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Abstract

We develop a model-based method for evaluating heterogeneity among several p × p
covariance matrices in the large p, small n setting. This is done by assuming a spiked
covariance model for each group and sharing information about the space spanned by the
group-level eigenvectors. We use an empirical Bayes method to identify a low-dimensional
subspace which explains variation across all groups and use an MCMC algorithm to es-
timate the posterior uncertainty of eigenvectors and eigenvalues on this subspace. The
implementation and utility of our model is illustrated with analyses of high-dimensional
multivariate gene expression.

Keywords: covariance estimation; spiked covariance model; Stiefel manifold; large p,
small n; high-dimensional data; empirical Bayes; gene expression data.

1. Introduction

Multivariate data can often be partitioned into groups, each of which represent samples
from populations with distinct but possibly related distributions. Although historically the
primary focus has been on identifying mean-level differences between populations, there has
been a growing need to identify differences in population covariances as well. For instance,
in case-control studies, mean-level effects may be small relative to subject variability; dis-
tributional differences between groups may still be evident as differences in the covariances
between features. Even when mean-level differences are detectable, better estimates of
the covariability of features across groups may lead to an improved understanding of the
mechanisms underlying these apparent mean-level differences. Further, accurate covariance
estimation is an essential part of many prediction tasks (e.g. quadratic discriminant anal-
ysis). Thus, evaluating heterogeneity between covariance matrices can be an important
complement to more traditional analyses for estimating differences in means across groups.

To address this need, we develop a novel method for multi-group covariance estimation.
Our method exploits the fact that in many natural systems, high dimensional data is often
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very structured and thus can be best understood on a lower dimensional subspace. For
example, with gene expression data, we may be interested how the covariability between
expression levels differs in subjects with and without a particular disease phenotype (e.g,
how does gene expression covariability differ in different subtypes of leukemia? See Section
6). In these applications, the effective dimensionality is thought to scale with the number of
gene regulatory modules, not the number of genes themselves (Heimberg et al., 2016). As
such, differences in gene expression across groups should be expressed in terms of differences
between these regulatory modules rather than strict differences between expression levels.
Such differences can be examined on a subspace that reflects the correlations resulting from
these modules. In contrast to most existing approaches for group covariance estimation,
our approach is to directly infer such subspaces from groups of related data.

Some of the earliest approaches for multi-group covariance estimation focus on estima-
tion in terms of spectral decompositions. Flury (1987) developed estimation and testing
procedures for the “common principal components” model, in which a set of covariance
matrices were assumed to share the same eigenvectors. Schott (1991, 1999) considered
cases in which only certain eigenvectors are shared across populations, and Boik (2002)
described an even more general model in which eigenvectors can be shared between some
or all of the groups. More recently, Hoff (2009a), noting that eigenvectors are unlikely to be
shared exactly between groups, introduced a hierarchical model for eigenvector shrinkage
based on the matrix Bingham distribution. There has also been a significant interest in
estimating covariance matrices using Gaussian graphical models. For Gaussian graphical
models, zeros in the precision matrix correspond to conditional independence relationships
between pairs of features given the remaining features (Meinshausen and Bühlmann, 2006).
Danaher et al. (2014) extended existing work in this area to the multi-group setting, by
pooling information about the pattern of zeros across precision matrices.

Another popular method for modeling relationships between high-dimensional multi-
variate data is partial least squares regression (PLS) (Wold et al., 2001). This approach,
which is a special case of a bilinear factor model, involves projecting the data onto a lower
dimensional space which maximizes the similarity of the two groups. This technique does
not require the data from each group to share the same feature set. A common variant for
prediction, partial least squares discriminant analysis (PLS-DA) is especially common in
chemometrics and bioinformatics (Barker and Rayens, 2003). Although closely related to
the approaches we will consider here, the primarily goal of PLS-based models is to create
regression or discrimination models, not to explicitly infer covariance matrices from multi-
ple groups of data. Nevertheless, the basic idea that data can often be well represented on
a low dimensional subspace is an appealing one that we leverage.

The high-dimensional multi-group covariance estimation problem we explore in this work
is also closely related to several important problems in machine learning. In particular, it
can be viewed as an extension of distance metric learning methods (Bellet et al., 2012;
Wang and Sun, 2015) to the multiple-metric setting. Multi-group covariance estimation
also has applications in multi-task learning (Zhang et al., 2016; Liu et al., 2009), manifold
and kernel learning tasks (Kanamori and Takeda, 2012), computer vision (Vemulapalli et al.,
2013; Pham and Venkatesh, 2008) and compressed sensing and signal processing (Romero
et al., 2016). Recently, covariance matrix and subspace learning has been used in deep
learning applications (Huang and Van Gool, 2017).
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In this paper we propose a multi-group covariance estimation model by sharing infor-
mation about the subspace spanned by group-level eigenvectors. Our approach is closely
related to the covariance reducing model proposed by Cook and Forzani (2008), but their
model is applicable only when n� p. In this work we focus explicitly on high-dimensional
inference in the context of the “the spiked covariance model” (also known as the “partial
isotropy model”), a well studied variant of the factor model (Mardia et al., 1980; Johnstone,
2001). Unlike most previous methods for multi-group covariance estimation, our shared
subspace model can be used to improve high-dimensional covariance estimates, facilitates
exploration and interpretation of differences between covariance matrices, and incorporates
uncertainty quantification. It is also straightforward to integrate assumptions used in pre-
vious approaches (e.g. eigenvector shrinkage) to the shared subspace model.

In Section 2 we briefly review the behavior of spiked covariance models for estimating
a single covariance matrix and then introduce our extension to the multi-group setting.
In Section 3 we describe an efficient empirical Bayes algorithm for inferring the shared
subspace and estimating the posterior distribution of the covariance matrices of the data
projected onto this subspace. In Section 4 we investigate the behavior of this class of models
in simulation and demonstrate how the shared subspace assumption is widely applicable,
even when there is little similarity in the covariance matrices across groups. In particular,
independent covariance estimation is equivalent to shared subspace estimation with a suffi-
ciently large shared subspace. In Section 5 we use an asymptotic approximation to describe
how shared subspace inference reduces bias when both p and n are large. Finally, In Section
6 we demonstrate the utility of a shared subspace model in an analysis of gene expression
data from juvenile leukemia patients . Despite the large feature size (p > 3000) relative to
the sample size (n < 100 per group), we identify interpretable similarities and differences
in gene covariances on a low dimensional subspace.

2. A Shared Subspace Spiked Covariance Model

Suppose a random matrix S has a possibly degenerate Wishart(Σ, n) distribution with
density given by

p(S|Σ, n) ∝ l(Σ : S) = |Σ|−n/2etr(−Σ−1S/2), (1)

where etr is the exponentiated trace, the covariance matrix is a positive definite matrix, i.e.
Σ ∈ S+

p , and n may be less than p. Such a likelihood results from S being, for example,
a residual sum of squares matrix from a multivariate regression analysis. In this case, n is
the number of independent observations minus the rank of the design matrix.

In this paper we consider multi-group covariance estimation based on K matrices,
Y1, ..., YK , where Yk is assumed to be an nk by p matrix of mean-zero normal data, typically
with nk � p. Then, Y T

k Yk = Sk has a (degenerate) Wishart distribution as in Equation 1.

To improve estimation, we seek estimators of each covariance matrix, Σ̂k, that may depend
on data from all groups. Specifically, we posit that the covariance matrix for each group
can be written as

Σk = σ2
k(VΨkV

T + I), (2)
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(a) Projection in R3 (b) YkV (c) YkV⊥

Figure 1: Two groups of four-dimensional data (red and blue) projected into different sub-
spaces. a) To visualize Yk we can project the data into R3. In this illustra-
tion, the distributional differences between the groups are confined to a two-
dimensional shared subspace (V V T , grey plane). b) The data projected onto the
two-dimensional shared subspace, YkV , have covariances Ψk that differ between
groups. c) The orthogonal projection, YkV⊥ has isotropic covariance, σ2

kI, for all
groups.

where V is a p×s semi-orthogonal matrix whose columns form the basis vectors for subspace
of variation shared by all groups. Ψk is a non-isotropic s × s covariance matrix for each
group on this subspace of variation and it is assumed that s� p.

Our model extends the spiked principal components model (spiked PCA), studied ex-
tensively by Johnstone (2001) and others, to the multi-group setting. Spiked PCA assumes
that

Σ = σ2(UΛUT + I) (3)

where for s � p, Λ is an s × s diagonal matrix and U ∈ Vp,s, where Vp,s is the Stiefel
manifold consisting of all p × s semi-orthogonal matrices in Rp, so that UTU = Is. The
spiked covariance formulation is appealing because it explicitly partitions the covariance
matrix into a tractable low rank “signal” and isotropic “noise”.

Classical results for parametric models (e.g., Kiefer and Schwartz (1965)) imply that
asymptotically in n for fixed p, an estimator will be consistent for a spiked population
covariance as long as the assumed number of spikes (eigenvalues larger than σ2) is greater
than or equal to the true number. However, when p is large relative to n, as is the case
for the examples considered here, things are more difficult. Under the spiked covariance
model, it has been shown that if p/n → α > 0 as n → ∞, the kth largest eigenvalue of
S/(nσ2) will converge to an upwardly biased version of λk+1 if λk is greater than

√
α (Baik

and Silverstein, 2006; Paul, 2007). This has led several authors to suggest estimating Σ via
shrinkage of the eigenvalues of the sample covariance matrix. In particular, in the setting
where σ2 is known, Donoho et al. (2013) propose estimating all eigenvalues whose sample
estimates are smaller than σ2(1 +

√
α)2 by σ2, and shrinking the larger eigenvalues in a

way that depends on the particular loss function being used. These shrinkage functions are
shown to be asymptotically optimal in the p/n→ α setting.
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Single-group covariance estimators of the spiked PCA form are equivariant with respect
to rotations and scale changes, but the situation should be different, when we are interested
in estimating multiple covariance matrices from distinct but related groups with shared
features. Here, equivariance to distinct rotations in each group is an unreasonable assump-
tion; both eigenvalue and eigenvector shrinkage can play an important role in improving
covariance estimates.

