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Abstract

A classic finding by (Kalish et al., 2007) shows that no language can be learned iteratively by rational
agents in a self-sustained manner. In other words, if A teaches a foreign language to B, who then
teaches what she learned to C, and so on, the language will quickly get lost and agents will wind up
teaching their own common native language. If so, how can linguistic novelty ever be sustained?
We address this apparent paradox by considering the case of iterated learning in a social network:
we show that by varying the lengths of the learning sessions over time or by keeping the networks
dynamic, it is possible for iterated learning to endure forever with arbitrarily small loss.

1. Introduction

People typically form opinions by updating their current beliefs and reasons in response to new
signals from other sources (friends, colleagues, social media, newspapers, etc.) (Tahbaz-Salehi
et al., 2009; Acemoglu and Ozdaglar, 2011; Golub and Jackson, 2010). Suppose there were an
information source that made a noisy version of the “truth” available to agents connected through
a social network. Under which conditions would the agents reach consensus about their beliefs?
What would ensure truthful consensus (meaning that the consensus coincided with the truth)? How
long would it take for the process to converge? Addressing these questions requires agreeing on a
formal model of distributed learning. Fully rational agents update their beliefs by assuming a prior
and using Bayes’ rule to integrate all past information available to them (Acemoglu et al., 2011;
Mueller-Frank, 2013; Lobel and Sadler, 2015; Mossel et al., 2011; Banerjee, 1992; Bala and Goyal,
1998). Full rationality is intractable in practice (Molavi et al., 2015; Rahimian and Jadbabaie, 2016a),
so much effort has been devoted to developing computationally effective mechanisms, including
non- (or partially) Bayesian methods (Jadbabaie et al., 2012; Molavi et al., 2015; Golub and Jackson,
2010, 2012; Jadbabaie et al., 2013). Much of this line of work can be traced back to the seminal
work of (DeGroot, 1974) on linear opinion pooling.

As the simplest example of iterated learning in a social network, consider a system consisting of
one teacher and one learner. The teacher samples data from a distribution and sends it to the learner;
the learner updates her belief via Bayes rule repeatedly in order to learn that distribution. This system
is equivalent to the usual Bayesian inference scenario. Under mild assumptions, the learner will
eventually learn the ground truth asymptotically (Gelman et al., 2013).
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When the network structure comes into play, the dynamics of the learning process becomes
more complicated. If the social network forms a chain X, Y, Z, ... such that agents teach each
other in sequence: X teaches Y, who then teaches Z, and so on, by a classic result of Griffiths and
Kalish (Griffiths and Kalish, 2005), the information from the source will vanish after a finite number
of iterations. At that point, the agents, assumed to be rational, will be “teaching” each other nothing
they don’t already know: iterated learning is not self-sustaining (Beppu and Griffiths, 2009; Griffiths
and Kalish, 2007, 2005; Rafferty et al., 2009; Kirby et al., 2014; Griffiths et al., 2008; Perfors and
Navarro, 2011; Rafferty et al., 2014; Smith, 2009; Kalish et al., 2007). Such findings are hard
to validate empirically but variants of it are within the reach of experimental psychology (Kalish
et al., 2007). Similar laboratory experiments with human subjects have confirmed the unstainability
of iterated learning (Kalish et al., 2007; Beppu and Griffiths, 2009; Tamariz and Kirby, 2015;
Bartlett; Griffiths et al., 2008). Similar results of unstainability are found in computational linguistics
where, instead of agents sending information, the scenario is about language evolution through
generations (Rafferty et al., 2009).

If agents interact in a more complicated and dynamic network, more possibilities of the learning
dynamics will emerge. Dynamic networks are common occurrences in opinion dynamics (Hegsel-
mann and Krause, 2002; Mohajer and Touri, 2013; Chazelle and Wang, 2016; Chazelle, 2015), but,
to our knowledge, somewhat new in the context of social learning. Following the Bayesian-Without-
Recall (BWR) model proposed by Rahimian and Jadbabaie in (Rahimian and Jadbabaie, 2016a), we
assume the agents to be memoryless and rational: this means that they use Bayesian updates based
on current beliefs and signals with no other information from the past, see also (Rahimian et al.,
2015a,b; Rahimian and Jadbabaie, 2016b). The BWR model seeks to capture the benefits of rational
behavior while keeping both the computation and the information stored to a minimum (Rahimian
and Jadbabaie, 2016D).

We focus in this paper on sustainable learning: the conditions to ensure arbitrarily small informa-
tion loss in truthful consensus (formal definition in the following sections). For chained learning,
we show how keeping the length of the training sessions (number of samples transferred) growing
slightly allows iterated learning to be sustained in perpetuity. This resolves the paradox raised from
language evolution models (Kalish et al., 2007). We further analyze the case when the learner has
the ability to reach back to her early ancestors for “fresher” data instead of listening to her direct
ancestor, and show how this “hopped” learning mechanism further helps prevent information decay.
For the case when the learning network changes over time, we show that under the assumption that
each agent hears a noisy signal from the truth at a frequency bounded away from zero, the system
reaches truthful consensus almost surely with a convergence rate polynomial in expectation. The
relation between the convergence rate and the graph structure is also revealed with a seemingly
counter-intuitive finding that agents in a better connected network learn more slowly.

We first introduce the iterated learning model framework with the notation, definitions, and basic
properties in Section 2. Then we exam the scenarios of chained learning, hopped learning, and
networked learning in Section 3, Section 4, and Section 5, respectively. We show our main results in
each section, followed by details of the proofs and discussions.

2. Models, Preliminaries, and Notation

In this section, we formally define the problem mathematically. Assume there are n agents denoted
by their indices 1,2,...,n. Attime ¢t = 0,1, ..., the belief of agent ¢ is a probability distribution
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over a state space ©, which is denoted by 1 ;. The interactions between agents are modeled by an
infinite sequence (G¢):>0, Where each G is a directed graph over the node set {1,...,n}. Anedge
pointing from ¢ to j in G; indicates that ¢ receives data from j at time ¢. Intuitively, the direction
of the edge has the same meaning as the “listen-to” activity. Typically, the sequence of graphs is
specified ahead of time or is chosen randomly: the only condition that matters is that it should be
independent of the randomness used in the data generating and learning process; specifically, taking
expectations and variances of the random variables that govern the dynamics will assume a fixed
graph sequence (possibly random). The adjacency matrix of G is denoted by A;: itisann x n 0/1
matrix.

2.1. The existence of an information source

When an information source exists whose belief is fixed, we label it agent 0 and refer to it as the
truth. In such a case, the graph Gy is over the node set {0, 1,...,n}. Because agent 0 (if it exists)
holds the truth, no edge out of it points to another node. The adjacency matrix then becomes an
(n+1) x (n 4+ 1) matrix whose first row is (1,0, ..., 0), with a self-loop at agent O for simplicity.

2.2. Data generation

At time t > 0, each agent ¢ > 0 samples a state 6; ; € R consistent with her own belief: ; ; ~ 1 ;.
A noisy measurement a;; = 0y ; + ¢ ; is then sent to each agent j such that (A4;);; = 1. All the noise
terms ¢ ; are sampled iid from N'(0,02). An equivalent formulation is to say that the likelihood
function (a|f) is drawn from N (#, o%). In our setting, agent i sends the same data to all of her
neighbors; this is done for notational convenience and the same results would still hold if we were to
resample independently for each neighbor. Except for the omission of explicit utilities and actions,
our setting is easily identified as a variant of the BWR model of (Rahimian and Jadbabaie, 2016a).

