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Abstract

The problem is that of sequential probability forecasting for finite-valued time series. The
data is generated by an unknown probability distribution over the space of all one-way
infinite sequences. Two settings are considered: the realizable and the non-realizable one.
Assume first that the probability measure generating the sequence belongs to a given set
C (realizable case), but the latter is completely arbitrary (uncountably infinite, without
any structure given). It is shown that the minimax asymptotic average loss—which may
be positive—is always attainable, and it is attained by a Bayesian predictor whose prior is
discrete and concentrated on C. Moreover, the finite-time loss of the Bayesian predictor is
also optimal up to an additive logn term (where n is the time step). This upper bound is
complemented by a lower bound that goes to infinity but may do so arbitrarily slow.

Passing to the non-realizable setting, let the probability measure generating the data
be arbitrary, and consider the given set C as a set of experts to compete with. The goal
is to minimize the regret with respect to the experts. It is shown that in this setting it is
possible that all Bayesian strategies are strictly suboptimal even asymptotically. In other
words, a sublinear regret may be attainable but the regret of every Bayesian predictor is
linear.

A very general recommendation for choosing a model can be made based on these
results: it is better to take a model large enough to make sure it includes the process that
generates the data, even if it entails positive asymptotic average loss, for otherwise any
combination of predictors in the model class may be useless.

Keywords: sequence prediction, Bayesian prediction, complete-class theorems, minimax
theorems

1. Introduction

1 Given a sequence 1, ..., T, of observations x; € X', where X is a finite set, it is required
to predict the probabilities of observing x, 1 = « for each = € &X', before x,, 1 is revealed,
after which the process continues sequentially. The problem is considered in full generality;
in particular, outcomes may exhibit arbitrary dependence. This and related problems arise
in a variety of applications, where the data may be financial, such as a sequence of stock
prices; human-generated, such as a written text or a behavioural sequence; biological (DNA
sequences); physical measurements and so on.

1. Some of the results in this paper were reported at ALT’17 and ALT’16 (Ryabko, 2017, 2016). All the
non-asymptotic results (upper and lower bounds) in this paper are new.
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The probabilities forecast by a predictor p having seen a sequence x1,...,x, may be
interpreted as conditional probabilities of x, 1 given x1,...,z,. Since the latter sequence
is arbitrary, the predictor p defines a probability measure over the space of all one-way
infinite sequences X'*° (with the usual sigma-algebra generated by cylinder sets). Similarly,
the mechanism that generates the data, that is, the observed sequence z1,...,z,,..., can
be assumed probabilistic. Thus, predictors and the data-generating mechanism are objects
of the same kind: probability measures of the space of one-way infinite sequences.

It is easy to see that without any model for the data nor for the predictor it is impossible
to do meaningful inference for this task. A model can be seen as a set C of distributions
over the space of one-way infinite sequences. There are two common approaches to use
a model. The first one is to assume that the probability measure generating the sequence
belongs to the model set C. The goal is then to have a predictor whose (time-average) error,
or loss, decreases (to zero), as fast as possible, as more and more data is revealed. The
other approach is to suppose that the data may be an arbitrary individual sequence, and
the model set C is considered a set of experts. The goal then is to have a predictor whose
regret with respect to using the best expert in the set for the given sequence is as small as
possible, and at least sublinear (average regret goes to zero as more data is revealed).

Here I would like to argue in favour of a third approach. It consists in making the model
set C large enough to include the distribution that generates the data, even if it means that
the best achievable asymptotic loss is strictly positive. In particular, whichever aspect of the
data-generation process is completely unknown can be modelled by an arbitrary sequence.

Throughout the paper, the loss is chosen to be the Kullback-Leibler divergence (expected
log-loss) mainly for the sake of convenience, but also reflecting its importance in applications.
To fix ideas, consider a simple and familiar example (perhaps first considered by Willems
1996 in a somewhat different formulation) in which the best asymptotic average loss is non-
zero: a piece-wise i.i.d. sequence. The sequence consists of segments, in each of which the
data is i.i.d., but the distribution in each of the segments is otherwise arbitrary, and the
sequence of points at which one segment ends and the next starts is completely arbitrary
as well. Thus, one can learn the distribution within each segment but cannot predict when
or to what the next change will be. If the frequency of these change points does not vanish
then the minimax asymptotic average error is positive. This example is considered in more
detail in Section 4.

Two results are presented to support the suggested approach to the general problem of
sequential prediction.

The first result shows that, no matter how big a model class C is, if the distribution
generating the data belongs to C then the optimal minimax asymptotic average performance,
even if positive, is always achievable, and it can be attained by a Bayesian combination of
countably many distributions in C. One cannot, in general, say anything about the speed
of convergence of the average loss, as it depends on C and may be arbitrarily slow for some
classes C. However, for any predictor p whatsoever, its performance can be matched by a
Bayesian predictor up to an additive O(logn) term, with only rather small constants hidden
inside the O() term.

This means that, if the data-generating mechanism belongs to the model class, then no
matter how big the latter is, the statistician knows where to start: it suffices to find the
right prior distribution, and then the inference can be made by evaluating the posterior
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with respect to the observed data. The performance guarantees would be pointwise (for
every distribution in C) rather than Bayesian (with prior probability 1 or in expectation),
and it is possible to achieve nearly the best speed of decrease of the average loss. This
adds a perspective to the classical results (Freedman, 1963, 1965; Diaconis and Freedman,
1986) that show that there are priors with which Bayesian inference is inconsistent even for
problems on i.i.d. data (although, in that latter case, for infinite alphabets).

In some more detail, consider an arbitrary set C of probability distributions over one-way
infinite sequences. Let L, (u,v) be the cumulative expected log loss (KL divergence) of v
used to predict x, up to time n. A Bayesian predictor is a predictor of the form [ adW ()
where W is a probability distribution over C (a prior), that is, W(C) = 1. The prediction is
simply by evaluating the posterior over the given sequence z1, ..., x,. If the prior is discrete
(and so the integral is a sum) then we call such a predictor discrete Bayesian. While the
general definition requires the structure of a probability space on C (or at least some subset
of C), for discrete Bayesian predictors no such structure is required. For the main result
below, discrete Bayesian predictors are sufficient, so we do not need to worry about the
measurability of C. The main result is the following.

Theorem 1 For every set C of probability measures and for every predictor p there is a
discrete Bayesian predictor v such that for every p € C we have

Ln(p,v) < Ln(p, p) 4 8logn + O(loglogn).

There are no assumptions whatsoever needed for this result to hold. As mentioned above,
the set C is not even required to be measurable, and the distributions in C may be completely
arbitrary (no restrictions on dependence, memory, etc.). The constants in O() are small
and, besides absolute constants, only include linear dependence on the alphabet size |X|.

To the author’s knowledge, the upper bound presents the first non-asymptotic result in
a setting of this generality.

A lower bound is also obtained, which takes the form of 6(n) where 6 increases to
infinity, but may do so arbitrarily slow. Thus, there exist a set C for which by choosing
to be Bayesian a statistician would suffer a more-than-constant cumulative regret. This is
made precise in Section 3.2.

