset of carefully curated classification datasets
from the OpenML platform called OpenML100 (Bischl et al., 2017a). For our study we only
use the 38 binary classification tasks that do not contain any missing values.

4.2. ML Algorithms

The algorithms considered in this paper are common methods for supervised learning. We
examine elastic net (glmnet R package), decision tree (rpart), k-nearest neighbors (kknn),
support vector machine (svm), random forest (ranger) and gradient boosting (xgboost).
For more details about the used software packages see Kühn et al. (2018b). An overview of
their considered hyperparameters is displayed in Table 1, including respective data types,
box-constraints and a potential transformation function.

In the case of xgboost, the underlying package only supports numerical features, so we
opted for a dummy feature encoding for categorical features, which is performed internally
by the underlying packages for svm and glmnet.

Some hyperparameters of the algorithms are dependent on others. We take into account
these dependencies and, for example, only sample a value for gamma for the support vector
machine if the radial kernel was sampled beforehand.

4.3. Performance estimation

Several measures are regarded throughout this paper, either for evaluating our considered
classification models that should be tuned, or for evaluating our surrogate regression models.
As no optimal measure exists, we will compare several of them. In the classification case,
we consider AUC, accuracy and Brier score. In the case of surrogate regression, we consider
R2, which is directly proportional to the regular mean squared error but scaled to [0,1] and
explains the gain over a constant model estimating the overall mean of all data points. We
also compute Kendall’s tau as a ranking based measure for regression.

8



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Hyperparameter Type Lower Upper Trafo
glmnet
(Elastic net) alpha numeric 0 1 -

lambda numeric -10 10 2x

rpart
(Decision tree) cp numeric 0 1 -

maxdepth integer 1 30 -
minbucket integer 1 60 -
minsplit integer 1 60 -

kknn
(k-nearest neighbor) k integer 1 30 -
svm
(Support vector machine) kernel discrete - - -

cost numeric -10 10 2x

gamma numeric -10 10 2x

degree integer 2 5 -
ranger
(Random forest) num.trees integer 1 2000 -

replace logical - - -
sample.fraction numeric 0.1 1 -
mtry numeric 0 1 x · p
respect.unordered.factors logical - - -
min.node.size numeric 0 1 nx

xgboost
(Gradient boosting) nrounds integer 1 5000 -

eta numeric -10 0 2x

subsample numeric 0.1 1 -
booster discrete - - -
max_depth integer 1 15 -
min_child_weight numeric 0 7 2x

colsample_bytree numeric 0 1 -
colsample_bylevel numeric 0 1 -
lambda numeric -10 10 2x

alpha numeric -10 10 2x

Table 1: Hyperparameters of the algorithms. p refers to the number of variables and n to the
number of observations. The columns Lower and Upper indicate the regions from which
samples of these hyperparameters are drawn. The transformation function in the trafo
column, if any, indicates how the values are transformed according to this function. The
exponential transformation is applied to obtain more candidate values in regions with
smaller hyperparameters because for these hyperparameters the performance differences
between smaller values are potentially bigger than for bigger values. The mtry value in
ranger that is drawn from [0, 1] is transformed for each dataset separately. After having
chosen the dataset, the value is multiplied by the number of variables and afterwards
rounded up. Similarly, for the min.node.size the value x is transformed by the formula
[nx] with n being the number of observations of the dataset, to obtain a positive integer
values with higher probability for smaller values (the value is finally rounded to obtain
integer values).

9



Probst, Boulesteix and Bischl

The performance estimation for the different hyperparameter experiments is computed
through 10-fold cross-validation. For the comparison of surrogate models 10 times repeated
10-fold cross-validation is used.

4.4. Random Bot sampling strategy for meta data

To reliably estimate our surrogate models we need enough evaluated configurations per
classifier and dataset. We sample these points from independent uniform distributions where
the respective support for each parameter is displayed in Table 1. Here, uniform refers to
the untransformed scale, so we sample uniformly from the interval [Lower, Upper ] of Table 1.

In order to properly facilitate the automatic computation of a large database of hyper-
parameter experiments, we implemented a so called OpenML bot. In an embarrassingly
parallel manner it chooses in each iteration a random dataset, a random classification al-
gorithm, samples a random configuration and evaluates it via cross-validation. A subset
of 500000 experiments for each algorithm and all datasets are used for our analysis here.3

More technical details regarding the random bot, its setup and results can be obtained in
Kühn et al. (2018b), furthermore, for simple and permanent access the results of the bot
are stored in a figshare repository (Kühn et al., 2018a).

4.5. Optimizing Surrogates to Obtain Optimal Defaults

Random search is also used for our black-box optimization problems in Section 3.7. For
the estimation of the defaults for each algorithm we randomly sample 100000 points in
the hyperparameter space as defined in Table 1 and determine the configuration with the
minimal average risk. The same strategy with 100000 random points is used to obtain
the best hyperparameter setting on each dataset that is needed for the estimation of the
tunability of an algorithm. For the estimation of the tunability of single hyperparameters we
also use 100000 random points for each parameter, while for the tunability of combination
of hyperparameters we only use 10000 random points to reduce runtime as this should be
enough to cover 2-dimensional hyperparameter spaces.