In the multi-group setting, we account for similarity between group-level eigenvectors
by positing that the anisotropic variability from each group occurs on a common low di-
mensional subspace. Throughout this paper we will denote to the shared subspace as
V V T ∈ Gp,s, where Gp,s is the Grassmannian manifold consisting of all s-dimensional linear
subspaces of Rp (Chikuse, 2012). Although V is only identifiable up to right rotations, the
matrix V V T , which defines the plane of variation shared by all groups, is identifiable for
a fixed dimension, s. To achieve the most dimension reduction, we target the shared sub-
space of minimal dimension, e.g. the shared subspace for which all Ψk are full rank. Such
a minimal subspace is known as the central subspace (Cook, 2009). Later, to emphasize
the connection to the spiked PCA model (3), we will write Ψk in terms of its eigendecom-
position, Ψk = OkΛkOk, where Ok are eigenvectors and Λk are the eigenvalues of Ψk (see
Section 3.2).

For the shared subspace model, V TΣkV = σ2
k(Ψk + I) is an anisotropic s-dimensional

covariance matrix for the projected data, YkV . In contrast, the data projected onto the
orthogonal space, YkV⊥, is isotropic for all groups. In Figure 1 we provide a simple illustra-
tion using simulated 4-dimensional data from two groups. In this example, the differences
in distribution between the groups of data can be expressed on a two dimensional sub-
space spanned by the columns of V ∈ V4,2. Differences in the correlations between the two
groups manifest themselves on this shared subspace, whereas only the magnitude of the
isotropic variability can differ between groups on the orthogonal space. Thus, a shared sub-
space model can be viewed as a covariance partition model, where one partition includes the
anisotropic variability from all groups and the other partition is constrained to the isotropic
variability from each group. This isotropic variability is often characterized as measurement
noise.

3. Empirical Bayes Inference

In this section we outline an empirical Bayes approach for estimating a low-dimensional
shared subspace and the covariance matrices of the data projected onto this space. As
we discuss in Section 4, if the spiked covariance model holds for each group individually,
then the shared subspace assumption also holds, where the shared subspace is simply the
span of the group-specific eigenvectors, U1, ..., UK . In practice, we can usually identify a
shared subspace of dimension s � p that preserves most of the variation in the data. Our
primary objective is to identify the “best” shared subspace of fixed dimension s < p. Note
that this subspace accounts for the across-group similarity, and thus can be viewed as a
hyperparameter in a hierarchical model. Although a fully Bayesian approach may be prefer-
able in the absence of computational limitations, in this paper we propose computationally
tractable empirical Bayes inference. In the empirical Bayes approach, hyperparameters are
first estimated via maximum marginal likelihood, often using the expectation-maximization
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algorithm (Lindstrom and Bates, 1988). In many settings such an approach yields group-
level inferences that are close to that which would be obtained if the correct across-groups
model were known (see for example Efron and Morris, 1973). In Section 3.1 we describe the
expectation-maximization algorithm for estimating the maximum marginal likelihood of the
shared subspace, V V T . This approach is computationally tractable for high-dimensional
data sets. Given an inferred subspace, we then seek estimators for the covariance matrices
of the data projected onto this space. Because seemingly large differences in the point esti-
mates of covariance matrices across groups may not actually reflect statistically significant
differences, in Section 3.2 we also describe a Gibbs sampler that can be used to generate
estimates of the projected covariance matrices, Ψk, and their associated uncertainty. Later,
in Section 4 we discuss strategies for inferring an appropriate value for s and explore how
shared subspace models can be used for exploratory data analysis by visualizing covariance
heterogeneity on two or three dimensional subspaces.

3.1. Estimating the Shared Subspace

In this section we describe a maximum marginal likelihood procedure for estimating the
shared subspace, V V T , based on the expectation-maximization (EM) algorithm. The full
likelihood for the shared subspace model can be written as

p(S1, ...Sk|Σk, nk) ∝
K∏
k=1

|Σk|−nk/2etr(−Σ−1
k Sk/2)

∝
K∏
k=1

|Σk|−nk/2etr(−(σ2
k(VΨkV

T + I))−1Sk/2)

∝
K∏
k=1

|Σk|−nk/2etr(−
[
V (Ψk + I)−1/σ2

kV
T + (I − V V T )/σ2

k

]
Sk/2)

∝
K∏
k=1

(σ2
k)
−nk(p−s)/2|Mk|−nk/2etr(−

[
VM−1

k V T +
1

σ2
k

(I − V V T )

]
Sk/2),

(4)

where we define Mk = σ2
k(Ψk + I). The log-likelihood in V (up to an additive constant) is

l(V ) =
∑
k

tr
(
−(VM−1

k V T + V V T /σ2
k)Sk/2

)
=

1

2

∑
k

tr

(
(

1

σ2
k

I −M−1
k )V TSkV

)
. (5)

We maximize the marginal likelihood of V with an EM algorithm, where M−1
k and 1

σ2
k

are

considered the “missing” parameters. We assume independent Jeffreys prior distributions
for both σ2

k and Mk. The Jeffreys prior distributions for these quantities correspond to
p(σ2

k) ∝ 1/σ2
k and p(Mk) ∝ |Mk|−(s+1)/2. From the likelihood it can easily be shown that

the conditional posterior for Mk is

p(Mk|V ) ∝ |Mk|−(nk+s+1)/2etr(−(M−1
k V TSkV )/2)
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Algorithm 1: Shared Subspace EM Algorithm

Initialize V0 ∈ Vp,s;
while ||Vt − Vt−1||F > ε do

E-step:
for k ← 1 to K do

φ
(k)
t ← E[M−1

k |V(t−1)] = nk(V
T

(t−1)SkV(t−1))
−1;

τ
(k)
t ← E[ 1

σ2
k
|V(t−1)] = nk(p−s)

tr[(I−V(t−1)V
T
(t−1)

)Sk]
;

end
M-step:

Vt ← arg max
V ∈Vp,s

∑
k tr
(
−(V φ

(k)
t V T + τ

(k)
t V V T )Sk/2

)
;

end

which is an inverse-Wishart(V TSkV , nk) distribution. The conditional posterior distribu-
tion of σ2

k is simply

p
(
σ2|V

)
∝ (σ2

k)
−nk(p−s)/2−1etr

(
−(I − V V T )Sk/[2σ

2
k]
)

which is an inverse-gamma(nk(p − s)/2, tr[(I − V V T )Sk]/2) distribution. We summarize
our approach in Algorithm 1 below.

For the M-step, we use a numerical algorithm for optimization over the Stiefel manifold.
The algorithm uses the Cayley transform to preserve the orthogonality constraints in V and
has computationally complexity that is dominated by the dimension of the shared subspace,
not the number of features (Wen and Yin, 2013). Specifically, the optimization routine has
time complexity O(ps2 + s3), and consequently, our approach is computationally efficient
for relatively small values of s, even when p is large. Run times are typically on the order of
minutes for values of p as large as 10,000 and moderate values of s (e.g. < 50). See Figure
10 in Appendix B for a plot with typical run times in simulations with a range of values of
p and s.

Initialization and Convergence: The Stiefel manifold is compact and the marginal
likelihood is continuous, so the likelihood is bounded. Thus, the EM algorithm, which
increases the likelihood at each iteration, will converge to a stationary point (Wu, 1983).
However, maximizing the marginal likelihood of the shared subspace model corresponds
to a non-convex optimization problem over the Grassmannian manifold and may converge
to a sub-optimal local mode or stationary point. Other work involving optimization on
the Grassmannian has found convergence to non-optimal stationary values problematic and
emphasized the importance of good (e.g.

√
n-consistent) starting values (Cook et al., 2016).

Our empirical results on simulated data confirms that randomly initialized starting values
converge to sub-optimal stationary values, and so in practice we initialize the algorithm at
a carefully chosen starting value based on the eigenvectors of a pooled covariance estimate.
We give the details for this initialization strategy below.

First, note that when the shared subspace model holds, the first s eigenvectors, from any
of the groups can be used to construct a

√
n-consistent estimator of V V T . In particular, if
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Û (k)Û (k)T is the eigenprojection matrix for the subspace spanned by the first s eigenvectors
of Sk then it can be shown that

√
n vec(Û (k)Û (k)T − V V T ) converges in distribution to a

mean-zero normal (Kollo, 2000). In the large p, small n setting, such classical asymptotic
guarantees give little assurance that the resulting estimators would be reasonable, but they
nevertheless suggest useful strategies for identifying starting value for the EM algorithm.