It is also useful to put this result into the context of the decision theory; from this point
of view, it can be seen (albeit with some important differences) as a complete-class theorem
for asymptotic average performance: it shows that the class of Bayes strategies is always
essentially complete. Decision theory typically deals with single-shot games and general
losses (here we only consider expected average KL divergence), and Wald’s complete class
theorem and its generalizations require a number of conditions to hold. Other important
differences, besides the absence of any conditions in Theorem 1, include the fact that in our
case all strategies are inadmissible and one cannot speak about minimal complete classes.
To further understand the game-theoretic side of the main result, it is useful to consider
the minimax asymptotic average loss V¢, defined as

1
inf sup lim sup — Ly, (, p).
P peC n—oo TN

It can be shown that the theorem above implies that this value can be attained by a
Bayesian predictor with a discrete prior. Besides providing a complete-class theorem for
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(asymptotic) prediction, this result can also be seen as a partial minimax theorem: for every
set of strategies of the opponent, the statistician has a minimax strategy. For the “classical”
case of Vg = 0, that is, for the case when the average error of the best predictor vanishes, an
analogous asymptotic result was obtained by Ryabko (2010). We shall see that the general
case presents principled differences (not limited to the proofs). In particular, as mentioned
above, in the case V¢ > 0 all strategies are inadmissible and there are no minimal complete
classes, while if Vi = 0 then every Bayes rule that achieves it is admissible and constitutes
a minimal complete class. These results and implications are considered in Section 5.

The second result presented concerns regret minimization. That is, we turn the tables,
and assume that the data-generating mechanism is unrestricted, in particular it can be an
arbitrary (deterministic) sequence. The set of probability measures C is now the set of
experts, and the goal of the statistician is to find a strategy that is as good as the best one
in C, for the given data. Now that the distribution generating the data may not be in C, it
may happen that every combination of the experts has strictly positive asymptotic average
regret, even though 0 asymptotic average regret is achievable. The formal result concerns
Bayesian combinations, but it is argued in Section 6 that it applies more generally.

Theorem 2 There exists a measurable set C such that every Bayesian predictor with prior
over C has a linear regret with respect to C, while there exists a predictor p whose regret is
sublinear.

Putting the two results together, in the realizable case of the sequence prediction
problem the best asymptotic performance can always be attained by a Bayesian strategy,
while in the non-realizable case it is possible that all Bayesian strategies are strictly sub-
optimal. We can therefore make the following fundamental recommendation for choosing a
model for sequential data:

Better take a model large enough to make sure it includes the process that generates the
data, even if it makes the worst-case asymptotic error larger than zero, for otherwise any
combination of predictors in the model class may be useless.

Thus, the results presented invite a reconsideration of the familiar trade-off in model
selection: the model must be large enough to describe the data but small enough to be
learnable. In reality, the first part is often eschewed in favour of the second: the model
does not include the data-generating mechanism, but allows for learning. In the context
of sequence prediction, learnability of the model is usually understood as allowing for the
average error or regret of the predictor to go to zero. In light of the presented results,
it can be suggested to change the preference to the other side of the trade-off, namely,
make the model large enough to include the data, since having a linearly increasing loss
does not preclude one from finding the best predictor. On the other hand, not having the
data-generating mechanism inside the model may mean that there is no optimal Bayesian
predictor, or, as argued below in Section 6, any combination of predictors in the model
class. Of course, this recommendation is not relevant for the specific cases where one knows
how to find an optimal predictor that does not have such a form.

1.1. Related Work

The literature on sequential prediction is vast and spread between several fields: nonpara-
metric statistics, machine learning, information theory and econometrics. While an ex-
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haustive survey is beyond the scope of this work, some related results and some important
differences in the settings are worth mentioning. Most of the literature deals with specific
families of processes C, and almost exclusively with the case Vi = 0. For the latter case, an
asymptotic analogue of Theorem 1 was established by Ryabko (2010). An important ex-
ception from the Vz = 0 case is the problem of prediction of processes with abrupt changes
mentioned above, even though the formulation considered previously does not introduce the
value V¢, since the loss of the predictor is measured with respect to the best predictor that
knows the actual changes (expert-advise formulation); see, e.g., (Gyorgy et al., 2012) and
references. Perhaps the most general specific classes of processes considered in the literature
are those of stationary ergodic distributions (Ryabko, 1988; Morvai et al., 1997; Gyorfi and
Ottucsak, 2007).

The problem of regret minimization in prediction is usually considered in a slightly
different setting, called prediction with expert advice; an overview is provided by Cesa-
Bianchi and Lugosi (2006). One of the key differences is that the loss is measured with
respect to actual outcomes rather than probabilities, making the setting non-probabilistic
even though the predictions are usually randomized. An attempt to put the two settings
under the same formulation and thus making the results directly comparable has been taken
by Ryabko (2011), which also poses the question that Theorem 2 answers.

The econometrics literature on the subject concerns the Vo = 0 case (with a different
loss) and studies sufficient conditions on the existence of consistent predictors (loss goes to
0 asymptotically), mostly in the Bayesian setting, which means that the results are with
prior probability 1 and not pointwise; see (Kalai and Lehrer, 1994; Noguchi, 2015) and
references.

Related decision-theoretic results concern the setting of the problem for “predicting”
just one (the first) symbol of the sequence. For KL divergence (expected log loss) these
results include (Ryabko, 1979; Gallager, 1976-1979; Haussler, 1997).

1.2. Organization

The rest of the paper is organized as follows. The next section introduces notation and
definitions. Section 3 presents the main asymptotic and finite-time results on the existence
of Bayesian prediction for minimizing loss, with Section 3.2 providing the lower bound.
Section 4 provides examples of classes for which V¢ > 0, illustrating the main findings.
Decision-theoretic interpretations of the asymptotic result are given in section 5. Section 6
presents the impossibility result for regret minimization, and Section 7 concludes.

2. Notation and Definitions
Let X be a finite set (the alphabet), and let
M :=log|X|. (1)

The notation x1_,, is used for z1,...,x,. N is the set of naturals without 0; for a finite set
A denote |A] its cardinality, and A* := UpenA*. All logarithms are base 2. We use E,
for expectation with respect to a probability measure p. We consider probability measures
on (X, F), where F is the usual Borel sigma-field generated by cylinder sets (see below).
The set of probability measures over (X', F) is denoted P(X>°, F) or P for short.
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A probability measure p is a discrete Bayesian predictor with a prior over C if p =
> keN Wk, for some measures € C, k € N, where wy, are real weights that sum to 1.
The latter weights can be seen as a prior distribution over (a subset of) C.

In Section 6 we need a more general definition of Bayesian predictors, which allows for
non-discrete priors, and thus require a structure of the probability space on P. Here we
shall define it in a standard way, following Gray (1988). Recall that the sigma-algebra F
of the space of infinite sequences (X, F) can be generated by the countable set (B;);cn of
cylinders, B; := {x € X*° : xy_j,| = b;} where the words b; take all possible values in |X'[*.
Next, consider the countable set of sets {v € P : v(B;) € u}, where u C [0, 1], obtained
by taking all B;,7 € N and all intervals u with rational endpoints. This set generates a
sigma-algebra F'. Denoting P’ the set of all probability measures over P we obtain the
measurable space (P’, F).

