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Abstract

Matrix completion aims to reconstruct a data matrix based on observations of a small
number of its entries. Usually in matrix completion a single matrix is considered, which
can be, for example, a rating matrix in recommendation system. However, in practical
situations, data is often obtained from multiple sources which results in a collection of
matrices rather than a single one. In this work, we consider the problem of collective
matrix completion with multiple and heterogeneous matrices, which can be count, binary,
continuous, etc. We first investigate the setting where, for each source, the matrix entries
are sampled from an exponential family distribution. Then, we relax the assumption of
exponential family distribution for the noise. In this setting, we do not assume any specific
model for the observations. The estimation procedures are based on minimizing the sum
of a goodness-of-fit term and the nuclear norm penalization of the whole collective matrix.
We prove that the proposed estimators achieve fast rates of convergence under the two
considered settings and we corroborate our results with numerical experiments.

Keywords: High-dimensional prediction; Exponential families; Low-rank matrix estima-
tion; Nuclear norm minimization; Low-rank optimization;

1. Introduction

Completing large-scale matrices has recently attracted great interest in machine learning
and data mining since it appears in a wide spectrum of applications such as recommender
systems (Koren et al., 2009; Bobadilla et al., 2013), collaborative filtering (Netflix chal-
lenge) (Goldberg et al., 1992; Rennie and Srebro, 2005), sensor network localization (So
and Ye, 2005; Drineas et al., 2006; Oh et al., 2010), system identification (Liu and Vanden-
berghe, 2009), image processing (Hu et al., 2013), among many others. The basic principle
of matrix completion consists in recovering all the entries of an unknown data matrix from
incomplete and noisy observations of its entries.

To address the high-dimensionality in matrix completion problem, statistical inference
based on low-rank constraint is now an ubiquitous technique for recovering the underlying
data matrix. Thus, matrix completion can be formulated as minimizing the rank of the
matrix given a random sample of its entries. However, this rank minimization problem is
in general NP-hard due to the combinatorial nature of the rank function (Fazel et al., 2001;
Fazel, 2002). To alleviate this problem and make it tractable, convex relaxation strategies
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were proposed, e.g., the nuclear norm relaxation (Srebro et al., 2005; Candes and Tao,
2010; Recht et al., 2010; Negahban and Wainwright, 2011; Klopp, 2014) or the max-norm
relaxation (Cai and Zhou, 2016). Among those surrogate approximations, nuclear norm,
which is defined as the sum of the singular values of the matrix or the `1-norm of its
spectrum, is probably the most widely used penalty for low-rank matrix estimation, since
it is the tightest convex lower bound of the rank (Fazel et al., 2001).

Motivations. Classical matrix completion focus on a single matrix, whereas in practical
situations data is often obtained from a collection of matrices that may cover multiple
and heterogeneous sources. For example, in e-commerce users express their feedback for
different items such as books, movies, music, etc. In social networks like Facebook and
Twitter users often share their opinions and interests on a variety of topics (politics, social
events, health). In this examples, informations from multiple sources can be viewed as a
collection of matrices coupled through a common set of users.

Rather than exploiting user preference data from each source independently, it may
be beneficial to leverage all the available user data provided by various sources in order
to generate more encompassing user models (Cantador et al., 2015). For instance, some
recommender system runs into the so-called cold-start problem (Lam et al., 2008). A user
is new or “cold” in a source when he has few to none rated items. Such user may have
a rating history in auxiliary sources and we can use his profile in the auxiliary sources to
recommend relevant items in the target source. For example, a user’s favorite movie genres
may be derived from his favorite book genres. Therefore, this shared structure among the
sources can be useful to get better predictions (Singh and Gordon, 2008; Bouchard et al.,
2013; Gunasekar et al., 2016).

More generally speaking, collective matrix completion finds a natural application in the
problem of recommender system with side information. In this problem, in addition to
the conventional user-item matrix, it is assumed that we have side information about each
user (Chiang et al., 2015; Jain and Dhillon, 2013; Fithian and Mazumder, 2018; Agarwal
et al., 2011). For example, in blog recommendation task, we may have access to user
generated content (images, tags and text) or user activity (e.g., likes and reblogs). Such side
information may be used to improve the quality of recommendation of blogs of interest (Shin
and Lee, 2015).

Based on the type of available side information, various methods for recommender sys-
tems with side information have been proposed. It can be user generated content (Armen-
tano et al., 2013; Hannon et al., 2010), user/item profile or attribute (Agarwal et al., 2011),
social network (Jamali and Ester, 2010; Ma et al., 2011) and context information (Natara-
jan et al., 2013). A very interesting surveys of the state-of-the-art methods can be found
in (Fithian and Mazumder, 2018; Natarajan et al., 2013).

On the other hand, our framework includes the model of Mixed Data Frames with
missing observations (Pagès, 2014; Udell et al., 2016). Here matrices collect categorical, nu-
merical and count observations. They appear in numerous applications including in ecology,
patient records in health care (Gunasekar et al., 2016), quantitative gene expression val-
ues (Natarajan and Dhillon, 2014; Zitnik and Zupan, 2014, 2015), and also in recommender
systems and survey data.
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Main contributions and related literature. In this paper, we extend the theory of
low-rank matrix completion to a collection of multiple and heterogeneous matrices. We first
consider general matrix completion setting where we assume that for each matrix its entries
are sampled from natural exponential distributions (Lehmann and Casella, 1998). In this
setting, we may have Gaussian distribution for continuous data; Bernoulli for binary data;
Poisson for count-data, etc. In a second part, we relax the assumption of exponential family
distribution for the noise and we do not assume any specific model for the observations. This
approach is more popular and widely used in machine learning. The proposed estimation
procedure is based on minimizing the sum of a goodness-of-fit term and the nuclear norm
penalization of the whole collective matrix. The key challenge in our analysis is to use joint
low-rank structure and our algorithm is far from the trivial one which consists in estimating
each source matrix separately. We provide theoretical guarantees on our estimation method
and show that the collective approach provides faster rate of convergences. We further
corroborate our theoretical findings through simulated experiments.

Previous works on collective matrix completion are mainly based on matrix factoriza-
tion (Srebro et al., 2005). In a nutshell, this approach fits the target matrix as the product
of two low-rank matrices. Matrix factorization gives rise to non-convex optimization prob-
lems and its theoretical understanding is quite limited. For example, Singh and Gordon
(2008) proposed the collective matrix factorization that jointly factorizes multiple matri-
ces sharing latent factors. As in our setting, each matrix can have a different value type
and error distribution. In Singh and Gordon (2008), the authors use Bregman divergences
to measure the error and extend standard alternating projection algorithms to this set-
ting. They consider a quite general setting which includes as a particular case the nuclear
norm penalization approach that we study in the present paper. They do not provide any
theoretical guarantee. A Bayesian model for collective matrix factorization was proposed
in Singh and Gordon (2010). Horii et al. (2014) and Xu et al. (2016) also consider collective
matrix factorization and investigate the strength of the relation among the source matri-
ces. Their estimation procedure is based on penalization by the sum of the nuclear norms
of the sources. The convex formulation for collective matrix factorization was proposed
in Bouchard et al. (2013) where the authors consider a general situation when the set of
matrices do not necessarily have a common set of rows/columns. When this is the case,
the estimator proposed in Bouchard et al. (2013) is quite similar to ours. Their algorithm
is based on the iterative Singular Value Thresholding and the authors conduct empirical
evaluations of this approach on two real data sets.

Most of the previous papers focus on the algorithmic side without providing theoretical
guarantees for the collective approach. One exception is the paper by Gunasekar et al.
(2015) where the authors prove consistency of the estimate under two observation models:
noise-free and additive noise models. Their estimation procedure is based on minimizing
the least squares loss penalized by the nuclear norm. To prove the consistency of their esti-
mator, Gunasekar et al. (2015) assume that all the source matrices share the same low-rank
factor. They consider the uniform sampling scheme for the observations (see Assumptions
1 and 4 in Gunasekar et al. (2015)). Uniform sampling is an usual assumption in matrix
completion literature (see, e.g., (Candes and Tao, 2010; Candès and Recht, 2009; Davenport
et al., 2014)). This assumption is restrictive in many applications such as recommendations
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systems. The theoretical analysis in the present paper is carried out for general sampling
distributions.

Similar to our setting, matrix completion with side information explores the available
user data provided by various sources. For instance Jain and Dhillon (2013) and Xu et al.
(2013) introduce the so-called Inductive Matrix Completion (IMC). It models side informa-
tion as knowledge of feature spaces. They show that if the features are perfect (e.,g., see
Definition 1 in Chiang et al. (2018) for perfect side information), the sample complexity
can be reduced. More precisely, in works on matrix completion with side information, it is
usually assumed that one has partially observed low-rank matrix of interest M ∈ Rd1×d2
and, additionally, one has access to two matrices of features A ∈ Rd1×r1 and B ∈ Rd2×r2
where each row of A (or B) denotes the feature of the i-th row (or column) entity of M ,
ri < di for i = 1, 2 and M = AZBT . The main difference with our setting is that, here, A
and B are assumed to be fully observed while our model allows also missing observations
for the set of features. The perfect side information assumption is strong and hard to meet
in practice. Chiang et al. (2015) relaxed it by assuming that the side information may be
noisy (not perfect). In this approach, referred as DirtyIMC, they assume that the unknown
matrix is modeled as M = AZBT +N where the residual matrix N models imperfections
and noise in the features.

Several works consider matrix completion with side information. For example, Chiang
et al. (2015) proposes a method based on penalization by the sum of the nuclear norms of
M and of each feature. Our method is based on the penalization by the nuclear norm of
the whole matrix built of the matrix M and the features A and B. In Jain and Dhillon
(2013), the authors study the problem of low-rank matrix estimation using rank one mea-
surements. In the noise-free setting, they assume that all the features are known and that
the matrices of features are incoherent. The method proposed in Jain and Dhillon (2013)
is based on non-convex matrix factorization. In Fithian and Mazumder (2018), the authors
consider a general framework for reduced-rank modeling of matrix-valued data. They use
a generalized weighted nuclear norm penalty where the matrix is multiplied by positive
semidefinite matrices P and Q which depend on the matrix of features. In Agarwal et al.
(2011), the authors introduce a per-item user covariate logistic regression model augment-
ing with user-specific random effects. Their approach is based on a multilevel hierarchical
model.

In the case of the heterogeneous data coming from different sources, these approaches can
be applied for recovering each source separately. In contrast, our approach aims at collecting
all the available information in a single matrix which results in faster rates of convergence.
On the other hand, popular algorithms for matrix completion with side information, such
as Maxide in Xu et al. (2013) and AltMin in Jain and Dhillon (2013), are based on the least
square loss which could be not suitable for data coming from non-Gaussian distributions.

If we consider a single matrix, our model includes as particular case 1-bit matrix com-
pletion and, more generally, matrix completion with exponential family noise. 1-bit matrix
completion was first studied in Davenport et al. (2014), where the observed entries are as-
sumed to be sampled uniformly at random. This problem was also studied among others
by (Cai and Zhou, 2013; Klopp et al., 2015; Alquier et al., 2017). Matrix completion with
exponential family noise (for a single matrix) was previously considered in Lafond (2015)
and Gunasekar et al. (2014). In these papers authors assume sampling with replacement
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where there can be multiple observations for the same entry. In the present paper, we con-
sider more natural setting for matrix completion where each entry may be observed at most
once. Our result improves the known results on 1-bit matrix completion and on matrix com-
pletion with exponential family noise. In particular, we obtain exact minimax optimal rate
of convergence for 1-bit matrix completion and matrix completion with exponential noise
which was known up to a logarithmic factor (for more details see Remark 9 in Section 3).