Of course one has to be careful with overfitting here, as our optimal defaults are chosen
with the help of the same datasets that are used to determine the performance. Therefore,
we also evaluate our approach via a “10-fold cross-validation across datasets”. Here, we
repeatedly calculate the optimal defaults based on 90% “training datasets” and evaluate the
package defaults and our optimal defaults—the latter induced from the training datasets—
on the surrogate models of the remaining 10% “test datasets”, and compare their difference
in performance.

4.6. The Problem of Hyperparameter Dependency

Some parameters are dependent on other superordinate hyperparameters and are only rele-
vant if the parameter value of this superordinate parameter was set to a specific value. For
example gamma in svm only makes sense if the kernel was set to “radial” or degree only
makes sense if the kernel was set to “polynomial”. Some of these subordinate parameters
might be invalid/inactive in the reference default configuration, rendering it impossible to

3. Only 30 experiments are used for each dataset for kknn, because we only consider the parameter k.

10



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

univariately tune them in order to compute their tunability score. In such a case we set the
superordinate parameter to a value which makes the subordinate parameter active, compute
the optimal defaults for the rest of the parameters and compute the tunability score for the
subordinate parameter with these defaults.

4.7. Software Details

All our experiments are executed in R and are run through a combination of custom code
from our random bot (Kühn et al., 2018b), the OpenML R package (Casalicchio et al., 2017),
mlr (Bischl et al., 2016) and batchtools (Lang et al., 2017) for parallelization. All results
are uploaded to the OpenML platform and there publicly available for further analysis.
mlr is also used to compare and fit all surrogate regression models. The fully reproducible
R code for all computations and analyses of our paper can be found on the github page:
https://github.com/PhilippPro/tunability. We also provide an interactive shiny app
under https://philipppro.shinyapps.io/tunability/, which displays all results of the
following section in a potentially more convenient, interactive fashion and which can simply
be accessed through a web browser.

5. Results and Discussion

We calculate all results for AUC, accuracy and Brier score but mainly discuss AUC results
here. Tables and figures for the other measures can be accessed in the appendix and in our
interactive shiny application.

5.1. Surrogate Models

We compare different possible regression models as candidates for our surrogate models: the
linear model (lm), a simple decision tree (rpart), k nearest-neighbors (kknn) and random
forest (ranger)4 All algorithms are run with their default settings. We calculate 10 times
repeated 10-fold cross-validated regression performance measures R2 and Kendall’s tau per
dataset, and average these across all datasets.5 Results for AUC are displayed in Figure 1.
A good overall performance is achieved by ranger with qualitatively similar results for
other classification performance measures (see Appendix). In the following we use random
forest as surrogate model because it performs reasonably well and is already an established
algorithm for surrogate models in the literature (Eggensperger et al., 2014; Hutter et al.,
2013).

5.2. Optimal Defaults and Tunability

Table 2 displays our mean tunability results for the algorithms as defined in formula (4)
w.r.t. package defaults (Tun.P column) and our optimal defaults (Tun.O). The distribution
of the tunability values of the optimal defaults can be seen in Figure 2 in the modified

4. We also tried cubist (Kuhn et al., 2016), which provided good results but the algorithm had some
technical problems for some combinations of datasets and algorithms. We did not include gaussian
process which is one of the standard algorithms for surrogate models as it cannot handle categorical
variables.

5. In case of kknn four datasets did not provide results for one of the surrogate models and were not used.

11

https://github.com/PhilippPro/tunability
https://philipppro.shinyapps.io/tunability/


Probst, Boulesteix and Bischl

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 1: Average performances over the datasets of different surrogate models (target:
AUC) for different algorithms (that were presented in 4.2). For an easier compar-
ison of the surrogate models the same graph with exchanged x-axis and legend is
available in the appendix in Figure 5.

12



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.069± 0.019 0.024± 0.013 0.037± 0.015 0.045± 0.015 0.032± 0.015
rpart 0.038± 0.006 0.012± 0.004 0.016± 0.004 0.025± 0.006 0.022± 0.006
kknn 0.031± 0.006 0.006± 0.004 0.006± 0.004 0.025± 0.008 0.025± 0.008
svm 0.056± 0.011 0.042± 0.007 0.048± 0.008 0.014± 0.005 0.008± 0.007

ranger 0.010± 0.003 0.006± 0.001 0.007± 0.001 0.004± 0.003 0.003± 0.003
xgboost 0.043± 0.006 0.014± 0.006 0.017± 0.007 0.029± 0.003 0.026± 0.003

Table 2: Mean tunability (regarding AUC) with the package defaults (Tun.P) and the op-
timal defaults (Tun.O) as reference, cross-validated tunability (Tun.O-CV), aver-
age improvement (Improv) and cross-validated average improvement (Impr-CV)
obtained by using optimal defaults compared to package defaults. The (cross-
validated) improvement can be calculated by the (rounded) difference between
Tun.P and Tun.O (Tun.O-CV). Standard error of the mean (SEM) is given behind
the “±”-sign.

boxplots. Table 2 also displays the average improvement per algorithm when moving from
package defaults to optimal defaults (Improv), which was positive overall. This also holds
for svm and ranger although the package defaults are data dependent, which we currently
cannot model (gamma = 1/p for svm and mtry = √p for ranger). As our optimal defaults
are calculated based on all datasets, there is a risk of overfitting. So we perform a 5-fold
cross-validation on dataset level, always calculating optimal defaults on 4

5 of datasets and
evaluating them on 1

5 of the datasets. The results in the column Impr-CV in Table 2 show
that the improvement compared to the package defaults is less pronounced but still positive
for all algorithms.

