
Journal of Machine Learning Research 20 (2019) 1-49 Submitted 9/18; Revised 4/19; Published 7/19

Nonparametric Estimation of Probability Density Functions of
Random Persistence Diagrams

Vasileios Maroulas vmaroula@utk.edu
Department of Mathematics
University of Tennessee
Knoxville, TN 37996, USA

Joshua L Mike mikejosh@msu.edu
Computational Mathematics, Science, and Engineering Department
Michigan State University
East Lansing, MI 48823, USA

Christopher Oballe coballe@vols.utk.edu
Department of Mathematics

University of Tennessee

Knoxville, TN 37996, USA

Editor: Boaz Nadler

Abstract

Topological data analysis refers to a broad set of techniques that are used to make inferences
about the shape of data. A popular topological summary is the persistence diagram. Through the
language of random sets, we describe a notion of global probability density function for persistence
diagrams that fully characterizes their behavior and in part provides a noise likelihood model.
Our approach encapsulates the number of topological features and considers the appearance or
disappearance of those near the diagonal in a stable fashion. In particular, the structure of our
kernel individually tracks long persistence features, while considering those near the diagonal as a
collective unit. The choice to describe short persistence features as a group reduces computation
time while simultaneously retaining accuracy. Indeed, we prove that the associated kernel density
estimate converges to the true distribution as the number of persistence diagrams increases and the
bandwidth shrinks accordingly. We also establish the convergence of the mean absolute deviation
estimate, defined according to the bottleneck metric. Lastly, examples of kernel density estimation
are presented for typical underlying datasets as well as for virtual electroencephalographic data
related to cognition.

Keywords: Topological Data Analysis; Persistence Homology; Finite Set Statistics; Global Dis-
tribution of Persistence Diagrams; Kernel Density Estimation; EEG Signals

1. Introduction

Topological data analysis (TDA) encapsulates a range of data analysis methods that investigate the
topological structure of a dataset (Edelsbrunner and Harer, 2010). One such method, persistent
homology, describes the geometric structure of a given dataset and summarizes this information as
a persistence diagram. TDA, and in particular persistence diagrams, have been employed in several
studies with topics ranging from classification and clustering (Venkataraman et al., 2016; Adcock
et al., 2016; Pereira and de Mello, 2015; Marchese and Maroulas, 2018) to the analysis of dynamical
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systems (Perea and Harer, 2015; Sgouralis et al., 2017; Guillemard and Iske, 2011; Seversky et al.,
2016) and complex systems such as sensor networks (De Silva and Ghrist, 2007; Xia et al., 2015;
Bendich et al., 2016). In this work, we establish the probability density function (pdf) for a random
persistence diagram.

Persistence diagrams offer a topological summary for a collection of d-dimensional data, say
{xi} ⊂ Rd, which focuses on the global geometric structure of the data. A persistence diagram
is a multiset of homological features {(bi, di, ki)}, each representing a ki-dimensional hole which
appears at scale bi ∈ R+ and is filled at scale di ∈ (bi,∞). In general, the dataset arises from any
metric space, though restricting to {xi} ⊂ Rd guarantees ki ∈ {0, ...,d− 1}. For example, if the
data form a time series trajectory xi = f(ti), the associated persistence diagram describes multista-
bility through a corresponding number of persistent 0-dimensional features or periodicity through a
single persistent 1-dimensional feature. In a typical persistence diagram, few features exhibit long
persistence (range of scales di − bi), and such features describe important topological characteris-
tics of the underlying dataset. Moreover, persistent features are stable under perturbation of the
underlying dataset (Cohen-Steiner et al., 2010).

Persistence diagrams have recently seen intense active research, including significant successful
efforts toward facilitating previously challenging computations with them; these efforts impact
evaluation of Wasserstein distance in (Kerber et al., 2016) and the creation of persistence diagrams
with packages such as Dionysus (Fasy et al., 2015) and Ripser (Bauer, 2015) which take advantage
of certain properties of simplicial complexes (Chen and Kerber, 2011). Recently, various approaches
have defined specific summary statistics such as center and variance (Bobrowski et al., 2014; Mileyko
et al., 2011; Turner et al., 2014; Marchese and Maroulas, 2018), birth and death estimates (Emmett
et al., 2014), and confidence sets (Fasy et al., 2014). While the aforementioned studies focus on
valuable specific summaries, here we view a distribution of persistence diagrams in a global sense
via a nonparametric method to estimate its density function.

We naturally think of a (random) persistence diagram as a random element which depends upon
a stochastic procedure which is used to generate the underlying dataset that it summarizes. Given
that geometric complexes are the typical paradigms for application of persistent homology to data
analysis, see for example the partial list (De Silva and Ghrist, 2007; Emmett et al., 2014; Guille-
mard and Iske, 2011; Marchese and Maroulas, 2016; Perea and Harer, 2015; Seversky et al., 2016;
Xia et al., 2015; Venkataraman et al., 2016; Edelsbrunner, 2013; Emrani et al., 2014)), we consider
persistence diagrams which arise from a dataset and its associated Čech filtration. Thus, sample
datasets yield sample persistence diagrams without direct access to the distribution of persistence
diagrams. In this sense, a distribution of persistence diagrams is defined by transforming the dis-
tribution of underlying data under the process used to create a persistence diagram, as discussed in
(Mileyko et al., 2011). The diagrams are created through a highly nonlinear process which relies on
the global arrangement of datapoints (see Section 2); thus, the structure of a persistence diagram
distribution remains unclear even for underlying data with a well-understood distribution. Indeed,
results for the persistent homology of noise alone, such as (Adler et al., 2014), primarily concern
the asymptotics of feature cardinality at coarse scale. More recently, it was proved that under mild
conditions there exists a density with respect to Lebesgue measure for the intensity of persistence
diagrams induced by filter functions defined on random variables having support on manifolds; in
addition it was shown that kernel density estimation of this intensity is possible through persistence
surfaces (Chazal and Divol, 2018). Another approach is to study these distributions through non-
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parametric means. Kernel density estimation is a well known nonparametric technique for random
vectors in Rd (Scott, 2015) which relies on convolution with a smooth kernel.

There has been extensive work to devise various maps from persistence diagrams into Hilbert
spaces, especially Reproducing Kernel Hilbert Spaces (RKHS). For example, (Adams et al., 2017)
discretizes persistence diagrams via bins, yielding vectors in a high dimensional Euclidean space;
the authors in (Chazal and Divol, 2018) introduce a novel bandwidth selection procedure for this
particular vectorization based on cross-validation. The persistence landscapes of (Bubenik, 2015)
reinterpret the space of persistence diagrams within a function-based vector space. The works
(Reininghaus et al., 2014) and (Kusano et al., 2016) define kernels between persistence diagrams in
a RKHS. By mapping into a Hilbert space, these studies allow the application of machine learning
methods such as principal component analysis, random forest, support vector machine, and more.
The universality of such a kernel is investigated in (Kwitt et al., 2015); this property induces a
metric on distributions of persistence diagrams (by comparing means in the RKHS), as (Kwitt
et al., 2015) demonstrates with a two-sample hypothesis test. In a similar vein, (Adler et al., 2017)
uses Gibbs distributions in order to replicate similar persistence diagrams, e.g. for use in MCMC
type sampling.

By mapping into a Hilbert space, the preceding approaches kernelize persistence diagrams for
express application in typical machine learning methodology. In a similar vein, the studies (Bo-
browski et al., 2014) and (Fasy et al., 2014) work with kernel density estimation on the underlying
data to estimate a target diagram as the number of underlying datapoints goes to infinity. In both
cases, the target diagram is directly associated to the probability density function (pdf) of the
underlying data via the superlevel sets of the pdf. The first work constructs an estimator for the
target diagram, while the second defines a confidence set. In either case, kernel density estimation
is used to approximate the pdf of the underlying datapoints, assuming the data are independent
and identically distributed (i.i.d.). In complementary fashion, our work considers a new kernel
density defined on a completely different space: the space of persistence diagrams.

Since persistence diagrams lack a vector space structure, we must smooth without convolution.
Instead, we treat persistence diagrams as random multisets and provide a noise model for persistence
diagrams which ascribes a great level of uncertainty near the diagonal. The theory of random sets
is an interpretation of point processes which provides the tools necessary to describe the global pdf
of the noise model as a kernel density centered at a particular persistence diagram. Instead of a
transformed collection or a center diagram, the output of our method is an estimate of a probability
density function (pdf) of a random persistence diagram. Access to a persistence diagram pdf
facilitates definition and application of new statistical techniques in this context such as hypothesis
testing, utilization of Bayesian priors, or likelihood based methods, e.g. see (Maroulas et al., 2019).
The proposed kernel density is centered at a persistence diagram and describes each feature as
having either short or long persistence; by treating each long-persistence point individually and
short persistence points collectively, the kernel density strikes a careful balance between accuracy
and computation time. Our method also enables expedient sampling of new persistence diagrams
from the kernel density estimate. In contrast to previous methodologies, our kernel density estimate
has the potential to describe high probability features in a random persistence diagram, even if these
features have brief persistence. Such features are typically indicative of the geometric structure,
e.g., curvature, of the dataset rather than its topology.

The homological features (bi, di, ki) in a persistence diagram come without an ordering and
their cardinality is variable, being bounded but not defined by the cardinality of the underlying
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dataset. Thus, any notion of density must be (i) invariant to the ordering of features and (ii)
account for variability in their cardinality. Indeed, the approach used to analyze a collection of
persistence diagrams in (Bendich et al., 2016) is a good step toward understanding a random per-
sistence diagram, but requires a choice of order and considers only a fixed number of features and is
therefore unsuitable for creating probability densities. In this work, we offer a kernel density with
the desirable properties (i) and (ii), which also calls attention to the persistence of each feature.
A typical persistence diagram has many features with brief persistence and few with moderate or
longer persistence; consequently, our kernel density groups features with short persistence together
in order to combat the curse of dimensionality. Indeed, the kernel density still considers features
of short persistence, but simplifies their treatment in order to facilitate computation. The kernel
density is defined on a pertinent space of finite random sets which is equipped to describe pdfs for
random persistence diagrams generated from associated data with bounded cardinality of topolog-
ical features. In this sense, our kernel density provides estimation of the distribution of persistence
diagrams which in turn describes the geometry of the random underlying dataset. The requirement
of bounded feature cardinality is trivially satisfied for datasets with bounded cardinality, which is
reasonable for application and theory. Indeed, the creation of a persistence diagram from an infi-
nite collection of data is often nonsensical (e.g., for anything with unbounded noise), and a scaling
limit should be considered instead; For example, this problem can be approached via the studies
(Bobrowski et al., 2014) and (Fasy et al., 2014).

The overall contribution of this article is listed below.

1. A probabilistic framework for defining distributions of random persistence diagrams.

2. A novel kernel density estimator centered at persistence diagrams, which in part provides a
noise likelihood model, and its convergence to the true distribution as the number of persis-
tence diagrams goes to infinity.

3. A new dispersion statistic for persistence diagrams, the mean absolute bottleneck deviation
(MAD) and the convergence of the sample MAD computed with our kernel density estimator.

4. Applications of the kernel density estimator to analyze data data arising from a neuroscience
problem related to cognition.

Organization: We establish the kernel density estimation problem through the lens of finite set
statistics and we consequently begin with relevant background in topological data analysis in Section
2. The reader may refer to (Edelsbrunner and Harer, 2010) for a more rigorous treatment of the
subject. Section 3 contains our framework for random persistence diagrams and their probability
distributions. Our main theoretical results are in Section 4. In Subsection 4.1, we construct
the kernel density associated to a center persistence diagram and kernel bandwidth parameter.
This consists of decomposing the center persistence diagram into lower and upper halves, finding
pdfs associated to each half, and lastly determining the pdf for their union. Convergence of this
estimator to the true distribution of random persistence diagrams is proved in Subsection 4.2. In
Subsection 4.3, we introduce a new measure of dispersion for persistence diagrams, the MAD, and
show that the sample MAD computed with our kernel converges (with mild assumptions). Next,
Section 5 contains practical examples of our kernel density. Namely, an example of persistence
diagram kernel density estimation and its convergence are demonstrated for persistence diagrams
associated to underlying data with annular distribution and we apply our kernel to a neuroscience
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problem (Example 4). Finally, we end with conclusions and discussion in Section 6. Further
examples of KDE convergence and the proofs of auxiliary propositions and lemmas are given in the
supplementary materials.

2. Topological Data Analysis Background

The topological background discussed here builds toward the definition of persistence diagrams, the
pertinent objects in this work. We begin by briefly discussing simplicial complexes and homology,
an algebraic descriptor for coarse shape in topological spaces. In turn, persistent homology, and its
summary, persistence diagrams, are techniques for bringing the power and convenience of homology
to describe subspace filtrations of topological spaces. The reader should refer to (Edelsbrunner and
Harer, 2010), for example, for a rigorous treatment of persistent homology. We first consider
topological spaces of discernible dimension, called manifolds.

Definition 1 A topological space X is called a k-dimensional manifold if every point x ∈ X has a
neighborhood which is homeomorphic to an open neighborhood in k-dimensional Euclidean space.

We generalize the fixed-dimension notion of a manifold in order to define simplicial homology for
simplicial complexes. We then discuss the Čech construction which is used to associate simplicial
complexes to datasets.

Definition 2 A k-simplex is a collection of k+1 linearly independent vertices along with all convex

combinations of these vertices: (v0, ..., vk) =
{∑k

i=0 αivi :
∑k

i=0 αi = 1 and αi ≥ 0 ∀i
}
. Topologi-

cally, a k-simplex is treated as a k-dimensional manifold (with boundary). An oriented simplex is
typically described by a list of its vertices, such as (v0, v1, v2). The faces of a simplex consist of all
the simplices built from a subset of its vertex set; for example, the edge (v1, v2) and vertex (v2) are
both faces of the triangle (v0, v1, v2).

Definition 3 A simplicial complex K is a collection of simplices wherein (i) if σ ∈ K, then all its
faces are also in K, and (ii) the intersection of any pair of simplices in K is another simplex in K.

A simplicial complex is realized by the union of all its simplices; some examples are shown in Fig.
1. Conditions (i) and (ii) in Def. 3 establish a unique topology on the realization of a simplicial
complex which restricts to the subspace topology on each open simplex. For finite simplicial
complexes realized in Rd, this topology is also consistent with the Euclidean subspace topology.

Given a simplicial complex, we are interested in describing its global topology and local geome-
try through homological features. For our purposes, it suffices to define k−dimensional homological
features of simplicial complexes as k−dimensional holes, so that, for example, 0−dimensional ho-
mological features are connected components, 1−dimensional homological features are loops, and
2−dimensional homological features are voids.

We wish to extend the notion of homology for a discrete set of data x = {xi}Ni=1 within a
metric space (X, dX). Treating the set itself as a simplicial complex, its homology yields only the
cardinality of the data points. So, we use the metric to obtain more information. Here we denote
by B(x0, r0) a metric ball centered at x0 of radius r0. Fix a radius r > 0 and consider the collection
of neighborhoods U = {Ui} = {B(xi, r)} along with its union Ur = ∪iB(xi, r). The filtration of sets
{Ur}r∈R+ naturally yields information about the arrangement within X of the dataset x at various
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Figure 1: The neighborhood space and Čech complex of matching radius plotted at three different
radii. Yellow indicates a triangle while orange indicates a tetrahedron. This family of simplicial
complexes is the filtration used to compute and define persistent homology.

scales. To make homology computations more tractable for Ur, we instead consider the associated
nerve complexes.