2.3. Beliefs update

A single-step update for agent ¢ > 0 consists of setting fi;11; as the posterior P[u; 1 i]d] o
P[d|put,i]P[1ee,i], where d is the data from the neighbors of i received at time ¢. For the case when the
beliefs are Gaussian, we get the classical update rules from Bayesian inference by plugging in the
corresponding normal distribution (Box and Tiao, 2011). Updated beliefs remain Gaussian so we
can use the notation f; ; ~ N (x4, thil), where 7;; denotes the precision (inverse variance) 0'; Z-Q.

Writing 7 = o2 and letting d; ; denote the outdegree of i in Gy, for any i > 0 and ¢t > 0, we have

)]

Ti415 = (Tt,z’l‘t,z’ +Tag1 + -+ Tat,dt,i)/(Tt,i + dt,ﬁ);
Tidls = Toi + diiT,

where a; 1, ..., a4, , are the signals received by agent i from its neighbors at time ¢.

2.4. The influence of the graph sequence

The graph sequence G plays a crucial role in the dynamics of the system. A simple starting example
is the constant graph of two agents with one directed edge. Such a graph sequence defines the
case where one learner repeatedly gets samples from the information source. If the information
source is regarded as the ground truth, this system is equivalent to the usual Bayesian inference
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scenario. Instead of exhausting all possible graph sequences, in this paper, we focus on three
representative types, namely the chained learning, hopped learning, and networked learning models.
The fundamental problem we would like to solve is whether the system is able to converge to the
truth; in other words, whether the truthful information is able to propagate uncorruptedly across the
entire system.

3. Chained Learning

Following (Beppu and Griffiths, 2009; Griffiths and Kalish, 2007, 2005; Rafferty et al., 2009; Kirby
et al., 2014; Griffiths et al., 2008; Perfors and Navarro, 2011; Rafferty et al., 2014; Smith, 2009;
Kalish et al., 2007), we begin with chained iterated learning: a learner’s state of belief is modeled
by a distribution over a hypothesis space H, which is itself equipped with a likelihood function:
[P[d|h] indicates the probability of generating data d € D given the hypothesis h € H. A learner’s
state of belief may change after a learning process, and we naturally call her belief before and after
the learning prior and posterior. Notice that the hypothesis space H is the same as the state space
O, but we will use H to emphasize the application background and avoid confusion. The initial
hypothesis h;, i+ generates my items iid for the first learner. These items provide the training data
di = (di,1,- .., d1,m,) with which the first learner Bayes-updates its prior. Its posterior is given by
setting ¢ = 1 in this formula:

P(h|d;] = P[d;|h] P[h]/P[d,], with P[d,] = P[ds|h] P[n]. 2)
heH

From that point on, each successive learner updates its prior from their predecessor. For any ¢ > 1,
learner t receives my items sampled by the posterior of agent ¢ — 1 to form the training set d;. To do
that, she picks a random hypothesis h from H with probability P[h|d;_;] (the posterior of learner
t — 1) and then samples my items iid from h to form d; € D™*. The posterior P[h|d;| is derived
according to (2). Note that learner ¢ has no direct access to the posterior of learner ¢ — 1 but only to
data drawn from a hypothesis sampled from the posterior. Our formulation assumes a discrete space
‘H but extends to continuous settings, as we show in §3.5.

In the case of linguistic transmission, each hypothesis A € H is a “knob” whose setting is given
by a number between 0 and 1, specifically the prior probability P[h]. All learners share the same
prior. Picking some h from that prior specifies a language (also denoted h for convenience). In this
case, a language is defined as a probability distribution over D, interpreted here as a set of sentences.
In this way, the prior can be viewed as a mixture over H: by abuse of terminology, we call it a mixed
hypothesis, which we distinguish from a pure hypothesis of the form h € H (corresponding to a
single-point distribution). Access to language h is achieved by random sampling: the sentence d € D
is picked with probability P[d|h].

Iterated learning proceeds as follows. After selecting language h with probability P[h|d;—_1],
learner ¢ collects m; independent samples from h. Thus, given a tuple d; = (di,...,dy,) of
sentences from D, the likelihood P[d;|h] is equal to [ ], <,,, P[dk|h]. The learner is now ready
to Bayes-update its prior. Of course, the first one (¢t = 1) samples directly from the language
hini+ chosen for iterated learning. The notation is boldfaced to indicate that h;,;+ may be a mixed
hypothesis or, in other words, a distribution over hypotheses.
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Suppose that D = {dy,...,ds} and H = {hy, ..., h,} are both finite. After observing the data
generated by the posterior of learner ¢ — 1, if learner ¢ winds up choosing h; then, by Bayesian
updating, the probability PJ; that its posterior picks /1 is given by:

P[d|h;] P[d|h;

deDmt depmt j—1 Pld|h] [ }

To our knowledge, the entire literature on the topic assumes a common, fixed sample size for all
the learners: m; = m. Equation (3) can be then interpreted as marginalizing a Gibbs sampler over
the data space, which creates a Markov chain over the hypothesis space H: if h! denotes the row
vector formed by the n probabilities P[hy, | d;], then At = h'~' P!, where h® = hi, ;.. Assuming
ergodicity (in this case, a fairly inconsequential technical assumption), the chain can be shown to
converge to a unique stationary distribution h. It can be easily checked that it coincides with the
prior: h = (P[h4],...,P[hy,]) (Griffiths and Kalish, 2005; Norris, 1998); see (Rafferty et al., 2009,
2014) for an analysis of the mixing time in specific linguistic scenarios. This convergence reveals
the long-term unsustainability of iterated learning. We show how diversifying the sample sizes my,
hence making the Markov chain time-inhomogeneous, can overcome this weakness. In particular,
we prove that it is sufficient for m; to increase logarithmically with respect to ¢ in order to achieve
sustainability.

3.1. Self-Sustainability

We show how to make iterated learning self-sustaining in the presence of a finite hypothesis space
H = {h1,...,h,}. This involves specifying a sequence of training session lengths mj, ma, ...
so that the posterior of any learner ends up differing from h;,;+ by an arbitrarily small amount.
Formally, given any d, > 0, we say that iterated learning is (J, €)-self-sustaining if, with probability
at least 1 — ¢, arandom h € H picked from any learner’s posterior distribution differs from h; i+ in
total variation by at most §. We recall a few facts: the hypothesis i denotes a language modeled as a
probability distribution over D; the total variation distance is half the ¢;-norm; and the posterior of
learner ¢ after the ¢-th iteration is defined by marginalizing P[h|d;] over all samples d; drawn from a
random h picked from the posterior of learner t — 1 (or h; i+ if t = 1). As a shorthand, we speak of
e-self-sustainability to refer to the case § = 0.

The parameters 9 and € allow us to distinguish between two metrics: the distance between two
languages over D and the distance between two mixtures over H. The two notions could differ
widely. For example, if all of H corresponds to languages very close to h; i+, to achieve (4, €)-self-
sustainability might be easy for a tiny 6 > 0 but hopelessly difficult for § = 0. The complexity of
iterated learning depends on the geometry of the languages formed by the pure hypotheses. This
is best captured by introducing a metric that, though more specialized than the total variation (it
works only on the simplex of probability vectors), brings all sorts of technical benefits: the root-sine

distance between two probability distributions w = (uq,...,us) and v = (v1,...,vs) over D is
defined as
1 s 2 5 2
dRs(’U,,’U) = 5 Z (,/uivj — ./ujvi) = 1-— (Z \/’UJZ"UZ'> . (4)
ij=1 i=1
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Note that the root-sine distance will be used to measure similarities between two likelihoods, and we
will continue the analysis of sustainability defined based on the total variation distance.