In this work, we choose a subspace initialization strategy based on sample eigenvectors
of the data pooled from all groups. Let Z =

∑
k πk

Zk
σk

where Zk is a mean-zero normal with
covariance Σk and πk = nk/

∑
k nk. Then Z is a mixture of mean-zero normal distributions

with covariance

ΣZ =
∑
k

πk
σ2
k

Σk

= V T (
∑
k

πk
σ2
k

Ψk)V + I,

Clearly, the first s eigenvectors of ΣZ span the shared subspace, V V T . This suggests
that we can estimate the shared subspace using the scaled and pooled data, Ypool =

[ 1
σ1
Y1; 1

σ2
Y2; ...; 1

σk
Yk], where Ypool has dimension (

∑
k nk) × p. We use ÛpoolÛ

T
pool as the

initial value for subspace estimation algorithm where Ûpool are the first s eigenvectors of
Spool = Y T

poolYpool. If we treat Ypool as an i.i.d. sample from the mixture distribution Z, then

it is known that ÛpoolÛ
T
pool is not consistent when both n and p growing at the same rate.

For an arbitrary p-vector η, the asymptotic bias of ηT ÛpoolÛ
T
poolη is well characterized as a

function of the eigenvalues of ΣZ (Mestre, 2008). If either the eigenvalues of
∑

k
πk
σ2
k
Ψk or the

total sample size
∑

k nk are large, ÛpoolÛ
T
pool will accurately estimate the shared subspace

and likelihood based optimization may not be necessary. However, when either the eigen-
values are small or the sample size is small the likelihood based analysis can significantly
improve inference and ÛpoolÛ

T
pool is a useful starting value for the EM algorithm.

Evaluating Goodness of Fit: Tests for evaluating whether eigenvectors from multiple
groups span a common subspace were explored extensively by Schott (1991). These tests
can be useful for assessing whether a shared subspace model is appropriate, but cannot be
used to test whether a particular subspace explains variation across groups. These results
are also based on classical asymptotics and are thus less accurate when n� p

Our goodness of fit measure is based on the fact that when V is a basis for a shared
subspace, then for each group, most of the non-isotropic variation in Yk should be preserved
when projecting the data onto this space. To characterize the extent to which this is true
for different groups, we propose a simple estimator for the proportion of “signal” variance
that lies on a given subspace. Specifically, we use the following statistic for the ratio of the
sum of the first s eigenvalues of V TΣkV to the sum of the first s eigenvalues of Σk:

γ(Yk : V, σ2
k) =

||YkV ||2F /nk
max
Ṽ ∈Vp,s

||YkṼ ||2F /nk −Bk
(6)
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where ||·||F is the Frobenius norm andBk is a bias correction whereBk = σ2
kp/nk

∑
k

(
m

(k)
i

m
(k)
i −σ2

k

)
with m

(k)
i the positive solution to the quadratic equation

(m
(k)
i )2 +m

(k)
i (σ2

kp/nk − σ2
k − λ̂

(k)
i )− λ̂(k)

i σ2
k = 0. (7)

and λ̂
(k)
i is the i-th eigenvalue of Sk/nk.

Theorem 1 Assume p/nk → αk and s is fixed. If Σk = VΨkV
T+σ2

kI, then γ(Yk : V, σ2
k)

a.s→
1 as nk, p→∞.

Proof Since s is fixed and nk is growing, the numerator, ||YkV ||2F /nk, is a consistent

estimator for the sum of the eigenvalues of V TΣkV . In the denominator, max
Ṽ ∈Vp,s

||YkṼ ||2F /nk

is equivalent to the sum of the first s eigenvalues of the sample covariance matrix Sk/nk.
Baik and Silverstein (2006) and others have demonstrated that asymptotically as p, nk →∞
and p/nk = αk, λ̂

(k)
i is positively biased. Specifically,

λ̂
(k)
i

a.s.→ λ
(k)
i

(
1 +

σ2
kαk

λ
(k)
i − σ2

k

)
(8)

Replacing λ
(k)
i by m

(k)
i and assuming equality in 8 yields the quadratic equation 7. The

solution, m
(k)
i , is an asymptotically (in n and p) unbiased estimator of λ

(k)
i and

max
Ṽ ∈Vp,s

||YkṼ ||2F /nk −Bk
a.s.→

s∑
i

λ
(k)
i (9)

As such, when the shared subspace model holds both the numerator and denominator of the

goodness of fit statistic converge almost surely to
∑s

i=1 λ
(k)
i . Therefore γ(Yk : V, σ2

k) → 1.

The goodness of fit statistic will be close to one for all groups when V V T is a shared
subspace for the data and typically smaller if not. The metric provides a useful indicator of
which groups can be reasonably compared on a given subspace and which groups cannot.
In practice, we estimate a shared subspace V̂ and the isotropic variances σ̂2

k using EM and

compute the plug-in estimate γ(Yk : V̂ , σ̂2
k). When this statistic is small for some groups,

it may suggest that the rank s of the inferred subspace needs to be larger to capture the
variation in all groups. If γ(Yk : V̂ , σ̂2

k) is substantially larger than 1 for a particular group,
it suggests that the inferred subspace is too similar to the sample principal components
from group k. We investigate these issues in Section 4, by computing the goodness of fit
statistic for inferred subspaces of different dimensions on a single data set. In Section 6, we
compute the estimates for subspaces inferred with real biological data.
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3.2. Inference for Projected Covariance Matrices

The EM algorithm presented in the previous section yields point estimates for V V T , Ψk,
and σ2

k but does not lead to natural uncertainty quantification for these estimates. In this
section, we assume that the subspace V V T is fixed and known and demonstrate how we
can estimate the posterior distribution for Ψk. Note that when the subspace is known, the
posterior distribution of Σk is conditionally independent from the other groups, so that we
can independently estimate the conditional posterior distributions for each group.

There are many different ways in which we could choose to parameterize Ψk. Building on
recent interest in the spiked covariance model (Donoho et al., 2013; Paul, 2007) we propose
a tractable MCMC algorithm by specifying priors on the eigenvalues and eigenvectors of Ψk.
By modeling the eigenstructure, we can now view each covariance Σk in terms of the original
spiked principal components model. Equation 2, written as a function of V , becomes

Ψk = OkΛkO
T
k

Σk = VΨkV
T + σ2

kI. (10)

Here, we allow Ψk to be of rank r ≤ s dimensional covariance matrix on the s-dimensional
subspace. Thus, Λk is an r × r diagonal matrix of eigenvalues, and Ok ∈ Vs,r is the matrix
of eigenvectors of Ψk. For any individual group, this corresponds to the original spiked
PCA model (Equation 3) with Uk = V Ok ∈ Vp,r. Note that the V and Ok are jointly
unidentifiable because for any s× s orthonormal matrix W,V O = VW TWO = Ṽ Õ. Once
we fix a basis for the shared subspace, Ok is identifiable. As such, Ok should only be
interpreted relative to the basis V , as determined by the EM algorithm described in Section
3.1. Differentiating the ranks r and s is helpful because it enables us to independently
specify a subspace common to all groups and the possibly lower rank features on this space
that are specific to individual groups.

Although our model is most useful when the covariance matrices are related across
groups, we can also use this formulation to specify models for multiple unrelated spiked
covariance models. We explore this in detail in Section 4. In Section 6 we introduce a
shared subspace model with additional structure on the eigenvectors and eigenvalues of Ψk

to facilitate interpretation of covariance heterogeneity on a two-dimensional subspace.

The likelihood for Σk given the sufficient statistic Sk = Y T
k Yk is given in Equation 1.

For the spiked PCA formulation, we must rewrite this likelihood in terms of V , Ok, Λk and
σ2
k. First note that by the Woodbury matrix identity

Σ−1
k = (σ2

k(UkΛkU
T
k + I))−1

=
1

σ2
k

(UkΛkU
T
k + I)−1

=
1

σ2
k

(I − UkΩkU
T
k ), (11)
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where the diagonal matrix Ω = Λ(I + Λ)−1, e.g. ωi = λi
λi+1 . Further,

|Σk| = (σ2
k)
p|UkΛkUTk + I|

= (σ2
k)
p|Λk + I|

= (σ2
k)
p

r∏
i=1

(λi + 1)

= (σ2
k)
p

r∏
i=1

(1− ωi), (12)

where the second line is due to Sylvester’s determinant theorem. Now, the likelihood of V ,
Ok, Λk and σ2

k is available from Equation 1 by substituting the appropriate quantities for
Σ−1
k and |Σk| and replacing Uk with V Ok:

L(σ2
k, V,OkΩk : Yk) ∝ (σ2

k)
−nkp/2etr(− 1

2σ2
k

Sk)

(
r∏
i=1

(1− ωki)

)nk/2

etr(
1

2σ2
k

(V OkΩkO
T
k V

T )Sk).

(13)
We use conjugate and semi-conjugate prior distributions for the parameters Ok, σ

2
k and

Ωk to facilitate inference via a Gibbs sampling algorithm. In the absence of specific prior
information, invariance considerations suggest the use of priors that lead to equivariant
estimators. Below we describe our choices for the prior distributions of each parameter
and the resultant conditional posterior distributions. We summarise the Gibbs Sampler in
Algorithm 2.

Conditional distribution of σ2
k: From Equation 13 it is clear that the inverse-gamma

class of prior distributions is conjugate for σ2
k. We chose a default prior distribution

for σ2
k that is equivariant with respect to scale changes. Specifically, we use the Jef-

freys prior distribution, an improper prior with density p(σ2
k) ∝ 1/σ2

k. Under this prior,
straightforward calculations show that the full conditional distribution of σ2

k is inverse-
gamma(nkp/2, tr[Sk(I − UkΩkU

T
k )/2]), where Uk = V Ok.