Definition 4 The nerve N (U) of a collection of open sets U is the simplicial complex where a
k-simplex (vi0 , ..., vik) is in N (U) if and only if ∩kj=0Uij 6= ∅. The nerve of the neighborhoods

U = {B(xi, r)} is called the Čech complex on the data {xi} at radius r and is denoted by Čech(x, r).

Examples of the Čech complex for the same data at different radii are depicted in Fig. 1,
where they are superimposed with the associated neighborhood space. Any nerve complex trivially
satisfies the requirements for a simplicial complex (Edelsbrunner and Harer, 2010). Moreover, the
nerve theorem states that the nerve and union of a collection of convex sets have similar topology
(they are homotopy equivalent) (Hatcher, 2002); specifically, the Čech complex and neighborhood
space U have identical homology for any given radius.

A priori, it is unclear which choice of scale (radius), best describes the data; and oftentimes
different scales reveal different information. Thus, to investigate the topology of our data, we
consider the appearance and disappearance of homological features at growing scale. This multiscale
viewpoint, called persistent homology, is introduced in (Edelsbrunner et al., 2002) and yields a
topological summary of the data called a persistence diagram. This is possible because we have
a growing filtration of complexes, so each complex is included in the next (see Fig. 1). These
inclusion maps induce maps at the level of homology groups. These induced maps are referred
to here as the persistence maps, and take features to features or to zero (Cohen-Steiner et al.,
2007). Thus, each feature is tracked by how far the persistence maps preserve it. In turn, tracking
features is boiled down to a very specific algorithm for obtaining the birth and death radii for each
homological feature (e.g., see (Edelsbrunner and Harer, 2010)). Features which persist over a large
range of scale are typically considered more important, and their presence is stable under small
perturbations of the underlying data (Cohen-Steiner et al., 2010).

Persistent homology yields a multiset of homological features, each born at a scale bi, lasting
until its death scale di, with degree of homology ki; in short, it yields a persistence diagram
D = {ξi}Mi=1 = {(bi, di, ki)}Mi=1. We interpret the birth-death values as coordinate points with
degree of homology as labels. For clarity and simplicity, we ignore any features with death value
di =∞, since these features are generally a characteristic of the ambient space. In particular, one
homological feature with (b, d, k) = (0,∞, 0) is expected from any Čech filtration.
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Specifically, for data in Rd, we consider each feature as an element of

W0:d−1 = W × {0, ...,d− 1} , (2.1)

where W =
{

(b, d) ∈ R2 : d > b ≥ 0
}

is the infinite wedge. As a topological space, the d-fold
multiwedge W0:d−1 is treated as d-disconnected copies of W , where W has the Euclidean metric
and topology.

It is desirable to define a metric between persistence diagrams with which to measure topologi-
cal similarity. In TDA, Hausdorff distance is typically used to compare underlying datasets, while
the bottleneck distance (Def. 5) is used to compare their associated persistence diagrams (Fasy
et al., 2014; Munch, 2017). A distance that accounts for cardinality differences between persis-
tence diagrams was introduced in (Marchese and Maroulas, 2018) and its stability with respect to
perturbations in the underlying point cloud was proved in (Maroulas et al., 2018).

Definition 5 The bottleneck distance between two persistence diagrams D1 and D2 is given by

W∞(D1, D2) = min
γ

max
x∈D1

‖x− γ(x)‖∞ . (2.2)

where γ ranges over all possible bijections between D1 and D2 which match in degree of homology.
The diagonal {b = d} is included in both persistence diagrams with infinite multiplicity so that any
feature may be matched to the diagonal.

Remark 6 Due to the unstable presence of features near the diagonal, typical metrics on persis-
tence diagrams such as the bottleneck distance treat the diagonal as part of every persistence diagram
(Mileyko et al., 2011) in order to achieve stability with respect to Hausdorff perturbations of the un-
derlying dataset (Cohen-Steiner et al., 2007). Morally, one considers the diagonal as representing
vacuous features which are born and die simultaneously. For convenient computation, the definition
of bottleneck distance can be applied to each degree of homology separately.

3. Random Persistence Diagrams

In this section we establish background to make the notion of probability density for a random per-
sistence diagram explicit and well-defined. A persistence diagram changes its feature cardinality
under small perturbation of the underlying dataset, and these features have no intrinsic order. Con-
sequently, we cannot treat persistence diagrams as elements of a vector space. Instead, we consider
a random persistence diagram D as a random multiset of features D = {ξi} ⊂ W0:d−1 in the multi-
wedge defined in Eq. (2.1). For underlying datasets sampled from Rd with bounded cardinality, the
affiliated Čech persistence diagrams also have bounded feature cardinality and degree of homology.
Thus, we assume that the cardinality of a random persistence diagram is bounded above by some
value |D| ≤M ∈ N , and so consider the space C≤M (W0:d−1) = {D multiset in W0:d−1 : |D| ≤M}.
We view C≤M (W0:d−1) through a list of functions hN which each map the appropriate dimen-
sion of Euclidean space into its corresponding cardinality component, CN (W0:d−1). This viewpoint
facilitates the definition of probability densities.

Definition 7 For each N ∈ {0, ...,M}, consider the space of N topological features, denoted
CN (W0:d−1) = {D multiset in W0:d−1 : |D| = N}, and the associated map hN :WN

0:d−1 → CN (W0:d−1)
defined by

hN (ξ1, ..., ξN ) = {ξ1, ..., ξN} . (3.1)

7



Maroulas, Mike, and Oballe

The map hN creates equivalence classes on WN
0:d−1 according to the action of the permutations ΠN ;

specifically, [Z] = [(ξ1, ..., ξN )]hN =
{(
ξπ(1), ..., ξπ(N)

)
: π ∈ ΠN

}
for each Z = (ξ1, ..., ξN ) ∈ WN

0:d−1.
These equivalence classes yield the space

WN
0:d−1/ΠN =

{
[ξ]hN : ξ ∈ WN

0:d−1

}
, (3.2)

equipped with the quotient topology. The topology on C≤M (W0:d−1) is defined so that each hN lifts to
a homeomorphism between WN

0:d−1/ΠN and CN (W0:d−1), and we write WN
0:d−1/ΠN

∼= CN (W0:d−1).

With a topology in hand, one can define probability measures on the associated Borel σ-algebra.
Thus, we define a random persistence diagram D to be a random element distributed according
to some probability measure on C≤M (W0:d−1) for a fixed maximal cardinality M ∈ N. We denote
associated probabilities by P [·] and expected values by E [·]. Since WN

0:d−1/ΠN
∼= CN (W0:d−1), we

work toward defining probability densities on the collection of Euclidean spaces ∪MN=0WN
0:d−1.

Definition 8 For a given random persistence diagram D and any Borel subset A of W0:d−1, the
belief function βD is defined as

βD(A) = P [D ⊂ A] . (3.3)

Since A is a Borel subset of W0:d−1, the collection OA = {D ∈ C≤M (W0:d−1) : D ⊂ A} is the
quotient of ∪MN=0A

N ⊂ ∪MN=0WN
0:d−1 under hN ; moreover, AN is clearly Borel in the Euclidean

topology of ∪MN=0WN
0:d−1. Therefore, since hN induces a homeomorphism (see definition 7), OA is a

Borel subset of C≤M (W0:d−1). The belief function of a random persistence diagram is similar to the
joint cumulative distribution function for a random vector, in particular by yielding a probability
density function through Radon-Nikodým type derivatives.

Definition 9 Fix φ defined on Borel subsets of C≤M (W0:d−1) into R. For an element ξ ∈ W0:d−1

or a multiset Z ⊂ W0:d−1 with Z = {ξ1, ..., ξN}, the set derivative (evaluated at the empty set ∅) is
respectively given by

δφ

δξ
(∅) = lim

n→∞

φ(B(ξ, 1/n))

λ(B(ξ, 1/n))
,

δφ

δZ
(∅) =

δNφ

δξ1...δξN
=

[
δ

δξ1
· · · δ

δξN
φ

]
(∅),

(3.4)

where B(ξ, 1/n) are Euclidean balls and λ indicates Lebesgue measure on W0:d−1.

Remark 10 Def. 9 for set derivatives at the empty set closely mirrors the Radon-Nikodým deriva-
tive with respect to Lebesgue measure. The definition of a set derivative evaluated on a nonempty
set is more involved, and is found in (Matheron, 1975). Here we are primarily concerned with
evaluation at ∅, since this suffices for the definition of a probability density function. Also, note
that set derivatives satisfy the product rule.

Remark 11 Restricting to a particular cardinality N , consider φN = φ ◦ hN , a function on Eu-
clidean space which is invariant under the action of ΠN . The viewpoint of φN elucidates the
relationship between set derivatives and Radon-Nikodým derivatives with respect to Lebesgue mea-
sure. This viewpoint also shows that the iterated derivative given in Eq. (3.4) is independent of
order and thus is well-defined for a multiset Z.
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As with typical derivatives, there is a complementary set integration operation for set deriva-
tives. Set derivatives (at ∅) are essentially Radon-Nikodým derivatives with order tied to cardinality,
and so the corresponding set integral acts like Lebesgue integration summed over each cardinality.

Definition 12 Consider a Borel subset A of W0:d−1 and a Borel subset O of C≤M (W0:d−1). For a
set function f : C≤M (W0:d−1)→ R, its set integrals over A and O are respectively defined according
to the following sums of Lebesgue integrals:∫

A
f(Z)δZ =

M∑
N=0

1

N !

∫
AN

f(hN (ξ1, ..., ξN ))dξ1...dξN , (3.5a)

∫
O
f(Z)δZ =

M∑
N=0

1

N !

∫
h−1
N (O)

f(hN (ξ1, ..., ξN ))dξ1...dξN , (3.5b)

where Z = {ξ1, ..., ξN} ⊂ W0:d−1 is a persistence diagram.

Dividing byN ! in Eqs. (3.5a) and (3.5b) accounts for integrating overWN
0:d−1 instead ofWN

0:d−1/ΠN
∼=

CN (W0:d−1). It has been shown that set derivatives and integrals are inverse operations (Matheron,
1975); specifically, the set derivative of a belief function yields a probability density for a random
diagram D such that

βD(A) =

∫
A

δβD
δZ

(∅)δZ. (3.6)

Indeed, AN = h−1
N ({D ⊂ A}) so that Eq. (3.5a) also holds as an integral over the set OA =

{D ∈ C≤M : D ⊂ A} in the sense of Eq. (3.5b).

Definition 13 For a random persistence diagram D, a global probability density function (global
pdf) fD : ∪N∈NWN

0:d−1 → R must satisfy∑
π∈ΠN

fD(ξπ(1), ..., ξπ(N)) =
δNβD

δξ1 · ... · δξN
(∅). (3.7)

and is described by its layered restrictions fN = fD
∣∣
WN

0:d−1
:WN

0:d−1 → R for each N .

Remark 14 It is necessary to make a distinction between local and global densities because the
global pdf is not defined on a single Euclidean space, and is instead expressed as a collection of
densities over a range of dimensions. Specifically, while each local density fN (for input cardinality
N) is defined on WN

0:d−1, the global pdf fD is defined on ∪MN=1WN
0:d−1 and restricts to a local density

on each input dimension. Each local density fN (Z) = fD
∣∣
WN

0:d−1
(Z) decomposes into the product of

the conditional density fD(Z
∣∣ |Z| = N) and the cardinality probability P[|Z| = N ] (this follows from

Proposition 16). Thus, each local density does not integrate to one, but instead to the associated
probability P[|Z| = N ]. Also, the global pdf is not a set function and does not require division by

N !, leading to the following relation:
∫
AN fD(ξ1, ..., ξN )dξ1...dξN = 1

N !

∫
AN

δNβD
δNZ

(∅)dξ1...dξN .

Remark 15 While the global pdf and its local constituents need not be symmetric with respect to
ΠN , there is a unique choice of global pdf (up to sets of Lebesgue measure 0) which satisfies Eq.
(3.7) and is symmetric under the action of ΠN . In this case, we safely abuse notation by denoting
fD({ξ1, ..., ξN}) := N !fD(ξ1, ..., ξN ) and often write fD(Z) and allow context to determine whether
Z denotes a set or a vector.
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The following proposition is critical to determine the global pdf for (i) the union of independent
singleton diagrams (i.e.,

∣∣Dj
∣∣ ≤ 1), (ii) a randomly chosen cardinality, N , followed by N i.i.d. draws

from a fixed distribution, and (iii) a random persistence diagram kernel density function. The proof
of this proposition follows similar arguments to (Mahler, 1995) (Theorem 17, pp. 155–156).

Proposition 16 Let D be a random persistence diagram with cardinality bounded by M and let
βD(S) = P(D ⊂ S) be the belief function for D. Then βD expands as βD(S) = a0 +

∑M
m=1 amqm(S),

where am = P(|D| = m) and qm(S) = P[D ⊂ S
∣∣ |D| = m].

Remark 17 The decomposition in Proposition 16 is often applied as a first step toward finding the
local density constituents of the global pdf. In particular, fN = fD

∣∣
WN

0:d−1
= 0 for N > M .

Lastly, we encounter a computationally convenient summary for a random persistence diagram
called the probability hypothesis density (PHD). The integral of the PHD over a subset U inW0:d−1

gives the expected number of points in the region U ; moreover, any other function on W0:d−1 with
this property is a.e. equal to the PHD (Goodman et al., 2013).

Definition 18 (Matheron, 1975) The probability hypothesis density (PHD) for a random persis-
tence diagram D is defined as the set function FD(a) = δβD

δZ ({a}) and is expressed as a set integral
as

FD(a) =

∫
{Z:{a}⊂Z}

δβ

δZ
(∅)δZ. (3.8)

In particular, E(|D ∩ U |) =
∫
U FD(u) du for any region U .

Remark 19 Def. 18 is equivalent to an intensity function of a point process. In general, the
intensity function induced by a given global pdf may be undefinied, but under mild conditions Eq.
(3.8) is finite (we discuss this further in Section 4.2). Since D is a random persistence diagram,
the PHD is always defined as a distribution and can always be integrated to obtain the identity
E(|D ∩ U |) =

∫
U FD(u) du for any region U .

Proposition 16 leads to the following lemma which is crucial for determining the kernel density.
We refer to a random persistence diagram D with |D| ≤ 1 as a singleton diagram, and such
singletons are indexed by superscripts.

Lemma 20 Consider a multiset of independent singleton random persistence diagrams
{
Dj
}M
j=1

.

If each singleton Dj is described by the value q(j) = P[Dj 6= ∅] and the subsequent conditional pdf,
p(j)(ξ), given

∣∣Dj
∣∣ = 1, then the global pdf for D = ∪Mj=1D

j is given by

fD(ξ1, ..., ξN ) =
∑

γ∈I(N,M)

Q(γ)

N∏
k=1

p(γ(k))(ξk), (3.9)

for each N ∈ {0, ...,M} where

Q(γ) = Q∗(γ)

N∏
k=1

q(γ(k)), (3.10)

10
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I(N,M) consists of all (strictly) increasing injections γ : {1, ..., N} → {1, ...,M}, which enumerate
(unordered) correspondences between the input features (ξ1, . . . , ξN ) and a subset of the M random
singletons, and

Q∗(γ) =

∏M
j=1(1− q(j))∏N

k=1(1− q(γ(k)))
. (3.11)

Proof Since the singleton events Dj are independent, the belief function for D = ∪jDj decomposes

into βD(S) =
∏M
j=1 βDj (S). Next, we employ the product rule for the set derivative (see Def. 9)

to obtain the global pdf for D in terms of the singleton belief functions and their first derivatives.
Higher derivatives of βDj are zero since Dj are singletons (see Remark 17). Thus, the product rule
yields first derivatives on all (ordered) subsets of the singleton belief functions:

δNβD
δξ1...δξN

(∅) =
∑

1≤j1 6=,..., 6=jN≤M

βD1(∅) · · · βDM (∅)
βDj1 (∅) · · · βDjN (∅)

[
δβDj1
δξ1

(∅) · · · δβDjN
δξN

(∅)
]
.