It would be surprising if this distance had not been used before, but we could not find a reference.
We prove that it is indeed a metric in the Appendix and also explain its name. We show that it is
related to the Hellinger, Bhattacharyya and total variation distances, dy, dp, dry by the following

relations:
dg = 1/1—1/1—(1%25;

dp = —5In(1 — d¥g); )

dry < V2sdgs.

3.2. The results

We focus on the “pure” case hi,i+ € H, and later briefly discuss how to generalize the method to
mixed hypotheses. Using the shorthand d;; for drg(IP[-|h;], P[-|h;]), we define d; := min;.j; d;;.
Let p = (p1,p2,...,pn) be the prior distribution over H, where p; := P[h;]. We can obviously
assume that each p; is positive and that all the pure hypotheses are distinct, hence d; > 0. The two
theorems below assume that h;,;+ = hq.

Theorem 1. For any positive € < 1, the following sample size sequence makes iterated learning
e-self-sustaining:
4 nt 4 t
m = 5In—= —2<logf +C’),
df ep1 4 €

for some C > 0 independent of t, ¢, d;.

The factor 4 can be reduced to 2'+°(1) if we adjust the constant C'. It is to be expected that the lengths
of the training sessions should grow to infinity as p; tends to zero, as the vanishing prior makes it
increasingly difficult for the posteriors to “attach” to h;. The session lengths are sensitive to the
minimum distance between the languages specified by H and the target language h,. Settling for
(6, €)-self-sustainability allows us to remove this dependency.

Theorem 2. For any positive 6, < 1, the following sample size sequence makes iterated learning
(0, €)-self-sustaining:

mt—S(?f(lnz—i—C).

for some C > 0 independent of t, 0, €.
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3.3. The proofs

To establish Theorem 1, we estimate the probability P* that each leaner ends up picking h. Recall
that h! is the posterior distribution of learner ¢, by the Markovian property of the system,

P* =P[R = hy] [ PR = ha |kt = b = [] P1Y- (6)
t>0 t>1

Since the matrix P!? is the transition matrix of a Markov chain, we proceed by bounding its off-
diagonal elements PJ; for i # j. We have

s B Pdbl _p, (2)B(d|h;] Pld]h;]

depm Pld|hilpi + PldIhylp; — pi (S5, (55)Pld|Ri] + Pld|h]

ZdeDmt ‘ deD
;@exp{fgt((d; Jelandeian)’ 1)},

where the two equalities are simple deformations, the first inequality is achieved by dropping some

[t
Pl <

IN

non-negative terms from the definition of PJ; in (3), the second inequality is obtained via Young’s
inequality, and the last inequality is from Taylor expansion of the natural logarithm function at 1. By
definition of the root-sine distance, we have

1
RS gy e M G#0) @
(]

Setting ¢ = 1 in (7) and summing over 2 < j < n, it follows by Cauchy-Schwarz that

n
SO Bl < b TP ®)
= 2 p1
Combining (6) and (8) yields
P* >H <1_ 1_p1) —;d%mt> Z 1_% n(l_pl)ze—%d%mt (9)
t>1 p1 p1 t>1
Given 0 < € < 1, we constrain the sequence (m;) to satisfy:
S emadim < o 14p (10)
t>1 n(l—p1)

For example, we can pick the sequence
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which completes the proof. A closer look at the calculation shows that the factor ¢* can be reduced
to C,t>*2 for any small o > 0 and a suitable constant C,, > 0, which makes the dependency on ¢
arbitrarily close to (2/d?) Int.

To prove Theorem 2, we set a target distance p := & /(n+/2s) and find a subset A C # such that
(i) dy; < pnforj € Aand (i) d;; > pfori € Aand j € A. To see why such a subset must exist,
consider spheres centered at hi, i+ = h; of radius kp, for k = 1,...,n + 1 (with respect to drg).
These define n + 1 disjoint (open) regions and, by the pigeonhole principle, at least one of them must
be empty. We set A to include all the points in the regions preceding the empty one; note that h; € A.
The claim follows from the triangular inequality. We begin with a straightforward generalization of
(8): forany i € A,

SR LZpa) gt (11)

where p4 := min;c 4 p;. Now let P* be the probability that h* € A for each ¢, then (6) and (9) are
generalized to

1 1-—
N R S ) T (R (EY
>1 = ea pa 3

Settin
¢ n(l —pa)tt

1
m; = — In 5
€°pA

2
ensures that P* > 1 — . The root-sine distance between the languages denoted by h; and any h € A
is at most pn, so that, by (5), the total variation distance is bounded by \/E,on = ¢, which concludes
the proof of Theorem 2.

So far, we have analyzed only the “pure” case h; i+ € H. The idea of the training is to prevent
the prior to “drag” the posterior mixture all across 7. It should be clear that a similar result obtains if
hinic € AH is concentrated on a subset A of H. The proof follows the path charted in Theorem 2
and need not be repeated here. It is crucial to note, however, that this result is to be understood in a
coarse-graining sense: iterated learning cannot ensure that the original weights in the mixture h; i+
are retained but only that A contributes most of the mass in the posteriors. To retain the weights
would require changing the stationary distribution to conform with h;,:+, as the process unfolds,
something that straightforward Bayesian learning seems unable to do. Learning pure hypotheses
bypasses that difficulty.

13)

3.4. Applications

We briefly discuss a direct application of our results to a well-known model of language acquisition
via iterated learning and we mention some natural extensions of the techniques.

Language evolution. Rafferty et al. show how iterated learning fails rapidly in a simple model of
language evolution (Rafferty et al., 2009). Given n hypotheses, iterated learning with fixed-length
training sessions ceases to learn anything new after only O(log nloglogn) rounds. Our previous
theorems show how to turn this around and achieve self-sustainality. In our notational system,
their model is defined on a hypothesis space H = {h1, ..., h,}, where n = 2¥ and h; denotes the
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language whose sentences are words in {0, 1, 7}* with exactly m question marks and 0, 1 matching
the binary decomposition of ¢ — 1 outside the question marks. For example, if K = 4 and m = 2,
then hs denotes the language

{0077,0717,7017,0770, 7070, 7710 }.
We can assume that m is much smaller than k. Each language has the same length (7’;) and the total
number of sentences is s = (7]:1) 2k=m_The prior is given by P[h;] = p; = 1/n. Given a hypothesis

hi, Pld|h;] = 1/ (:1) if d has m question marks and match the bits of i — 1 elsewhere; else it is O
(and d, h are called incompatible). Given h € H,

Pd] = Y e PIARP[R] = 27 7%/ (1) ;
Plh|d] = P[d|h]P[h]/P[d] = 2=™ (or 0 if d, h are incompatible).

We easily check that a2=1- (Zle Vaib; )2 >1-— (%)2 > %; hence, by Theorem 1, session
lengths m; no larger than O(log é) are sufficient to maintain e-self-sustainability.