Conditional distribution of Ok: Given the likelihood from Equation 13, it is easy to
show that the class of Bingham distributions are conjugate for Ok (Hoff, 2009a,b). Again,
invariance considerations lead us to use a rotationally invariant uniform probability measure
on Vs,p. Under this uniform prior, the full conditional distribution of Ok has a density
proportional to the likelihood

p(Ok|σ2
k, Uk,Ωk) ∝ etr(ΩkO

T
k V

T [Sk/(2σ
2
k)]V Ok). (14)

This is a Bingham(Ω, V TSkV/(2σ
2)) distribution on Vs,r (Khatri and Mardia, 1977). A

Gibbs sampler to simulate from this distribution is given in Hoff (2009b).
Together, the prior for σ2

k andOk leads to conditional (on V ) Bayes estimators Σ̂(V TSkV )
that are equivariant with respect to scale changes and rotations on the subspace spanned by
V , so that Σ̂(aWV TSkVW

T ) = aW Σ̂(V TSkV )W for all a > 0 and W ∈ Os (assuming an
invariant loss function). Interestingly, if Ωk were known (which it is not), then for a given
invariant loss function the Bayes estimator under this prior minimizes the (frequentist) risk
among all equivariant estimators (Eaton, 1989).
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Algorithm 2: Gibbs Sampler for Projected Data Covariance Matrices

Estimate V̂ using EM (Algorithm 1). Initialize Ok,Λk, σ
2
k;

for s← 1 to number of samples do
for k ← 1 to K do

Sample σ2
k from an inverse-gamma(nkp/2, tr[Sk(I − V̂ OkΩkV̂

TOTk )/2]);

Sample Ok from a Bingham(Ω, V̂ TSkV̂ /(2σ
2));

for i← 1 to r do
Sample (1− ωki) from a gamma(nk/2 + 1, ckink/2) truncated at 1;
λki ← ωki/(1− ωki)

end

end

end

Conditional distribution for Ωk: Here we specify the conditional distribution of the
diagonal matrix Ωk = Λk(I + Λk)

−1 = diag(ωk1, ...ωkr). We consider a uniform(0,1) prior
distribution for each element of Ω, or equivalently, an F2,2 prior distribution for the elements
of Λ. The full conditional distribution of an element ωi of Ω is proportional to the likelihood
function

p(ωki|V,Ok, Sk) ∝ωki

(
r∏
i=1

(1− ωki)nk/2

)
etr(

1

2σ2
k

(V OkΩkO
T
k V

T )Sk) (15)

∝ (1− ωki)nk/2eckiωkink/2, (16)

where cki = uTkiSkuki/(nkσ
2
k) and uki is column i of Uk = V Ok. It is straightforward to show

that the density for (1−ωki) is proportional to a gamma(nk/2 + 1, ckink/2) truncated at 1.
Thus, we can easily sample from this distribution using inversion sampling. The behavior
of the distribution for ωki is straightforward to understand: if cki ≤ 1, then the function
has a maximum at ωki = 0, and decays monotonically to zero as ωki → 1. If cki > 1 then
the function is uniquely maximized at (cki − 1)/cki ∈ (0, 1). To see why this makes sense,
note that the likelihood is maximized when the columns of Uk are equal to the eigenvectors
of Sk corresponding to its top r eigenvalues (Tipping and Bishop, 1999). At this value of
Uk, cki will then equal one of the top r eigenvalues of Sk/(nkσ

2
k). In the case that nk � p,

we expect Sk/(nkσ
2
k) ≈ Σk/σ

2
k, the true (scaled) population covariance, and so we expect

cki to be near one of the top r eigenvalues of Σk/σ
2
k, say λki + 1. If indeed Σk has r spikes,

then λki > 0, cki ≈ λki + 1 > 1, and so the conditional mode of wki is approximately
(cki − 1)/cki = λki/(λki + 1), the correct value. On the other hand, if we have assumed the
existence of a spike when there is none, then λki = 0, cki ≈ 1 and the Bayes estimate of
wki will be shrunk towards zero, as it should be. We summarise the full Gibbs sampling
algorithm below.

4. Simulation Studies

We start with an example demonstrating how a shared subspace model can be used to iden-
tify statistically significant differences between covariance matrices on a low dimensional
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subspace. Here, we simulate K = 5 groups of data from the shared subspace spiked covari-
ance model with p = 20000 features, a shared subspace dimension of s = r = 2, σ2

k = 1,
and nk = 100. We fix the first eigenvalue of Ψk from each group to λ1 = 1000 and vary
λ2. We generate the basis for the shared subspace and the eigenvectors of Ψk by sampling
uniformly from the Stiefel manifold. First, in Figure 2(a) we demonstrate the importance
of the eigen-based initialization strategy proposed in Section 3.1. As an accuracy metric,
we study the behavior of tr(V̂ V̂ TV V T )/s which is bounded by zero and one and achieves
a maximum of one if and only if V̂ V̂ T corresponds to the true shared subspace. In this
high dimensional problem, with random initialization, we typically converge to an estimated
subspace that has a similarity between 0.25 and 0.5. With the eigen-based initialization we
achieve nearly perfect estimation accuracy (> 0.95).

Next, we summarize estimates of Ψk inferred using Algorithm 2 in terms of its eigende-
composition by computing posterior distributions for the log eigenvalue ratio, log(λ1

λ2
), with

λ1 > λ2, and the angle of the first eigenvector on this subspace, arctan(O12
O11

), relative to the
first column of V . In Figure 2(b), we depict the 95% posterior regions for these quantities
from a single simulation. Dots correspond to the true log ratios and orientations of V̂ TΣkV̂ ,
where V̂ is the maximum marginal likelihood for V . To compute the posterior regions, we
iteratively remove posterior samples corresponding to the vertices of the convex hull until
only 95% of the original samples remain. Non-overlapping posterior regions provide evi-
dence that differences in the covariances are “statistically significant” between groups. In
this example, the ratio of the eigenvalues of the true covariance matrices were 10 (black
and red groups), 3 (green and blue groups) and 1 (cyan group). Larger eigenvalue ratios
correspond to more correlated contours and a value of 1 implies isotropic covariance. Note
that for the smaller eigenvalue ratio of 3, there is more uncertainty about the orientation of
the primary axis. When the ratio is one, as is the case for the cyan colored group, there is
no information about the orientation of the primary axis since the contours are spherical.
In this simulation, the 95% regions all include the true data generating parameters. As we
would hope, we find no evidence of a difference between the blue and green groups, since
they have overlapping posterior regions. This means that a 95% posterior region for the
difference between the groups (0,0), i.e. the model in which the angles and ratios are the
same in both groups.

To demonstrate the overall validity of the shared subspace approach, we compute the
frequentist coverage of these 95% Bayesian credible regions for the eigenvalue ratio and
primary axis orientation using one thousand simulations. For the two groups with eigenvalue
ratio λ1/λ2 = 3 the frequentist coverage was close to nominal at approximately 0.94. For
the groups with λ1/λ2 = 10 the coverage was approximately 0.92. We did not evaluate
the coverage for the group with λ1/λ2 = 1 (cyan) since this value is on the edge of the
parameter space and is not covered by the 95% posterior regions as constructed. The
slight under coverage for the other groups is likely due to the fact that we infer V V T using
maximum marginal likelihood, and thus ignore the extra variability due to the uncertainty
about the shared subspace estimate.
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Figure 2: a) Accuracy of shared subspace estimation, tr(V̂ V̂ TV V T )/s , for randomly ini-
tialized (density) and eigen-initialized value of V (dashed line). If V is initial-
ized uniformly at random from the Stiefel manifold, then typically Algorithm 1
produces a subspace estimate that is sub-optimal. By contrast, using the initial-
ization strategy described in Section 3.1, we achieve excellent accuracy. b) 95%
posterior regions for the log of the ratio of eigenvalues, log(λ1

λ2
), of Ψk and the

orientation of the principal axis on the space spanned by V̂ cover the truth in
this simulation. Dots correspond to true data generating parameter values on
V̂ TΣkV̂ . Since V is only identifiable up to rotation, for this figure we find the
Procrustes rotation that maximizes the similarity of V̂ to the true data generat-
ing basis. True eigenvalue ratios were 10 (red and black), 3 (green and blue) and
1 (cyan). True orientations were π/4 (black), −π/4 (red) and 0 (blue, green, and
cyan). Note that the dark blue and green groups were generated with identical
covariance matrices. Their posterior regions overlap, which suggests that a 95%
region for the difference in eigenvalue ratios and angle would include (0,0).

4.1. Rank Selection and Model Misspecification

Naturally, shared subspace inference works well when the model is correctly specified. What
happens when the model is not well specified? We explore this question in silico by sim-
ulating data from different data generating models and evaluating the efficiency of various
covariance estimators. In all of the following simulations we evaluate covariance estimates
using Stein’s loss, LS(Σk, Σ̂k) = tr(Σ−1

k Σ̂k)−log |Σ−1
k Σk|−p. Since we compute multi-group

estimates, we report the average Stein’s loss L(Σ1, ...,ΣK ; Σ̂1, ..., Σ̂K) = 1
K

∑
k LS(Σk, Σ̂k).