Organization of the paper. The remainder of the paper is organized as follow. In
Section 1.1, we introduce basic notation and definitions. Section 2 sets up the formalism
for the collective matrix completion. In Section 3, we investigate the exponential family
noise model. In Section 4, we study distribution-free setup and we provide the upper
bound on the excess risk. To verify the theoretical findings, we corroborate our results
with numerical experiments in Section 5, where we present an efficient iterative algorithm
that solves the maximum likelihood approximately. The proofs of the main results and key
technical lemmas are postponed to the appendices.

1.1. Preliminaries

For the reader’s convenience, we provide a brief summary of the standard notation and the
definitions that will be frequently used throughout the paper.

Notation. For any positive integer m, we use [m] to denote {1, . . . ,m}. We use capital
bold symbols such as X,Y ,A, to denote matrices. For a matrix A, we denote its (i, j)-th

entry by Aij . As usual, let ‖A‖F =
√∑

i,j A
2
ij be the Frobenius norm and let ‖A‖∞ =

maxi,j |Aij | denote the elementwise `∞-norm. Additionally, ‖A‖∗ stands for the nuclear
norm (trace norm), that is ‖A‖∗ =

∑
i σi(A) where σ1(A) ≥ σ2(A) ≥ · · · are singular

values of A, and ‖A‖ = σ1(A) to denote the operator norm. The inner product between
two matrices is denoted by 〈A,B〉 = tr(A>B) =

∑
ij AijBij , where tr(·) denotes the trace

of a matrix. We write ∂Ψ the subdifferential mapping of a convex functional Ψ. Given two
real numbers a and b, we write a∨b = max(a, b) and a∧b = min(a, b). The symbols P and E
denote generic probability and expectation operators whose distribution is determined from
the context. The notation c will be used to denote positive constant, that might change
from one instance to the other.

Definition 1 A distribution of a random variable X is said to belong to the natural expo-
nential family, if its probability density function characterized by the parameter η is given
by:

X|η ∼ fh,G(x|η) = h(x) exp
(
ηx−G(η)

)
,

where h is a nonnegative function, called the base measure function, which is indepen-
dent of the parameter η. The function G(η) is strictly convex, and is called the log-partition
function, or the cumulant function. This function uniquely defines a particular member dis-
tribution of the exponential family, and can be computed as: G(η) = log

( ∫
h(x) exp(ηx)dx

)
.

If G is smooth enough, we have that E[X] = G′(η) and Var[X] = G′′(η), where G′

stands for the derivative of G. The exponential family encompasses a wide large of standard
distributions such as:
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• Normal, N (µ, σ2) (known σ), is typically used to model continuous data, with natural

parameter η = µ
σ2 and G(η) = σ2

2 η
2.

• Gamma, Γ(λ, α) (known α), is often used to model positive valued continuous data,
with natural parameter η = −λ and G(η) = −α log(−η).

• Negative binomial, NB(p, r) (known r), is a popular distribution to model overdis-
persed count data, whose variance is larger than their mean, with natural parameter
η = log(1− p) and G(η) = −r log(1− exp(η)).

• Binomial, B(p,N) (known N), is used to model number of successes in N trials, with
natural parameter η = log( p

1−p) (logit function) and G(η) = N log(1 + exp(η)).

• Poisson, P(λ), is used to model count data, with natural parameter η = log(λ) and
G(η) = exp(η).

Exponential, chi-squared, Rayleigh, Bernoulli and geometric distributions are special
cases of the above five distributions.

Definition 2 Let S be a closed convex subset of Rm and Φ : S ⊂ dom(Φ) → R a
continuously-differentiable and strictly convex function. The Bregman divergence associ-
ated with Φ (Bregman, 1967; Censor and Zenios, 1997) dΦ : S × S → [0,∞) is defined
as

dΦ(x, y) = Φ(x)− Φ(y)− 〈x− y,∇Φ(y)〉,
where ∇Φ(y) represents the gradient vector of Φ evaluated at y.

The value of the Bregman divergence dΦ(x, y) can be viewed as the difference between
the value of Φ at x and the first Taylor expansion of Φ around y evaluated at point x.
For exponential family distributions, the Bregman divergence corresponds to the Kullback-
Leibler divergence (Banerjee et al., 2005) with Φ = G.

2. Collective matrix completion

Assume that we observe a collection of matrices X = (X1, . . . ,XV ). In this collection
componentsXv ∈ Rdu×dv have a common set of rows. This common set of rows corresponds,
for example, to a common set of users in a recommendation system. The set of columns of
each matrixXv corresponds to a different type of entity. In the case of recommender system
it can be books, films, video game, etc. Then, the entries of each matrix Xv corresponds
to the user’s rankings for this particular type of products.

We assume that the distribution of each matrixXv depends on the matrix of parameters
M v. This distribution can be different for different v. For instance, we can have binary
observations for one matrix Xv1 with entries which correspond, for example, to like/dislike
labels for a certain type of products, multinomial for another matrix Xv2 with ranking
going from 1 to 5 and Gaussian for a third matrix Xv3 .

As it happens in many applications, we assume that for each matrix Xv we observe
only a small subset of its entries. We consider the following model: for v ∈ [V ] and
(i, j) ∈ [du] × [dv], let Bv

ij be independent Bernoulli random variables with parameter πvij .
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We suppose that Bv
ij are independent from Xv

ij . Then, we observe Y v
ij = Bv

ijX
v
ij . We can

think of the Bv
ij as masked variables. If Bv

ij = 1, we observe the corresponding entry of Xv,
and when Bv

ij = 0, we have a missing observation.

In the simplest situation each coefficient is observed with the same probability, i.e.
for every v ∈ [V ] and (i, j) ∈ [du] × [dv], π

v
ij = π. In many practical applications, this

assumption is not realistic. For example, for a recommendation system, some users are
more active than others and some items are more popular than others and thus rated more
frequently. Hence, the sampling distribution is in fact non-uniform. In the present paper,
we consider general sampling model where we only assume that each entry is observed with
a positive probability:

Assumption 1 Assume that there exists a positive constant 0 < p < 1 such that

min
v∈[V ]

min
(i,j)∈[du]×[dv ]

πvij ≥ p.

Let Π denotes the joint distribution of the Bernoulli variables
{
Bv
ij : (i, j) ∈ [du] ×

[dv], v ∈ [V ]
}

. For any matrix A ∈ Rdu×D where D =
∑

v∈[V ] dv, we define the weighted
Frobenius norm

‖A‖2Π,F =
∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvij(A
v
ij)

2.

Assumption 1 implies ‖A‖2Π,F ≥ p‖A‖2F . For each v ∈ [V ] let us denote πvi· =
∑dv

j=1 π
v
ij and

πv·j =
∑du

i=1 π
v
ij . Note we can easily get an estimations of πvi· and πv·j using the empirical

frequencies:

π̂vi· =
∑

j∈[dv ]

Bv
ij and π̂v·j =

∑

i∈[du]

Bv
ij .

Let πi· =
∑

v∈[V ] π
v
i·, π·j = maxv∈[V ] π

v·j , and µ be an upper bound of its maximum, that

is

max
(i,j)∈[du]×[dv ]

(πi·, π·j) ≤ µ. (1)

3. Exponential family noise

In this section we assume that for each v distribution of Xv belongs to the exponential
family, that is

Xv
ij |Mv

ij ∼ fhv ,Gv(Xv
ij |Mv

ij) = hv(Xv
ij) exp

(
Xv
ijM

v
ij −Gv(Mv

ij)
)
.

We denote M = (M1, . . . ,MV ) and let γ be an upper bound on the sup-norm of M,
that is γ = |γ1| ∨ |γ2|, where γ1 ≤ Mv

ij ≤ γ2 for every v ∈ [V ] and (i, j) ∈ [du] × [dv].

Hereafter, we denote by C∞(γ) =
{
W ∈ Rdu×D : ‖W‖∞ ≤ γ

}
, the `∞-norm ball with

radius γ in the space Rdu×D. We need the following assumptions on densities fhv ,Gv :
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Assumption 2 For each v ∈ [V ], we assume that the function Gv(·) is twice differentiable
and there exits two constants L2

γ , U
2
γ satisfying:

sup
η∈[−γ− 1

K
,γ+ 1

K
]

(Gv)′′(η) ≤ U2
γ , (2)

and
inf

η∈[−γ− 1
K
,γ+ 1

K
]
(Gv)′′(η) ≥ L2

γ , (3)

for some K > 0.

The first statement, (2), in Assumption 2 ensures that the distributions of Xv
ij have

uniformly bounded variances and sub-exponential tails (see Lemma 28 in Appendix C).
The second one, (3), is the strong convexity condition satisfied by the log-partition function
Gv. This assumption is satisfied for most standard distributions presented in the previous
section. In Table 1, we list the corresponding constants in Assumption 2.

Model (Gv)′(η) (Gv)′′(η) L2
γ U2

γ

Normal σ2η σ2 σ2 σ2

Binomial Neη

1+eη
Neη

(1+eη)2
Ne−(γ+ 1

K
)

(1+eγ+
1
K )2

N
4

Gamma (if γ1γ2 > 0) −α
η

α
η2

α
(γ+ 1

K
)2

α
(|γ1|∧|γ2|)2

Negative binomial reη

1−eη
reη

(1−eη)2
re−(γ+ 1

K
)

(1−e−(γ+ 1
K

))2

re(γ+
1
K

)

(1−eγ+
1
K )2

Poisson eη eη e−(γ+ 1
K

) e(γ+ 1
K

)

Table 1: Examples of the corresponding constants L2
γ and U2

γ from Assumption 2.

3.1. Estimation procedure

To estimate the collection of matrices of parameters M = (M1, . . . ,MV ), we use penalized
negative log-likelihood. Let W ∈ Rdu×D, we divide it in V blocks W v ∈ Rdu×dv : W =
(W 1, . . . ,W V ). Given observations Y = (Y 1, . . . ,Y V ), we write the negative log-likelihood
as

LY(W) = − 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

(
Y v
ijW

v
ij −Gv(W v

ij)
)
.

The nuclear norm penalized estimator M̂ of M is defined as follows:

M̂ = (M̂1, . . . ,M̂V ) = argmin
W∈C∞(γ)

LY(W) + λ‖W‖∗, (4)

where λ is a positive regularization parameter that balances the trade-off between model fit
and privileging a low-rank solution. Namely, for large value of λ the rank of the estimator
M̂ is expected to be small.

Let the collection of matrices (Ev11, . . . , E
v
dudv

) form the canonical basis in the space of
matrices of size du × dv. The entry of (Evij) is 0 everywhere except for the (i, j)-th entry
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where it equals to 1. For (εvij), an i.i.d Rademacher sequence, we define ΣR = (Σ1
R, . . . ,Σ

V
R)

where for all v ∈ [V ]

Σv
R =

1

duD

∑

(i,j)∈[du]×[dv ]

εvijB
v
ijE

v
ij .

We now state the main result concerning the recovery of M. Theorem 3 gives a general
upper bound on the estimation error of M̂ defined by (4). Its proof is postponed in
Appendix A.1.

Theorem 3 Assume that Assumptions 1 and 2 hold, and λ ≥ 2‖∇LY(M)‖. Then, with
probability exceeding 1− 4/(du +D) we have

1

duD
‖M̂−M‖2Π,F ≤

c
p

max
{
duD rank(M)

( λ2

L4
γ

+ γ2(E[‖ΣR‖])2
)
,
γ2 log(du +D)

duD

}
,

where c is a numerical constant.

Using Assumption 1, Theorem 3 implies the following bound on the estimation error
measured in normalized Frobenius norm.