By Proposition 16, we have that βDj (∅) = (1− q(j)) and
δβDji
δξi

(∅) = qjip
(ji)(ξi) and so

δNβD
δξ1...δξN

(∅) =
∑

1≤j1 6=,..., 6=jN≤M

[ ∏M
j=1(1− q(j))∏N
j=1(1− q(jk))

N∏
k=1

q(jk)

]
N∏
k=1

p(jk)(ξk),

which nearly resembles Eq. (3.9). To bridge the gap, we describe the choice of indices ji by an
injective function from {1, ..., N} into {1, ...,M}. In turn, each such injective function is uniquely
determined by the composition of an increasing injection γ ∈ I(N,M) which decides the range of
the function and permutations on the domain, ΠN . These permutations take into account the order
of the range. The value of Q is independent of order, and thus is determined by γ as in Eq. (3.10).
We reorder the product in order to shift these permutations onto the input variables, obtaining

δNβD
δξ1...δξN

(∅) =
∑
π∈ΠN

∑
γ∈I(N,M)

Q(γ)
N∏
k=1

p(γ(k))(ξπ(k)). (3.12)

Finally, the global pdf in Eq. (3.9) follows directly from applying Eq. (3.7) to Eq.(3.12).

Remark 21 The global pdf in Eq. (3.9), and in particular the sum over γ ∈ I(N,M), accounts for
each possible combination of singleton presence. Moreover, summing over permutations as in Eq.
(3.12) and dividing by N ! yields a symmetric pdf with terms for every possible assignment between
singletons and inputs. The weights Q(γ) indicate the probability of each assignment occurring, and
is the product of the appropriate probability for each singleton to be either present, q(j), or absent,
1− q(j), for each j.

Example 1 Consider two 1-dimensional singleton diagrams, D1 and D2, with probabilities of
being nonempty q(1) = 0.6 and q(2) = 0.8, respectively. The corresponding local densities when
nonempty are given by p(1)(x) = 1√

2π
e−(x+1)2/2 and p(2)(x) = 1√

2π
e−(x−1)2/2. Lemma 20 yields

the global pdf for D = D1 ∪ D2 through a set of local densities {f0, f1(x), f2(x, y)} such that

11
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Figure 2: Left: Plot of the local density f1(x) in Eq. (3.13a). Right: Contour plot of the local
density f2(x, y) in Eq. (3.13b). These pdfs cover the different possible input dimensions and are
symmetric under permutations of the input.

f0 = P[|D| = 0] = (1 − q(1))(1 − q(2)) = 0.08, f1 = fD
∣∣
R, and f2 = fD

∣∣
R2 . We sum over

permutations and divide by N ! (N = 1, 2 is the input cardinality) to obtain a symmetric global
pdf.

f1(x) = (1− q(2))q(1)p(1)(x) + (1− q(1))q(2)p(2)(x)

=
0.12√

2π
e−(x+1)2/2 +

0.32√
2π
e−(x−1)2/2,

(3.13a)

f2(x, y) =
q(1)q(2)

2

[
p(1)(x)p(2)(y) + p(1)(y)p(2)(x)

]
=

0.24

2π

(
e−((x−1)2+(y+1)2)/2 + e−((x+1)2+(y−1)2)/2

)
.

(3.13b)

Accounting for each cardinality and following Eq. (3.13a) and Eq. (3.13b), the total probability
adds up to

P[|D| = 0] + P[|D| = 1] + P[|D| = 2] = f0 +

∫
R
f1(x)dx+

∫
R2

f2(x, y)dxdy

= (0.08) + (0.12 + 0.32) + (0.24 + 0.24) = 1,

as desired. The local densities in Eq. (3.13a) and Eq. (3.13b) are plotted in Fig. 2. Though f1(x)
is the sum of two Gaussians, in Fig. 2 (Left) we see that the Gaussian centered at x = 1 dominates,
while the Gaussian centered at x = −1 is only indicated by a heavy left tail. This behavior occurs
because q(2) = 0.8 is very close to 1.

4. Kernel Density Estimation

Lemma 3.2 yields a definition of global pdf for a random persistence diagram that considers all
features individually; however, as seen in Example 1, the computation of Eq. (3.9) can be rather
formidable if one considers persistence diagrams with more than two points. To that end, our goal
is the construction of a kernel density centered at a persistence diagram D with a bandwidth σ > 0
that reduces computational burden by treating some features individually and others collectively.

12
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Generically, persistence diagrams have the majority of their points concentrated close to the
diagonal. Consequently, the bandwidth σ is responsible for splitting a persistence diagram into
upper and lower portions; see Eq. (4.1) and Fig. 3 (Left). The upper portion models the most
topologically prominent points, which encompass topological information about the data, and its
distribution reflects uncertainty in the precise location for prominent topological features in a
persistence diagram. The lower portion models the majority of points in a persistence diagram.
These points arise as a result of local noise in the underlying data, and in this fashion its distribution
prescribes a noise likelihood model. Moreover, one can evaluate diagrams of any cardinality in the
kernel (in this sense, the kernel is a global density). On the other hand, if one fixes the cardinality,
one obtains the local kernel.

The construction of the kernel density proceeds by treating the upper and lower parts as inde-
pendent, which necessitates the establishment of two density functions, one for each portion. The
density for the upper part follows the recipe of Lemma 3.2 with a modified Gaussian chosen for
pj(ξ) in Eq. (3.9). To construct the kernel for the lower portion, we use (i) the number of points
in D` to create a pertinent counting measure, and (ii) a modified Gaussian mixture with mean
the projection of each point in D` to the diagonal. When evaluating a persistence diagram in the
composite kernel, some of the points are evaluated in the density for the lower while others are
evaluated in the density for the upper part. For a particular allocation of points to the upper and
lower portions and by independence, the total evaluation follows from multiplying the results of
these two evaluations together. However, since it is unknown a priori which input points should be
used in each kernel, one must account for every possible partitioning of input points.

Section 4.1 gives a precise construction of of our kernel density estimator. In Section 4.2, we
prove that our kernel density estimator converges to the true distribution as the number of persis-
tence diagrams used to create it goes to infinity. Finally, Section 4.3 proposes a new statistic for
persistence diagrams, the mean absolute bottleneck deviation (MAD), and establishes convergence
of the sample MAD computed with our kernel density estimator.

4.1. Construction

We first define a random persistence diagram as a union of simpler constituents, and then determine
its global pdf by combination in a fashion similar to Lemma 20. Indeed, we define the desired kernel
density as the global pdf for this composite random diagram. To start, we fix a degree of homology
k and consider a center diagram D ⊂ Wk = W × {k} (see Eq. (2.1)). Since k is fixed, we treat
D = {ξi}Mi=1 = {(bi, di)}Mi=1 within W =

{
(b, d) ∈ R2 : d > b ≥ 0

}
.

Long persistence points in a persistence diagram represent prominent topological features which
are stable under perturbation of underlying data, and so it is important to track each independently.
In contrast, we leverage the point of view that the small persistence features near the diagonal are
considered together as a single geometric signature as opposed to individually important topological
signatures. Toward this end, features with short persistence are grouped together and interpreted
through i.i.d. draws near the diagonal. Since features cluster near the diagonal in a typical per-
sistence diagram (see, e.g., Fig. 10 (g), (h) or Fig. 14 (Right)), treating short persistence features
collectively simplifies our kernel density and thus speeds up its evaluation. It is imperative that
these short persistence features are not ignored, because they still capture crucial geometric infor-
mation for applications such as classification (Marchese and Maroulas, 2016, 2018; De Silva and
Ghrist, 2007; Xia et al., 2015; Donato et al., 2016; Atienza et al., 2016). Thus, we split D into
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upper and lower portions according to a bandwidth σ as

Du = {(bi, di, k) ∈ D : di − bi ≥ σ} and D` = {(bi, di, k) ∈ D : di − bi < σ} . (4.1)

Now define random diagrams Du centered at Du and D` centered at D` such that D = Du∪D`.
Ultimately, the global pdf of D centered at D is our kernel density.

Definition 22 Each feature ξj = (bj , dj) ∈ Du yields an independent random singleton diagram
Dj defined by its chance to be nonempty q(j) (via Eq. (4.3)) along with its potential position (b, d)
sampled according to a modified Gaussian distribution, denoted by N∗((bj , dj), σI). The global
pdf for Du is then determined by Lemma 20, where each p(j) is given by the pdf associated with
N∗((bj , dj), σI), which is given by

p(j)(b, d) =
ϕj(b, d)∫

W ϕj(u, v)du dv
1W (b, d), (4.2)

where ϕj is the pdf of the (unmodified) normal N((bj , dj), σI), and 1W (·) is the indicator function
for the wedge.

The global pdf for each Dj is readily obtained by a pair of restrictions. First, we restrict the
usual Gaussian distribution to the halfspace T =

{
(b, d) ∈ R2 : b < d

}
. Features sampled below

the diagonal are considered to disappear from the diagram and thus we define the chance to be
nonempty by

q(j) = P(Dj 6= ∅) =

∫
{v>u}

ϕj(u, v) du dv. (4.3)

Afterward, the Gaussian restricted to T is further restricted to W and renormalized to obtain a
probability measure as in Eq. (4.2). This double restriction to both T and W is necessary for
proper restriction of the Gaussian pdf and definition of q(j) = P(Dj 6= ∅). Indeed, restriction
to W alone causes points with small birth time to have an artificially high chance to disappear;
while restriction to T alone yields nonsensical features with negative radius (with b < 0). In kernel
density estimation, the effects of this distinction become negligible as the bandwidth goes to zero. In
practice, this distinction is important for features with small birth time relative to the bandwidth.

Remark 23 In the Čech construction of a persistence diagram, a feature lies on the line b = 0
if and only if it has degree of homology k = 0. Consequently, for a feature (0, dj) with k = 0, we
instead take

p(j)(d) =
φj(d)∫

R+ φj(u) du
1R+(d) and q(j) =

∫
R+

φj(u) du

where φj is the 1-dimensional Gaussian centered at dj with standard deviation σ.

Whereas the large persistence features in Du have small chance to fall below the diagonal and
disappear, the existence of the small persistence features in D` is volatile: these features disappear
and appear fluidly under small changes in the underlying data. The distribution of D` is described
by a probability mass function (pmf) ν and lower density p`.
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Definition 24 The lower random diagram D` is defined by choosing a cardinality N according to
a pmf ν followed by N i.i.d. draws according to a fixed density p`. First, take N` =

∣∣D`
∣∣ and define

ν(·) with mean N` and so that ν(n) = 0 for n > mN` for some m > 0 independent of N`. The
subsequent density p`(b, d) is given by projecting the lower features D` of the center diagram D onto
the diagonal b = d, then creating a restricted Gaussian kernel density estimation for these features;
specifically,

p`(b, d) =
1

N`

∑
(bi,di)∈D`

1

πσ2
e
−
((

b− bi+di
2

)2
+
(
d− bi+di

2

)2
)
/2σ2

. (4.4)

Projecting the lower features D` of the center diagram D onto the diagonal simplifies later
analysis and evaluation of p`; without projecting, a unique normalization factor, similar to q(j) in
Def. 22, would be required for each Gaussian summand in Eq. (4.4). By Proposition 16 and Eq.
(3.7), global pdfs of random persistence diagrams are described by a random vector pdf for each
cardinality layer, resulting in the following global pdf for D`:

fD`(ξ1, ..., ξN ) = ν(N)

N∏
j=1

p`(ξj). (4.5)

Eq. (4.5) provides a noise model for the short-lived features near the diagonal. Combining the
expressions for D` and Du, we arrive at the following proposition.

Proposition 25 Fix a center persistence diagram D and bandwidth σ > 0. Split D into D` and
Du according to Eq. (4.1). Define D` with global pdf from Eq. (4.5), and Du with global pdf from
Eq. (3.9). Treating the random persistence diagrams Du and D` as independent, define their union
D. The following kernel density satisfies Def. 13 as the global pdf of D:

Kσ(Z,D) =

Nu∑
j=0

ν(N − j)
∑

γ∈I(j,Nu)

Q(γ)

j∏
k=1

p(γ(k))(ξk)
N∏

k=j+1

p`(ξk), (4.6)

where Z = (ξ1, ..., ξN ) is the input, ξi = (bi, di) for i = 1, ..., N are the features, and Nu = |Du|
depends on both D and σ. Here Q(γ) is given by Eq. (3.10), each p(j) refers to the modified
Gaussian pdf as shown in Eq. (4.2) for its matching feature ξj in Du, and p` is given by Eq. (4.4).

Proof Since Du and D` are independent random persistence diagrams, the belief function decom-
poses into βD(S) = βDu(S)βD`(S). Moreover, since derivatives above order Nu vanish for βDu (see
Remark 17), the product rule and binomial-type counting yield

δNβD
δξ1...δξN

(∅) =

Nu∑
j=0

∑
1≤i1 6=... 6=ij≤N

δjβDu

δξi1 ...δξij
(∅) δN−jβD`

δξ1... ˆδξi1 ...
ˆδξij ...δξN

(∅)

=
∑
π∈ΠN

Nu∑
j=0

1

j!(N − j)!
δjβDu

δξπ(1)...δξπ(j)
(∅) δN−jβD`

δξπ(j+1)...δξπ(N)
(∅)

(4.7)

where δξ̂i indicates that the given index is skipped in the set derivative (having been allocated to
the other factor). Similar to the proof of Lemma 20, the choice of indices ij is replaced with a
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permutation π ∈ ΠN ; however, the ordering within each derivative is unrelated the choice of ij ,
leading to j!-fold and (N − j)!-fold redundancy within each term.

Taking Eq. (4.5) together with Eq. (3.7) yields

δβD`

δξπ(j+1)...δξπ(N)
(∅) = (N − j)!ν(N − j)

N−j∏
j=1

p`(ξj).

Also, Eq. (3.9) and Eq. (3.7) yield

δβDu

δξπ(1)...δξπ(j)
(∅) =

∑
π∗∈Πj

∑
γ∈I(j,Nu)

Q(γ)

j∏
k=1

p(γ(k))(ξπ∗(k)).

We substitute these relations into the final expression of Eq. (4.7). The first of these substitutions
is straightforward, while the second has j!-fold redundant permutations overtop the existing per-

mutations in ΠN . These substitutions yield that δNβD
δξ1...δξN

(∅) =
∑

π∈ΠN
Kσ(Z,D) as described in

Eq. (4.6) and shows that the kernel Kσ(Z,D) satisfies the definition of a global pdf for D (Def.
13). Finally, the sum over permutations is removed according to Eq. (3.7) to obtain the expression
for fD(Z) = Kσ(Z,D).

Remark 26 A specific example of the component distributions provided for the kernel in Propo-
sition 25 is presented in Fig. 3. Since the kernel density Kσ of Eq. (4.6) is a probability density
according to Def. 13, it is a function on ∪MN=0WN

0:d−1, and so the sum of several such kernels is
defined by adding each local pdf layer separately.