Meanings and utterances. In the use of iterated learning for studying language evolution (Griffiths
and Kalish, 2005; Perfors and Navarro, 2011), it is common to model the data d as a joint distribution
(x,y) over a product space Xt x Y™t. The idea is to distinguish between “meanings” & and
“utterances” y. In this setting, P[d|h] = P[y|x, h]u(x), where pu(x) is the probability of generating
x. The transition matrix of the Markov chain thus becomes

Pi="3" 3 Plhyle,y|Plyle, hilu(z)

TEX™t yeYmt

Plylz, b Plyl, ) Plh,)
- 3 X TR e i

TEX™t yeYmt

(14)

Since the output y now depends on both the hypothesis and the input data, we redefine d;; as the
root-sine distance between the two distributions P[y|x, h;]u(x) and Ply|x, hjlp(x):
2

(@)% =1 [ 3°3 \/Plyl. hilPlylz, hy) () (15)

reX yey

and we define d; := min;.;4; d;;. Given any i # j,

plt < Plylz, hi]| Ply|z, hj] p; (i
B 2 2 Flen ot Pl

<52 X Rl biBlyie ] e
b mexmt ycym
< [(ZZ\/ [y|ha] Plylhy] p )
xEX yey
<52 e {5 (X X VFvletdPletlu@)’ - 1)}

reX yey
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This gives us this new version of inequality (7), which we can use as the basis for a repeat of the
argument of the previous section:

it 1 [pj _142 .,
Py< gy pe ™ G40, (16)

3.5. Gaussian chained learning

When iterated learning operates over a hypothesis space H parametrized continuously, say, in R, the
minimum root-sine distance usually vanishes and the previous arguments run into singularities and
collapse. A new approach is needed. To make our discussion concrete, we assume that the prior
distribution of each learner is a Gaussian P[h] ~ N (fi,5%) and that the likelihood of producing data
d given hypothesis h is also normal: P[d|h] = N (h, o?). The likelihood can also be understood as
a noisy measurement of h: d = h + ¢, where the noise ¢ ~ N(0,02). We assume that the data
received by the first learner comes from N (u, o2). This is the simplest instance of a continuous
setting in which the root-sine distance argument fails. We discuss it in some detail, considering
both chained learning and its generalizations; and then we use the results to treat the case of iterated
Bayesian linear regression.

During its training session, the t-th learner receives data d; = (d¢ 1, ..., dt m, ) from its prede-
cessor: it is obtained by first picking a random hypothesis h from the posterior of learner ¢ — 1 and
then collecting m; independent random samples from N (h, o2). For the case t = 1, we can treat
the original teacher as learner 0 with its posterior equal to N (uy, 0(2)). Learner ¢t Bayes-updates its
posterior as follows:

1
252

P[h|dy] o P[dy|h]P[h] o exp<—$ f: (dri = 1)) exp( == (h — %),
=1

which is still Gaussian, with mean and variance denoted by z; and 7, respectively. Carrying out the
usual square completion gives up these update rules: for ¢ > 0,

= s (FA+7(deg + dig + - + dim,)) (17)

Tt :7i+mt7,

where we define the precisions 7 = 1/02, 7 = 1/52, and 7; = 1/0?. We say that iterated learning is
e-self-sustaining if |E ji; — po| < € and o + var i remains bounded for all ¢. If 7 + var iy — 0 as
t — oo, we say that iterated learning is strongly e-self-sustaining. We consider successively the case
of chained iterated learning and the more challenging “hopping” scenario in which a new learner
picks a random teacher from the past (instead of the previous one).

In chained iterated learning, the data d;; is a noisy message drawn from the posterior of the
(t — 1)-th learner; hence dt ; ~ N (pt—1,07_1 + 02). In view of (17), 1t is itself Gaussian. By taking
the expectation and variance of equation (17), we find the following recursive relations for E p; and

var p: fort > 0,

E i = s (TR 4 mur B pa);

(18)

2
_ mT 2 2
var iy = Ftmer)? (var Ut—1+o;_1+o )

10
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If we define 3, := m7 /(T + my7), then (18) becomes E py = B E py—1 + (1 — Be) . f my = m
is a constant, then so is 3;, and the recursive relation (18) becomes

Eue — i = Bi(po — f),

which shows that E y; converges to ji exponentially fast. As in the discrete case, iterated learning is
not self-sustainable with constant-length training sessions. By letting m; increase as t'T°(1) order,
however, we can achieve self-sustainability:

Theorem 3 Forany 0 < € < 1, the following sample size sequence makes chained iterated learning
strongly e-self-sustaining:
7 1 2
7nt:J£94Jﬂ(14,7)<§> pioe,
€ c/\o

for an arbitrarily small constant ¢ > 0.

Proof We observe that [E y; is a convex combination of i and E 4 (s < t); specifically,

t t
Em—H&w+@—Hmﬁ. (19)
s=1 s=1

Because Y. (1/s)!T¢ <1+ [[Pa1"¢de =1+ 1/c, we have

—
v
B

I
7 N
=
|
&
R
+
=
N~—
v
[S—
I
3
BT
+
il

Y
—_

€ c 1 €
(C+1)Zsl+c>17 ol

l1o — Al p
This shows that

t
IE pt — ol = (1 - Hﬁe)!ﬂ—ﬂo\ <e.
s=1

By (17), at2 =1/7 < 1/myT — 0. Since 0'152—1 < 52 for t > 1, it follows from (18) that var iy <
(var g1 + 0% + &%) /my for t > 1, and var p; < (Ug + 0%)/my. Writing My := mymy_1 ... my,
we have

Myvar py < My_qvar py_1 + Mlt_l(a2 + 52)
<tMy_1(0f + 0% +57%),

and thus var y; < (03 + 0% 4 %)t/my — 0 since my = Q(t'+°). -

3.6. Iterated Bayesian Linear Regression

The iterated version of Bayesian linear regression has been the subject of extensive study in the field
of psychology (Kalish et al., 2007; Beppu and Griffiths, 2009; Tamariz and Kirby, 2015; Bartlett;
Griffiths et al., 2008). The work has involved experimentation with human subjects but little in

11
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the way of theoretical analysis. This section is a first step toward filling this gap. The task at
hand is to estimate a hypothesis h € H := R? given a noisy measurements on the hyperplane
y = h"x, where € R%. In the Bayesian setting, we assume a Gaussian prior on the hypothesis
space: P[h] ~ N(fi,521;). The data is given by (x,%), where x ~ N(0,1;) and y = h'z + ¢,
for ¢ ~ N(0,0?%) (with x, ¢ independent). Since we typically make several measurements, we
write this (likelihood) relation in matrix form: y = Xh + ¢, where y € R™ (with m the number
of measurements); ¢ ~ N(0,02%I,,); and X is an m-by-d matrix each of whose rows denotes a
random vector 2z ~ N (0, I4). This means that the matrix X is random (a fact of key importance in
our discussion below). We have:

P[¢] ~ eXP{—ﬁHQZ’H%} (noise)
Plh] ~ exp{ -5z |Ih — fill3} (prior)
Ply|X, ] ~ exp{—5ly — Xn[3} (likelihood)

In iterated Bayesian linear regression, the ¢-th learner receives her data from learner ¢ — 1.
Here, learner 0 is treated just like any other agent, except that his prior P[h] ~ N (uo, 5213) is the
distribution to be learned iteratively. Since sampling from the prior is independent of X, Bayesian
updating gives the posterior N (1, ¥¢), where

1 _ 1
P[hIX, 4] = PIA] Ply|X, h]/Ply|X] ~ exp{ 5 1h — il — 55 lly — XAl }.
Completing the square in the usual fashion shows that the posterior of learner ¢ is given by:
S = (672 + 02X X,)
(20)
e = Zt (5'_2ﬂ + O'_QX;Tyt) ,
where (X}, y;) is the data gathered by learner ¢ from her predecessor: specifically, vy = Xh + ¢,

where h is collected from the (¢ — 1)-th learner by sampling his posterior distribution N (gi¢—1, 3¢—1).

