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Abstract

In this paper, we propose improved estimation method for logistic regression based on sub-
samples taken according the optimal subsampling probabilities developed in Wang et al.
(2018). Both asymptotic results and numerical results show that the new estimator has
a higher estimation efficiency. We also develop a new algorithm based on Poisson sub-
sampling, which does not require to approximate the optimal subsampling probabilities all
at once. This is computationally advantageous when available random-access memory is
not enough to hold the full data. Interestingly, asymptotic distributions also show that
Poisson subsampling produces a more efficient estimator if the sampling ratio, the ratio of
the subsample size to the full data sample size, does not converge to zero. We also obtain
the unconditional asymptotic distribution for the estimator based on Poisson subsampling.
Pilot estimators are required to calculate subsampling probabilities and to correct biases in
un-weighted estimators; interestingly, even if pilot estimators are inconsistent, the proposed
method still produce consistent and asymptotically normal estimators.

Keywords: Asymptotic Distribution, Logistic Regression, Massive Data, Optimal Sub-
sampling, Poisson Sampling.

1. Introduction

Extraordinary amounts of data that are collected offer unparalleled opportunities for ad-
vancing complicated scientific problems. However, the incredible sizes of big data bring
new challenges for data analysis. A major challenge of big data analysis lies with the thirst
for computing resources. Faced with this, subsampling has been widely used to reduce the
computational burden, in which intended calculations are carried out on a subsample that
is drawn from the full data, see Drineas et al. (2006a,b,c); Mahoney and Drineas (2009);
Drineas et al. (2011); Mahoney (2011); Halko et al. (2011); Clarkson and Woodruff (2013);
Kleiner et al. (2014); McWilliams et al. (2014); Yang et al. (2017), among others.

A key to success of a subsampling method is to specify nonuniform sampling probabil-
ities so that more informative data points are sampled with higher probabilities. For this
purpose, normalized statistical leverage scores or its variants are often used as subsampling
probabilities in the context of linear regression, and this approach is termed algorithmic
leveraging (Ma et al., 2015). It has demonstrated remarkable performance in better using
of a fixed amount of computing power (Avron et al., 2010; Meng et al., 2014). Statistical
leverage scores only contain information in the covariates and do not take into account
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the information contained in the observed responses. Wang et al. (2018) derived optimal
subsampling probabilities that minimize the asymptotic mean squared error (MSE) of the
subsampling-based estimator in the context of logistic regression. The optimal subsam-
pling probabilities directly depend on both the covariates and the responses to take more
informative subsamples. Wang et al. (2018) used a inverse probability weighted estimator
based on the optimal subsample, where more informative data points are assigned smaller
weights in the objective function. Thus, we can improve the estimation efficiency based on
the optimal subsample by using a better weighting scheme.

In this paper, we propose more efficient estimators based on subsamples taken randomly
according to the optimal subsampling probabilities. We will derive asymptotic distributions
to show that asymptotic variance-covariance matrices of the new estimators are smaller, in
Loewner ordering, than that of the weighted estimator in Wang et al. (2018). We also
consider to use Poisson subsampling. Asymptotic distributions show that Poisson subsam-
pling is more efficient in parameter estimation when the subsample size is proportional to
the full data sample size. It is also computationally beneficial to use Poisson subsampling
because there is no need to calculate and use subsampling probabilities for all data points
simultaneously.

Before presenting the framework of the paper, we give a brief review of the emerging
field of subsampling-based methods. For linear regression, Drineas et al. (2006d) developed
a subsampling method and focused on finding influential data units for the least squares
(LS) estimates. Drineas et al. (2011) developed an algorithm by processing the data with
randomized Hadamard transform and then using uniform subsampling to approximate LS
estimates. Drineas et al. (2012) developed an algorithm to approximate statistical leverage
scores that are used for algorithmic leveraging. Yang et al. (2015) showed that using nor-
malized square roots of statistical leverage scores as subsampling probabilities yields better
approximation than using original statistical leverage scores, if they are very nonuniform.
The aforementioned studies focused on developing algorithms for fast approximation of LS
estimates. Ma et al. (2015) considered the statistical properties of algorithmic leveraging.
They derived biases and variances of leverage-based subsampling estimators in linear regres-
sion and proposed a shrinkage algorithmic leveraging method to improve the performance.
Raskutti and Mahoney (2016) considered both the algorithmic and statistical aspects of
solving large-scale LS problems using random sketching. Wang et al. (2019) and Wang
(2019) developed an information-based optimal subdata selection method to select subsam-
ple deterministically for ordinary LS in linear regression. The aforesaid results were obtained
exclusively within the context of linear models. Fithian and Hastie (2014) proposed a com-
putationally efficient local case-control subsampling method for logistic regression with large
imbalanced data. Han et al. (2019) developed a local uncertainty sampling approach for
multi-class logistic regression. Recently, Wang et al. (2018) developed an Optimal Subsam-
pling Method under the A-optimality Criterion (OSMAC) for logistic regression; Yao and
Wang (2019) and Ai et al. (2019) extended this method to include multi-class logistic regres-
sion and generalized linear regression models, respectively. Although they derived optimal
subsampling probabilities, they did not investigate whether a better weighting scheme can
further improve the estimation efficiency.

This paper focuses on logistic regression models, which are widely used for statistical
inference in many disciplines, such as business, computer science, education, and genetics,
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among others (Hosmer Jr et al., 2013). Based on optimal subsamples taken according to
OSMAC developed in Wang et al. (2018), more efficient methods, in terms of both parameter
estimation and numerical computation, will be proposed. The reminder of the paper is
organized as follows. Model setups and notations are introduced in Section 2. The OSMAC
will also be briefly reviewed in this section. Section 3 presents the more efficient estimator
and its asymptotic properties. Section 4 considers Poisson subsampling. Section 5 discusses
issues related to practical implementation and summaries the methods from Sections 3 and
4 into two practical algorithms. Section 6 gives unconditional asymptotic distributions for
the estimator from Poisson subsampling. Section 7 discusses asymptotic distributions with
pilot and model misspecifications. Section 8 evaluates the practical performance of the
proposed methods using numerical experiments. Section 9 concludes, and the appendix
contains proofs and technical details.

2. Model setup and optimal subsampling

Let y ∈ {0, 1} be a binary response variable and x be a d dimensional covariate. A logistic
regression model describes the conditional probability of y = 1 given x, and it has the
following form,

P(y = 1|x) = p(x,β) =
ex

Tβ

1 + exTβ
, (1)

where β is a d× 1 vector of unknown regression coefficients belonging to a compact subset
of Rd.

With independent full data of size N from Model (1), say, DN = {(x1, y1), ..., (xN , yN )},
the unknown parameter β is often estimated by the maximum likelihood estimator (MLE),
denoted as β̂MLE. It is the maximizer of the log-likelihood function, namely,

β̂MLE = arg max
β

`f (β) = arg max
β

N∑
i=1

{
yix

T
i β − log

(
1 + eβ

Txi
)}
.

Since there is no general closed-form solution to the MLE, Newton’s method or iteratively
reweighted least squares method (McCullagh and Nelder, 1989) is often adopted to find it
numerically. This typically takes O(ζNd2) time, where ζ is the number of iterations in the
optimization procedure. For super-large data set, the computing time O(ζNd2) may be
too long to afford, and iterative computation is infeasible if the data volume is larger than
the available random-access memory (RAM). To overcome this computational bottleneck
for the application of logistic regression to massive data, Wang et al. (2018) developed the
OSMAC under the subsampling framework.

Let π1, ..., πN be subsampling probabilities such that
∑N

i=1 πi = 1. Using subsampling
with replacement, draw a random subsample of size n according to the probabilities {πi}Ni=1

from the full data. We use ∗ to indicate quantities for a subsample, namely, denote the
covariates, responses, and subsampling probabilities in a subsample as x∗i , y

∗
i , and π∗i ,

respectively, for i = 1, ..., n. Wang et al. (2018) define the weighted subsample estimator
β̂
π

w to be

β̂
π

w = arg max
β

`∗w(β) = arg max
β

n∑
i=1

y∗i β
Tx∗i − log

(
1 + eβ

Tx∗
i
)

π∗i
.
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The key to success here is how to specify the values for πi’s so that more informative
data points are sampled with higher probabilities. Wang et al. (2018) derived optimal
subsampling probabilities that minimize the asymptotic MSE of β̂

π

w. They first showed that
β̂
π

w is asymptotically normal. Specifically, for large n and N , the conditional distribution
of
√
n(β̂

π

w − β̂MLE) given the full data DN can be approximated by a normal distribution
with mean 0 and variance-covariance matrix VN = M−1

N VNcM
−1
N , in which

MN =
1

N

N∑
i=1

φi(β̂MLE)xix
T
i , VNc =

1

N

N∑
i=1

|yi − p(xi, β̂MLE)|2xixT
i

Nπi
,

and φi(β) = p(xi,β){1− p(xi,β)} with p(xi,β) = ex
T
i β/(1 + ex

T
i β). Based on this asymp-

totic distribution, they derive the following two optimal subsampling probabilities

πAopt
i (β̂MLE) =

|yi − p(xi, β̂MLE)|‖M−1
N xi‖∑N

j=1 |yj − p(xj , β̂MLE)|‖M−1
N xj‖

, i = 1, ..., N ; (2)

πLopt
i (β̂MLE) =

|yi − p(xi, β̂MLE)|‖xi‖∑N
j=1 |yj − p(xj , β̂MLE)|‖xj‖

, i = 1, ..., N. (3)

Here, {πAopt
i (β̂MLE)}Ni=1 minimize tr(VN ), the trace of VN , and this is the A-optimality cri-

terion in optimum experimental designs (Atkinson et al., 2007); {πLopt
i (β̂MLE)}Ni=1 minimize

tr(VNc), and this is a choice of the L-optimality criterion. These subsampling probabilities
have a lot of nice properties and meaningful interpretations. More details can be found in
Section 3 of Wang et al. (2018).

For ease of presentation, use the following general notation to denote subsampling prob-
abilities

πOS
i (β) =

|yi − p(xi,β)|h(xi)∑N
j=1 |yj − p(xj ,β)|h(xj)

, i = 1, ..., N, (4)

where h(x) is a univariate function of x. We provide some intuitions on choosing h(x). Let
L be a matrix with d columns. Choosing h(x) = ‖LM−1

N x‖ minimizes the trace of LVNL
T,

which is the conditional asymptotic variance-covariance matrix of Lβ̂
π

w (scaled by n) given
the full data DN . Two special choices of h(x) correspond to L = I (the identity matrix) and
L = MN . If L = I, then h(x) = ‖M−1

N x‖ and πOS
i (β) becomes πAopt

i (β); if L = MN , then

h(x) = ‖x‖ and πOS
i (β) becomes πLopt

i (β). If one is interested in a specific component of β,
say βj , then L can be chosen as a row vector with the j-th element being one and all other
elements being zero. With this choice, h(x) = ‖M−1

N, �jx‖ where M−1
N, �j means the j-th row

of M−1
N , and the asymptotic variance of β̂

π

w,j is minimized. If h(x) = 1, then πOS
i (β)’s are

proportional to the local case-control subsampling probabilities (Fithian and Hastie, 2014).
Note that {πOS

i (β)}Ni=1 depend on the unknown β, so a pilot estimate of β is required to
approximate them. Let β̂0 be a pilot estimator from a pilot subsample taken from the full
data, for which we will provide more details in Section 5. The original weighted OSMAC
estimator is

β̂w = arg max
β

n∑
i=1

y∗i β
Tx∗i − log

(
1 + eβ

Tx∗
i
)

πOS
i (β̂0)∗

. (5)
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In Wang et al. (2018), β̂w has exceptional performance because {πOS
i (β̂0)}Ni=1 are able

to include more informative data points in the subsample. However, we can improve the
weighting scheme adopted in (5). Intuitively, a larger πOS

i (β̂0) means that the data point
(xi, yi) contains more information about β, but it has a smaller weight in the objective
function in (5). This reduces contributions of more informative data points to the objective
function for parameter estimation.

The weighted estimator in (5) is used because {πOS
i (β̂0)}Ni=1 depend on the responses

yi’s and an un-weighted estimator is biased. If the bias can be corrected, then the resultant
estimator can be more efficient in parameter estimation, because an un-weighted estima-
tor often has a smaller variance-covariance matrix compared with an inverse probability
weighted estimator. Intuitively, if some data points with very small values of πOS

i (β̂0) are
selected in the subsample, then the target function in (5) would be dominated by these
data points. As a result, the variance-covariance matrix of the weighted estimator would
be inflated by small values of πOS

i (β̂0). Note that πi’s appear in the denominator of VNc in
the asymptotic variance-covariance matrix of the weighted estimator. A major goal of this
paper is to develop un-weighted estimation procedures. Interestingly, for the subsampling
probabilities in (4), the bright idea proposed in Fithian and Hastie (2014) can be used to
correct the bias of the un-weighted estimator.

3. More efficient estimator

Let {(x∗1, y∗1), ..., (x∗n, y
∗
n)} be a random subsample of size n taken from the full data using

sampling with replacement according to the probabilities {πOS
i (β̂0)}Ni=1 defined in (4). Using

this subsample, we present a more efficient estimation procedure based on un-weighted
estimator with bias correction. Remember that a pilot estimate is required, and we use β̂0

to denote it. Here, we focus the discussion on the new estimation procedure and assume that
β̂0 is obtained based on a pilot subsample of size n0 and it is consistent. More details about
this pilot estimator will be provided in Section 5, and the scenario that β̂0 is inconsistent
will be investigated in Section 7.1. The following procedure describes how to obtain the
un-weighted estimator with bias correction, denoted as β̂uw.

Calculate the naive un-weighted estimator

β̃uw = arg max
β

`∗uw(β) = arg max
β

n∑
i=1

{
βTx∗i y

∗
i − log

(
1 + eβ

Tx∗
i
)}
, (6)

and then let

β̂uw = β̃uw + β̂0. (7)

The naive un-weighted estimator β̃uw in (6) is biased, and the bias is corrected in (7)
using β̂0. We will show in the following that β̂uw is asymptotically unbiased. This, together
with the fact that β̂0 is consistent, shows the interesting fact that β̃uw converges to 0 in
probability as n0, n, and N go to infinity.

To investigate the asymptotic properties, we use βt to denote the true value of β, and
summarize some regularity conditions in the following.

Assumption 1 The matrix E{φ(βt)h(x)xxT} is finite and positive-definite.
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Assumption 2 The covariate x and function h(·) satisfy that E{‖x‖2h2(x)} < ∞, and
E{‖x‖2h(x)} <∞.

Assumption 3 As n→∞, nE{h(x)I(‖x‖2 > n)} → 0, where I() is the indicator function.

Assumption 1 is required to establish the asymptotic normality. This is a commonly used
assumption, e.g., in Fithian and Hastie (2014); Wang et al. (2018), among others. Assump-
tions 2 and 3 impose moment conditions on the covariate distribution and the function
h(x). When h(x) = 1, if E‖x‖2 < ∞, then both the two conditions in Assumption 2 and
the condition in Assumption 3 hold. Thus, the assumptions required in this paper are not
stronger than those required by Fithian and Hastie (2014). When h(x) = ‖x‖, by Hölder’s
inequality,

nE{h(x)I(‖x‖2 > n)} ≤ n(E‖x‖3)1/3{EI(‖x‖2 > n)}2/3

= (E‖x‖3)1/3{n3/2P(‖x‖3 > n3/2)}2/3.

Note that n3/2I(‖x‖3 > n3/2) ≤ ‖x‖3 and I(‖x‖3 > n3/2) → 0 in probability. Thus, if
E(‖x‖3) < ∞, then n3/2P(‖x‖3 > n3/2) = E{n3/2I(‖x‖3 > n3/2)} → 0 (see Theorem
1.3.6 of Serfling, 1980). Therefore, if E(‖x‖3) < ∞, Assumption 3 holds. This shows that
E‖x‖4 < ∞ implies all the three conditions required in Assumptions 2 and 3. Note that

Wang et al. (2018) requires that E(ev
Tx) < ∞ for any v ∈ Rd in order to establish the

asymptotic properties when a pilot estimate is used to approximate optimal subsampling
probabilities. Thus, the required conditions in this paper are weaker than those required
in Wang et al. (2018). Assumptions 1 and 2 are required in all the theorems in this paper
while Assumption 3 is only required in Theorems 1, 18, and 24.