Corollary 4 Under assumptions of Theorem 3 and with probability exceeding 1−4/(du+D),
we have

1

duD
‖M̂−M‖2F ≤

c
p2

max
{
duD rank(M)

( λ2

L4
γ

+ γ2(E[‖ΣR‖])2
)
,
γ2 log(du +D)

duD

}
.

In order to get a bound in a closed form we need to obtain a suitable upper bounds on
E[‖ΣR‖] and on ‖∇LY(M)‖ with high probability. Therefore we use the following two
lemmas.

Lemma 5 There exists an absolute constant c such that

E[‖ΣR‖] ≤ c
(√µ+

√
log(du ∧D)

duD

)
.

Lemma 6 Let Assumption 2 holds. Then, there exists an absolute constant c such that,
with probability at least 1− 4/(du +D), we have

‖∇LY(M)‖ ≤ c
(

(Uγ ∨K)
(√
µ+ (log(du ∨D))3/2

)

duD

)
.

The proofs of Lemmas 5 and 6 are postponed to Appendices A.2 and A.3. Recall that
the condition on λ in Theorem 3 is that λ ≥ 2‖∇LY(M)‖. Using Lemma 6, we can choose

λ = 2c
(Uγ ∨K)

(√
µ+ (log(du ∨D))3/2

)

duD
.

With this choice of λ, we obtain the following theorem:
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Theorem 7 Let Assumptions 1 and 2 be satisfied. Then, with probability exceeding 1 −
4/(du +D) we have

1

duD
‖M̂−M‖2Π,F ≤

c rank(M)

pduD

(
γ2 +

(Uγ ∨K)2

L4
γ

)(
µ+ log3(du ∨D)

)
,

and

1

duD
‖M̂−M‖2F ≤

c rank(M)

p2duD

(
γ2 +

(Uγ ∨K)2

L4
γ

)(
µ+ log3(du ∨D)

)
,

where c is an absolute constant.

Remark 8 Note that the rate of convergence in Theorem 7 has the following dominant
term:

1

duD
‖M̂−M‖2F .

rank(M)µ

p2duD
,

where the symbol . means that the inequality holds up to a multiplicative constant. If we
assume that the sampling distribution is close to the uniform one, that is that there exists
positive constants c1 and c2 such that for every v ∈ [V ] and (i, j) ∈ [du] × [dv] we have
c1p ≤ πvij ≤ c2p, then Theorem 7 yields

1

duD
‖M̂−M‖2F .

rank(M)

p(du ∧D)
.

If we complete each matrix separately, the error will be of the order
∑V

v=1 rank(M v)/p(du∧
D). As rank(M) ≤∑V

v=1 rank(M v), the rate of convergence achieved by our estimator is
faster compared to the penalization by the sum-nuclear-norm.

In order to get a small estimation error, p should be larger than rank(M)/(du ∧ D).
We denote n =

∑
v∈[V ]

∑
(i,j)∈[du]×[dv ] π

v
ij , the expected number of observations. Then, we

get the following condition on n:

n ≥ c rank(M)(du ∨D).

Remark 9 In 1-bit matrix completion (Davenport et al., 2014; Klopp et al., 2015; Alquier
et al., 2017), instead of observing the actual entries of the unknown matrix M ∈ Rd×D, for
a random subset of its entries Ω we observe {Yij ∈ {+1,−1} : (i, j) ∈ Ω}, where Yij = 1
with probability f(Mij) for some link-function f . In Davenport et al. (2014) the parameter
M is estimated by minimizing the negative log-likelihood under the constraints ‖M‖∞ ≤ γ
and ‖M‖∗ ≤ γ

√
rdD for some r > 0. Under the assumption that rank(M) ≤ r, the authors

prove that

1

dD
‖M̂−M‖2F ≤ cγ

√
r(d ∨D)

n
, (5)

where cγ is a constant depending on γ (see Theorem 1 in Davenport et al. (2014)). A similar
result using max-norm minimization was obtained in Cai and Zhou (2013). In (Klopp et al.,

10



Collective Matrix Completion

2015) the authors prove a faster rate. Their upper bound (see Corollary 2 in Klopp et al.
(2015)) is given by

1

dD
‖M̂−M‖2F ≤ cγ

rank(M)(d ∨D) log(d ∨D)

n
. (6)

In the particular case of 1-bit matrix completion for a single matrix under uniform sampling
scheme, Theorem 7 implies the following bound:

1

dD
‖M̂−M‖2F ≤ cγ

rank(M)(d ∨D)

n
,

which improves (6) by a logarithmic factor. Furthermore, Klopp et al. (2015) provide
rank(M)(d∨D)/n as the lower bound for 1-bit matrix completion (see Theorem 3 in Klopp
et al. (2015)). So our result answers the important theoretical question what is the exact
minimax rate of convergence for 1-bit matrix completion which was previously known up to
a logarithmic factor.

In a more general setting of matrix completion with exponential family noise, the mini-
max optimal rate of convergence was also known only up to logarithmic factor (see Lafond
(2015)). Our result provides the exact minimax optimal rate in this more general setting
too. It is easy to see, by inspection of the proof of the lower bound in Lafond (2015), that
the upper bound provided by Theorem 7 is optimal for the collective matrix completion.

Remark 10 Note that our estimation method is based on the minimization of the nuclear-
norm of the whole collective matrix M. Another possibility is to penalize by the sum of the
nuclear norms

∑
v∈[V ] ‖M v‖∗ (see, e.g., Klopp et al. (2015)). This approach consists in

estimating each component matrix independently.

4. General losses

In the previous section we assume that the link functions Gv are known. This assumption
is not realistic in many applications. In this section we relax this assumption in the sense
that we do not assume any specific model for the observations. Recall that our observations
are a collection of partially observed matrices Y v = (Bv

ijX
v
i,j) ∈ Rdu×dv for v = 1, . . . , V

and Xv = (Xv
ij) ∈ Rdu×dv . We are interested in the problem of prediction of the entries of

the collective matrix X = (X1, . . . ,XV ). We consider the risk of estimating Xv with a loss
function `v, which measures the discrepancy between the predicted and actual value with
respect to the given observations. We focus on non-negative convex loss functions that are
Lipschitz:

Assumption 3 (Lipschitz loss function) For every v ∈ [V ], we assume that the loss func-
tion `v(y, ·) is ρv-Lipschitz in its second argument: |`v(y, x)− `v(y, x′)| ≤ ρv|x− x′|.

Some examples of the loss functions that are 1-Lipschitz are: hinge loss `(y, y′) =
max(0, 1 − yy′), logistic loss `(y, y′) = log(1 + exp(−yy′)), and quantile regression loss
`(y, y′) = `τ (y′ − y) where τ ∈ (0, 1) and `τ (z) = z(τ − 1(z ≤ 0)).

11
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For a matrix M = (M1, . . . ,MV ) ∈ Rdu×D, we define the empirical risk as

RY(M) =
1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij`

v(Y v
ij ,M

v
ij).

We define the oracle as:

?
M =

( ?
M1, . . . ,

?
MV

)
= argmin

Q∈C∞(γ)
R(Q) (7)

where R(Q) = E[RY(Q)]. Here the expectation is taken over the joint distribution of
{(Y v

ij , B
v
ij) : (i, j) ∈ [du] × [dv] and v ∈ [V ]}. We use machine learning approach and will

provide an estimator M̂ that predicts almost as well as
?

M. Thus we will consider excess

risk R(M̂)−R(
?

M). By construction, the excess risk is always positive.

For a tuning parameter Λ > 0, the nuclear norm penalized estimator M̂ is defined as

M̂ ∈ argmin
Q∈C∞(γ)

{
RY(Q) + Λ‖Q‖∗

}
. (8)

We next turn to the assumption needed to establish an upper bound on the performance
of the estimator M̂ defined in (8).

Assumption 4 Assume that there exists a constant ς > 0 such that for every Q ∈ C∞(γ),
we have

R(Q)−R(
?

M) ≥ ς
duD
‖Q−

?
M‖2Π,F .

This assumption has been extensively studied in the learning theory literature (Mendelson,
2008; Zhang, 2004; Bartlett et al., 2004; Alquier et al., 2017; Elsener and van de Geer, 2018),
and it is called “Bernstein” condition. It is satisfied in various cases of loss function (Alquier
et al., 2017) and it ensures a sufficient convexity of the risk around the oracle defined
in (7). Note that when the loss function `v is strongly convex, the risk function inherits this
property and automatically satisfies the margin condition. In other cases, this condition
requires strong assumptions on the distribution of the observations, for instance for hinge
loss or quantile loss (see Section 6 in Alquier et al. (2017)). The following result gives an

upper bound on the excess risk of the estimator M̂.

Theorem 11 Let Assumptions 1, 3 and 4 hold and set ρ = maxv∈[V ] ρv. Suppose that

Λ ≥ 2 sup{‖G‖ : G ∈ ∂RY(
?

M)}. Then, with probability at least 1− 4/(du +D), we have

R(M̂)−R(
?

M) ≤ c
p

max
{

rank(
?

M)duD
(
ρ3/2

√
γ/ς(E[‖ΣR‖])2 +

Λ2

ς

)
,

(
ργ + ρ3/2

√
γ/ς

)
log(du +D)

duD

}
.

Theorem 11 gives a general upper bound on the prediction error of the estimator M̂. Its
proof is presented in Appendix A.4. In order to get a bound in a closed form we need to

obtain a suitable upper bounds on sup{‖G‖ : G ∈ ∂(RY(
?

M))} with high probability.

12
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Lemma 12 Let Assumption 3 holds. Then, there exists an absolute constant c such that,
with probability at least 1− 4/(du +D), we have

‖G‖ ≤ c
ρ
(√
µ+

√
log(du ∨D)

)

duD
,

for all G ∈ ∂RY(
?

M).

The proof of Lemma 12 is given in Appendix A.5. Using Lemma 12 , we can choose

Λ = 2c
ρ
(√
µ+

√
log(du ∨D)

)

duD

and with this choice of Λ and Lemma 5, we obtain the following theorem:

Theorem 13 Let Assumptions 1, 3 and 4 hold. Then, we have

R(M̂)−R(
?

M) ≤ c
p

rank(
?

M)
(ρ2 + ρ3/2

√
γ/ς)(µ+ log(du ∨D))

duD
,

with probability at least 1− 4/(du +D).

Using Assumption 4, we get the following corollary:

Corollary 14 With probability at least 1− 4/(du +D), we have

1

duD
‖M̂−

?
M‖2F ≤

c
p2ς

rank(
?

M)
(ρ2 + ρ3/2

√
γ/ς)(µ+ log(du ∨D))

duD
.

1-bit matrix completion. In 1-bit matrix completion with logistic (resp. hinge) loss,
the Bernstein assumption is satisfied with ς = 1/(4e2γ) (resp. ς = 2τ , for some τ that

verifies |
?
Mv
ij − 1/2| ≥ τ,∀v ∈ [V ], (i, j) ∈ [du] × [dv]). More details for these constants can

be found in Propositions 6.1 and 6.3 in Alquier et al. (2017). Then, the excess risk with
respect to these two losses under the uniform sampling is given by:

Corollary 15 With probability at least 1− 4/(du +D), we have

R(M̂)−R(
?

M) ≤ c rank(
?

M)

p(du ∧D)
.

These results are obtained without a logarithmic factor, and it improves the ones given in
Theorems 4.2 and 4.4 in Alquier et al. (2017). The natural loss in this context is the 0/1
loss which is often replaced by the hinge or the logistic loss. We assume without loss of
generality that γ = 1, since the Bayes classifier has its entries in [−1, 1], and we define the
classification excess risk by:

R0/1(M) =
1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvijP[Xv
ij 6= sign(Mv

ij)],

for all M ∈ Rdu×D. Using Theorem 2.1 in Zhang (2004), we have

R0/1(M̂)−R0/1(
?