Associated with any probability measure W € P’ there is a probability measure py € P
defined by pw = [, adW (c) (barycentre, in the terminology of Gray (1988); see the latter
work for a detailed exposition). A measure p € P is Bayesian for a set C C P if p = py for
some W € P’ such that there exists a measurable set C C C with W(C) = 1. (The subset C
is necessary since C may not be measurable.) The reason behind the name is that W can
be seen as a prior over C, and py as a predictor whose predictions are simply by evaluating
the posterior distribution pw (:|z1,...,x,) where z1,...,x, are observations up to time n.

2.1. Loss

For two probability measures i and p introduce the expected cumulative Kullback-Leibler
divergence (KL divergence) as

n

p(ze = alzy —1) p(ze.n)

Ly(p,p) = E E § p(ry = alry.4-1)log = E p(r1.m) log ——.
n ® st p(xy = alry 4—1) o aen " P

In words, we take the u-expected (over data) average (over time) KL divergence between
u- and p-conditional (on the past data) probability distributions of the next outcome; and
this gives simply the p-expected log-ratio of the likelihoods. Here p will be interpreted as
the distribution generating the data.

The asymptotic average expected loss is then defined as

) 1

L(Vv p) := lim sSup 7Ln(l/7 10)7
n—oo N

where the upper limit is chosen so as to reflect the worst performance over time. One can

define the worst-case performance of a strategy p by

L(C, p) := sup L(u, p)
nec

and the minimax value by

.= inf L .
Ve inf (C,p) (3)

Some examples of calculating the latter value for different sets C are considered in Section 4;
the most common case in the literature is Ve = 0, which is the case, for example, if C is the
set of all i.i.d. or all stationary distributions.
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2.2. Regret

Switching the roles, assume that the set of strategies of the opponent is unrestricted; the
set of probability measures C C P(X°, F) is now the set of experts, and the goal of the
statistician is to find a strategy that is as good as the best one in C, for the given data.
Thus, we are interested in the (asymptotic) regret

14 : 1
R"(p, p) = limsup — [Ly (v, p) = Lu(v, )],
n—oo N
of using p as opposed to p on the data generated by v. The goal is to find p that minimizes
the worst-case (over data) regret with respect to the best expert from the given set C:

R(C, p) := supsup R”(u, p).
veP pel
Note than in the expert-advice literature the regret is typically defined on finite se-
quences of length n, thus allowing both the experts and the algorithms to depend on n
explicitly.
Similarly to V¢, we can now define the value

Ue := inf R(C
c:= inf (C,p),

which is the worst-case asymptotic average regret with respect to the set of experts C.
In view of the (negative) result that is obtained for regret minimization, here we are
mostly concerned with the case Uz = 0.

3. Realizable Case: Minimizing Loss, Optimality of Bayes Rules

The main result (Theorem 1) shows that for any predictor p there is a Bayesian predictor
that is as good as p, up to a O(logn) loss. It follows (Corollary 2) that the minimax
loss is always achievable and is achieved by a discrete Bayesian predictor — without any
assumptions on C.

Theorem 1 (upper bound on the best Bayesian) Let C be any set of probability mea-
sures on (X, F), and let p be another probability measure on this space, considered as a
predictor. Then there is a discrete Bayesian predictor v, that is, a predictor of the form
Y ken Wkik where py, € C and wy, € [0,1], such that for every p € C we have

Lu(p,v) = La(u. p) < 8logn + O(loglog n), (4)

where the constants in O(-) are small and are given in (26) using the notation defined in
(1), (6), (20) and (27). The dependence on the alphabet size, M, is linear (M loglogn) and
the rest of the constants are universal.

The proof is given after the corollary.

Corollary 2 (asymptotic optimality of Bayesian predictors) For any set C of prob-
ability measures on (X°°,F), there exist a discrete Bayesian predictor ¢ such that

E(CaSD) = VC'
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Proof Note that the statement does not immediately follow from (4), because p in (4) may
be such that sup,,cc L(u,p) > Ve. Thus, let v; > V¢, 7 € N be a non-increasing sequence
such that lim;_,ov; = V¢. By the definition (3) of Vg, it is possible to find a sequence
pj € P such that L(C, p;j) < ~y; for all j € N. From Theorem 1 we conclude that for each
pj, j € N there is a probability measure v; of the form ), -y wy ux, where py, € C such that
L(C,v;) < L(C, p;). It remains to define ¢ := } . w;v;, where w; are positive and sum to
1. Clearly, ¢ is a discrete Bayesian predictor. Let us show that for every j € N it satisfies

L(C,p) < L(C, py). (5)
Indeed, for every 1 € C and every j € N

T1.n
Ln(p, @) = E, logM

— logw;,
P21 St

so that L(u, ) < L(u,v;) < L(u, pj) < 1j, establishing (5). Finally, recall that v; — V¢ to
obtain the statement of the corollary. |

3.1. Proof of Theorem 1

Before giving the proof of the theorem, let us briefly expose the main ideas behind it.
Assume for a moment that, for each p € C, the limit lim, o %log ’;((%Zi exists for u-
almost all x = z1,...,2y,, - € X*°, where p is the predictor given to compare to. Then we
could define (p-almost everywhere) the function f,(x) whose value at x equals this limit.
Let us call it the “log-density” function. What we would be looking for thence is to find a
countable dense subset of the set of log-densities of all probability measures from C. The
measures p corresponding to each log-density in this countable set would then constitute
the sequence whose existence the theorem asserts. To find such a dense countable subset
we could employ a standard procedure: approximate all log-densities by step functions with
finitely many steps. The main technical argument is then to show that, for each level of the
step functions, there are not too many of these functions whose steps are concentrated on
different sets of non-negligible probability, for otherwise the requirement that p attains V¢
would be violated. Here “not too many” means exponentially many with the right exponent
(the one corresponding to the step of the step-function with which we approximate the
density), and “non-negligible probability” means a probability bounded away (in n) from 0.
In reality, what we do instead in the proof is use the step-functions approximation at each
time step n. Since there are only countably many time steps, the result is still a countable
set of measures p from C. Before going further, note that constructing a predictor for each
n does not mean constructing the best predictors up to this time step: in fact, taking a
predictor that is minimax optimal up to n, for each n, and summing these predictors up
(with weights) for all n € N may result in the worst possible predictor overall, and in
particular, a one much worse than the predictor p given. An example of this behaviour is
given in the proof of Theorem 3 (the lower bound). The objective for each n is different,
and it is to approximate the measure p up to this time step with measures from C. For each
n, we consider a covering of the set X™ with subsets, each of which is associated with a
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measure 4 from C. These latter measures are then those the prior is concentrated on (that
is, they are summed up with weights). The covering is constructed as follows. The log-ratio
function log ‘; ((E:)) , where p is the predictor whose performance we are trying to match, is
approximated with a step function for each u, and for each size of the step. The cells of the
resulting partition are then ordered with respect to their p probability. The main part of
the proof is then to show that not too many cells are needed to cover the set X" this way
up to a small probability. Quantifying the “not too many” and “small” parts results in the
final bound.