Theorem 4 Given any small enough d,¢ > 0, the following sample size sequence for iterated
Bayesian linear regression ensures that ||Eu; — pol|2 < 0 with probability greater than 1 — :

o 2 t+1
my = Dciu'u0 3 2l <g) t'7¢ + D, dlog —; ,

for an arbitrarily small ¢ > 0 and a constant D, that depends only on c.

Proof We proceed in two steps: first, we show that to keep E; arbitrarily close to pg for all ¢ hinges
on spectral properties of certain random matrices; second, we call on known facts about the singular
values of random Gaussian matrices to translate the spectral condition into a high-probability event.
The proof unfolds as a series of simple relations, which we state first and then demonstrate. The first
one follows directly from (20):

2
Epy = (I + M)~ (i + My Epg_1), where M, = (g) xTX,. @1)

12
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Note that (21) is a randomized recursive relation since the data points X1, Xo, ... are themselves
random. We note that all the matrices whose inverses are taken are positive definite, hence nonsingular.
To move on to our second relation, we define the matrix

Qe := (Ia+ Me) ™' My(Ig+ My1) ™ My -~ (Ig + My) ™ M,
for t > 0, with Q¢ = I, and prove by induction that

Epe = Qepo + (Ig — Q1) i (22)
The base case is obvious so we assume that ¢ > 0: by (21),

Epe = (Ig+ M) (i + My E pe—y)
= (Ig+ My) (i + MyQi—1p0 + My(Ig — Qi—1) )
= (Lg+ M) " MiQspuo + (Ia + M)~ (Ig + My (I — Qi 1))
= Qi po+ (Ia — (Ia+ M) " My Q1) i,
which proves (22). Our next goal is to bound the information decay ||E u; — pol|2. To do that, we

investigate the spectral norm of the matrix /; — (J);, which leads to our third relation. We prove by
induction that, for ¢ > 0,

t
g — Qell2 < | Asl2, (23)

s=1

where Ay := (I;+ M)t Fort =1,Q1 = (Ig+ M)~ My = I; — (I + Mp)~" and the claim
follows. If ¢ > 1, then

1 1qg — Qell2 = (g — Qi—1) + (Qi—1 — Q1) ]]2

t—1
< g — Qeall2 + [|Qr — Qi-1l2 < Z [Asl2 + [[¥]l2,

s=1
where ¥ := (A M; — 1;)Q¢—1. Since Ay(Iy+ M) = Iz, we have ¥ = —A;(QQ¢—1. Each matrix M
is positive semidefinite, so the eigenvalues of (I; + M) ™1 Mj are of the form A\/(1 + \), where
A > 0. This shows that all the eigenvalues of ()5 are between 0 and 1; therefore || Q5|2 < 1. The
eigenvalues of I; — A;M; are the same as those of A;; hence, by submultiplicativity, ||¥|l2 <
IA¢||2]|Qi=1]l2 < ||A¢||2, which establishes (23).

We are now ready to express the information decay in spectral terms. Pick an arbitrarily small

constant ¢ > 0 and assume that

Il < —6N0||2 )5 (24)

By (22), E py — o = (Ig — Q1) (t — o); therefore, by (23),

t

0 Zs—l—c

c

— 1—|—cS:1 25)
dc * 4

< —l-c =

1—|—c<1+/1 T d:r) d,
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The relation says that, on average, the means of any of the agents’ posteriors can be brought as
close to the original mean to be learned as we want. We can turn this into a high-probability event
by using some basic random matrix theory. Recall that E y is itself a random variable whose
stochasticity comes from the matrices X, which are all drawn from Gaussians. Because M; is
positive semidefinite,

-1 (0/5)? 0/ \?
Al < 10410 < 55 < () 26)
which gives us a relation between the spectral norm of (I + M;)~! and the smallest singular value
01(X}) of an my-by-d matrix X; whose elements are drawn iid from N (0, 1). The asymptotic behav-
ior of o1 (X) for large values of m; has been extensively studied within the field of random matrix
theory (Davidson and Szarek, 2001; Edelman, 1988; Rudelson and Vershynin, 2009). Following
Theorem II.13 in (Davidson & Szarek (Davidson and Szarek, 2001)), for any v, > 0,

P[O’l(Xt) < /My — \/&— ’Yt] < 6_%2/2.

We use C' below as a generic constant large enough to satisfy the inequalities where it appears. Setting
vt = Cy/log((t + 1)/e) ensures that ), e /2 < ¢, hence that o1 (X;) < /g — v/d — ; holds
for all ¢ with probability less than €. With our setting of m, this means that, for all ¢ > 0,

P[al(Xt)z \/;’Tt] S1—e¢ 27)

Assuming the event in (27), it follows from (26) and our setting of m; that

4 s0\2 1) 4 1\ 1+c
e < 2 (2) < ()}
mg \G |7 — poll2 \De/ \ t

hence (24) holds for D, large enough. By (25, 27), this proves that, with probability greater than
1 —e¢, ||E put — poll2 < 0 forall ¢ > 0, which completes the proof. [ |

4. Hopped Learning

In this section, we consider the “hopped learning” scenario in which learner ¢ hops back to pick a
teacher from {0, 1,...,¢ — 1} at random, and then takes m; samples from her posterior. To model
the data generating process, we continue to adopt the Gaussian setting from Sections 3.5 and 3.6.
Note that the graph sequence G becomes random under the constraint that a learner can only get
data from the learners before her. Since multiple samples can be sent from a teacher to a learner, we
use d; s ; to denote the i-th sample generated by agent s at time ¢. Note that though a learner only
receives data from one teacher, without loss of generality, we assume all her predecessors generate
samples but she only listens to one of them. The recursive relation for x; becomes

t—1 mg
e = f;t D Xt > dsi+ (1— B, (28)
s=0 i=1

where, given ¢, the random variable x; s is 1 for a value of s picked at random between 0 and s — 1,
and is zero elsewhere; recall that 3; := m;7 /(7 + m;7). Hopped iterated learning provides access

14
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to earlier data, so one would expect the lengths of the training sessions to grow more slowly than in
chained learning. The change is indeed quite dramatic:

iterating learning e-self-sustaining:

m¢ = B, ’,Uog— Al (G) (1 +logt)t™e,

for an arbitrarily small c > 0 and a constant B, that depends only on c.

