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We propose a two step algorithm based on ¢; /¢y regularization for the detection and esti-
mation of parameters of a high dimensional change point regression model and provide the
corresponding rates of convergence for the change point as well as the regression parameter
estimates. Importantly, the computational cost of our estimator is only 2-Lasso(n, p), where
Lasso(n, p) represents the computational burden of one Lasso optimization in a model of
size (n,p). In comparison, existing grid search based approaches to this problem require
a computational cost of at least n - Lasso(n,p) optimizations. Additionally, the proposed
method is shown to be able to consistently detect the case of ‘no change’, i.e., where no finite
change point exists in the model. We allow the true change point parameter 7y to possibly
move to the boundaries of its parametric space, and the jump size ||Bo — 7o|2 to possibly
diverge as n increases. We then characterize the corresponding effects on the rates of con-
vergence of the change point and regression estimates. In particular, we show that, while
an increasing jump size may have a beneficial effect on the change point estimate, however
the optimal rate of regression parameter estimates are preserved only upto a certain rate
of the increasing jump size. This behavior in the rate of regression parameter estimates
is unique to high dimensional change point regression models only. Simulations are per-
formed to empirically evaluate performance of the proposed estimators. The methodology
is applied to community level socio-economic data of the U.S., collected from the 1990 U.S.

census and other sources.
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1. Introduction

Regression models are fundamental to supervised learning and statistical modelling of data
collected from scientific phenomena. While applying regression models, one often assumes
the regression parameters to be stable over time. However, this assumption may be rigid and
may not hold in several environmental, biological and economic models, particularly when
data is collected over an extended period of time. There are several approaches to model
this dynamic phenomenon in regression parameters. One approach is to let the parameters
change at certain unknown time points of the sampling period (Hinkley (1970), Hinkley
(1972), Jandhyala and MacNeill (1997), Bai (1997), Jandhyala and Fotopoulos (1999), Fo-
topoulos et al. (2010) and Jandhyala et al. (2013)). Another closely related approach is
to formulate the change point based on one or more covariate thresholds (Hinkley (1969),
Koul and Qian (2002) and Koul et al. (2003)). In the literature, it is common to broadly
call both as change point regression models. Such dynamic models have been found to have
wide ranging applications in all areas of scientific inquiry (Reeves et al. (2007), Lund et al.
(2007), and Liu et al. (2013)).

Technological advances in the past two decades have led to the wide availability of
large scale/high dimensional data sets in several areas of applications such as genomics,
social networking, empirical economics, finance etc. This has led to rapid development of
high dimensional statistical methods. A large body of literature has now been developed
pertaining to the study of regression models capable of allowing a vastly larger number of
parameters p than the sample size n. One of the most successful methods for analysing high
dimensional regression models is the Lasso, which is based on the least squares loss and ¢;
regularization (Tibshirani (1996)). Innumerable investigations have since been carried out
to study the behavior of the Lasso estimator and its various modifications in many different
settings (see e.g., Zou (2006), Zhao and Yu (2006), Bickel et al. (2009), Belloni et al. (2011),
Belloni et al. (2017a), Kaul (2014), Kaul and Koul (2015), and the references therein). For
a general overview on the developments of Lasso and its variants we refer to the monograph
of Bithlmann and Van De Geer (2011) and the review article of Tibshirani (2011). All
aforementioned articles provide results in a regression setting where the parameters are
dynamically stable. In the recent past, work has also been carried out in the context of high
dimensional change point models in an ‘only means’ setup, where change occurs in only the
mean of time ordered independent random vectors, with the dimension of the observation
vector being larger than the number of observations (Cho and Fryzlewicz (2015), Fryzlewicz
(2014), and Wang and Samworth (2018) among others). Here the change is characterized
in the sense of a dynamic mean vector. Another context in which high dimensional change
point models have been investigated is that of a dynamic covariance structure which is
related to the study of evolving networks (Gibberd and Roy (2017), and Atchade and
Bybee (2017)). In contrast, change point methods for high dimensional linear regression
models have received much less attention and only a select few articles have considered
this problem in the recent literature (Ciuperca (2014), Zhang et al. (2015), Leonardi and
Bithlmann (2016), Lee et al. (2016), and Lee et al. (2018)).

In this paper, we consider a high dimensional linear regression model with a potential
change point,

Yi = x?ﬂol[wi < T()] + x?’ml[wi > 7'0] +e, 1=1,...,n. (1.1)
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The observed variables in model (1.1) are, y; € R, the p-dimensional predictors z; € RP, and
change inducing variable w; € R, ¢ = 1,..,n. The unknown parameters of interest are the
regression parameters 3y, v0 € R?, and the change point 79 € R* := RU{—oc}. The change
point 7y represents a threshold value of the variable w subsequent to which the regression
parameter changes from its initial value By to a new value ~y. Note that, the ‘no change’
case is allowed by the model (1.1), since we allow 79 = —o0, in its parametric space. In
this case, model (1.1) reduces to an ordinary high dimensional linear regression model. The
parametric space R* of 7 is restricted to only contain —oo, and not oo, since both of these
points characterize the ‘no change’ scenario and are unidentifiable from each other. This
differs from the usual characterization of the ‘no change’ case, which is typically defined by
Bo = 70 and 19 € R, for e.g. in Lee et al. (2016) and Lee et al. (2018). However it should
be understood that this difference is only notational and both are characterizing the same
null model. It should also be noted that the change point 7y € R*, may itself depend on
n, i.e., as the sample size increases, the change point may shift its location. However, for
clarity of exposition, this dependence is notionally suppressed in the rest of this article.
Furthermore, we let p >> n, so that model (1.1) corresponds to a high dimensional setting.
Also, consistent with current literature, we assume that only a total of s components of 3y
and o are non-zero, i.e., ||Bollo + ||0llo < s, where s < n.

Recently, models similar to (1.1) have been studied by Ciuperca (2014), Zhang et al.
(2015), Leonardi and Biihlmann (2016), Lee et al. (2016) and Lee et al. (2018). Similar
to model (1.1), Lee et al. (2016) and Lee et al. (2018) consider a high dimensional model
with only a single unknown change point, whereas, Zhang et al. (2015), and Leonardi and
Bithlmann (2016) consider a model where multiple change points may be present in the
model. The articles Zhang et al. (2015) and Ciuperca (2014) consider a multiple change
point setting where the dimension p of the regression parameters is fixed. The common
thread in these articles is to provide regularized estimators for the parameters 3,~, T and
study their rates of convergence under different norms. In an earlier work, Wu (2008)
provided an information-based criterion for carrying out change point analysis and variable
selection in the fixed p setting; this methodology, however is not extendable to the high
dimensional case. While these articles make important contributions to this fast emerging
area, many aspects of this problem remain to be understood. For example, existing methods
may be unable to satisfactorily detect the ‘no change’ case, these estimation methods may
be computationally challenging to implement, and the underlying technical assumptions
required for their theoretical validity may be restrictive.

The most commonly applied approach to estimating parameters of models such as (1.1)
with a single change point is to consider,

n -

(8,4,7) = argmin {

n
1 Z loss(data, 3, v, T) + pen(S3, v, T)} , (1.2)

BYERP,TET i—1
where loss(data, 3,7, 7) is an appropriately chosen loss function, and pen(f3,, 7) is a suit-
ably defined penalty function on the parameters 3,~, T (e.g., Lee et al. (2016), Lee et al.
(2018) and (5.1) ) Here T is a restriction on the parametric space of the change point
parameter 7. The loss function in (1.2) is nonconvex and consequently a direct optimization
of (1.2) is typically computationally infeasible. To circumvent this difficulty, the space T
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is usually broken into a grid of points 7*, and f3 (1),4(r) are computed for each 7 € T*.
The estimate 7 of the change point 7j is then obtained as that 7 € 7 which minimizes the
objective function in (1.2) over 3(7),4 (). When the loss function is least squares and the
penalty is of an ¢;-type, the computational cost of the above grid search is |7 *|Lasso(n, p),
where |T*| is typically of order n. Note that this grid search mechanism becomes computa-
tionally intensive as n, p increase. In the case of multiple change points, Zhang et al. (2015),
and Leonardi and Biihlmann (2016) provide dynamic programming approaches that can es-
timate the number and locations of change points with the same nLasso(n, p) computational
cost.

In this article we develop a two step algorithm for detection and estimation of parameters
of model (1.1), so that a full grid search is avoided even as the near optimal rates of all
parameter estimates are preserved. The idea for developing such an algorithm originates
from the following simple and yet surprising numerical observation. Suppose we first choose
virtually any initial value 0 ¢ Supp(w), separated from its boundaries and then compute
regression coefficients BO) 4©) on the binary partition {i; i€ {l,.,n} w < T(O)} and
{i; ie{l,.,n}, w; > T(O)} respectively. Then a single update of the change point estimate
obtained by optimization of the least squares loss over the change point parameter, using the
previously obtained regression parameter estimates B(O), ’y(o), yields a very precise estimate
of the unknown change point, where the precision of this estimate is indistinguishable
from existing full grid search approaches in any uniform sense. This simple numerical
observation is very surprising, since it suggests that any initial 7(9) which carries even a
‘fractional amount of information’ on the unknown 7y (this notion is described precisely
later in Section 2), can be utilized to obtain an updated estimate 7+ in a single step,
which lies in a near optimal neighborhood of 7y5. In other words, the single step update
process pulls in the initial guess 7(°) from a much wider (nearly arbitrary) neighborhood of
70, to a near optimal neighborhood of 7y. The usefulness of this process is immediate, as it
removes the necessity of a grid search. The main contribution of this article is to develop a
mathematical treatment of this two step algorithm. In doing so we also allow the possibility
of ‘no change’ in the model (1.1).

More precisely, in this article we propose estimators based on ¢ /{y regularization for
the parameters 79, By, and o of model (1.1). The proposed methodology completely avoids
a grid search approach for locating the unknown change point, consequently has a com-
putational cost of only 2Lasso(n, p), significantly below the nLasso(n,p) cost of existing
methods. A second important novelty of the proposed method, is its ability to detect the
‘no change’ case, which is achieved by a £y regularization in the change point estimator.
From a technical perspective, the rates of convergence associated with the proposed estima-
tors are such that they are optimal for the regression parameter estimates and match the
best rate of convergence available in the literature for estimating the change point. Before
we describe our proposed methodology in Section 2, we outline below the notations used in
this paper.

Notation: Throughout the paper, for any vector § € RP, ||J||o represents the number
of non-zero components in §. The norms ||d||; and ||d]|2 represent the standard 1-norm and
Euclidean norm, respectively. The norm |[|d||s represents the sup norm, i.e., the maximum
of absolute values of all elements. For any set of indices T' C {1, ....,p}, let 67 = (6;)jer
represent a sub-vector of § containing components corresponding to the indices in 7. Also,
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we let |T'| represent the cardinality of the set T. The notation 1[-] represents the usual
indicator function. We denote by a Ab = min{a, b}, and a Vb = max{a, b}, for any a,b € R.
In the following, let Supp(w) represent the support of the distribution of w and ®(-) be its
cdf. Also denote by ®Pmin(70) = ®(70) A (1 — ®(70)). We shall use the following notation to
represent generic constants that may be different from one term to the next. For example,
0 < ¢, < oo represent universal constants, whereas 0 < ¢, < oo are constants that depend
on model parameters such as variance parameters of underlying distributions. The generic
constants 0 < ¢1, co < oo are used to denote constants that may depend on both ¢, and ¢,,.
Lastly, we shall denote by R* := RU {—oc}, as the extended Euclidean space with negative
infinity included. In the following, without loss of generality we assume that Supp(w) = R.

2. Methodology and Related Work

We begin this section by describing the proposed methodology for the detection and esti-
mation of parameters of model (1.1). For this purpose we require the following notation.
Let for any 7 € R*, 8,7 € RP|
1 o R
QUrB7) = = 3= TP <71+ 5 S — T Paw > 7l ()
i=1

=1

Additionally define the following Condition I that shall serve as an initializing condition
required for the construction of our proposed algorithm.