From now on, when discussing tunability, we will only do this w.r.t. our optimal defaults.
Clearly, some algorithms such as glmnet and svm are much more tunable than the others,

while ranger is the algorithm with the smallest tunability, which is in line with common
knowledge in the web community. In the boxplots in Figure 2 for each ML algorithm, some
values that are much bigger than the others are visible, which indicates that tuning has a
much higher impact on some specific datasets.

5.3. Tunability of Specific Hyperparameters

In Table 3 the mean tunability (regarding the AUC) of single hyperparameters as defined
in Equation (6) in Section 3.4 can be seen. Moreover, in Figure 3 the distributions of the
tunability values of the hyperparameters are depicted in boxplots, which makes it possible to
detect outliers and to examine skewness. The same results for the Brier score and accuracy
can be found in the appendix. In the following analysis of our results, we will refer to
tunability only with respect to optimal defaults.

For glmnet lambda seems to be more tunable than alpha regarding the AUC, especially
for two datasets tuning seems to be crucial. For accuracy we observe the same pattern,
while for Brier score alpha seems to be more tunable than lambda (see Figure 11 and
Figure 13 in the appendix). We could not find any recommendation in the literature for

13



Probst, Boulesteix and Bischl

0.00

0.05

0.10

0.15

0.20

glmnet rpart kknn svm ranger xgboost

Algorithm

A
U

C
 tu

na
bi

lit
y

Figure 2: Boxplots of the tunabilities (AUC) of the different algorithms with respect to
optimal defaults. The upper and lower whiskers (upper and lower line of the
boxplot rectangle) are in our case defined as the 0.1 and 0.9 quantiles of the
tunability scores. The 0.9 quantile indicates how much performance improvement
can be expected on at least 10% of datasets. One outlier of glmnet (value 0.5) is
not shown.

these two parameters. In rpart the minbucket and minsplit parameters seem to be the
most important ones for tuning which is in line with the analysis of Mantovani et al. (2018).
k in the kknn algorithm is very tunable w.r.t. package defaults, but not regarding optimal
defaults. Note that the optimal default is 30 which is at the boundary of possible values,
so possibly bigger values can provide further improvements. A classical suggestion in the
literature (Lall and Sharma, 1996) is to use

√
n as default value. This is in line with our

results, as the number of observations is bigger than 900 in most of our datasets.
In svm the biggest gain in performance can be achieved by tuning the kernel, gamma or

degree, while the cost parameter does not seem to be very tunable. To the best of our
knowledge, this has not been noted in the literature yet. In ranger mtry is the most tunable
parameter which is already common knowledge and is implemented in software packages
such as caret (Kuhn, 2008). For xgboost there are two parameters that are quite tunable:
eta and booster. The tunability of booster is highly influenced by an outlier as can be seen
in Figure 3. The 5-fold cross-validated results can be seen in Table 10 of the appendix: they
are quite similar to the non cross-validated results and for all parameters slightly higher.

14



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.069 0.024
alpha 1 0.403 0.038 0.006 0.009 0.981

lambda 0 0.004 0.034 0.021 0.001 0.147
rpart 0.038 0.012

cp 0.01 0 0.025 0.002 0 0.008
maxdepth 30 21 0.004 0.002 12.1 27
minbucket 7 12 0.005 0.006 3.85 41.6
minsplit 20 24 0.004 0.004 5 49.15

kknn 0.031 0.006
k 7 30 0.031 0.006 9.95 30

svm 0.056 0.042
kernel radial radial 0.030 0.024
cost 1 682.478 0.016 0.006 0.002 920.582

gamma 1/p 0.005 0.030 0.022 0.003 18.195
degree 3 3 0.008 0.014 2 4
ranger 0.010 0.006

num.trees 500 983 0.001 0.001 206.35 1740.15
replace TRUE FALSE 0.002 0.001

sample.fraction 1 0.703 0.004 0.002 0.323 0.974
mtry √

p p · 0.257 0.006 0.003 0.035 0.692
respect.unordered.factors TRUE FALSE 0.000 0.000

min.node.size 1 1 0.001 0.001 0.007 0.513
xgboost 0.043 0.014
nrounds 500 4168 0.004 0.002 920.7 4550.95

eta 0.3 0.018 0.006 0.005 0.002 0.355
subsample 1 0.839 0.004 0.002 0.545 0.958

booster gbtree gbtree 0.015 0.008
max_depth 6 13 0.001 0.001 5.6 14

min_child_weight 1 2.06 0.008 0.002 1.295 6.984
colsample_bytree 1 0.752 0.006 0.001 0.419 0.864
colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886

lambda 1 0.982 0.003 0.002 0.008 29.755
alpha 1 1.113 0.003 0.002 0.002 6.105

Table 3: Defaults (package defaults (Def.P) and optimal defaults (Def.O)), tunability of
the hyperparameters with the package defaults (Tun.P) and our optimal defaults
(Tun.O) as reference and tuning space quantiles (q0.05 and q0.95) for different pa-
rameters of the algorithms.