Theorem 1 Under Assumptions 1-3, conditional on DN , if β̂0 is consistent, then as n0,
n, and N go to infinity,

√
n(β̂uw − β̂wMLE) −→ N

(
0, Σβt

)
, (8)

in distribution; furthermore, if n/N → 0, then

√
n(β̂uw − βt) −→ N

(
0, Σβt

)
(9)

in distribution, where

Σβ =

[
E{φ(β)h(x)xxT}

4Φ(β)

]−1

, Φ(β) = E{φ(β)h(x)}, φ(β) = p(x,β){1− p(x,β)},

and β̂wMLE is a weighted MLE based on the full data defined as

β̂wMLE = arg max
β

N∑
i=1

|yi − p(xi, β̂0)|h(xi)
[
yix

T
i (β − β̂0)− log{1 + ex

T
i (β−β̂0)}

]
. (10)

Here β̂wMLE satisfies that
√
N(β̂wMLE − βt) −→ N

(
0, ΣwMLE

)
, (11)
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in distribution if β̂0 is obtained from a uniform pilot subsample of size n0 such that n0/
√
N =

o(1) or if β̂0 is independent of DN , where

ΣwMLE = [E{φ(βt)h(x)xxT}]−1E{φ(βt)h
2(x)xx}[E{φ(βt)h(x)xxT}]−1.

Remark 2 Theorem 1 shows that the un-weighted estimator β̂uw is
√
n-consistent to β̂wMLE,

a weighted MLE based on the full data in conditional probability, while Theorem 5 of Wang
et al. (2018) shows that the weighted estimator β̂w is

√
n-consistent to β̂MLE, the un-weighted

MLE based on the full data in conditional probability. Specifically, (8) implies that given
DN in probability,

β̂uw − β̂wMLE = OP |DN
(n−1/2). (12)

The OP |DN
(n−1/2) expression in (12) means that for any ε > 0, there exist a δε such that

as n,N →∞,

P
{

sup
n

P(‖β̂uw − β̂wMLE‖ > n−1/2δε|DN ) ≤ ε
}
→ 1.

Note that if a sequence is bounded in conditional probability, then it is bounded in uncon-
ditional probability, i.e., if an = OP |DN

(1), then an = OP (1) (Xiong and Li, 2008; Cheng

and Huang, 2010). Therefore, (12) implies that β̂uw − β̂wMLE = OP (n−1/2). Similarly, (11)
implies that β̂wMLE−βt = OP (N−1/2). Thus, β̂uw−βt = OP (n−1/2 +N−1/2) = OP (n−1/2),
showing the

√
n-consistency of β̂uw to the true parameter under the unconditional distribu-

tion.

Remark 3 For β̂wMLE, if β̂0 is fixed, say β̂0 = β0, then the population log-likelihood for
the objective function in (10) is

E
(
a(x,β,β0)

[
p(x,β − β0)xT(β − β0)− log{1 + ex

T(β−β0)}
])
,

where a(x,β,β0) =
[
p(x,β){1 − p(x,β0)} + {1 − p(x,β)}p(x,β0)

]
h(x). If h(x) = 1,

then this population log-likelihood is identical to that for the local case-control subsampling
estimator. For general h(x), since it does not rely on the response variable, we expect
that β̂wMLE inherits the main properties of the the local case-control subsampling estimator,
including those under model misspecification. Indeed this is the case, and more details for
the scenarios of misspecifications will be presented in Section 7.

Theorem 1 shows that, asymptotically, the distribution of β̂uw given DN is centered
around β̂wMLE with variance-covariance matrix n−1Σβt

, and the distribution of β̂wMLE is
centered around βt with variance-covariance matrix N−1ΣwMLE. Thus, both n−1Σβt

and

N−1ΣwMLE should be considered in accessing the quality of β̂uw for estimating the true
parameter βt. However, in subsampling setting, it is expected that n� N ; otherwise, the
computational benefit is minimum. Thus, n−1Σβt

is the dominating term in quantifying

the variation of β̂uw. If n/N → 0, then the variation of β̂wMLE can be ignored as stated in
(9).
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Now we compare the estimation efficiency of β̂uw with that of the weighted estimator
β̂w. With the optimal subsampling probabilities {πOS

i (β̂MLE)}Ni=1, the asymptotic variance-
covariance matrix (scaled by n), VN , for the weighted estimator β̂w has a form of VOS

N =
M−1

N VOS
NcM

−1
N , where

VOS
Nc =

{
1

N

N∑
i=1

|yi − p(xi, β̂MLE)|h(xi)

}{
1

N

N∑
i=1

|yi − p(xi, β̂MLE)|xixT
i

h(xi)

}
.

Note that the full data MLE β̂MLE is consistent under Assumptions 1-2. If E{‖x‖2/h(x)} <
∞, then from Lemma 28 in the appendix and the law of large numbers, VOS

N converges in
probability to VOS = M−1VOS

c M−1, where

M = E{φ(βt)xxT} and VOS
c = 4Φ(βt)E

{
φ(βt)xxT

h(x)

}
.

Note that the asymptotic distribution of β̂w given DN is centered around β̂MLE. It can
be shown that under Assumptions 1-2,

√
N(β̂MLE − βt) −→ N

(
0,M−1

)
,

in distribution. Thus, both n−1VOS and N−1M−1 should be considered in accessing the
quality of β̂w for estimating the true parameter βt. However, similar to the case for β̂uw,
N−1M−1 is small compared with n−1VOS if n � N , and it is negligible if n/N → 0.
Therefore, the relative performance between β̂uw and β̂w are mainly determined by the
relative magnitude between VOS and Σβt

. We have the following result comparing VOS

and Σβt
.

Proposition 4 If M, VOS
c , and Σβt

are finite and positive definite matrices, then

Σβt
≤ VOS. (13)

Here, the inequality is in the Loewner ordering, i.e., for positive semi-definite matrices A
and B, A ≥ B if and only if A−B is positive semi-definite. If h(x) = 1, then the equality
in (13) holds. Furthermore, note that the asymptotic variance-covariance matrix (scaled by
n) for uniform subsampling estimator is M−1. If βt 6= 0 and h(x) = ‖LM−1x‖ for some
matrix L, then

tr(LΣβt
LT) ≤ tr(LVOSLT) ≤ E{φ(βt)}tr(LM−1LT) < tr(LM−1LT). (14)

Remark 5 This proposition shows that β̂uw is typically more efficient than β̂w in estimat-
ing βt. The numerical results in Section 8 also confirm this. Assume that n/N → ρ. For
the un-weighted estimator, the variation of

√
N(β̂uw − β̂wMLE) is measured by ρ−1Σβt

and

the variation of
√
N(β̂wMLE−βt) is measured by ΣwMLE, while for the weighted estimator the

variation of
√
N(β̂w − β̂MLE) is measured by ρ−1VOS and the variation of

√
N(β̂MLE − βt)

is measured by M−1. Note that Σβt
, ΣwMLE, VOS, and M−1 are all fixed constant matrices

that do not depend on ρ, Σβt
≤ VOS, and ΣwMLE = ΣMLE if Σβt

= VOS. Thus, if ρ is small

enough, β̂uw is more efficient than β̂w in estimating βt, and we do not need to require that
n/N → 0.
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Since the equality in (13) holds if h(x) = 1, this indicates that for subsample obtained from
local case-control subsampling with replacement, the weighted and un-weighted estimators
have the same conditional asymptotic distribution.

4. Poisson subsampling

For the more efficient estimator β̂uw in Section 3 as well as the weighted estimator β̂w, the
subsampling procedure used is sampling with replacement, which is faster to compute than
sampling without replacement for a fixed sample size. In addition, the resultant subsample
are independent and identically distributed (i.i.d.) conditional on the full data. However,
to implement sampling with replacement, subsampling probabilities {πOS

i (β̂0)}Ni=1 need to
be used all at once, and a large amount of random numbers need to be generated all at
once. This may reduce the computational efficiency, and it may require a large RAM to
implement the method. Furthermore, since a data point may be included for multiple times
in the subsample, the resultant estimator may not be the most efficient.

To enhance the computation and estimation efficiency of the subsample estimator, we
consider Poisson subsampling, which is also fast to compute and the resultant subsample
can be independent without conditioning on the full data. Note that for subsampling
with replacement, a resultant subsample is generally not independent, although it is i.i.d
conditional on the full data. As another advantage with Poisson subsampling, there is no
need to calculate subsampling probabilities all at once, nor to generate a large amount of
random numbers all at once. Furthermore, a data point cannot be included in the subsample
for more than one time. A limitation of Poisson subsampling is that the subsample size is
always random. Due to this, we use n∗ to denote the actual subsample size, and abuse the
notation in this section to use n to denote the expected subsample size, i.e., E(n∗) = n.

Note that {πOS
i (β)}Ni=1 depend on the full data through the term in the denominator,∑N

i=1 |yi−p(xi,β)|h(xi). Write ΨN (β) = N−1
∑N

i=1 |yi−p(xi,β)|h(xi), and denote its limit
as Ψ(β) = E{|y − p(x,β)|h(x)}. Note that Ψ(βt) = 2Φ(βt). The pilot subsample can be
used to obtain an estimator of Ψ(βt) to approximate ΨN (β). Let Ψ̂0 be a pilot estimator
of Ψ(βt). Here, we focus on the Poisson subsampling procedure and assume that such Ψ̂0

is available and consistent. We will provide more details on Ψ̂0 in Section 5 and Section 7.

With β̂0 and Ψ̂0 available, the Poisson subsampling procedure is described as the fol-
lowing. For i = 1, ..., N , calculate πpi = |yi − p(xi, β̂0)|h(xi)/(NΨ̂0), generate ui ∼ U(0, 1),
and include (xi, yi, π

p
i ) in the subsample if ui ≤ nπpi . For the obtained subsample, say

{(x∗1, y∗1, π
p∗
1 ), ..., (x∗n∗ , y∗n∗ , π

p∗
n∗)}, calculate

β̃p = arg max
β

`∗p(β) = arg max
β

n∗∑
i=1

(nπp∗i ∨ 1)
{
βTx∗i y

∗
i + log(1 + eβ

Tx∗
i )
}
, (15)

and let β̂p = β̃p + β̂0. Note that here the actual subsample size n∗ is random.

Poisson subsampling does not require to calculate πpi ’s all at once; each πpi is calculated
for each individual data point when scanning through the full data. Thus, one pass through
the data finishes the sampling. For the estimation step, if πpi is large so that nπpi > 1,
then this more informative data point will be given a larger weight, nπpi , in the objective

function in (15). The following theorem describes asymptotic properties of β̂p.

9
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Theorem 6 Under Assumptions 1-2 and assume that β̂0 is consistent, conditional on DN ,
as n0, n, and N go to infinity, if n/N → 0, then

√
n(β̂p − βt) −→ N(0, Σβt

),

in distribution; if n/N → ρ ∈ (0, 1), then

√
n(β̂p − β̂wMLE) −→ N(0, Σβt

ΛρΣβt
), (16)

in distribution, where

Λρ =
E
[
|ψ(βt)|h(x){Ψ(βt)− ρ|ψ(βt)|h(x)}+xxT

]
4Ψ2(βt)

with ψ(β) = y − p(x,β) and Ψ(β) = E{|y − p(x,β)|h(x)}, and ()+ means the positive part
of the quantity, i.e., a+ = aI(a > 0).

Remark 7 Similar to the case of Theorem 1, (16) implies that given DN in probability,
β̂p − β̂wMLE = OP |DN

(n−1/2), which implies that β̂p − β̂wMLE = OP (n−1/2) unconditionally
because if a sequence is stochastically bounded in conditional probability, then it is also
stochastically bounded in unconditional probability (Xiong and Li, 2008; Cheng and Huang,
2010). Since β̂wMLE−βt = OP (N−1/2), we have β̂p−βt = OP (n−1/2+N−1/2) = OP (n−1/2),

showing that β̂p is
√
n-consistent to βt unconditionally on the full data.

Theorem 6 shows that with Poisson subsampling, the asymptotic variance-covariance
matrices may differ for different sampling ratios n/N . In addition, comparing Theorems 1
and 6, we know that β̂uw and β̂p have the same asymptotic distribution if n/N → 0.
This is intuitive because if the sampling ratio n/N is small, sampling with replacement has
close performance to sampling without replacement. However, if the sampling ratio n/N
does not converge to zero, then β̂uw and β̂p have the same asymptotic mean but different
asymptotic variance-covariance matrices. The following result compares the two asymptotic
variance-covariance matrices.

Proposition 8 If ρ > 0 and Σβt
is a finite and positive definite matrix, then

Σβt
ΛρΣβt

< Σβt
,

under the Loewner ordering.

This proposition shows that Poisson subsampling is more efficient than sampling with re-
placement.

5. Pilot estimate and practical implementation

Since {πOS
i (β)}Ni=1 depend on the unknown β, a pilot estimate of β is required to approxi-

mate them. The pilot estimate can be obtained by taking a pilot subsample using uniform
subsampling or case-control subsampling. For uniform subsampling, all subsampling prob-
abilities are equal, while for case-control subsampling, the subsampling probability for the

10
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cases (yi = 1) is different from that for the controls (yi = 0). Let the subsampling proba-
bilities used to take the pilot subsample be

π0i =
c0(1− yi) + c1yi

N
, (17)

where c0 and c1 are two constants that can be used to balance the numbers of 0’s and 1’s
in the responses for the pilot subsample. If c0 = c1 = 1, then π0i = N−1 corresponds to the
uniform subsampling. This choice is recommended due to its simplicity if the proportion of
1’s is close to 0.5 (Wang et al., 2018). If c0 6= c1, then π0i’s are the case-control subsampling
probabilities. This choice is recommended for imbalanced full data. Often, some prior
information about the marginal probability P(y = 1) is available. If ppr is the prior marginal

probability, we can choose c0 = {2(1−ppr)}−1 and c1 = (2ppr)
−1. The pilot estimate β̂0 can

be obtained using the pilot subsample. For uniform subsampling, weighted and un-weighted
estimators are the same. For case-control subsampling, we use un-weighted estimators with
bias correction for both sampling with replacement and Poisson subsampling.

To obtain a final estimator, Wang et al. (2018) pooled the pilot subsample with the sec-
ond stage subsample taken using approximated optimal subsampling probabilities. While
this does not make a difference asymptotically since n0 is typically a small term compared
with n, i.e., n0 = o(n), using the pilot subsample helps to improve the finite sample per-
formance in practical applications. However, pooling the raw samples may not be the most
computationally efficient way of utilizing the pilot subsample. Since β̂0 is already calcu-
lated, we can use it directly to improve the second stage estimator using the aggregation
procedure in the divide-and-conquer method (Lin and Xie, 2011; Schifano et al., 2016). This
avoids iterative calculations on the pilot subsample for the second time.

For subsampling with replacement, when the full data cannot be loaded into available
RAM, special considerations have to be given in practical implementation. If the full data is
larger than available RAM while subsampling probabilities {πOS

i (β̂0)}Ni=1 can still be loaded
in available RAM, one can calculate {πOS

i (β̂0)}Ni=1 by reading the data from hard drive line-
by-line or block-by-block, generate row indexes for a subsample, and then scan the data
line-by-line or block-by-block to take the subsample. A detailed procedure is provided in
Section A of the appendix.

For Poisson subsampling, the pilot subsample can also be used to construct Ψ̂0 to
approximate ΨN (β). We use the following expression to obtain Ψ̂0.

Ψ̂0 =
1

N

n∗
0∑

i=1

|y∗0i − p(x∗0i , β̂0)|h(x∗0i )

(n0π∗0i) ∧ 1
, (18)

where (x∗0i , y
∗0
i )’s are observations in the pilot subsample. If h(x) = ‖LM−1

N x‖ for some L,
then the pilot subsample is used to approximate MN through

M̂0 =
1

N

n∗
0∑

i=1

φ∗0i (β̂0)x∗0i (x∗0i )T

(n0π∗0i) ∧ 1
,

where φ∗0i (β) = p(x∗0i ,β){1 − p(x∗0i ,β)}. It can be verified that Ψ̂0 and M̂0 converge in
probability to Ψ(βt) and M, respectively.

11
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Taking into account all aforementioned issues in this section, including how to obtain
pilot estimates, how to combine them with the second stage estimates, as well as how to
process data file line-by-line, we summarize practical implementation procedures in Algo-
rithm 1 for sampling with replacement and in Algorithm 2 for Poisson subsampling.

Algorithm 1 More efficient estimation based on subsampling with replacement

Step 1: obtain the pilot β̂0

(1) Take pilot subsample (x∗0i , y
∗0
i ), i = 1, ..., n0 using sampling with replacement accord-

ing to subsampling probabilities {π0i}Ni=1 in (17).

(2) Calculate

β̃0 = arg max
β

`∗0uw(β) = arg max
β

n0∑
i=1

{
βTx∗0i y

∗0
i − log

(
1 + eβ

Tx
∗0
i
)}
,

and let β̂0 = β̃0 + b, where b = {log(c0/c1), 0, ..., 0}T.

Step 2: obtain the more efficient estimator β̂uw

(1) Calculate {πOS
i (β̂0)}Ni=1 defined in equation (4); take subsample (x∗i , y

∗
i ), i = 1, ..., n

according to sampling probabilities {πOS
i (β̂0)}Ni=1 using sampling with replacement.