Remark 27 In the definition of our kernel, a single parameter σ has been chosen for both the
split of center diagrams, as well as the standard deviation used in the Gaussians which build our
kernel. Without loss of generality, this choice simplifies the presentation of the kernel density and
the proof of kernel density estimate (KDE) convergence (Theorem 31). In general, the bandwidth
parameter σ2 which refers to the standard deviation used to define the Gaussians (as σ appears in
Defs. 22 and 24) need not be equal to the splitting parameter σ1 which determines which points
are in Du or D` (as σ appears in Eq. (4.1)). Still, it is certainly desirable that σ1 = Cσ2 when
taking a limit of KDEs as the number of persistence diagrams grows to infinity (Theorem 31). For
a fixed kernel bandwidth σ2, increasing C (and thus σ1) moves more features into the lower portion
of the diagram. This choice may be useful in practice when underlying data are known to be noisy
and more noise-related features are expected near the diagonal. By the same token, for σ1 >> σ2,
projecting the lower features onto the diagonal may lead to significant error in the approximation.
On the other hand, taking σ1 << σ2 eliminates the computational benefit of splitting the diagram
and is probably not useful in practice. For most cases, taking σ1 = σ2, is a reasonable balance
between KDE accuracy and evaluation computation.

Since the kernel density is a probability density function for a random persistence diagram, it
has an associated probability hypothesis density (See Def. 18).

Corollary 28 Fix a center persistence diagram D and bandwidth σ > 0. Split D into D` and Du

according to Eq. (4.1). Define D` with global pdf from Eq. (4.5), and Du with global pdf from
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Figure 3: Left: A persistence diagram split according to Eq. (4.1). The dashed black line, d = b+σ,
separates the diagram into the red upper points of Du and the yellow lower points of D`. Right:
The red and black gradients represent the upper singleton densities p(1) and p(2) given by Eq. (4.2).
The green gradient represents the lower density p` defined in Eq 4.4. While each of these densities
is defined on the wedge W ⊂ R2, the global kernel in Eq. (4.6) is defined on

⋃
N W

N for each
input-cardinality N .

Eq. (3.9). Treating the random persistence diagrams Du and D` as independent, the probability
hypothesis density (PHD) associated with the kernel density centered at D with bandwidth σ of
Theorem 25 is given by

Kσ,PHD(ξ,D) = N` p
`(ξ) +

Nu∑
j=1

q(j)p(j)(ξ), (4.8)

where the feature ξ is the input and Nu = |Du| and N` =
∣∣D`
∣∣ depend on both D and σ. Here each

p(j) refers to the modified Gaussian pdf as shown in Eq. (4.2) for its matching singleton feature ξj
in Du, q(j) given by (4.3) is the probability each singleton is present, and the lower density p` is
given by Eq. (4.4).

Proof The PHD is uniquely defined by its integral over a region U , which yields the expected
number of points in the region. Consequently, the independent upper and lower random draws
which build the kernel contribute additively to the PHD. Within the sum, each singleton density
p(j) is weighted by the chance for Dj to be present, q(j) and the lower density p` is weighted ac-
cording to the mean draw cardinality, which was chosen to be

∣∣D`
∣∣.

Remark 29 (Computational cost) The kernel density presented in Eq. (4.6) of Proposition
25 has approxmiately N !2Nu terms, necessitating shrewd computational strategies for real world
usage. In practice, one may choose to consider only terms that correspond to high probability
matchings. Such an implementation may be carried out with a linear assignment algorithm, like
Munkres, resulting in a computational complexity of O(NuN

3). Another approximation for the full
kernel density is to consider input features as independent draws from the PHD given in (4.8) of
Corollary 28. Evaluation of a diagram in Eq. (4.8) has time complexity O(N(Nu +N`)). Finally,
sampling from the kernel in Proposition 25 has cost O(Nu +N`).
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Notice that in Corollary 28, the input for the PHD is a single feature ξ as opposed to a list
of features Z = {ξ1, ..., ξN} for the global kernel in Proposition 25. Furthermore, Proposition 25
extends to the analogue result for a center persistence diagram with features of varied degree of
homology.

Corollary 30 Consider a persistence diagram D =
⋃
d−1
k=0 Dk×{k} split according to the degrees of

homology with associated random persistence diagrams Dk defined according to Eq. (4.6) for each
center diagram Dk. Treating each Dk as independent, the full global pdf for D =

⋃
Dk centered at

D with bandwidth σ is given by

Kσ(Z,D) = Λ(N)
d−1∏
k=0

Kσ(Zk,Dk), (4.9)

where Z =
⋃
d−1
k=0 Zk × {k} ⊂ W0:d−1 with each Zk ⊂ W of cardinality |Zk| = Nk within the

multi-index N = (N0, ..., Nd−1) and

Λ(N) =
N !

|N |!
:=

∏
Nk!

(
∑
Nk)!

.

Proof The result follows immediately from taking set derivatives of the full belief function

βD(S) =
∏
k βDk(S). In particular, the set derivatives

δβDk
δZ (∅) are zero unless Z ⊂ Wk. Thus,

the product rule leaves only the single term δβD
δZ (∅) =

∏
d−1
k=0

δβDk
δZk

(∅). In turn, each kernel global
pdf Kσ(Zk,Dk) is related to the associated belief function derivative by a sum over permutations
ΠNk (see Eq. (3.7)). Compositions of these permutations are Nk!-fold redundant against the |N |!
permutations in Π|N |, yielding the coefficient Λ(N).

4.2. Convergence of the Kernel Density Estimator

In this section, to prove the convergence (to the target distribution) of the kernel density estimate
defined via the kernel established in Proposition 25, we consider persistence diagrams {Di}ni=1 which
are i.i.d. sampled from a target distribution with global pdf f . Toward this end, we require the
following assumptions on f :

(A1) f(Z) = 0 for |Z| > M ∈ N (bounded cardinality).

(A2) The local density fN :WN
k → R is bounded for each N ∈ {1, ...,M}.

(A3) There exists CN > 0 so that f(ξ1, ..., ξN ) ≤ CN ‖(ξ1, ..., ξN )‖−2N for each N ∈ {1, ...,M} .

The assumptions (A1), (A2), and (A3) describe conditions on the target random persistence
diagram pdf. It is important that these assumptions also hold for a random persistence diagram
associated with typical (random) underlying datasets. For example, (A1) trivially holds for un-
derlying data in Rd of bounded cardinality. The conditions (A2) and (A3) hold for underlying
data sampled from a compact set E ⊂ Rd perturbed by Gaussian noise. The work (Adler et al.,
2014)(see Corollary 2.3 and Thm 2.6 therein) describes the persistent homology of noise, and de-
scribes a ‘core’ neighborhood. Specifically for Gaussian noise, features are retained in the ‘core’,
but then extreme decay occurs for features of arbitrary degree outside the ‘core’. Intuitively, by
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bounding death values by the diameter of the underlying dataset, one expects that the decay will
be at worst a polynomial times Gaussian decay, which is sufficient for (A3).

The following theorem shows that the kernel density estimate converges to the true global pdf
of a random persistence diagram as the number of persistence diagrams increases. The pdf tracks
not only the birth and death of features, but also their prevalence. In particular, the persistence
diagram pdf tied to a random dataset can determine which geometric features are stable regardless
of their persistence.

Theorem 31 Consider a random persistence diagram global pdf f satisfying assumptions (A1)-
(A3). Define the kernel Kσ(Z,D) according to Theorem 25 and consider the kernel density estimate
f̂(Z) = 1

n

∑n
i=1Kσ(Z,Di), with centers Di sampled i.i.d. according to global pdf f and bandwidth

σ = O(n−α) chosen with 0 < α < α2M . Then, as n→∞, f̂ → f uniformly on compact subsets of
W .

Remark 32 The value of α2M is inherited from bandwidth selection for 2M -dimensional kernel
density estimates (Scott, 2015). While the scaling of the bandwidth in the limit is determined
by the maximum cardinality M (and thus, the largest dimension of the local pdfs), choosing a
bandwidth for a specific sample is an important step in applying kernel density estimation. If the
bandwidth is too narrow, the estimate is overfitted and potentially biased; if the bandwidth is too
large, the estimate will be oversmoothed, resulting in accuracy loss. Several methods for bandwidth
selection in multivariate kernel estimation are discussed in (Silverman, 1986). As a general rule
of thumb, (Silverman, 1986) recommends choosing the bandwidth as σopt = A(K)n−1/(d+4), where
n is the sample size (i.e., the number of persistence diagrams), d is the dimension, and A(K) is
a constant depending on the kernel, K. In particular, one may choose α u 1/(2M + 4) as an
unbiased estimator for all local pdfs with cardinalities m ≤ M (Scott, 2015). Silverman’s rule of
thumb works best for distributions which are nearly Gaussian; for more general distributions, the
bandwidth may be chosen empirically.

Eq.(4.8) of Corollary 28 could be used as an approximation to the full kernel. The following
argument verifies its convergence.

Corollary 33 Let Fg denote the PHD (Def. 18) of a random persistence diagram with global

pdf g. Define f̂ as in Thm 31. For a random persistence diagram whose global pdf f satisfies
assumptions (A1)-(A3) of Thm 31, one has Ff̂ → Ff as n→∞ almost everywhere.

Proof Let C ⊂W be compact. Define the counting function κC(Z) = |Z ∩C|. Notice by Def. 18
that |

∫
C Ff̂ (u)du−

∫
C Ff (u)du| ≤

∫
W κC(Z)|f̂(Z)− f(Z)|δZ ≤M(2M+1 − 1)

∫
C |f̂(Z)− f(Z)|δZ,

where the last inequality follows because we assume that random persistence diagrams are bounded
by M and κC vanishes outside of C. By Thm 31 and boundedness of C, we can choose n sufficiently
large to ensure

∫
C |f̂(Z)−f(Z)|δZ is arbitrarily small. Hence,

∫
C Ff̂ (u)du→

∫
C Ff (u)du as n→∞

on arbitrary compact subsets C. The result follows immediately by standard results in measure
theory.

The proof of Thm. 31 presented in this section describes the case for degree of homology k > 0.
The case for k = 0 is obtained by a slight modification and the full result follows by an application
of Corollary 30.
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Throughout the proof we use ξi to denote input features and Z = {ξ1, ..., ξN} or Z = (ξ1, ..., ξN )
to denote an input persistence diagram as a set or vector of features. Several preliminary lemmas
are presented before the main body of the proof. We begin with a critical lemma which controls
the number of features sampled in the band diagonal ∆β

α = {(b, d) ∈W : α < d− b < β}.

Lemma 34 Consider a random persistence diagram D distributed according to f satisfying as-
sumptions (A1)-(A3). Then there exists C > 0 so that Ef (|∆σ

0 ∩D|) ≤ Cσ.

Proof Consider a regionA ⊂W and a counting function κA(Z) = |Z ∩A| such that κA({ξ1, ..., ξN}) =∑N
i=1 1A(ξi). It is clear that this set function is well defined and measurable if A is measurable.

Using set integration (Def. 12),

E(|∆σ
0 ∩D|) =

∫
W
κ∆σ

0
(Z)f(Z)δZ =

M∑
N=0

N

N !

∫
W
1∆σ

0
(ξ1)

[∫
f(ξ1, ...ξN )dξ2...dξN

]
dξ1 (4.10)

The expressions in Eq. (4.10) can be phrased in terms of the probability hypothesis density from
Eq. (3.8), and for any choice of L > 0 are bounded by∫

∆σ
0

FD(ξ)dξ ≤
∫ L

0

∫ y

y−σ
FD(x, y) dx dy +

∫ ∞
L

∫ y

y−σ
C3y

−2 dx dy

≤ LC2σ + 3C3σ/L = (LC2 + C3/L)σ

where assumptions (A2) and (A3) respectively yield the bounds C2 and C3y
−2 on the probability

hypothesis density, FD.

Lemma 34 yields control over the counting measure νi defined in Def. 24 and the coefficients
Q∗i (·) of Eq. (3.11) which respectively determine the distribution of lower and upper cardinalities
for a persistence diagram sampled according to the kernel density Kσ(Z,Di).

Corollary 35 Consider a random persistence diagram D distributed according to f satisfying as-
sumptions (A1)-(A3). Take ν to be the lower cardinality probability mass function for the kernel
density Kσ(Z,D) shown in Eq. (4.6). Then, there exists C > 0 so that Efν(j0) ≤ Cσ whenever
j0 6= 0.

Proof Since D is random with respect to f , ν is random with respect to f as well. Recall that ν
is defined so that Eν(a) =

∣∣D`
∣∣ for a distributed according to ν and thus Ef [Eν(a)] ≤ Cσ for some

C > 0 by Lemma 34. Subsequently, the value Efν(j0) is controlled by this double expectation so
long as j0 6= 0. Indeed,

E(a) =
∞∑
j=0

jν(j) =
∞∑
j=1

jν(j) ≥
∞∑
j=1

ν(j) ≥ ν(j0)

for any j0 > 0 and νi(j0) = 0 for j0 < 0 since it represents a cardinality distribution.

In the following lemma, the result of Lemma 34 is used to control the expressions Q(γ) or Q∗(γ),
of Eq. (3.10) and Eq. (3.11) respectively, in the kernel density estimate.
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Lemma 36 Consider a random persistence diagram D distributed according to f satisfying as-
sumptions (A1)-(A3). Take Q of Eq. (3.10) and Q∗ of Eq. (3.11) to be the upper singleton
probabilities for the kernel density Kσ(Z,D) shown in Eq. (4.6). Then, there exists C > 0 so that
Ef [Q(γ)] ≤ Ef [Q∗(γ)] ≤ Cσ for any γ ∈ I(j,N) with j < N .

Proof Since every q(k) ∈ (0, 1), we have that Q(γ) ≤ Q∗(γ); and furthermore, since γ ∈ I(j,N)

are not onto when j < N , each product Q∗ is bounded by one of the terms of the (1− q(k)
i ) type.

By construction, these terms depend monotonically upon a feature’s persistence, and the maximum
(over all indices j < N and functions γ) is tied to the least persistent feature of Du

i .

For a feature (b, d) of persistence p = d − b, we define q(p) :=
∫∞
−p/(

√
2σ)

1√
2π
e−x

2/2dx in con-

cordance with Eq. (4.3); or in terms of the error function Φ, q(p) = 1
2

(
1 + Φ

( p
2σ

))
. Define the

minimal persistence as pmin(Z) = sup {p : |∆p
0 ∩ Z| = ∅} which satisfies pmin(Z) ≥ p if and only if

|∆p
0 ∩ Z| = ∅. In turn, we may bound Q∗(γ) ≤ (1− q(pmin(D)) independently of γ. By Lemma 34,

there is C > 0 such that Pf [|∆σ
0 ∩D| 6= ∅] ≤ Ef [|∆σ

0 ∩D|] ≤ Cσ, which controls the distribution
of the minimal persistence.