Under Stein’s loss, the Bayes estimator is the inverse of the posterior mean of the precision
matrix, Σ̂k = E[Σ−1

k |Sk]
−1 which we estimate using MCMC samples.
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(c) ŝ = 20

Figure 3: a) Stein’s risk as a function of the shared subspace dimension (solid black line).
Data from ten groups, with Uk generated uniformly on the Stiefel manifold V200,2.
As ŝ → p, the risk converges to the risk from independently estimated spiked
covariance matrices (dashed blue line). The data also fit a shared subspace model
with s = rK. If V V T = span(U1, ..., Uk) were known exactly, shared subspace
estimation yields lower risk than independent covariance estimation (dashed red
line). b) For a single simulated data set, the goodness of fit statistic, γ(Yk :
V̂ , σ̂k

2), when the assumed shared subspace is dimension ŝ = 5. c). For the same
data set, goodness of fit when the assumed shared subspace is dimension ŝ = 20.
We can capture nearly all of the variability in each of the 10 groups using an
ŝ = rK = 20 dimensional shared subspace.

We start by investigating the behavior of our model when we underestimate the true
dimension of the shared subspace. In this simulation, we generate K = 10 groups of mean-
zero normally distributed data with p = 200, r = 2, s = p and σ2

k = 1. We fix the eigenvalues
of Ψk to (λ1, λ2) = (250, 25). Although the signal variance from each group individually
is preserved on a two dimensional subspace, these subspaces are not similar across groups
since the eigenvectors from each group are generated uniformly from the Stiefel manifold,
Uk ∈ Vp,r.

We use these data to evaluate how well the shared subspace estimator performs when we
fit the data using a shared subspace model of dimension ŝ < s. In Figure 3(a) we plot Stein’s
risk as a function of ŝ, estimating the risk empirically using ten independent simulations per
value of ŝ. The dashed blue line corresponds to Stein’s risk for covariance matrices estimated
independently. Independent covariance estimation is equivalent to shared subspace inference
with ŝ = p because this implies V V T = Ip. Although the risk is large for small values of
ŝ, as the shared subspace dimension increases to the dimension of the feature space, that
is ŝ → p, the risk for the shared subspace estimator quickly decreases. Importantly, it is
always true that rank([U1, ..., UK ]) ≤ rK so it can equivalently be assumed that the data
were generated from a shared subspace model with dimension s = rK < p. As such, even
when there is little similarity between the eigenvectors from each group, the shared subspace
estimator with ŝ = rK will perform well, provided that we can identify a subspace, V̂ V̂ T
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that is close to span([U1, ..., UK ]). When V̂ V̂ T = span([U1, ..., UK ]) exactly, shared subspace
estimation outperforms independent covariance estimation (3(a), dashed red line).

From this simulation, it is clear that correctly specifying the dimension of the shared
subspace is important for efficient covariance estimation. When the dimension of the shared
subspace is too small, we accrue higher risk. The goodness of fit statistic, γ(Yk : V̂ , σ̂k

2), can
be used to identify when a larger shared subspace is warranted. When ŝ is too small, γ(Yk :
V̂ , σ̂k

2) will be substantially smaller than one for at least some of the groups, regardless
of V̂ (e.g. Figure 3(b)). When ŝ is large enough, we are able to use maximum marginal
likelihood to identify a shared subspace which preserves most of the variation in the data for
all groups (Figure 3(c)). Thus, for any estimated subspace, the goodness of fit statistic can
be used to identify the groups that can be fairly compared on this subspace and whether
we would benefit from fitting a model with a larger value of ŝ.

Finally, in the appendix, we include a some additional misspecification results. In par-
ticular, we consider two cases in a 10 group analysis: one case in which 7 groups share
a common subspace but the other three do not, and a second case in which five groups
share one common two dimensional subspace, and the other five groups share a different
two dimensional subspace (see Figures 8 and 9). Briefly, these results indicate that when
only some of the groups share a common subspace, we can still usually identify both the
existence of the subspace(s) shared by those groups. We can also identify which groups
do not share the space, using the goodness of fit metric. When there are multiple relevant
shared subspaces, we can often identify those distinct modes using a different subspace
initialization for the EM algorithm.

Model Comparison and Rank Estimation: Clearly, correct specification for the rank
of the shared subspace is important for efficient inference. So far in this section, we have
assumed that the group rank, r, and shared subspace dimension, s, are fixed and known. In
practice this is not the case. Prior to fitting a model we should estimate these quantities.
Standard model selection methods can be applied to select the both s and r. Common
approaches include cross validation and information criteria like AIC and BIC. However,
these approaches are computationally intensive since they require fitting the model for each
value of s and r. Here, we estimate the model dimensions by applying an asymptotically
optimal (in mean squared error) singular value threshold for low rank matrix recovery with
noisy data (Gavish and Donoho, 2014). This rank estimator is a function of the median
singular value of the data matrix and the ratio αk = p/nk. Note that under the shared
subspace model, the scaled and pooled data described in section 3.1 can be expressed as
Ypooled = X+Z where V are the left singular values of X and Z is a noise matrix with zero
mean and variance one. This is the setting in which Gavish and Donoho (2014) develop a
rank estimation algorithm, and so it can be appropriately applied to Ypooled to estimate s.

Using this rank estimation approach, we conduct a simulation which demonstrates the
relative performance of shared subspace group covariance estimation under different data
generating models. We consider three different shared subspace data models: 1) a low
dimensional shared subspace model with s = r; 2) a model in which the spiked covariance
matrices from all groups are identical, e.g. Σk = Σ = UΛUT + σ2I; and 3) a full rank
shared subspace model with s = p.
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Table 1: Stein’s risk (and 95% loss intervals) for different inferential models and data gen-
erating models with varying degrees of between-group covariance similarity. For
each of K = 10 groups, we simulate data from three different types of shared
subspace models. For each of these models, p = 200, r = 2, σ2

k = 1 and nk = 50.
We also fit the data using three different shared subspace models: a model in
which s, r and V V T are all estimated from the data (“adaptive”), a spiked co-
variance model in which the covariance matrices from each group are assumed to
be identical (Σ̂k = Σ̂) and a model in which we assume the data do not share a
lower dimensional subspace across groups (i.e. ŝ = p). The estimators which most
closely match the data generating model have the lowest risk (diagonal) but the
adaptive estimator performs well relative to the alternative misspecified model.

Inferential Model

Adaptive Σ̂k = Σ̂ ŝ = p

D
a
ta

M
o
d

e
l

s = r = 2 0.8 (0.7, 0.9) 2.1 (1.7, 2.6) 3.0 (2.9, 3.2)
s = r = 2, Σk = Σ 0.8 (0.7, 0.9) 0.7 (0.6, 0.8) 3.0 (2.9, 3.2)
s = p = 200 7.1 (6.2, 8.0) 138.2 (119, 153) 3.0 (2.9, 3.2)

We estimate group-level covariance matrices from simulated data using three different
variants of the shared subspace model. For each of these fits we estimate r. First, we
estimate a single spiked covariance matrix from the pooled data and let Σ̂k = Σ̂. Second,
we fit the full rank shared subspace model. This corresponds to a procedure in which
we estimate each spiked covariance matrix independently, since s = p implies V V T = Ip.
Finally, we use an “adaptive” shared subspace estimator, in which we estimate both s, r
and V V T .

Since full rank estimators do not scale well, we compare the performance of various
estimators on a simulated data set with only p = 200 features. We also assume for r = 2
spikes, σ2

k = 1, and nk = 50. We fix the non-zero eigenvalues of Ψk to (λ1, λ2) = (250, 25).
We simulate 100 independent data sets for each data generating mechanisms. In Table 1
we report the average Stein’s risk and corresponding 95% loss intervals for the estimates
derived from each of these inferential models.

As expected, the estimates with the lowest risk are derived from the inferential model
that most closely match the data generating specifications. However, the adaptive estimator
has small risk under model misspecification relative to the alternatives. For example, when
Σk = Σ, the adaptive shared subspace estimator has almost four times smaller risk than
the full rank estimator, in which each covariance matrix is estimated independently. When
the data come from a model in which s = p, that is, the eigenvectors of Ψk are generated
uniformly from Vp,r, the adaptive estimator is over an order of magnitude better than
the estimator which assumes no differences between groups. These results suggest that
empirical Bayes inference for V V T combined with the rank estimation procedure suggested
by Gavish and Donoho (2014) can be widely applied to group covariance estimation because
the estimator adapts to the amount of similarity across groups. Thus, shared subspace
estimation can be an appropriate and computationally efficient choice when the similarity
between groups is not known a priori.
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Finally, in addition to potential statistical efficiency gains, the empirical Bayes shared
subspace estimator has significant computational advantages. In particular, the total run
time for empirical Bayes inference of the shared subspace is significantly smaller than full
Bayesian inference for a p× r dimensional subspace (e.g. Bayesian probabilistic PCA with
s = p), in particular for larger values of p. Given the difficulty of Bayesian inference on
the Stiefel manifold, for large p, probabilistic principal component analysis quickly becomes
infeasible. Empirical Bayes inference enables efficient optimization for V̂ and Bayesian
inference on the lower dimensional shared subspace (See Figure 10, Appendix B, for typical
run times).

5. Reduction of Asymptotic Bias Via Pooling

Recently, there has been an interest in the asymptotic behavior of PCA-based covariance
estimators in the setting in which p, n→∞ with p/n = α fixed. Specifically, in the spiked
covariance model it is known that when p and n are both large, the leading eigenvalues of
the sample covariance matrix are positively biased and the empirical eigenvectors form a
non-zero angle with the true eigenvectors (Baik and Silverstein, 2006; Paul, 2007). Although
this fact also implies that the shared subspace estimators are biased, a major advantage of
shared subspace inference over independent estimation of multiple covariance matrices is
that we reduce the asymptotic bias, relative to independently estimated covariance matrices,
by pooling information across groups. The bias reduction appears to be especially large
when there is significant heterogeneity in the first s eigenvectors of the projected covariance
matrices.