(2) Calculate

β̃uw = arg max
β

`∗uw(β) = arg max
β

n∑
i=1

{
βTx∗i y

∗
i − log

(
1 + eβ

Txi
)}
,

and let β̂uw = β̃uw + β̂0.

Step 3: combine the two estimators β̂0 and β̂uw

Calculate

β̌uw = {῭∗0uw(β̃0) + ῭∗
uw(β̃uw)}−1{῭∗0uw(β̃0)β̂0 + ῭∗

uw(β̃uw)β̂uw},

where ῭∗0
uw(β̃0) =

∑n0
i=1 φ

∗0
i (β̃0)x∗0i (x∗0i )T, ῭∗

uw(β̃uw) =
∑n

i=1 φ
∗
i (β̃uw)x∗i (x

∗
i )

T, and
φ∗i (β) = p(x∗i ,β){1− p(x∗i ,β)}. .

The variance-covariance matrix of β̌uw can be estimated by

V̂(β̌uw) = {῭∗0uw(β̃0) + ῭∗
uw(β̃uw)}−1

[ n0∑
i=1

{ψ∗0i (β̃0)}2x∗0i (x∗0i )T

+

n∑
i=1

{ψ∗i (β̃uw)}2x∗i (x∗i )T

]
{῭∗0uw(β̃0) + ῭∗

uw(β̃uw)}−1, (19)

where ψ∗i (β) = y∗i − p(x∗i ,β).

12
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Algorithm 2 More efficient estimation based on Poisson subsampling

Step 1: obtain the pilots β̂0 and Ψ̂0

(1) For i = 1, ..., N , calculate π0i = c0(1−yi)+c1yi
N , generate u0i ∼ U(0, 1), and add

(xi, yi, πi1) in the subsample if u0i ≤ n0π0i.

(2) For the obtained subsample, say (x∗0i , y
∗0
i , π

∗0
0i ), i = 1, ..., n∗0, calculate

β̃0 = arg max
β

`∗0p (β) = arg max
β

n∗
0∑

i=1

(nπ∗00i ∨ 1)
{
βTx∗0i y

∗0
i + log

(
1 + eβ

Tx
∗0
i
)}
,

let β̂0 = β̃0 + b, and then calculate Ψ̂0 in equation (18).

Step 2: obtain the more efficient estimator β̂p

(1) For i = 1, ..., N , calculate πpi = |yi−p(xi,β̂0)|h(xi)

NΨ̂0
, generate ui ∼ U(0, 1), and if ui ≤ nπpi

add (xi, yi, π
p
i ) in the subsample.

(2) For the obtained subsample, say {(x∗1, y∗1, π
p∗
1 ), ..., (x∗n∗ , y∗n∗ , π

p∗
n∗)}, calculate

β̃p = arg max
β

`∗p(β) = arg max
β

n∗∑
i=1

(nπp∗i ∨ 1)
{
βTx∗i y

∗
i + log(1 + eβ

Tx∗
i )
}
,

and let β̂p = β̃p + β̂0.

Step 3: combine the two estimators β̂0 and β̂p

Calculate

β̌p = {῭∗0p (β̃0) + ῭∗
p(β̃p)}−1{῭∗0p (β̃0)β̂0 + ῭∗

p(β̃p)β̂p},

where ῭∗0
p (β̃0) =

∑n∗
0
i=1 φ

∗0
i (β̃0)x∗0i (x∗0i )T and ῭∗

p(β̃p) =
∑n∗

i=1 φ
∗
i (β̃p)x

∗
i (x
∗
i )

T.

The variance-covariance matrix of β̌p can be estimated by

V̂(β̌p) = {῭∗0p (β̃0) + ῭∗
p(β̃p)}−1

[ n∗
0∑

i=1

{ψ∗0i (β̃0)}2x∗0i (x∗0i )T

+

n∗∑
i=1

{ψ∗i (β̃p)}2x∗i (x∗i )T

]
{῭∗0p (β̃0) + ῭∗

p(β̃p)}−1. (20)
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Remark 9 In Algorithm 1 and Algorithm 2, if n0 = o(n), then the results for β̂uw in
Theorem 1 hold for β̌uw and the results for β̂p in Theorem 6 hold for β̌p as well. This is be-

cause {῭∗0uw(β̃0)+ ῭∗
uw(β̃uw)}−1 ῭∗0

uw(β̃0)
√
n(β̂0−βt) = Op(

√
n0/
√
n) = oP (1) and {῭∗0uw(β̃0)+

῭∗
uw(β̃uw)}−1 ῭

uw(β̃uw)→ 1 in probability. The reason for β̌p is similar.

Remark 10 In Algorithm 1 and Algorithm 2, to combine the two stage estimates using
the second derivative of the objective functions, the inconsistent estimators β̃0, and β̃uw or
β̃p should be used, because their limits correspond to the terms in the asymptotic variance-
covariance matrices of the more efficient estimators. This is an advantage of the proposed
estimators for implementation using existing software that fit logistic regression. One can
use the inverse of the estimated variance-covariance matrix from the software output to
replace the second derivative of the objective function.

Remark 11 The variance-covariance estimators V̂(β̌uw) in (19) and V̂(β̌p) in (20) can be
replaced by the following simplified estimators,

V̂s(β̌uw) = {῭∗0uw(β̃0) + ῭∗
uw(β̃uw)}−1 and V̂s(β̌p) = {῭∗0p (β̃0) + ῭∗

p(β̃p)}−1,

respectively. If the subsampling ratio n/N is much smaller than one, then V̂s(β̌uw) and
V̂s(β̌p) perform very similarly to V̂(β̌uw) and V̂(β̌p), respectively.

Remark 12 The time complexity of Algorithm 1 is the same as that of Algorithm 2 in
Wang et al. (2018). The major computing time is to calculate {πOS

i (β̂0)}Ni=1 in Step 2, but
it does not require iterative calculations on the full data. Once {πOS

i (β̂0)}Ni=1 are available,
the calculations of β̂uw and β̌uw are fast because they are done on the subsamples only. To
calculate {πOS

i (β̂0)}Ni=1, the required time varies. For πLopt
i , the required time is O(Nd); for

πAopt
i , the required time is O(Nd2). Thus, the time complexity of Algorithm 1 with πLopt

i is

O(Nd) and the time complexity with πAopt
i is O(Nd2), if the sampling ratio n/N is much

smaller than one.

6. Unconditional distribution

Asymptotic distributional results in Sections 3 and 4, as well as in Wang et al. (2018), are
about conditional distributions, i.e., they are about conditional distributions of subsample-
based estimators given the full data. We investigate the unconditional distribution of β̂p in
this section.

Theorem 13 Under Assumptions 1 and 2, if the pilot estimators are obtained from a uni-
form subsample of sample size n0 = o(

√
N) and E{h3(x)‖x‖3}, E{h3(x)‖x‖2}, E{h(x)‖x‖3},

and E{h2(x)} are finite, or if β̂0 and Ψ̂0 are independent of the data DN , then as n0, n,
and N go to infinity such that n/N → ρ ∈ [0, 1), we have

√
n(β̂p − βt) −→ N(0, Σβt

ΛuΣβt
), (21)

in distribution, where

Λu =
E[|ψ(βt)|{ρ|ψ(βt)|h(x) ∨Ψ(βt)}h(x)xxT]

4Ψ2(βt)
.
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Remark 14 If the pilot estimators β̂0 and Ψ̂0 are obtained through the full data DN ,
stronger moment conditions are required. Note that h(x) is often a function of the norm of x,
such as in πLopt

i , πAopt
i , and the local case-control subsampling. In general, if h(x) = ‖Ax‖a

for some matrix A and constant a ≥ 0, then the four additional moment conditions reduce
to one requirement of E{h3(x)‖x‖3} <∞.

Remark 15 If ρ|ψ(βt)|h(x) ≤ Ψ(βt) almost surely, then Λu reduced to Σ−1
βt

and as a result
Σβt

ΛuΣβt
reduces to Σβt

. Furthermore, if the subsampling probabilities are propositional
to the local case-control subsampling probabilities, i.e., h(x) = 1, then Σβt

ΛuΣβt
reduces to

4E{φ(β)}M−1. For the uniform Poisson subsampling estimator, the unconditional asymp-
totic variance-covariance matrix (scaled by n) is M−1. From (14), with the same expected
subsample size, the proposed method has a higher estimation efficiency than subsampling
proportional to the local case-control subsampling probabilities, which is more efficient than
the uniform Poisson subsampling approach.

Remark 16 Fithian and Hastie (2014)’s investigation corresponds to the case of h(x) = 1
and ρ = 2E{φ(βt)}. For this scenario in Theorem 13, the asymptotic variance-covariance
matrix of β̂p reduces to 2N−1M−1, which is the same as obtained in Fithian and Hastie
(2014). This result is particularly neat in the fact that this asymptotic variance-covariance
matrix is proportional to that from the full data MLE with a multiplier of 2. The result in
Theorem 13 is more general. It shows that if h(x) = 1, then as long as ρ|ψ(βt)| ≤ 2E{φ(βt)}
(which is satisfied if ρ = 2E{φ(βt)}), the asymptotic variance-covariance matrix of β̂p can
be written as

4E{φ(βt)}
ρN

M−1,

which is proportional to that of the full data MLE with a multiplier of 4ρ−1E{φ(βt)}. We
need to emphasize that this simple representation holds only when ρ|ψ(βt)| ≤ 2E{φ(βt)} al-
most surely. If the subsampling ratio ρ gets closer to one, the asymptotic variance-covariance
matrix in (21) may not be simplified.

From Theorems 6 and 13, the conditional asymptotic distribution and unconditional
asymptotic distribution of β̂p are the same if n/N → 0. This is intuitive, because if the

sampling ratio n/N is small, the variation of β̂p due to the variation of the full data is
small compared with the variation due to the variation of the subsampling. However, if the
sampling ratio n/N does not converge to zero, then the conditional asymptotic distribution
and unconditional asymptotic distribution of β̂p are quite different. First, we notice that

under the unconditional distribution, β̂p is asymptotically unbiased to βt, while under the

conditional distribution, β̂p is asymptotically biased with the bias being β̂wMLE − βt =

OP (N−1/2). Second, since the variation of β̂p due to the variation of the full data is not
negligible, we expect that the asymptotic variance-covariance matrix for the unconditional
distribution to be larger than that for the conditional distribution. Indeed this is true, and
we present it in the following proposition.

Proposition 17 If ρ > 0 and Σβt
is a finite and positive definite matrix, then

Σβt
ΛuΣβt

≥ Σβt
> Σβt

ΛρΣβt
, (22)
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under the Loewner ordering. Furthermore, if P{ρ|ψ(βt)|h(x) > Ψ(βt)} > 0, then the “≥”
sign in (22) can be replaced by “>”, the strict great sign.

Fithian and Hastie (2014) obtained unconditional distribution of local case-control es-
timator by assuming that the pilot estimate is independent of the data. Our Theorem 13
includes this scenario, and the required assumptions are the same as those required in
Fithian and Hastie (2014). In practice, a consistent pilot estimator that is independent
of the data may not be available and a pilot subsample from the full data is required to
construct it. For this scenario, a pilot estimator is dependent on the data, and we need
a stronger moment condition to establish the asymptotic normality. For local case-control
subsampling, h(x) = 1, and the additional moment requirement is that E(‖x‖3) <∞.

7. Misspecifications

In this section, we discuss the effect when the pilot estimates are misspecified or when the
model is misspecified. Pilot estimates misspecification often occurs when they are from
other data sources or when they are calculated based on convenient subsamples, e.g., using
the first n0 observations in the full data to calculate them. In these cases, it is reasonable
to assume that the pilot estimates are independent of DN and we use this assumption in
this section.

7.1. Pilot estimates misspecification

Here, we assume that the model is correctly specified but the pilot estimates β̂0 and Ψ̂0

converge to limits that are different from the true parameters for the current data. Interest-
ingly, in this case, the proposed estimators are still consistent and no specific convergence
rate is required for β̂0 or Ψ̂0.

The following theorem describes the asymptotic distribution of β̂uw, the estimator based
on subsampling with replacement. Note that Ψ̂0 is not required by β̂uw.

Theorem 18 When the logistic regression model in (1) is correctly specified and the pilot
estimator β̂0 that is independent of DN is inconsistent, i.e., β̂0 → β0 in probability for
some β0 that is different from βt, then under Assumptions 1-3, conditional on DN , as n,
and N go to infinity,

√
n(β̂uw − β̂wMLE) −→ N

{
0, Ψ(β0)ς−1

a

}
,

in distribution; furthermore, if n/N → 0, then

√
n(β̂uw − βt) −→ N

{
0, Ψ(β0)ς−1

a

}
,

in distribution, where Ψ(β0) = E{|ψ(β0)|h(x)} and

ςa = E[{1− p(x,βt)}p(x,β0)p(x,βt − β0)h(x)xxT].

Here β̂wMLE satisfies that,

√
N(β̂wMLE − βt) −→ N

(
0, ς−1

a ςbς
−1
a

)
,
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in distribution, where

ςb = E
{
φ(β0)φ(βt − β0)h2(x)xxT

}
.

Remark 19 If β0 = βt, then direct calculations show that Ψ(β0)ς−1
a = Σβt

and ς−1
a ςbς

−1
a =

ΣwMLE, that is, the results in Theorem 18 reduce to the same results in Theorem 1.

Remark 20 If the pilot estimator β̂0 is very wrong such that βT
t xxTβ0 < 0, i.e., p(x,βt) >

0.5 > p(x,β0) or p(x,βt) < 0.5 < p(x,β0), then it can be shown that

Ψ(β0)ς−1
a > Σβt

.

Detailed proof for this result is presented in Section B.4.1 of the appendix.

The following theorem describes the asymptotic distribution of β̂p, the estimator based

on Poisson subsampling. Note that β̂p requires both β̂0 and Ψ̂0.

Theorem 21 Assume that the logistic regression model is correctly specified, and the pilot
estimators β̂0 and Ψ̂0 are independent of DN and they are inconsistent, i.e., β̂0 → β0

and Ψ̂0 → Ψ0 in probability for some β0 and Ψ0, respectively. Under Assumptions 1-2,
conditional on DN , as n and N go to infinity, if n/N → 0, then

√
n(β̂p − βt) −→ N

(
0, Ψ0ς

−1
a

)
,

in distribution; if n/N → ρ, then

√
n(β̂p − β̂wMLE) −→ N

(
0, Ψ0ς

−1
a ςcς

−1
a

)
,

in distribution, where

ςc = E
[
|ψ(β0)|

{
1− ρΨ−1

0 |ψ(β0)|h(x)
}

+
ψ2(βt − β0)h(x)xxT

]
.

Remark 22 If β0 = βt and Ψ0 = Ψ(βt), then direct calculations show that Ψ−1
0 ςc = Λρ,

and thus the results in Theorem 21 reduce to the same results in Theorem 6.

Remark 23 We have a result similar to that in Proposition 8. By direct calculation, we
know that

ςc < E
[
|ψ(β0)|ψ2(βt − β0)h(x)xxT

]
= ςa,

under the Loewner ordering, which indicates that

Ψ0ς
−1
a ςcς

−1
a < Ψ0ς

−1
a .

Thus, when the pilot estimators are misspecified, Poisson subsampling still has a higher
estimation efficiency compared with subsampling with replacement if Ψ0 = E{|ψ(β0)|h(x)},
which is the case if Ψ̂0 is constructed from a pilot subsample.
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7.2. Model misspecification

In this section, we consider the case when the logistic regression model is misspecified,
namely, the model in (1) is not correct. Instead, we assume that the true probability of
y = 1 given x is

P(y = 1|x) = pt(x),

for some unknown function pt(x). When the logistic regression model is misspecified, we
need to define the meaning of consistency because there is no true β any more. In this case,
consistency often means that the estimator converges to a limit that minimizes expected
loss with respect to a specified loss function. Here, if we denote the limit as βl and define
it to be the minimizer of

E
{
− pt(x)h(x)xTβ + h(x) log

(
1 + eβ

Tx
)}
,

then βl satisfies

E
[{
pt(x)− p(x,βl)

}
h(x)x

]
= 0,

where p(x,β) = ex
Tβ(1 + ex

Tβ)−1.
Now we investigate the asymptotic properties of the proposed estimators under model

misspecification. In this case, we need to assume that the pilot estimators are consistent
which is also required in the local case-control subsampling method. In addition, to inves-
tigate the asymptotic normality, we also need an additional assumption on the convergence
rate of the pilot estimator β̂0.

The following theorem describes the asymptotic behavior of the estimator β̂uw based
on subsampling with replacement.