15



Probst, Boulesteix and Bischl

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

A
U

C
 tu

na
bi

lit
y

Figure 3: Boxplots of the tunabilities of the hyperparameters of the different algorithms with
respect to optimal defaults. The y-axis is on a logarithmic scale. All values below
10−3 were set to 10−3 to be able to display them. Same definition of whiskers as
in Figure 2.

16



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

cp maxdepth minbucket minsplit
cp 0.002 0.003 0.006 0.004
maxdepth 0.002 0.007 0.005
minbucket 0.006 0.011
minsplit 0.004

Table 4: Tunability di1,i2 of hyperparameters of rpart, diagonal shows tunability of the
single hyperparameters.

maxdepth minbucket minsplit
cp 0.0007 0.0005 0.0004
maxdepth 0.0014 0.0019
minbucket 0.0055

Table 5: Joint gain gi1,i2 of tuning two hyperparameters instead of the most important in
rpart.

5.4. Tunability of Hyperparameter Combinations and Joint Gains

As an example, Table 4 displays the average tunability di1,i2 of all 2-way hyperparameter
combinations for rpart. Obviously, the increased flexibility in tuning a 2-way combination
enables larger improvements when compared with the tunability of one of the respective
individual parameters. In Table 5 the joint gain of tuning two hyperparameters gi1,i2 instead
of only the best as defined in Section 3.5 can be seen. The parameters minsplit and
minbucket have the biggest joint effect, which is not very surprising, as they are closely
related: minsplit is the minimum number of observations that must exist in a node in
order for a split to be attempted and minbucket the minimum number of observations in
any terminal leaf node. If a higher value of minsplit than the default performs better on a
dataset it is possibly not enough to set it higher without also increasing minbucket, so the
strong relationship is quite clear. Again, further figures for other algorithms are available
through the shiny app. Another remarkable example is the combination of sample.fraction
and min.node.size in ranger: the joint gain is very low and tuning sample.fraction only
seems to be enough, which is concordant to the results of Scornet (2018). Moreover, in
xgboost the joint gain of nrounds and eta is relatively low, which is not surprising, as these
parameters are highly connected with each other (when setting nrounds higher, eta should
be set lower and vice versa).

5.5. Hyperparameter Space for Tuning

The hyperparameter space for tuning, as defined in Equation (10) in Section 3.6 and based
on the 0.05 and 0.95 quantiles, is displayed in Table 3. All optimal defaults are contained
in this hyperparameter space while some of the package defaults are not.

17



Probst, Boulesteix and Bischl

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

mtry

D
en

si
ty

Figure 4: Density and histogram of best parameter values for mtry of random forest over
all considered datasets.

As an example, Figure 4 displays the full histogram of the best values of mtry of the
random forest over all datasets. Note that for quite a few datasets much higher values than
the package defaults seem advantageous.

6. Conclusion and Discussion

Our paper provides concise and intuitive definitions for optimal defaults of ML algorithms
and the impact of tuning them either jointly, tuning individual parameters or combinations,
all based on the general concept of surrogate empirical performance models. Tunability
values as defined in our framework are easily and directly interpretable as how much per-
formance can be gained by tuning this hyperparameter?. This allows direct comparability of
the tunability values across different algorithms.

In an extensive OpenML benchmark, we computed optimal defaults for elastic net, deci-
sion tree, k-nearest neighbors, SVM, random forest and xgboost and quantified their tunabil-
ity and the tunability of their individual parameters. This—to the best of our knowledge—
has never been provided before in such a principled manner. Our results are often in line
with common knowledge from literature and our method itself now allows an analogous
analysis for other or more complex methods.

Our framework is based on the concept of default hyperparameter values, which can be
seen both as an advantage (default values are a valuable output of the approach) and as
an inconvenience (the determination of the default values is an additional analysis step and
needed as a reference point for most of our measures).

We now compare our method with van Rijn and Hutter (2017). In contrast to us, they
apply the functional ANOVA framework from Hutter et al. (2014) on a surrogate random
forest to assess the importance of hyperparameters regarding empirical performance of a
support vector machine, random forest and adaboost, which results in numerical importance

18



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

scores for individual hyperparameters. Their numerical scores are - in our opinion - less
directly interpretable, but they do not rely on defaults as a reference point, which one
might see as an advantage. They also propose a method for calculating hyperparameter
priors, combine it with the tuning procedure hyperband, and assess the performance of this
new tuning procedure. In contrast, we define and calculate ranges for all hyperparameters.
Setting ranges for the tuning space can be seen as a special case of a prior distribution - the
uniform distribution on the specified hyperparameter space. Regarding the experimental
setup, we compute more hyperparameter runs (around 2.5 million vs. 250000), but consider
only the 38 binary classification datasets of OpenML100 while van Rijn and Hutter (2017)
use all the 100 datasets which also contain multiclass datasets. We evaluate the performance
of different surrogate models by 10 times repeated 10-fold cross-validation to choose an
appropriate model and to assure that it performs reasonably well.