In particular, q′(p) = 1
2σ
√
π
e−p

2/4σ2
by the fundamental theorem of calculus. The control of

Lemma 34 and the fact that pmin(Z) ≥ 0 also allows us to use integration via the probability
of sublevel sets. Take g(p) = 1 − q(p) so that limp→∞ g(p) = 0. Specifically, since Q∗(γ) ≤
(1− q(pmin(D)), and using the fundamental theorem of calculus then Fubini’s theorem, we have:

Ef [Q∗(γ)] ≤
∫
W0:d−1

g(pmin(Z))f(Z)δZ =

∫
W0:d−1

(∫ pmin(Z)

∞
g′(p)dp

)
f(Z)δZ

=

∫ 0

∞

(∫
{Z:pmin(Z)<p}

f(Z)δZ

)
g′(p)dp =

∫ ∞
0

(
Pf [pmin < p]

)
q′(p)dp.

(4.11)

We now further bound the expectation in Eq. (4.11). Replacing terms with their definitions
and using the bound control from Lemma 34 we obtain:

Ef [Q∗(γ)] ≤
∫ ∞

0
Pf (∆p

0 ∩D 6= ∅)
1

2σ
√
π
e−p

2/4σ2
dp

≤ C

2σ
√
π

∫ ∞
0

pe−(p/2σ)2dp =
C

2σ
√
π

[
−2σ2e−p

2/4σ2
]∞
p=0

=
C√
π
σ.

Proof of Theorem 31. For convenience, we denote the upper cardinalities by Ni = |Du
i | and total

cardinalities by Mi = |Di| for the sample persistence diagrams. Denote the set of strictly increasing
functions from {1, ..., j} into {1, ..., Ni} by I(j,Ni). Here we use ‘id’ to denote the identity map,
where I(Ni, Ni) = {id}. The proof is organized by splitting the kernel densities into several pieces
and then controlling each piece separately.
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First, we separate the kernel Kσ(Z,Di), defined in Eq. (4.6), into three portions, Ai, Bi, and
Ci, according to the upper cardinality j:

Kσ(Z,Di) =

Ni∑
j=0

νi(N − j)
∑

γ∈I(j,Ni)

Qi(γ)

j∏
k=1

p
(γ(k))
i (ξk)

N∏
k=j+1

p`i(ξk)

= νi(N −Ni)Qi(id)

Ni∏
k=1

p
(k)
i (ξk)

N∏
k=Ni+1

p`i(ξk)

+

Ni−1∑
j=0,j 6=N

νi(N − j)
∑

γ∈I(j,Ni)

Qi(γ)

j∏
k=1

p
(γ(k))
i (ξk)

N∏
k=j+1

p`i(ξk)

+ 1{n∈N:n<Ni}(N)νi(0)
∑

γ∈I(N,Ni)

Qi(γ)
N∏
k=1

p
(γ(k))
i (ξk)

= Ai +Bi + Ci,

(4.12)

where Ai follows from j = Ni, Ci follows from j = N (Ci = 0 if Ni ≤ N), and Bi consists of all
remaining terms.

The terms Bi in Eq. (4.12) are controlled by the lower product
[∏N

k=j+1 p
`
i(ξk)

]
. Since (1 −

q
(j)
i ) ≤ 1 and νi(N − j) ≤ 1 for any choice of γ and j, we have that Bi is bounded above by

Ni−1∑
j=0,j 6=N

∑
γ∈I(j,Ni)

 j∏
k=1

q
(γ(k))
i p

(γ(k))
i (ξk)

N∏
k=j+1

p`i(ξk)

 . (4.13)

The bounding sum of Eq. (4.13) consists of restricted 2N -dimensional Gaussians, with the weights

q
(j)
i dominating the restriction rescaling in Eq. (4.2). Fix π ∈ ΠN and j ∈ {0, ...,M − 1} \ {N}.

Without loss of generality, we treat the case when the permutation π is the identity. Since our
ultimate goal is to control the kernel density estimate f̂ , consider the portion of

∑n
i=1

1
nBi for which

the cardinalities Mi = |Di| are fixed at level Mi = m ∈ {0, ...,M}. Now, m = |Di| ≥ Ni > j, so
there is some extension for every γ within the sum, γ∗ ∈ Πm. Recall that this collection is random
because each Di is randomly distributed according to f , therefore we consider the expectation with
respect to this randomness:

Ef
 ∑
{i:Mi=m}

1

|{i : Mi = m}|

Mi∏
k=1

q
(γ∗(k))
i p

(γ∗(k))
i (ξk)

→ f(ξ1, ..., ξm),

for any point (ξ1, ..., ξm) as a 2m-dimensional Gaussian kernel density estimate with a proper choice
of σ = O(n−α) appropriate for 2M (and hence 2m) dimensions (Scott, 2015). Integrating both sides
against the extra coordinates, Assumptions (A2) and (A3) along with the dominated convergence
theorem yield

Ef
 ∑
{i:Mi=m}

1

|{i : Mi = m}|

j∏
k=1

q
(γ(k))
i p

(γ(k))
i (ξk)

→ ∫
Wm−j

f(ξ1, ..., ξm)dξj+1...dξm, (4.14)
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which is again bounded via (A2) and (A3). Of course, |{i : Mi = m}| ≤ n, so taking Eq. (4.14) into

account for every m bounds the averaging sum of the upper product: 1
n

∑n
i=1

∏j
k=1 q

(γ(k))
i p

(γ(k))
i (ξk).

Relying on Eq. (4.13), we must also consider the lower product
∏N
k=j+1 p

`
i(ξk). Since the points

ξi are fixed, we focus on their minimal persistence pmin = mini(di − bi). Thus,

p`i(ξi) ≤
1

2πσ2
e−(b−d)2/4σ2 ≤ 1

2πσ2
e−p

2
min/4σ

2
,

and subsequently,  N∏
k=j+1

p`i(ξk)

 ≤ 1

(2πσ2)N
e−Np

2
min/4σ

2 → 0, (4.15)

as σ → 0, uniformly on any compact subset of W (or W0:d−1). Altogether, Eqs. (4.14) and (4.15)
guarantee that the term

∑n
i=1

1
nBi → 0 as n→∞ in the kernel density estimation.

Next we focus on the terms Ai in Eq. (4.12). We split the sum 1
n

∑n
i=1Ai according to the

cardinality of Di. Specifically, separate Ai into the cases where Mi 6= Ni or Mi = Ni. First
consider the associated set of indices {i : Mi 6= Ni} and define the mismatch number MM(n) to
be its cardinality. Critical to our argument, the mismatch number is random with respect to f
because it is defined according to the features in Di. We obtain the following mismatched term:

1

n

∑
{i:Ni 6=Mi}

Ai ≤
(
MM(n)

n

)
1

MM(n)

∑
{i:Ni 6=Mi}

Qi(id)

Ni∏
k=1

p
(k)
i (ξk)

N∏
k=Ni+1

p`i(ξk)

 (4.16)

The bounding sum in Eq. (4.16) is split into pieces where Mi = m for each m between 0 and M .
Using the same strategy yielding Eq. (4.14), with MM(n) in place of n, the sum of the upper
product converges to layered integrals of f for each level m and each Ni < m by extending γ = id.
Using the same approach leading to Eq. (4.15), the lower product vanishes in the limit if Ni 6= N ,
or is an empty product if Ni = N ; in either case, this factor is bounded. Now, according to Lemma
34, Pf (Mi 6= Ni) = Pf (Di ∩∆εσ

0 6= ∅) ≤ C5σ; consequently, Ef [MM(n)/n]→ 0 and the mismatch
terms on left hand side of Eq. (4.16) follow.

Now consider the indices for which Ni = Mi. In this case, since D`
i are empty, νi = δ0, and

the only values which contribute to the sum are for Ni = N . The remaining portion of the kernel
density estimate is given by

1

n
Ef

∑
{i:Ni=Mi}

Ai =
1

n
Ef
 ∑
{i:Ni=Mi}

(
Qi(id)

N∏
k=1

p
(k)
i (ξk)

) =
1

n
Ef
 ∑
{i:Ni=Mi}

(
N∏
k=1

q
(k)
i p

(k)
i (ξk)

) .
(4.17)

As shown, the terms in Eq. (4.17) are restricted 2N dimensional Gaussians. It is known (Scott,

2015) that restricted Gaussian kernel density estimates like
[∏N

k=1 q
(k)
i p

(k)
i (ξk)

]
converge (uniformly

on compactly contained sets) to the true value of the chosen draws Di for a suitable choice of α
in σ = O(n−α) as restricted by N ≤ M . After correcting for the samples with Ni < Mi = N ,
the samples Di are treated as random draws from f(D| |D| = N). Consequently, we may conclude
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that the target distribution associated with
[∏N

k=1 q
(k)
i p

(k)
i (ξk)

]
is the rescaled 1

f(N)f(ξ1, ..., ξN ),

where f(N) := Pf (|D| = N). This rescaling for the conditional pdf f(D| |D| = N) is necessary to
reweight according to Proposition 16.

Application of classical kernel density estimate results require division by the cardinality of the
draw, when in context n is generally larger than this cardinality. Thus, we must again consider
the cases wherein Ni 6= Mi. Consequently, we find that the expectation for the ratio between the
true draw cardinality and n is given by Pf (|D| = N) +O(σ) according to Lemma 34. Indeed, this
ratio converges to f(N) := Pf (|D| = N). After this final correction, we have shown that 1

n

∑n
i=1Ai

approach the true pdf f(ξ1, ..., ξN ).

Lastly, we need only to control the terms Ci from Eq. (4.12). We begin by bounding the
probability mass functions νi by 1 and considering only terms for which the characteristic function
is nonzero:

1

n

n∑
i=1

Ci =
1

n

∑
{i:N<N}

νi(0)
∑

γ∈I(N,Ni)

Qi(γ)
N∏
k=1

p
(γ(k))
i (ξk) ≤

1

n

∑
{i:N<Ni}

∑
γ∈I(N,Ni)

Qi(γ)
N∏
k=1

p
(γ(k))
i (ξk).

(4.18)

Next, we split the term Q(γ) according to Eq. (3.10) and apply Lemma 36 to the upper bound
in Eq. (4.18) to obtain the larger upper bound

1

n

∑
{i:N<Ni}

∑
γ∈I(N,Ni)

Q∗(γ)

N∏
k=1

q
(γ(k))
i p

(γ(k))
i (ξk) ≤ C

 1

n

∑
{i:N<Ni}

∑
γ∈I(N,Ni)

N∏
k=1

q
(γ(k))
i p

(γ(k))
i (ξk)

σ.
(4.19)

The expectation of the bracketed terms in Eq. (4.19) converges in a fashion identical to the
terms 1

n

∑n
i=1Ai. Since these terms are multiplied by σ, altogether

[
1
n

∑n
i=1Ci

]
vanishes in the

limit as n→∞. Putting together the limits of each portion built from Kσ(Z,Di) = Ai +Bi + Ci,
the theorem follows. �

4.3. A Measure of Dispersion

Theorem 31 has established the convergence of a kernel density estimator. Along with density
function estimation, one would like to verify the convergence of properties such as spread. In the
absence of vector space structure on the space of persistence diagrams, we turn to the bottleneck
metric (Def. 5) to define a notion of spread. Specifically, we measure dispersion with respect to a
distribution of persistence diagrams through its mean absolute deviation in this metric.

Definition 37 The mean absolute bottleneck deviation (MAD) from origin diagram D with respect
to a global pdf f is given by

MADf (D) =

∫
W0:d−1

W∞(D , Z)f(Z)δZ (4.20)

The following proposition and lemma aid in proving convergence of MAD kernel estimates.
Their proofs are delegated to the supplementary materials.
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Proposition 38 Consider D distributed according to the kernel density Kσ(·,D) with center dia-
gram D and bandwidth σ. Fix δ ≥ 1. Then,

P [W∞(D,D) < δσ] ≥

(∫
B(0,δ)

1

2π
e−(x2+y2)/2 dx dy

)M
(4.21)

where M is the maximal cardinality of D (a multiple of |D |). Here B(x, r) refers to a ball with
respect to the infinity metric (as is used in bottleneck distance).

Next, we relax assumption (A2) by considering the entire multi-wedge W0:d−1 and tighten the
decay control from assumption (A3). Formally,

(A2)∗ The local density fN :WN
0:d−1 → R is bounded for each N ∈ {1, ...,M}.

(A3)∗ There exists C > 0 so that f(ξ1, ..., ξN ) ≤ C ‖(ξ1, ..., ξN )‖−2N−2 for N ∈ {1, ...,M} .

These assumptions (and (A1)) are required for the subsequent lemma, which ensures that the
mean absolute bottleneck deviation (MAD) is finite.

Lemma 39 Consider a random persistence diagram D distributed according to a global pdf f sat-
isfying assumptions (A1), (A2)∗, and (A3)∗. Then D has finite MAD for any choice of origin
diagram D .

Similar to assumption (A3) (given prior to Theorem 31), (A3)∗ holds for a random persistence
diagram associated with underlying data sampled from a compact set perturbed by Gaussian noise.
One may also replace Lemma 39 and its assumptions by directly assuming that the maximal
persistence moment is bounded; with this, the results of Lemma 39 follow immediately from Eq.
(A.3) in the supplementary. This direct assumption is weaker (implied by (A1), (A2)∗, and (A3)∗),
but may be difficult to show directly in practice.

Theorem 40 Consider a distribution of persistence diagrams with bounded global pdf, f , satisfying
assumptions (A1), (A2)∗, and (A3)∗. Let f̂(Z) = 1

n

∑n
i=1Kσ(Z,Di) be a kernel density estimate

with centers Di sampled i.i.d. according to global pdf f and bandwidth σ = O(n−α) chosen with
0 < α < α2M . Then, the mean absolute bottleneck deviation estimate converges; in other words,∫

W0:d−1

W∞(D0, Z)f̂(Z)δZ →
∫
W0:d−1

W∞(D0, Z)f(Z)δZ (4.22)

as n→∞ for any origin diagram D0.

Proof The MAD of f with origin D0 is finite by Lemma 39. To show convergence of the estimate,
we begin by adding and subtracting the integral of the sample estimator for the MAD. Then, we
split the sum into n+ 1 terms via the triangle inequality to obtain∣∣∣∣∣

∫
W0:d−1

W∞(D0, Z)f(Z)δZ −
∫
W0:d−1

W∞(D0, Z)f̂(Z)δZ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
W0:d−1

W∞(D0, Z)f(Z)δZ − 1

n

n∑
i=1

∫
W0:d−1

W∞(D0,Di)Kσ(Z,Di)δZ

∣∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣
∫
W0:d−1

W∞(D0, Z)Kσ(Z,Di)δZ −
∫
W0:d−1

W∞(D0,Di)Kσ(Z,Di)δZ

∣∣∣∣∣ .
(4.23)
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The term of the upper bound in Eq. (4.23) trivially simplfies to obtain the sample estimator
for the MAD:∣∣∣∣∣

∫
W0:d−1

W∞(D0, Z)f(Z)δZ −
n∑
i=1

1

n

∫
W0:d−1

W∞(D0,Di)Kσ(Z,Di)δZ

∣∣∣∣∣
=

∣∣∣∣∣
∫
W0:d−1

W∞(D0, Z)f(Z)δZ − 1

n

n∑
i=1

W∞(D0,Di)

∣∣∣∣∣ .
(4.24)

The MAD sample estimator converges since the MAD is finite, and thus this term vanishes as
n→∞. The remaining term of the upper bound in Eq. (4.23) is further bounded via the reverse
triangle inequality; specifically,

n∑
i=1

1

n

∣∣∣∣∣
∫
W0:d−1

W∞(D0, Z)Kσ(Z,Di)δZ −
∫
W0:d−1

W∞(D0,Di)Kσ(Z,Di)δZ

∣∣∣∣∣
≤

n∑
i=1

1

n

∣∣∣∣∣
∫
W0:d−1

W∞(Di, Z)Kσ(Z,Di)δZ

∣∣∣∣∣ .
(4.25)

Toward bounding Eq. (4.25), choose a threshold parameter a = O(σβ) for some β ∈ (0, 1),
so that a → 0 but a/σ → ∞ in the sample size (and bandwidth) limit. Next, take Ai =
{Z ⊂W : W∞(Z,Di) ≤ a} and split the integral between Ai and its complement as∫

W0:d−1

W∞(Di, Z)Kσ(Z,Di)δZ =

∫
Ai

W∞(Di, Z)Kσ(Z,Di)δZ +

∫
Aci

W∞(Di, Z)Kσ(Z,Di)δZ.