It is worth noting that the proof that Ryabko (2010) obtains for the special case Ve = 0,
does not directly generalize. In fact, tidying up the constants in that proof, one only obtains
the asymptotic loss of 2V¢ for the mixture predictor presented there. It is not a problem for
the case Vo = 0, but of course is not what we want in the general case. The reason behind
this problem is that for the construction in the proof of Ryabko (2010) one can only use
the fact that each of the measures uj in the sequence is as good as the predictor p whose
existence is assumed (the one that attains Ve = 0). In contrast, in the proof below we are
able to use the fact that each measure in the sequence is in fact much better than p on some
subsets of A".

Proof [of Theorem 1.] Define the weights wy, as follows: w; := 1/2, and, for k > 1

wy, == w/klog? k, (6)

where w is the normalizer such that ), wy = 1. Replacing p with 1/2(p+9) if necessary,
where ¢ is the i.i.d. probability measure with equal probabilities of outcomes, i.e. 6(x1 ) =
M~/ for all n € N, z1_, € X™, we shall assume, without loss of generality,

—logp(z1.n) <nM +1 for all n € N and 7, € X" (7)

The replacement is without loss of generality as it adds at most 1 to the final bound (to be
accounted for). Thus, in particular,

L,(p,p) <nM +1 for all pu. (8)

The first part of the proof is the following covering construction.
For each 1 € C, n € N define the sets

no.__ n . ,U,(:L‘L.n) l
TM = {:L'L_n e X" : p(:]}l_.n) > n} . (9)

From Markov inequality, we obtain

PXMTY) < 1/n. (10)

For each k > 1 let Uy be the partition of [—loi % M + 1] into k intervals defined as
follows. Uy, := {u} :i = 1..k}, where

_101g1n’ % i=1,
ul = L;)M, %} 1<i<k, (11)
(i=1)M 1 s
3 ,M + ﬁ} i =k.

9
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Thus, Uy is a partition of [0, M] into k equal intervals but for some padding that we added
to the leftmost and the rightmost intervals: on the left we added [— log" ,0) and on the right
(M, M +1/n].

For each € C, n,k > 1, ¢« = 1..k define the sets

1 |
i 1= {xl"" e xn Lo MTLn) “k} ' (12)

Observe that, for every p € C, k,n > 1, these sets constitute a partition of 7} into k disjoint
#(z1..n)
p(@1.n) =

the right we have % -~ log p((;“ Zg < M + 1/n from (7). In particular, from this definition, for
all z1. ET i We have

sets: indeed, on the left we have % log —% logn by definition (9) of T}/, and on

() < 2% " p(2y ). (13)

For every n,k € N and i € {1..k} consider the following construction. Define

= . .
my l}jggp( )

(since A" are finite all suprema are reached). Find any py such that p(T} ;) = mi and

let T} := T;ll ki For i > 1, let

= T, \Ti_1).
my glggﬂ( ik \Li-1)
If m; > 0, let y; be any p € C such that p(T" o ,”\Tl 1) = my, and let T} := T;_ 1UTH s

otherwise let T; := T;_1 and p; := ;1. Note that for each x1._, € Tj there is I’ < [ such
that x1 , € T/Z, i; and thus from (12) we get

Mﬂ—logn
2% p(CUl..n) < #l’(xl..n>' (14)

Finally, define

e8]
Unki = Zwl,ul. (15)
=1

(Notice that for every n, k, i there is only a finite number of positive m;, since the set X™ is
finite; thus the sum in the last definition is effectively finite.) Finally, define the predictor

UV as
anwk Zynkz+ 57 (16)

n,keN

where 7 is a regularizer defined so as to have for each y/ € C and n € N

,LL/(.’L'l,.n) n.
log ———~> < nM —logwy, +1 for all 21 _, € X™; (17)
V(xl..n)

this and the stronger statement (7) for v can be obtained analogously to the latter inequality
in the case the i.i.d. measure ¢ is in C; otherwise (since we need to define v as a combination
of probability measures from C only), r can be defined the same way as is done in (Ryabko,

10
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2010, Step 7 of the proof of Theorem 5); for the sake of completeness, this argument is given
in the end of this proof.

Next, let us show that the measure v is the predictor whose existence is claimed in the
statement.

Introduce the notation

(. p)
Ly|a(p,v) = p(z1.n) log ;
m%‘é ) p(x1.m)

with this notation, for any set A C X™ we have

Lun(p,v) = Ln|a(p,v) + Lol xma(p, v).

First we want to show that, for each u € C, for each fixed k, i, the sets T;Z i are covered
by sufficiently few sets 1, where “sufficiently few” is, in fact, exponentially many with the
right exponent. By definition, for each n, i, k the sets T}\T;_; are disjoint (for different )
and have non-increasing (with [) p-probability. Therefore, p(T;11\T;) < 1/I for all | € N.
Hence, from the definition of 7, we must also have p(T)}, \T}) < 1/l for all [ € N. From
the latter inequality and (13) we obtain

1 4
u(Ty T < 725
' l
Take [; := Hm2%”+11 to obtain

. 1
T \TL) < o (18)

Moreover, for every ¢ = 1..k, for each x , € Tj,, there is I <l; such that 1 , € T s i
and thus the following chain holds

1 1 1 1
V(-Tl.,n) > §wnwkEVn,k,i > wnwkk n ZMnJrllu'l’(331..n)
3 iIW
2.3 P P . ,ul’(xl n)
4n?k3log” nlog” k(logk +logn + 1 + an/k:)
3 .
w iM
27k "y (x
= 4(M +1)2n4k31og® nlog® k Hy(@1.n)
’U)3 M

M
k np(xln) =DBp27 %k np(xl..n)a (19)

> P
4(M + 1)2n5k31og® nlog? k

where the first inequality is from (16), the second from (15) with [ = [;, the third is by
definition of wy, the fourth uses ¢ < k for the exponential term, as well as (logn +logk) <
n — 1 for n > 3, which will be justified by the choice of %k in the following (27), the fifth
inequality uses (14), and the final equality introduces B,, defined as

w3

B, = . 20
" 4(M +1)2n5k3 log? nlog? k (20)

11
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We have
k
Lu(p,v) = (Z Luln, (1, u>> + Lol 2, (1.0). (21)
i=1

For the first term, from (19) we obtain

k k
> Lol (1,v) < Lalg, (1, p) + Mn/k — log By,
i=1 i=1

= Ln(p, p) = Lol xm\oe_ 1y, (15 p) + Mn/k —log By (22)

For the second term in (21), we recall that 77"

ki 1 = 1..k is a partition of 1)}, and decompose

XM\ U T, © (U (T \ TL) ) U (e \ ). (23)

Next, using (17) and an upper-bound for the p-probability of each of the two sets in (23),
namely, (18) and (10), as well as k > 1, we obtain

2
Ln|Xﬂ\uf:1Tli (N? V) < (nM - log Wr, + 1) (24)

ﬁ.
Returning to (22), from Jensen’s inequality one can show (see, e.g., Ryabko, 2010,
equation 11) that, for any set A C &A™,

—Ln|a(p, p) < p(A)log p(A) +1/2.