Proof By taking expectation on both sides of (28), for any ¢ > 0,
3 t—1
B = Tt ;Eus + (1= Bk,

We define v; = 1 and, for ¢ > 1,

Y= (1+ B1) <1+622><1+ft__11> %

We verify easily that E py = viu0 + (1 — ) fi, for ¢ > 0; therefore, the first part in establishing
e-self-sustainability consists of proving that

12%21—%7 (29)
1o — A
which will show that |E u; — po| < . Note that
t—1
1 1
< TI(1+-) =1
= t 31:[1< + S

Now define

Qg = .
° Belpo — als(1+logs)+e

for s > 0. We pick a constant 5, large enough so that a; is small enough to carry out first-order
Taylor approximations around 1 + a;s. We find that

Hé—u( W) (H (- (+1)1msT/T)

- ()1 220) > (1 D> (10 Do

w2 H(l F)e? S 2 e i >y
s 1o — fi

Thus,

s=
which establishes (29). Our derivation relies on the fact that
€ €

Br>1— — >1l—
' Belpo — pl(1 + logt) e 2|po —

15
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and
t—1 t—1 1 1
S NI S S ALY
; s(1+logs)lte — + (loge)1+c/2 z(Inz)lte v c
hence,
e 2 s 5 =0/ (eBelpo—p) > 1 _ &
- 2l —pl

Having shown that |E p; — pg| < € for all ¢, it now suffices to prove that o7 + var y; remains
bounded. We note that 7, > m;7 — 00, hence at2 = 1/7 — 0, so the remainder of the proof needs
to establish that the variance of y; stays bounded. Writing Dy 5 := d; 51 + - - + d s m,, We have
var Dy s = myvardy s1 = my(02 + o2 + var jus); hence

IED%S =varD;, + (E Dm)2 = mt(az + o2 + var s) + mf(E,us)Q.

In (28), the variables x; s and D; , are independent, for 0 < s < ¢ — 1; furthermore, E x; s =
IEX%S = 1/t,and E x¢ 5, Xt.5, = 0 if 51 # s9; therefore,

E D? E D, )2
var [x¢,s Dis) = EX?,ED?, — (Ext,s)*(EDys)? = —2° — ( ;78)
t t (30)

= <”Zt)(o + o2 + var ps + me(E ps) )— (W;t) (ENS)

and, for s; # s9,

cov [Xt,let,Sl ) Xt,sg Dt,SQ] - E [Xt,sl Xt,sg Dt,s1 9 Dt,sg] - E [Xt,sl Dt,sl]E [Xt,sg Dt,sg]
= E [Xt,s1 Xt,sg]E [Dt,s1Dt,sg} —E Xt,le Dt,s1E Xt,ng Dt,82 (31)

1 mg 2
= —5EDE Dy, = —(%) BBy,

Then, by taking the variance on both sides of (28), we have

t—1
var g = < ) var ZXt,sD
S=
t—1
< ) (Z var Xt sDts Z cov [Xt,let,817Xt,Sth,S2]>
s=0

0<s1#52<t—1
t—

_ (5;)2(;1)(”?)( + 0% 4 var s + my(E p1s)?) ( ) (ZEM5> >

1 t—1

< — ) (0240 +var s + my(E ps)?).
tmt =0

Notice that 02 — 0 and (E u5)? is bounded since |E y; — po| < €. We conclude that o7 + var i
remains bounded for all ¢. |
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5. Networked Learning

In this section, we study the information transfer and iterated learning with general graph sequence
G. We assume that the initial belief /19 ; of agent i is Gaussian: 119, ~ N (0, 03,1‘)- Without loss
of generality, the truth is assumed to be a constant (single-point distribution: ;0 = 0; 040 = 0
for all ?) and the standard deviation is the same for all other agents, i.e., 09 ; = o9 > 0 fori > 0.
Because agent 0 holds the truth, no edge points out of it. The adjacency matrix of G; is denoted by
Ay itisan (n + 1) x (n + 1) matrix whose first row is (1,0, ...,0). Note that n is the number of
learners and should not be confused with the number of hypotheses in Section 3.

5.1. The dynamics in matrix form

Let D, and P; denote the (n + 1)-by-(n + 1) diagonal matrices diag(7; ;) and (79/7)1 + EZ_:IO Dy,
respectively, where 1, ; is the out-degree of agent ¢ at time ¢, I is the identity matrix and the sum
is 0 for ¢ = 0. It follows from (1) that g ; ~ N (24, (TPt);il) for i > 0. Regrouping the means in
vector form, z;:= (240, ..., 1), where 2,0 = 0 and 2 1, . . . , ¥0 , are given as inputs, we have

Tei1 = (P + Dy) H (Poe + Av (2 + ue + 1)), (32)

where u; is such that u¢ o ~ N(0,0) and, fori > 0, uz; ~ N(0, (7(P:):;;)~1); and e is such that
ero ~ N(0,0) and, fori > 0, e,; ~ N(0,1/7). We refer to the vectors x; and y; := E x; as the
mean process and the expected mean process, respectively. Taking expectations on both sides of (32)
with respect to the random vectors u; and &, yields the update rule for the expected mean process:
Yo = xg and, for ¢ > 0,

Yi+1 = (Pt + Dt)il (Pt + At) Y- (33)

A key observation is that (P; + D;)~' (P; + A;) is a stochastic matrix, so the expected mean
process y; forms a diffusive influence system (Chazelle, 2015): the vector evolves by taking convex
combinations of its own coordinates. What makes the analysis different from standard multiagent
agreement systems is that the weights vary over time. In fact, some weights typically tend to 0, which
violates one of the cardinal assumptions used in the analysis of averaging systems (Chazelle, 2015;
Moreau, 2005). This leads us to the use of arguments, such as fourth-order moment bounds, that are
not commonly encountered in this area.

5.2. The results

The belief vector p; is Gaussian with mean x; and covariance matrix >; formed by zeroing out the
top-left element of (7P;)~!. We say that the system reaches truthful consensus if both the mean
process x; and the covariance matrix tend to zero as ¢ goes to infinity. This indicates that all the
agents’ beliefs share a common mean equal to the truth and the “error bars” vanish over time. In
view of (1), the covariance matrix indeed tends to 0 as long as the degrees are nonzero infinitely
often, a trivial condition. To establish truthful consensus, therefore, boils down to studying the mean
process ;. We do this in two parts: first, we show that the expected mean process converges to the
truth; then we prove that fluctuations around it eventually vanish almost surely.'

1. The Kullback-Leibler divergence (Jadbabaie et al., 2012) is not suitable here because the estimator is Gaussian, hence
continuous, whereas the truth is a single-point distribution.
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Truth-hearing assumption: Given any interval of length x:= [1/v], every agent ¢ > 0 has an edge
(,0) in G¢ for at least one value of ¢ in that interval.

Theorem 6 Under the truth-hearing assumption, the system reaches truthful consensus with a
convergence rate bounded by O(t*V/ ), where 0 is the maximum outdegree over all the networks.

We prove the theorem in the next two sections. It will follow directly from Lemmas 7 and 8
below. The convergence rate can be improved to the order of t=(1=21v/n_for arbitrarily small € > 0.
The inverse dependency on + is not surprising: the more access to the truth the stronger the attraction
to it. On the other hand, it might seem counterintuitive that a larger outdegree should slow down
convergence. This illustrates the risk of groupthink. It pays to follow the crowds when the crowds
are right. When they are not, however, this distracts from the lonely voice that happens to be right.

How essential is the truth-hearing assumption? We show that it is necessary. Simply having
access to the truth infinitely often is not enough to achieve truthful consensus.

5.3. The proofs

In this subsection, we demonstrate technical details for the proof of the results. We begin with some
repeated used inequalities.