The integral over Ai is trivially bounded by a. Integration over the complementary events is
controlled via layered integration along with Proposition 38. For a/σ > 1, which occurs when n is
large enough, we obtain∫

Aci

W∞(Di, Z)Kσ(Z,Di)δZ = aPi [W∞(Di, Z) > a] +

∫ ∞
a

Pi [W∞(Di, Z) > b] db

≤ a
(
P[|z| > a/σ]M

)
+

∫ ∞
a

(
P[|z| > b/σ]M

)
db,

(4.26)

where z = (x, y) is distributed as a pair of independent standard normals. We chose a/σ =
O(σβ−1) → ∞ and so P(|z| < a/σ) → 0 exponentially fast and the last term vanishes quickly as
σ → 0.

Indeed, let g(Z) = W∞(Di, Z), then by the fundamental theorem of calculus and Fubini’s
theorem: ∫

Aci

g(Z)Kσ(Z,Di)δZ =

∫
{Z:g(Z)>a}

(∫ g(Z)

0
db

)
Kσ(Z,Di)δZ

=

∫ ∞
0

∫
{Z:g(Z)>a and g(Z)>b}

Kσ(Z,Di)δZdb

=

∫ ∞
0

Pf [g(Z) > max {a, b}]db

= aPf [g(Z) > a] +

∫ ∞
a

Pf [g(Z) > b]db.
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Applying Proposition 38 changes the probabilities on g(Z) to normal tail probabilities. Thus, both
bounding terms in Eq. (4.23) converge to zero and thus the kernel estimate converges to the true
mean absolute deviation.

5. Examples

Here we provide detailed examples of the kernel density and kernel density estimation of an unknown
pdf. For simplicity, we restrict to a single degree of homology, say k = 1. Due to the intrinsic high
dimension of the kernel, we present contour plots for slices of the kernel density. Specifically, for
inputs ((b1, d1), ..., (bN , dN )), we consider the kernel density evaluated at (b1, d1) ∈ W with (bi, di)
fixed for i ≥ 2. For clarity, the unique symmetric pdf fsym(ξ1, ..., ξN ) = 1

N !

∑
π∈ΠN

f(ξπ(1), ..., ξπ(N))
is used in the contour plots (see Remark 15). For explicit computation, we choose the probability
mass function

ν(N) = max

{
N` + 1− |N` −N |

(N` + 1)2
, 0

}
(5.1)

when evaluating the lower density in Eq. (4.5), where N` =
∣∣D`
∣∣ is the lower cardinality of the

center diagram. This probability mass function is chosen to satisfy the requirements of Def. 24,
and specifically has the property that ν(N) > 0 for 0 ≤ N ≤ 2

∣∣D`
∣∣.

Example 2 Consider the center persistence diagram D = {(1, 3), (2, 4), (1, 1.3), (3, 3.2)} ⊂W and
bandwidth σ = 1/2. We construct the associated kernel density Kσ(Z,D) according to Theorem
25 and follow with some plots and analysis of the kernel density. The random persistence diagram
D associated with the kernel density Kσ(Z,D) has a variable number of features N = |D|; con-
sequently, the input diagram Z = {ξ1, ..., ξN} must have variable length and therefore the kernel
density has local definitions (see Rmk. 14) on WN for each possible input cardinality N .

Since each modified Gaussian p(j) (Def. 22) and the lower density p` (Def. 24) integrate to
1 over the wedge W , an expression for the probability mass function (pmf) P[|D| = N ] can be
expressed solely in terms of ν and q(j):

P[|D| = N ] =
[
q(1)q(2)

]
ν(N − 2)

+
[
q(1)

(
1− q(2)

)
+ q(2)

(
1− q(1)

)]
ν(N − 1)

+
[(

1− q(1)
)(

1− q(2)
)]
ν(N)

(5.2)

The plot of this pmf is shown in Fig. 4. Recall that D = Du ∪D`, so that |D| = |Du|+
∣∣D`
∣∣; since

q(j) ≈ 1 for j = 1, 2, |Du| = 2 with high probability and the pmf P[|D| = N ] is nearly the pmf
for
∣∣D`
∣∣, ν, shifted up by 2 units. Fig. 4 suggests that understanding the kernel density requires

investigation into higher cardinality inputs. In general, it is important to consider input diagrams
Z with |Z| ≥ |Du|.

First, we describe the random diagram associated to the lower features D` = {(1, 1.3), (3, 3.2)}
of the center diagram D . The lower random diagram D` is described in Def. 24 according to a
probability mass function (pmf) ν for the cardinality of D` and a single probability density p`(b, d)
for the subsequent features’ locations in the wedge W . The pmf ν is defined according to Eq. (5.1)
with N` = 2; that is, ν({0, 1, 2, 3, 4}) = {1/9, 2/9, 3/9, 2/9, 1/9} respectively, and zero otherwise.
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Figure 4: Cardinality probabilities P[|D| = N ] for random diagram D distributed according to
global pdf Kσ(·,D) in Ex. 2. In general, we have that 0 ≤ |Du| ≤ |Du| and according to Eq. (5.1),
ν(N) 6= 0 for 0 ≤ N ≤ 2

∣∣D`
∣∣. Thus, the cardinality |D| = |Du| +

∣∣D`
∣∣ takes on values between 0

and 6 = |Du|+ 2
∣∣D`
∣∣.

Following Def. 24, we project the features of D` onto the diagonal to obtain {(1.15, 1.15), (3.1, 3.1)}.
Relying on Eq. (4.4), the resulting lower density is given by

p`(b, d) =
2

π

[
e−((b−1.15)2+(d−1.15)2) + e−((b−3.1)2+(d−3.1)2)

]
. (5.3)

restricted to the wedge W . The coefficient 2
π is obtained by a direct substitution into Eq. (4.4).

Due to the flexible input cardinality, the kernel will be expressed and plotted separately for
different input cardinalities. For brevity, we present the local kernels on WN ⊂ R2N for cardinalities
N = 1, 2, 3. First, we consider the probability hypothesis density (or PHD, as defined in Eq. (3.8))
along with the kernel density evaluated at a single input feature in Fig. 5. Recall that the integral
of the PHD over a region U yields the expected number of features in U (see definition 18). The
kernel’s corresponding PHD is a sum of Gaussians as described in Corollary 28.

Kσ,PHD((b, d),D) = 2p`(b, d) + q(1)p(1)(b, d) + q(2)p(2)(b, d)

= 1.273
(
e−2((b−3.1)2+(d−3.1)2) + e−2((b−1.15)2+(d−1.15)2)

)
+ 0.635e−2((b−2)2+(d−4)2) + 0.635e−2((b−1)2+(d−3)2).

(5.4)

Next, for input of cardinality |Z| = 1, we obtain an easily viewable 2-dimensional distribution.
Theorem 25 yields the following expression:

Kσ((b1, d1),D) = ν(0)
[
(1− q(2))q(1)p(1)(b1, d1) + (1− q(1))q(2)p(2)(b1, d1)

]
+ ν(1)

[
(1− q(1))(1− q(2))p`(b1, d1)

]
.

= 7.74× 10−2
(
e−2((b1−2)2+(d1−4)2) + e−2((b1−1)2+(d1−3)2)

)
.

+ 1.65× 10−4p`(b1, d1).

(5.5)

The kernel is treated as a global pdf as in Proposition 13 and Rmk. 14; thus, this 2-D density is
only a local density for the whole kernel. Each term is a weighted product of the combination of
upper features considered (In order: (2, 4), (1, 3), or none.). Since the values of q(j) are very close
to 1, terms which include the upper pdfs p(j) have much larger total mass.

Contour plots of the densities expressed in Eqs. (5.4) and (5.5) (restricted to W ) are respectively
shown in Figs. 5(a) and 5(b). In Fig. 5(a), the PHD indicates that in general, as many features
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will appear near the diagonal as will appear near the upper features. According to the local kernel
shown in Fig. 5(b), if only a single feature is present, this feature is far more likely to have long
persistence. Indeed, the kernel density is defined (see Eq. (4.6)) so that the number of points
near the diagonal is fluid (by our choice of ν), whereas the probability of each feature in the upper
diagram is nearly 1. In essence, this demonstrates that the kernel density naturally considers
features with long persistence to be stable or prominent in density estimation.

(a) (b)

Figure 5: Contour maps for (a) the probability hypothesis density associated to the kernel density
(Eq. (5.4)) and (b) the kernel density restricted to a single input feature (Eq. (5.5)). The center
diagram is indicated by red (upper) and green (lower) points. Scale bars at the right of each plot
indicate the range of probability density in each shaded region.

Taking Z = (ξ1, ξ2) = ((b1, d2), (b2, d2)), we arrive at a more complex expression for the kernel
density when considering 2 input features. From Eq. (4.6), we obtain:

Kσ((ξ1, ξ2),D) = ν(0)q(1)q(2)p(1)(b1, d1)p(2)(b2, d2)

+ ν(1)
[
(1− q(2))q(1)p(1)(b1, d1) + (1− q(1))q(2)p(2)(b1, d1)

]
p`(b2, d2)

+ ν(2)(1− q(1))(1− q(2))p`(b1, d1)p`(b2, d2)

= 4.5× 10−2e−2((b1−2)2+(d1−4)2)e−2((b1−1)2+(d1−3)2)

+ 2.11× 10−4
[
e−2((b1−2)2+(d1−4)2) + e−2((b1−1)2+(d1−3)2)

]
p`(b2, d2)

+ 7.39× 10−7p`(b1, d1)p`(b2, d2).

(5.6)

Notice that this local kernel also decomposes into terms which describe presence of upper features:
one term for both, one term for each of the two upper features, and the last term has no upper
features. Contour plots of slices of this local kernel are shown in Fig. 6; a general description of
slicing is given in Rmk. 41.

Remark 41 Slices are used to view local pdfs defined on a high dimensional space WN ⊂ R2N for
N > 1. To obtain these slices, one fixes features (bj , dj) = (b′j , d

′
j) for j = 2, ..., N , and views the

density on the corresponding hyperplane W × {(b′2, d′2)} × ...× {(b′N , d′N )} ⊂ WN . In practice, the
fixed features are chosen as modes of earlier (smaller N) slices in order to view important parts of
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the distribution. We also sum over possible permutations in order to view a slice of the symmetric
pdf, as was done for Ex. 1.

If we consider the density evaluated along slices asKσ (((b, d), (1, 3)) ,D) orKσ (((b, d), (2, 4)) ,D)
(Fig. 6 (a) or (b), respectively), the restricted plot is a Gaussian centered at the other upper fea-
ture. If the fixed feature is instead close to the diagonal, as in Fig. 6 (c), the density slice is close
to a mixture between the two upper Gaussians p(1) and p(2).

(a) (b) (c)

Figure 6: Contour maps for slices of the kernel density Kσ((ξ, ξ′2),D) with input cardinality 2. A
single feature ξ′2, indicated by white crosshairs, is fixed to restrict to a 2D subspace as follows: (a)
ξ′2 = (1, 3) (b) ξ′2 = (2, 4) and (c) ξ′2 = (2.5, 2.7). The center diagram is indicated by red (upper)
and green (lower) points. Scale bars at the right of each plot indicate the range of probability
density in each shaded region.

In a similar fashion, we also express the kernel density with input cardinality |Z| = 3. Since there
are only 2 upper features in D , this and further expressions are not markedly more complicated
than Eq. (5.6). From Eq. (4.6), we obtain:

Kσ((ξ1, ξ2, ξ3),D) = ν(1)
[
q(1)q(2)p(1)(b1, d1)p(2)(b2, d2)

]
p`(b3, d3)

+ ν(2)(1− q(2))q(1)p(1)(b1, d1)p`(b2, d2)p`(b3, d3)

+ ν(2)(1− q(1))q(2)p(2)(b1, d1)p`(b2, d2)p`(b3, d3)

+ ν(3)(1− q(1))(1− q(2))p`(b1, d1)p`(b2, d2)p`(b3, d3).

= 9.01× 10−2p`(b3, d3)e−2((b1−1)2+(d1−3)2)e−2((b2−2)2+(d2−4)2)

+ 4.96× 10−4p`(b2, d2)p`(b3, d3)e−2((b1−2)2+(d1−4)2)

+ 4.96× 10−4p`(b2, d2)p`(b3, d3)e−2((b1−1)2+(d1−3)2)

+ 1.22× 10−6p`(b1, d1)p`(b2, d2)p`(b3, d3).

(5.7)

One may notice that Eq. (5.7) has the same 4 terms as Eq. (5.6), but with another factor of
p` in each term. Indeed, the local kernels for input cardinality N = 4, 5, 6 appear very similar as
well, and with progressively more factors of p`. Contour plot slices of this local kernel are shown
in Fig. 7, following Rmk. 41. In this case, since the local pdf is defined in W 3, we must fix a
pair of features in order to view a slice in W × {(b′2, d′2)} × {(b′3, d′3)}. In Eq. (5.7), the heaviest
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weighted term consists of both upper features’ densities as well as the lower density p`(b3, d3).
Indeed, Fig. 7(a) shows the slice Kσ(((b, d), (1, 3), (2, 4)),D), which leaves both upper features
fixed, and the resulting slice is nearly proportional to the lower density p`. Fig. 7 (b) shows
the slice Kσ(((b, d), (1, 3), (2.5, 3.5)),D), which fixes one of the upper features of D as well as a
feature of moderate persistence. This slice does not go through a mode of the local kernel, and
so the geometry of the dataspace W 3/Π3 makes the slice look multi-modal, depending on whether
(2.5, 3.5) is assigned to p(2) or p`. Other assignments have negligible mass. Thus, Fig. 7 (b)
resembles a mixture of these two densities.

(a) (b)

Figure 7: Contour maps for slices of the kernel density Kσ((ξ, ξ′2, ξ
′
3),D) with input cardinality 3.

A pair of features ξ′2 and ξ′3, indicated by white crosshairs, are fixed to restrict to a 2D subspace
as follows: (a) (ξ′2, ξ

′
3) = ((1, 3), (2, 4)) and (b) (ξ′2, ξ

′
3) = ((1, 3), (2.5, 3.5)).

Since the symmetric version of the density is used, the order of these features is irrelevant. The
center diagram is indicated by red (upper) and green (lower) points. Scale bars at the right of each
plot indicate the range of probability density in each shaded region.

The terms (1 − q(k)) within the Q∗ expression (see Eq. (3.11)) are very small and appear in
terms for which the corresponding upper feature is unassigned. These terms are so small because
both upper features have very long persistence in this example (four times the bandwidth), and
so the terms in Eqs. (5.5), (5.6), and (5.7) which do not include one or both upper Guassians
p(1) and p(2) have progressively smaller contribution to the overall local kernel. Consequently, the
kernel places much higher probability density near input diagrams with features nearby each upper
feature in the center diagram. This behavior is seen in Fig. 5, 6, 7, and their respective analyses,
and is directly correlated to the ratio of persistence to bandwidth for each feature.