Theorem 24 Assume that the pilot sample is independent of DN and the pilot estimator
β̂0 satisfies that

√
n0(β̂0 − βl) → N(0,Σ0) in distribution. Under Assumptions 1-3, if

n0/N → ρ0 and n/N → ρ with ρ0, ρ ∈ (0, 1), then conditional on DN , as n0, n, and N go
to infinity,

√
n(β̂uw − β̂wMLE) −→ N

(
0, ωκ−1

a

)
(23)

in distribution, where

κa =
1

4
E
[
{pt(x)− 2pt(x)p(x,βl) + p(x,βl)}h(x)xxT

]
,

ω = E
[
{pt(x)− 2pt(x)p(x,βl) + p(x,βl)}h(x)

]
,

and β̂wMLE satisfies that

√
N(β̂wMLE − βl) −→ N

{
0, κ−1

a

(
κb + ρ−1

0 κcΣ0κc
)
κ−1
a

}
, (24)

in distribution, with

κb =
1

4
E
[
{pt(x)− 2pt(x)p(x,βl) + p2(x,βl)}h2(x)xxT

]
, and

κc =
1

4
E
[
{1− 2p(x,βl)}{pt(x)− p(x,βl)}h(x)xxT

]
.
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Remark 25 If the model is correctly specified, i.e., pt(x) = p(x,βt), then ωκ−1
a = Σβt

,
κb = 1

4E
{
φ(βt)h

2(x)xxT
}

and κc = 0, and therefore the results in Theorem 24 reduce to
the same expressions as those in Theorem 1.

From Theorem 24, with model misspecification, it is critical to have a good pilot estima-
tor β̂0. Note that the pilot sample size is typically much smaller than the full data sample
size, so ρ0 can be close to zero. From (24), we see that the asymptotic variance-covariance
matrix of β̂wMLE can be inflated by a small pilot sample size.

The following theorem presents asymptotic results for the estimator based on Poisson
subsampling.

Theorem 26 Assume that the pilot sample is independent of DN and the pilot estimators
satisfy that

√
n0(β̂0 − βl) → N(0,Σ0) in distribution and Ψ̂0 → ω in probability. Under

Assumptions 1-2, if n0/N → ρ0 and n/N → ρ with ρ0, ρ ∈ (0, 1), then conditional on DN ,
as n0, n, and N go to infinity,

√
n(β̂p − β̂wMLE) −→ N

(
0, κ−1

a κdκ
−1
a

)
.

in distribution, where κa and κb are defined in Theorem 24, and

κd =
1

4
E
[
|ψ(βl)|{1− ρω−1|ψ(βl)|h(x)}+h(x)xxT

]
.

Remark 27 Similarly to Proposition 8, we have that

κ−1
a κdκ

−1
a < κ−1

a

under the Loewner ordering, indicating that the estimator based on Poisson subsampling
has a smaller conditional variance-covariance matrix.

For Poisson subsampling, compared with β̂0, we require a much weaker assumption on
Ψ̂0; we only need it to converge without specifying certain convergence rate. The reason
is that the effect of Ψ̂0 on all the subsampling probabilities are the same and it mainly
controls the expected subsample size, while β̂0 affects individual subsampling probabilities
differently corresponding to different values of xi and yi.

8. Numerical evaluations

We evaluate the performance of the more efficient estimators in terms of both estimation
efficiency and computational efficiency in this section.

8.1. Estimation efficiency

In this section, we use numerical experiments based on simulated and real data sets to
evaluate the estimators proposed in this paper. For simulation, to compare with the original
OSMAC estimator, we use exactly the same setup used in Section 5.1 of Wang et al.
(2018). Specifically, the full data sample size N = 10, 000 and the true value of β, βt,
is a 7 × 1 vector of 0.5. The following 6 distributions of x are considered: multivariate
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normal distribution with mean zero (mzNormal), multivariate normal distribution with
nonzero mean (nzNormal), multivariate normal distribution with mean zero and unequal
variances (ueNormal), mixture of two multivariate normal distributions with different means
(mixNormal), multivariate t distribution with degrees of freedom 3 (T3), and exponential
distribution (EXP). Detailed explanations of these distributions can be found in Section 5.1
of Wang et al. (2018).

To evaluate the estimation performance of the new estimators compared with the original
weighted OSMAC estimator, we define the estimation efficiency of β̌new relative to β̌w as

Relative Efficiency =
MSE(β̌w)

MSE(β̌new)
,

where β̌new = β̌uw for the subsampling with replacement estimator described in Algorithm 1
and β̌new = β̌p for Poisson subsampling estimator described in Algorithm 2. We calculate
empirical MSEs from S = 1000 subsamples using

MSE(β̌) =
1

S

S∑
s=1

‖β̌(s) − βt‖2, (25)

where β̌
(s)

is the estimate from the s-th subsample. We fixed the first step sample size
n0 = 200 and choose n to be 100, 200, 400, 600, 800, and 1000. This is the same setup used
in Wang et al. (2018).

Figure 1 presents the relative efficiency of β̌uw and β̌p based on two different choices

of πOS
i : πAopt

i and πLopt
i . It is seen that in general β̌uw and β̌p are more efficient than

β̌w. Among the six cases, the only case that β̌w can be more efficient is when x has a T3

distribution and πLopt is used, but the difference is not very significant. For all other cases,
β̌uw and β̌p are more efficient. For example, when x has the nzNormal distribution, β̌p can

be 250% as efficient as β̌w if πAopt is used. Between β̌uw and β̌p, β̌p is more efficient than

β̌uw for all cases. We also calculate the empirical unconditional MSE by generating the full
data in each repetition of the simulation. The results are similar and thus are omitted.

To evaluate the performance of the proposed method with different choices of the sub-
sampling probabilities for subsampling with replacement and Poisson subsampling, Figure 2
plots empirical MSEs of using πAopt, πLopt, πlcc (local case-control), and the uniform sub-
sampling probability. In general, πAopt with Poisson subsampling has the smallest empirical
MSEs while uniform subsampling with replacement has the worst estimation efficiency. This
agrees with our theoretical results: 1) πAopt minimizes the asymptotic MSE of the parame-
ter estimator which corresponds to the empirical MSE defined in (25) for the experiments,
while πLopt minimizes the asymptotic MSE of a transformed parameter estimator, and 2)
Poisson subsampling has a higher estimation efficiency compared with subsampling with
replacement.

To assess the performance of V̂(β̌uw) in (19) and V̂(β̌p) in (20), we use tr{V̂(β̌uw)}
and tr{V̂(β̌p)} to estimate the MSEs of β̌uw and β̌p, and compare the average estimated
MSEs with the unconditional empirical MSEs. We focus on the unconditional MSE because
conditional inference may not be appropriate if n/N is not small enough. Figure 3 presents
the results for using πLopt. Results for using πAopt are similar and thus are omitted. Note
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that our purpose here is to evaluate the quality of V̂(β̌uw) in (19) and V̂(β̌p) in (20), so in
this figure we plot the original empirical and estimated MSEs without scaling then using
the MSEs of β̌w. Here, a closer value between the estimated MSE and the empirical MSE
indicates a better performance of V̂(β̌uw) or V̂(β̌p). From Figure 3, the estimated MSEs are
very close to the empirical MSEs, except for the case of nzNormal covariate for subsampling
with replacement. In this case, the responses are imbalanced with about 95% being 1’s.
For this scenario, the variance-covariance estimator for β̌w proposed in Wang et al. (2018)
also has a similar problem of underestimation. For Poisson subsampling, the problem of
underestimation from V̂(β̌p) is not significant.

We also apply the more efficient estimation methods to a supersymmetric (SUSY) bench-
mark data set (Baldi et al., 2014) available from the Machine Learning Repository (Dua
and Karra Taniskidou, 2017). The data set contains a binary response variable indicating
whether a process produces new supersymmetric particles or not and 18 covariates that are
kinematic features about the process. The full sample size is N = 5, 000, 000 and the data
file is about 2.4 gigabytes. About 54.24% of the responses in the full data are from the
background process. We use the more efficient estimation methods with subsample size n
to estimate parameters in logistic regression.

Figures 4 gives the relative efficiency of β̌uw and β̌p to β̌w for both πLopt
i and πAopt

i . It

is seen that when πAopt
i are used, β̌uw and β̌p always outperform β̌w. When πLopt

i are used,

β̌uw and β̌p may not be as efficient as β̌w, but they become more efficient when the second

stage sample size n gets larger. It is also seen that β̌p dominates β̌uw and πAopt dominates

πLopt in estimation efficiency.
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Figure 1: Relative efficiency for different second step subsample size n with the first step
subsample size being fixed at n0 = 200. A relative efficiency larger than one means
the associate method is more efficient than the original OSMAC estimator.
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Figure 2: MSE for different subsampling probabilities with second step subsample size n
and a fixed first step subsample size n0 = 200. Logarithm is taken on MSEs for
better presentation.
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Figure 3: Empirical and estimated MSEs for different second step subsample size n based
on πLopt with the first step subsample size being fixed at n0 = 200.
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Figure 4: Relative efficiency for the SUSY data set with n0 = 200 and different second
step subsample size n. The gray horizontal dashed line is the reference line when
relative efficiency is one.

8.2. Computational efficiency

We consider the computational efficiency of the more efficient estimation methods in this
section. Note that they have the same order of computational time complexity, so they
should have similar computational efficiency as the weighted estimator. For Poisson sub-
sampling, there is no need to calculate {πpi }Ni=1 all at once and random numbers can be
generated on the go, so it requires less RAM and may require less CPU times as well. To
confirm this, we record the computing time of implementing each of them for the case when
x is mzNormal. All methods are implemented in the R programming language (R Core
Team, 2017), and computations are carried out on a desktop running Ubuntu Linux 16.04
with an Intel I7 processor and 16GB RAM. Only one logical CPU is used for the calculation.
We set the value of d to d = 50, the values of N to be N = 104, 105, 106 and 107, and the
subsample sizes to be n0 = 200 and n = 1000.

Table 1 gives the required CPU times (in seconds) to obtain β̌w, β̌uw, and β̌p, using

πLopt
i and πAopt

i . The computing times for using the full data (Full) are also given for
comparisons. It is seen that β̌uw and β̌p are a little faster than β̌w but the advantages are

not very significant. The reason is that the original OSMAC estimator β̌uw pools the pilot
subsample with the second stage subsample and performs iterative calculations on the pilot
subsample twice, while the proposed method combines the pilot estimator with the second
stage estimator which only requires iterative calculations on the pilot subsample once. Since
the pilot subsample size is small, the difference is not significant. Note that these times
are obtained when all the calculations are done in the RAM, and only the CPU times for
implementing each method are counted while the time to generate the data is not counted.
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Table 1: CPU seconds when the full data are generated and kept in the RAM. Here n0 =
200, n = 1000, and the full data size N varies; the covariates are from a d = 50
dimensional multivariate normal distribution.

Method N
104 105 106 107

πLopt
i , β̌w 0.14 0.13 0.45 5.24

πLopt
i , β̌uw 0.08 0.11 0.41 3.71

πLopt
i , β̌p 0.08 0.11 0.43 3.88

πAopt
i , β̌w 0.13 0.32 3.31 35.15

πAopt
i , β̌uw 0.12 0.31 3.29 34.98

πAopt
i , β̌p 0.12 0.31 3.29 35.06

Full 0.15 1.62 15.05 247.89

For big data problem, it is common that the full data are larger than the size of the
available RAM, and full data can not be loaded into the RAM. For this scenario, one has to
load the data into RAM line-by-line or block-by-block. Note that communication between
CPU and hard drive is much slower than communication between CPU and RAM. Thus,
this will dramatically increase the computing time. To mimic this situation, we store the
full data on hard drive and use readlines() function to process data 1000 rows each time.
We also use a smaller computer with 8GB RAM to implement the method. For the case
when N = 107, the full data is about 9.1GB which is larger than the available RAM.

The computing times when data are scanned from hard drive are reported Table 2.
Here the computing times can be over thousand times longer than those when data are
loaded into RAM. Note that these computing times can be reduced dramatically if we
use some other programming language like C++ (Stroustrup, 1986) or Julia (Bezanson
et al., 2017). However, for fair comparisons, we use the same programming language R
here. Furthermore, our main purpose here is to demonstrate the computational advantage
of subsampling so the real focus is on the relative performance among different methods.
From Table 2, it is seen that using πAopt does not cost much more time than using πLopt.
The reason for this observation is that the major computing time is spent in data processing
and the computing times used in calculating the subsampling probabilities are short. We
also notice that Poisson subsampling is more computational efficient than subsampling with
replacement since it calculates subsampling probabilities and generates random numbers on
the go and requires one time less to scan the full data. Poisson subsampling only used about
2% of the time required by implementing the full data approach.
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Table 2: CPU seconds when the full data are scanned from hard drive. Here n0 = 200,
n = 1000, and the full data size N varies; the covariates are from a d = 50
dimensional multivariate normal distribution.

Method N
104 105 106 107

πLopt
i , β̌w 4.26 41.60 441.46 4374.94

πLopt
i , β̌uw 4.13 41.42 413.09 4384.99

πLopt
i , β̌p 2.77 27.58 272.32 2699.13

πAopt
i , β̌w 4.43 41.75 434.96 4393.38

πAopt
i , β̌uw 4.10 41.83 417.55 4369.04

πAopt
i , β̌p 2.88 27.93 273.24 2719.51

Full 139.46 1411.78 14829.63 138134.69

9. Summary

In this paper, we have proposed a new un-weighted estimator for logistic regression based
on an OSMAC subsample. We have derived conditional asymptotic distribution of the
new estimator which has a smaller variance-covariance matrix compared with the weighted
estimator.

We have also investigated the asymptotic properties if Poisson subsampling is used, and
showed that the resultant estimator has the same conditional asymptotic distribution if
the subsampling ratio converges to zero. However, if the subsampling ratio converges to
a positive constant, the estimator based on Poisson subsampling has a smaller variance-
covariance matrix.

In addition, we have derive the unconditional asymptotic distribution for the proposed
estimator based on Poisson subsampling. Interestingly, if the subsampling ratio converges
to zero, the unconditional asymptotic distribution is the same as the conditional asymptotic
distribution, indicating that the variation of the full data can be ignored. If the subsampling
ratio does not converge to zero, the unconditional asymptotic distribution has a larger
variance-covariance matrix. Our results also include the local case-control sampling method.
With a stronger moment condition that the third moment of the covariate is finite, we do
not require the pilot estimate to be independent of the data.

Furthermore, we have proved consistency and asymptotic normality for the proposed
estimators under two types of misspecifications: one is that pilot estimators are inconsistent,
and the other is that the logistic regression model is misspecified.
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Appendix A. Subsampling with replacement from hard drive

If the full data can be loaded into available RAM, subsampling probabilities can be calcu-
lated in RAM and subsampling with replacement can be implemented directly. Otherwise,
special considerations have to be given in practical implementation. If the full data is larger
than available RAM while subsampling probabilities {πOS

i (β̂0)}Ni=1 can still be loaded in
available RAM, one can calculate {πOS

i (β̂0)}Ni=1 by scanning the data from hard drive line-
by-line or block-by-block, generate row indexes for a subsample, and then scan the data
line-by-line or block-by-block to take the subsample. To be specific, one can draw a subsam-
ple, say {idx1, ..., idxn}, from {1, ..., N}, sort the indexes to have {idx(1), ..., idx(n)}, and
then use the Algorithm 3 to scan the data line-by-line or block-by-block in order to obtain
the subsample.

Algorithm 3 Obtain the subsample with the given indexes by scanning through the full
data

Input: data file, subsample indexes {idx(1), ..., idx(n)}.
i← 1
j ← 1
while i ≤ N and j ≤ n do

readline(data file)
if i == idx(j) then

include the i-th data point into the subsample
while i == idx(j) do
j ← j + 1

end while
end if
i← i+ 1

end while

Clearly, Algorithm 3 takes no more than linear time to run. Here, we assume that a
generic function readline() reads a single line (or multiple lines) from the data file and
stop at the beginning of the next line (or next block) in the data file. No calculation is
performed on a data line if it is not included in the subsample. Such functionality is provided
by most programming languages. For example, Julia (Bezanson et al., 2017) and Python
(van Rossum, 1995) has a function readline() that read a file line-by-line; R (R Core
Team, 2017) has a function readLines() that read one or multiple lines; C (Kernighan and
Ritchie, 1988) and C++ (Stroustrup, 1986) has a function getline() to read one line at a
time.

Appendix B. Proofs and technical details

In this appendix, we provide proofs for the results in the paper. Technical details related
to sampling with replacement in Section 3 are presented in Section B.1; technical details
related to Poisson subsampling in Section 4 are presented in Section B.2; technical details
related to unconditional results in Section 6 are presented in Section B.3; and technical
details related to model misspecification in Section 7 are presented in Section B.4.1.
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B.1. Proofs for subsampling with replacement

In this section we prove the results in Section 3. For ease of presentation, we use notation
λ to denote the log-likelihood shifted by β̂0. For the subsample, λ∗uw(β) = `∗uw(β − β̂0).
Denote the first and second derivatives of λ∗uw(β) as λ̇∗uw(β) = ∂λ∗uw(β)/∂β and λ̈∗uw(β) =
∂2λ∗uw(β)/(∂β∂βT).