Our study has some limitations that could be addressed in the future: a) We only con-
sidered binary classification, where we tried to include a wider variety of datasets from
different domains. In principle this is not a restriction as our methods can easily be applied
to multiclass classification, regression, survival analysis or even algorithms not from machine
learning whose empirical performance is reliably measurable on a problem instance. b) Uni-
form random sampling of hyperparameters might not scale enough for very high dimensional
spaces, and a smarter sequential technique might be in order here, see Bossek et al. (2015)
for an potential approach of sampling across problem instances to learn optimal mappings
from problem characteristics to algorithm configurations. c) We currently are learning static
defaults, which cannot depend on dataset characteristics (like number of features, or further
statistical measures). Doing so might improve performance results of optimal defaults con-
siderably, but would require a more complicated approach. A recent paper regarding this
topic was published by van Rijn et al. (2018). d) Our approach still needs initial ranges to
be set, in order to run our sampling procedure. Only based on these wider ranges we can
then compute more precise, closer ranges.

Acknowledgments

We would like to thank Joaquin Vanschoren for support regarding the OpenML platform
and Andreas Müller, Jan van Rijn, Janek Thomas and Florian Pfisterer for reviewing and
useful comments. Thanks to Jenny Lee for language editing. This work has been partially
funded by grant BO3139/2-3 to ALB from the German Research Foundation and by the
German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibilities for its content.

19



Probst, Boulesteix and Bischl

Appendix A. Additional Graphs and Tables

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 5: Same as Figure 1 but with exchanged x-axis and legend. Average performances
over the datasets of different surrogate models (target: AUC) for different algo-
rithms (that were presented in 4.2).

20



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 6: Surrogate model comparison as in Figure 1 but with accuracy as target measure.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 7: Surrogate model comparison as in Figure 6 (target: accuracy) but with exchanged
x-axis and legend.

21



Probst, Boulesteix and Bischl

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 8: Surrogate model comparison as in Figure 1 but with Brier score as target measure.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 9: Surrogate model comparison as in Figure 8 but with exchanged x-axis and legend.

22



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.042± 0.020 0.019± 0.010 0.042± 0.018 0.023± 0.021 0.001± 0.013
rpart 0.020± 0.004 0.012± 0.002 0.014± 0.004 0.008± 0.003 0.005± 0.002
kknn 0.021± 0.006 0.008± 0.002 0.010± 0.004 0.013± 0.005 0.010± 0.006
svm 0.041± 0.009 0.030± 0.008 0.041± 0.012 0.011± 0.004 −0.001± 0.011

ranger 0.016± 0.004 0.007± 0.001 0.009± 0.002 0.009± 0.004 0.006± 0.004
xgboost 0.034± 0.005 0.011± 0.004 0.012± 0.004 0.023± 0.004 0.022± 0.004

Table 6: Mean tunability as in Table 2, but calculated for the accuracy. Overall tunability
(regarding accuracy) with the package defaults (Tun.P) and the optimal defaults
(Tun.O) as reference points, cross-validated tunability (Tun.O-CV), average im-
provement (Improv) and cross-validated average improvement (Impr-CV) obtained
by using optimal defaults compared to package defaults. The (cross-validated) im-
provement can be calculated by the (rounded) difference between Tun.P and Tun.O
(Tun.O-CV). Standard error of the mean (SEM) is given behind the “±”-sign.

0.00

0.05

0.10

0.15

glmnet rpart kknn svm ranger xgboost

Algorithm

A
cc

ur
ac

y 
tu

na
bi

lit
y

Figure 10: Boxplots of the tunabilities (accuracy) of the different algorithms with respect
to optimal defaults.

23



Probst, Boulesteix and Bischl

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.042 0.019
alpha 1 0.252 0.022 0.010 0.015 0.979

lambda 0 0.005 0.029 0.017 0.001 0.223
rpart 0.020 0.012

cp 0.01 0.002 0.013 0.008 0 0.528
maxdepth 30 19 0.004 0.004 10 28
minbucket 7 5 0.005 0.006 1.85 43.15
minsplit 20 13 0.002 0.003 6.7 47.6

kknn 0.021 0.008
k 7 14 0.021 0.008 2 30

svm 0.041 0.030
kernel radial radial 0.019 0.018
cost 1 936.982 0.019 0.003 0.025 943.704

gamma 1/p 0.002 0.024 0.020 0.007 276.02
degree 3 3 0.005 0.014 2 4
ranger 0.016 0.007

num.trees 500 162 0.001 0.001 203.5 1908.25
replace TRUE FALSE 0.004 0.001

sample.fraction 1 0.76 0.003 0.003 0.257 0.971
mtry √

p p · 0.432 0.010 0.003 0.081 0.867
respect.unordered.factors TRUE TRUE 0.001 0.000