Example 3 Here we consider the random persistence diagram generated from a specific random
dataset in R2. Our goal in this example is to build and demonstrate convergence of the kernel den-
sity estimate for the pdf of the associated random persistence diagram. Specifically, we generate
sample datasets which each consist of 10 points sampled uniformly from the unit circle with additive
Gaussian noise, N((0, 0),

(
1
50

)2
I2). This toy dataset is prototypical for signal analysis (correspond-

ing to the circular dynamics of a noisy sine curve), wherein the high dimensional point cloud is
obtained through delay-embedding of the signal. An in-depth analysis of using delay embedding
alongside persistent homology is found in (Perea and Harer, 2015).

These datasets each yield a Čech persistence diagram as described in Section 2 for degree of
homology k = 1. A sample dataset and its associated k = 1 persistence diagram are shown in Fig.

31



Maroulas, Mike, and Oballe

(a) (b)

Figure 8: An example underlying dataset and its associated persistence diagram. The persistence
diagrams are used as the centers for the kernel density estimate. For this example, persistence
diagrams with more than one feature are relatively rare.

KDE (1) (2) (3) (4)

n 100 300 1000 5000

σ 0.03 0.025 0.020 0.015

Table 1: Choices of sample size n (number of persistence diagrams) and bandwidth σ for each
kernel density estimate f̂n,σ(Z) shown in Fig. 9.

8. Since these datasets are sampled from the unit circle perturbed by relatively small noise, one
expects the associated 1-homology to have a single persistent feature with d ≈ 1 with possible brief
features caused by noise.

We consider several KDEs as we simultaneously increase the number of persistence diagrams (n)
and narrow the bandwidth (σ) as shown in Table 1). The bandwidth was chosen to scale according
to Silverman’s rule of thumb (Silverman, 1986) (see Rmk. 32).

Since the KDEs f̂n,σ(Z) are defined on
⋃
N W

N for several input cardinalities N , we present
them in multiple slices by fixing a cardinality and then fixing all but one input feature as described
in Rmk 41. For example, g(ξ) = f̂n,σ(ξ, ξ′2, ..., ξ

′
N ) for fixed ξ′j (j = 2, ..., N) is a function on W

and represents a slice of the local KDE on WN . The progression of KDE slices can be seen in
Fig. 9, wherein the same slices (i.e., the same features are fixed) are viewed for each choice of
(n, σ). These plots demonstrate in practice the convergence of the kernel density estimator shown
in Theorem 1. Because the sample points for the underlying dataset lie so close to the unit circle,
one expects the topological feature to die near scale d = 1, as is reflected in the KDEs shown in
Fig. 9 (left); however, the distribution of points along the circle allows its birth scale to vary quite
a lot. Additional features with brief persistence are concentrated very close to the diagonal due to
small noise. These features tend to be either spurious holes near the edge (smaller b and d) or a
short split of the main topological loop in two (larger b and d); this behavior is reflected in the two
peaks for slices of the KDEs shown in Fig. 9 (right). Indeed, the persistence diagram shown in
Fig. 8 is typical for this example. Overall, by scanning from top to bottom, Fig. 9 demonstrates
the convergence of the KDEs as n increases and σ decreases. The location and mass of each mode
is as expected from underlying data sampled from the unit circle. Moreover, very small spread in
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the limiting density arises from the small noise in the underlying data. The shape and spread of
each mode converges, and the densities for n = 1000 and n = 5000 are nearly the same.

Example 4 Electroencephalography (EEG) monitors electrical activity in the brain by measuring
changes in voltage over time at particular locations on the scalp. To obtain data, researchers place
arrays of electrodes on subjects’ heads that record fluctuations in voltage as time series. It is known
that EEG in the 1-100 Hz range is heavily involved in cognition (Boothe et al., 2017); moreover,
specific bands in the 1-100 Hz range are hypothesized to be associated with certain tasks or brain
states. For example, alpha range EEG, which has a spectral peak in the 8-12 Hz range, is thought
to be important in inhibition and excitation during decision problems (Kilmesch, 2012). Collecting
EEG is a noninvasive procedure, however, measurements are often obscured by noise arising from
electrical activity in the environment, movement, or other physiological processes like heartbeat.
Consequently, a critical problem is the need to detect EEG with the same underlying dynamics,
e.g. EEG that is predominantly composed of 8-12 Hz oscillations, in the presence of varying levels
of noise (Repovs, 2010).

In this example, we consider the widely–used autoregressive EEG model introduced in (Franaszczuk
and Bilnowaska, 1985), and we employ the KDE established in Proposition 25 to statistically ana-
lyze EEG. The authors in (Franaszczuk and Bilnowaska, 1985) model an EEG time series (xti)

L
i=0

of time length L as a convolution of white noise with a linear filter function given in Eq. (5.8),

h(ti) =

p∑
j=1

e−βjti cos(ωjti), (5.8)

where ωj correspond to centers of peaks in the power spectral density of (xti)
L
i=0 while the parame-

ters βj are approximately equal to 1/2 of their respective widths (both ωj and βj are given in Hz).
Recall that the power spectral density describes the contribution of each frequency to the total
power of (xti)

L
i=0 after decomposing (xti)

L
i=0 into a series of oscillatory functions. For example,

a power spectral density with a narrow peak at 10 Hz corresponds to a time series that heavily
resembles a function oscillating at 10 Hz. A broader peak at 10 Hz in essence means that the
time series has a greater contribution from more frequencies surrounding 10 Hz, diminishing the
resemblance (for comparison, the power spectral density of white noise is completely flat). This
view of the power spectral density means one can effectively simulate EEG comprised of oscillations
in a desired band of frequencies by selecting appropriate parameters in Eq. (5.8).

We focus on alpha range (8-12 Hz) EEG. Specifically, we simulate 200 EEG signals in the alpha
range by first generating 200 white noise vectors of length L = 1, 024 through independent draws
from N (0, 1) then convolving them with the linear filter described by Eq. (5.8) with p = 1, β1 = 3.7,
and ω1 = 10.5. We corrupt 100 signals by additive noise N (0, 10−1/20), while the rest are corrupted
by N (0, 10−5/20). This yields two collections of EEG signals with signal-to-noise ratios (SNRs) of
1 and 5, denoted by SNR1 and SNR5, respectively.

Next, we convert each EEG signal into a persistence diagram using the methodology of (Perea
and Harer, 2015). Namely, we transform EEG signals to point clouds in R2 using delay embed-
dings where the delay parameter was determined by the sampling rate (100 Hz) along with the
dominant underlying frequency of the signals (10 Hz); we then center and scale the point clouds
by their variances along the vertical and horizontal axes; see Fig. 10 (e) and (f). Once we obtain
point clouds, we compute persistence diagrams for 1-dimensional homological features using Rips
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(1)

(2)

(3)

(4)

Figure 9: Plots of persistence diagram KDEs for Ex. 3. Each plot is presented as a heat map
where color indicates the probability density. White regions above the diagonal indicate portions
of very low probability density. Each column is a particular slice, while each row is a particular
global KDE with n and σ as indicated in Table 1. The left column are the local KDEs f̂n,σ((b, d))
evaluated at a diagram with only one feature. The mode of the converged density is approximately
(b′2, d

′
2) = (0.77, 0.98). The right column are the local KDEs f̂n,σ((b, d), (0.77, 0.98)) evaluated at a

diagram with two features and one feature fixed. These slices have two modes which are very close
to the diagonal at (0, 0) and (1, 1). Overall, this figure demonstrates KDE convergence.
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filtrations; see Section 2. We choose to focus solely on 1-dimensional homological features since
they relate to periodicity in the underlying time series, which is the defining characteristic of our
signals.

Denote the family of persistence diagrams created from SNRi for i = 1, 5 by DSNRi , and let
fSNRi be their global probability densities. Our goal is to verify that SNR1 and SNR5 EEG have
the same underlying dynamics. A sensible strategy is to select a quantity created from persistence
diagrams that is robust to noise, approximate its distribution for SNRi using DSNRi , and then
compare the two empirical distributions. To this end, we start by approximating fSNRi with
the kernel density estimators f̂SNRi(Z) := 10−2

∑
D∈DSNRi

Kσ(Z,D). For each fixed i = 1, 5 the

persistence diagrams D ∈ DSNRi are the 100 diagrams of each SNRi case. For the noise likelihood
model related to the lower part of a persistence diagram, D`, we use Eq. (5.1) as the cardinality
distribution. Given that features with higher persistence generally describe global topology that is
more resilient to noise, and relying on these kernels f̂SNRi , we take S = 1, 000 sample persistence
diagrams and compute their bottleneck distance W∞(∅, Sji ) = max

(b,d)∈Sji
d − b, where Sji is the

jth sample persistence (j = 1, . . . , S) diagram distributed according to f̂SNRi , i = 1, 5. These
distances create empirical distributions, one for each SNRi EEG denoted by FSNRi . We formally
proceed with hypothesis testing

H0 : FSNR1 = FSNR5 vs H1 : FSNR1 6= FSNR5 .

Failure to reject H0 in this case is evidence that DSNR1 and DSNR5 have similar behavior for the
features less affected by noise, which in turn implies that SNR1 and SNR5 have similar underlying
dynamics. Finally, we compare these distributions with a two-sided Kolmogorov-Smirnov (KS)
Test (Simard, 2011) that yields a p−value=0.72.

KS-Test P-value Time (s)

KDE MP 0.72 0.047

PI L∞ 6.15× 10−9 0.042

PL L∞ 0.79 0.048

Table 2: The p-values and run times for each method (KDE, PI, and PL) used for the hypothesis
test of Eq. (4).

Sample MAD

SNR1 1.040

SNR5 1.035

Table 3: The sample MADs for SNR1 and SNR5 computed by taking the means of the distributions
in Fig 11(e) and Fig 11(f), repsectively.

For the sake of comparison to other TDA methods, we also compute persistence images (PIs)
with resolution 50× 50 and spread 0.2 using the ramp function to produce weights, (Adams et al.,
2017), and persistence landscapes (PLs) from DSNRi , (Bubenik, 2015). We examine the L∞-norm
as a summary for each of these vectorizations (the L∞-norm of the first landscape in particular
for PLs) since this measurement is also associated with high persistence features. After computing
L∞-norms for each of the PIs and PLs obtained from DSNRi , we resample each L∞ empirical
distribution 1,000 times to create bootstrapped distributions with size matching those of the W∞
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distributions obtained from the kernel density estimators; see Fig. 11 (c),(d),(e), and (f). In the
end, we also compare the bootstrapped distributions with a two-sided KS-test. Table 2 shows the
KS-test p-values and a standardized run time for each method.

Notice the kernel density max persistence and landscape L∞ correctly fail to reject H0 at the
most commonly used significance levels (p−value = 0.79). In particular, our method is competitive
with landscapes (with a slight edge on computational time). On the other hand, the persistence
image L∞ incorrectly rejects H0 (p−value close to 0). Failure of PIs to recognize different dynamics
may be a result of the fact that in addition to accounting for the max persistence (through the
use of the ramp function for weights), the PI L∞ also considers the cardinality of each diagram,
although the contribution of cardinality diminishes for higher resolutions and smaller spreads.

Finally, we report estimates for MADfSNR1
(∅) and MADfSNR5

(∅) by taking the means of our
empirical distributions for the max persistences; see Table 3. Notice the estimates are very close
numerically and by appealing to Theorem 40, one could argue they are close to their true values.
Hence, the MAD offers more evidence that SNR1 and SNR5 are statistically indistinguishable.

6. Discussion and Conclusions

A nonparametric approach to approximating density functions of finite random persistence dia-
grams has been presented. This includes the introduction of a kernel density function, as well as
proof that the kernel density itself and its mean absolute deviation converge to those of the target
distribution. Our kernel density function arises by creating a noise model for persistence diagrams
which simplifies treatment of features near the diagonal. Consequently, the kernel density can also
be used in measuring likelihood when observing small perturbations of persistence diagrams. Future
work will investigate the convergence of powers of the absolute deviation (e.g., bottleneck variance)
and deviations involving the Wasserstein metric (an Lp generalization of bottleneck metric, see
(Edelsbrunner and Harer, 2010)). Our framework is presented through the lens of geometric sim-
plicial complexes, and in particular Čech complexes. The resulting persistence diagrams are based
on underlying datasets in a metric space. In general, one may define persistent homology for a
function f defined on a topological space (Edelsbrunner and Harer, 2010), and therefore random
functions may also give rise to random persistence diagrams, see (Adler et al., 2010) for an example.
A similar kernel density estimate approach can be formulated in this case, but perhaps different
assumptions may be needed on the target pdf.

Our approach is fully data-driven, a necessary step since distributions of persistence diagrams
were previously poorly understood. The assumptions (A1)-(A3), (A2)∗, and (A3)∗ are typical for
kernel density estimators (Scott, 2015). Similar assumptions on the underlying data are inherited
by the random persistence diagram, because variation in Čech persistent homology is controlled by
interpoint distances. In particular, probability density decay follows the same trends as noise in the
underlying data; this is seen in Fig. 9 (a) for Gaussian noise. Thus, the kernel density estimates
defined here can be reliably used for data analysis, adding a detailed tool to the methods used in
topological data analysis. In particular, this is the first result yielding probability density functions
which directly analyze the full distribution information of a random persistence diagram. For ap-
plications in machine learning such as classification, the kernel density estimates carry information
for generating more sophisticated features than previously available; e.g., the value of the global
pdf at a specific input or list of inputs or the integral of the global pdf over a specified region.
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Access to a pdf also provides a tool with which one can check for classification robustness in terms
of likelihood or Bayes factors, providing a measure of the confidence in a particular outcome.

Lending credence to applicability in data analysis, examples of kernel density estimation are
presented in Section 5. In one example, underlying datasets are generated to lie on the unit
circle with additive noise, a prototypical example for topological data analysis. Our analysis yields
detailed information about the distribution of diagrams, even though only two 2−dimensional
slices of the kernel density estimate are shown. This example demonstrates the convergence of the
kernel density estimator in practice for large enough sample size (number of persistence diagrams).
This example along with the supplementary examples also demonstrate the detailed information
contained in a persistence diagram KDE. Moreover, our example with EEG data verifies that our
kernel density estimator is accessible to data in a realistic setting while remaining competitive with
or outperforming pre-existing TDA techniques.

In the context of Fig. 3, it is clear that sampling from the kernel density is straightforward,
and in fact computation time scales linearly in the number of features in the center diagram D .
In contrast, precise evaluation of the kernel global pdf at a diagram requires the more thorough
computations shown in Eq. (4.6). This evaluation is made tractable due to the separation of
the center diagram into upper and lower portions: D = Du ∪ D` as described in Eq. (4.1). In
practice, diagrams should split so that |Du| is small while

∣∣D`
∣∣ is large. Evaluation of individual

feature pdfs on the multi-wedge W0:d−1 only scales quadratically on the cardinality |D | and higher
degree calculations are required only for combinatorics on the large persistence features in the upper
diagram Du. Consequently, these calculations are tractable so long as Du does not grow too much
in cardinality, while an increased cardinality for D` has a lesser effect on computation time.