M) ≤ c

√√√√ rank(
?

M)

p(du ∧D)
.
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5. Numerical experiments

In this section, we first provide algorithmic details of the numerical procedure for solving
the problem (4), then we conduct experiments on synthetic data to further illustrate the
theoretical results of the collective matrix completion.

5.1. Algorithm

The collective matrix completion problem (4) is a semidefinite program (SDP), since it is
a nuclear norm minimization problem with a convex feasible domain (Fazel et al., 2001;
Srebro et al., 2005). We may solve it, for example, via the interior-point method (Liu
and Vandenberghe, 2010). However, SDP solvers can handle a moderate dimensions, thus
such formulation is not scalable due to the storage and computation complexity in low-
rank matrix completion tasks. In the following, we present an algorithm that solves the
problem (4) approximately and in a more efficient way than solving it as SDP.

Proximal Gradient. Problem (4) can be solved by first-order optimization methods such
as proximal gradient (PG) which has been popularly used for optimizations problems of the
form of (4) (Beck and Teboulle, 2009; Nesterov, 2013; Parikh and Boyd, 2014; Ji and Ye,
2009b; Mazumder et al., 2010; Yao and Kwok, 2015). When LY has L-Lipschitz continuous
gradient, that is ‖∇LY(W) − ∇LY(Q)‖F ≤ L‖W −Q‖F , the PG generates a sequence
of estimates {W t} as

W t+1 = argmin
W

LY(W) + (W −W t)
>∇LY(W t) +

L

2
‖W −W t‖2F + λ‖W‖∗

= prox λ
L
‖·‖∗(Zt), where Zt = W t −

1

L
∇LY(W t) (9)

and for any convex function Ψ : Rdu×D 7→ R, the associated proximal operator at W ∈
Rdu×D is defined as

proxΨ(W) = argmin
{1

2
‖W −Q‖2F + Ψ(Q) : Q ∈ Rdu×D

}
.

The proximal operator of the nuclear norm at W ∈ Rdu×D corresponds to the singular value
thresholding (SVT) operator of W (Cai. et al., 2010). That is, assuming a singular value
decomposition W = UΣV>, where U ∈ Rdu×r, V ∈ RD×r have orthonormal columns,
Σ = (σ1, . . . , σr), with σ1 ≥ · · · ≥ σr > 0 and r = rank(W), we have

SVTλ/L(W) = Udiag((σ1 − λ/L)+, . . . , (σr − λ/L)+)V>, (10)

where (a)+ = max(a, 0).
Although PG can be implemented easily, it converges slowly when the Lipschitz constant

L is large. In such scenarios, the rate is O(1/T ), where T is the number of iterations (Parikh
and Boyd, 2014). Nevertheless, it can be accelerated by replacing Zt in (9) with

Qt = (1 + θt)W t − θtW t−1, Zt = Qt − η∇LY(Qt). (11)

Several choices for θt can be used. The resultant accelerated proximal gradient (APG) (see
Algorithm 1) converges with the optimal O(1/T 2) rate (Nesterov, 2013; Ji and Ye, 2009a).
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Algorithm 1: APG for Collective Matrix Completion

1. initialize: W0 = W1 = Y , and α0 = α1 = 1.
2. for t = 1, . . . , T do

3. Qt = W t + αt−1−1
αt

(W t −W t−1);

4. W t+1 = SVT λ
L

(Qt − 1
L∇LY(Qt));

5. αt+1 = 1
2(
√

4α2
t + 1 + 1);

6. return WT+1.

Approximate SVT (Yao and Kwok, 2015). To compute W t+1 in the proximal step
(SVT) in Algorithm 1, we need first perform SVD of Zt given in (11). In general, obtaining
the SVD of du×D matrix Zt requiresO((du∧D)duD) operations, because its most expensive
steps are computing matrix-vector multiplications. Since the computation of the proximal
operator of the nuclear norm given in (10) does not require to do the full SVD, only a
few singular values of Zt which are larger than λ/L are needed. Assume that there are
k̂ such singular values. As W t converges to a low-rank solution W∗, k̂ will be small
during iterating. The power method (Halko et al., 2011) at Algorithm 2 is a simple and
efficient to capture subspace spanned by top-k singular vectors for k̂ ≥ k. Additionally,
the power method also allows warm-start, which is particularly useful because the iterative
nature of APG algorithm. Once an approximation Q is found, we have SVTλ/L(Zt) =

QSVTλ/L(Q>Zt) (see Proposition 3.1 in Yao and Kwok (2015)). We therefore reduce the

time complexity on SVT from O((du ∧D)duD) to O(k̂duD) which is much cheaper.

Algorithm 2: Power Method: PowerMethod(Z,R, ε)

1. input: Z ∈ Rdu×D, initial R ∈ RD×k for warm-start, tolerance δ;
2. initialize W1 = ZR;
3. for t = 1, 2, . . . , do
4. Qt+1 = QR(W t);// QR denotes the QR factorization

5. W t+1 = Z(Z>Qt+1);

6. if ‖Qt+1Q>t+1 −QtQ>t ‖F ≤ δ then
break;

7. return Qt+1.

Algorithm 3 shows how to approximate SVTλ/L(Zt). Let the target (exact) rank-k SVD

of Zt be UkΣkV>k . Step 1 first approximates Uk by the power method. In steps 2 to 5, a
less expensive SVTλ/L(Q>Zt) is obtained from (10). Finally, SVTλ/L(Zt) is recovered.

Hereafter, we denote the objective function in (4) by Fλ(W), that is Fλ(W) =
LY(W) + λ‖W‖∗, for any W ∈ C (γ). Recall that the gradient of the likelihood LY
is written as

∇LY(W) = − 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij(Y

v
ij − (Gv)′(W v

ij))E
v
ij .
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Algorithm 3: Approximate SVT: Approx-SVT(Z,R, λ, δ)

1. input: Z ∈ Rdu×D,R ∈ RD×k, thresholds λ and δ;
2. Q = PowerMethod(Z,R, δ);

3. [U ,Σ,V ] = SVD(Q>Z);
4. U = {ui|σi > λ};
5. V = {vi|σi > λ};
6. Σ = max(Σ− λI,0); // (I denotes the identity matrix)
7. return QU ,Σ,V.

By Assumption 2, we have for any W ,Q ∈ Rdu×D

‖∇LY(W)−∇LY(Q)‖2F =
1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

{Bv
ij((G

v)′(W v
ij)− (Gv)′(Qvij))}2

≤
U2
γ

(duD)2
‖W −Q‖2F .

This yields that LY has L-Lipschitz continuous gradient with L = Uγ/(duD) ≤ 1. In the
following algorithm and the experimental setup, we choose to work with L = 1.

Penalized Likelihood Accelerated Inexact Soft Impute (PLAIS-Impute). We
present here the main algorithm in this paper, referred to as PLAIS-Impute, which is
tailored to solving our collective matrix completion problem. The PLAIS-Impute is an
adaption of the AIS-Impute algorithm in Yao and Kwok (2015) to the penalized likelihood
completion problems. Note that AIS-Impute is an accelerated proximal gradient algorithm
with further speed up based on approximate SVD. However, it is dedicated only to square-
loss goodness-of-fitting. The PLAIS-Impute is summarized in Algorithm 4. The core steps
are 10-12, where an approximate SVT is performed. Steps 10 and 11 use the column space
of the last iterations (V t and V t−1) to warm-start the power method. For further speed
up, a continuation strategy is employed in which λt is initialized to a large value and then
decreases gradually. The algorithm is restarted (at the step 14) if the objective function
Fλ starts to increase. As AIS-Impute, PLAIS-Impute shares both low-iteration complexity
and fast O(1/T 2) convergence rate (see Theorem 3.4 in Yao and Kwok (2015)).

5.2. Synthetic datasets

Software. The implementation of Algorithm 4 for the nuclear norm penalized estima-
tor (4) was done in MATLAB R2017b on a desktop computer with macOS system, Intel i7
Core 3.5 GHz CPU and 16GB of RAM. For fast computation of SVD and sparse matrix
computations, the experiments call an external package called PROPACK (Larsen, 1998)
implemented in C and Fortran. The code that generates all figures given below is available
from https://github.com/mzalaya/collectivemc.

Experimental setup. In our experiments we focus on square matrices. We set the
number of the source matrices V = 3, then, for each v ∈ {1, 2, 3}, the low-rank ground
truth parameter matrices M v ∈ Rd×dv are created with sizes d ∈ {3000, 6000, 9000} and
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Algorithm 4: PLAIS-Impute for Collective Matrix Completion

1. input: observed collective matrix Y , parameter λ, decay parameter ν ∈ (0, 1),
tolerance ε;

2. [U0, λ0,V0] = rank-1 SVD(Y);

3. initialize c = 1, δ0 = ‖Y‖F , W0 = W1 = λ0U0V>0 ;
4. for t = 1, . . . , T do
5. δt = νtδ0;
6. λt = νt(λ0 − λ) + λ;
7. θt = (c− 1)/(c+ 2);
8. Qt = (1 + θt)W t − θtW t−1;
9. Zt = ∇LY(Qt));

10. V t−1 = V t−1 − V t(V>t V t−1);
11. Rt = QR([V t,V t−1]);
12. [U t+1,Σt+1,V t+1] = Approx-SVT(Zt,Rt, λt, δt);

13. if Fλ(U t+1Σt+1V>t+1) > Fλ(U tΣtV>t ) then
c = 1;

14. else
c = c+ 1;

15. if |Fλ(U t+1Σt+1V>t+1)−Fλ(U tΣtV>t )| ≤ ε then
break;

16. return WT+1.

dv ∈ {1000, 2000, 3000} (hence d = D =
∑3

v=1 dv). Each source matrix M v is constructed
as M v = LvRv> where Lv ∈ Rd×rv and Rv ∈ Rdv×rv . This gives a random matrix of
rank at most rv. The parameter rv is set to {5, 10, 15}. A fraction of the entries of M v is
removed uniformly at random with probability p ∈ [0, 1]. Then, the matrices M v are scaled
so that ‖M v‖∞ = γ = 1.

For M1, the elements of L1 and R1 are sampled i.i.d. from the normal distribution
N (0.5, 1). ForM2, the entries of L2 andR2 are i.i.d. according to Poisson distribution with
parameter 0.5. Finally, for M3, the entries of L3 and R3 are i.i.d. sampled from Bernoulli
distribution with parameter 0.5. The collective matrix M is constructed by concatenation
of the three sources M1,M2 and M3, namely M = (M1,M2,M3). All the details of
these experiments are given in Table 2.