min.node.size 1 1 0.001 0.002 0.009 0.453
xgboost 0.034 0.011
nrounds 500 3342 0.004 0.002 1360 4847.15

eta 0.3 0.031 0.005 0.005 0.002 0.445
subsample 1 0.89 0.003 0.002 0.555 0.964

booster gbtree gbtree 0.008 0.005
max_depth 6 14 0.001 0.001 3 13

min_child_weight 1 1.264 0.009 0.002 1.061 7.502
colsample_bytree 1 0.712 0.005 0.001 0.334 0.887
colsample_bylevel 1 0.827 0.006 0.001 0.348 0.857

lambda 1 2.224 0.002 0.002 0.004 5.837
alpha 1 0.021 0.003 0.002 0.003 2.904

Table 7: Tunability measures for single hyperparameters and tuning spaces as in Table 3, but
calculated for the accuracy. Defaults (package defaults (Def.P) and own optimal
defaults (Def.O)), tunability of the hyperparameters with the package defaults
(Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles
(q0.05 and q0.95) for different parameters of the algorithms.

24



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

A
cc

ur
ac

y 
tu

na
bi

lit
y

Figure 11: Boxplots of the tunabilities (accuracy) of the hyperparameters of the different
algorithms with respect to optimal defaults. The y-axis is on a logarithmic scale.
All values below 10−3 were set to 10−3 to be able to display them. Same definition
of whiskers as in Figure 2.

25



Probst, Boulesteix and Bischl

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.022± 0.007 0.010± 0.004 0.020± 0.014 0.011± 0.006 0.001± 0.012
rpart 0.015± 0.002 0.009± 0.002 0.011± 0.003 0.006± 0.002 0.004± 0.002
kknn 0.012± 0.003 0.003± 0.001 0.003± 0.001 0.009± 0.003 0.009± 0.003
svm 0.026± 0.005 0.018± 0.004 0.023± 0.006 0.008± 0.003 0.003± 0.005

ranger 0.015± 0.004 0.005± 0.001 0.006± 0.001 0.010± 0.004 0.009± 0.004
xgboost 0.027± 0.003 0.009± 0.002 0.011± 0.003 0.018± 0.002 0.016± 0.002

Table 8: Mean tunability as in Table 2, but calculated for the Brier score. Overall tunability
(regarding Brier score) with the package defaults (Tun.P) and the optimal defaults
(Tun.O) as reference points, cross-validated tunability (Tun.O-CV), average im-
provement (Improv) and cross-validated average improvement (Impr-CV) obtained
by using optimal defaults compared to package defaults. The (cross-validated) im-
provement can be calculated by the (rounded) difference between Tun.P and Tun.O
(Tun.O-CV). Standard error of the mean (SEM) is given behind the “±”-sign.

0.00

0.05

0.10

0.15

glmnet rpart kknn svm ranger xgboost

Algorithm

B
rie

r 
sc

or
e 

tu
na

bi
lit

y

Figure 12: Boxplots of the tunabilities (Brier score) of the different algorithms with respect
to optimal defaults.

26



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.022 0.010
alpha 1 0.997 0.009 0.005 0.003 0.974

lambda 0 0.004 0.014 0.007 0.001 0.051
rpart 0.015 0.009

cp 0.01 0.001 0.009 0.003 0 0.035
maxdepth 30 13 0.002 0.002 9 27.15
minbucket 7 12 0.004 0.006 1 44.1
minsplit 20 18 0.002 0.002 7 49.15

kknn 0.012 0.003
k 7 19 0.012 0.003 4.85 30

svm 0.026 0.018
kernel radial radial 0.013 0.011
cost 1 950.787 0.012 0.002 0.002 963.81

gamma 1/p 0.005 0.015 0.012 0.001 4.759
degree 3 3 0.003 0.009 2 4
ranger 0.015 0.005

num.trees 500 198 0.001 0.001 187.85 1568.25
replace TRUE FALSE 0.002 0.001

sample.fraction 1 0.667 0.002 0.003 0.317 0.964
mtry √

p p · 0.666 0.010 0.002 0.072 0.954
respect.unordered.factors TRUE TRUE 0.000 0.000

min.node.size 1 1 0.001 0.001 0.008 0.394
xgboost 0.027 0.009
nrounds 500 2563 0.004 0.002 2018.55 4780.05

eta 0.3 0.052 0.004 0.005 0.003 0.436
subsample 1 0.873 0.002 0.002 0.447 0.951

booster gbtree gbtree 0.009 0.004
max_depth 6 11 0.001 0.001 2.6 13

min_child_weight 1 1.75 0.007 0.002 1.277 5.115
colsample_bytree 1 0.713 0.004 0.002 0.354 0.922
colsample_bylevel 1 0.638 0.004 0.001 0.363 0.916

lambda 1 0.101 0.002 0.003 0.006 28.032
alpha 1 0.894 0.003 0.004 0.003 2.68

Table 9: Tunability measures for single hyperparameters and tuning spaces as in Table 3, but
calculated for the Brier score. Defaults (package defaults (Def.P) and own optimal
defaults (Def.O)), tunability of the hyperparameters with the package defaults
(Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles
(q0.05 and q0.95) for different parameters of the algorithms.