The kernel density presented here treats the small persistent features in D` as a single group.
Since convergence (Theorem 31) requires very little structure in the lower random diagram, it may
be helpful in practice to cluster the lower portion of the center diagram, followed by defining a
random diagram centered at each cluster. This approach somewhat complicates the expression
and evaluation of the kernel density, but does not complicate sampling from the kernel density.
The goal of this approach is to more carefully capture the geometric features of the underlying
random dataset, since such geometric features often correspond to briefly persistent homological
features. For example, geometric features are of paramount importance for classifying periodic
signals through their delay embeddings, wherein the large persistent feature indicates periodicity
and thus is expected to appear in every class.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: A segment of an EEG signal with (a) SNR1, and (b) SNR5, respectively, along with (c)
and (d): their corresponding periodograms (estimates of the power spectral densities). The associ-
ated point clouds are given in (e) and (f), respectively, and (g) and (h) their resulting persistence
diagrams.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: This figure shows the distribution for each statistic we considered when comparing
SNR1 to SNR5. Each column represents a class, either SNR1 or SNR5, and each row a particular
statistic.
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Appendix A. Proofs from Section 4.3

A.1. Proof of Proposition 38

Note that the lower bound integral is the probability for a pair z = (x, y) of independent standard
normal variables to lie in B((0, 0), δ). In order to bound the bottleneck distance W∞(D,D) < δσ, it
is sufficient that each constituent feature does not stray too far from either its corresponding center
or the diagonal (see Fig. 3 for reference). Specifically, we follow Def. 5 to build a correspondence
between D and D so that the maximal distance undercuts δσ, and thus the (potentially smaller)
bottleneck distance is also bounded by δσ. For clarity, features in D are denoted using ζ while
features in D are denoted using ξ.

Consider each feature ξj ∈ Du = D ∩ {d− b ≥ σ} and its associated random singleton diagram
Dj =

{
ζj
}

or ∅ as in Def. 22. Assuming the disc neighborhood Bj = B(ξj , δσ) is contained in the
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wedge W =
{

(b, d) ∈ R2 : d > b ≥ 0
}

, the density of zj = ζj−ξj
σ is a multiple (> 1) of the density

of the Gaussian random variable z ∼ N((0, 0), I2) in the region where ζj ∈ Bj (or equivalently
zj ∈ B((0, 0), δ)). Thus, we obtain P

[
ζj ∈ B(ξj , δσ)

]
≥ P [|z| ≤ δ] for the probability that ζj can

be mapped to ξj in a bounding correspondence. If Bj *W , this probability is even higher because
ξj can be mapped to the diagonal and thus the case Dj = ∅ is included.

Now take into account the features in D` and the associated random features D` as in Def.
24. Although the features in D` are not necessarily independent, we may assume without loss
of generality the worst case, in which the maximal cardinality is drawn. Given a fixed cardi-
nality, the draws of D` are independent. Since any feature may be mapped to the diagonal in
the bottleneck distance, a bounding correspondence can be obtained whenever the draws in D`

and features in D` are close enough to the diagonal (within δσ). Indeed, the features in D` are
by definition distance σ ≤ δσ from the diagonal. Restricting to W , the pdf for the draws of

D` = {(bj , dj)}|N`|j=1 is given by p`(b, d) = 1
πN`σ2

∑N`
j=1 e

−
((

x−
bj+dj

2

)2
+
(
y−

bj+dj
2

)2
)
/2σ2

. Consider the

sets Uj = B
((

bj+dj
2 ,

bj+dj
2

)
, δσ
)

and U =
⋃N`
j=1 Uj . For each lower feature (b, d) ∈ D`, map-

ping to the diagonal yields a bounding correspondence and the associated probability is bounded
below by P[d − b ≤ δσ] =

∫
∆δσ

0
p`(x, y) dx dy ≥

∫
W∩U p

`(x, y) dx dy since W ∩ U ⊂ ∆δσ
0 =

{(b, d) ∈W : d− b ≤ δσ}. Next, we restrict the lower bounding integral for each term of p` to
its matching subset Uj and change variables to attain the desired form:∫

W∩U
p`(x, y) dx dy ≥

N∑̀
j=1

∫
Uj

1

2πN`σ2
e
−
((

x−
bj+dj

2

)2
+
(
y−

bj+dj
2

)2
)
/2σ2

dx dy

=

∫
B((0,0),δ)

1

2π
e−(x2+y2)/2 dx dy.

Overall, this argument shows that with probability at least P(|z| ≤ δ)M there is a correspondence
which bounds the bottleneck distance by δσ and the result follows.

A.2. Proof of Lemma 39

Choose an arbitrary persistence diagram D . Since bottleneck distance is defined according to the
sup-norm (see Eq. (2.2)), the bottleneck distance to the null persistence diagram (i.e., without any
features) is precisely half the maximal persistence. Thus, we begin by showing that the maximal
persistence moment is finite. Taking Z = {ξ1, ..., ξN} with ξi = (bi, di, ki), we have:∫

W0:d−1

max(di − bi)δZ ≤
∫
W0:d−1

‖Z‖ f(Z)δZ (A.1)

since max(di − bi) ≤ max (‖(bi, di)‖) ≤ ‖Z‖. Consider a compact set K ⊂ W0:d−1 which contains
a neighborhood of the origin. Given assumptions (A2)∗ and (A3)∗, Eq. (A.1) is bounded by the
following finite expression.∫

W0:d−1

‖Z‖ f(Z)δZ ≤
∫
K
C2 ‖Z‖ δZ +

M∑
N=1

∫
h−1
N (hN (K)c)

C3 ‖Z‖−2N−1 dξ1...dξN . (A.2)

Lastly, we take advantage of the Minkowski inequality, which holds trivially for set integration
since it is a linear combination of Lebesgue integrals. Indeed, the MAD centered at D0 is bounded
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as follows.∫
W0:d−1

W∞(D0, Z)f(Z)δZ ≤
∫
W0:d−1

W∞(D0, ∅)f(Z)δZ +

∫
W0:d−1

W∞(∅, Z)f(Z)δZ (A.3)

where ∅ represents the null persistence diagram and the distance to the null persistence diagram is
precisely half the maximal persistence. Since f integrates to 1, the first integral simplifies to the
finite distance W∞(D0, ∅), while the second integral is finite according to Eq. (A.2).

Appendix B. Extra Examples

Here we present two more examples of constructing a kernel density estimator (KDE) according
to the kernel given in Eq. (4.6). In these examples, we view slices of the KDE at various sample
sizes and bandwidths. In the first example, the underlying dataset consists of points sampled
from a circle with relatively large noise, in contrast to Ex. 3 in Subsection 5. This example
demonstrates how, despite the symmetry of the unit circle and Gaussian noise of the underlying
data, the resulting persistence diagram KDE and eventually its limiting behavior lacks Gaussian
structure. In the second example, the underlying dataset consists of points sampled from a pinched
circle. The underlying dataset has only one loop, but the persistence diagrams typically have a
feature of long persistence and another feature of moderate persistence. Both features are captured
by the KDE, and are clearly separable into distinct features despite their adjacency. To keep the
presentation relatively simple to interpret, the same slices will be presented for each KDE (see
Rmk. 41). This allows one to track the convergence of the KDE as the sample size of persistence
diagrams, n, increases and the bandwidth, σ, decreases.

Example 5 Consider random underlying datasets each consisting of 25 points sampled uniformly
from the unit circle, which are then perturbed by Gaussian noise with variance (1/6)2I2, and their
associated Čech persistence diagrams for degree of homology k = 1. An example dataset and its
associated Čech persistence diagram for k = 1 are shown in Fig. 12.

Since the underlying datasets are sampled from a perfect circle perturbed by large noise, one
expects the associated 1-homology to have a single persistent feature with several smaller features
caused by noise. We consider several KDEs as we simultaneously increase the number of persistence
diagrams and narrow the bandwidth. The bandwidth was chosen to vary according to Silverman’s
rule of thumb (Silverman, 1986). Since the KDEs are defined on

⋃
N W

N for several input car-

dinalities N , we present f̂n,σ(Z) in multiple slices by fixing a cardinality and then fixing all but

one input feature, as explained in Rmk. 41. For example, g(ξ) = f̂n,σ(ξ, ξ′2, ..., ξ
′
N ) for fixed ξ′j is

a function on W and represents a slice of the local KDE on WN . This progression of KDEs can
be seen in Fig. 13, wherein the same slices are viewed for each choice of n and σ. Modes of each
slice are used as fixed features in the slices of higher cardinality inputs; consequently, the presented
slices capture portions of the KDE with high probability density.

Fig. 13 demonstrates slower convergence of the KDEs than in Ex. 3, which is expected due
to larger noise. Though the tail behavior of the KDEs remains Gaussian in nature, the limiting
density is not Gaussian. In fact, the KDEs f̂(n, σ) are neither symmetric nor unimodal, even for
a single input. Much like the kernel densities themselves, each KDE separates into upper and
lower densities on W ; however, the lower density varies depending on which upper mode is fixed in
f̂(ξ, ξ′j).
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(a)
(b)

Figure 12: (a) An example of the underlying datasets generated for Ex. 5. Each dataset consists
of 25 points sampled uniformly on the unit circle which are then perturbed by i.i.d. Gaussian noise
with variance (1/6)2I2. (b) The persistence diagram associated to the Čech filtration of the dataset

While the underlying dataspace is the unit circle in both Ex. 3 and Ex. 5, the precise presenta-
tion of the underlying data effects the pdf of the associated random persistence diagram. Precisely,
two primary parameters for the underlying dataset are involved: (i) the scale of Gaussian noise and
(ii) the sample size of the underlying dataset. The persistence diagram (for degree of homology
k = 1) associated with the ‘’true’ unit circle is not random and has a single feature at (b, d) = (0, 1).
The random, discrete nature of these examples creates persistence diagrams which deviate from
this ‘truth.’

As described for Ex. 3, with very little noise all the sample points lie close to the unit circle,
and so the Čech complex becomes contractible at a radius r ≈ 1. Consequently, the death value
of the main topological feature is near the ‘true’ value (e.g., the mode in Fig. 9 is d = 0.98 ≈ 1).
However, since we are working with discrete points, this feature does not appear immediately: the
gaps in the circle need to be filled in (this is even true without noise). In Ex. 3, the sample size is
only 10, so the birth value is typically much larger than the ‘true’ value (e.g., the mode in Fig. 9
is b = 0.77 >> 0).

In comparison to Ex. 3, Ex. 5 has relatively more noise; this results in a random persistence
diagram with smaller death values for the main feature (e.g., the mode in Fig. 13 is d = 0.8 < 0.98).
It is evident from Fig. 13 that while the noise is additive on the underlying data, its precise effect
on the random persistence diagram is nonlinear. Moreover, Ex. 5 has a larger sample size (25 as
opposed to 10), resulting in more consistent and smaller birth times for the main feature (e.g., the
mode in Fig. 13 is b = 0.4 < 0.77). In addition, larger noise and sample size both result in more
features near the diagonal in Ex. 5 as compared to Ex. 3.

Example 6 While Ex. 5 demonstrates the effect of noise on a persistence diagram pdf, this
example will look into the effect of geometry. Consider random underlying datasets each consisting
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(1)

(2)

(3)

Figure 13: Key slices of persistence diagram KDEs for Ex. 5. Each column is a particular slice, while
each row is a particular KDE: (1) n = 20 and σ = 0.05, (2) n = 100 and σ = 0.03, and (3) n = 300
and σ = 0.02. The first column are the local KDEs f̂n,σ((b, d)) evaluated at a diagram with only

one feature. The second column are the local KDEs f̂n,σ((b, d), (0.4, 0.8)) evaluated at a diagram

with two features but one feature fixed. The third column are the local KDEs f̂n,σ((b, d), (0.56, 0.8))
evaluated at a diagram with two features but with a different feature fixed. Overall, this figure
demonstrates convergence of the KDE as the number of persistence diagrams increases and the
bandwidth decreases. Indeed, the two modes on the left already stabilize after n = 300, and the
spread is no longer determined by the kernel bandwidth.
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(a)
(b)

Figure 14: (a) An example of the underlying datasets generated for Ex. 5. Each dataset consists
of 100 points sampled uniformly (according to angle) on the two-lobed polar curve which are then
perturbed by i.i.d. Gaussian noise with variance (1/30)2I2. (b) The persistence diagram associated
to the Čech filtration of the underlying dataset.

of 100 points sampled from a two-lobed polar curve, which are then perturbed by Gaussian noise
with variance (1/30)2I2, and their associated Čech persistence diagrams for degree of homology
k = 1. An example dataset and its associated persistence diagram for k = 1 are shown in Fig. 14.

We consider several KDEs as we simultaneously increase the number of persistence diagrams
and narrow the bandwidth. The bandwidth was chosen to vary according to Silverman’s rule of
thumb (Silverman, 1986). Since the KDEs are defined on

⋃
N W

N for several input cardinalities

N , we present f̂n,σ(Z) in multiple slices by fixing a cardinality and then fixing all but one input

feature, as explained in Rmk. 41. For example, g(ξ) = f̂n,σ(ξ, ξ′2, ..., ξ
′
N ) for fixed ξ′j is a function

on W and represents a slice of the local KDE on WN . This progression of KDEs can be seen in
Fig. 15, wherein the same slices are viewed for each choice of n and σ. Modes of each slice are
used as fixed features in the slices of higher cardinality inputs; consequently, the presented slices
capture portions of the KDE with high probability density. Moreover, Fig. 15 demonstrates that
these slices tend to capture specific topological or geometric features of the underlying dataspace.

The two-lobed curve in this example has a Čech persistence diagram consisting of two features,
a topological feature of very long persistence and a geometric feature of moderate persistence. The
moderate persistence feature describes the pinching of the curve. These two features are captured
as separate points by the KDEs, and are thus viewed in completely separate slices of the KDE. By
observing the KDE in the last row of Fig. 15, the geometric feature with moderate persistence has
considerably less variance. Indeed, while the birth time of the topological feature relies on bridging
gaps around the entire shape, which can all vary, the larger birth time of the geometric feature has
less variance since it relies solely only on the short circuit between the lobes. As a result of this
small variance, the geometric feature is emphasized for the local KDEs with a single input feature;
also, the density takes longer to converge near this feature.
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distributions of persistence diagrams

(1)

(2)

(3)

(4)

Figure 15: Key slices of persistence diagram KDEs for Ex. 6. Each column is a particular slice,
while each row is a particular KDE (1) n = 20 and σ = 0.03, (2) n = 100 and σ = 0.02, (3)
n = 300 and σ = 0.015, and (4) n = 1000 and σ = 0.01. The first column are the local KDEs
f̂n,σ((b, d)) evaluated at a diagram with only one feature; the mode is ξ′1 = (0.2, 0.4). The sec-

ond column are the local KDEs f̂n,σ((b, d), (0.2, 0.4)) evaluated at a diagram with two features,
but with one feature fixed; the mode is ξ′2 = (0.14, 0.42) The third column are the local KDEs
f̂n,σ((b, d), (0.2, 0.4), (0.14, 0.42)) evaluated at a diagram with three features, but with two features
fixed. The fourth column shows the same slices as the third, but with the colormap shifted down
to show the smaller modes. The variance of certain features effects the rate of convergence nearby,
similar to Gaussian KDE in Euclidean space for a distribution with modes of different variance.

The lower portion of the KDE shows three separate modes. Features which build the largest
mode consists of small loops, caused by local noise and gaps along the curve. The two modes which
appear at larger scale indicate short circuiting of the pinch (smaller) or one of the lobes (larger,
like the second mode in the circle example); These two lower modes are separate from noise-based
features and are indicative of geometry in the underlying data.
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