Therefore, using (8), similarly to (24) we obtain

2 1
Combining (21) with (22), (24) and (25) we derive
2
Ln(p,v) < Ln(p, p) + Mn/k —log By + 4M — —(logwy —1) +1/2; (26)
setting
k:=[n/loglogn] (27)

we obtain the statement of the theorem.
It remains to come back to (17) and define the regularizer r as a combination of measures
from C for this inequality to hold. For each n € N, denote

Ap i ={x1., € X" : 3 €C pu(x1.,) # 0},

and let, for each x1_,, € X", the probability measure p,, , be any probability measure from
C such that py,  (x1.,) > %supuec w(x1. ). Define

1
I
Tn T ‘An’ Z :uxl..n

1.n€AR

for each n € N, and let r := Y~ w7}, For every € C we have

_ 1 _
7(T1.m) > wn|An‘ 1/‘961.%(351“71) > §wn|X| "p(x1n)

for every n € N and every z1._, € A,, establishing (17). [ |
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3.2. Lower Bound

In this section we establish a lower bound on being a Bayesian, complementing the upper
bound of Theorem 1. The bound leaves a significant gap with respect to the upper bound,
but it shows that the regret of using the Bayesian predictor even with the best prior for the
given set C cannot be upper-bounded by a constant.

Theorem 3 There exists a measurable set of probability measures C and a probability mea-
sure p, such that for every Bayesian predictor v whose prior is concentrated on C, there
exists a function 0(n) which is non-decreasing and goes to infinity with n, there exist in-
finitely many time steps n; and measures p; € C such that Ly, (pi,v) — Lp, (i, p) > 0(n;)
for alli € N.

Thus, the lower bound goes to infinity with n but may do so arbitrarily slow. This leaves
a gap with respect to the O(logn) upper bound of Theorem 1. Effectively, the theorem
compares the regret of the (best) Bayesian with respect to using the best predictor for C —
but not with using the best predictor for each p € C, which is always u itself.

Note also that this formulation is good enough to be the opposite of Theorem 1, because

the formulation of the latter is strong: Theorem 1 says that for every u and for every n
(the regret is upper bounded), so, in order to counter that, it is enough to say that there
exists n and there exists p (such that the regret is lower bounded); Theorem 3 is, in fact, a
bit stronger, since it establishes that there are infinitely many such n. However, it does not
preclude that for every fixed measure p in C the loss of the Bayesian is upper-bounded by
a constant independent of n (but dependent on u), while the loss of p is linear in n. This
is actually the case in the proof.
Proof Let X := {0,1}. Let C be the set of Dirac delta measures, that is, the prob-
ability measures each of which is concentrated on a single deterministic sequence, where
the sequences are all the sequences that are 0 from some n on. In particular, introduce
Sp = {x12,. € X : x; = 0foralli > n}, S := UyenSn. Let Cp, be the set of all
probability measures p such that u(x) =1 for some x € S, and let C := U,enChy.

Observe that the set C is countable. It is, therefore, very easy to construct a (Bayesian)
predictor for this set: enumerate it in any way, say (ur)ren spans all of C, fix a sequence of
positive weights wy, that sum to 1, and let

V= Zwkﬂk- (28)

keN

Then L, (ug,v) < —logwy for all k& € N. That is, for every p € C the loss of v is upper-
bounded by a constant: it depends on p but not on the time index n. So, it is good for
every u for large n, but may be bad for some p for (relatively) small n, which is what we
shall exploit.

Observe that, since C is countable, every Bayesian v with its prior over C must have, by
definition, the form (28) for some weights wy, € [0, 1] and some measures py € C. Thus, we
fix any Bayesian v in this form.

Define p to be the Bernoulli i.i.d. measure with the parameter 1/2. Note that

13
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for every n. This is quite a useless predictor; its asymptotic average error is the worst
possible, 1. However, it is minimax optimal for every single time step n:

inf sup Ly, (11, p') = n,
P opec

where the inf is over all possible probability measures. This is why p is hard to compete
with— and, incidentally, why being minimax optimal for each n separately may be useless.

For each s € N, let W, be the weight that v spends on the measures in the sets C, with
k < s, and let M, be the set of these measures:

Wy = Z{wl : 3k < s such that p; € Ci},

and
My := {u; : Ik < s such that u; € Cy}.

By construction,

lim W, = 1. (30)
5§—00
Next, for each n € N, let Uy, := Sp4+1 \ Sn (these are all the sequences in S, ; with 1 on

the nth position). Note that p(Uy) = 0 for each p € M, while |U,| = 2". From the latter
equality, there exists x1., € X™ and u € U, C Sp+1 such that

w(xy , =1) but v(zy ,) <2771 — Wy).

This, (30) and (29) imply the statement of the theorem. [ |

4. Examples

The main object of interest here are sets C for which Ve > 0, as well as corresponding
Bayesian minimax predictors. Various examples of Bayesian predictors for sets C for which
Ve = 0 are analysed by Ryabko (2010), so we do not consider this case here.

4.1. Typical Bernoulli 1/3 Sequences

We start with an example which is somewhat artificial, but comes up as a component in
more realistic cases. Take the binary X and consider all sequences x € X*° such that the
limiting number of 1s in x equals 1/3. Denote the set of these sequences S and let the
set C consist of all Dirac measures concentrated on sequences from S. Observe that the
Bernoulli i.i.d. measure §; /3 with probability 1/3 of 1 predicts measures in C relatively well:
L(C,01/3) = h(1/3), where h stands for the binary entropy, and this is also the minimax loss
for this set, V. It might then appear surprising that this loss is achievable by a combination
of countably many measures from C, which consists only of deterministic measures. Let us
try to see what such a combination may look like. By definition, for any sequence x € S
and every € we can find n.(x) € N such that, for all n > n.(x), the average number of 1s
in @1, is within € of 1/3. Fix the sequence of indices n; := 2/, 5 € N and the sequence

of thresholds ¢; := 27!, For each j let S’ é C S be the set of all sequences x € S such that
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ne,(x) < nj. Select then a finite subset Sjl- of S’é such that for each x’ € S'é there is x € S
such that x'l._nj = Z1.n,. This is possible, since the set A" is finite. Now for each x € Sé
take the corresponding measure px € C and attach to it the weight wle/|S§-], where, as
before, we are using the weights wy, = w/klog® k. Taking these measures for all j,l € N,
we obtain our convex combination. Of course, we did not enumerate all sequences in S (or
measures in C) this way; but for each sequence x € S and for each n there is a sequence
among those that we did enumerate that coincides with x up to the index n. One can then
use the theory of types (Csiszar, 1998) to calculate the sizes of the sets S’é and to check that
the weights we found give the optimal loss we are after; but for the illustrative purposes of
this example this is already not necessary.