5.3.1. USEFUL MATRIX INEQUALITIES

We highlight certain matrix inequalities to be used throughout. We use the standard element-wise
notation R < S to indicate that R;; < S;; for all 4, j. The infinity norm || R||oc = max; }_; |r;;|
is submultiplicative: || RS||oo < || R|oo||S||co, for any matching rectangular matrices. On the other
hand, the max-norm || R||max := max; j |7;] is not, but it is transpose-invariant and also satisfies:
|RS||max < || R||oc||S||max- It follows that

IRSE" [lmax < [[Rlloc | SR max = [1Rlloo [ RS llmax

(34)
< RIZNS llmax = RIS I max-

5.3.2. THE EXPECTED MEAN PROCESS DYNAMICS

We analyze the convergence of the mean process in expectation. The expected mean y; = E x;

evolves through an averaging process entirely determined by the initial value yo = (0,201, - . ., xom)T
and the graph sequence G;. Intuitively, if an agent communicates repeatedly with a holder of the

truth, the weight of the latter should accumulate and increasingy influence the belief of the agent in

question. Our goal in this section is to prove the following result:

Lemma 7 Under the truth-hearing assumption, the expected mean process y; converges to the truth
asymptotically. If, at each step, no agent receives information from more than 7 agents, then the
convergence rate is bounded by Ct=7/?1 where C' is a constant that depends on o, 7,1, 0o /o.
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Proof We define B; as the matrix formed by removing the first row and the first column from the
stochastic Ptjrll (P + A¢). If we write y; as (0, z¢) then, by (33),

0 1 0 0
(Zt+1> B <at Bt> <Zt> ’ (33)
-1

where o ; = (Pp,;)q if there is an edge (4,0) at time ¢ and c;; = 0 otherwise. This further
simplifies to
zi1 = Bz (36)

Let 1 be the all-one column vector of length . Since Ptjrll (P, + A,) is stochastic,
o+ Bl=1 37
In matrix terms, the truth-hearing assumption means that, for any ¢ > 0,
i + o o1 > QL 1, (38)

where (); is the matrix derived from P; by removing the first row and the last column; the inequality
relies on the fact that P, is monotonically nondecreasing. For any ¢ > s > 0, we define the product
matrix By.s defined as

Bys == Bi—1Bi—3 ... Bs, 39)

with By, = I. By (36), forany t > s > 0,
2zt = By 25. (40)

To bound the infinity norm of B.g, we observe that, for any 0 < [ < k — 1, the ¢-th diagonal element
of Bgk:.s+1+1 1 lower-bounded by

rk—1 r—1

[T (Bopa = [ Lot (D)
j=I+1 ’ j=I+1 (Pstjr)ii

r—1

(Psti)ii _ (Popiyi)ii o (Ps)ii
P (Poyjt1)ii (Poyw)ii — (Psgr)ii
The inequalities follow from the nonnegativity of the entries and the monotonicity of (P;);;. Note
that (41) also holds for | = k — 1 since (Bs:s4r)ii = 1.

Since Ptjrll (P, + A) is stochastic, the row-sum of B; does not exceed 1; therefore, by pre-
multiplying Bsy1, Bsy2, ... on both sides of (37), we obtain:

k—1

Bs—l—n:sl <1- Z Bs+n:s+l+1as+l- (42)
=0

Noting that || Bt|lcc = ||B¢1|loo for any ¢, as B; is non-negative, we combine (38), (41), and (42)
together to derive:

P
||BS+H:s”oo <1- IIHHM

. 43
i>0 (Pern)zzz‘ @
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Let n := max;>0 maxi<;<n Nt,; denote the maximum outdegree in all the networks, and define
0 = min{ry/7,1}. Forany i > 0 and s > &,

s6
— S Bu<ns+ ?; (44)
hence,
-
m?/X(PsJ,»K;)’[:’i <n(s+r)+ ?0. (45)
It follows that o
(Ps+f$)ii (Ps-l—r{)ii -
Thus, we have
min (Ps)n — 1 — max (Ps—l—/@)ii g-‘PS)’L’L
i>0 (Psyr)ii i>0 (Psyr)ii A7
251 47)
>1-
o S+ K
We can replace the upper bound of (43) by
— 1 min (Ps)ii
max;»o(Psyr)ii >0 (Potr)d’
which, together with (45) and (47) gives us
25—1
Nk
By, <1- 1-—
sl €1 o (1550 "
| (48)
<l— —F.
- 2nk(m + 2)
The latter inequality holds as long as s = mk > 0 and
m>mte= 21 T
0 NKT
It follows that, for mqg > m*,
m+1 1
B . < —
1Bmotmyemonloe < JI:IQ < 2nK(mo +J)>
(49)

The matrices B; are sub-stochastic so that
1Bt zlloc < [|Btllos||]loc < |2]]oc-
By (40), for any t > (mg + m)k,

zt = Bt:(moer)nB(moer)n:mon Zmo»
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so that, by using standard bounds for the harmonic series, In(k + 1) < 1 + % +e 4 % <1+Ink,
we find that

||ZtHOO < ||B(m0+m)f<:mon ngHoo
< ||B(mo+m)n:moﬁ||00||z0”00
< thl/@??"v),

where C' > 0 depends on zg, x, 7, 7o /7. We note that the convergence rate can be improved to the
order of t~(1=9)7/7_for arbitrarily small & > 0, by working a little harder with (48). |

5.3.3. THE MEAN PROCESS DYNAMICS

;. A key observation about
the updating rule in (1) is that the precision 7;; is entirely determined by the graph sequence G
and is independent of the actual dynamics. Adding to this the connectivity property implied by the
truth-hearing assumption, we find immediately that 7, ; — oo for any agent ¢. This ensures that the
covariance matrix ; tends to 0 as ¢ goes to infinity, which satisfies the second criterion for truthful
consensus. The first criterion requires that the mean process x+ should converge to the truth 0. Take
the vector x; — y; and remove the first coordinate (x; — y;)o to form the vector A; € R™. Under the
truth-hearing assumption, we have seen that y, — 0 (Lemma 7), so it suffices to prove the following:

Recall that i ; ~ N (¢4, Tt_il), where 7;; denotes the precision o, 2

Lemma 8 Under the truth-hearing assumption, the deviation A; vanishes almost surely.

Proof We use a fourth-moment argument. The justification for the high order is technical: it is
necessary to make a certain “deviation power” series converge. By (32), x; is a linear combination of
independent Gaussian random vectors ug and €5 for 0 < s < ¢ — 1, and thus x; itself is a Gaussian
random vector. Therefore A, is also Gaussian and its mean is zero. From Markov’s inequality, for

any ¢ > 0,
EA},
| >l < 2.
S PA = <> = (50)

>0 £>0

If we are able to show the right hand side of (50) is finite for any ¢ > 0, then, by the Borel-Cantelli
lemma, with probability one, the event |A; ;| > ¢ occurs only a finite number of times, and so Ay ;
goes to zero almost surely. Therefore, we only need to analyze the order of the fourth moment E Afﬂ..
By subtracting (33) from (32), we have:

A1 = BiAy + My, (51)

where v; := u; + €, and M; = Ptj_llAt; actually, for dimensions to match, we remove the top
coordinate of v; and the first row and first column of M, (see previous section for definition of By).
Transforming the previous identity into a telescoping sum, it follows from Ag = &g — yo = 0 and
the definition B;., = By_1Bi_o ... B, that

t—1 t—1
At = Z Bt:s+1Ms'Us = ZRt,s’USa (52)
s=0 s=0
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where Ry s := By.s41M,. We denote by C1, Cy, . .. suitably large constants (possibly depending on
KyM,n, T, T0). By (44), || Ms|loo < C1/(s + 1) and, by (49), for sufficiently large s,

|’Bt:s+l||oo < 02(3 + 1)5(75 + 1)_5

where 5 = 1/2nx < 1. Combining the above inequalities, we obtain the following estimate of R;
as
IR slloo < Ca(s + 1) +1)77. (53)