Condition I: Let u7(10) be a non-negative sequence defined as,

slogp

1
B )k, for any constants, k € [1,00), and ¢, > 0, " (2.2)
n n

ugLO) = 1/\Cu(

where 0 < [, < 1/2 is any non-negative sequence. Then, assume that the initializer 70

satisfies,
Prin(70) > euly, and (7)) — & (1) < w0, (2.3)

In the above Condition I, the sequence l,, and the constant k are arbitrary, subject to
satisfying Condition A(iii) to follow. The rate of the sequence [,, shall control the ability of
Algorithm 1 to detect a finite change point near the boundaries of R. Specifically Algorithm 1
shall be able to detect a finite change point (when it exists), such that @, (7p) is of order at
least that of [,,. In the case where it is assumed that, either ®(79) = 0 or ®pin(70) > ¢ > 0,
then we can set [, > ¢,. Here, Algorithm 1 will be able to distinguish between the two
cases, whether (a) there is no change point, ®(79) = 0 or (b) there is a finite change point
7o € R such that ®(7p) is bounded below.¢

Then, the two step algorithm which we propose to obtain change point and regression
coefficient estimates is described in Algorithm 1 below.

a. Here, define 1[w; < 7] =0, for 7 = —oc.

b. Note here that the constant k is arbitrary, hence it can itself depend on initial 7'(0>, i.e., the farther the
guess 7(*) is from 7o the larger k can be chosen in order to satisfy Condition I.

c. The quantities l,, and k are only required for analysis of Algorithm 1. These quantities play no role in
its implementation.
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Algorithm 1: Detection and estimation of change point and regression parameters

Step 0 (Initialize): Choose any initial value 7(°) € R satisfying Condition I. Compute the
initial regression parameter estimates,

(89,59) = argmin {Q(r™, 8.7) + Mll(8”. A1) |1}, Au >0,
ByeRp
Step 1: Update 7(9 to obtain the change point estimate 7(!) where 9,
#1) = arg min {Q(T,ﬁ(o),’?(o)) + /LH(I)(T)HO}, > 0. (2.4)
TER*
Step 2: Update (8(,4(©) to obtain regression parameter estimates (81,541 where,

(BV,40) = argmin {Q(F W, 5,7) + Xal(BT, A7) i}, h2 > 0.
B,YERP

A first concern that may arise to reader regarding Step 0 of Algorithm 1 pertains to
the initializing conditions in (2.3) of Condition I. The first of these conditions is clearly
innocuous, all it requires is the initial user chosen 7(9) to be marginally away from the
boundaries of R. The second condition in (2.3) requires that the initial value 7(%) be in

(0)

an uy, '-neighborhood of 79. While at first, this might come across as a limitation of the
algorithm, however the following discussion shall show how broad this uglo)—neighborhood
truly can be. First note that the constant k € [1, 00) is arbitrarily large, subject to Condition
A(iii), i.e., this condition is adaptable to the user chosen value of the initializer 7 In other
words, the farther the user chosen 7(9) is from the true change point 79, the larger the value
of k can be, in order to satisfy this condition. Additionally, note that the largest possible
distance (in the cdf scale) between any two 71,72 € R, is such that |®(71) — ®(72)| < 1. Now
for ¢, = 1, consider first the disallowed case of k = oo, then the initial condition is trivially
satisfied, since |®(7(?)) — ®(79)| < 1. Thus, virtually any initial value in the parametric
space of 7y, separated from its boundaries, will satisfy the required initial condition for a
large enough k € [1,00), thereby illustrating that this initial condition is infact very mild.
Remarkably, one of our main results shows that, under suitable conditions, the updated
change point estimate 7(1) of Step 1 of Algorithm 1, will satisfy optimal error bounds,
irrespective of the value of k. Simply stated, the update in Step 1 sharpens the initial
change point guess from any arbitrary fractional rate to a near optimal rate. The condition
(2.3), also provides a precise description of the notion of ‘fractional information” mentioned
in the introduction section. The sequence uﬁ?’ forms a metric measuring the amount of
information in the guess 79 about 79, and the existence of a finite k < oo provides a way
of saying that the guess 7(9) possesses some fractional amount of information on 7.

To numerically illustrate this surprising phenomenon, in Section 5 we use the ‘no in-
formation’ initializer 7(9 = w5 ie. the 50" percentile of w.© Note that this choice is

d. Note that while the initializing 7(* in Step 0 is chosen in R, however the optimization in Step 1 is

performed over the extended Euclidean space R* = R U {—o0}.
e. The 50" percentile is the best ‘no information’ guess, since it is the empirical guess that is equidistant
to the ends of the support of w.
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the most sensible value of the initializer in the absence of any information about 7. These

numerical results provide strong evidence to support Algorithm 1 by showing that the pre-

cision of the estimates obtained from the proposed method are infact indistinguishable from

existing grid search type approaches, and are obtained with a small fraction of the com-

putational burden. Another e((11;ivalent (V\;ay of viewing the above discussion is that, if we
0 0

pick two distinct initializers 7;° and 7,/ carrying some fractional information about 7o,

(0)

i.e., they satisfy the initializing condition for some 1 < k1 < ko < o0, respectively (7, is
closer to 79 than 7‘2(0)), then, the corresponding updated change point estimates %1(1), %2(1)
will both be in a near optimal neighborhood of 7y. This basically implies that the quality of
the guess does not influence the updated estimate in its eventual rate of convergence. This
observation is also numerically illustrated in Section 5.

Finally, we also mention that a slight relaxation of Condition I is also possible, specifi-
cally, the sequence u&o) in this condition can instead be relaxed to u%o) =1A cu(%)l/ k. for
any constants k € [1,00) and any ¢, > 0, while preserving all results to follow. However,
Condition I in its current form provides a coherence with other noise bounds that show up
in the statement and proof of our results, and thus is a notationally convenient representa-
tion. Furthermore, this relaxation of Condition I shall not yield error bounds that are any

sharper than those to follow.

A second concern that may arise to the reader regarding implementation of Algorithm
1 is the feasibility of implementing Step 1. At first, this optimization seems intractable
owing to its nonsmooth, nonconvex (with no apparent convex relaxations) construction.
However, upon closer inspection, it is observed that the loss function Q(-,B(O),’y(o)) in
Step 1 is a step function with step changes occurring at any point on the one-dimensional
grid (—o0,wy,wa, ..., wy)". Secondly, the £y term in the objective function only depends on
whether ®(7) is zero or non zero. This implies that the distance between any two 7 and 7
does not influence the value of the £y norm (note that this will not be the case if instead an
¢1 norm is used). These two observations together imply that any global optimum achieved
in the extended Euclidean space R* will also be attained at some point on the finite grid
(—00, w1, wa, ..., wy)T . An illustration of this step behavior is provided in Figure 1.

A final concern in implementing Step 1 is that it requires knowledge of the distri-
bution function ®(-), which is typically unknown. This concern is also easily overcome
upon observing that the objective function in Step 1 is a step function over the grid
(—o0, wy, w2, ..., w,)T. Specifically, on this grid, the term ||®(7)|lo = ||7||§, where ||7]|§ = 1,
if 7 € {wy,...,w,} and ||7]|§ =0, if 7 = —o0.

In view of the above discussion, Step 1 of Algorithm 1 can be replaced by the following
optimization,

P = argmin {Q(r,89,59) + i} p>0. (2.5)
Te{—oo}U{wi,...,wn}

Thus, the optimization (2.4) in Step 1 of Algorithm 1 is reduced to the optimization (2.5),
which can be easily solved in negligible time by explicitly computing n values of the objective
function and then locating the minimum.
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Figure 1: Step behavior of the function Q(-, 3,4) + p[|®(7)|lo, with 1 = 0.1, evaluated over grid of points
{—00}U{0,0.01,...,1}. Here w; ~ U(0,1),n =6, 70 = 0.25,p = 3, Bo = (1,0,0)", v = (0,1,0)7,
and we use 3 = (0.41,0,0)7, 4 = (0.13,0.92,0)7. The realizations {w1, .., w,} have been sorted
(ascending) in the illustration. Observe that step changes occur at —{oo} U {w1, w2, ..., ws }.

Another note of interest is the convenience of separability in computing the optimizers
8,7 in Step 0 and Step 2, i.e., for any fixed 7, we can obtain

3 (1 T 22
B(7) a%gelﬁgn{nigﬁ(y i f) 1HBH1} (2:6)
. 1 T 32
A(7) arﬂgefégn{ni.w%w(y z;v)” + 1H7II1} (2.7)

These are ordinary Lasso optimizations and can be carried out by any one of the several
methods available in the literature. Some of these methods include, coordinate or gradient
descent algorithms (see, e.g. Hastie et al. (2015)), or via interior point methods for linear
optimization under second order conic constraints (see, e.g., Koenker and Mizera (2014)).

The main results of this article establish selection consistency of the unknown change
point and provide finite sample bounds for the error in estimates obtained from Algorithm
1 under suitable conditions. Let &, := ||So — Yo||2 be the jump size between the pre and
post regression parameters. Then the specific results we derive are,

(i) If ®(m9) =0, then ®(+1)) =0,

(i7)  If ®rmin(70) = Culn, then |®(FM) — &(10)| <t 1= cycm max

(2.8)

TAVE)E n

5 1 lo
(1 1/q P } B
i) 30 =l < o s {y 5 o a2
. . 1 lo
(i) 31 =0l < cucms! g — s max {2, &atu}, a=1.2

with probability at least 1 — ¢1 exp(—c2logp), for n sufficiently large.
These and other related results about estimates from Algorithm 1 are covered in Sections
3 and 4. The sharpness and/or near optimality of the above bounds may be observed from

{Slogp 1 slogp}
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the following special case. Upon letting &,s+/logp/n — 0, and l,, > ¢,, in (2.8), the last
three results of (2.8) reduce to,

slogp

(1) T @uin(70) > culn, then |B(+1)) = ®(r0)| < cucm n (2.9)
.. (1) 1 logp .

(@) [|BY = Boll, < cucms® \/7 q=1,2,

. 1 /lo

(iti) (|5 = ol|, < cucms® ip, q=12,

with probability at least 1 — ¢1 exp(—c2logp), for n sufficiently large.

In an ordinary high dimensional linear regression model without change points, it has
been shown that the optimal rate of convergence for regression estimates is /slogp/n un-
der the ¢ norm (see, e.g.,Ye and Zhang (2010), Raskutti et al. (2011), and Belloni et al.
(2017b)). This implies that the rate of convergence of the regression estimates from Algo-
rithm 1 (which stops after one iteration) cannot be uniformly improved upon by carrying
out further iterations (over subgaussian distributions). Also, the rate of convergence of the
change point estimate in (2.9) is the fastest available rate in the literature. We shall now
state the conditions under which the results of this article are derived.

Condition A (assumptions on model parameters):

(i) Let S = S1 U S, where S1 = {j;60; # 0} and Sz = {j;70; # 0}. Then for some
s = sp > 1, we assume that |S| < s.

(ii) The model dimensions s, p,n, satisfy slog p/ n — 0. Additionally, the sequence [,, of
Condition I satisfies slogp/nl2 — 0.

(iii) If a finite change point exists, i.e., ®pin(70) > 0, then the sequence I, and constant
k € [1,00) of Condition I satisfy

s slogp);lc
— — 0.
l%( nl?2

Additionally, in this case ®pin(10) > culy.

(iv) If @pin(79) > 0, then the jump size is bounded below by a constant, i.e, &, := |8y —
Yll2 > ¢ > 0.

Condition B (assumptions on model distributions):

(i) The vectors z; = (zi1,...,zip)", i = 1,..,n, are i.i.d subgaussian’ with mean vector
zero, and variance parameter o2 < C. Furthermore, the covariance matrix ¥ := EmZxZT has
bounded eigenvalues, i.e., 0 < k < mineigen(X) < maxeigen(X) < ¢ < co.