Throughout this section we assume K groups of data each with nk = n observations per
group and s a fixed constant. First, note that if V̂ V̂ T corresponds to the true shared sub-
space, then estimates ψ̂k derived using the methods presented in Section 3.2 will consistently
estimate ψk as n → ∞ regardless of whether p increases as well because YkV has a fixed
number of columns. For this reason, we focus explicitly on the accuracy of V̂ V̂ T (derived
using the maximum marginal likelihood algorithm presented in Section 3.1) as a function of
the number of groups K when both p and n are of the same order of magnitude and much
larger than s. As an accuracy metric, we again study the behavior of tr(V̂ V̂ TV V T )/s which
is bounded by zero and one and achieves a maximum of one if and only if V̂ V̂ T corresponds
to the true shared subspace.

Conjecture 2 Assume that the first s eigenvalues from each of K groups are identical with
λi > σ2(1 +

√
α). Then, for p/n→ α and p, n→∞, tr(V̂ V̂ TV V T )/s

a.s.→ ξ with

1 > ξ ≥ 1

s

s∑
i=1

(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
. (17)

We prove that the lower bound in 17 is in fact achieved when Yk are identically dis-
tributed and show in simulation that the subspace accuracy exceeds this bound when there
is variation in the eigenvectors across groups. In the case of i.i.d. groups, let the covariance
matrix Σk = Σ have the shared-subspace form given in Equation 2 and without loss of
generality let ψk = ψ be a diagonal matrix (e.g assume the columns of V align with the
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eigenvectors of Σ). In this case, the complete data likelihood of V (Equation 5) can be
rewritten as

`(V ) =
1

2

∑
k

tr

(
(

1

σ2
I −M−1)V TSkV

)

=
1

2
tr

(
DV T (

∑
k

Sk)V

)
.

where
∑K

k=1 Sk ∼Wish(Σ,Kn). Since ψ is diagonal and σ2 = 1, M = σ2(ψ+ I) is diagonal
and thus D = ( 1

σ2 I−M−1) is also diagonal with entries 0 < di < 1 of decreasing magnitude.
Then, the solution to

V̂ (k) = argmax
Ṽ ∈Vp,s

tr

(
DṼ T

∑
k

(Sk)Ṽ

)
.

has V̂ (k) equal to the first s eigenvectors of
∑

k Sk. This is maximized when the columns of
V match the first empirical eigenvectors of

∑
k Sk and has a maximum of

∑r
i=1 di`i where

`i is the ith eigenvalue of
∑

k Sk. Using a result from Paul (2007), it can be shown that as
long as λi > σ2(1 +

√
α) where λi is the ith eigenvalue of Σk, the asymptotic inner product

between the ith sample eigenvector and the ith population eigenvector approaches a limit
that is almost surely less than one

|〈V̂i, Vi〉|
a.s.→

√(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
As such, we can express asymptotic shared subspace accuracy for the identical groups model
as

tr(V̂ V̂
T
V V T )/s =

1

s

s∑
i=1

|〈V̂i, Vi〉|2

a.s.→ 1

s

s∑
i=1

(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
. (18)

Here, the accuracy of the estimate depends on α, K and the magnitude of the eigenval-
ues, with the bias naturally decreasing as the number of groups increases. Most importantly,
Equation 18 provides a useful benchmark for understanding the bias of shared subspace es-
timates in the general setting in which ψk varies across groups. Our conjecture that the
subspace accuracy is larger than the lower bound when the eigenvectors between groups are
variable is consistent with our simulation results.

In Figure 4 we depict the subspace accuracy metric tr(V̂ V̂ TV V T )/s and benchmark
1
s

∑s
i=1

(
1− α

K(λi−1)2

)
/
(

1 + α
K(λi−1)

)
for simulated multi-group data generated under the

shared subspace model with s = 2, n = 50, p = 200 and three different sets of eigenvalues.
For each covariance matrix, the eigenvectors of ψk were sampled uniformly from Stiefel man-
ifold V2,2. When ψk is isotropic (green) the subspace similarity metric closely matches the
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Figure 4: Subspace accuracy tr(V̂ V̂ TV V T )/s (solid) and the asymptotics-based benchmark
(dashed) as a function of K. When λ1 = λ2 (green), the assumptions used
to derive the benchmark (identically distributed groups) are met and thus the
subspace accuracy matches the benchmark. However, when the ratio λ1/λ2 is
large, the subspace accuracy metric can far exceed this benchmark if there is
significant variation in the eigenvectors of ψk across groups. Small increases in
accuracy over the benchmark are seen for moderately anisotropic data (red) and
large increases for highly anisotropic data (blue).

benchmark since the assumptions used to derive this asymptotic result are met. However,
when the eigenvectors of ψk vary significantly across groups and λ1 � λ2, the subspace
accuracy can far exceed this benchmark (blue). Intuitively, when the first eigenvectors of
two different groups are nearly orthogonal, each group provides a lot of information about
orthogonal directions on V V T and so the gains in accuracy exceed those that you would
get by estimating the subspace from a single group with K times the sample size. In gen-
eral the accuracy of shared subspace estimates depends on the variation in the eigenvectors
of ψk across groups as well as the magnitude of the eigenvalues and matrix dimensions p
and nk. Although the shared subspace estimator improves on the accuracy of individually
estimated covariance matrices, estimates can still be biased when α is very large or the
eigenvalues of Σk are very small for all k. In practice, one should estimate the approximate
magnitude of the bias using the inferred eigenvalues of Σk. When these inferred eigenvalues
are significantly larger than σ̂2

k(1 +
√
α/K) the bias will likely be small.

6. Analysis of Gene Expression Data

We demonstrate the utility of the shared subspace covariance estimator for exploring differ-
ences in the covariability of gene expression levels in young adults with different subtypes
of pediatric acute lymphoblastic leukemia (ALL) (Yeoh et al., 2002). Quantifying biological
variation across different subtypes of leukemia is important for assigning patients to risk
groups, proposing appropriate treatments, and developing a deeper understanding of the
mechanisms underlying these different types of cancer. The majority of studies have focused
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on mean level differences between expression levels. In particular, mean-level differences can
be useful for identifying leukemia subtypes. However, differences in the covariance struc-
ture across groups can be induced by interactions between important unobserved variables.
Covariance analysis is particularly important when the effects of unobserved variables, like
disease severity, disease progression or unmeasured genetic confounders, dominate mean
level differences across groups. In this analysis, we explicitly remove the mean from the
data and look for differences in the covariance structure of the gene expression levels.

The data we analyze were generated from 327 bone marrow samples analyzed on an
Affymetrix oligonucleotide microarray with over 12,000 probe sets. Preliminary analysis
using mean differences identified clusters corresponding to distinct leukemia subtypes: BCR-
ABL, E2A-PBX1, hyperdiploid, MLL, T-ALL, TEL-AML1. 79 patients were assigned to a
seventh group for unidentified subtypes (“Others”). We use these labels to stratify the obser-
vations into seven groups with corresponding sample sizes of n = (15, 27, 64, 20, 43, 79, 79).

Although there are over 12,000 probes on the microarray, the vast majority of gene
expression levels are missing. Thus, we restrict our attention to the genes for which less
than half of the values are missing and use Amelia, a software package for missing value
imputation, to fill in the remaining missing values (Honaker et al., 2011). Amelia assumes
the data is missing at random and that each group is normally distributed with a common
covariance matrix. Since imputation is done under the assumption of covariance homogene-
ity, any inferred differences between groups are unlikely to be an artifact of the imputation
process. We leave it to future work to incorporate missing data imputation into the shared
subspace inference algorithm. After removing genes with very high percentages of missing
values, p = 3124 genes remain. Prior to analysis, we de-mean both the rows and columns
of the gene expression levels in each group.

We apply the rank selection criteria discussed in Section 4.1 and proposed by Gavish
and Donoho (2014) to the pooled expression data (i.e. data from all groups combined)
to decide on an appropriate value for the shared subspace. This procedure yields s = 45
dimensions1. We run Algorithm 1 to estimate the shared subspace, and then use Bayesian
inference (Algorithm 2) to identify differences between groups on the inferred subspace.
Together, the run time for the full empirical Bayes procedure (both algorithms) took less
than 10 minutes on a 2017 Macbook Pro.

Using the goodness of fit metric, we find that a 45-dimensional shared subspace di-
mension that explains over 90% of the estimated variation in the top s eigenvectors of
Σk, suggesting that the rank selection procedure worked reasonably well (Figure 11(a),
Appendix B). To further validate the utility of shared subspace modeling, we look at
how informative the projected data covariance matrices are for predicting group mem-
bership. For an observation Yi, we compute the probability, assuming uniform prior dis-
tribution over group membership, that Yi came from group k as P (Yi from group k) =
|Ψk|−1/2etr(−1/2(YiV̂ )T Ψ−1

k YiV̂ )∑
j(|Ψj |−1/2etr(−1/2(YiV̂ )T Ψ−1

j YiV̂ ))
. We correctly identified the leukemia type in all samples,

which provides further confirmation that this subspace provides enough predictive power
to easily distinguish groups.