4.2. Processes with Abrupt Changes

Start with a family of distributions S, for which we have a good predictor: for example,
take S to be the set B of all Bernoulli i.i.d. processes, or, more generally, a set for which
Vs = 0. The family C, parametrized by « € (0,1) and S is then the family of all processes
constructed as follows: there is a sequence of indexes n; such that X, n,,, is distributed
according to u; for some p; € S. Take then all possible sequences p; and all sequences n;
whose limiting frequency limsup;_,, +{i : n; < n} is bounded by «, to obtain our set Cgq.
Thus, we have a family of processes with abrupt changes in distribution, where between
changes the distribution is from S, the changes are assumed to have the frequency bounded
by a but are otherwise arbitrary. This example was considered by Willems (1996) for the
case S = B, with the goal of minimizing the regret with respect to the predictor that
knows where the changes occur (the value Vi was not considered directly). The method
proposed in the latter work, in fact, is not limited to the case S = B, but is general. The
algorithm is based on a prior over all possible sequences n; of changes; between the changes
the optimal predictor for B is used, which is also a Bayesian predictor with a specific
prior. The regret obtained is of order logn. Since for Bernoulli processes themselves the
best achievable average loss up to time n is %(%logn + 1), for the sequence 1..n; it is
n% le(% log(n; —n;—1)+1), where ng := 1. By Jensen’s inequality, this sum is maximized
when all the segments n; — n;—; are of the same length, 1/a, so the total average loss is
upper-bounded by «a(1 — %log ). This value is also attainable, and thus gives V¢, .. A
similar result can be obtained if we replace Bernoulli processes with Markov processes, but
not with an arbitrary S for which Vg = 0. For example, if we take S to be all finite-memory
distributions, then the resulting process may be completely unpredictable (Ve = 1): indeed,
if the memory of distributions u; grows (with i) faster than an, then there is little one
can do. For such sets S one can make the problem amenable by restricting the way the
distributions p; are selected, for example, imposing an ergodicity-like condition that the
average distribution has a limit. Another way (often considered in the literature in slightly
different settings, see Gyorgy et al., 2012 and references) is to have a — 0, although in this
case one recovers Ve, = 0 provided a goes to 0 slowly enough (and, of course, provided
Vs =0).
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4.3. Predictable Aspects

The preceding example can be thought of as an instantiation of the general class of pro-
cesses in which some aspects are predictable while others are not. Thus, in the considered
example changes between the distributions were unpredictable, but between the changes the
distributions were predictable. Another example of this kind is that of processes predictable
on some scales but not on others. Imagine that it is possible to predict, for example, large
fluctuations of the process but not small fluctuations (or the other way around). More
formally, consider now an alphabet X with |X| > 2, and let Y be a partition of X. For any
sequence &1, ..., Tn,... there is an associated sequence ¥1,...,¥Yn,... where y; is defined as
y € Y such that x; € y. Here again we can obtain examples of sets C of processes with
Ve € (0,1) by restricting the distribution of y1,...,yp,... to a set B with Vg = 0. The
interpretation is that, again, we can model the y part (by processes in B) but not the rest,
which we then allow to be arbitrary.

Yet another example is that of processes predictable only after certain kind of events:
such as a price drop; or a rain. At other times, the process is unpredictable: it can, again, be
an arbitrary sequence. More formally, let a set A C X* := UpenX* be measurable. Consider
for each sequence x = x1,...,xy,... another (possibly finite) sequence x' = z,..., 2}, ...
given by z} := (zp,+1)ien where n; are all indexes such that =1 ,, € A. We now form the
set C as the set of all processes u such that x’ belongs (u-a.s.) to some pre-defined set B;
for this set B we may have Vp = 0. This means that we can model what happens after
events in A — by processes in B, but not the rest of the times, on which we say the process
may be arbitrary. For different A and B we then obtain examples where Vo € (0,1). In
relation to this it is worth mentioning the work (Lattimore et al., 2011) which explores the
possibility that a Bayesian predictor may fail to predict some subsequences.

5. Decision-Theoretic Interpretations of the Asymptotic Result

Classical decision theory is concerned with single-step games. Among its key results are
the complete class and minimax theorems. The asymptotic formulation of the infinite-
horizon problem considered here presents both differences and similarities which we attempt
to summarize in this section. A distinction worth mentioning at this point is that the
results presented here are obtained under no assumptions whatsoever, whereas the results
in decision theory we refer to always have a number of conditions; on the other hand, here
we are concerned with just one specific loss function (KL divergence) rather than general
losses that are common in decision theory. The terminology in this section is mainly after
Ferguson (1967).

Predictors p € P are called strategies of the statistician. The probability measures
u € C are now the basic strategies of the opponent (a.k.a. Nature), and the first thing we
need to do is to extend these to randomized strategies. To this end, denote C* the set of
all probability distributions over measurable subsets of C. Thus, the opponent selects a
randomized strategy W € C* and the statistician (predictor) p suffers the loss

where the notation W (u) means that p is drawn according to W. Note a distinction with
the combinations we considered before. A combination of the kind v = [, adW («) is itself
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a probability measure over the one-way infinite sequences, whereas a probability measure
W € C* is a probability measure over C.

5.1. Minimax

Generalizing the definition (3) of V¢, we can now introduce the upper value

Ve = inf sup Eyw Ly, p). 32
¢ = Inf sup Eu) (1, p) (32)

Furthermore, the mazimin (the lower value) is defined as

Ve = sup. inf By L s, p)- (33)
The so-called minimax theorems in decision theory (e.g., Ferguson, 1967) for single-step
games and general loss functions state that, under certain conditions, V¢ = V. and the
statistician has a minimax strategy, that is, there exists p on which V¢ is attained. Mini-
max theorems generalize the classical result of von Neumann (1928), and provide sufficient
conditions of various generality for it to hold. A rather general sufficient condition is the
existence of a topology with respect to which the set of all strategies of the statistician, P
in our case, is compact, and the risk, which is L(yu, p) in our case, is lower semicontinuous.
Such a condition seems nontrivial to verify. For example, a (meaningful) topology with
respect to which P is compact is that of the so-called distributional distance (Gray, 1988)
(in our case it coincides with the topology of the weak* convergence), but L(u, p) is not
(lower) semicontinuous with respect to it. Some other (including non-topological) sufficient
conditions are given by Sion (1958); LeCam (1955). Other related results for KL divergence
(expected log loss) include (Ryabko, 1979; Gallager, 1976-1979; Haussler, 1997).
In our setup, it is easy to see that, for every C,

VC :VC

and so Corollary 2 holds for V¢. Thus, using decision-theoretic terminology, we can state
the following.

Corollary 4 (partial minimax theorem) For every set C of strategies of the opponent,
the statistician has a minimax strategy.