(ii) The errors ;’s are i.i.d. subgaussian with mean zero and variance parameter o2 < C.
(iii) The variables w;, i = 1,...,n are i.i.d r.v.’s (continuous or discrete), with its cdf ®(a) =
P(w; <a),a€R.

f. Recall that for @ > 0, the random variable 7 is said to be a-subgaussian if, for all ¢t € R, Elexp(tn)] <
exp(a?t?/2). Similarly, a random vector £ € RP is said to be a-subgaussian if the inner products (€, v)
are a-subgaussian for any v € RP with ||v[j2 = 1.
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(iv) The r.v.’s x;,w;, €; are independent of each other.

Conditions A(i) and A(ii) together form the usual sparsity assumption of high dimen-
sional models. Conditions A(ii) and A(iii) are both restrictions on the model dimensions
and in fact A(ii) is implied by A(iii) when it is applicable. However, both conditions are
stated here since some of our results in Sections 3 and 4, hold under the weaker Condition
A(ii). The Condition A(iii) is on the model parameters and also related to the initial condi-
tion of Condition I, via the sequence [,, and the constant k € [1,00). This condition assumes
the only additional control on how large a constant k£ and how small the sequence [,,, can be
tolerated by Algorithm 1, given the model dimensions. Heuristically, this condition ensures
that the fractional information possessed by the initial guess 7(¥), is not dominated by the
noise induced in the linear system due to its large dimensions. Note that Condition A(iii)
is only assumed if a change point exists, i.e., ®uyin(79) > 0. In the case of ‘no change’ in
model (1.1), i.e., ®(p) = 0, any initial value 7(%) satisfying ®(7(?)) > ¢,l,, i.e., separated
from the boundaries of R, can be used to initialize Algorithm 1. A secondary purpose
that Condition A(iii) serves is to ensure that if a finite change point exists, then, to keep
®1in(70) > culy, away from the boundaries of (0,1), whenever a finite change point exists
in the model. Note that, this condition does not assume lower boundedness of @i, (79) as
is commonly the case in the literature, since the sequence /,, may converge to zero. Finally,
Condition A(iv) requires that if a finite change point exists, then the corresponding jump
size &, is bounded below. We also mention here that we do not make any assumptions on
the upper bound of &,, and this jump size is allowed to possibly diverge with n.

The subgaussian assumptions in Conditions B(i) and B(ii) are now standard in high
dimensional linear regression models and are known to accommodate a large class of random
designs. In ordinary high dimensional linear regression, these assumptions are used to
establish well behaved restricted eigenvalues of the Gram matrix Y z;z) /n (Raskutti et al.
(2010), and Rudelson and Zhou (2012)), which are in turn used to derive convergence rates
of ¢ regularized estimators (Bickel et al. (2009), and several others). These conditions play
a similar role in our change point setup.

One main advantage of the proposed Algorithm 1 over existing methods is its ability to
provide near optimal estimates without a grid search. As mentioned earlier in the article,
the computational cost of Algorithm 1 is 2Lasso(n, p), significantly below the nLasso(n, p)
cost of existing methods and is thus scalable to deal with large data. A novelty of Algorithm
1 in comparison to those proposed in Leonardi and Biithlmann (2016), Lee et al. (2016) and
Lee et al. (2018) is its ability to detect the case where ®(7p) = 0. This is relevant since it
removes the necessity to pre-test for the existence of a change point. In contrast, while the
methods of Lee et al. (2016), and Lee et al. (2018) are implementable in the case of no change
point, they are however unable to detect the absence of the change point. Instead, in this
case of ®(79) = 0, these methods return a valid 2p dimensional estimate (37, 47)?, where
ag = By — 7o, that can be used for predictive purposes using the model (1.1). Note that,
the ability to detect the absence of a change point is a stronger statement and may provide
additional relevant information, while also preserving the interpretable p dimensional linear
regression model in the case where ® () = 0.

The organization of the remainder of this article is as follows. Section 3 develops prelim-
inary results required for analysis of estimates given by Algorithm 1 and Section 4 provides
the main results regarding estimates obtained from Algorithm 1. Proofs of all results are

10
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given in Appendix A, while Appendix B consists of some relevant auxiliary results from the
literature, stated without proofs. The performance of Algorithm 1 is empirically evaluated
in Section 5. In this numerical section, the implementation of Algorithm 1 assumes no
prior information of the unknown change point 7y, additionally we numerically illustrate
that the quality of the initial guess has no discernible impact on the final estimates and
finally, we also show that the precision of the proposed estimates is indistinguishable from
grid search approaches. Section 6 consists of an application of the proposed methodology
to socio-economic data of U.S. collected from the 1990 U.S. census, and other sources.

3. Preliminary Results

In this section we present preliminary results that are important for stating and proving
our main results in Section 4. First, for any fixed 7, we define

1o <w; < 7], if 7>
G(r) = .
1[T§w1'<7'0], if 7 <my.

Then clearly, for any fixed 7 € R, E(1) := ®*(70,7) = |®(7) — ®(70)|. We shall now state
a key result that uniformly controls (over 7) the quantity n='>"" | ¢;(7).

Lemma 3.1 Let u,, and v, be any non-negative sequences such that v, > clogp/n, ¢ >0
and let T (10, up) {T O*(19,7) < un} be a uy-neighborhood of 1. Then under Condition
B(iii), we have,

(i) sup Z Gi(7) < ¢y max {IO%, un}, (11) inf % Zn: Gi(T) > cyvp,

€T (1o, TER;
T (T() ’LLn) o* (TO,T)Z’Un

with probability at least 1 — ¢y exp(—calogp).
To proceed further, define for any 7 the following set of random indices,

ie{l,..,n}; mo<w; <7, if71>m,

N = Ny (70, T) = {

) (3.1)
ie{l,..,n}; T<w; <7, if7T<7.

Note that the cardinality of the random set n,, is precisely the stochastic term controlled in
Lemma 3.1, i.e., |ny| = Y14 ¢;(7). This relation serves to provide bounds on several other
stochastic terms considered in subsequent lemmas. The relationship between the cardinality
of the random index set n,, and the r.v.’s (;(7), 7 = 1, ..., n has also been used by Kaul et al.
(2017) in the context of graphical models with missing data.

Lemma 3.2 Let u, be any non-negative sequence and let n,, be the random set of indices
as defined in (3.1). Also, let T (19, uy) be a up-neighborhood of 7y as defined in Lemma 3.1.

11
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Then under Condition B, we have for any fixed 6 € RP that,

(1) sup H — Z 5 wia]

logp
< cutm |3l max { 222, u,, ],
00 n

TE€T (T0,un) i€nw
1
(i) sup Z 6T a2l s < cyem ||0)13 max{ ng, un},
T€T (To,un) T i€ n
log p log p
(vi1) sup —H Z €iT TH < cutmay) —— o8 max { & , \/un},
TGT(TO un) 1€NW n

with probability at least 1 — ¢y exp(—calogp). Here ¢, > 0 is a universal constant, and
em1 = (¢ + 0p + 02), cma = (\/0z04 + 0-0,) are model constants.

Finally in order to obtain the desired error bounds (2.8) and (2.9) we require re-
stricted eigenvalue conditions on the gram matrix > . ; z;xl. For any deterministic set
S C {1,2,...,p}, define the collection A as,

A= {5 € R?; [|9se|lr < 3(|9s |1, } (3.2)

Then, Bickel et al. (2009) define the lower restricted eigenvalue condition as,

f = 5T T(5 > 5 . oot N .5
(%IEIA n Z Lql CU’%H H27 or some constant K > ( )

Other slightly weaker versions of this condition are also available in the literature such as
the compatibility condition of Biihlmann and Van De Geer (2011), and the ¢, sensitivity
of Gautier and Tsybakov (2011). In the setup of common random designs, it is also well
established that condition (3.3) holds with probability converging to 1, see for e.g. Raskutti
et al. (2010), and Rudelson and Zhou (2012), for Gaussian designs. In the subgaussian case,
the plausibility of this condition is a consequence of a general result stated as Lemma B.2
in Appendix B. Under our high dimensional change point setup, we shall require versions
of the restricted eigenvalue condition (3.3). In the following lemma, we shall show that
all required conditions hold with probability converging to 1. Among other arguments, the
proof of these conditions shall rely on Lemma B.2. In Lemma 3.3 below, the collection A
in (3.2) applies for the set S in Condition A.

Lemma 3.3 (Restricted Eigenvalue Conditions): Let uy, and v, be any non-negative se-
quences such that v, > clogp/n, ¢ > 0. Let T (19,un) be as in Lemma 3.1 and the set A

as defined in (8.2) for S given in Condition A. Furthermore, define the set Ay = {5 €

RP; ||6se|l1 < 3||10s|l1 + 3]l o —’yoﬂl}, and let any T € R be such that @1 (7)slogp/n = o(1).
Then under Conditions A(i), A(ii), and B, and for n sufficiently large, the following re-

12
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stricted eigenvalue conditions hold with probability at least 1 — ¢1 exp(—co logp),

1
(i) inf = 37 8wl 5> cund(r)]6]3,
LW <T

1
(i) inf = 37 0Tzl 6 > cun(l = &(7))]3]13
LW >T

1 1
(131) sup  sup — E 6T 22T 8 < cyeml|0]|3 max {%,un},

TET (T0,un) 6EA n €1

. . o1 slogp
() o nf S5 il 5 2 cucnvall8]3 - cuen ™ (11613 +€7).
P* (7077)721)’”‘ 1EN

Before moving on to state our main results in the next section, we make the following
remark regarding the role of the set As.

Remark 3.1 Note that if 5 — Gy € A, i.e., ||Bse — Bose|l1 < 3||Bs — Bos||1, then for 6 =
/80 -7 + /6 - ﬁﬂu we havea

[6sell1 < [|Bse — Bosellr < 3[[Bs — Boslli < 3|51 + 3|80 — 70ll1-
Thus 8 — By € A, implies the vector 6 € As. This relation is useful in proving Lemma 4.1

and Theorem 4.2 of the next section.

4. Main Results

We are now ready to state our first main result pertaining to the rate of convergence of
the regression estimates obtained from (2.6) and (2.7) when 7(possibly random) is in a
up-neighborhood of 7.

Theorem 4.1 Suppose C’onditionsAA(i), A(ii), and B hold, and consider any T € R, satis-
fying @1 (7)slogp/n = o(1). Let B(7) and 4(7) be solutions to (2.6) and (2.7). Then,

(i) When ®(19) =0 and A1 > cyemy/logp/n, for n sufficiently large, we have for ¢ = 1,2,

3 1 1 logp
_ < S
18(7) %M_%%Qmws\/n’

with probability at least 1—cy exp(—calogp). The same bound holds for ||5(7)—7ollq, ¢ = 1, 2.

(ii) When ®uin(10) > 0, let uy, be any non-negative sequence satisfying u, = o(émin(m)).
Also, let T (19, un) be as defined in Lemma 3.1 and A\ = ¢y max{\/logp/n, & un}. Then
for n sufficiently large, and q = 1,2, the following uniform bound holds,

- 1 logp

sup  18(7) = Bolly < cuemg—— " max {1/ ==, 18 — 2ollzun },
TE€T (10,un) (I)min(TO n

with probability at least 1 — ¢y exp(—cologp). The same uniform upper bound also holds for

SUPreT (19,un) 15(7) — 70”!17 g=12.

13
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Remark 4.1 As a direct consequence of Theorem 4.1, we obtain the rates of convergence
of the regression estimates 39,40 from Step 0 of Algorithm 1. Specifically, under the
conditions of Theorem 4.1,

(i) When @i, (10) =0,

5 1 /1o
0 _ - /g gp _
HB 'YOHq = Cucm(I’min(T(O))s n’ q 1727

with probability at least 1 — ¢; exp(—calogp). The same bound holds for |5 — o]l
q=1,2.

(ii) When @i, (10) > 0, and |®(7()) — (I)(To)‘ < uﬁ?), we have,

sl/qmax{ log p fnuq(lo)}, qg=1,2,

1B = Bollg < cucmg m

min (7_0
(4.1)

with probability at least 1—c; exp(—cz log p). The same bound holds for |5 —~ol|,, ¢ = 1, 2.
In this case, since s/ qgnuﬁ,?) / ®(79) may diverge, these estimates are not guaranteed to be

consistent. Nevertheless, (i) and (ii) above play an important role in deriving convergence
rates of estimators from subsequent steps of Algorithm 1.