In addition, we quantified differences amongst the projected data covariances using the
Frobenius norm, ||Ψk−Ψj ||F for all pairs of the seven groups. We use these distances to com-

1. Note that for some groups, nk < 45, in which case we infer the rank r = min(nk, s) s× s matrix Ψk.
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pute a hierarchical clustering dendrogram of the groups (Figure 11(b), Appendix B). The
hierarchical clustering reveals that BCR-ABL, E2A-PBX1, TEL-AML1 and hyperdiploid,
which correspond to B lineage leukemias, cluster together. T-ALL, the T lineage leukemia,
and MLL, the mixed lineage leukemia, appear the most different (Dang, 2012). To further
verify that the inferred subspace relates to relevant biological processes, we conducted gene
set enrichment analysis using the observed magnitudes of the loadings for the genes on the
45 basis vectors (Subramanian et al., 2005) and using gene sets defined by the Gene On-
tology Consortium (Consortium et al., 2004). Gene set analysis on the magnitudes of gene
loadings identified dozens of pathways (FDR < 0.01, (Storey et al., 2003)). Nearly every
identified pathway relates to the immune response or cell growth (Figure 12, Appendix B),
for example B and T cell proliferation (GO:0042100, GO:0042102), immunoglobin receptor
binding (GO:0034987) and cellular response to cytokine stimulus (GO:0071345) to name
only a few. Together, all of these results suggest that in this application there is indeed
significant differences in the covariability between genes for each the of groups, with bio-
logically plausible underpinnings. Consequently, there is value in exploring what underlies
those differences.

We next demonstrate how we can explore significant a posteriori differences between
the groups which might lead to scientifically meaningful insights. In order to visualize
differences in the posterior distributions of the 45×45 dimensional matrices Ψk, we examine
the distribution of eigenvalues and eigenvectors between the groups on a variety of two-
dimensional subspaces of the shared space. We propose two different methods for identifying
potentially interesting sub-subspaces to visualize. First, we summarize variation on a two
dimensional subspace whose axes are approximately aligned to the first two eigenvectors of
Σ̂k, for a specific group k. This subspace corresponds to the subspace of maximal variability
within group k. For example, in Figure 5(a) we plot posterior summaries about the principal
eigenvector and eigenvalues for each group on a two dimensional space spanned by the first
two eigenvectors of the inferred covariance matrix for the hyperdiploid group. The x-
axis corresponds to the orientation of the first eigenvector and the y-axis corresponds the
magnitude of the first eigenvalue. In this subspace, we can see that the first eigenvector
for most groups appear to have similar orientations, but that the hyperdiploid group has
significantly larger variance along the first principal component direction than all other
groups (with the exception of perhaps T-ALL, for which the posterior samples overlap).
The first eigenvector for the BCR-ABL subgroup appears to be the least variable on this
subspace.

As an alternative approach to summarizing the posterior distribution, we examine the
posterior eigen-summaries on a two dimensional subspace which is chosen to maximize the
difference between any two chosen groups. To achieve this, we look at spaces in which the
axes correspond to the first two eigenvectors of Σ̂k − Σ̂j for any k 6= j. As an example,
in Figure 5(b) we plot posterior summaries corresponding to the subspace for which the
difference between the T-ALL and MLL subgroups is large. On this subspace, the groups
cluster into four distinct subgroups which appear significantly different a posteriori : the
T-ALL subtype, the MLL subtype, the BCR subtype and the all other groups. Roughly,
along the first dimension, there is large variability in the T-ALL group that is not matched
in other groups, whereas the second dimension there is large variability in the MLL group
that is not matched in the other groups.
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(b) T-ALL vs MLL subspace

Figure 5: Posterior samples for the first eigenvalue and orientation of the first eigenvector
on the a dimensional subspace. a) The two dimensional subspace was chosen to
approximately span the first two eigenvectors for the hyperdiploid group. The
orientation of first eigenvector is similar for all groups, but the variance signifi-
cantly larger for the hyperdiploid subgroup. b) The two dimensional subspace was
chosen to maximize the difference between the T-ALL and MLL groups. Along
the first dimension of this subspace, there is large variability in the T-ALL group
that is not matched in other groups, whereas the second dimension there is large
variability in the MLL group that is not matched in the other groups.

Scientific insights underlying the significant differences that were identified in Figure 5
can be understood in the biplots in Figures 6 and 7. In each figure, we plot the contours
of the two dimensional covariance matrices for a few leukemia subtypes. The 20 genes with
the largest loadings for one of the component directions are indicated with letters and the
remaining loadings plotted with light grey dots. The gene names for the genes with the
largest loadings are listed in the corresponding table. In both biplots, the identified genes
have known connections to cancer, leukemia, and the immune system.

For example, for the subspace of maximal variability in the hyperdiploid group, gene
set analysis identified two gene sets with large magnitude loadings on the first principal
component: a small group of proteins corresponding to the MHC class II protein complex
(GO:0006955) as well as a larger group of genes corresponding to genes generally involved
in immune response (GO:0006955). MHC class II proteins are known to play an essential
role in the adaptive immune system (Reith et al., 2005) and are correlated with leukemia
patient outcomes (Rimsza et al., 2004). Our analysis indicates these proteins have especially
variable levels in the hyperdiploid subtype relative to the other leukemia subtypes.

For the subspace chosen to maximize the difference between T-ALL and MLL groups,
gene set analysis associated with large loadings in the second dimension (associated with
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Figure 6: Left) Variant of a biplot for the hyperdiploid subspace. We include contours for
three leukemia subtypes and the loadings for each gene on the first two columns
of V̂ . We plot contours for three leukemia subtypes and the loadings for genes
with the most postive (A-J) and most negative (K-T) values on the first principal
axis. The loadings for all of the genes are displayed in light gray. There is
significant correlated variability amongst genes A-T in the TEL and hyperdiploid
subgroups, and a factor of two less variability amongst these genes in the E2A
subgroup. Right) List of the gene’s with the largest loadings along the first axis.

high variance in the MLL subgroup) included “regulation of myeloid cell differentiation”
(GO:0045637), “positive regulation of B cell receptor signaling pathway” (GO:0098609) and
“immunoglobulin V(D)J recombination” (GO:0033152). Most of the individual genes with
large loadings are known in the leukemia literature including WASF1 (“F”) which plays
an important role in apoptosis (Kang et al., 2010), LEF1 (“D”) which is linked to the
pathogenesis of leukemia (Gutierrez et al., 2010) and LMO2 (“M”) which was shown to
initiate leukemia in mice (McCormack et al., 2010), to name only a few. In contrast to
the MLL group, these genes in the T-ALL and TEL-AML1 subgroups have relatively little
variability.

These insights would be overlooked in more conventional mean-based analyses, partic-
ularly when mean-level differences are small relative to the residual variance. Further, we
have shown how the shared subspace reveals sets of interpretable genes that are most im-
portant for describing difference between leukemia subtypes; these discoveries would less
evident with alternative covariance estimation methods which do not explicitly include the
assumption about differences manifesting on a common low dimensional subspace. All told,
these results highlight the value of shared subspace covariance matrix inference for both
predicting leukemia subtypes as well as for exploring scientifically meaningful differences
between the groups.
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Figure 7: Left) Variant of a biplot for the MLL vs TEL-AML1 subspace. We plot contours
for three leukemia subtypes and the loadings for genes with the most positive (A-
J) and most negative (K-T) values on the second axis. The loadings for all of the
genes are displayed in light gray. There is significant correlated variability among
genes with large loadings (e.g. letters A through T) in the MLL subgroup, and a
significantly less variability in the TEL-AML1 and T-ALL groups. Although the
TEL and T-ALL groups have similar variance in the “V2” direction, T-ALL has
significantly more variance in the “V1” direction. Right) List of the gene’s with
the largest loadings along the V2 axis.

7. Discussion

In this paper, we proposed a class of models for estimating and comparing differences in
covariance matrices across multiple groups on a common low dimensional subspace. We
described an empirical Bayes algorithm for estimating this common subspace and a Gibbs
sampler for inferring the projected covariance matrices and their associated uncertainty.
Estimates of both the shared subspace and the projected covariance matrices can both be
useful summaries of the data. For example, with the leukemia data, the shared subspace
highlights the full set of genes that are correlated across groups. Differences between group
covariance matrices can be understood in terms of differences in these sets of correlated
molecules. In this analysis, we demonstrated how we can use these notions to visualize
and contrast the posterior distributions of covariance matrices projected onto a particular
subspace and interpret these differences biologically.

In simulation, we showed that the shared subspace model can still be a reasonable choice
for modeling multi-group covariance matrices even when the groups may be largely dissim-
ilar. When there is little similarity between groups, the shared subspace model can still
be appropriate as long as the dimension of the shared subspace is large enough. However,
selecting the rank of the shared subspace remains a practical challenge. Although we pro-
pose a useful heuristic for choosing the dimension of the shared subspace based on the rank
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selection estimators of Gavish and Donoho (2014), a more principled approach is warranted.
Improved rank estimators would further improve the performance of the adaptive shared
subspace estimator discussed in Section 4.

It is also a challenging problem to estimate the “best” subspace once the rank of the
space is specified. We used maximum marginal likelihood to estimate V V T and then used
MCMC to infer Ψk. By focusing on group differences for Ψk on a fixed subspace, it is much
simpler to interpret similarities and differences. Nevertheless, full uncertainty quantification
for V V T can be desirable. We found MCMC inference for V V T to be challenging for the
problems considered in this paper and leave it for future work to develop an efficient fully
Bayesian approach for estimating the joint posterior of V V T and Ψk. Recently developed
Markov chain Monte Carlo algorithms, like Riemannian manifold Hamilton Monte Carlo,
which can exploit the geometry of the Grassmannian manifold, may be useful here (Byrne
and Girolami, 2013; Girolami and Calderhead, 2011). It may also be possible, though
computationally intensive, to jointly estimate s and V V T using for instance, a reversible-
jump MCMC algorithm.