Note that from Xiong and Li (2008); Cheng and Huang (2010), the fact that a sequence
converges to 0 in conditional probability is equivalent to the fact that it converges to 0 in
unconditional probability. This can also be proved directly by using the fact the probability
measure is bounded by 1. Thus, in the following, we will use oP (1) to denote a sequence
converging to 0 in probability without stating whether the underlying probability measure
is conditional or unconditional.

We first present some lemmas that will be used to prove Theorem 1, and provide their
proofs in Sections B.1.2 - B.1.5.

Lemma 28 Let v1, ...,vN be i.i.d. random vectors with the same distribution of v. Let g1N

be a bounded function and g2 be a fixed function that does not depend on N . If g1N (v) =
oP (1) and E|g2(v)| <∞, then

1

N

N∑
i=1

g1N (vi)g2(vi) = oP (1).

Lemma 29 Let ηi = |ψi(β̂0)|ψi(βt − β̂0)h(xi)xi, where ψi(β) = yi − p(xi,β). Under
Assumptions 1 and 2, conditional on the consistent β̂0, if n0/

√
N → 0, then

√
N(β̂wMLE − βt) =

Σβt

2E{φ(βt)h(x)}
1√
N

N∑
i=1

ηi + oP (1),

which converges in distribution to a normal distribution with mean 0 and variance-covariance
matrix [E{φ(βt)h(x)xxT}]−1E{φ(βt)h

2(x)xx}[E{φ(βt)h(x)xxT}]−1, as n0 and N go to in-
finity.

Lemma 30 Let

λ̇∗uw(βt) =

n∑
i=1

{
y∗i − p∗i (βt − β̂0)

}
x∗i .

Under Assumptions 1 and 2, conditional on DN and the consistent β̂0, as n0, n, and N go
to infinity,

λ̇∗uw(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

(
0, Σ−1

βt

)
,

in distribution.

Lemma 31 Under Assumptions 1-3, as n0, n, and N go to infinity, for any sn → 0 in
probability,

1

n

n∑
i=1

φ∗i (βt − β̂0 + sn)‖x∗i ‖2 −
N∑
i=1

πi(β̂0)φi(βt − β̂0)‖xi‖2 = oP (1).
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Proof of Theorem 1. The estimator β̂uw is the maximizer of

λ∗uw(β) =
n∑
i=1

[
(β − β̂0)Tx∗i y

∗
i − log

{
1 + e(β−β̂0)Tx∗

i
}]
,

so
√
n(β̂uw − βt) is the maximizer of γ(s) = λ∗uw(βt + s/

√
n) − λ∗uw(βt). By Taylor’s

expansion,

γ(s) =
1√
n

sTλ̇∗uw(βt) +
1

2n

n∑
i=1

φ∗i (βt − β̂0 + ś/
√
n)(sTx∗i )

2,

where φ∗i (β) = p∗i (β){1− p∗i (β)}, and ś lies between 0 and s.

From Lemma 31,

1

n

n∑
i=1

φ∗i (βt − β̂0 + ś/
√
n)x∗i (x

∗
i )

T −
N∑
i=1

πi(β̂0)φi(βt − β̂0)xix
T
i = oP (1).

From Lemma 28 and the law of large numbers,

N∑
i=1

πi(β̂0)φi(βt − β̂0)xix
T
i =

1
N

∑N
i=1 |ψi(β̂0)|h(xi)φi(βt − β̂0)xix

T
i

ΨN (β̂0)
= Σ−1

βt
+ oP (1).

Combining the above two equations, we have that n−1
∑n

i=1 φ
∗
i (βt − β̂0 + ś/

√
n)x∗i (x

∗
i )

T

converges in probability to Σ−1
βt

, a positive definite matrix. In addition, from Lemma 29

and Lemma 30, λ̇∗uw(βt)/
√
n is stochastically bounded. Thus, from the Basic Corollary in

page 2 of Hjort and Pollard (2011), the maximizer of γ(s),
√
n(β̂uw − βt), satisfies

√
n(β̂uw − βt) = Σβt

1√
n
λ̇∗uw(βt) + oP (1)

given DN and β̂0. Thus,

√
n(β̂uw − β̂wMLE) = Σβt

{
1√
n
λ̇∗uw(βt)−Σ−1

βt

√
n(β̂wMLE − βt)

}
+ oP (1). (26)

From Lemma 29,

Σ−1
βt

√
n(β̂wMLE − βt) =

√
n
∑N

i=1 ηi
2NE{φ(βt)h(x)}

=

√
n
∑N

i=1 ηi

NΨN (β̂0)
+ oP (1), (27)

Combining equations (26) and (27), Lemma 30, Slutsky’s theorem, and the fact that a
conditional probability is bounded by one, Theorem 1 follows.
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B.1.1. Proof of Proposition 4

Proof of Proposition 4. To prove that Σβt
≤ VOS = M−1VOS

c M−1, we just need to
show that

Σ−1

β̂MLE

≥M(VOS
c )−1M.

From the strong law of large numbers,

M =
1

N

N∑
i=1

φi(βt)xix
T
i + o(1),

VOS
c = 4Φ(βt)

1

N

N∑
i=1

φi(βt)xix
T
i

h(xi)
+ o(1),

Σβt
= 4Φ(βt)

{
1

N

N∑
i=1

φi(βt)h(xi)xix
T
i

}−1

+ o(1),

almost surely. Thus, we only need to verify that

N∑
i=1

φi(βt)h(xi)xix
T
i ≥

{ N∑
i=1

φi(βt)xix
T
i

}{ N∑
i=1

φi(βt)xix
T
i

h(xi)

}−1{ N∑
i=1

φi(βt)xix
T
i

}
.

Denote Z =
{√

φ1(βt)x1, ...,
√
φN (βt)xN

}T
, and H = diag{h(x1), ..., h(xN )}. The

above inequality can be written as

ZTHZ ≥ZTZ(ZTH−1Z)−1ZTZ,

which is true if
H ≥ Z(ZTH−1Z)−1ZT (28)

Note that (H−1/2Z){(H−1/2Z)(H−1/2Z)T}−1(H−1/2Z)T is the projection matrix of H−1/2Z,
so it is, under the Loewner ordering, smaller than or equal to the identity matrix IN , namely,

IN ≥ H−1/2Z(ZH−1ZT)−1ZTH−1/2,

which implies (28). If h(x) = 1, the equality can be verified directly.
The first inequality in (14) can be verified directly using the result in (13). For the

second inequality in (14), noting that h(x) = ‖LM−1x‖, by the CauchySchwarz inequality,
we have

tr(LVOSLT) = tr(LM−1VOS
c M−1LT)

= 4Φ(βt)tr
[
LM−1E

{
φ(βt)h

−1(x)xxT
}
M−1LT

]
= 4E{φ(βt)h(x)}E

{
φ(βt)h

−1(x)‖LM−1x‖2
}

= 4
[
E
{
φ(βt)‖LM−1x‖

}]2
≤ 4E{φ(βt)}E

{
φ(βt)‖LM−1x‖2

}
= 4E{φ(βt)}tr

[
LM−1E

{
φ(βt)xxT

}
M−1LT

]
= 4E{φ(βt)}tr(LM−1LT)

< tr(LM−1LT),
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which finishes the proof.

B.1.2. Proof of Lemma 28

Proof of Lemma 28. Let B be a bound for g1N i.e., |g1N | ≤ B. For any ε > 0, by
Markov’s inequality,

P
{∣∣∣ 1

N

N∑
i=1

g1N (vi)g2(vi)
∣∣∣ > ε

}
≤ E|g1N (v)g2(v)|

ε

=
E[|g1N (v)||g2(v)|I{|g2(v)| ≤ K}]

ε
+

E[|g1N (v)||g2(v)|I{|g2(v)| > K}]
ε

≤ K

ε
E|g1N (v)|+ B

ε
E{|g2(v)|I(|g2(v)| > K)}.

For any ζ > 0, we can choose a K large enough such that E{|g2(v)|I(|g2(v)| ≤ K)} <
ζε/(2B), since E|g2(v)| < ∞. The facts that g1N (vi) ≤ B and g1N (vi) = oP (1) imply
that E|g1N (v)| = o(1). Thus, there is a Nζ such that E|g1N (v)| < ζε/(2K) when N > Nζ .

Therefore, for any ζ > 0, P{|N−1
∑N

i=1 g1N (vi)g2(vi)| > ε} < ζ for sufficiently large N .
This finishes the proof.

B.1.3. Proof of Lemma 29

Proof of Lemma 29. Since β̂wMLE is the maximizer of

λwMLE(β) =

N∑
i=1

|yi − p(xi, β̂0)|h(xi)
[
yix

T
i (β − β̂0)− log{1 + ex

T
i (β−β̂0)}

]
,

√
N(β̂wMLE−βt) is the maximizer of γwMLE(s) = λwMLE(βt+s/

√
N)−λwMLE(βt). By Taylor’s

expansion,

γwMLE(s) =
1√
N

sTλ̇wMLE(βt)−
1

2N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βt − β̂0 + ś/
√
N)(sTxi)

2

where

λ̇wMLE(βt) =

N∑
i=1

ηi =

N∑
i=1

|ψi(β̂0)|ψi(βt − β̂0)h(xi)xi, (29)

and ś lies between 0 and s.

Since that n0/
√
N → 0 and ‖ηi‖ is bounded by ‖h(xi)xi‖, we can ignore the data points

that are used in obtaining the pilot β̂0. The following discussion focus on ηi’s for which
(xi, yi)’s are not included in the pilot subsample. Note that for such ηi’s, E(ηi|β̂0) = 0
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because

E(ηi|β̂0,xi) =E
[
|ψi(β̂0)|

{
yi − p(xi,βt − β̂0)

}
h(xi)xi

∣∣∣β̂0,xi

]
=− p(xi, β̂0)p(xi,βt − β̂0){1− p(xi,βt)}h(xi)xi

+ {1− p(xi, β̂0)}{1− p(xi,βt − β̂0)}p(xi,βt)h(xi)xi

=− ex
T
i β̂0

1 + ex
T
i β̂0

ex
T
i βt−xT

i β̂0

1 + ex
T
i βt−xT

i β̂0

1

1 + ex
T
i βt

h(xi)xi

+
1

1 + ex
T
i β̂0

1

1 + ex
T
i βt−xT

i β̂0

ex
T
i βt

1 + ex
T
i βt

h(xi)xi = 0. (30)

This also gives that

V(ηi|β̂0) = E
{
V(ηi|xi, β̂0)

∣∣β̂0

}
+ V

{
E(ηi|xi, β̂0)

∣∣β̂0

}
= E

{
V(ηi|xi, β̂0)

∣∣β̂0

}
.

Now, since

V(ηi|xi, β̂0) =E
[
|yi − p(xi, β̂0)|2

{
yi − p(xi,βt − β̂0)

}2
h2(xi)xix

T
i

∣∣∣β̂0,xi

]
=p(xi,βt){1− p(xi, β̂0)}2

{
1− p(xi,βt − β̂0)

}2
h2(xi)xix

T
i

+ {1− p(xi,βt)}{p(xi, β̂0)}2
{
p(xi,βt − β̂0)

}2
h2(xi)xix

T
i

=φi(β̂0)φi(β̂0 − βt)h2(xi)xix
T
i ,

we have

V(ηi|β̂0) = E
{
φ(β̂0)φ(β̂0 − βt)h2(xi)xix

T
i

∣∣∣β̂0

}
.

Let ‖‖ denote the Frobenius norm if applied on a martix, i.e., for a matrix A, ‖A‖2 =
tr(AAT), and denote V(ηi|βt) = E{φ(βt)φ(βt−βt)h2(xi)xix

T
i } = 0.25E{φ(βt)h

2(xi)xix
T
i }.

Notice that
∣∣φ(β̂0)φ(β̂0 − βt)− 0.25φi(βt)

∣∣h2(xi)‖xi‖2 converges to 0 in probability and it
is bounded by h2(xi)‖xi‖2, an integrable random variable under Assumption 2. Thus,

E
∥∥V(ηi|β̂0)− V(ηi|βt)

∥∥ ≤ E
{∣∣{φ(β̂0)φ(β̂0 − βt)− 0.25φi(βt)

∣∣h2(xi)‖xi‖2
}

= o(1).

This implies that

V(ηi|β̂0) = V(ηi|βt) + oP (1) = 0.25E
{
φ(βt)h

2(xi)xixi
}

+ oP (1).

For ηi’s that (xi, yi)’s are not included in the pilot subsample, conditional on β̂0, ηi’s
are i.i.d. with mean 0 and variance V(ηi|β̂0). Since for any ε > 0,

1

N

N∑
i=1

E
{
‖ηi‖2I(‖ηi‖ >

√
Nε)

∣∣∣β̂0

}
≤ 1

N

N∑
i=1

E
{
‖h(xi)xi‖2I(‖h(xi)xi‖ >

√
Nε)

∣∣∣β̂0

}
=E{‖h(x)x‖2I(‖h(x)x‖ >

√
Nε)} → 0,
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the Lindeberg-Feller central limit theorem (Section ∗2.8 of van der Vaart, 1998) applies
conditional on β̂0. Thus, we have, conditional on β̂0,

λ̇wMLE(βt)√
N

−→ N
[
0,

E
{
φ(βt)h

2(x)xx
}

4

]
,

in distribution. From Lemma 28, conditional on β̂0,

1

N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βt − β̂0 + ś/
√
N)xix

T
i

=
1

4
E{|ψ(βt)|h(x)xxT}+ oP |β̂0

(1) =
1

2
E{φ(βt)h(x)xxT}+ oP (1).

Thus, from the Basic Corollary in page 2 of Hjort and Pollard (2011), the maximizer of
γwMLE(s),

√
N(β̂wMLE − βt), satisfies

√
N(β̂wMLE − βt) =2[E{φ(βt)h(x)xxT}]−1 1√

N
λ̇wMLE(βt) + oP (1). (31)

Note that

[E{φ(βt)h(x)xxT}]−1 =
Σβt

4Φ(βt)
. (32)

Combining equations (29), (31), and (32), we have

√
N(β̂wMLE − βt) =

Σβt

2Φ(βt)

1√
N
λ̇wMLE(βt) + oP (1).

An application of Slutsky’s theorem yields the result for the asymptotic normality.

B.1.4. Proof of Lemma 30

Proof of Lemma 30. Note that given DN and β̂0, {y∗i −p∗i (βt− β̂0)
}
x∗i are i.i.d. random

vectors. We now exam their mean and variance, and check the Lindeberg-Feller condition
(Section ∗2.8 of van der Vaart, 1998) under the conditional distribution given DN and β̂0.
For the expectation, we have,

E
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗
∣∣DN , β̂0

]
=

N∑
i=1

πi(β̂0)ψi(βt − β̂0)xi =

∑N
i=1 ηi

NΨN (β̂0)
,

where ΨN (β) = N−1
∑N

i=1 |yi − p(xi,β)|h(xi). From Lemma 29 and its proof,
∑N

i=1 ηi =

OP (
√
N) conditional on β̂0 in probability, i.e., for any ε > 0, there exits a K such that

P{P(
∑N

i=1 ηi/
√
N > K

∣∣β̂0) < ε} → 1 as n0, N →∞. From Xiong and Li (2008), we know

that
∑N

i=1 ηi = OP (
√
N) unconditionally. Thus, for the expectation, we have

∆ =E
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗
∣∣DN , β̂0

]
= OP (1/

√
N).
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For the variance,

V
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗|DN , β̂0

]
=

N∑
i=1

πi(β̂0){yi − p(xi,βt − β̂0)}2xixT
i −∆2

=
1
N

∑N
i=1 |ψi(β̂0)|ψ2

i (βt − β̂0)h(xi)xix
T
i

ΨN (β̂0)
−OP (1/N)

=
1
N

∑N
i=1 |ψi(βt)|(yi − 0.5)2h(xi)xix

T
i

ΨN (βt)
+ oP (1)

=
1

4

E{|ψ(βt)|h(x)xxT}
Ψ(βt)

+ oP (1) = Σ−1
βt

+ oP (1)

where the third equality is from Lemma 28 and the fact that E{h(x)‖x‖2} < ∞, and the
forth equality is from the law of large numbers.

Now we check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under
the conditional distribution. Denote λ̇∗ri = {y∗i − p∗i (βt − β̂0)}x∗i .