However, the question of whether the upper and the lower values coincide remains open.
That is, we are taking the worst possible distribution over C, and ask what is the best
possible predictor with the knowledge of this distribution ahead of time. The question is
whether V. = V. A closely related question is whether there is a worst possible strategy for
the opponent. This latter would be somehow a maximally spread-out (or maximal entropy)
distribution over C. In general, measurability issues seem to be very relevant here, especially
for the maximal-entropy distribution part.

5.2. Complete Class

In this section we shall see that Corollary 2 can be interpreted as a complete-class theorem
for asymptotic average loss, as well as some principled differences between the cases Vg > 0
and Ve = 0.

17



D. RYABKO

For a set of probability measures (strategies of the opponent) C, a predictor p; is said
to be as good as a predictor ps if L(p, p1) < L(u, p2) for all 4 € C. A predictor p; is better
(dominates) py if py is as good as pg and L(p, p1) < L(u, p2) for some p € C. A predictor
p is admissible (also called Pareto optimal) if there is no predictor p’ which is better than
p; otherwise it is called inadmissible. Similarly, a set of predictors D is called a complete
class if for every p’ ¢ D there is p € D such that p is better than p/. A set of of predictors
D is called an essentially complete class if for every p’ ¢ D there is p € D such that p is as
good as p'. An (essentially) complete class is called minimal if none of its proper subsets is
(essentially) complete.

Furthermore, in decision-theoretic terminology, a predictor p is called a Bayes rule for
a prior W € C* if it is optimal for W, that is, if it attains inf,cp EW(H)I_/(,u,p). Clearly,
if W is concentrated on a finite or countable set then any mixture over this set with full
support is a Bayes rule, and the value of the inf above is 0; so the use of this terminology
is non-contradictory here.

In decision theory, the complete class theorem (Wald, 1950; LeCam, 1955), see also
(Ferguson, 1967) states that, under certain conditions similar to those above for the minimax
theorem, the set of Bayes rules is complete and the admissible Bayes rules form a minimal
complete class.

An important difference in our set-up is that all strategies are inadmissible (unless
Ve = 0), and one cannot speak about minimal (essentially) complete classes. However, the
set of all Bayes rules is still essentially complete, and an even stronger statement holds: it
is enough to consider all Bayes rules with countable priors:

Corollary 5 (Complete class theorem) For every set C, the set of those Bayes rules
whose priors are concentrated on at most countable sets is essentially complete. There is no
admissible rule (predictor) and no minimal essentially complete class unless Ve = 0. In the
latter case, every predictor p that attains this value is admissible and the set {p} is minimal
essentially complete.

Proof The first statement is a reformulation of Corollary 2. To prove the second state-
ment, consider any C such that Vi > 0, take a predictor p that attains this value (such a
predictor exists by Theorem 1), and a probability measure u such that L(y, p) > 0. Then
for a predictor p' := 1/2(p + p) we have L(yu,p’) = 0. Thus, p’ is better than p: its loss is
strictly smaller on one measure, y, and is at least the same on all the rest of the measures
in C. Therefore, p is inadmissible. The statement about minimal essentially complete class
is proven analogously: indeed, take any essentially complete class, D, and any predictor
p € D. Take then the predictor p’ constructed as above. Since p’ is better than p and D
is essentially complete, there must be another predictor p” € D, such that p” is as good as
p'. Therefore, D\ {p} is essentially complete and D is not minimal. The statements about
the case Vg = 0 are self-evident. [ ]

6. Non-Realizable Case: Regret Minimization, Suboptimality of Bayes

In the non-realizable case the situation is principally different: it may happen that every
combination of distributions in the model is suboptimal — even asymptotically.
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Theorem 6 There exist a set C for which Ue = 0 and this value is attainable, yet for some
constant ¢ > 0 every Bayesian predictor ¢ with a prior concentrated on C must have

Intuitively, the reason why any Bayesian predictor does not work in the counterexample
of the proof given below is as follows. The set C considered is so large that any Bayesian
predictor has to attach an exponentially decreasing a-posteriori weight to each element in
C. At the same time, by construction, each measure in C already attaches too little weight
to the part of the event space on which it is a good predictor. In other words, the likelihood
of the observations with respect to each predictor in C is too small to allow for any added
penalty. To combine predictors in C one has to boost the likelihood, rather than attach a
penalty. While this result is stated for Bayesian predictors, from the argument above it is
clear that the example used in the proof is applicable to any combination of predictors in C
one might think of, including, for example, MDL (Rissanen, 1989) and expert-advice-style
predictors (e.g., Cesa-Bianchi and Lugosi, 2006). Indeed, if one has to boost the likelihood
for some classes of predictors, it clearly breaks the predictor for other classes. In other
words, there is no way to combine the prediction of the experts, short of disregarding them
and doing something else instead.

Remark 7 (Countable C) Note that any set C satisfying the theorem must necessarily
be uncountable. Indeed, for any countable set C = (uy)ken, take the Bayesian predictor
© = > pen Wkhk, where wy can be, for example, k(+“) Then, for any v and any n,
from (2) we obtain

Ln(Vv ()0) < _logwk + Ln(”: Mk)'

That is to say, the regret of ¢ with respect to any uy is a constant independent of n (though
it does depend on k), and thus for every v we have R¥(C,p) = 0. It is worth noting that
the origins of the use of such countable mixtures for prediction trace back to Zvonkin and
Levin (1970); Solomonoff (1978).

Proof [of Theorem 6.] Let the alphabet X" be ternary X = {0, 1,2}. For a € (0,1) denote
h(«) the binary entropy h(a) := —aloga— (1 —«a)log(1l — «). Fix an arbitrary p € (0,1/2)
and let 3, be the Bernoulli i.i.d. measure (produces only Os and 1s) with parameter p. Let
S be the set of sequences in X'*° that have no 2s and such that the frequency of 1 is close
to p:

1
S = {XE X x; # 2V, and ¥|{z =1.t:2; =1} —p| < f(t) from some ¢ on},

where f(t) = logt/v/t. Clearly, 8,(S) = 1.

Define the set Dg as the set of all Dirac probability measures concentrated on a sequence
from S, that is Dg := {vx : vx(x) = 1, x € S}. Moreover, for each x € S define the
probability measure pix as follows: iy (Xp41|X1.n) = p coincides with 5, (that is, 1 w.p.
pand 0 w.p. 1 —p) if X; , = x1 5, and outputs 2 w.p. 1 otherwise: pux(2|X1.,) = 1 if
X1..m # 71.n- That is, ux behaves as 3, only on the sequence x, and on all other sequences
it just outputs 2 deterministically. This means, in particular, that many sequences have
probability 0, and some probabilities above are defined conditionally on zero-probability
events, but this is not a problem; see the remark in the end of the proof.
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Finally, let C := {ux : x € S}. Next we define the predictor p that predicts well all
measures in C. First, introduce the probability measure d that is going to take care of all the
measures that output 2 w.p.1 from some time on. For each a € X* let d, be the probability
measure that is concentrated on the sequence that starts with a and then consists of all 2s.
Define d := )y« Wada, Where w, are arbitrary positive numbers that sum to 1. Let also
the probability measure 3’ be i.i.d. uniform over X. Finally, define

p=1/3(B, + B +0). (34)

Next, let us show that, for every v, the measure p predicts v as well as any measure in
C: its loss is an additive constant factor. In fact, it is enough to see this for all v € Dg,
and for all measures that output all 2s w.p.1 from some n on. For each v in the latter set,
from (34) the loss of p is upper-bounded by log 3 — log w,, where w, is the corresponding
weight. This is a constant (does not depend on n). For the former set, again from the
definition (34) for every vx € Dg we have (see also Remark 7)

Ln(Vm ,0) < log 3+ Ln(an Bp) = nh(p) + O(n)v

while

inf Ly, (vx, 1) = Lp(vx, px) = nh(p) + o(n).
pnel

Therefore, for all v we have
Ry(C,p) = o(n) and R"(C,p) = 0.