We now turn our attention to establishing selection and estimation results for estimates
obtained from Step 1 and Step 2 of Algorithm 1. To achieve this goal, we require the
following notations. For any 7 € R, 3, € RP, let

Rn(ﬂﬂaV) = Q(T7677)_Q(TO7/877)'
Su(1,8,7) = Ru(r,8,%) + u(|®(7)llo = [®(0)]lo)

Also, for any non-negative u,, and v,, define the collection
H(up, vp) = {T eER; v, <|P(1) — P(10)| < un}

Additionally, for any non-negative sequence u,,, we also define the function,

F( ) 0 if un/q)min(m) —0 (4 2)
Up) = . .
1 otherwise

Finally, in the following, we denote by r, := max {\/slogp/n, \/Egnuﬁf)}/@min(m), in the
case where @i, (79) > 0. Notice that r, is the ¢ rate of estimation error provided in Part(ii)
of Remark 4.1. The following lemma provides a uniform lower bound of the expression
Sn(T, B,7), over the collection H(uy, v, ), that holds with high probability. This result shall
lie at the heart of the argument used to obtain the main results of this article.

Lemma 4.1 Suppose conditions A and B hold and let u, be any non negative sequence.
Also, let B, 3O) be estimates from Step 0 of Algorithm 1. Then,

14
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(i) When ®(79) = 0, for any v, > 0, we have

. O logp
£ S, © 5Oy > — ¢, msi
TG?‘I[I(ll,’Un) (8047 2 = ewe n®?. (7(0)

with probability at least 1 — ¢1 exp(—ca logp).
(i) When ®min(10) > 0, for any v, > clogp/n, ¢ > 0, we have,

R | /s] 1
inf Sn(T’B(O)ﬁ(O)) > 5,21 (Cucmvn _ Cqus ogp  CuCm [Slogp max{ ogp’ ﬁun}
n 1VE, n

TEH (Un ,vn) n

{1820} 5 )

2

L TR
n

with probability at least 1 — c1 exp(—ca log p).

Our main result on rate of convergence of the estimates obtained from Algorithm 1
is stated in Theorem 4.2 below. While the complete proof of the theorem is given in the
appendix, here we provide a sketch of the main idea behind the proof. We show that, for
an appropriately chosen regularizer u, for any v, > 0 (in the case where ®(79) = 0), or for
any non-negative sequence v, slower in rate than those given in (2.8) (in the case where
®pin(70) > 0), we shall show that,

inf Sn (T, B 'Ay(o)) > 0, for n sufficiently large.
73 0n <®*(79,7)<1

with probability at least 1 — ¢1 exp(—czlogp). Upon noting that the global optimizer 7(1)
by definition satisfies .S, (%(1),,5’(0), 4(0)) < 0, we would have shown that the corresponding
global optimizer 7(!) satisfies the relations given in (2.8). Along the way a sequence of
recursions are required in order to sequentially sharpen the bound for the change point
estimate. Supportive arguments are also required to show that the eventual bound is
satisfied with probability at least 1 — ¢; exp(—calogp). In this process, Remark .1 is quite
helpful.

Theorem 4.2 Suppose Conditions A and B hold and choose \y = ¢y, max{ \/m, §nu£10)},
and p = ¢y (s logp/nlz)l/k*
timizer (1) of Step 1 of Algorithm 1 satisfies the following relations.

(i) When ®(19) = 0, then ®(7()) = 0, with probability at least 1 — ¢1 exp(—cy log p).
(ii) When ®umin(10) > culn, then,

, where k* = max{k,2}. Then for n sufficiently large, the op-

slogp 1 slogp}

[2(71) = @ (r0)| <t := cucm max{ n T(IVENZ n

with probability at least 1 — ¢y exp(—calogp).

The usefulness of Theorem 4.2 is apparent. Despite initializing Algorithm 1 with a 7(©,
which is in an (slog p/ni2)'/* neighborhood of 7, for an nearly arbitrary k € [1,00). (any
initial value that posses ‘fractional information’ of 79), the updated change point 7 lies
in a near optimal neighborhood of 79, irrespective of the value of k (irrespective of the
precision of the initial guess). The following theorem provides the rates of convergence of
the regression coefficient estimates B(l) and 4(!) obtained from Step 2 of Algorithm 1.
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Theorem 4.3 Suppose the model (1.1) in the case where a finite change point exists, i.e.,
D pnin (70) > 0. Assume the conditions of Theorem 4.2 and choose Ay = ¢y ¢y, max {\/logp/n, fntn},

where t, is as defined in Theorem 4.2. Then, the estimates BD and 51 of Step 2 of Al-
gorithm 1 satisfy,

5 1 1
(@) 118 = Bolly < cucms'/ max{ 8P §ntn}, q=1,2,
min(TO) n
. R 1 lo
(,LZ) ”,y(l) - ’YOHC] < Cucmsl/qm max{ ip, gntn}7 q= 1727

with probability at least 1 — ¢1 exp(—ca logp).

Remark 4.2 (Interpretation of the rates of Theorem 4.2 and Theorem 4.3) Note
that under conditions of Theorem 4.2, and additionally assuming that &,l,, > ¢; > 0, we
have,

2G0) ~ B(m)| < cuen 5L,
with probability at least 1 — ¢1 exp(—cologp). This observation provides an intuitive state-
ment, saying that an increasing jump size &, can compensate for the location of the unknown
change point moving toward the boundaries of R, in effect allowing 7(!) of Algorithm 1 to
approximate the unknown change point (if it exists) at a near optimal rate. In this case,
under conditions of Theorem 4.3, the regression estimates of Step 2 become,

||/3)(1) - BOH(] < Cucmsl/q

log p slogp
&2 g=12, (43)

1

@ in (10) max{ n’ n
with probability at least 1 — c1 exp(—calogp). The same bound also holds for |51 — o]l
g = 1,2, with the same probability. The bound in the statement (4.3) again provides an
interesting observation, where an increasing jump is leading to potentially counteract the
precision of the regression estimate AW First note that, the bound in (4.3) can tolerate an
increasing jump size &, such that &,s+/logp/n — 0, while preserving optimality of the rate
of convergence, i.e, yielding, HB(I) — Bollz < cucm®(70)+/slog p/n, with high probability.
It is only when &, increases faster than \/n/s?logp that it begins to harm the rate of
convergence. This observation is surprising in that it suggests that an increasing jump
size always benefits the change point estimate, whereas it benefits the regression coefficient
estimates only when the jump size is increasing upto a certain rate. To the best of our
knowledge, such a characterization of the effect of the jump size on parameter estimates,
which holds only in the high dimensional case, has not been provided in the literature. The
illustration in Figure 2 provides an intuitive understanding of this behavior,

Bo on {w; < 7o} O(slogp/n) Supp(w)

‘& >

T £
0 T(]\ 00

—od
;0] ﬁ"m 71} 7o on {w; > 10}

Figure 2: Tlustration of counteracting effect of jump size &, on regression coefficient estimates
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From Figure 2, observe that for any finite jump size, the best approximation that our
analysis can provide is wherein the error is of order slog p/n.2 Now the regression estimates
of Step 2 are computed based on the binary partition yielded by the change point estimate
#+(1) of Step 1. Consequently, the data based on which the regression estimate B(l) of By
is obtained, may be corrupted by as much as a fraction O(slogp/n) of observations where
the true regression coefficient is . Thereby, the higher the jump size &,, the more impact
this small corruption will have on the estimate 3(1). The same argument also holds for the
other binary partition. This provides an explanation of the rates observed in Theorem 4.3.

5. Implementation and Numerical Results

The three main objectives of this empirical study are, (i) to evaluate the overall performance
of Algorithm 1, i.e., its ability to consistently estimate By, Yo, and a finite 79, and compare
its performance to a full grid search approach, (ii) to numerically support the theoretically
claimed statement, that the estimate 7(1) is insensitive to the quality of the initial guess
70, and (iii) to evaluate the numerical performance of Algorithm 1 in detecting the ‘no
change’ case, i.e., when ®(7) = 0.

5.1. Simulation setup

We consider the data generating process (1.1) where €;, w; and x; are drawn independently
satisfying e; ~ N(0,02), w; ~ U(0,1)," and z; ~ N(0,X). Here, ¥ is a p x p matrix with
elements X;; = pli=il i, j=1,...,p. We set, 0. = 1 and p = 0.5. The regression parameters
of the model are set to be 8y = (1,1,1,1, .. 0)pX1, and v0 = (01x4,1,1,1,1,0,. O)le. The
metrics of interest are bias and mean_ squared error of various estimates: For numerical
experiments where ®in(70) > 0, blas( 3) = |[E(B - Bo)||2, bias(¥ ) = [E(% —70)||2, bias(7) =

B — )], mse(B) = [E(3 — B0)2lla, mse(3) = [E(3 — 20)2ll2, mse(7) = B(7 — 70)?,
mse(®(7)) = E(®(7) — ®(79))?. For numerical experiments where ®(rp) = 0, we report
PrM = E(1[+(V) = —q]), i.e., the proportion of times where the ‘no change’ model is
correctly identified. We shall report monte carlo approximations of these metrics based
on 100 replications for each combination of model parameters. In the simulations where a
finite change point, i.e., 0 < 79 < 1 is misidentified as ‘no change point’, i.e., +(1) = —o0,
(observed to occur sometimes when 79 is near the boundaries of (0,1) ), we do the following
operation to maintain fairness of comparisons of the above metrics. In case where 79 < 0.5
and 7)) = —c0, then we set 7() = 0, 6 = Opx1, and when 79 > 0.5 and +(1) = —o0, we set
M =140 = Opx1. Finally, we also report the metric time: the average (over replications)
computation time !. All computations are performed in the software R, R Core Team (2017).
All lasso optimizations are performed with the R package ‘glmnet’, developed by Friedman
et al. (2010). We perform two sets of simulations for all combinations of the parameters
n € {150,250,350}, p € {25,150,250}. In the first simulation, we consider finite change
points, with 7o € {0.169,0.264, ...,0.831}, (Equally spaced grid of 8 points between 0.169
to 0.831). This is referred to as Simulation A in the following. The second simulation
considers the case of ‘no change’ in the model (1.1), i.e., 7o = 0. This simulation is referred

g. This rate matches the fastest available in the literature
h. Since w; ~ U(0, 1), hence ®(7) =7, 7 € (0, 1).
i. CPU: Intel Xeon E5-2609 v3 @ 1.9 GHz, RAM: 128 GB
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to as Simulation B in the following. Due to the absence of any comparative method that
is able to detect the ‘no change’ case (to the best of our knowledge), we report only the
results of our method for this simulation. Note that for each fixed p, the total number of
model parameters to be estimated is 2p + 1.

Choice of tuning parameters: The regularizer A1 and Ay of the Lasso optimizations
of Step 0 and Step 2 of Algorithm 1 are chosen via a 5-fold cross validation, which is
performed internally by the R package ‘glmnet’. The regularizer u of Step 1 of Algorithm
1 is chosen via the classical BIC criteria. Specifically, 7(u) is computed over a grid of values
of p. Then, the value of u of that minimizes the criteria,

logn

BIC(1) = log (Q(7(1), (1), 3(1)) )+~ (7(1))

n

is chosen. Here Q(-,-,) is the least squares loss, as defined in (2.1), and B(u), ()
represent regression coefficient estimates obtained on the binary partition given by 7(u).