The details of our experiments are summarized in Figures 1 and 2. In Figure 1, we plot
the convergence of the objective function Fλ versus time in the three experiments. Note
that PLAIS-Impute inherits the speed of AIS-Impute as it does not require performing SVD
and it has both low per-iteration cost and fast convergence rate. In Figure 1, we plot also
the convergence of the objective function Fλ versus − log(λ) in the three experiments. The
regularization parameter in the PLAIS-Impute is initialized to a large value and decreased
gradually. In Figure 2, we illustrate a learning rank curve obtained by PLAIS-Impute,
where the green color corresponds to the input rank and the cyan color to the recovered
rank of the collective matrix M.
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M1 M2 M3 M
(Gaussian) (Poisson) (Bernoulli) (Collective)

exp.1

dimension 3000× 1000 3000× 1000 3000× 1000 3000× 3000

rank 5 5 5 unknown

exp.2

dimension 6000× 2000 6000× 2000 6000× 2000 6000× 6000

rank 10 10 10 unknown

exp.3

dimension 9000× 3000 9000× 3000 9000× 3000 9000× 9000

rank 15 15 15 unknown

Table 2: Details of the synthetic data in the three experiments.
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Figure 1: Convergence of the objective function Fλ in problem (4) versus time (top) and
versus − log(λ) (bottom) in the three experiments with p = 0.6; left for exp.1;
middle for exp.2; right for exp.3. Note that the objective functions for Gaussian,
Poisson and Bernoulli distributions are calculated separately by the algorithm.
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Figure 2: Learning ranks curve versus iterations in the three experiments with p = 0.6;
left for exp.1; middle for exp.2; right for exp.3. We initialize the algorithm by
setting a rank r0 = 5r where r ∈ {5, 10, 15}. The green color corresponds to the
input rank while the cyan to the recovered rank of the collective matrix at each
iteration. As can be seen, the two ranks gradually converge to the final recovered
rank.

Evaluation. In our experiments, the PLAIS-Impute algorithm terminates when the ab-
solute difference in the cost function values between two consecutive iterations is less than
ε = 10−6. We set the regularization parameter λ ∝ ‖∇LY(M)‖ as given by Theorem 3.
Note that in step 12 of PLAIS-Impute, the threshold in SVT is given by λt (defined in
step 6), which is decreasing from one iteration to another. This allows to tune the first
regularization parameter λ in the program (4). We randomly sample 80% of the observed
entries for training, and the rest for testing.

In order to measure the the accuracy of our estimator, we employ the relative error (as,
e.g., in Cai. et al. (2010); Davenport et al. (2014); Cai and Zhou (2013)) which is widely
used metric in matrix completion and is defined by

RE(Ŵ ,W ) =
‖Ŵ −W o‖F
‖W o‖F

,

where Ŵ is the recovered matrix and W o is the original full data matrix.
We run the PLAIS-Impute algorithm in each experiment by varying the percentage of

known entries p from 0 to 1. In Figure 3, we plot the relative errors as a functions of p.
We observe in Figure 3 that the relative errors are decaying with p. Note that for each
v ∈ {1, 2, 3}, the estimator M̂ v is calculated separately using the same program (4). The
results shown in Figure 3 confirm that collective matrix completion approach outperforms
the approach that consists in estimating each component source independently.

Cold-Start problem. To simulate cold-start scenarios, we choose one of the source ma-
tricesM v to be “cold” by increasing its sparsity. More precisely, we proceed in the following
way: we extract vector of known entries of the chosen matrix and we set the first 1/5 fraction
of its entries to be equal to 0. We denote the obtained matrix by M v

cold and the collective
matrix by Mv

cold. In exp.1, exp.2 and exp.3, we increase the sparsity of M1, M2, and
M3, respectively. Hence, we get the “cold” collective matrices M1

cold = (M1
cold,M

2,M3),
M2

cold = (M1,M2
cold,M

3), and M3
cold = (M1,M2,M3

cold).
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Figure 3: Performance on the synthetic data in terms of relative errors between the target
and the estimator matrices as a function of the percentage of known entries p
from 0 to 1.

We run 10 times the PLAIS-Impute algorithm for recovering the source M v
cold and the

collective Mv
cold for each v = 1, 2, 3. We denote by M̂ v

comp the estimator of M v
cold obtained

by running the PLAIS-Impute algorithm only for this component. Analogously, we denote

M̂ v
collect the estimator of M v

cold obtained by extracting the v-th source of the collective

estimator M̂v
cold.

In Figure 4, we report the relative errors RE(M̂ v
comp,M

v
cold) and RE(M̂ v

collect,M
v
cold) in

the three experiments. We see that, the collective matrix completion approach compensates
the lack of informations in the “cold” source matrix. Therefore, this shared structure among
the sources is useful to get better predictions.

d = 3000 d = 6000 d = 9000
Dimensions

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
rs

RE(M̂1
collect,M

1
cold)

RE(M̂1
comp,M

1
cold)

RE(M̂2
collect,M

2
cold)

RE(M̂2
comp,M

2
cold)

RE(M̂3
collect,M

3
cold)

RE(M̂3
comp,M

3
cold)

Figure 4: Relative errors over a set of 10 randomly generated datasets according to the
cold-start scenarios (with the black lines representing ± the standard deviation)
between the target and the estimator matrices.
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6. Conclusion

This paper studies the problem of recovering a low-rank matrix when the data are collected
from multiple and heterogeneous source matrices. We first consider the setting where, for
each source, the matrix entries are sampled from an exponential family distribution. We
then relax this assumption. The proposed estimators are based on minimizing the sum of
a goodness-of-fit term and the nuclear norm penalization of the whole collective matrix.
Allowing for non-uniform sampling, we establish upper bounds on the prediction risk of
our estimator. As a by-product of our results, we provide exact minimax optimal rate
of convergence for 1-bit matrix completion which previously was known upto a logarithmic
factor. We present the proximal algorithm PLAIS-Impute to solve the corresponding convex
programs. The empirical study provides evidence of the efficiency of the collective matrix
completion approach in the case of joint low-rank structure compared to estimate each
source matrices separately.
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Appendix A. Proofs

We provide proofs of the main results, Theorems 3 and 11, in this section. The proofs of a
few technical lemmas including Lemmas 5, 6 and 12 are also given. Before that, we recall
some basic facts about matrices.

Basic facts about matrices. The singular value decomposition (SVD) of A has the

form A =
∑rank(A)

l=1 σl(A)ul(A)v>l (A) with orthonormal vectors u1(A), . . . , urank(A)(A),
orthonormal vectors v1(A), . . . , vrank(A)(A), and real numbers σ1(A) ≥ · · · ≥ σrank(A)(A) >
0 (the singular values of A). Let (S1(A),S2(A)) be the pair of linear vectors spaces, where
S1(A) is the linear span space of {u1(A), . . . , urank(A)(A)}, and S2(A) is the linear span

space of {v1(A), . . . , vrank(A)(A)}. We denote by S⊥j (A) the orthogonal complements of
Sj(A), for j = 1, 2 and by PS the projector on the linear subspace S of Rn or Rm.

For two matrices A and B, we set P⊥
A(B) = PS⊥1 (A)BPS⊥2 (A) and PA(B) = B −

P⊥
A(B). Since PA(B) = PS1(A)B + PS⊥1 (A)BPS2(A), and rank(PSj(A)B) ≤ rank(A), we

have that
rank(PA(B)) ≤ 2 rank(A). (12)

It is easy to see that for two matrices A and B (Klopp, 2014)

‖A‖∗ − ‖B‖∗ ≤ ‖PA(A−B)‖∗ − ‖P⊥
A(A−B)‖∗. (13)

Finally, we recall the well-known trace duality property: for all A,B ∈ Rn×m, we have

|〈A,B〉| ≤ ‖B‖‖A‖∗.

A.1. Proof of Theorem 3

First, noting that M̂ is optimal and M is feasible for the convex optimization problem (4),
we thus have the basic inequality that

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

(
Gv(M̂v

ij)− Y v
ijM̂

v
ij

)
+ λ‖M̂‖∗

≤ 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

(
Gv(Mv

ij)− Y v
ijM

v
ij

)
+ λ‖M‖∗.

It yields

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

((
Gv(M̂v

ij)−Gv(Mv
ij)
)
− Y v

ij

(
M̂v
ij −Mv

ij

))
≤ λ(‖M‖∗ − ‖M̂‖∗).

Using the Bregman divergence associated to each Gv, we get

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijdGv(M̂

v
ij ,M

v
ij)

≤ λ(‖M‖∗ − ‖M̂‖∗)−
1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

(
(Gv)′(Mv

ij)− Y v
ij

)(
M̂v
ij −Mv

ij

)
.
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Therefore, using the duality between ‖ · ‖∗ and ‖ · ‖, we arrive at

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijdGv(M̂

v
ij ,M

v
ij) ≤ λ(‖M‖∗ − ‖M̂‖∗)− 〈∇LY(M),M̂−M〉

≤ λ(‖M‖∗ − ‖M̂‖∗) + ‖∇LY(M)‖‖M̂−M‖∗.

Besides, using the assumption λ ≥ 2‖∇LY(M)‖ and inequality (13) lead to

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijdGv(M̂

v
ij ,M

v
ij) ≤

3λ

2
‖PM

(
M̂−M

)
‖∗.

Since ‖PA(B)‖∗ ≤
√

2 rank(A)‖B‖F for any two matrices A and B, we obtain

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijdGv(M̂

v
ij ,M

v
ij) ≤

3λ

2

√
2 rank(M)‖M̂−M‖F . (14)

Now, Assumption 2 implies that the Bregman divergence satisfies L2
γ(x−y)2 ≤ 2dvG(x, y) ≤

U2
γ (x− y)2, then we get

∆2
Y(M̂,M) ≤ 2

L2
γ

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijdGv(M̂

v
ij ,M

v
ij), (15)

where

∆2
Y(M̂,M) =

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij(M̂

v
ij −Mv

ij)
2.

Combining (14) and (15), we arrive at

∆2
Y(M̂,M) ≤ 3λ

L2
γ

√
2 rank(M)‖M̂−M‖F . (16)

Let us now define the threshold β = 946γ2 log(du+D)
pduD

and distinguish the two following
cases that allows us to obtain an upper bound for the estimation error:
Case 1: if (duD)−1‖M̂−M‖2Π,F < β, then the statement of Theorem 3 is true.

Case 2: it remains to consider the case (duD)−1‖M̂ −M‖2Π,F ≥ β. Lemma 18 in Ap-

pendix B.1 implies ‖M̂−M‖F ≥ 1

4
√

2 rank(M)
‖M̂−M‖∗, then we obtain

‖M̂−M‖∗ ≤
√

32 rank(M)‖M̂−M‖F .

This leads to M̂ ∈ C
(
β, 32 rank(M)

)
, where the set

C (β, r) =

{
W ∈ C∞(γ) :‖M−W‖∗ ≤

√
r‖W −M‖F and (duD)−1‖W −M‖2Π,F ≥ β

}
.

(17)
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Using Lemma 19 in Appendix B.1, we have

∆2
Y(M̂,M) ≥

‖W −M‖2Π,F
2duD

− 44536 rank(M)γ2(E[‖ΣR‖])2 − 5567γ2

duDp
. (18)

Together (18) and (16) imply

1

2duD
‖M̂−M‖2Π,F ≤

3λ

L2
γ

√
2 rank(M)‖M̂−M‖F

+ 44536 rank(M)γ2(E[‖ΣR‖])2 +
5567γ2

pduD

≤ 18λ2duD

pL4
γ

rank(M) +
1

4duD
‖M̂−M‖2Π,F

+ 44536 rank(M)γ2(E[‖ΣR‖])2 +
5567γ2

pduD
.

Then,

1

4duD
‖M̂−M‖2Π,F ≤

18λ2duD

pL4
γ

rank(M)

+ 44536p−1duD rank(M)γ2(E[‖ΣR‖])2 +
5567γ2

duDp
,

and,

1

duD
‖M̂−M‖2Π,F ≤ p−1 max

(
duD rank(M)

(
c1λ

2

L4
γ

+ c2γ
2(E[‖ΣR‖])2

)
,
c3γ

2

duD

)
,

where c1, c2 and c3 are numerical constants. This concludes the proof of Theorem 3.