E
1

n

n∑
i=1

{
‖λ̇∗ri‖2I(‖λ̇∗ri‖ >

√
nε)
∣∣DN , β̂0

}
≤E
{
‖x∗‖2I(‖x‖ >

√
nε)
∣∣DN , β̂0

}
=

N∑
i=1

πi(β̂0)
{
‖xi‖2I(‖xi‖ >

√
nε)
}

≤
1
N

∑N
i=1

{
h(xi)‖xi‖2I(‖xi‖ >

√
nε)
}

ΨN (β̂0)

≤
1
N

∑N
i=1

{
h(xi)‖xi‖2I(‖xi‖ >

√
nε)
}

ΨN (β̂0)
= oP (1),

by Lemma 28 and the fact that E{h(x)‖x‖2} < ∞. Thus, applying the Lindeberg-Feller
central limit theorem (Section ∗2.8 of van der Vaart, 1998) finishes the proof.

B.1.5. Proof of Lemma 31

Proof of Lemma 31. We begin with the following partition,

1

n

n∑
i=1

φ∗i (βt − β̂0 + sn)‖x∗i ‖2

=
1

n

n∑
i=1

φ∗i (βt − β̂0 + sn)‖x∗i ‖2I(‖x∗i ‖2 ≤ n) +
1

n

n∑
i=1

φ∗i (βt − β̂0 + sn)‖x∗i ‖2I(‖x∗i ‖2 > n)

≡∆1 + ∆2.
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The second term ∆2 is oP (1) because it is non-negative and

E(∆2|DN , β̂0) =
N∑
i=1

πi(β̂0)φi(βt − β̂0 + sn)‖xi‖2I(‖xi‖2 > n)

≤
∑N

i=1 |ψi(β̂0)|h(xi)‖xi‖2I(‖xi‖2 > n)∑N
i=1 |ψi(β̂0)|h(xi)

≤
1
N

∑N
i=1 h(xi)‖xi‖2I(‖xi‖2 > n)

ΨN (β̂0)
= oP (1)

as n,N →∞, where the last step is from Lemma 28.

Similarly, we can show that

E(∆1|DN , β̂0)−
N∑
i=1

πi(β̂0)φi(βt − β̂0)‖xi‖2 = oP (1).

Thus, we only need to show that ∆1 − E(∆1|DN , β̂0) = oP (1). For this, we show that the
conditional variance of ∆1 goes to 0 in probability. Notice that

V(∆1|DN , β̂0)

=
1

n
V
{
φ∗(βt − β̂0)‖x∗‖2I(‖x∗‖2 ≤ n)

∣∣DN , β̂0

}
≤ 1

16n
E
{
‖x∗‖4I(‖x∗‖2 ≤ n)

∣∣DN , β̂0

}
=

1

16n

n∑
i=1

E
{
‖x∗‖4I(i− 1 < ‖x∗‖2 ≤ i)

∣∣DN , β̂0

}
≤ 1

16n

n∑
i=1

i2E
{
I(i− 1 < ‖x∗‖2 ≤ i)

∣∣DN , β̂0

}
≤ 1

16n

n∑
i=1

i2
{
P(‖x∗‖2 > i− 1

∣∣DN , β̂0)− P(‖x∗‖2 > i
∣∣DN , β̂0)

}
=

1

16n

{
P(‖x∗‖2 > 0

∣∣DN , β̂0)− n2P(‖x∗‖2 > n
∣∣DN , β̂0) +

n−1∑
i=1

(2i+ 1)P(‖x∗‖2 > i
∣∣DN , β̂0)

}

≤ 1

16n

{
1 +

n−1∑
i=1

3iP(‖x∗‖2 > i
∣∣DN , β̂0)

}
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This is oP (1) because

1

n

n∑
i=1

iP(‖x∗‖2 > i|DN , β̂0) =
1

n

n∑
i=1

i
n∑
j=1

πj(β̂0)I(‖xj‖2 > i)

=
1

n

n∑
j=1

n∑
i=1

iπj(β̂0)I(‖xj‖2 > i)

=
1
N

∑n
j=1

1
n

∑n
i=1 i|ψj(β̂0)|h(xj)I(‖xj‖2 > i)

ΨN (β̂0)

≤
1
N

∑n
j=1

1
n

∑n
i=1 ih(xj)I(‖xj‖2 > i)

ΨN (β̂0)
,

and the numerator is non-negative and has an expectation

1

N

n∑
j=1

1

n

n∑
i=1

iE{h(x)I(‖x‖2 > i)}

which is o(1) since iE{h(x)I(‖x‖2 > i)} = o(1) as i→∞.

B.2. Proofs for Poisson subsampling

In this section we prove the results in Section 4 about Poisson subsampling.

Define δ
β̂0
i = I{ui ≤ nπpi (β̂0)}, and use notation λp to denote the log-likelihood shifted

by β̂0, i.e., λp(β) = `∗p(β − β̂0). Using these notations, the estimator β̂p is the maximizer
of

λp(β) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}

[
(β − β̂0)Txiyi − log{1 + e(β−β̂0)Txi}

]
, (33)

Denote the first and second derivatives of λp(β) as λ̇p(β) = ∂λp(β)/∂β and λ̈p(β) =
∂2λp(β)/(∂β∂βT). Two lemmas similar to Lemmas 30 and 31 are derived below which will
be used to prove Theorem 6. We will prove these two lemmas in Sections B.2.2 and B.2.3.

Lemma 32 Let

λ̇p(βt) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}{yi − p(xi,βt − β̂0)}xi.

Under Assumptions 1 and 2, conditional on DN , the consistent estimator β̂0, and Ψ̂0, if
n = o(N), then

λ̇p(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

(
0, Σβt

)
,
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in distribution; if n/N → ρ ∈ (0, 1), then

λ̇p(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

(
0, Λρ

)
,

in distribution.

Lemma 33 Under Assumptions 1 and 2, as n0, n, and N go to infinity, for any sn → 0
in probability,

1

n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + sn)‖xi‖2 −

N∑
i=1

πpi (β̂0)φi(βt − β̂0)‖xi‖2 = oP (1).

Proof of Theorem 6. The estimator β̂p is the maximizer of (33), so
√
n(β̂p − βt) is the

maximizer of γp(s) = λp(βt + s/
√
n)− λp(βt). By Taylor’s expansion,

γp(s) =
1√
n

sTλ̇p(βt) +
1

2n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + ś/

√
n)(sTxi)

2

where φi(β) = p(xi,β){1− p(xi,β)}, and ś lies between 0 and s.
From Lemmas 32 and 33, conditional on DN , and β̂0,

1

n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + ś/

√
n)xix

T
i = Σ−1

βt
+ oP (1).

In addition, from Lemma 32, conditional on DN , β̂0, and Ψ̂0, λ̇p(βt)/
√
n converges in

distribution to a normal limit. Thus, from the Basic Corollary in page 2 of Hjort and
Pollard (2011), the maximizer of γp(s),

√
n(β̂p − βt), satisfies

√
n(β̂p − βt) = Σβt

1√
n
λ̇p(βt) + oP (1)

given DN , β̂0, and Ψ̂0. Combining this with Lemma 32, Slutsky’s theorem, and the fact
that a conditional probability is bounded, Theorem 6 follows.

B.2.1. Proof of Proposition 8

Proof of Proposition 8. To prove that Σβt
ΛρΣβt

< Σβt
, we just need to show that

Λρ < Σ−1
βt

. This is true because

Λρ =
E
[
|ψ(βt)|{Ψ(βt)− ρ|ψ(βt)|h(x)}+h(x)xxT

]
4Ψ2(βt)

<
E
{
|ψ(βt)|Ψ(βt)h(x)xxT

}
4Ψ2(βt)

=
E
{
|ψ(βt)|h(x)xxT

}
4Ψ(βt)

=
E
{
φ(βt)h(x)xxT

}
4Φ(βt)

= Σ−1
βt
.
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B.2.2. Proof of Lemma 32

Proof of Lemma 32. Note that, δ
β̂0
i = I{ui ≤ nπpi (β̂0)}, where ui are i.i.d. with

the standard uniform distribution. Thus, given DN , β̂0, and Ψ̂0, λ̇p(βt) is a sum of N
independent random vectors. We now exam the mean and variance of λ̇p(βt). Recall that

ηi = |ψi(β̂0)|ψi(βt − β̂0)h(xi)xi, and ψi(β) = yi − p(xi,β). For the mean, we have,

1√
n
E
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

1√
n

N∑
i=1

{nπpi (β̂0) ∧ 1}{nπpi (β̂0) ∨ 1}ψi(βt − β̂0)xi

=
1√
n

N∑
i=1

nπpi (β̂0)ψi(βt − β̂0)xi =

√
n√
N

∑N
i=1 ηi

Ψ̂0

√
N

= OP (
√
n/N),

where the last equality is from Lemma 29.

For the variance,

1

n
V
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

1

n

N∑
i=1

[{nπpi (β̂0) ∧ 1} − {nπpi (β̂0) ∧ 1}2]{nπpi (β̂0) ∨ 1}2ψ2
i (βt − β̂0)xix

T
i

=

N∑
i=1

πpi (β̂0){nπpi (β̂0) ∨ 1}ψ2
i (βt − β̂0)xix

T
i − n

N∑
i=1

{πpi (β̂0)}2ψ2
i (βt − β̂0)xix

T
i

=
1
N

∑N
i=1 |ψi(β̂0)|{nπpi (β̂0) ∨ 1}ψ2

i (βt − β̂0)h(xi)xix
T
i

Ψ̂0

− n

N

1
N

∑N
i=1 ψ

2
i (β̂0)ψ2

i (βt − β̂0)h2(xi)xix
T
i

Ψ̂2
0

≡∆3 −∆4 (34)

Note that E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞, and |ψi(·)| are bounded. Thus, from
Lemma 28, if n/N → ρ,

∆4 → ρ
E{ψ2(βt)h

2(x)xxT}
4Ψ2(βt)

, (35)

in probability.
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For the term ∆3 in (34), it is equal to

∆3 =
1

Ψ̂2
0

1

N

N∑
i=1

|ψi(β̂0)|
{n|ψi(β̂0)|h(xi)

N
∨ Ψ̂0

}
ψ2
i (βt − β̂0)h(xi)xix

T
i

=
1

Ψ̂2
0

n

N2

N∑
i=1

ψ2
i (β̂0)ψ2

i (βt − β̂0)h2(xi)xix
T
i I
{n|ψi(β̂0)|h(xi)

N
> Ψ̂0

}
+

1

Ψ̂0

1

N

N∑
i=1

|ψi(β̂0)|ψ2
i (βt − β̂0)h(xi)xix

T
i I
{n|ψi(β̂0)|h(xi)

N
≤ Ψ̂0

}
.

Since E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞, and |ψi(·)| are bounded, from Lemma 28, if
n/N → ρ, as n0, n, and N go to infinity,

∆3 →
ρE
[
ψ2(βt)h

2(x)xxTI
{
ρ|ψ(βt)|h(x) ≥ Ψ(βt)

}]
4Ψ2(βt)

+
E
[
|ψ(βt)|h(x)xxTI

{
ρ|ψ(βt)|h(x) ≤ Ψ(βt)}

}]
4Ψ(βt)

=
E
(
|ψ(βt)|h(x)xxT

[
{ρ|ψ(βt)|h(x)} ∨Ψ(βt)}

])
4Ψ2(βt)

, (36)

in probability. From, (34), (35), and (36), if n/N → ρ,

1

n
V
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

E
[
|ψ(βt)|h(x)xxT{Ψ(βt)− ρ|ψ(βt)|h(x)}+

]
4Ψ2(βt)

+ oP (1).

Specifically, when ρ = 0,

1

n
V
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
= Σβt

+ oP (1).
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Now we check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under

the condition distribution. Denote λ̇pi = δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}ψi(βt − β̂0)xi. For any ε > 0

1

n

N∑
i=1

E
{∥∥λ̇pi∥∥2

I(
∥∥λ̇pi∥∥ > √nε)∣∣∣DN , β̂0, Ψ̂0

}
≤ 1

n

N∑
i=1

E
[∥∥δβ̂0

i {nπ
p
i (β̂0) ∨ 1}xi

∥∥2
I(
∥∥δβ̂0
i {nπ

p
i (β̂0) ∨ 1}xi

∥∥ > √nε)∣∣∣DN , β̂0, Ψ̂0

]
=

N∑
i=1

πpi (β̂0){nπpi (β̂0) ∨ 1}‖xi‖2I({nπpi (β̂0) ∨ 1}‖xi‖ >
√
nε)

≤
|ψi(β̂0)|h(xi){n/N |ψi(β̂0)|h(xi) + Ψ̂0}‖xi‖2I({nπpi (β̂0) + 1}‖xi‖ >

√
nε)

Ψ̂2
0

≤
1
N

∑N
i=1 h

2(xi)‖xi‖2I({h(xi)/Ψ̂0 + 1}‖xi‖ >
√
nε)

Ψ̂2
0

+
1
N

∑N
i=1 h(xi)‖xi‖2I({h(xi)/Ψ̂0 + 1}‖xi‖ >

√
nε)

Ψ̂0

= oP (1),

where the last equality is from Lemma 28. Thus, applying the Lindeberg-Feller central limit
theorem (Section ∗2.8 of van der Vaart, 1998) finishes the proof.

B.2.3. Proof of Lemma 33

Proof of Lemma 33. Note that, from Lemma 28,

N∑
i=1

πpi (β̂0)φi(βt − β̂0)xix
T
i =

1

Ψ̂0N

N∑
i=1

|ψi(β̂0)|φi(βt − β̂0)h(xi)xix
T
i = Σβt

+ oP (1);

and from the strong law of large numbers

1

n

N∑
i=1

δ
βt
i {nπ

p
i (βt) ∨ 1}φi(βt − βt)xixT

i = Σβt
+ oP (1),

where δ
βt
i = I{ui ≤ nπpi (βt)}. Thus, if we show that

∆5 ≡
1

n

N∑
i=1

∣∣∣δβ̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + sn)− δβt

i {nπ
p
i (βt) ∨ 1}φi(βt − βt)

∣∣∣‖xi‖2 = oP (1),

then the result in Lemma 33 follows. Noting that ∆5 is nonnegative, we prove ∆5 == oP (1)
by showing that E(∆5|DN , β̂0, Ψ̂0) = oP (1). Note that given DN , β̂0, and Ψ̂0, the only
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random terms in ∆5 are δ
β̂0
i = I{ui ≤ nπpi (β̂0)} and δ

βt
i = I{ui ≤ nπpi (βt)}. We have that

E(∆5|DN , β̂0, Ψ̂0)

≤ 1

n

N∑
i=1

{nπpi (β̂0) ∧ nπpi (βt) ∧ 1}

×
∣∣∣{nπpi (β̂0) ∨ 1}φi(βt − β̂0 + sn)− {nπpi (βt) ∨ 1}φi(βt − βt)

∣∣∣‖xi‖2
+

1

n

N∑
i=1

|nπpi (β̂0)− nπpi (βt)|
∣∣∣nπpi (β̂0) + nπpi (βt) + 2

∣∣∣‖xi‖2
≡∆6 + ∆7.

Note that nπpi (β̂0) ∧ nπpi (βt) ∧ 1 ≤ nπpi (β̂0). Thus ∆6 is bounded by

1

Ψ̂0

1

N

N∑
i=1

∣∣∣{nπpi (β̂0) ∨ 1}φi(βt − β̂0 + sn)− {nπpi (βt) ∨ 1}φi(βt − βt)
∣∣∣h(xi)‖xi‖2,

which is oP (1) by Lemma 28 if |{nπpi (β̂0)∨1}−{nπpi (βt)∨1}| = oP (1). This is true because

|{nπpi (β̂0) ∨ 1} − {nπpi (βt) ∨ 1}| ≤n|πpi (β̂0)− πpi (βt)|

≤nh(xi)

N

∣∣∣∣ |ψi(β̂0)|
Ψ̂0

− |ψi(βt)|
ΨN (βt)

∣∣∣∣ = oP (1).

The term ∆7 is bounded by

1

N

N∑
i=1

∣∣∣∣ |ψi(β̂0)|
Ψ̂0

− |ψi(βt)
ΨN (βt)

∣∣∣∣∣∣∣∣ |ψi(β̂0)|
Ψ̂0

+
|ψi(βt)|
ΨN (βt)

+
2

h(xi)

∣∣∣∣h2(xi)‖xi‖2 = oP (1),

where the last equality is from Lemma 28 and the fact that E{h2(x)‖x‖2} <∞.

B.3. Proofs for unconditional distribution

In this section we prove Theorem 13 in Section 6. A lemma similar to Lemma 32 is presented
below and will be proved later in this section. Lemma 33 can be used in the proof of Theorem
13 because for the problem considered in this paper, convergence to zero in probability is
equivalent to convergence to zero in probability under the conditional probability measure
(Xiong and Li, 2008).