In the remainder of the proof, the power of a vector is understood element-wise. We use the fact
that v, and vy are independent if s # s’ and that the expectation of an odd power of an unbiased
Gaussian is always zero. By Cauchy-Schwarz and Jensen’s inequalities,

t—1 4
EA} = (Z Rt,svs>

s=0

t—1
= Z E(Rt,svs)4 + Z 3 E(Rt,svs)2E(Rt,s’U5’)2
s=0

0<s#s'<t
t—1 t—1 2
< ZE(Rt,svs)4 +3 (Z E(Rt,svs)2>
s=0 s=0
t—1 t—1
< E(Rysve)* + 3t Y E*(Ry v,)?
s=0 s=0
t—1
< Bt+1) Y E(Resw0). (54)
s=0
Notice that since the variance of v, = (v4 1, .. ., vtyn)T is nonincreasing, there exists a constant Cly

such that E vf’i < Cy. By Jensen’s inequality and the fact that the variables v, ; are independent for
different values of i, we have, for any i, j, k, [,

4
|E g v jog kv | < m’?X E vy .

By direct calculation, it then follows that

n
4
maXE(Rt S’US = maxE(Z (Re.s) Z]’USJ)

J=1
n

4
4
< max (2(Rt,s)i7j) mkax Evg
j

= ||Resll% maXEv

IN

Cs(s+1)~ 4+4B(t +1)7%8, (55)

Summing (55) over 0 < s <t — 1, we conclude from (54) that E Af < Cgt~2, and thus

ZEA;* < Cg Zt*Q < Ch. (56)

>0 t>1
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By the Borel-Cantelli lemma, it follows that A; vanishes almost surely. |

Theorem 6 follows directly from Lemmas 7 and 8.

Why the truth-hearing assumption is necessary. We describe a sequence of graphs G; that
allows every agent infinite access to the truth and yet does not lead to truthful consensus. For
this, it suffices to ensure that the expected mean process y; does not converge. Consider a system
with two learning agents with priors 1 1 and jo 2 from the same distribution A/(2,1). We have
To1 = To2 = Yo,1 = Yo,2 = 2 and, as usual, the truth is assumed to be 0; the noise variance is
o2 = 1. The graph sequence is defined as follows: set t; = 0; for k = 1,2, ..., agent 1 links to the
truth agent at time ¢;, and to agent 2 at times t; + 1, ..., s, — 1; then at time s, agent 2 links to the
truth agent, and then to agent 1 at times s; + 1,...,t,x4+1 — 1. Other than the links mentioned, we
assume no additional link exists. The time points s; and ¢ are defined recursively to ensure that

Ysp1 > 1+272K0 and gy 0 > 142728, (57)

In this way, the expected mean processes of the two agents alternate while possibly sliding down
toward 1 but never lower. The existence of these time points can be proved by induction. Since
Y02 = 2, the inequality y;, 2 > 1 + 272k holds for k& = 1, so let’s assume it holds up to k > 0. The
key to the proof is that, by (33), as agent 1 repeatedly links to agent 2, she is pulled arbitrarily close
to it. Indeed, the transition rule gives us

(P)n 1
Y11 = 1+ Yt.2,
" (Pry1)11 ! (Piy1)11 ¢

where (P;41)11 = ()11 + 1, which implies that y, ; can be brought arbitrarily close to y; » while
the latter does not move: this follows from the fact that any product of the form H?;ta t% tends
to 0 as ¢, grows.”> Thus a suitably increasing sequence of sy, t;, ensures the two conditions (57).
The beliefs of the two agents do not converge to the truth even though they link to the truth agent

infinitely often.
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Appendix A. Analysis of the Root-Sine-Distance

In this appendix, we provide detailed discussion of the root-sine-distance. We will first show that it
is a metric, followed by the proof of its equivalency to Euclidean distance and the discussion of its
relation to other similar metrics. The notation in the appendix is local and should not be confused
with the one used in the main body of this paper.

The root-sine-distance is a metric. = The two forms of the function drg in (4) make it clear that
0 < dgps(a,b) < 1and drs(a,b) = 0 if and only if a and b are identical. We easily check that
drs makes the simplex S of distributions over D into a metric space. Indeed, drs(-, -) is obviously
symmetric, and drs(a, b) = 0 implies that a = b. To check the triangular inequality, notice that

drs(a.b) = |1~ (3 Vaibi) = sin(va. Vb), (58)
=1

where (y/a,v/b) is the angle between the unit vectors v/a and /b, using the notation \/v =
(\/V1, ... ,4/Us). To prove that dgrs(a,b) + drs(b,c) > drs(a,c) for any a, b, c € S, we denote
by «, 3, the corresponding angles in that order, ie, « = (/a, Vb ), etc. The coordinates in a, b, ¢
are nonnegative; therefore 0 < «, 3,7 < m/2. These form the three angles at the origin of a
tetrahedron with a vertex at the origin; therefore, by the triangular inequality in spherical geometry,
a+pB>~Ifa+p < %, thensina+sin f > sinacos 4 cos asin f = sin(a+ 3) > sin~y. On
the other hand, if a+ /3 > /2, then sin a+sin 8 = 2sin a—;ﬁ cos 0‘2;6 > 2sin % cos 7 =1 > sinvy,
which establishes the triangular inequality.

Relation to the Euclidean distance.  Shrinking the simplex S by a tiny amount, we define
S: i ={a €S8 :e<a; <1-— ¢} and note that

s

dp(a.b) = lla —blls = | S (Va — Vb (vai + /o).

i=1
It follows that, for a,b € S.,
L di(a,b) < dp(va,Vb) < ——
2 E\&, >~ 0 ) = 2\/5
On the other hand, ||/a|lz = ||v/b||2 = 1, so the vectors \/a and v/b form an isosceles triangle;
hence
Sin<\/aa \/E> dRS(a‘a b)

1 _ -
de(Va, Vb) = 2sin 5 (Va, Vb) = cos 3(va, Vb)  cos3(va,vb)

dp(a,b). (39)

Since 0 < (y/a,vb) < Z,
drs(a,b) < dp(va,Vb) <V2dgrs(a,b).

Together with (59) this shows that, for any a,b € &,

1 1
—~_dg(a,b) < dps(a,b) < ——

which shows that the Euclidean distance and the metric drg are equivalent in S;.

dE(a'a b)v (60)
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Relation to other distances. The metric drg is related to the Hellinger and Bhattacharyya dis-
tances. Writing C(a, b) = >"7_; v/a;b; (Comaniciu et al., 2000), then dgs(a, b) = /1 — C(a, b)?.
The Hellinger distance is defined as dy(a,b) = /1 — C(a,b) (Hazewinkel, 2013), while the
Bhattacharyya distance is defined as dg(a,b) = —InC(a, b) (Bhattachayya, 1943). The total
variation distance dry is half the ¢1-norm; therefore drv (a,b) < 1,/sdg(a,b). Combining these
observations with (60) establishes (5):

dy = 1—,/1—d%%5;

dp = —3In(1 — d%g);

dry < v2sdgs.
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