A.2. Proof of Lemma 5

We use the following result:

Proposition 16 (Corollary 3.3 in Bandeira and van Handel (2016)) Let W be the n×m
rectangular matrix whose entries Wij are independent centered bounded random variables.
Then there exists a universal constant c such that

E[‖W ‖] ≤ c
(
κ1 ∨ κ2 + κ∗

√
log(n ∧m)

)
,

where we have defined

κ1 = max
i∈[n]

√∑

j∈[m]

E[W 2
i,j ], κ2 = max

j∈[m]

√∑

i∈[n]

E[W 2
i,j ], and κ∗ = max

(i,j)∈[n]×[m]
|Wij |.

We apply Proposition 16 to ΣR = 1
duD

∑
v∈[V ]

∑
(i,j)∈[du]×[dv ] ε

v
ijB

v
ijE

v
ij . We compute

κ1 =
1

duD
max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

E[(εvij)
2(Bv

ij)
2] =

1

duD
max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

πvij

=
1

duD
max
i∈[du]

√
πi·,
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κ2 =
1

duD
max
v∈[V ]

max
j∈[dv ]

√∑

i∈[du]

E[(εvij)
2(Bv

ij)
2] =

1

duD
max
v∈[V ]

max
j∈[dv ]

√∑

i∈[du]

πvij

≤ 1

duD
max
j∈[dv ]

√
max
v∈[V ]

∑

i∈[du]

πvij

≤ 1

duD
max
j∈[dv ]

√
π·j ,

and κ∗ = 1
duD

maxv∈[V ] max(i,j)∈[du]×[dv ] |εvijBij | ≤ 1
duD

. Using inequality (1), we have κ1 ≤√
µ

duD
and κ2 ≤

√
µ

duD
. Then, κ1 ∨ κ2 ≤

√
µ

duD
, which establishes Lemma 5.

A.3. Proof of Lemma 6

We write∇LY(M) = − 1
duD

∑
v∈[V ]

∑
(i,j)∈[du]×[dv ]H

v
ijE

v
ij , withHv

ij = Bv
ij

(
Xv
ij−(Gv)′(Mv

ij)
)
.

For a truncation level T > 0 to be chosen, we decompose ∇LY(M) = Σ1 + Σ2, where

Σ1 = − 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

(
Hv
ij1((Xv

ij−E[Xv
ij ])≤T ) − E

[
Hv
ij1((Xv

ij−E[Xv
ij ])≤T )

])
Evij ,

and

Σ2 = − 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

(
Hv
ij1((Xv

ij−E[Xv
ij ])>T ) − E

[
Hv
ij1((Xv

ij−E[Xv
ij ])>T )

])
Evij ,

then, the triangular inequality implies ‖∇LY(M)‖ ≤ ‖Σ1‖ + ‖Σ2‖. Then, the proof is
divided on two steps:
Step 1: control of ‖Σ1‖. In order to control ‖Σ1‖, we use the following bound on the
spectral norms of random matrices. It is obtained by extension to rectangular matrices via
self-adjoint dilation of Corollary 3.12 and Remark 3.13 in Bandeira and van Handel (2016).

Proposition 17 (Bandeira and van Handel, 2016) Let W be the n×m rectangular matrix
whose entries Wij are independent centered bounded random variables. Then, for any 0 ≤
ε ≤ 1/2 there exists a universal constant cε such that for every x ≥ 0,

P
[
‖W ‖ ≥ 2

√
2(1 + ε)(κ1 ∨ κ2) + x

]
≤ (n ∧m) exp

(
− x2

cεκ2
∗

)
,

where κ1, κ2, and κ∗ are defined as in Proposition 16.

We apply Proposition 17 to Σ1. We compute

κ1 =
1

duD
max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

E
[(
Hv
ij1((Xv

ij−E[Xv
ij ])≤T ) − E

[
Hv
ij1((Xv

ij−E[Xv
ij ])≤T )

])2]
.

Besides, we have

E
[(
Hv
ij1((Xv

ij−E[Xv
ij ])≤T ) − E

[
Hv
ij1((Xv

ij−E[Xv
ij ])≤T )

])2] ≤ E
[
(Hv

ij)
21((Xv

ij−E[Xv
ij ])≤T )

]
,
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and

E
[
(Hv

ij)
21((Xv

ij−E[Xv
ij ])≤T )

]
= E

[
(Bv

ij)
2
(
Xv
ij − E[Xv

ij ])
21((Xv

ij−E[Xv
ij ])≤T )

]

≤ πvijVar[Xv
ij ]

= πvij(G
v)′′(Mv

ij).

By Assumption 2, we obtain E
[
(Hv

ij)
21((Xv

ij−E[Xv
ij ])≤T )

]
≤ πvijU

2
γ for all v ∈ [V ], (i, j) ∈

[du]× [dv]. Then,

κ1 ≤
Uγ
duD

max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

πvij ≤
Uγ
duD

max
i∈[du]

√
πvi· ≤ Uγ

√
µ

duD
,

and

κ2 ≤
Uγ
duD

max
j∈[dv ]

√
max
v∈[V ]

∑

i∈[du]

πvij ≤
Uγ
duD

max
j∈[dv ]

√
π·j ≤ Uγ

√
µ

duD
.

It yields, κ1 ∨ κ2 ≤ Uγ
√
µ

duD
. Moreover, we have E

[
Hv
ij1((Xv

ij−E[Xv
ij ])≤T )

]
≤ T, which entails

κ∗ ≤ 2T
duD

. By choosing ε = 1/2 in Proposition 17, we obtain, with probability at least

1− 4(du ∧D)e−x
2
,

‖Σ1‖ ≤
3Uγ
√

2µ+ 2
√c1/2xT

duD
.

Therefore, by setting x =
√

2 log(du +D), we get with probability at least 1− 4/(du +D),

‖Σ1‖ ≤
3Uγ
√

2µ+ 2
√c1/2

√
2 log(du +D)T

duD
. (19)

Step 2: control of ‖Σ2‖. To control ‖Σ2‖, we use Chebyshev’s inequality, that is

P
[
‖Σ2‖ ≥ E[‖Σ2‖] + x

]
≤ Var[‖Σ2‖]

x2
, for all x > 0.

We start by estimating E[‖Σ2‖]. We use the fact that E[‖Σ2‖] ≤ E[‖Σ2‖F ]:

E
[
‖Σ2‖2F

]
=

1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

E
[(
Hv
ij1((Xv

ij−E[Xv
ij ])>T ) − E

[
Hv
ij1((Xv

ij−E[Xv
ij ])>T )

])2]

≤ 1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

E
[
(Hv

ij)
21((Xv

ij−E[Xv
ij ])>T )

]

≤ 1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvijE
[
(Xv

ij − E[Xv
ij ])

21((Xv
ij−E[Xv

ij ])>T )

]

≤ 1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvij

√
E
[
(Xv

ij − E[Xv
ij ])

4
]√
P
[
((Xv

ij − E[Xv
ij ]) > T )

]
.
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By Lemma 28, we have that Xv
ij − E[Xv

ij ] is an (Uγ ,K)-sub-exponential random variable
for every v ∈ [V ] and (i, j) ∈ [du]× [dv]. It yields, using (2) in Theorem 26, that

E
[
(Xv

ij − E[Xv
ij ])

p
]
≤ cpp‖Xv

ij‖pψ1
, for every p ≥ 1,

and by (1) in Theorem 26

P
[
|Xv

ij − E[Xv
ij ]| > T

]
≤ exp

(
1− T

cse‖Xv
ij‖ψ1

)
,

where c and cse are absolute constants. Consequently,

E
[
‖Σ2‖2F

]
≤ c

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvij

√
‖Xv

ij‖4ψ1

√
exp

(
1− T

cse‖Xv
ij‖ψ1

)

≤ c
(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

(Uγ ∨K)2πvij

√
exp

(
− T

cseK

)
.

We choose T = T∗ := 4cse(Uγ ∨K) log(du ∨D). It yields,

E
[
‖Σ2‖2F

]
≤ c

(duD)2

1

(du ∨D)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

(Uγ ∨K)2πvij

≤ c(Uγ ∨K)2

(duD)2

1

(du ∨D)2

∑

v∈[V ]

∑

j∈[dv ]

πvij

≤ c(Uγ ∨K)2

(duD)2

1

(du ∨D)2
(du ∨D)µ

≤ c(Uγ ∨K)2µ

(duD)2du ∨D
.

Using the fact that x 7→ √x is concave, we obtain

E[‖Σ2‖] ≤ E[‖Σ2‖F ] ≤
√
E
[
‖Σ2‖2F

]
≤
√
c(Uγ ∨K)2µ

(duD)2du ∨D
≤ c(Uγ ∨K)

√
µ

duD
√
du ∨D

. (20)

Let us now control the variance of ‖Σ2‖. We have immediately, using (20),

Var[‖Σ2‖] ≤ E[‖Σ2‖2] ≤ E
[
‖Σ2‖2F

]
≤ c(Uγ ∨K)2µ

(duD)2du ∨D
.

By Chebyshev’s inequality and using (20), we have, with probability at least 1−4/(du+D),

‖Σ2‖ ≤
c(Uγ ∨K)

√
µ

duD
√
du ∨D

+
c(Uγ ∨K)

√
µ

duD
≤ c(Uγ ∨K)

√
µ

duD
. (21)

Finally, combining (19) and (21), we obtain, with probability at least 1− 4/(du +D),

‖∇LY(M)‖ ≤
3Uγ
√

2µ+ 8(Uγ ∨K)cse

√
2c1/2 log(du +D) log(du ∨D) + c(Uγ ∨K)

√
µ

duD
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Then,

‖∇LY(M)‖ ≤ c
(

(Uγ ∨K)
(√
µ+ (log(du ∨D))3/2

)

duD

)
,

where c is an absolute constant. This finishes the proof of Lemma 6.

A.4. Proof of Theorem 11

We start the proof with the following inequality using the fact that M̂ is the minimizer of
the objective function in problem (8)

0 ≤ −(RY(M̂) + Λ‖M̂‖∗) + (RY(
?

M) + Λ‖
?

M‖∗).

Then, by adding R(M̂)−R(
?

M) ≥ 0, we obtain

R(M̂)−R(
?

M) ≤ −
{(
RY(M̂)−RY(

?
M)

)
−
(
R(M̂)−R(

?
M)

)}
+ Λ

(
‖
?

M‖∗ − ‖M̂‖∗
)
.

(13) implies ‖A‖∗ − ‖B‖∗ ≤ ‖PA(A−B)‖∗ and we get

R(M̂)−R(
?

M) ≤ −
{(
RY(M̂)−RY(

?
M)

)
−
(
R(M̂)−R(

?
M)

)}
+ Λ‖P ?

M
(
?

M− M̂)‖∗

≤ −
(
RY(M̂)−RY(

?
M)

)
+
(
R(M̂)−R(

?
M)

)
(22)

+ Λ

√
2 rank(

?
M)‖M̂−

?
M‖F .

Let us now define the threshold ν =
32
(

1+e
√

3ρ/ςγ
)
ργ log(du+D)

3pduD
and distinguish the two

following cases that allows us to obtain an upper bound for the prediction error:

Case 1: if R(M̂)−R(
?

M) < ν, then the statement of Theorem 11 is true.

Case 2: it remains to consider the case R(M̂)−R(
?

M) ≥ ν. Lemma 21 implies

‖M̂−
?

M‖∗ ≤
√

32 rank(
?

M)‖M̂−
?

M‖F ,

then M̂ ∈ Q(ν, 32 rank(
?

M)) where

Q(ν, r) =

{
Q ∈ C∞(γ) :‖Q−

?
M‖∗ ≤

√
r‖Q−

?
M‖F and R(Q)−R(

?
M) ≥ ν

}
.

Using Lemma 22, we have

R(M̂)−R(
?

M)−
(
RY(M̂)−RY(

?
M)

)

≤ R(M̂)−R(
?