For the pilot subsample taken according to the subsampling probabilities π0i in (17), we

define δ
(1)
i = I{u0i ≤ c0(1−yi)+c1yi

N }, where u0i are i.i.d. standard uniform random variables.

With this notation, the estimator Ψ̂0 defined in (18) can be written as

Ψ̂0 =
1

N

N∑
i=1

δ
(1)
i |yi − p(xi, β̂0)|h(xi)

nπ0i ∧ 1
. (37)
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Lemma 34 Let β̂0 and Ψ̂0 be constructed according to Step 1 of Algorithm 2, respectively.
For

λ̇p(βt) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}{yi − p(xi,βt − β̂0)}xi,

under the same assumptions of Theorem 13, if n = o(N), then

λ̇p(βt)√
n
−→ N

(
0, Σβt

)
,

in distribution; if n/N → ρ ∈ (0, 1), then

λ̇p(βt)√
n
−→ N

(
0, Λu

)
,

in distribution.

Proof of Theorem 13. The proof of this theorem is similar to that of Theorem 6. The
key difference is that Lemma 34 is about asymptotic distribution unconditionally.

The estimator β̂p is the maximizer of

λp(β) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}

[
(β − β̂0)Txiyi − log{1 + e(β−β̂0)Txi}

]
,

so
√
n(β̂p−βt) is the maximizer of γp(s) = λp(βt+s/

√
n)−λp(βt). By Taylor’s expansion,

γp(s) =
1√
n

sTλ̇p(βt) +
1

2n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + ś/

√
n)(sTxi)

2

where ś lies between 0 and s.

From Lemma 33,

1

n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + ś/

√
n)xi(xi)

T = Σ−1
βt

+ oP (1).

In addition, from Lemma 34, λ̇p(βt)/
√
n converges in distribution to a normal limit. Thus,

from the Basic Corollary in page 2 of Hjort and Pollard (2011), the maximizer of γp(s),√
n(β̂p − βt), satisfies

√
n(β̂p − βt) = Σβt

1√
n
λ̇p(βt) + oP (1).

Combining this with Lemma 34 and Slutsky’s theorem, Theorem 13 follows.
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B.3.1. Proof of Proposition 17

Proof of Proposition 17 To prove (22), we just need to show that Λu ≥ Σ−1
βt

> Λρ.

From Proposition 8, we know that Σ−1
βt

> Λρ. To show that Λu ≥ Σ−1
βt

, we notice that

Λu =
E[φ(βt){ρφ(βt)h(x) ∨ Φ(βt)}h(x)xxT]

4Φ2(βt)
.

≥
E
{
φ(βt)h(x)Φ(βt)xxT

}
4Φ2(βt)

=
E
{
φ(βt)h(x)xxT

}
4Φ(βt)

= Σ−1
βt
,

where the strict inequality holds if ρφ(βt)h(x) ∨ Φ(βt) 6= ρφ(βt)h(x) with positive proba-
bility, i.e., P{ρφ(βt)h(x) > Φ(βt)} > 0.

B.3.2. Proof of Lemma 34

Proof of Lemma 34.
We first proof the case when the pilot estimates β̂0 and Ψ̂0 depend on the data. For

any l ∈ Rd, denote τNi =
√
N/nΨ̂0δ

β̂0
i {nπ

p
i (β̂0) ∨ 1}ψi(βt − β̂0)xT

i l, i = 1, ..., N , where

δ
β̂0
i = I{ui ≤ nπpi (β̂0)}, and ui are i.i.d. standard uniform random variables. Note that
τNi’s have the same distribution but they are not independent. Again, since n0 = o(

√
N),

we can focus on τNi’s that (xi, yi)’s are not included in the pilot subsample. We now exam
the mean and variance of these τNi’s. For the mean, based on calculation similar to that
in (30), we have,

E
(
τNi
∣∣β̂0, Ψ̂0

)
=
√
nNΨ̂0E

{
πpi (β̂0)ψi(βt − β̂0)xT

i l
∣∣β̂0, Ψ̂0

}
=

√
nE(ηi

∣∣β̂0, Ψ̂0)
√
N

= 0,

which implies that

EτNi = 0.

For the variance, V(τNi) = E(τ2
Ni), we start with the condition expectation,

E
(
τ2
Ni

∣∣β̂0, Ψ̂0

)
=NΨ̂2

0E
[
πpi (β̂0){nπpi (β̂0) ∨ 1}ψ2

i (βt − β̂0)(xT
i l)

2
∣∣∣β̂0, Ψ̂0

]
=E
[
|ψi(β̂0)|

{ n
N
|ψi(β̂0)|h(xi) ∨ Ψ̂0

}
ψ2
i (βt − β̂0)h(xi)(x

T
i l)

2
∣∣∣β̂0, Ψ̂0

]
.

If we let

ΥNi = |ψi(β̂0)|
{ n
N
|ψi(β̂0)|h(xi) ∨ Ψ̂0

}
ψ2
i (βt − β̂0)h(xi)(x

T
i l)

2,

then V(τNi) = E(ΥNi). Note that

ΥNi → Υi = 0.25|ψi(βt)|{ρ|ψi(βt)|h(xi) ∨Ψ(βt)}h(xi)(x
T
i l)

2,

in probability. We now show that

E(ΥNi)→ E(Υi) = 0.25E[|ψ(βt)|{ρ|ψ(βt)|h(x) ∨Ψ(βt)}h(x)(xTl)2].
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Let Ξi = |ΥNi −Υi|. For any ε,

|E(ΥNi)− E(Υi)| ≤ E{ΞiI(Ξi > ε)}+ E{ΞiI(Ξi ≤ ε)}
≤ E

[
{h2(xi)(x

T
i l)

2 + Υi + Ψ̂0h(xi)(x
T
i l)

2}I(Ξi > ε)
]

+ ε

We know that E
[
{h2(xi)(x

T
i l)

2 + Υi}I(Ξi > ε)
]
→ 0 since E{h2(xi)(x

T
i l)

2 + Υi} < ∞ for

any l ∈ Rd, and I(Ξi > ε) is bounded and is oP (1). Similarly, E{Ψ̂0h(xi)(x
T
i l)

2I(Ξi > ε)} ≤
E{h(x)}E{h(xi)(x

T
i l)

2I(Ξi > ε)} → 0. Thus, E(ΥNi) − E(Υi) → 0, and we have finished
proving that

V(τNi)→ E(Υi). (38)

In the following, we exam the third moment of τNi and prove that

E|τNi|3 = o(
√
N). (39)

For the conditional expectation,

E
(
|τNi|3

∣∣β̂0, Ψ̂0

)
= N

√
N/nΨ̂3

0E
[
πpi (β̂0){nπpi (β̂0) ∨ 1}2ψ3

i (βt − β̂0)(xT
i l)

3
∣∣∣β̂0, Ψ̂0

]
=
√
N/nE

[
|ψi(β̂0)|

{ n
N
|ψi(β̂0)|h(xi) ∨ Ψ̂0

}2
ψ3
i (βt − β̂0)h(xi)(x

T
i l)

3
∣∣∣β̂0, Ψ̂0

]
≤ 2‖l‖3

√
N/nE

[
{h2(xi) + Ψ̂2

0}h(xi)‖xi‖3
∣∣β̂0, Ψ̂0

]
≤ 2‖l‖3

√
N/n

[
E{h3(xi)‖xi‖3}+ E{Ψ̂2

0|β̂0, Ψ̂0}E{h(xi)‖xi‖3}
]
.

Since E{h3(xi)‖xi‖3} <∞ and E{h(xi)‖xi‖3} <∞, (39) follows if E{Ψ̂2
0} = O(1). This is

true because

E{Ψ̂2
0} = E

{
1

N

N∑
k1=1

δ
(1)
k1
|yk1 − p(xk1 , β̂0)|h(xk1)

n0/N

1

N

N∑
k2=1

δ
(1)
k2
|yk2 − p(xk2 , β̂0)|h(xk2)

n0/N

}

≤ 1

N2

N∑
k1 6=k2

E
{
δ

(1)
k1
h(xk1)

n0/N

δ
(1)
k2
h(xk2)

n0/N

}
+

1

N2

N∑
k=1

E
{
δ

(1)
k h2(xk)

{n0/N}2

}

=
1

N2

N∑
k1 6=k2

E{h(xk1)h(xk2)}+
1

N2

N∑
j=1

E
{

1

n0/N
h2(xk)

}
→ E{h2(x)}.

Denote νNi = τNi{V(τNi)}−1/2. We know that νNi’s, for which (xi, yi)’s are not included
in the pilot subsample, are i.i.d. conditional on β̂0 and Ψ̂0. Thus, from Theorem 7.3.2 of
Chow and Teicher (2003), they are interchangeable. The fact that β̂0 and Ψ̂0 are consistent
estimators implies that they are a sequence of two estimators, and for each β̂0 and Ψ̂0, τNi
are interchangeable and can be . For this setup, the central limit theorem in Theorem 2 of
Blum et al. (1958) can be applied to prove the asymptotic normality.

It is evident that νNi have mean 0 and variance 1. It is also easy to verify that, for
i 6= j,

E(νNiνNj) = E{E(νNiνNj |β̂0, Ψ̂0)} = 0, (40)
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and

1√
N

E{|νNi|3} = E|τNi|3{V(τNi)}−3/2 → 0 (41)

which follows from (39). We now show that for i 6= j,

E{ν2
Niν

2
Nj} → 1. (42)

Since νNi = τNi{V(τNi)}−1/2, from (38), to prove (42), we only need to show that
E(τ2

Niτ
2
Nj)→ E(Υi)E(Υj) = E(ΥiΥj), where the equality is because Υi and Υj are indepen-

dent. Noting that τ2
Ni and τ2

Nj are conditionally independent, we have E
(
τ2
Niτ

2
Nj

∣∣β̂0, Ψ̂0

)
=

E
(
τ2
Ni

∣∣β̂0, Ψ̂0

)
E
(
τ2
Ni

∣∣β̂0, Ψ̂0

)
= E

(
ΥNi

∣∣β̂0, Ψ̂0

)
E
(
ΥNj

∣∣β̂0, Ψ̂0

)
= E

(
ΥNiΥNj

∣∣β̂0, Ψ̂0

)
, so we

know that E
(
τ2
Niτ

2
Nj

)
= E

(
ΥNiΥNj

)
.

Now we prove that E
(
ΥNiΥNj

)
→ E

(
ΥiΥj

)
. Let Ξij = |ΥNiΥNj − ΥiΥj |. For any

ε > 0,

|E(ΥNiΥnj)− E(ΥiΥj)|
≤E{ΞijI(Ξij > ε)}+ E{ΞijI(Ξij ≤ ε)}
≤E
[
{h2(xi)(x

T
i l)

2h2(xj)(x
T
j l)

2 + ΥiΥj}I(Ξij > ε)
]

+ E
[
Ψ̂2

0h(xi)‖xi‖2h(xj)‖xj‖2I(Ξij > ε)
]

+ E(Ψ̂0)E
[
{h(xi)(x

T
i l)

2h2(xj)(x
T
j l)

2 + h(xj)(x
T
j l)

2h2(xi)(x
T
i l)

2}I(Ξij > ε)
]

+ ε

Since i 6= j, E{h2(x)‖x‖2} <∞, E{h(x)‖x‖2} <∞, E(Ψ̂0) <∞, and I(Ξij > ε) = oP (1) is
bounded, the above results indicates that (42) holds.

Since (40), (41), (42) are satisfied, the central limit theorem in Theorem 2 of Blum et al.
(1958) holds for νNi, which gives that

1√
N

N∑
i=1

νNi → N(0, 1),

in distribution. Note that

1√
N

N∑
i=1

νi =
Ψ̂0√

n{V(τNi)}1/2
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}ψi(βt − β̂0)xT

i l

=
Ψ̂0√

n{V(τNi)}1/2
lTλ̇p(βt) =

Ψ
√
n{V(τNi)}1/2

lTλ̇p(βt) + oP (1).

Thus, from Slutsky’s theorem, for any l ∈ Rd,
1√
n
lTλ̇p(βt)→ N(0, lTΛul) (43)

in distribution, where

Λu =
V(τNi)

Ψ2(βt)
=

E[|ψ(βt)|{ρ|ψ(βt)|h(x) ∨Ψ(βt)}h(x)xxT]

4Ψ2(βt)

≥ E[|ψ(βt)|h(x)xxT]

4Ψ(βt)
=

E[φ(βt)h(x)xxT]

4Φ(βt)
= Σ−1

βt
,
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and the equality holds if ρ = 0, i.e., n/N → 0. Based on (43), from the Cramér-Wold
theorem, we have that

1√
n
λ̇p(βt)→ N(0,Λu)

in distribution.
When the pilot estimates β̂0 and Ψ̂0 are independent of the data, if we can prove the

results in Lemma 34 under the conditional distribution given β̂0 and Ψ̂0, then the result
follows unconditionally. We provide the proof under the conditional distribution in the
following. The proof is similar to the proof of Lemma 32 and thus we provide only the
outline. The difference is we do not conditional on the full data DN here.

Note that, given β̂0 and Ψ̂0, λ̇p(βt) is a sum of N independent random vectors. We now

exam the mean and variance of λ̇p(βt) given β̂0 and Ψ̂0. For the mean,

1√
n
E
{
λ̇p(βt)|β̂0, Ψ̂0

}
= 0.

For the variance,

1

n
V
{
λ̇p(βt)|β̂0, Ψ̂0

}
=

E
[
|ψi(β̂0)|{nπpi (β̂0) ∨ 1}ψ2

i (βt − β̂0)h(xi)xix
T
i

∣∣∣β̂0, Ψ̂0

]
Ψ̂0

,

which, under Assumptions 1 and 2, converges in probability to Λu.
To check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under the

condition distribution, we note that for any ε > 0,

1

n

N∑
i=1

E
{∥∥λ̇pi∥∥2

I(
∥∥λ̇pi∥∥ > √nε)∣∣∣β̂0, Ψ̂0

}

≤
E
[
{h(x)‖x‖2 + Ψ̂0}h(x)I({h(x)/Ψ̂0 + 1}‖x‖ >

√
nε)
∣∣∣β̂0, Ψ̂0

]
Ψ̂2

0

= oP (1).

Thus, applying the Lindeberg-Feller central limit theorem (Section ∗2.8 of van der Vaart,
1998) finishes the proof.

B.4. Proofs for cases of misspecifications

B.4.1. Proofs with pilot misspecification

Proof of Theorem 18. By similar arguments used in the proof of Theorem 1, we know
that

√
n(β̂uw − βt) is the maximizer of

γ(s) =
1√
n

sTλ̇∗uw(βt) +
1

2n

n∑
i=1

φ∗i (βt − β̂0 + ś/
√
n)(sTx∗i )

2,
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where ś lies between 0 and s, and

λ̇∗uw(βt) =
n∑
i=1

{
y∗i − p∗i (βt − β̂0)

}
x∗i .

Given DN and β̂0, {y∗i −p∗i (βt− β̂0)
}
x∗i are i.i.d. random vectors. We exam their mean

and variance, and check the Lindeberg-Feller condition under the conditional distribution.
For the expectation, direct calculations give

E
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗
∣∣DN , β̂0

]
=

N∑
i=1

πi(β̂0)ψi(βt − β̂0)xi =

∑N
i=1 ηi

NΨN (β̂0)
, (44)

where ηi = |ψi(β̂0)|ψi(βt − β̂0)h(xi)xi. Conditional on β̂0, ηi’s are i.i.d., and we still have
E(ηi|xi, β̂0) = 0 and thus E(ηi|β̂0) = 0 due to (30). Thus

V(ηi|β̂0) = E(ηiη
T
i |β̂0

)
= E

{
ψ2(β̂0)ψ2(βt − β̂0)h2(x)xxT

∣∣β̂0

}
= E

{
ψ2(β0)ψ2(βt − β0)h2(x)xxT

}
+ oP (1) = ςb + oP (1),

where the third equality is from Lemma 28 and the facts that ψ2(·) ≤ 1 and E{h2(x)‖x|2} <
∞.