In the following, we consider two schemes to choose the initializer 7(9) of Algorithm 1.
The first is to set to w9, i.e., the 0.5"" empirical quantile of w = (w, .., w,)T. This is done
to make the initializer equidistant from the two extremes of the support of w. Note that, in
the absence of any information on the unknown 7y, the choice 7(9) = w(9-%) is a sensible choice
for the initializer. This approach is represented as ‘Algorithm 1A’. As a second scheme,
we choose the initializer 7(%) by setting it to one of values {w(m); m = 0.25,0.50,0.75},
where w(™ represents the m* empirical quantile of w = (w1, ..., w,)T. This is done by first
computing B(T) and 4(7) in (2.6) and (2.7) for each 7 = w(0-25) y(0-50) 4,(075) "and finally
selecting 7(9) as the value that minimizes the least squares loss over these three choices.
Note that the latter approach has an additional computational burden of two Lasso(n, p)
optimizations in comparison to the former. This approach is represented as ‘Algorithm
1B’. Clearly, the initializer in Algorithm 1B will be a closer value to the unknown 7y in
comparison to the initializer of Algorithm 1A. This shall also help us numerically support
our theoretical finding that Algorithm 1 is insensitive to the ‘quality’ of the initializer.
Finally, we also implement the full grid search approach of Lee et al. (2016) in order to
serve as a benchmark to compare the performance of the proposed estimates and also to
illustrate the dramatic gains in computation time provided by our method. This approach
is referred to as Full grid search in the following. For completeness, the Full grid search
estimator of Lee et al. (2016) is described in the notation of this article in the following. The
article of Lee et al. (2016) assumes the model y; = :Uiéo—l—x;fpnol[wi < 71p], which is equivalent
to the model (1.1) when §yp = 9 and 19 = By — 0. Now, let Z;(7) = (xiT,xiTl(wi < T))gpxl,
and the parameter o = (7, 8 — ), where [y, 7o are the true parameter coefficients of the
model (1.1), then

1
a(r) = argmin {— (y; — &7 (1)a)? + )\HD(T)ozHl}, for each 7 € T7,
OZER2P n i=1
¢ = agmin {2 Y (1 - T (0)a(n)? + AIDEAW] ) (1)
TET* n i—1
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Table 1: Numerical results of Algorithm 1A and 1B, and Full grid search for n € {150,250, 350},
p € {25,150,250}, and 79 = 0.169.

Method n p bias(3) bias(j) bias(7) mse(§) mse(§) mse(?) time
150 25 0.6595  0.3026  0.0031  0.4564  0.0858  0.0003 0.5792
150 150 1.5638  0.3530  0.0067  1.4932  0.1044  0.0006 0.8684
150 250 1.4271  0.3965 0.0193  1.2918  0.1336  0.0021 0.9606
250 25 0.4354 0.2444 0.0006  0.2135 0.0498  0.0001 0.6068
Algorithm 1A 250 150 0.5694  0.2717  0.0045  0.2877  0.0599  0.0001 1.3090
250 250 0.6600  0.2958  0.0015  0.3836  0.0650  0.0001 1.3468
350 25 0.4193  0.2188  0.0068  0.1758  0.0369  0.0001 0.6515
350 150 0.5285  0.2362  0.0023  0.2325  0.0415  0.0000 1.5462
350 250 0.8964  0.2504 0.0028  0.6499  0.0449  0.0001 2.6849
150 25  0.6758  0.2918  0.0030  0.4724  0.0827  0.0002 0.9387
150 150 1.5803  0.3880  0.0063  1.5061  0.1372  0.0111 1.3351
150 250 1.4343  0.4167  0.0002  1.3142  0.1648  0.0136 1.4999
250 25 0.4040  0.2370  0.0020  0.1964  0.0481  0.0001 0.9684
Algorithm 1B 250 150 0.5666  0.2645  0.0036  0.2779  0.0564  0.0001 2.2686
250 250 0.6779  0.2961  0.0023  0.4021  0.0648  0.0001 2.1075
350 25 0.4034 0.2154 0.0081  0.1661  0.0358  0.0001 1.0306
350 150  0.5209  0.2293  0.0034  0.2228  0.0401  0.0001 2.4129
350 250 0.8761  0.2459  0.0041  0.6393  0.0442  0.0001 3.5468
150 25  0.7450  0.2240  0.0193  0.5763  0.0612  0.0007  12.7566
150 150 2.0766 ~ 0.4225 0.0531  1.9157  0.1313  0.0068  25.8863
150 250 2.0300  0.4732  0.0287  1.8209  0.1650  0.0057  31.5806
250 25 0.5764  0.1750  0.0098  0.3359  0.0341  0.0002  21.0164
Full grid search 250 150 1.1066  0.2894  0.0023  0.7863  0.0640  0.0002  59.7864
250 250 1.2875  0.3318 0.0127  0.9927  0.0758  0.0012  88.9717
350 25 0.5036  0.1588  0.0005  0.2270  0.0238  0.0001  29.4869
350 150 1.0025  0.2201  0.0057  0.6845 0.0373  0.0006 113.4715
350 250 1.6075  0.2627 0.0063 1.3631  0.0477  0.0002 144.6366

where D(1) = diag{H:%(j)(T)Hn,j =1,..,2p}, with #0)(7) representing the j** column of

the design matrix (1) = (&1(7), ...,i“n(T))T . In implementation of this estimator, the

nx2p
search space of the change point is restricted to 7 € T* = {w1, ..., w, } N (0.1,0.9).

5.2. Results and discussion

The bias and mean squared error (mse) of estimates obtained from Algorithms 1A, 1B,
and Full grid search for Simulation A, for all combinations of n € {150,200,250},
p € {25,150,250}, and ®(m9) € {0.169,0.67} are presented in Table 1 and Table 2. All
results provided are truncated at 10~%. Complete results of the simulation study including
all cases for 7p € {0.169,0.264, ...,0.831}, are available in the supplementary materials of
this article. To aid in interpretation, the results on bias are illustrated through Figures
3,4, 5,6 and 7. In particular, Figure 3 illustrates bias associated with the change point
estimate, Figure 4 and Figure 5 illustrate the bias in B M) and 4 respectively. In Figure 6
we illustrate the consistency of the proposed methodology and finally, in Figure 7 we depict
the average computation time for the methods implemented in this simulation study. The
results of Simulation B are reported in Table 3. This table reports the proportion of times
the ‘no change’ model is correctly identified via the metric PrM as described above.

Simulation A: Two important observations from the bias results for the change point
estimate depicted in Figures 3 are, first, the proposed Algorithms 1A and 1B are indis-
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Table 2: Numerical results of Algorithm 1A and 1B, and Full grid search for n € {150,250, 350},
p € {25,150,250}, and 79 = 0.642.

Method n p Dbias(f) bias(3) bias(?) mse(3) mse(3) mse(7) time

150 25 03170 04765 0.0065 0.1041 02308 0.0003  0.5855

150 150 0.3900  0.5719  0.0039  0.1309  0.2819  0.0002  0.7854

150 250 0.4191  0.5668  0.0046  0.1510  0.2756  0.0004  0.8583

250 25 0.2470  0.3375  0.0088  0.0548  0.1114  0.0002  0.6177

Algorithm 1A 250 150 0.2926  0.4248  0.0007  0.0658  0.1486  0.0001  1.1309
250 250 0.3142  0.4436  0.0039 0.0770 0.1614 0.0001  1.3242

350 25 0.2277  0.3098  0.0041  0.0429  0.0858  0.0001  0.6748

350 150 0.2501  0.3573  0.0018  0.0497  0.1012  0.0000  1.6129

350 250 0.2861  0.3861  0.0018  0.0627 0.1135  0.0001  1.8991

150 25 0.3148  0.4833 0.0064 0.1059 0.2364 0.0002  0.9449

150 150 0.3826  0.5667  0.0060  0.1275  0.2737  0.0002  1.3024

150 250 0.4138  0.5617  0.0039  0.1489  0.2724  0.0004  1.4660

250 25 0.2512  0.3312  0.0121  0.0558 0.1114  0.0003  0.9661

Algorithm 1B 250 150 0.3029  0.4213  0.0005 0.0683 0.1470  0.0001  2.3502
250 250 0.3147  0.4274  0.0056 0.0773  0.1490  0.0001  2.2163

350 25 0.2318 03071  0.0043 0.0436  0.0847  0.0001  1.0086

350 150 0.2525  0.3472  0.0016  0.0502  0.0958  0.0000  2.5538

350 250 0.2815 0.3766  0.0015 0.0617  0.1087  0.0000  3.4451

150 25 02506 0.5229 0.0012 0.0983 0.2482 0.0002 12.9812

150 150 0.5061  0.9313  0.0012  0.2037  0.5588  0.0009  31.2470

150 250 0.6217  1.0329  0.0065 0.2572  0.6412  0.0008  35.3190

250 25 0.2000 0.4208  0.0005 0.0505 0.1477  0.0003  21.5832

Full grid search 250 150 0.3397  0.7712  0.0116  0.0909  0.3870  0.0003  67.6660
250 250 04072  0.8228  0.0005 0.1229  0.4251  0.0001 105.1549

350 25 01674 04083 0.0045 0.0353 0.1284  0.0001  30.2175

350 150 0.2769  0.5949  0.0032  0.0640  0.2360  0.0001 126.2810

350 250  0.3299  0.6896  0.0030 0.0841  0.3031  0.0001 200.2775

Table 3: Numerical results of Simulation B, where the underlying model is y; = ©7 0 + €3, i.e., the ‘no
change’ case where ®(79) = 0. The metric PrM is reported for each combination of n, p.

Algorithm 1A Algorithm 1B
p=25 p=150 p=250 p=25 p=150 p=250
150 0.76 0.87 0.88 0.76 0.87 0.88
250  0.80 0.93 0.91 0.80 0.93 0.91
350 0.85 0.93 0.94 0.85 0.93 0.94

n

Algorithm 1A Algorithm 1A Algorithm 1A
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Figure 3: Comparison of bias(#) for Algorithm 1A and 1B and Full grid search across values of 7o
for p = 250. Left panel: n = 150, Center panel: n = 250, Right panel: n = 350.
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Figure 4:
for p = 250. Left panel: n = 150, Center panel: n = 250, Right panel: n = 350.
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Figure 6: Tllustration of consistency of implemented methods with 70 = 0.264. Left panel: Algorithm

1A, Center panel: Algorithm 1B, and Right panel: Full grid search
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Figure 7: Comparison of computation time (in seconds) for Algorithm 1A and 1B, and Full grid
search across values of n for 7o = 0.547 Left panel: p = 25, Center panel: p = 150, Right panel:
p = 250. Note that, these times are computed as averages over 100 replications of each method
running in parallel over 12 cores. Running a single instance of any method is two to three times
faster. Reported computation times include time taken to choose tuning parameters.

tinguishable from the Full grid search approach of Lee et al. (2016). Second, it is also
observed that the proposed Algorithms 1A and 1B are indistinguishable from each other
in terms of the bias in the change point estimate. Recall that, Algorithm 1B was designed
in a way so that the starting value is always closer to 7y in comparison to Algorithm
1A. Despite a better initial value, no uniform improvement is observed in Algorithm 1B.
This supports our theoretical result, that the quality of the initial value does not impact
Algorithm 1, and it yields near optimal estimates with any initializing value containing any
fractional information on the unknown change point. The bias results for the regression co-
efficient estimates depicted in Figures 4 and Figure 5 suggest that the proposed methodology
yields a uniformly lower bias at all considered cases of 79. One possible reason for this be-

havior is that the design variable in our methodology are constructed as z; = (zgl)T zKQ)T)T

) [ad)
where 21(1) = x;1[w; < 79, and zi(2) = x;1[w; < 79], which are orthogonal to each other, in
contrast, the design variables in the methodology of Lee et al. (2016), the design variables
are constructed as 22(1) = x; and zi(2) = 1[w; < 79|, which may be highly correlated. It is
also clear from Figure 6 that the in bias in change point estimates from Algorithm 1A
and 1B and Full grid search progressively shrinks with increasing values of n, thereby
illustrating the consistency of the proposed methodology. Finally, in Figure 7 we illustrate
the dramatic differences in the overall computation times in the implementation of the com-
pared approaches. In the largest considered data set, the average time for computation of
Algorithm 1A and 1B was & 3seconds, as opposed to the full grid search which required
= 200seconds to implement. Note that the reported computation times include the time

taken for choosing all required tuning parameters for each method.