M)

2
+
c rank(

?
M)ρ2ς−1(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ
. (23)
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Now, plugging (23) in (22), we get

R(M̂)−R(
?

M) ≤ c rank(
?

M)ρ2ς−1(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ
+ 2Λ

√
2 rank(

?
M)‖M̂−

?
M‖F ,

where c = 1024. Then using the fact that for any a, b ∈ R, and ε > 0, we have 2ab ≤
a2/(2ε) + 2εb2, we get for ε = pς/4

R(M̂)−R(
?

M) ≤ cduDp
−1 rank(

?
M)ρ2ς−1(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ

+ Λ2duD(pς/4)−1 rank(
?

M) +
pς

2duD
‖M̂−

?
M‖2F

≤ cduDp
−1 rank(

?
M)ρ2ς−1(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ

+ Λ2duD(pς/4)−1 rank(
?

M) +
ς

2duD
‖M̂−

?
M‖2Π,F .

Using Assumption 4, we obtain

R(M̂)−R(
?

M) ≤ 2cduDp−1 rank(
?

M)ρ2ς−1(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ
+ 8Λ2duD(pς)−1 rank(

?
M)

≤ (pς)−1 rank(
?

M)duD
( ρ2(E[‖ΣR‖])2

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ
+ 8Λ2

)
.

This finishes the proof of Theorem 11.

A.5. Proof of Lemma 12

By the nonnegative factor and the sum properties of subdifferential calculus (Boyd and
Vandenberghe, 2004), we write

∂RY(
?

M) =

{
G =

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ijG

v
ijE

v
ij : Gvij ∈ ∂`v(Y v

ij ,
?
Mv
ij)

}

Recall that the sudifferential of ∂`v(Y v
ij ,

?
Mv
ij) at the point

?
Mv
ij is defined as

∂`v(Y v
ij ,

?
Mv
ij) = {Gvij : `v(Y v

ij , Q
v
ij) ≥ `v(Y v

ij ,
?
Mv
ij) +Gvij(Q

v
ij −

?
Mv
ij)}.

Thanks to Assumption 3, we have, for all Gvij ∈ ∂`v(Y v
ij ,

?
Mv
ij)

|Gvij(Qvij −
?
Mv
ij)| ≤ |`v(Y v

ij , Q
v
ij)− `v(Y v

ij ,
?
Mv
ij)| ≤ ρv|Qvij −

?
Mv
ij |,

In particular, with Qvij 6=
?
Mv
ij for all v ∈ [V ] and (i, j) ∈ [du]× [dv], we get |Gvij | ≤ ρv. Then,

any subgradient G of RY has entries bounded by ρ/(duD) (recall ρ = maxv∈[V ] ρv). By a
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triangular inequality and the convexity of ‖ · ‖, we have

‖G‖ ≤ ‖G − E[G]‖+ ‖E[G]‖
≤ ‖G − E[G]‖+ E[‖G‖],

for any subgradient G of RY . On the one hand, we use the fact that E[‖G‖] ≤ E[‖G‖F ] ≤√
E[‖G‖2F ]. Using (1), we have

E[‖G‖2F ] ≤ 1

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

ρ2
vE[Bv

ij ]

≤ ρ2

(duD)2

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

πvij

≤ ρ2µ

(duD)2
.

Now we apply Proposition 17 to G − E[G]. Taking into account (1), we upper bound the
constants κ1, κ2 and κ∗ as follows:

κ1 =
1

duD
max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

E[(Bv
ijG

v
ij − E[Bv

ijG
v
ij ])

2]

≤ 2ρ

duD
max
i∈[du]

√∑

v∈[V ]

∑

j∈[dv ]

πvij

≤ 2ρ
√
µ

duD
,

κ2 =
1

duD
max
v∈[V ]

max
j∈[dv ]

√∑

i∈[du]

E[(Bv
ijG

v
ij − E[Bv

ijG
v
ij ])

2]

≤ 2ρ

duD
max
v∈[V ]

max
j∈[dv ]

√∑

i∈[du]

πvij

≤ 2ρ
√
µ

duD
,

and κ∗ = 1
duD

maxv∈[V ] max(i,j)∈[du]×[dv ] |Bv
ijG

v
ij − E[Bv

ijG
v
ij ]| ≤ 2ρ

duD
. Now, choose ε = 1/2

in Proposition 17, then we obtain, with probability at least 1− 4(du ∧D)e−x
2
,

‖G − E[G]‖ ≤
6ρ
√

2µ+ 2ρ
√c1/2x

duD
. (24)

Setting x =
√

2 log(du +D) in (24), we get with probability at least 1− 4/(du +D),

‖G‖ ≤
(1 + 6

√
2)ρ
√
µ+ 2ρ

√c1/2

√
2 log(du +D)

duD
, (25)

for any subgradient G of RY(
?

M).
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Appendix B. Technical Lemmas

In this section, we provide several technical lemmas, which are used for proving our main
results.

B.1. Useful lemmas for the proof of Theorem 3

Lemma 18 Let A,B ∈ C∞(γ). Assume that λ ≥ 2‖∇LY(B)‖, and LY(A) + λ‖A‖∗ ≤
LY(B) + λ‖B‖∗. Then,

(i) ‖P⊥
B (A−B)‖∗ ≤ 3‖PB(A−B)‖∗,

(ii) ‖A−B‖∗ ≤ 4
√

2 rank(B)‖A−B‖F .

Proof We have LY(B)−LY(A) ≥ λ(‖A‖∗ − ‖B‖∗). (13) implies

LY(B)−LY(A) ≥ λ
(
‖P⊥

B (A−B)‖∗ − ‖PB(A−B)‖∗
)
.

Moreover, by convexity of LY(·) and the duality between ‖ · ‖∗ and ‖ · ‖ we obtain

LY(B)−LY(A) ≤ 〈∇LY(B),B −A〉 ≤ ‖∇LY(B)‖‖B −A‖∗ ≤
λ

2
‖B −A‖∗.

Therefore,

‖P⊥
B (A−B)‖∗ ≤ ‖PB(A−B)‖∗ +

1

2
‖A−B‖∗ (26)

Using the triangle inequality, we get

‖P⊥
B (A−B)‖∗ ≤ 3‖PB(A−B)‖∗,

which proves (i). To prove (ii), note that ‖PB(A)‖∗ ≤
√

2 rank(B)‖A‖F , and (i) imply

‖A−B‖∗ ≤ 4
√

2 rank(B)‖A−B)‖F .

Lemma 19 Let β = 946γ2 log(du+D)
pduD

. Then, for all W ∈ C (β, r),

∣∣∣∆2
Y(W ,M)−(duD)−1‖W−M‖2Π,F ]

∣∣∣ ≤
(duD)−1‖W −M‖2Π,F

2
+1392rγ2(E[‖ΣR‖])2+

5567γ2

duDp

with probability at least 1− 4/(du +D).

Proof We use a standard peeling argument. For any α > 1 and 0 < η < 1/2α, we define

κ =
1

1/(2α)− η
(

128γ2r(E[‖ΣR‖])2 +
512γ2

duDp

)
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and we consider the event

W =

{
∃W ∈ C (β, r) :

∣∣∣∆2
Y(W ,M)−(duD)−1‖W−M‖2Π,F

∣∣∣ >
(duD)−1‖W −M‖2Π,F

2
+κ

}
.

For s ∈ N∗, set

Rs =
{
W ∈ C (β, r) : αs−1β ≤ (duD)−1‖W −M‖2Π,F ≤ αsβ

}
.

If the event W holds for some matrix W ∈ C (β, r), then W belongs to some Rs and

∣∣∣∆2
Y(W ,M)− (duD)−1‖W −M‖2Π,F

∣∣∣ ≥
(duD)−1‖W −M‖2Π,F

2
+ κ

≥ 1

2α
αsβ + κ.

For θ ≥ β consider the following set of matrices

C (β, r, θ) =
{
W ∈ C (β, r) : (duD)−1‖W −M‖2Π,F ≤ θ

}
,

and the following event

Ws =

{
∃W ∈ C (β, r, θ) :

∣∣∣∆2
Y(W ,M)− (duD)−1‖W −M‖2Π,F

∣∣∣ ≥ 1

2α
αsβ + κ

}
.

Note that W ∈ Ws implies that W ∈ C (β, r, αsβ). Then, we get W ⊂ ∪sWs. Thus, it
is enough to estimate the probability of the simpler event Ws and then apply a the union
bound. Such an estimation is given by the following lemma:

Lemma 20 Let

Zθ = sup
W∈C (β,r,θ)

∣∣∣∆2
Y(W ,M)− (duD)−1‖W −M‖2Π,F

∣∣∣.

Then, we have

P
[
Zθ >

θ

2α
+ κ

]
≤ 4 exp

(
− pduDη

2θ

8γ2

)
.

The proof of Lemma 20 follows along the same lines of Lemma 10 in Klopp (2015). We now
apply an union bound argument combined to Lemma 20, we get

P[W ] ≤ P[∪∞s=1Ws] ≤ 4
∞∑

s=1

exp

(
− pduDη

2αsβ

8γ2

)

≤ 4

∞∑

s=1

exp

(
− pduDη

2β logα

8γ2
s

)

≤
4 exp

(
− pduDη2β logα

8γ2

)

1− exp

(
− pduDη2β logα

8γ2

) .

By choosing α = e, η = 1/4e and β as stated we get the desired result.
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B.2. Useful lemmas for the proof of Theorem 11

Lemma 21 Suppose Λ ≥ 2 sup{‖G‖ : G ∈ ∂RY(
?

M)}. Then

‖M̂−
?

M‖∗ ≤ 4

√
2 rank(

?
M)‖M̂−

?
M‖F .

Proof For any subgradient G of RY(
?

M), we have RY(M̂) ≥ RY(
?

M) + 〈G,M̂ −
?

M〉.
Then, the definition of the estimator M̂, entails RY(

?
M)−RY(M̂) ≥ Λ(‖M̂‖∗−‖

?
M‖∗),

hence 〈G,
?

M− M̂〉 ≥ Λ(‖M̂‖∗ − ‖
?

M‖∗). The duality between ‖ · ‖∗ and ‖ · ‖ yields

Λ(‖M̂‖∗ − ‖
?

M∗‖) ≤ ‖G‖‖
?

M− M̂‖∗ ≤
Λ

2
‖
?

M− M̂‖∗

then ‖M̂‖∗ − ‖
?

M∗‖ ≤ 1
2‖

?
M− M̂‖∗. Now, (13) implies

‖P⊥
?

M
(
?

M− M̂)‖∗ ≤ ‖P ?
M

(
?

M− M̂)‖∗ +
1

2
‖
?

M− M̂‖∗ ≤ 3‖P ?
M

(
?

M− M̂)‖∗.

Therefore ‖
?

M−M̂‖∗ ≤ 4‖P ?
M

(
?

M−M̂)‖∗. Since ‖P ?
M

(
?

M−M̂)‖∗ ≤
√

2 rank(
?

M)‖
?

M−
M̂‖F , we establish the proof of Lemma 21.

Lemma 22 Let

ν =
32
(
1 + e

√
3ρ/ςγ

)
ργ log(du +D)

3pduD
,

then, with probability at least 1−4/(du+D), the following holds uniformly over Q ∈ Q(ν, r)

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣

≤ R(Q)−R(
?

M)

2
+

16

(1/4e) + (1− 1/
√

4e)
√

3ρ/4ςγ
rρ2(pς)−1(E[‖ΣR‖])2.