Similar to the proof of Lemma 29, the Lindeberg-Feller central limit theorem applies
conditional on β̂0. Thus, we have that, conditional on β̂0,∑N

i=1 ηi√
N

−→ N(0, ςb), (45)

in distribution.
From (44) and (45), we have

∆ =E
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗
∣∣DN , β̂0

]
= OP (1/

√
N). (46)

For the conditional variance of {y∗i −p∗i (βt− β̂0)
}
x∗i , using similar approach to the proof

of Lemma 30, we have

V
[{
y∗ − p(x∗i ,βt − β̂0)

}
x∗|DN , β̂0

]
=

N∑
i=1

πi(β̂0)ψ2
i (βt − β̂0)xix

T
i −∆2

=
1
N

∑N
i=1 |ψi(β̂0)|ψ2

i (βt − β̂0)h(xi)xix
T
i

ΨN (β̂0)
−OP (1/N)

=
E{|ψ(β0)|ψ2(βt − β0)h(x)xxT}

Ψ(β0)
+ oP (1) =

ςa
Ψ(β0)

+ oP (1) (47)

The Lindeberg-Feller condition under the conditional distribution can be verified simi-
larly to the proof of Lemma 30. Thus, we have

λ̇∗uw(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

{
0,

ςa
Ψ(β0)

}
, (48)
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in conditional distribution.
From Lemmas 28 and 31, and the law of large numbers, we have

1

n

n∑
i=1

φ∗i (βt − β̂0 + ś/
√
n)x∗i (x

∗
i )

T

=
N∑
i=1

πi(β̂0)φi(βt − β0)xix
T
i + oP (1)

=
1
N

∑N
i=1 |ψi(β̂0)|h(xi)φi(βt − β0)xix

T
i

ΨN (β̂0)
+ oP (1)

=
E{|ψ(β0)|φ(βt − β0)h(x)xxT}

Ψ(β0)
+ oP (1) =

ςa
Ψ(β0)

+ oP (1).

Since ςa is a positive definite matrix, and combining (44), (45), (46) and (47) we know that
λ̇∗uw(βt)/

√
n is stochastically bounded, from the Basic Corollary in page 2 of Hjort and

Pollard (2011), we have that

√
n(β̂uw − βt) = Ψ(β0)ς−1

a

1√
n
λ̇∗uw(βt) + oP (1) (49)

given DN and β̂0.
Now note that

√
N(β̂wMLE − βt) is the maximizer of

1√
N

sT
N∑
i=1

ηi −
1

2N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βt − β̂0 + ś/
√
N)(sTxi)

2

with ś between 0 and s. From Lemma 28, conditional on β̂0,

1

N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βt − β̂0 + ś/
√
N)xix

T
i

=
1

N

N∑
i=1

|yi − p(xi,β0)|h(xi)φi(βt − β0)xix
T
i + oP (1)

= E{|ψ(β0)|φi(βt − β0)h(xi)xix
T
i }+ oP (1) = ςa + oP (1)

Thus, from the Basic Corollary in page 2 of Hjort and Pollard (2011), we have

√
N(β̂wMLE − βt) =ς−1

a

1√
N

N∑
i=1

ηi + oP (1). (50)

Combining this with (49), we have

√
n(β̂uw − β̂wMLE) = Ψ(β0)ς−1

a

{ 1√
n
λ̇∗uw(βt)−

√
n

NΨ(β0)

N∑
i=1

ηi

}
+ oP (1).
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Combining the above two equations with (48), Slutsky’s theorem, and the fact that a
conditional probability is bounded, Theorem 18 follows.

Proof of Remark 20 We first observe the following equations by direct calculations.

Ψ(β0) = E
[
{p(x,βt) + p(x,β0)− 2p(x,β0)p(x,βt)}h(x)

]
, and

p(x,βt − β0) =
p(x,βt){1− p(x,β0)}

p(x,βt){1− p(x,β0)}+ p(x,β0){1− p(x,βt)}
. (51)

We need to verify that

E[{1− p(x,βt)}p(x,β0)p(x,βt − β0)h(x)xxT]

E
[
{p(x,βt) + p(x,β0)− 2p(x,β0)p(x,βt)}h(x)

] < E{φ(βt)h(x)xxT}
4E{φ(βt)h(x)}

Note that from (51)

2{1− p(x,βt)}p(x,β0)p(x,βt − β0) < φ(βt)

⇔ {p(x,βt)− p(x,β0)}{1− 2p(x,β0)} > 0,

and

p(x,βt) + p(x,β0)− 2p(x,β0)p(x,βt) > 2φ(βt)

⇔ {p(x,βt)− p(x,β0)}{2p(x,βt)− 1} > 0.

Thus the inequality holds if

p(x,βt) > 0.5 > p(x,β0) or p(x,βt) < 0.5 < p(x,β0)

⇔ xTβt > 0 > xTβ0 or xTβt < 0 < xTβ0

⇔ xTβtx
Tβ0 < 0.

This finishes the proof.

Proof of Theorem 21. Similarly to the proof of Theorem 6,
√
n(β̂p−βt) is the maximizer

of

1√
n

sTλ̇p(βt) +
1

2n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + ś/

√
n)(sTxi)

2,

where ś lies between 0 and s, and

λ̇p(βt) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}{yi − p(xi,βt − β̂0)}xi.

Similarly to the proof of Lemma 32, we first notice that given DN , β̂0, and Ψ̂0, λ̇p(βt) is
a sum of N independent random vectors. We now exam the mean and variance of λ̇p(βt).
For the mean, we have,

1√
n
E
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

√
n√
N

∑N
i=1 ηi

Ψ̂0

√
N

= OP (
√
n/N),

50



More Efficient Estimation with Optimal Subsamples

where the last equality is due to (45).

For the variance,

1

n
V
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

1
N

∑N
i=1 |ψi(β̂0)|{nπpi (β̂0) ∨ 1}ψ2

i (βt − β̂0)h(xi)xix
T
i

Ψ̂0

− n

N

1
N

∑N
i=1 ψ

2
i (β̂0)ψ2

i (βt − β̂0)h2(xi)xix
T
i

Ψ̂2
0

≡∆8 −∆9

From Lemma 28, if n/N → ρ, using a similar approach used in the proof of Lemma 32, we
have

∆8 =
1

Ψ̂2
0

1

N

N∑
i=1

|ψi(β̂0)|
{n|ψi(β̂0)|h(xi)

N
∨ Ψ̂0

}
ψ2
i (βt − β̂0)h(xi)xix

T
i

=
1

Ψ2
0

E
[
|ψ(β0)|

{
ρ|ψ(β0)|h(x) ∨Ψ(β0)

}
ψ2(βt − β0)h(x)xxT

]
+ oP (1)

and

∆9 = ρ
E{ψ2(β0)ψ2(βt − β0)h2(x)xxT}

Ψ2
0

= ρ
ςb
Ψ2

0

+ oP (1).

Thus,

1

n
V
{
λ̇p(βt)|DN , β̂0, Ψ̂0

}
=

E
[
|ψ(β0)|

{
1−Ψ−1

0 ρ|ψ(β0)|h(x)
}

+
ψ2(βt − β0)h(x)xxT

]
Ψ0

+ oP (1) =
ςc
Ψ0

+ oP (1).

Applying the Lindeberg-Feller central limit theorem, we have

λ̇p(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

(
0,

ςc
Ψ2

0

)
, (52)

in conditional distribution.

Using a similar approach used to prove Lemma 33, we have

1

n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βt − β̂0 + sn)xix

T
i

=
N∑
i=1

πpi (β̂0)φi(βt − β0)xix
T
i + oP (1)

=
1
N

∑N
i=1 |ψi(β̂0)|h(xi)φi(βt − β0)xix

T
i

Ψ̂0

+ oP (1) =
ςa
Ψ0

+ oP (1).
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From (45) and (52), λ̇p(βt)/
√
n is stochastically bounded. In addition, ςa is finite and

positive-definite. Thus, from the Basic Corollary in page 2 of Hjort and Pollard (2011),√
n(β̂p − βt) satisfies

√
n(β̂p − βt) = Ψ0ς

−1
a

1√
n
λ̇p(βt) + oP (1),

given DN , β̂0, and Ψ̂0. Combining this with (50), (52), Slutsky’s theorem, and the fact that
a conditional probability is bounded by one, Theorem 21 follows.

B.4.2. Proofs with model misspecification

Proof of Theorem 24. By similar arguments used in the proof of Theorem 1, we know
that

√
n(β̂uw − βl) is the maximizer of

1√
n

sTλ̇∗uw(βl) +
1

2n

n∑
i=1

φ∗i (βl − β̂0 + ś/
√
n)(sTx∗i )

2,

where ś lies between 0 and s, and

λ̇∗uw(βl) =
n∑
i=1

{
y∗i − p(x∗i ,βl − β̂0)

}
x∗i .

We abuse the notation and redefine ηi = |ψi(β̂0)|ψi(βl − β̂0)h(xi)xi in this proof. By
similar arguments used in the proof of Lemma 30, we have that

E
[{
y∗ − p(x∗,βl − β̂0)

}
x∗
∣∣DN , β̂0

]
=

N∑
i=1

πi(β̂0)ψi(βl − β̂0)xi =

∑N
i=1 ηi

NΨN (β̂0)
,

and

V
[{
y∗ − p(x∗,βl − β̂0)

}
x∗
∣∣DN , β̂0

]
=

N∑
i=1

πi(β̂0){yi − p(xi,βl − β̂0)}2xixT
i −∆2

=
1
N

∑N
i=1 |ψi(βl)|(yi − 0.5)2h(xi)xix

T
i

ΨN (βl)
+ oP (1) =

κa
ω

+ oP (1).

The Lindeberg-Feller condition under the conditional distribution can be verified using a
similar approached used in the proof of Lemma 30. Thus, conditional on DN and β̂0, as
n0, n, and N go to infinity,

λ̇∗uw(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN (β̂0)
−→ N

(
0,
κa
ω

)
, (53)
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in conditional distribution. Now we exam ηi. For the j-th element of ηi,

ηij =|ψi(β̂0)|{yi − pi(xi,βl − β̂0)}h(xi)xij

=(2yi − 1){yi − pi(xi, β̂0)}{yi − pi(xi,βl − β̂0)}h(xi)xij

=0.5(2yi − 1)2{yi − pi(xi,βl)}h(xi)xij + ήijh(xi)xijx
T
i (β̂0 − βl), (54)

where

ήij =(2yi − 1)
[
{yi − pi(xi, β́)}pi(xi, ś){1− pi(xi, ś)}

− pi(xi, β́){1− pi(xi, β́)}{yi − pi(xi, ś)}
]
,

with ś = βl − β́, and β́ being between βl and β̂0. Note that |η̇ij | ≤ 2 and

ήij →
(2yi − 1)

4

[
{yi − pi(xi,βl)} − 2(2yi − 1)pi(xi,βl){1− pi(xi,βl)}

]
,

in probability. Thus, from Lemma 28 and direct calculations, we have that

1

N

N∑
i=1

h(xi)(ήi ◦ xi)x
T
i = κc + oP (1), (55)

where ήi = (ήi1, ..., ήid)
T and ◦ is the Hadamard product. From (54) and (55), we have that

N∑
i=1

ηi =
1

2

N∑
i=1

(2yi − 1)2{yi − pi(xi,βl)}h(xi)xi + κcN(β̂0 − βl) + oP {N(β̂0 − βl)}.

Thus, from the central limit theorem and Slutsky’s theorem, and the fact that β̂0 is inde-
pendent of DN , ∑N

i=1 ηi√
N

−→ N
(
0, κb +

κcΣ0κc
ρ0

)
. (56)

From Lemma 28 and using a similar approach to prove Lemma 31, we have

1

n

n∑
i=1

φ∗i (βl − β̂0 + ś/
√
n)x∗i (x

∗
i )

T

=

N∑
i=1

πi(β̂0)φi(βl − β̂0)xix
T
i + oP (1)

=
1
N

∑N
i=1 |ψi(β̂0)|h(xi)φi(βl − β̂0)xix

T
i

1
N

∑N
i=1 |yi − p(xi, β̂0)|h(xi)

+ oP (1) =
κa
ω

+ oP (1).

Since κa is a positive definite matrix, and λ̇∗uw(βl)/
√
n is stochastically bounded due to

(53) and (56), from the Basic Corollary in page 2 of Hjort and Pollard (2011),
√
n(β̂uw−βl)

satisfies

√
n(β̂uw − βl) = ωκ−1

a

1√
n
λ̇∗uw(βl) + oP (1) (57)

53



Wang

given DN and β̂0.
Using similar arguments used in the proof of Lemma 29, we know that

√
N(β̂wMLE−βl)

is the maximizer of

1√
N

sT
N∑
i=1

ηi −
1

2N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βl − β̂0 + ś/
√
N)(sTxi)

2,

where ś lies between 0 and s. From Lemma 28,

1

N

N∑
i=1

|yi − p(xi, β̂0)|h(xi)φi(βl − β̂0 + ś/
√
N)xix

T
i = κa + oP (1).

Thus, from (56) and the Basic Corollary in page 2 of Hjort and Pollard (2011), we know
that

√
N(β̂wMLE − βl) satisfies

√
N(β̂wMLE − βl) =κ−1

a

1√
N

N∑
i=1

ηi + oP (1). (58)

From (56), Slutsky’s theorem, and the fact that a conditional probability is bounded by
one, the result in (24) follows.

From (57) and (58), we have

√
n(β̂uw − β̂wMLE) = ωκ−1

a

{
1√
n
λ̇∗uw(βl)−

√
n
∑N

i=1 ηi
ωN

}
+ oP (1).

Thus, from (53), Slutsky’s theorem, and the fact that a conditional probability is bounded
by one, (23) of Theorem 24 follows.

Proof of Theorem 26. Using similar arguments used in the proof Theorem 6, we know
that

√
n(β̂p − βl) is the maximizer of

1√
n

sTλ̇p(βl) +
1

2n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βl − β̂0 + ś/

√
n)(sTxi)

2,

where ś lies between 0 and s, and

λ̇p(βl) =
N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}{yi − p(xi,βl − β̂0)}xi.

Given DN , β̂0 and Ψ̂0, λ̇p(βl) is a sum of independent variables, and the Lindeberg-
Feller condition under the condition distribution can be verified similarly to the proof of
Lemma 32. Now we exam the conditional mean and variance of λ̇p(βl). For the mean, from
(56) we have,

1√
n
E
{
λ̇p(βl)|DN , β̂0, Ψ̂0

}
=

√
n√
N

∑N
i=1 ηi

Ψ̂0

√
N

= OP (
√
n/N).
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For the variance,

1

n
V
{
λ̇p(βl)|DN , β̂0, Ψ̂0

}
=

1
N

∑N
i=1 |ψi(β̂0)|{nπpi (β̂0) ∨ 1}ψ2

i (βl − β̂0)h(xi)xix
T
i

Ψ̂0

− n

N

1
N

∑N
i=1 ψ

2
i (β̂0)ψ2

i (βl − β̂0)h2(xi)xix
T
i

Ψ̂2
0

≡ ∆10 + ∆11. (59)

Note that E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞, and |ψi(·)| are bounded. Thus, from
Lemma 28, if n/N → ρ,

∆11 → ρ
κb
ω2
, (60)

in probability. For the term ∆10 in (59), since E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞,
and |ψi(·)| are bounded, from Lemma 28, if n/N → ρ, as n0, n, and N go to infinity, by a
similar approach used in the proof of Lemma 32, we have

∆10 =
1

Ψ̂2
0

n

N2

N∑
i=1

ψ2
i (β̂0)ψ2

i (βl − β̂0)h2(xi)xix
T
i I
{n|ψi(β̂0)|h(xi)

N
> Ψ̂0

}
+

1

Ψ̂0

1

N

N∑
i=1

|ψi(β̂0)|ψ2
i (βl − β̂0)h(xi)xix

T
i I
{n|ψi(β̂0)|h(xi)

N
≤ Ψ̂0

}

=
E
(
|ψ(βl)|[{ρ|ψ(βl)|h(x)} ∨ ω]h(x)xxT

)
4ω2

+ oP (1). (61)

From, (59), (60), and (61), if n/N → ρ,

1

n
V
{
λ̇p(βl)|DN , β̂0, Ψ̂0

}
=
κd
ω

+ oP (1).

From the above results, conditional on DN , β̂0, and Ψ̂0, we know that

λ̇p(βl)√
n
−
√
n
∑N

i=1 ηi

NΨ̂0

−→ N
(
0,
κd
ω2

)
, (62)

in distribution.
In addition, from Lemma 28, using an approach similar to the proof of Lemma 33, we

have

1

n

N∑
i=1

δ
β̂0
i {nπ

p
i (β̂0) ∨ 1}φi(βl − β̂0 + ś/

√
n)xix

T
i

=
1

4n

N∑
i=1

δ
βl
i {nπ

p
i (βl) ∨ 1}xixT

i + oP (1)

=
1

4NΨ̂0

N∑
i=1

|ψi(βl)|h(xi)xix
T
i + oP (1) =

κa
ω

+ oP (1). (63)
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Thus, based on (56), (62), and (63), from the Basic Corollary in page 2 of Hjort and
Pollard (2011),

√
n(β̂p − βl), satisfies

√
n(β̂p − βl) = ωκa

1√
n
λ̇p(βl) + oP (1),

given DN , β̂0, and Ψ̂0. Combining this with (58), (62), Slutsky’s theorem, and the fact that
a conditional probability is bounded by one, Theorem 26 follows.
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