Thus, we have shown that for every v € S there is a reasonably good predictor in C (here
“reasonably good” means that its loss is linearly far from that of random guessing), and,
moreover, there is a predictor p whose asymptotic regret is zero with respect to C.

Next we need to show that any Bayes predictor has 2nh(p) + o(n) loss on at least some
measure, which is double that of p, and which can be as bad as random guessing (or worse;
depending on p). We show something stronger: any Bayes predictor has asymptotic average
loss of 2nh(p) on average over all measures in S. So there will be many measures on which
it is bad, not just one.

Let ¢ be any Bayesian predictor with its prior concentrated on C. Since C is parametrized
by S, for any z1., € X™,n € N we can write p(z1.,) = fS fy(x1.5)dW (y) where W is some
probability measure over S (the prior). Moreover, using the notation W(x; ) for the W-
measure of all sequences in S that start with x; i, from the definition of the measures p,
for every x € S we have

[ nsteraw) = | Byl a)dW (y) = By(ara)W (1) (35)
S YESWI. .n=T1..n
Consider the average

1
Ey limsup — Ly, (vz, ¢)dU (x),
n

where the expectation is taken with respect to the probability measure U defined as the
measure [3, restricted to S; in other words, U is approximately uniform over this set. Fix
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any vx € S. Observe that L,(vx,p) = —loge(z1.,). For the asymptotic regret, we can
assume w.l.o.g. that the loss L, (vx, ) is upper-bounded, say, by nlog|X| at least from
some n on (for otherwise the statement already holds for ¢). This allows us to use Fatou’s
lemma to bound

1 1 1
Ey limsup — L, (vx, ¢) > limsup —Ey Ly, (vx, ¢) = limsup —— Ey log p(x)
n n n
. 1
= lim sup _EEU log Bp(x1.n)W (z1.0), (36)
where in the last equality we used (35). Moreover,

- EU IOg /Bp(xl‘.n)W(xl..n)

U(xin
= —Ey log By(z1.n) + Ev log SaED

W(z1.n) EylogU(z1.n) > 2h(p)n 4 o(n), (37)

where in the inequality we have used the fact that KL divergence is non-negative and the
definition of U (that is, that U = (,|g). From this and (36) we obtain the statement of the
theorem.

Finally, we remark that all the considered probability measures can be made non-zero
everywhere by simply combining them with the uniform i.i.d. over X measure 3', that is,
taking for each measure v the combination %(V + ). This way all losses up to time n
become bounded by nlog |X|+ 1, but the result still holds with a different constant. |

7. Conclusion and Future Work

A statistician facing an unknown stochastic phenomenon has a large, nonparametric model
class at hand that she has reasons to believe captures some aspects of the problem. Yet other
aspects remain completely enigmatic, and there is little hope that the process generating
the data indeed comes from the model class. For this reason, the statistician is content with
having non-zero error no matter how much data may become available now or in the future,
but she would still like to make some use of the model. There are now two rather distinct
ways to proceed. One is to say that the data may come from an arbitrary sequence, and to
try to construct a predictor that minimizes the regret with respect to every distribution in
the model class, on every sequence. Thus, one would be treating the model class as a set
of experts. The other way is to try to enlarge the model class, in particular, by allowing
that all there is unknown in the process may be arbitrary (that is, an arbitrary sequence).
Having done this, one may safely assume that the probability measure that generates the
data belongs to the model class. This second way may be more difficult precisely on the
modelling step. Yet, the conclusion of this work is that this is the way to follow, for in this
case one can be sure that it is possible to make statistical inference by standard available
tools, specifically, Bayesian forecasting. Indeed, even if the best achievable asymptotic
error is non-zero, it is attained by a Bayesian forecaster with some prior. Finding such
a prior is a separate problem, but it is a one with which Bayesians are familiar. Here,
modelling that unknown part should not create much trouble: a good distribution over all
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sequences is just the Bernoulli i.i.d. measure with equiprobable outcomes. (Note that it is
not necessary to look for priors concentrated on countable sets.) On the other hand, for the
regret-minimization route, the statistician cannot use an arbitrary model class; indeed, she
would first need to make sure that regret minimization is viable at all for the model class at
hand: it may happen that every combination of distributions in the model is suboptimal.

There are no criteria for checking this, only some (rather small) examples, such as finite
or countable sets, or specific parametric families.

Finding such criteria for the viability of regret minimization is an interesting open
problem. To make it more precise, the question is for which sets C of distributions the
minimax regret (is attainable and) can be attained by a combination (either Bayesian or
some other) of distributions in C.

It is worth noting that the conclusions of the paper are not about Bayesian versus non-
Bayesian inference. Rather, Bayesian inference is used as a generic approach to construct
predictors for general (uncountable) model classes. At this level of generality, the choice of
alternative approaches is very limited, but it would be interesting to see which predictors
constructed for more specific settings can be generalized to arbitrary model classes, and
whether the corresponding result holds for them.

Another interesting open question concerns different losses. While the proof does not
seem to be hinged very specifically on the log loss, it does use some properties of it in
an important way. In particular, the property that if u predicts v then also any convex
combination au + (1 — a)p predicts v for any p. This does not hold for some other losses,
in particular already for KL loss without Cesaro averaging; see (Ryabko and Hutter, 2008)
for a discussion and some results on this property.

Some other interesting open questions are the decision-theoretic ones mentioned in Sec-
tion 5; specifically, those concerning the minimax theorem and the existence of maximally
spread distributions over C. It would also be interesting to calculate the value V¢ for different
classes of distributions, similar to what is done for the i.i.d. example in Section 4.

Finally, several questions remain concerning the bounds presented in Section 3. The first
question is how sharp is the upper bound in Theorem 1. So far, the lower bound (Theorem 3)
only shows that, for every prior, the Bayesian may suffer more than constant regret. The
question whether the logn term is necessary remains open. If it is necessary, then the
constant in front of the log becomes important, in particular because the optimal loss is of
order logn in some commonly studied special cases of C, such as i.i.d. or Markov measures.
(It is worth mentioning that the known optimal predictors in these cases (Krichevsky, 1993)
are, in fact, Bayesian.) Moreover, it may be worth trying to improve the bounds specifically
for the case Ly, (u, p) = O(logn), since in the opposite case it is not important.
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