Simulation B: The results of Simulation B reported in Table 3 are in accordance
with expectations. The proposed methods are able to detect the ‘no change’ scenario with
~ 85% accuracy in all considered cases. Selection consistency is also observed, i.e. the
proportion of correct identifications is seen to increase with n. Finally, both Algorithm
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1A and 1B are seen to provide the exact same results, which is again not surprising since
the only difference in these two methods is the choice of the initial value.

6. Application

In this section, we apply our proposed methodology to the ‘Communities and Crime’ data
set of Redmond and Baveja (2002), available publicly at https://archive.ics.uci.edu/
ml/datasets/Communities+and+Crime. This data contains: (i) socio-economic data at a
community level from across the entire United states, and is collected from the 1990 US
Census, (ii) law enforcement data from the 1990 US Law Enforcement Management and
Administrative Statistics survey, and (iii) crime data from the 1995 FBI Uniform Crime.
The full data set contains 1994 observations and 128 variables. The dependent variable of
interest is the total number of violent crimes per one hundred thousand population, which
is calculated using the population and the sum of the crime variables that are considered
violent crimes: murder, rape, robbery, and assault. The remaining variables are quantitative
measurements on socio-economic variables such as the median (community level) income
per household, percentage of people aged 16 and over who are employed, percentage of
households with public assistance, percent of population who have immigrated within the
last 10 years, amongst many others. This data was recently analyzed by Leonardi and
Biihlmann (2016) for detecting and identifying change points in covariates when the change
point(s) are modeled over locations. In this study we are interested in identifying changes
in covariates when the change occurs through a change inducing variable. Specifically, we
consider tow cases, (1) when the change inducing variable is assumed to be the population
for the community, and (2) when the change inducing variable is assumed to be the median
household income for the community, in an effort to investigate whether violent crime at a
community level is influenced by distinct socio-economic factors below and above a certain
threshold of population or the median household income, and also to estimate the threshold
level at which such a transition occurs.

The full data set consists of n = 1994 observations and p = 128 variables, which have
been normalized to [0,1] scale. The normalization process is described in the webpage
whose link has been provided at the beginning of this section. This normalized data is pre-
processed by deleting observations with any missing values, and by eliminating predictors
that are highly correlated with other predictor variables. After the pre-processing, we obtain
a filtered data set with n = 319 communities. The remaining data is then mean centered
and scaled columnwise in order to remove the need for an intercept term in the regression,
mainly to be consistent with model (1.1). Finally, predictor variables having a significant
correlation with the change inducing variable have also been dropped from the analysis.
This process yields a refined data set with p = 75 predictor variables (excluding the change
inducing variable) in the case where the change inducing variable is ‘population’ and p = 77
in the case where the change inducing variable is ‘median income’

We apply the proposed Algorithm 1 to the data under consideration with the initializer
chosen as the 50" percentile of the change inducing variable, i.e, Algorithm 1A described
in Section 5. The regularizer’s A1, Ay and p are chosen via cross validation and the classical
BIC criteria respectively, as described in Section 5. Table 4 summarizes estimation and
variable selection results for the regression coefficients of the assumed model (1.1), in the
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Table 4: Summary of analysis of ‘Communities and Crime’ data set. Change inducing variable (w): pop-
ulation, model size: n = 319, p = 75. Estimated change point is #(1) = 0.24, which is the 73"
percentile of the population variable. The table lists all estimated non-zero regression coefficients
truncated at 107%.

Coefficient (/?S) Coefficient ()

Variable Description (pre change) (post change)
racepctblack % of population that is african american 0.0322 0.0000
racePctWhite % of population that is caucasian -0.1844 0.0000
pctWWage % of households with wage or salary income in 1989 -0.0505 0.0000
pctWinvIne % of households with investment / rent income in 1989 -0.0909 0.0000
PctPopUnderPov % of people under the poverty level 0.0686 0.0000
PctEmploy % of people 16 and over who are employed -0.0069 0.0000
Pctllleg % of kids born to never married 0.3105 0.1734
PctHousLess3BR % of housing units with less than 3 bedrooms 0.0199 0.0000
PctHousOccup % of housing occupied -0.0359 0.0000
PctVacantBoarded % of vacant housing that is boarded up 0.0000 0.0743
NumStreet # of homeless people counted in the street 0.0000 0.1597
LemasSwFTFieldOps # of sworn full time police officers in field operations 0.0000 -0.0229
PolicReqPerOffic total requests for police per police officer (0/1) 0.0229 0.0000
LemasGangUnitDeploy gang unit deployed 0.0196 0.0000

Table 5: Summary of analysis of ‘Communities and Crime’ data set. Change inducing variable (w): median
income, model size: n = 319, p = 77. Estimated change point is # = —o0, i.e., no change
detected in the model w.r.t. w. The table lists all estimated non-zero regression coefficients
truncated at 10™%.

Variable Description Coefficient (¥4)
racepctblack % of population that is african american 0.0207
racePct White % of population that is caucasian -0.1863
pctWWage % of households with wage or salary income in 1989 -0.0245
pctWinvine % of households with investment / rent income in 1989 -0.1115
Pctllleg % of kids born to never married 0.3010
PctHousLess3BR % of housing units with less than 3 bedrooms 0.0230
HousVacant # of vacant households 0.0045
PctHousOccup % of housing occupied -0.0352
PctVacantBoarded % of vacant housing that is boarded up 0.0132
NumStreet # of homeless people counted in the street 0.0919
PolicCars # of police cars 0.0178

case where the change inducing variable is ‘population’ and Table 5 summarizes the results
of the case where the change inducing variable is the ‘median income’. In the first case with
the change inducing variable as ‘population’, we find a change point estimate 7(!) = 0.23
which is the 73"% percentile of the population variable. A noteworthy observation in this
case about the estimated pre and post coefficients B (M), 4 from Table 4 is the near disjoint
nature of the features influencing violent crime across the threshold 7(!) of the population
variable. In the second case, where the change inducing variable is ‘median income’ the
proposed method detects ‘no change’ in the model, i.e., yields a ordinary linear regression
model for this case.
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Appendix A: Proofs

Proof of Lemma 3.1: Let 7, > 7y be a boundary point on the right of 7y, such that
®*(19,71) = Up. Then recall that

Ci(Tl) :1[7'0 < wj STI], (I)*(To,T):(I)(Tl)—(I)(To).

Also, note that p, := E(;j(11) = ®*(70,71). Since (;, i = 1,...,n are Bernoulli r.v.’s, for any
s > 0, the moment generating function is given by E(exp(s(;)) = qn + pnexp(s), where
gn = 1 — p,. Applying the Chernoff Inequality, we obtain,

P(3.G(n) > t+ np) = P(eSrs6) 5 lsthamp)y < o=st+mm) g, 4 pes]r.
=1

Now in order to show,

P(i;@(ﬁ)§cumax{loip,un}> > 1—crexp(—calogp). (A.1)

We divide the argument into two cases. First, for any arbitrary constant ¢, > 0, we let
®* (79, 71) > ¢y log p/n, upon choosing t = n®* (7, 71) we obtain,

n

P(Y_Gi(n) > 208" (rp,m)) < el 2 (0T[4 (9% (0, 7)) (e — D"

i=1

Using the deterministic inequality (1 + z)* < exp(kz), for any k, 2 > 0, we obtain that

n
P(G(n) > 2097 (rg, 1)) < e 2 (om)ple’=Dnd*(mm) < calogp
i=1
The inequality to the right follows by choosing s = log2, which maximizes the function
f(s) = 2s—e®+1 and provides a positive value at the maximum, and by using the restriction
®* (79, 7) > ¢y log p/n. Next we let ®*(19,71) < ¢, log p/n. Here choose t = ¢, log p to obtain,

P()_Gi(m) > culogp +n®*(r,m)) < el=>culoBp=sn 0[] 4 (@7 (rp, 7)) (e — 1)](A.2)

=1

Calling upon the inequality (14 z)* < exp(kz), for any k,z > 0, we can bound the RHS of
(A.2) from above by exp [ — sc,logp + (e¥ — s — 1)log p|. Now s = log(1 + ¢,) provides a
positive value at the maximum, since it maximizes f(s) = (1 + ¢,)s — e® + 1. Then for any
cy > 0, we obtain,

n
P(Z(i(ﬁ)>culogp+n(1>*(70,ﬁ)) < ec2losp,

=1
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Upon combining both cases, (A.1) follows by noting ®* (79, 71) = y,.
Now repeating the same argument for a fixed boundary point 75 on the left of 7y, such
that ®(79) — ®(72) = uy, and applying a union bound we obtain,

( max ZQ ) < ¢y max{loip7 n}) > 1 — ¢y exp(—calogp). (A.3)

Te{m,2} N

It remains to show that (A.1) holds uniformly over T (79, u,). For this, we begin by noting
that for any 7 € T (79, uy), where 7 > 79 we have (1) = l[wi € (7'0,7']] < l[wi € (7’0,71]].
Similarly for any 7 € T (79, u,,) where 7 < 79 we have (;(7) <1 [wi € [, 7'0)]. Thus

1 n
sup  — (1) € max G(r A4
BN RN T o (A
Part (i) of this lemma follows by combining (A.4) with the bound in (A.3).
To prove Part (ii) we use a lower bound for sums of non-negative r.v.s’ stated in Lemma
B.3. This result was originally proved by Maurer (2003). For a fixed right boundary point
71 > 79 such that ®(71) — ®(79) = vy, set t = v, /2 in Lemma B.3. Then we have

1
P(a ; Ci(Tl) < U?n) < exp ( — m)n) <c eXp(—02 logp)7

where the last inequality follows from v, > ¢, log p/n. We obtain the same bound applying
a similar argument for the left boundary point 7o < 79 such that ®(ry) — ®(m2) = v,. Now
applying an elementary union bound we obtain

( min Z Gi(r) > cuvn) >1—cjexp(—calogp). (A.5)

Te{r1,m2} N

Finally to obtain uniformity over 7 € {T; O* (19, 7) > vn} note that for 7 > 79, we have
Gi(r) = 1[w; € (r0,7]] > 1[w; € (70,7]] and for any 7 < 79, we have (1) = 1[w; €
[7,70)] > 1[w; € [r2,70)]. This implies that

{7; ®*( To T)>vn} n Z C > min Z CZ (AG)

Te€{r1,m2} N
Part(ii) follows by combining (A.5) and (A.6). This complete the proof of Lemma 3.1. O

Proof of Lemma 3.2: We begin with the proof of Part (i). Note that the RHS of the
inequality in Part (i) is normalized by the 5 norm of §. Hence, without loss of generality
we can assume [|§]|2 = 1. Now, the proof of this lemma relies on |n,| = >, (;(7), where
Gi(7) are as defined for Lemma 3.1. Note that if |n,| = 0 then Lemma 3.2 holds trivially
with probability 1, thus without loss of generality we shall assume that |n,| > 0. Now, for
any fixed 7 € T (79, up), we have

25 ot
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The second key observation is that under Condition A(iv) and by properties of conditional
expectations (see e.g. Lemma B.4), the conditional probability P,(-) = P(-|w) can be
bounded by treating w as a constant. Thus,
6Tl 2t
<sz€n“ - 5TEH > t) < 6p exp(—cu|ny| min { — = —})

|le| 00 Ua:

where the above probability bound is obtained by an application of Part (ii) of Lemma
14 of Loh and Wainwright (2012): supplementary materials. This lemma is reproduced as

Lemma B.1 in the Appendix. Now choosing ¢t = ¢, max {Ug, / 1‘ng o loﬂ} we obtain,

w7 [nwl

2T
1 1
HZZGM‘ §||5TE||oo+CumaX{ag ﬂaawﬂ}
|nw| o0 |nw| |nw|

The result in (A.8) together with (A.7) yields,

1
! (Hn 2 ot mial

1€ Ny

>1—crexp(—c2logp).  (A.8)

1 1
< Imlysryy, 4 Il |cumax{ P o, ng})
00 n n

7| 0]

>1—crexp(—c2logp). (A.9)

Taking expectations on both sides of the inequality (A.9) and observing that the RHS of
the conditional probability (A.9) is free of w, we obtain,