27



Probst, Boulesteix and Bischl

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

B
rie

r 
sc

or
e 

tu
na

bi
lit

y

Figure 13: Boxplots of the tunabilities (Brier score) of the hyperparameters of the different
algorithms with respect to optimal defaults. The y-axis is on a logarithmic scale.
All values below 10−3 were set to 10−3 to be able to display them. Same definition
of whiskers as in Figure 2.

28



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Measure AUC Accuracy Brier score
Parameter Tun.O Tun.O-CV Tun.O Tun.O-CV Tun.O Tun.O-CV

glmnet 0.024 0.037 0.019 0.042 0.010 0.020
alpha 0.006 0.006 0.010 0.026 0.005 0.015

lambda 0.021 0.034 0.017 0.039 0.007 0.018
rpart 0.012 0.016 0.012 0.014 0.009 0.011

cp 0.002 0.002 0.008 0.008 0.003 0.005
maxdepth 0.002 0.002 0.004 0.004 0.002 0.003
minbucket 0.006 0.009 0.006 0.007 0.006 0.006
minsplit 0.004 0.004 0.003 0.003 0.002 0.003

kknn 0.006 0.006 0.008 0.010 0.003 0.003
k 0.006 0.006 0.008 0.010 0.003 0.003

svm 0.042 0.048 0.030 0.041 0.018 0.023
kernel 0.024 0.030 0.018 0.031 0.011 0.016
cost 0.006 0.006 0.003 0.003 0.002 0.002

gamma 0.022 0.028 0.020 0.031 0.012 0.016
degree 0.014 0.020 0.014 0.027 0.009 0.014
ranger 0.006 0.007 0.007 0.009 0.005 0.006

num.trees 0.001 0.002 0.001 0.003 0.001 0.001
replace 0.001 0.002 0.001 0.002 0.001 0.001

sample.fraction 0.002 0.002 0.003 0.003 0.003 0.003
mtry 0.003 0.004 0.003 0.005 0.002 0.003

respect.unordered.factors 0.000 0.000 0.000 0.001 0.000 0.000
min.node.size 0.001 0.001 0.002 0.002 0.001 0.001

xgboost 0.014 0.017 0.011 0.012 0.009 0.011
nrounds 0.002 0.002 0.002 0.003 0.002 0.002

eta 0.005 0.006 0.005 0.006 0.005 0.006
subsample 0.002 0.002 0.002 0.002 0.002 0.002

booster 0.008 0.008 0.005 0.005 0.004 0.004
max_depth 0.001 0.001 0.001 0.001 0.001 0.001

min_child_weight 0.002 0.003 0.002 0.002 0.002 0.003
colsample_bytree 0.001 0.002 0.001 0.001 0.002 0.002
colsample_bylevel 0.001 0.001 0.001 0.001 0.001 0.002

lambda 0.002 0.003 0.002 0.003 0.003 0.004
alpha 0.002 0.004 0.002 0.003 0.004 0.004

Table 10: Tunability with optimal defaults as reference without (Tun.O) and with (Tun.O-
CV) cross-validation for AUC, accuracy and Brier score

29



Probst, Boulesteix and Bischl

References

Charles Audet, John E. Dennis, Douglas Moore, Andrew Booker, and Paul Frank. A
surrogate-model-based method for constrained optimization. In 8th Symposium on Mul-
tidisciplinary Analysis and Optimization, page 4891, 2000.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

André Biedenkapp, Marius Thomas Lindauer, Katharina Eggensperger, Frank Hutter, Chris
Fawcett, and Holger H Hoos. Efficient parameter importance analysis via ablation with
surrogates. In AAAI, pages 773–779, 2017.

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race and it-
erated F-Race: An overview. In Experimental Methods for the Analysis of Optimization
Algorithms, pages 311–336. Springer, 2010.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs. Resampling methods for
meta-model validation with recommendations for evolutionary computation. Evolutionary
Computation, 20(2):249–275, 2012.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in R. Journal of
Machine Learning Research, 17(170):1–5, 2016.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. OpenML benchmarking suites and
the OpenML100. ArXiv preprint arXiv:1708.03731, 2017a. URL https://arxiv.org/ab
s/1708.03731.

Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang.
mlrMBO: A modular framework for model-based optimization of expensive black-box
functions. ArXiv preprint arXiv:1703.03373, 2017b. URL https://arxiv.org/abs/1703.
03373.

Jakob Bossek, Bernd Bischl, Tobias Wagner, and Günter Rudolph. Learning feature-
parameter mappings for parameter tuning via the profile expected improvement. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages
1319–1326. ACM, 2015.

Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke,
Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl. OpenML: An R
package to connect to the machine learning platform OpenML. Computational Statistics,
32(3):1–15, 2017.

Katharina Eggensperger, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Surrogate
benchmarks for hyperparameter optimization. In Proceedings of the 2014 International
Conference on Meta-learning and Algorithm Selection-Volume 1201, pages 24–31. CEUR-
WS.org, 2014.