Fundamentally, our approach is quite general and can be integrated with existing ap-
proaches for multi-group covariance estimation. In particular, we can incorporate additional
shrinkage on the projected covariance matrices Ψk. As in Hoff (2009a) we can employ non-
uniform Bingham prior distributions for the eigenvectors of Ψk or we can model Ψk as a
function of continuous covariates as in Yin et al. (2010) and Hoff and Niu (2012). Alter-
natively, we can summarize the estimated covariance matrices by thresholding entries of
the precision matrix, Ψ−1

k to visualize differences between groups using a graphical model
(Meinshausen and Bühlmann, 2006). We can also incorporate sparsity to the estimated
eigenvectors of the shared subspace to add in interpretation (Ročková and George, 2016,
e.g). Finally, we can consider variants in which some eigenvectors are assumed to be iden-
tical across groups, whereas others are allowed to vary on the shared subspace. This can
further improve estimation efficiency, particularly when the common eigenvectors are as-
sociated with the largest eigenvalues and differences appear in lower variance components
(Cook and Forzani, 2008). Such an approach would further aid in identifying the rele-
vant sub-subspace of variability that describes prominent differences between groups . The
specifics of the problem at hand should dictate which extensions are appropriate, but the
shared subspace assumption can be useful in a wide range of analyses, especially when the
number of features is very large. A repository for the replication code is available on GitHub
(Franks, 2016).
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Appendix A. Additional Misspecification Results

Following the simulation set up of 4.1 we generate data from 10 groups with (λ1, λ2) =
(250, 25), p = 200 and σ2

k = 1. In this section, we consider two model misspecification
simulations. First, we consider data in which the first two eigenvectors for the first five
groups share a two-dimensional subspace, and the eigenvectors for the last five groups share
a different two-dimensional subspace. We then fit all ten groups assuming a two-dimensional
shared subspace model. In Figure 8 we plot the goodness of fit metric for all ten groups for
subspaces identified in different local modes of the likelihood. Specifically, we empirically
identified three local modes: one mode identifies the shared subspace for the first give
groups, the other mode corresponds to the shared subspace for the second five groups, and
the third mode corresponds to subspace shares some commonalities across all 10 groups.
This last mode is the one discovered by the eigen-based initialization strategy proposed in
Section 4.1.

In the second simulation we generate the first two eigenvectors for the first seven groups
from a common two dimensional subspace. The eigenvectors from the last three groups
were generated uniformly at random from the p − 2 dimensional null space of the shared
subspace. In repeated simulations with V initialized uniformly at random on the Stiefel
manifold, the resulting we empirically discovered four modes. In Figure 9 we plot goodness
of fit metrics for the 10 groups at these modes. The first mode corresponds to the shared
subspace for the first 7 groups. The other three modes identify subspaces shared by two of
the last three groups.
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Figure 8: Goodness of fit for 10 groups using a two dimensional shared subspace model. In
truth, the eigenvectors of the first five groups share a 2 dimensional subspace and
the eigenvectors of the last five groups share a different 5 dimensional subspace.
Empirically, by initializing the shared subspace uniformly at random, we found
that there were three local modes. a) This mode corresponds to the shared sub-
space of the first five groups. b) This mode corresponds to the shared subspace
of the second five groups. c) The third mode corresponds to a “shared subspace”
across all groups. This is the mode discovered when using the eigen-based initial-
ization strategy suggested in Section 4.1. Note that in truth variation in all ten
groups could be captured using a 4 dimensional shared subspace.
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Figure 9: Goodness of fit for 10 group shared subspace model. The eigenvectors of the
first seven groups share a 2 dimensional subspace and the eigenvectors of the
last three groups were generated uniformly on the null space. Empirically, by
initializing the shared subspace uniformaly at random, we found that there were
three local modes. a) We discover the subspace shared by the first seven groups
using the eigen-based initialization (Section 4.1). We also identify that the last
three groups have small variance on this subspace, indicating that they do not
share the subspace. b-d) Additional local (non-global) modes can be identified
which in which 2 of the last three groups approximately share a two-dimensional
subspace.
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Appendix B. Run time results
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Figure 10: Run time results for subspace inference (Algorithm 1) as a function of the
subspace dimension, S, and the number of features p. s = 2, 10, 25, 50 and
p = 1000, 2000, ...10000. Points are jittered for visibility. In this simulation we
assume K = 5 groups, nk = 50 observations per group, σ2

k = 1 and the eigenval-
ues of ψk are samples from an Expo(1/4) (e.g. have mean 4). For each value of
S and P we run subspace inference 10 times and plot the resulting run times.
In each simulation we initialize the optimization routine uniformly at random
on Vp,s to get a conservative estimate for run times. Using the intelligent initial-
ization routine discussed in Section 4.1 typically increases time to convergence.
Convergence time is on the order of minutes, even for relatively large values of
s and p.

Appendix C. Addition Results From Leukemia Analysis
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Figure 11: a) Goodness of shared subspace fit for each of the seven Leukemia groups. The
inferred s = 45 dimensional subspace explains over 90% of estimated total vari-
ation in Σk in each of the seven groups. b) Complete-linkage hierarchical clus-
tering of inferred projected data leukemia covariance matrices using Frobenius
norm distance metric. The right sub-branches, which includes BCR-ABL, E2A-
PBX1, hyperdiploid and TEL-AML1, are the B lineage leukemias of the seven
types. T-All is a T lineage leukemia and MLL is a mixed lineage leukemia (Dang,
2012).
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Name Q-value Number of Genes
GO:0005751 mitochondrial respiratory chain complex IV 0.00 7
GO:0044388 small protein activating enzyme binding 0.01 7
GO:0022624 proteasome accessory complex 0.00 16
GO:0048025 negative regulation of nuclear mRNA splicing, via spliceosom 0.01 21
GO:0004298 threonine-type endopeptidase activity 0.01 19
GO:0010498 proteasomal protein catabolic process 0.01 26
GO:0006405 RNA export from nucleus 0.00 33
GO:0031124 mRNA 3’-end processing 0.00 36
GO:0030336 negative regulation of cell migration 0.01 22
GO:0038083 peptidyl-tyrosine autophosphorylation 0.01 20
GO:0043235 receptor complex 0.00 18
GO:0045766 positive regulation of angiogenesis 0.00 36
GO:0048661 positive regulation of smooth muscle cell proliferation 0.00 18
GO:0035690 cellular response to drug 0.00 27
GO:0060337 type I interferon-mediated signaling pathway 0.00 32
GO:0000786 nucleosome 0.00 27
GO:0004888 transmembrane signaling receptor activity 0.00 27
GO:0030183 B cell differentiation 0.00 30
GO:0030890 positive regulation of B cell proliferation 0.01 15
GO:0060333 interferon-gamma-mediated signaling pathway 0.00 35
GO:0030198 extracellular matrix organization 0.00 23
GO:0002053 positive regulation of mesenchymal cell proliferation 0.01 9
GO:0071345 cellular response to cytokine stimulus 0.01 19
GO:0007159 leukocyte cell-cell adhesion 0.00 16
GO:0034113 heterotypic cell-cell adhesion 0.00 10
GO:0042102 positive regulation of T cell proliferation 0.00 19
GO:0042605 peptide antigen binding 0.00 15
GO:0030658 transport vesicle membrane 0.00 13
GO:0071556 integral to lumenal side of endoplasmic reticulum membrane 0.01 17
GO:0042613 MHC class II protein complex 0.00 10
GO:0004896 cytokine receptor activity 0.00 9
GO:0005001 transmembrane receptor protein tyrosine phosphatase activity 0.01 7
GO:0030669 clathrin-coated endocytic vesicle membrane 0.00 10
GO:0042100 B cell proliferation 0.00 14
GO:0042742 defense response to bacterium 0.00 35
GO:0031668 cellular response to extracellular stimulus 0.00 13
GO:0001916 positive regulation of T cell mediated cytotoxicity 0.01 10
GO:0019731 antibacterial humoral response 0.00 19
GO:0001915 negative regulation of T cell mediated cytotoxicity 0.00 6
GO:0072562 blood microparticle 0.00 32
GO:0035456 response to interferon-beta 0.01 7
GO:0050829 defense response to Gram-negative bacterium 0.00 13
GO:0003823 antigen binding 0.00 24
GO:0071757 hexameric IgM immunoglobulin complex 0.00 6
GO:0006911 phagocytosis, engulfment 0.00 23
GO:0042834 peptidoglycan binding 0.00 7
GO:0071756 pentameric IgM immunoglobulin complex 0.00 7
GO:0006958 complement activation, classical pathway 0.00 19
GO:0006910 phagocytosis, recognition 0.00 16
GO:0042571 immunoglobulin complex, circulating 0.00 16
GO:0050871 positive regulation of B cell activation 0.00 16
GO:0003094 glomerular filtration 0.00 7
GO:0034987 immunoglobulin receptor binding 0.00 17
GO:0001895 retina homeostasis 0.00 11

Figure 12: Gene set enrichment analysis based on the magnitude of gene-loadings on the
inferred 45 dimensional shared subspace (Section 6).
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