P (I o

€N

w 1 !
< Imlysrsy 4 I |cumax{ L ng})
n n

nwl ™ [
>1—crexp(—c2logp) (A.10)
On the other hand, we have by the result of Lemma 3.1 that with probability at least
1 — c1 exp(—calog p) that sup,c |nw|/n < ¢, max{logp/n,u,}. Also, it is straightforward

to see that ||67%]|ce < cud, for some constant ¢, > 0. Thus with the same probability we
have the bound,

1
sup MHéTEHOO < ¢y ¢ max {ﬂ,un}. (A.11)
€T (toun) TV n

By applying Part (i) of Lemma 3.1 we also have the following bound with probability at
least 1 — ¢ exp(—calogp),

1 1 1 o
sup ")”Lw‘ ng <e, ng ogp \/7} < ey, max{ gp’un}, (A.12)
Un ) ’le "

T€T (70,

The final inequality follows upon noting that if /logp/n\/u, > wu, then u, < logp/n.
Finally also note that sup,c7(|nw|/n)(logp/|Iny|) < logp/n. Part (i) of the lemma follows
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by combining these results together with the bounds (A.11) and (A.12) in (A.10). The
proofs of Part (ii) and Part (iii) are similar and are thus omitted. O

Proof of Lemma 3.3 To prove Part (i), first define z; = z;1[w; < 7]. Clearly z; is
also subgaussian with the same variance parameter as ;’s, i.e., o2. Furthermore, since
by assumption ®(7) > 0, thus ¥, = Ezz! = ®(7)%,, which implies that Apin(Z,) =
O (7)Amin (Xz) > ®(7)k. Similarly Apax(X2) < ®(7)¢. Now applying Lemma B.2 we obtain

BN 1 logp
Ty Ty — — T, Ts~ & o 1 logp o |
{z; }6 i 0 n;& 22 6 > cyk®(7)||6]|3 cu(I)(T) - 10117, (A.13)

with probability at least 1 — ¢j exp(—calogp). Since § € A, it is straightforward to see that

16/ < cus|6]|3. This together with Condition A(ii) yields Part (i). The proof of Part (ii) is

quite similar. To prove Part (iii), we shall invoke the arguments seen in the proof of Lemma
2. Consider,

w 1
sup  sup — Z ol xx Td = sup Msup— Z (5Ta:,;x;fp(5 (A.14)

T€T (ro,un) 0EA TV (2 €T (roun) ™ S€A M|

Let P,(-) denote the conditional probability P(-|w), where w = (w1, ..., w,)”. Then using
Lemma B.2 we have

lo
Py (iug ol Z ST iaT5 < 22 ||(5||2—|—cucm‘ gfnaHl) — crexp(—calogp). (A.15)
e w 'll)

Noting that the above probability on the RHS of (A.15) is free of w, taking expectations
on both sides we obtain,

lo
<§u£ ] }:aT 5 <5 ||5|y2+ Cutm gﬁ’nayh) >1— ¢y exp(—calogp). (A.16)
S w Ty

Recall from Lemma 3.1 that sup,c7 (7 u,.) [7wl/n < ¢y max{log p/n, u,}, with probability at
least 1 — ¢1 exp(—cz log p). Combining this result with (A.16) and substituting into (A.14)
we obtain

logp slogp
sup sup — Z(ST‘TZ T(S < CuQSH(SH%maX{Taun}+cucmTH5H§

TET (T0,un) 0EA n e
slogp
cucmH6||§ max {711 ,un}

IN

with probability at least 1 — ¢j exp(—calogp). This completes the proof of Part (iii). Proof
of Part (iv) is based on similar arguments. First applying the same conditional argument
as above, Part (i) of Lemma B.2 yields,

log p
P oinf o S 6Tmial6 > D013 — cuemp 1013 ) > 1 - 1 AT
<5IGDA2 ’nw| Z Lix ” Hz CyC ‘ w‘ H ‘1> c1exp(—calogp). ( )
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Since v, > clogp/n, Part (ii) of Lemma 3.1 gives,

: logp
f f = § 0Tl > ) ) Al
TlélR; 6lenA2 n LT cuk|| ||2Un cuCm——|| Hla ( 8)
P (79,7)>vn €Ny

with probability at least 1 — ¢; exp(—c2 logp). By the definition of the set As together with
the fact that ||Bo — Yollo < s, we also have

18113 < cus(lI813 + 150 — 0ll3). (A.19)
Finally, substituting (A.19) in (A.18) we obtain

. slogp slogp
Tlgg 6lenAfQ " Z 5w T5 > CUHH(SHQUn Culm—— H5H2 —|Bo — ’YOHQ
®(10,7)>vn i€nw

with probability at least 1 — ¢j exp(—c2logp). This completes the proof of the lemma. [

Proof of Theorem 4.1: To prove part (i), first note that when ®,;,(79) = 0, the model
(1.1) reduces to an ordinary linear regression model with regression coefficient ~g. Thus
for any 7 € R, the estimates 3(7) and 4(7) are ordinary Lasso estimates on the binary
partitioned data (y;, z;), where z; = x;1[w; < 7], and 2z; = z;1[w; > 7], respectively. Also
note that by assumption @, (7)slogp/n = o(1), thus the restricted eigenvalue condition
of Part (i) and Part (ii) of Lemma 3.3 are applicable. The remaining arguments to prove
the desired bounds are the same as typically used to derive bounds for Lasso estimates,
such as those given in Chapter 6 of Bithlmann and Van De Geer (2011), these arguments
are also similar to those to follow for the proof of Part (ii) and are thus omitted.

For the proof of Part (ii) where ®p,in(70) > 0, we only prove the uniform bound for the
error in estimate ||3(7) — Bollq- The proof for ||¥(7) — Y04 is nearly identical. First, for any
7 € T (70, upn), note that by Lemma 3.2, we have,

1 1
sup H— Z gl < H— Z gl ||+ sup H— Z gl
T (10,u n. T€T (10,0 n
TE€T (10,un) Bw; <T zw1<’ro 0,tn) 1€ N
/1o p logp log p
< culm 5 CuCm 5 y V un}
1
< Culm o8P (A.20)
n

with probability at least 1 — ¢1 exp(—cologp). Also we have for any 8 € RP and 7 € R,

LS el = Y - aT By aT (5 )

LW <T W <T
1 N 2 - 1
oY 2-2 Y wl -+ Y ITE-IE (A2
Lw; <T Lw; <T Lw; <T

Here &; = ¢, for i € {i;w; <19} and &; = ¢; — x; T(Bo — o) for i € {i;w; > 79}. Now by the
definition of 5(7), it follows that

— Z i— 2l B+ MBI < %Z(yi_x?50)2+)‘1"50”1‘ (A.22)

z sw; <T Gw; <T
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Applying (A.21) in (A.22) and carrying out some algebraic operations we get

% 3" 1T (Br) = Bo)l3 + Ml

LW <T

<ulBoli+]2 3 e - o) +]2 X (B~ ol (Br) o)

LW <T To<w; <T
2
<= g €T
n .

1B~ foll + |2 3 (B0 — o) i

_11B() = Bolly + M Bolla

logp
n

log p 5
< cucm|Bo = voll2 max { 222, w, HIA(r) = Bolly + ey max

< M|B(T) = Bollr + i lBoll1-

Here A\ = ¢y ¢, max {\ /logp/n, ||Bo—"0 ||2un} The first term of the second to last inequality

follows from (A.20) and the second term from Part (i) of Lemma 3.2. The bound (A.23)
holds uniformly over 7 € T (70, uy) with probability at least 1 — ¢; exp(—calogp). Observe
that the first term on the LHS of inequalities (A.23) is nonnegative, therefore Al 5: Ih <
A8 = Bollr + A1l|Boll- Choosing A1 > 2\ leads to the inequality ||Bs<|1 < 3||8s — Bosll1,
by elementary triangle inequalities, see for e.g. Lemma 6.3 of Biihlmann and Van De Geer
(2011). Thus § = B — By € A and thus the first three inequalities of Lemma 3.3 are now
applicable. From (A.23) we obtain,

2 S B -2 3 1T B — o)l < 3l — ol

1w <70 1€MW

< 3VsAL|B(r) = Bollz (A.24)

Bounding the terms on the LHS of (A.24) by applying Part (i) and (iii) of Lemma 3.3
together with the assumption u,, = o(®(7)), yields

cutm®(70)18 — Boll3 < 3v/5M1[|B — Boll2

This directly implies ”5(7’) — ﬁoHQ S cucm\/§)\1; The 61 bound Hﬁ(T) —,30“1 S \/EHB — 50”2,
follows from the previously shown result that 5(7) — 5y € A. To complete the proof of Part
(ii), note that all bounds in the above arguments hold uniformly over T (79, u, ), consequently
the final bound holds uniformly over T (7o, uy,). O
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Proof of Lemma 4.1: We begin with proving Part (i), where ®(7) = 0, in this case, for
any 7 € R, we have

nR, (1, f9,40) = Z (y; — x7 B0)? 4 Z (yi — x74(0)2 — Z (g — 27302

W <T LW; >T 1W; >To
= Z (yi — 2L BO)2 — Z (y; — 2T74(0)2
Bw<T im0 <w; <T
= > (B9 =) 22l (B0 —v0)— Y (39 =) miz] (3O - 0)
LW ST 4570 <wi§7'
2 > el (B9 =) +2 > el (3 — )
LW <T zwl<7'
> =Y (39 =10 wial 3O =) =2 ) e — )
€Ny w; <T
+2 ) @ (3 =) (A.25)
LW <T

()

Now, by the result in Remark 4.1, we have that ||3© =2, [|5© =70 < cutm \/s log p/n®? ,
with probability at least 1 — 01 exp( ¢z log p). Additionally from the proof of Theorem 4.1,
it has also been shown that 3(©) 70 and 40 — ¢ lie in the set A of (3.2), with the same
probability. Thus the bounds of Lemma 3.2 are applicable. Substituting these bounds in

(A.25), for any v, > 0, we obtain uniformly over H(1,v,) that,

l’nll'l

. lo slo
, 0) 400y > _ =Y __508p
rerltian O 2 S g ) T (7O

min
Finally, recall that S, (r, 3©,4©)) = R, (1, 3©,5() + 1([|®(7)]lo — |®(70)||0), and since in
this case || ®(7)[|o = 0, and for any 7 € H(1,v,), we have ||®(7)||o = 1 (since v, > 0), hence
the statement of Part (i) follows directly.
To prove Part (ii), where ®(79) > 0, we divide the argument into two cases. First
consider the case where 7 € H(uy, v, ), with 7 > 79, here,

an(Ta B(O)’ ’AY(O)) — TLQ(T, 5(0)7 ’3/(0)) — nQ(TO, B(O)’?)/(O))
= Y WP — Y wi—alv)? (A.26)

TETO<W; <T TETO<W; <T

Recall by construction of model (1.1), &; = y; — o 7o, for i;w; > 7. Using this relation in
(A.26) and performing some algebraic manipulation we have that

Lo 1 . . 1 )
Ra(r,30,50) = = 37 (30 —90) Tl (3O = 0) = = 37 (3O = 50)Twial (GO = o)
1€EN 1€ENw
_% S e (3O — ) Z cixT (3O — )
1€ENy zEnw
= T1+T2+T3+T4 (A.27)
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Substituting bounds for term (7'1)-(74) given in Lemma .1 (stated after this proof), we
obtain,

1
inf (7' ﬂ ) > Cucmgn'vn — Gy C m£2 o8P

TGH(unavn)
/slo lo lo
—CuCmén 5 ngp max { %, \/un} — cucmr% max { 5 ngp’ un}

Now, note that for any 7 € R, we have that || ®(7)[|o—||®(70)||o < 1. Also, when w,/®(m9) —
0, for any 7 € H(up, vy,), the quantities ®(7p) and ®(7) will have the same sign, consequently
|12(7)]lo—|®(70)]]o = 0. In effect, we have for any 7 € H(up, vy,), that, [|(7)||o—||P(70)|l0 <
F(uy). Using this relation in the definition of S(, BO) 40)), together with the assumption
that &, > ¢, we obtain,

lnf Sn(,]_’ B(O)’;y(o)) Z g’?L <Cucm1]n _ cucmSI(;gp _ Cqu Wma { log \/7}

TEH (Un,vn) 1V

2
r slogp Cult
m vné% max{in , un} - 71\/57%F(un)>

with probability at least 1 — ¢j exp(—c2log p). This completes the proof of this lemma. [

Lemma .1 Suppose the conditions of Lemma 4.1 and let the terms T1, T2, T3 and T4 be
as defined in (A.27). Then for n sufficiently large, we have the following bounds,

. . slogp
f |71 > 2 — €2
(4) TGHI(I}Ln,'Un,) T > cucmé,vn nT
1
(i) s(up IT2| < ¢yemr? max { i ng, un}
TEH (un,vn)

1 1
(7i7) sup |13 < cucmény/ S08Pp max{ ng, \/un}
TEH (Un,vn) n n
1 1
(iv) sup  |T4] < cyemrny/ S08p max{ ng, \/un}
TEH (Un,vn) n n

with probability at least 1 — ¢y exp(—calogp).