30

https://arxiv.org/abs/1708.03731
https://arxiv.org/abs/1708.03731
https://arxiv.org/abs/1703.03373
https://arxiv.org/abs/1703.03373


Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Katharina Eggensperger, Marius Lindauer, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. Efficient benchmarking of algorithm configurators via model-based surrogates.
Machine Learning, pages 1–27, 2018.

Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

Chris Fawcett and Holger H Hoos. Analysing differences between algorithm configurations
through ablation. Journal of Heuristics, 22(4):431–458, 2016.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian
optimization. arXiv preprint 1802.02219, 2018. URL https://arxiv.org/abs/1802.
02219.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Model selection: Beyond the
bayesian/frequentist divide. Journal of Machine Learning Research, 11(Jan):61–87, 2010.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In International Conference on Learning and
Intelligent Optimization, pages 507–523. Springer, 2011.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Identifying key algorithm pa-
rameters and instance features using forward selection. In International Conference on
Learning and Intelligent Optimization, pages 364–381. Springer, 2013.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In ICML, volume 32 of JMLR Workshop and Conference
Proceedings, pages 754–762, 2014.

Max Kuhn. Building predictive models in R using the caret package. Journal of statistical
software, 28(5):1–26, 2008.

Max Kuhn, Steve Weston, Chris Keefer, and Nathan Coulter. Cubist: Rule- and instance-
based regression modeling, 2016. R package version 0.0.19.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. OpenML R bot benchmark
data (final subset), 2018a. URL https://figshare.com/articles/OpenML_R_Bot_Benc
hmark_Data_final_subset_/5882230/2.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. Automatic Exploration of
Machine Learning Experiments on OpenML. ArXiv preprint arXiv:1806.10961, 2018b.
URL https://arxiv.org/abs/1806.10961.

Upmanu Lall and Ashish Sharma. A nearest neighbor bootstrap for resampling hydrologic
time series. Water Resources Research, 32(3):679–693, 1996.

Michel Lang, Bernd Bischl, and Dirk Surmann. batchtools: Tools for R to work on batch
systems. The Journal of Open Source Software, 2(10), 2017.

31

https://arxiv.org/abs/1802.02219
https://arxiv.org/abs/1802.02219
https://figshare.com/articles/OpenML_R_Bot_Benchmark_Data_final_subset_/5882230/2
https://figshare.com/articles/OpenML_R_Bot_Benchmark_Data_final_subset_/5882230/2
https://arxiv.org/abs/1806.10961


Probst, Boulesteix and Bischl

Gang Luo. A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioinfor-
matics, 5(1):1–16, 2016.

Rafael G. Mantovani, Tomáš Horváth, Ricardo Cerri, Andre C.P.L.F. Carvalho, and Joaquin
Vanschoren. Hyper-parameter tuning of a decision tree induction algorithm. In Brazilian
Conference on Intelligent Systems (BRACIS 2016), 2016.

Rafael Gomes Mantovani, Tomáš Horváth, Ricardo Cerri, Sylvio Barbon Junior, Joaquin
Vanschoren, André Carlos Ponce de de Carvalho, and Leon Ferreira. An empirical study
on hyperparameter tuning of decision trees. ArXiv preprint arXiv:1812.02207, 2018. URL
https://arxiv.org/abs/1812.02207.

Erwan Scornet. Tuning parameters in random forests. ESAIM: Procs, 60:144–162, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

Jan N. van Rijn and Frank Hutter. Hyperparameter importance across datasets. ArXiv
preprint arXiv:1710.04725, 2017. URL https://arxiv.org/abs/1710.04725.

Jan N van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd Bischl, and J Van-
schoren. Meta learning for defaults: Symbolic defaults. In Neural Information Processing
Workshop on Meta-Learning, 2018.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Levi Waldron, Melania Pintilie, Ming-Sound Tsao, Frances A Shepherd, Curtis Huttenhower,
and Igor Jurisica. Optimized application of penalized regression methods to diverse ge-
nomic data. Bioinformatics, 27(24):3399–3406, 2011.

32

https://arxiv.org/abs/1812.02207
https://arxiv.org/abs/1710.04725

	Introduction
	Related Literature
	Methods for Estimation of Defaults, Tunability and Ranges
	General Notation
	Optimal Configuration per Dataset and Optimal Defaults
	Measuring Overall Tunability of a ML Algorithm
	Measuring Tunability of a Specific Hyperparameter
	Tunability of Hyperparamater Combinations and Joint Gains
	Optimal Hyperparameter Ranges for Tuning
	Practical Estimation
	Reparametrization

	Experimental Setup
	Datasets from the OpenML Platform
	ML Algorithms
	Performance estimation
	Random Bot sampling strategy for meta data
	Optimizing Surrogates to Obtain Optimal Defaults
	The Problem of Hyperparameter Dependency
	Software Details

	Results and Discussion
	Surrogate Models
	Optimal Defaults and Tunability
	Tunability of Specific Hyperparameters
	Tunability of Hyperparameter Combinations and Joint Gains
	Hyperparameter Space for Tuning

	Conclusion and Discussion
	Additional Graphs and Tables