Proof The proof is based on the peeling argument. For any δ > 1 and 0 < ϑ < 1/2δ,
define

ζ =
16r(pς)−1ρ2(E[‖ΣR‖])2

(1/2δ) +
√

3ρ/4ςγ −
(
ϑ+

√
3ρ/4ςγϑ

) , (27)

and we consider the event

A =

{
∃Q ∈ Q(ν, r) :

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣ > R(Q)−R(
?

M)

2
+ ζ

}
.

For l ∈ N∗, we define the sequence of subsets

Jl =
{
Q ∈ Q(ν, r) : δl−1ν ≤ R(Q)−R(

?
M) ≤ δlν

}
.
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If the event A holds for some matrix Q ∈ Q(ν, r), then Q belongs to some Jl and

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣ > R(Q)−R(
?

M)

2
+ ζ

≥ 1

2δ
δlν + ζ.

For θ ≥ ν, consider the following set of matrices

Q(ν, r, θ) =
{
Q ∈ Q(ν, r) : R(Q)−R(

?
M) ≤ θ

}
,

and the following event

Al =

{
∃Q ∈ Q(ν, r, θ) :

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣ ≥ 1

2δ
δlν + ζ

}
.

Note that Q ∈ Jl implies that Q ∈ Q(ν, r, δlν). Then, we get A ⊂ ∪lAl. Thus, it is enough
to estimate the probability of the simpler event Al and then apply a the union bound. Such
an estimation is given in Lemma 23, where we derive a concentration inequality for the
following supremum of process:

Ξθ = sup
Q∈Q(ν,r,θ)

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣

We now apply an union bound argument combined to Lemma 23, we get

P[A ] ≤ P[∪∞l=1Al] ≤
∞∑

l=1

exp
(
− 3duDϑδ

lν

8ργ

)

≤
∞∑

l=1

exp
(
− 3duDϑ log(δ)ν

8ργ
l
)

≤
exp

(
− 3duDϑ log(δ)ν

8ργ

)

1− exp
(
− 3duDϑ log(δ)ν

8ργ

) ,

where se used the elementary inequality that us = es log(u) ≥ s log(u). By choosing
δ = e, ϑ = 1/4e and ν as stated we get the desired result.

Lemma 23 One has

P
[
Ξθ ≥

(
1 + δ

√
3ρ

ςγ

) θ
2δ

+ ζ
]
≤ exp

(
− 3duDϑθ

8ργ

)
.

Proof The proof of this lemma is based on Bousquet’s concentration theorem:
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Theorem 24 (Bousquet, 2002) (see also Corollary 16.1 in van de Geer (2016)) Let F
be a class of real-valued functions. Let T1, . . . , TN be independent random variables such
that E[f(Ti)] = 0 and |f(Ti)| ≤ ξ for all i = 1, . . . , N and for all f ∈ F . Introduce

Z = supf∈F

∣∣∣ 1
N

∑N
i=1

(
f(Ti)− E[f(Ti)]

)∣∣∣. Assume further that

1

N

N∑

i=1

sup
f∈F

E
[
f2(Ti)

]
≤M2.

Then we have for all t > 0

P

[
Z ≥ 2E[Z] +M

√
2t

N
+

4tξ

3N

]
≤ e−t.

We start by bounding the expectation

E[Ξθ] = E
[

sup
Q∈Q(ν,r,θ)

∣∣∣
(
RY(Q)−RY(

?
M)

)
−
(
R(Q)−R(

?
M)

)∣∣∣
]

= E
[

sup
Q∈Q(ν,r,θ)

∣∣∣
(
RY(Q)−RY(

?
M)

)
− E

[
RY(Q)−RY(

?
M)

]∣∣∣
]

= E
[

sup
Q∈Q(ν,r,θ)

∣∣∣ 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

Bv
ij

(
`v(Y v

ij , Q
v
ij)− `v(Y v

ij ,
?
Mv
ij)
)

− E
[
Bv
ij

(
`v(Y v

ij , Q
v
ij)− `v(Y v

ij ,
?
Mv
ij)
)]∣∣∣
]

≤ 2E
[

sup
Q∈Q(ν,r,θ)

∣∣∣ 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

εvijB
v
ij

(
`v(Y v

ij , Q
v
ij)− `v(Y v

ij ,
?
Mv
ij)
)∣∣∣
]

≤ 4ρE
[

sup
Q∈Q(ν,r,θ)

∣∣∣ 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

εvijB
v
ij(Q

v
ij −

?
Mv
ij)
∣∣∣
]

≤ 4ρE
[

sup
Q∈Q(ν,r,θ)

∣∣∣〈ΣR,Q−
?

M〉
∣∣∣
]

≤ 4ρE
[
‖ΣR‖ sup

Q∈Q(ν,r,θ)
‖Q−

?
M‖∗

]
,

where the first inequality follows from symmetrization of expectations theorem of van der
Vaart and Wellener, the second from contraction principle of Ledoux and Talagrand (see
Theorems 14.3 and 14.4 in Bühlmann and van de Geer (2011)), and the third from du-

ality between nuclear and operator norms. We have Q ∈ Q(ν, r, θ) then ‖Q −
?

M‖∗ ≤
√
r‖Q−

?
M‖F and using Assumption 4, we have ‖Q−

?
M‖∗ ≤

√
r(pς)−1

(
R(Q)−R(

?
M)

)
≤√

r(pς)−1θ. Then,

E[Ξθ] ≤ 4
√
r(pς)−1θρE[‖ΣR‖].

For the upper bound ξ in Theorem 24, we have that

∣∣`v(Y v
ij , Q

v
ij)− `v(Y v

ij ,
?
Mv
ij)
∣∣ ≤ ρv|Qvij −

?
Mv
ij

∣∣ ≤ 2ρvγ ≤ 2ργ.
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Now we compute M in Theorem 24. Thanks to Assumption 4, we have

1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

E
[(
Bv
ij

(
`v(Y v

ij , Q
v
ij)− `v(Y v

ij ,
?
Mv
ij)
))2]

≤ 1

duD

∑

v∈[V ]

∑

(i,j)∈[du]×[dv ]

(ρv)
2E
[
Bv
ij(Q

v
ij −

?
Mv
ij)

2]

≤ ρ2

duD
‖Q−

?
M‖2Π,F

≤ ρ2

ς
(R(Q)−R(

?
M))

≤ ρ2θ

ς
.

Then, Bousquet’s theorem implies that for all t > 0,

P
[
Ξθ ≥ 2E[Ξθ] +

√
2ρ2θt

ςduD
+

8ργt

3duD

]
≤ e−t.

Taking t = 3duDϑθ
8ργ , we obtain

P
[
Ξθ ≥ 8γ

√
r(pς)−1θρE[‖ΣR‖] +

(√ 3ρ

4ςγ
ϑ+ ϑ

)
θ
]
≤ exp

(
− 3duDϑθ

8ργ

)
. (28)

Using the fact that for any a, b ∈ R, and ε > 0, 2ab ≤ a2/ε + εb2, we get (for ε = 1/2δ +√
3ρ/4ςγ −

(
ϑ+

√
3ρϑ/4ςγ

)
), we get

8γ
√
r(pς)−1θρE[‖ΣR‖] +

(√3ϑρ

ςγ
+ ϑ

)
θ ≤ 16r(pς)−1ρ2(E[‖ΣR‖])2

1
2δ +

√
3ρ

4ςγ − ϑ−
√

3ρ
4ςγϑ

+
( 1

2δ
+

√
3ρ

4ςγ

)
θ

≤ 16r(pς)−1ρ2(E[‖ΣR‖])2

1
2δ +

√
3ρ

4ςγ − ϑ−
√

3ρ
4ςγϑ

+
(

1 + δ

√
3ρ

ςγ

) θ
2δ
.

Using (28), we get P
[
Ξθ ≥

(
1 + δ

√
3ρ
ςγ
)
θ
2δ + ζ

]
≤ exp

(
− 3duDϑθ

8ργ

)
. This finishes the

proof of Lemma 23.

Appendix C. Sub-exponential random variables

The material here is taken from R.Vershynin (2010).

Definition 25 A random variable X is sub-exponential with parameters (ω, b) if for all t
such that |t| ≤ 1/b,

E
[

exp
(
t(X − E[X])

)]
≤ exp

( t2ω2

2

)
. (29)
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When b = 0, we interpret 1/0 as being the same as ∞, it follows immediately from this
definition that any sub-Gaussian random variable is also sub-exponential. There are also
a variety of other conditions equivalent to sub-exponentiality, which we relate by defining
the sub-exponential norm of random variable. In particular, we define the sub-exponential
norm (sometimes known as the ψ1-Orlicz in the literature) as

‖X‖ψ1 := sup
q≥1

1

q
(E[|Xq|])1/q.

Then we have the following lemma which provides several equivalent characterizations of
sub-exponential random variables.

Theorem 26 (Equivalence of sub-exponential properties (R.Vershynin, 2010))
Let X be a random variable and ω > 0 be a constant. Then, the following properties are
all equivalent with suitable numerical constants Ki > 0, i = 1, . . . , 4, that are different from
each other by at most an absolute constant c, meaning that if one statement (i) holds with
parameter Ki, then the statement (j) holds with parameter Kj ≤ cKi.

(1) sub-exponential tails: P[|X| > t] ≤ exp
(
1− t

ωK1

)
, for all t ≥ 0.

(2) sub-exponential moments: (E[|Xq|])1/q ≤ K2ωq, for all q ≥ 1.

(3) existence of moment generating function (Mgf): E
[

exp
(
X
ωK3

)]
≤ e.

Note that in each of the statements of Theorem 26, we may replace ω by ‖X‖ψ1 and, up to
absolute constant factors, ‖X‖ψ1 is the smallest possible number in these inequalities.

Lemma 27 (Mgf of sub-exponential random variables (R.Vershynin, 2010)) Let X be a
centered sub- exponential random variable. Then, for t such that |t| ≤ c/‖X‖ψ1 , one has

E[exp(tX)] ≤ exp(Ct2‖X‖2ψ1
)

where C, c > 0 are absolute constants.

Lemma 28 For all v ∈ [V ] and (i, j) ∈ [du] × [dv], the random variable Xv
i,j is a sub-

exponential with parameters (Uγ ,K), where K is defined in Assumption 2. Moreover, we
have that ‖Xv

i,j‖ψ1 = c(Uγ ∨K) for some absolute constant c.

Proof Let t such that |t| ≤ 1/K, then

E[exp
(
t(Xv

ij − E[Xv
ij ])
)
]

= e−t(G
v)′(Mv

ij)
∫

R
hv(x) exp

(
(t+Mv

ij)x−Gv(Mv
ij)
)
dx

= eG
v(t+Mv

ij)−Gv(Mv
ij)−t(Gv)′(Mv

ij)
∫

R
hv(x) exp

(
(t+Mv

ij)x−Gv(t+Mv
ij)
)
dx

= eG
v(t+Mv

ij)−Gv(Mv
ij)−t(Gv)′(Mv

ij),

where we used in the last inequality the fact that that
∫
R h

v(x) exp
(
(t + Mv

ij)x − Gv(t +

Mv
ij)
)
dx =

∫
R fhv ,Gv(X

v
i,j |t + Mv

ij)dx = 1. Therefore, an ordinary Taylor series expansion
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of Gv implies that there exists tγ,K ∈ [−γ − 1
K , γ + 1

K ] such that Gv(t+Mv
ij)−Gv(Mv

ij)−
t(Gv)′(Mv

ij) = (t2/2)(Gv)′′(t2γ,K). By Assumption 2, we obtain

E[exp
(
t(Xv

ij − E[Xv
ij ])
)
] ≤ exp

( t2U2
γ

2

)
.

Using Lemma 27, we get ‖Xv
i,j‖ψ1 = c(Uγ ∨K) for some absolute constant c. This proves

Lemma 28.
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