Proof of Lemma .1: Consider the term 71 = n~! Y ien, B BO — )Tzl (B0 — ~p).

First, recall from the proof of Theorem 4.1 that ﬁ(o) — Bo € A, with probability at least
1 — c1 exp(—cglogp). Thus, as described in Remark 3.1, we have that 6 = BO) _ Yo =
BO) — By + By — Yo € Ay with the same probability. Now applying Part (iv) of Lemma 3.3
we obtain,

slogp
inf 6T 22T 6 > cycmvnl|d CuC SIIZ &
TEH (Un,vn) T ; i wm n” H2 u=m (H H2 én)

with probability at least 1 — ¢ exp(—celogp). Applying the algebraic inequality, ||0; +
S2l13 > 116113 + [|62]13 — 2||61]2]|62]|2 which is applicable for any 61,52 € RP, we obtain,
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16O — By + Bo — 1l3 > r2 + €2 — 2r,&,. Now, by definition of r,, we also have that
o = 0(1)&n, thus [|3©) = By + Bo — 0|2 > cu2, for n large. Similarly, using the inequality
161482113 < 16113+ 18211342161 | 2| d2l2, we can show that for n laxge, || 3 —Bo+50—0ll3 <
cu&2. Substituting these bounds back in (A.28) we obtain the result of Part (i). Next consider
Part (i), where we have T2 =n~'3"._ (3O —40)Tz;zF () — ~5). Recall from the proof
of Theorem 4.1, 4(0) — 4y € A. Now applying Part (iii) of Lemma 3.3 we obtain,

1 . . slogp
sup — Z (3O — ) T2zl (5 — 0) < cucmr? max{ & , un}
TEH (un,vn) T n

ie’l’bw

with probability at least 1 — ¢; exp(—calogp). This proves Part (ii). The proof of Part (iii)
follows by an application of Part (iii) of Lemma 3.2, i.e.,

sup I*Z& (B—0) < sup II*Z& Tllooll (B = ~0)lI1

TEH (Un,vn) €N TEH (Un,vn) i€nw

<  sup H* > el || Vs (B = Bo)ll2 + 1Bo — 0llr)

TEH (un,vn) i€ney

1 1 /5] 1
< CquTnWmaX{ %, 1/Un} + cuemén 5 f;gp max{ in, w/un}

with probability at least 1 — ¢; exp(—calog p). This proves Part (iii). The proof of Part (iv)
is very similar and is thus omitted. O

Proof of Theorem 4.2: First consider Part (i), where ®(79) = 0. Applying Part (i) of
Lemma 4.1 for any v, > 0, we have,

. A slogp
f > - u mi
B N E=0)

with probability at least 1—c; exp(—cz log p). Recall the choice of p = ¢, e, (s log p/nlz)l/k

and the initializing condition ® i, (7(?) > ¢,1,,. Consequently, inf - cqy(1,0,) Sn (T, BO 50 >
0, for n sufficiently large, with the same probability. This implies that 7(1) ¢ H(1,v,) for
any v, > 0. Thereby proving that ®(7(1)) = 0 is the only remaining possibility with the
same probability. This completes the proof of Part (i).

To prove Part (ii), for any v, > slogp/n, we apply Part (ii) of Lemma 4.1 on the set
H(1,vy), to obtain,

. . A slo CuC slo
TE,}}[?]{’U”) SR(T, 6(0)7 ’7(0)) > 57% (CquUn — CuCm ngp - 1 1(/ Zn \/?

2
T C
eyl Sk )

1veE 1ve

with probability at least 1 — ¢; exp(—c2 logp). Note that, by Condition A(iii) we have that
(s/l%)u&o) = 0(1). Then, upon choosing,

slogp 1 (slogp)l/k*}

k
Up 2> U, = CuCm max{
" n 1VE&\ ni2
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for some ¢, > 0, we have that inf ¢ (1 0,) Sn(T, B 4©)) > 0, for n sufficiently large. This
follows by the choice of p = (slogp/ni2)/¥", and by r2/€2 < v%, which in turn follows

n’

from Condition A(iii). This implies that 7() ¢ H(1,v%), i.e., |®(7M)) — ®(10)| < v with

1/k*
probability at least 1 — ¢j exp(—c2logp). Note that if ﬁ(il?#) < %7 then the
result is already proved. Else, reset u, = v; and reapply the above argument for any

vy, > slogp/n, to obtain,

207,50, 40) 2 € i — euc "L o [08D  flog oy

TEH (un,vn) 1V, n n ’
2

1
et s {12, )
n

Here, the term F(u,) = 0, since for u, = v¥, the sign of ®(#(1)) is the same as that of
(1), for n large. Now, upon choosing,

slogp 1 slog py a2 ) | 1 1 1
Up > U ::cucmmax{ - ,1\/514_2]1*( ni2 ) }, with, aQ:mm{i—i_%’E—i_ﬁ}’
n

we obtain that for n large, inf ey, vz) Sn(T, BA(O),’?(O)) > 0, with probability at least 1 —
c1 exp(—cz log p). Consequently 71 ¢ H (u,,v), ie., |®(+() — ®(19)| < v. Note that, by
using the above recursive argument, we have tightened the desired rate at each step. As
seen earlier, if the second term of the maximum expression is smaller than the first, then

the proof is done. Else, continuing these recursions, by resetting u,, to the bound of the
th

previous recursion, and applying Part (ii) of Lemma 4.1, we can obtain for the m""* recursion
that
(1) slogp 1 slogpy\am
|D(7) — @(19)] < cucm max{ , . ( ) }, where,
n 1vEm n
. 1 Am—1 1
am:mln{i—f—mT,?—kam_l}, and by, =1+ by-1/2,

with a1 = by = 1/k*. Note that, despite the recursions in the above argument, the

probability of the bound obtained after every recursion is maintained to be at least 1 —
c1 exp(—czlogp), this follows from Remark .1. To finish the proof, note that k* € [2,3],
am = 1/2 + ap—1/2, Ym and when k* > 3, a, = 1/2 + a,—1/2, for m large enough.
Finally, if we continue the above recursions an infinite number of times we obtain ay, =
Sooo 4 1/2™m =1, and boo = 1+ >, 1/2™ = 2. This finishes the proof of this theorem. [J.

Remark .1 (Observation utilized in the proof of Theorem 4.2): The proof of Theorem
4.2 relies on a recursive application of Lemma 4.1, this in turn requires a recursive ap-
plication of the bounds of Lemma .1, where the probability of all bounds holding simul-
taneously at each recursion being at least 1 — ¢ exp(—cologp). Despite these recursions
(potentially infinite) the result from the final recursion continues to hold with probability
at least 1 — ¢y exp(—calogp). To see this, let u, — 0 be any positive sequence and let

{aj} = a0, j = 00,0 < a; <1, be any strictly increasing sequence over j =1,2,.... . Then
define sequences u, = uy?, j = 1,2... . Here note that u},"" = o(ul), j = 1, ..., i.e., each
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sequence converges to zero faster than the preceding one. Let &,1,&,2... be events, each
with probability 1 — ¢; exp(—c2logp), on which the upper bounds of Lemma .1 hold for
each ul,u2, ... respectively. Clearly, on the intersection of events £,1 N &2 N ...., all upper
bounds of Lemma .1 hold simultaneously over any sequence u3, j = 1, ...,00 Now, note that
by the construction of these sequences, and that these are all upper bounds, the following
containment holds £, D &2 2 ... D &£,. This implies that on the event £, all bounds
of Lemma .1 hold simultaneously for any sequence {u},}, j = 1,...,00. Here £y~ represents
the set corresponding to the sequence uo® = ul>. Also, by a single application of Lemma
1, P(Ey) > 1 — ¢y exp(—calogp). The same argument can be made for the lower bound
of Lemma .1, with the direction of the containment switched.

Proof of Theorem 4.3: Recall that the result of Part (ii) of Theorem 4.1 is a uniform
result over the set T (70, uy). The proof of this theorem is now a direct application of Part
(ii) of Theorem 4.1, since by the result of Theorem 4.2, we have that 7 € T (7, t,), with
probability at least 1 — ¢ exp(—ca logp). O

Appendix B: Auxiliary lemma’s

Here we restate without proof the technical lemma’s from the literature which have been
used in the analysis presented in this manuscript.

Lemma B.1 If X € R™ P! js a zero mean subgaussian matriz with parameters (3, 02),
then for any fized (unit) vector in v € RP', we have

2t
(4) P<‘||Xv||§ - E||XUH§‘ > nt) < exp ( - cnmin{ 7})

4 2
O-:E 0-117

Moreover, if Y € R"*P2 is a zero mean subgaussian matriz with parameters (£, 02), then

YTXx 2t
(i) P<|| — cov(Yi, Ti)| oo = t> < 6p1p2 €Xp ( — cnmin {ﬁ, —})
0207 050y

where x;,y; are the i rows of X and Y respectively. In particular, if n > clogp, then

X lo
— cov(¥i, Ti)||oo > COzoyf %) < ¢y exp(—ca logp).

This lemma provides tail bounds on subexponential r.v.’s and is as stated in Lemma 14
of Loh and Wainwright (2012): supplementary materials. The first part of this lemma is a
restatement of Proposition 5.16 of Vershynin (2010) and the other two part are derived via
algebraic manipulations of the product under consideration. The following is another useful
result from Loh and Wainwright (2012) which provides control on restricted eigenvalues of
the gram matrix.

T

(i) P (|1

Lemma B.2 Let z; € RP, ¢ = 1,...,n be i.i.d subgaussian random vectors with variance
parameter o2 and covariance ¥, = Ez;zl. Also, let Amin(2X:) and Amax(22) be the minimum
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and maximum eigenvalues of the covariance matrix respectively. Then,

min 2’1 ]‘ng
Zé%z > A )12 i (5) mae { AL 52 s e m,

4
max z 1
§:6Tzz < ? ( Bumae() 12 0y Auin(52) max { 15253, v e R,

with probability at least 1 — ¢y exp(—calogp).

A proof of this result in an errors-in-variables setting result can be found in the sup-
plementary material of Loh and Wainwright (2012), However Lemma B.2 can be seen to
follow as a special case (substitute o, = 0 in Lemma 1 of Loh and Wainwright (2012):
supplementary materials).

Lemma B.3 Let the {X;}™, be independent random variables, EX? < oo, X; > 0. Set
S=3%",X; and let t > 0. Then

P(ES-S>1) <exp (QZZ;XQ)

This result is as stated in Theorem 1 of Maurer (2003), it provides a lower bound on a sum
of positive independent r.v.’s.

Lemma B.4 Suppose X and Y are independent random wvariables. Let ¢ be a function
with E|p(X,Y)| < oo and let g(x) = E¢(x,Y), then

E(¢(X,Y)|X) = g(X)

This is an elementary result on conditional expectations. A straightforward proof can be
found in Example 1.5. page 222, Durrett (2010).
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